Motif 266 (n=649)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A1X283 | SH3PXD2B | S291 | ochoa | SH3 and PX domain-containing protein 2B (Adapter protein HOFI) (Factor for adipocyte differentiation 49) (Tyrosine kinase substrate with four SH3 domains) | Adapter protein involved in invadopodia and podosome formation and extracellular matrix degradation. Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. Plays a role in mitotic clonal expansion during the immediate early stage of adipocyte differentiation (By similarity). {ECO:0000250, ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497}. |
A3KN83 | SBNO1 | S828 | ochoa | Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) | Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}. |
A4D1P6 | WDR91 | S287 | ochoa | WD repeat-containing protein 91 | Functions as a negative regulator of the PI3 kinase/PI3K activity associated with endosomal membranes via BECN1, a core subunit of the PI3K complex. By modifying the phosphatidylinositol 3-phosphate/PtdInsP3 content of endosomal membranes may regulate endosome fusion, recycling, sorting and early to late endosome transport (PubMed:26783301). It is for instance, required for the delivery of cargos like BST2/tetherin from early to late endosome and thereby participates indirectly to their degradation by the lysosome (PubMed:27126989). May play a role in meiosis (By similarity). {ECO:0000250|UniProtKB:Q7TMQ7, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:27126989}. |
A6NFX1 | MFSD2B | S26 | ochoa | Sphingosine-1-phosphate transporter MFSD2B (Major facilitator superfamily domain-containing protein 2B) (hMfsd2b) | Lipid transporter that specifically mediates export of sphingosine-1-phosphate in red blood cells and platelets (PubMed:29045386). Sphingosine-1-phosphate is a signaling sphingolipid and its export from red blood cells into in the plasma is required for red blood cell morphology (By similarity). Sphingosine-1-phosphate export from platelets is required for platelet aggregation and thrombus formation (By similarity). Mediates the export of different sphingosine-1-phosphate (S1P) species, including S1P(d18:0) (sphinganine 1-phosphate), S1P (d18:1) (sphing-4-enine 1-phosphate) and S1P (d18:2) (sphinga-4E,14Z-dienine-1-phosphate) (Probable). Release of sphingosine-1-phosphate is facilitated by a proton gradient (By similarity). In contrast, cations, such as sodium, are not required to drive sphingosine-1-phosphate transport (Probable). In addition to export, also able to mediate S1P import (By similarity). Does not transport lysophosphatidylcholine (LPC) (Probable). {ECO:0000250|UniProtKB:Q3T9M1, ECO:0000269|PubMed:29045386, ECO:0000305|PubMed:29563527}. |
A6NI28 | ARHGAP42 | S587 | ochoa | Rho GTPase-activating protein 42 (Rho GTPase-activating protein 10-like) (Rho-type GTPase-activating protein 42) | May influence blood pressure by functioning as a GTPase-activating protein for RHOA in vascular smooth muscle. {ECO:0000269|PubMed:24335996}. |
A7KAX9 | ARHGAP32 | Y1618 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A8CG34 | POM121C | S161 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
E9PAV3 | NACA | S860 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
K7ELQ4 | ATF7-NPFF | S174 | ochoa | ATF7-NPFF readthrough | None |
O00178 | GTPBP1 | S644 | ochoa | GTP-binding protein 1 (G-protein 1) (GP-1) (GP1) | Promotes degradation of target mRNA species. Plays a role in the regulation of circadian mRNA stability. Binds GTP and has GTPase activity (By similarity). {ECO:0000250|UniProtKB:D2XV59}. |
O14526 | FCHO1 | S523 | ochoa | F-BAR domain only protein 1 | Functions in an early step of clathrin-mediated endocytosis (PubMed:30822429). Has both a membrane binding/bending activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. May regulate Bmp signaling by regulating clathrin-mediated endocytosis of Bmp receptors. Involved in the regulation of T-cell poliferation and activation (PubMed:30822429, PubMed:32098969). Affects TCR clustering upon receptor triggering and modulates its internalisation, playing a role in TCR-dependent T-cell activation (PubMed:32098969). {ECO:0000269|PubMed:20448150, ECO:0000269|PubMed:30822429, ECO:0000269|PubMed:32098969}. |
O14686 | KMT2D | S3202 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S4328 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14976 | GAK | Y1149 | ochoa|psp | Cyclin-G-associated kinase (EC 2.7.11.1) (DnaJ homolog subfamily C member 26) | Associates with cyclin G and CDK5. Seems to act as an auxilin homolog that is involved in the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells. Expression oscillates slightly during the cell cycle, peaking at G1 (PubMed:10625686). May play a role in clathrin-mediated endocytosis and intracellular trafficking, and in the dynamics of clathrin assembly/disassembly (PubMed:18489706). {ECO:0000269|PubMed:10625686, ECO:0000269|PubMed:18489706}. |
O15049 | N4BP3 | S209 | ochoa | NEDD4-binding protein 3 (N4BP3) | Plays a positive role in the antiviral innate immune signaling pathway. Mechanistically, interacts with MAVS and functions as a positive regulator to promote 'Lys-63'-linked polyubiquitination of MAVS and thus strengthens the interaction between MAVS and TRAF2 (PubMed:34880843). Also plays a role in axon and dendrite arborization during cranial nerve development. May also be important for neural crest migration and early development of other anterior structures including eye, brain and cranial cartilage (By similarity). {ECO:0000250|UniProtKB:A0A1L8GXY6, ECO:0000269|PubMed:34880843}. |
O15068 | MCF2L | S973 | ochoa | Guanine nucleotide exchange factor DBS (DBL's big sister) (MCF2-transforming sequence-like protein) | Guanine nucleotide exchange factor that catalyzes guanine nucleotide exchange on RHOA and CDC42, and thereby contributes to the regulation of RHOA and CDC42 signaling pathways (By similarity). Seems to lack activity with RAC1. Becomes activated and highly tumorigenic by truncation of the N-terminus (By similarity). Isoform 5 activates CDC42 (PubMed:15157669). {ECO:0000250|UniProtKB:Q63406, ECO:0000269|PubMed:15157669}.; FUNCTION: [Isoform 3]: Does not catalyze guanine nucleotide exchange on CDC42 (PubMed:15157669). {ECO:0000269|PubMed:15157669}. |
O15164 | TRIM24 | S110 | ochoa | Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) | Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}. |
O15231 | ZNF185 | S78 | ochoa | Zinc finger protein 185 (LIM domain protein ZNF185) (P1-A) | May be involved in the regulation of cellular proliferation and/or differentiation. |
O15231 | ZNF185 | S131 | ochoa | Zinc finger protein 185 (LIM domain protein ZNF185) (P1-A) | May be involved in the regulation of cellular proliferation and/or differentiation. |
O15446 | POLR1G | S136 | ochoa | DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}. |
O15534 | PER1 | S830 | ochoa | Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui) | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. {ECO:0000269|PubMed:24005054}. |
O43187 | IRAK2 | S143 | ochoa | Interleukin-1 receptor-associated kinase-like 2 (IRAK-2) | Binds to the IL-1 type I receptor following IL-1 engagement, triggering intracellular signaling cascades leading to transcriptional up-regulation and mRNA stabilization. {ECO:0000269|PubMed:10383454, ECO:0000269|PubMed:9374458}. |
O43395 | PRPF3 | S131 | ochoa | U4/U6 small nuclear ribonucleoprotein Prp3 (Pre-mRNA-splicing factor 3) (hPrp3) (U4/U6 snRNP 90 kDa protein) | Plays a role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex). {ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28781166, ECO:0000305|PubMed:20595234}. |
O43426 | SYNJ1 | S1080 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43426 | SYNJ1 | S1290 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43525 | KCNQ3 | S578 | psp | Potassium voltage-gated channel subfamily KQT member 3 (KQT-like 3) (Potassium channel subunit alpha KvLQT3) (Voltage-gated potassium channel subunit Kv7.3) | Pore-forming subunit of the voltage-gated potassium (Kv) M-channel which is responsible for the M-current, a key controller of neuronal excitability (PubMed:16319223, PubMed:27564677, PubMed:28793216, PubMed:9872318). M-channel is composed of pore-forming subunits KCNQ2 and KCNQ3 assembled as heterotetramers (PubMed:14534157, PubMed:16319223, PubMed:27564677, PubMed:9872318). The native M-current has a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs (PubMed:14534157, PubMed:16319223, PubMed:28793216). M-channel is selectively permeable in vitro to other cations besides potassium, in decreasing order of affinity K(+) > Rb(+) > Cs(+) > Na(+) (PubMed:28793216). M-channel association with SLC5A3/SMIT1 alters channel ion selectivity, increasing Na(+) and Cs(+) permeation relative to K(+) (PubMed:28793216). Suppressed by activation of M1 muscarinic acetylcholine receptors (PubMed:10713961). KCNQ3 also associates with KCNQ5 to form a functional channel in vitro and may also contribute to the M-current in brain (PubMed:11159685). {ECO:0000250|UniProtKB:O43526, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:11159685, ECO:0000269|PubMed:14534157, ECO:0000269|PubMed:16319223, ECO:0000269|PubMed:27564677, ECO:0000269|PubMed:28793216, ECO:0000269|PubMed:9872318}. |
O43623 | SNAI2 | S92 | psp | Zinc finger protein SNAI2 (Neural crest transcription factor Slug) (Protein snail homolog 2) | Transcriptional repressor that modulates both activator-dependent and basal transcription. Involved in the generation and migration of neural crest cells. Plays a role in mediating RAF1-induced transcriptional repression of the TJ protein, occludin (OCLN) and subsequent oncogenic transformation of epithelial cells (By similarity). Represses BRCA2 expression by binding to its E2-box-containing silencer and recruiting CTBP1 and HDAC1 in breast cells. In epidermal keratinocytes, binds to the E-box in ITGA3 promoter and represses its transcription. Involved in the regulation of ITGB1 and ITGB4 expression and cell adhesion and proliferation in epidermal keratinocytes. Binds to E-box2 domain of BSG and activates its expression during TGFB1-induced epithelial-mesenchymal transition (EMT) in hepatocytes. Represses E-Cadherin/CDH1 transcription via E-box elements. Involved in osteoblast maturation. Binds to RUNX2 and SOC9 promoters and may act as a positive and negative transcription regulator, respectively, in osteoblasts. Binds to CXCL12 promoter via E-box regions in mesenchymal stem cells and osteoblasts. Plays an essential role in TWIST1-induced EMT and its ability to promote invasion and metastasis. {ECO:0000250, ECO:0000269|PubMed:10866665, ECO:0000269|PubMed:11912130, ECO:0000269|PubMed:15734731, ECO:0000269|PubMed:16707493, ECO:0000269|PubMed:19756381, ECO:0000269|PubMed:21182836}. |
O43683 | BUB1 | S596 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O60239 | SH3BP5 | S354 | ochoa | SH3 domain-binding protein 5 (SH3BP-5) (SH3 domain-binding protein that preferentially associates with BTK) | Functions as a guanine nucleotide exchange factor (GEF) with specificity for RAB11A and RAB25 (PubMed:26506309, PubMed:30217979). Inhibits the auto- and transphosphorylation activity of BTK. Plays a negative regulatory role in BTK-related cytoplasmic signaling in B-cells. May be involved in BCR-induced apoptotic cell death. {ECO:0000269|PubMed:10339589, ECO:0000269|PubMed:26506309, ECO:0000269|PubMed:30217979, ECO:0000269|PubMed:9571151}. |
O60341 | KDM1A | S93 | ochoa | Lysine-specific histone demethylase 1A (EC 1.14.99.66) (BRAF35-HDAC complex protein BHC110) (Flavin-containing amine oxidase domain-containing protein 2) ([histone H3]-dimethyl-L-lysine(4) FAD-dependent demethylase 1A) | Histone demethylase that can demethylate both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context (PubMed:15620353, PubMed:15811342, PubMed:16079794, PubMed:16079795, PubMed:16140033, PubMed:16223729, PubMed:27292636). Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed (PubMed:15620353, PubMed:15811342, PubMed:16079794, PubMed:21300290). Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me (PubMed:15620353, PubMed:20389281, PubMed:21300290, PubMed:23721412). May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity (PubMed:16079794, PubMed:16140033, PubMed:16885027, PubMed:21300290, PubMed:23721412). Also acts as a coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in AR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A (PubMed:16079795). Demethylates di-methylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1 (PubMed:29691401). Demethylates methylated 'Lys-42' and methylated 'Lys-117' of SOX2 (PubMed:29358331). Required for gastrulation during embryogenesis. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (PubMed:16079794, PubMed:16140033). Facilitates epithelial-to-mesenchymal transition by acting as an effector of SNAI1-mediated transcription repression of epithelial markers E-cadherin/CDH1, CDN7 and KRT8 (PubMed:20562920, PubMed:27292636). Required for the maintenance of the silenced state of the SNAI1 target genes E-cadherin/CDH1 and CDN7 (PubMed:20389281). Required for the repression of GIPR expression (PubMed:34655521, PubMed:34906447). {ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:15620353, ECO:0000269|PubMed:15811342, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16079795, ECO:0000269|PubMed:16140033, ECO:0000269|PubMed:16223729, ECO:0000269|PubMed:16885027, ECO:0000269|PubMed:16956976, ECO:0000269|PubMed:17805299, ECO:0000269|PubMed:20228790, ECO:0000269|PubMed:20389281, ECO:0000269|PubMed:20562920, ECO:0000269|PubMed:21300290, ECO:0000269|PubMed:23721412, ECO:0000269|PubMed:27292636, ECO:0000269|PubMed:29358331, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:34655521, ECO:0000269|PubMed:34906447}. |
O60667 | FCMR | S310 | ochoa | Immunoglobulin mu Fc receptor (IgM FcR) (Fas apoptotic inhibitory molecule 3) (FAIM3) (Regulator of Fas-induced apoptosis Toso) | High-affinity Fc receptor for immunoglobulin M (IgM), both secreted and membrane-bound IgM (PubMed:19858324, PubMed:22675200, PubMed:36949194, PubMed:37095205). Primarily regulates IgM transport and homeostasis. In lymphoid cells, enables exocytosis of membrane-bound IgM on the plasma membrane as well as endocytosis of IgM-antigen complexes toward lysosomes for degradation. In mucosal epithelium, mediates retrotranscytosis of antigen-IgM complexes across mucosal M cells toward antigen-presenting cells in mucosal lymphoid tissues (PubMed:21908732, PubMed:28230186). Triggers costimulatory signaling and mediates most of IgM effector functions involved in B cell development and primary immune response to infection. Likely limits tonic IgM BCR signaling to self-antigens for proper negative selection of autoreactive B cells in the bone marrow and for the maintenance of regulatory B cell pool in peripheral lymphoid organs. Mediates antibody responses to T cell-dependent and T cell-independent antigens and promotes induction of an efficient neutralizing IgG response. Engages in cross-talk with antigen-receptor signaling via the non-canonical NF-kappa-B, MAP kinases and calcium signaling pathways (PubMed:19858324, PubMed:22675200, PubMed:25601920, PubMed:30840890). {ECO:0000269|PubMed:19858324, ECO:0000269|PubMed:21908732, ECO:0000269|PubMed:22675200, ECO:0000269|PubMed:25601920, ECO:0000269|PubMed:28230186, ECO:0000269|PubMed:30840890, ECO:0000269|PubMed:36949194, ECO:0000269|PubMed:37095205}. |
O60784 | TOM1 | S473 | ochoa | Target of Myb1 membrane trafficking protein (Target of Myb protein 1) | Adapter protein that plays a role in the intracellular membrane trafficking of ubiquitinated proteins, thereby participating in autophagy, ubiquitination-dependent signaling and receptor recycling pathways (PubMed:14563850, PubMed:15047686, PubMed:23023224, PubMed:25588840, PubMed:26320582, PubMed:31371777). Acts as a MYO6/Myosin VI adapter protein that targets MYO6 to endocytic structures (PubMed:23023224). Together with MYO6, required for autophagosomal delivery of endocytic cargo, the maturation of autophagosomes and their fusion with lysosomes (PubMed:23023224). MYO6 links TOM1 with autophagy receptors, such as TAX1BP1; CALCOCO2/NDP52 and OPTN (PubMed:31371777). Binds to polyubiquitinated proteins via its GAT domain (PubMed:14563850). In a complex with TOLLIP, recruits ubiquitin-conjugated proteins onto early endosomes (PubMed:15047686). The Tom1-Tollip complex may regulate endosomal trafficking by linking polyubiquitinated proteins to clathrin (PubMed:14563850, PubMed:15047686). Mediates clathrin recruitment to early endosomes by ZFYVE16 (PubMed:15657082). Modulates binding of TOLLIP to phosphatidylinositol 3-phosphate (PtdIns(3)P) via binding competition; the association with TOLLIP may favor the release of TOLLIP from endosomal membranes, allowing TOLLIP to commit to cargo trafficking (PubMed:26320582). Acts as a phosphatidylinositol 5-phosphate (PtdIns(5)P) effector by binding to PtdIns(5)P, thereby regulating endosomal maturation (PubMed:25588840). PtdIns(5)P-dependent recruitment to signaling endosomes may block endosomal maturation (PubMed:25588840). Also inhibits Toll-like receptor (TLR) signaling and participates in immune receptor recycling (PubMed:15047686, PubMed:26320582). {ECO:0000269|PubMed:14563850, ECO:0000269|PubMed:15047686, ECO:0000269|PubMed:15657082, ECO:0000269|PubMed:23023224, ECO:0000269|PubMed:25588840, ECO:0000269|PubMed:26320582, ECO:0000269|PubMed:31371777}. |
O75140 | DEPDC5 | S831 | ochoa | GATOR1 complex protein DEPDC5 (DEP domain-containing protein 5) | As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:31548394, PubMed:35338845). In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:35338845). In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29769719). Within the GATOR1 complex, DEPDC5 mediates direct interaction with the nucleotide-binding pocket of small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD) and coordinates their nucleotide loading states by promoting RagA/RRAGA or RagB/RRAGB into their GDP-binding state and RagC/RRAGC or RagD/RRAGD into their GTP-binding state (PubMed:29590090, PubMed:35338845). However, it does not execute the GAP activity, which is mediated by NPRL2 (PubMed:29590090). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:29590090, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:35338845}. |
O75147 | OBSL1 | S123 | ochoa | Obscurin-like protein 1 | Core component of the 3M complex, a complex required to regulate microtubule dynamics and genome integrity. It is unclear how the 3M complex regulates microtubules, it could act by controlling the level of a microtubule stabilizer (PubMed:24793695, PubMed:24793696). Acts as a regulator of the Cul7-RING(FBXW8) ubiquitin-protein ligase, playing a critical role in the ubiquitin ligase pathway that regulates Golgi morphogenesis and dendrite patterning in brain. Required to localize CUL7 to the Golgi apparatus in neurons. {ECO:0000269|PubMed:21572988, ECO:0000269|PubMed:24793695, ECO:0000269|PubMed:24793696}. |
O75150 | RNF40 | S556 | ochoa | E3 ubiquitin-protein ligase BRE1B (BRE1-B) (EC 2.3.2.27) (95 kDa retinoblastoma-associated protein) (RBP95) (RING finger protein 40) (RING-type E3 ubiquitin transferase BRE1B) | Component of the RNF20/40 E3 ubiquitin-protein ligase complex that mediates monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1). H2BK120ub1 gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation (H3K4me and H3K79me, respectively). It thereby plays a central role in histone code and gene regulation. The RNF20/40 complex forms a H2B ubiquitin ligase complex in cooperation with the E2 enzyme UBE2A or UBE2B; reports about the cooperation with UBE2E1/UBCH are contradictory. Required for transcriptional activation of Hox genes. {ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19410543}.; FUNCTION: (Microbial infection) Promotes the human herpesvirus 8 (KSHV) lytic cycle by inducing the expression of lytic viral genes including the latency switch gene RTA/ORF50. {ECO:0000269|PubMed:37888983}. |
O75179 | ANKRD17 | S2406 | ochoa | Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16) | Could play pivotal roles in cell cycle and DNA regulation (PubMed:19150984). Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways (PubMed:22328336). Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too (PubMed:23711367). Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) (PubMed:17276651). Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). {ECO:0000250|UniProtKB:Q99NH0, ECO:0000269|PubMed:17276651, ECO:0000269|PubMed:19150984, ECO:0000269|PubMed:22328336, ECO:0000269|PubMed:23711367}. |
O75182 | SIN3B | S739 | ochoa | Paired amphipathic helix protein Sin3b (Histone deacetylase complex subunit Sin3b) (Transcriptional corepressor Sin3b) | Acts as a transcriptional repressor. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Interacts with MAD-MAX heterodimers by binding to MAD. The heterodimer then represses transcription by tethering SIN3B to DNA. Also forms a complex with FOXK1 which represses transcription. With FOXK1, regulates cell cycle progression probably by repressing cell cycle inhibitor genes expression. As part of the SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). {ECO:0000250|UniProtKB:Q62141, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
O75251 | NDUFS7 | S58 | ochoa | NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial (EC 7.1.1.2) (Complex I-20kD) (CI-20kD) (NADH-ubiquinone oxidoreductase 20 kDa subunit) (PSST subunit) | Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor (PubMed:17275378). Essential for the catalytic activity of complex I (PubMed:17275378). {ECO:0000269|PubMed:17275378}. |
O75385 | ULK1 | S538 | ochoa | Serine/threonine-protein kinase ULK1 (EC 2.7.11.1) (Autophagy-related protein 1 homolog) (ATG1) (hATG1) (Unc-51-like kinase 1) | Serine/threonine-protein kinase involved in autophagy in response to starvation (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:23524951, PubMed:25040165, PubMed:29487085, PubMed:31123703). Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:25040165). Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR (PubMed:21795849). Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity (PubMed:21460634). May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences (PubMed:18936157). Plays a role early in neuronal differentiation and is required for granule cell axon formation (PubMed:11146101). Also phosphorylates SESN2 and SQSTM1 to regulate autophagy (PubMed:25040165, PubMed:37306101). Phosphorylates FLCN, promoting autophagy (PubMed:25126726). Phosphorylates AMBRA1 in response to autophagy induction, releasing AMBRA1 from the cytoskeletal docking site to induce autophagosome nucleation (PubMed:20921139). Phosphorylates ATG4B, leading to inhibit autophagy by decreasing both proteolytic activation and delipidation activities of ATG4B (PubMed:28821708). {ECO:0000269|PubMed:11146101, ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:25040165, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:28821708, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:37306101}. |
O75420 | GIGYF1 | S756 | ochoa | GRB10-interacting GYF protein 1 (PERQ amino acid-rich with GYF domain-containing protein 1) | May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling. May increase IGF1 receptor phosphorylation under IGF1 stimulation as well as phosphorylation of IRS1 and SHC1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:12771153}. |
O75934 | BCAS2 | S94 | ochoa | Pre-mRNA-splicing factor SPF27 (Breast carcinoma-amplified sequence 2) (DNA amplified in mammary carcinoma 1 protein) (Spliceosome-associated protein SPF 27) | Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:30705154). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR). {ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30705154}. |
O76094 | SRP72 | S630 | ochoa | Signal recognition particle subunit SRP72 (SRP72) (Signal recognition particle 72 kDa protein) | Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA) in presence of SRP68 (PubMed:21073748, PubMed:27899666). Can bind 7SL RNA with low affinity (PubMed:21073748, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38688, ECO:0000269|PubMed:21073748, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}. |
O94826 | TOMM70 | S96 | ochoa | Mitochondrial import receptor subunit TOM70 (Mitochondrial precursor proteins import receptor) (Translocase of outer membrane 70 kDa subunit) (Translocase of outer mitochondrial membrane protein 70) | Acts as a receptor of the preprotein translocase complex of the outer mitochondrial membrane (TOM complex) (PubMed:12526792). Recognizes and mediates the translocation of mitochondrial preproteins from the cytosol into the mitochondria in a chaperone dependent manner (PubMed:12526792, PubMed:35025629). Mediates TBK1 and IRF3 activation induced by MAVS in response to Sendai virus infection and promotes host antiviral responses during virus infection (PubMed:20628368, PubMed:25609812, PubMed:32728199). Upon Sendai virus infection, recruits HSP90AA1:IRF3:BAX in mitochondrion and the complex induces apoptosis (PubMed:25609812). {ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:32728199, ECO:0000269|PubMed:35025629}. |
O94875 | SORBS2 | S1015 | ochoa | Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) | Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}. |
O94887 | FARP2 | S483 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) | Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}. |
O94967 | WDR47 | S297 | ochoa | WD repeat-containing protein 47 (Neuronal enriched MAP-interacting protein) (Nemitin) | None |
O95267 | RASGRP1 | S711 | ochoa | RAS guanyl-releasing protein 1 (Calcium and DAG-regulated guanine nucleotide exchange factor II) (CalDAG-GEFII) (Ras guanyl-releasing protein) | Functions as a calcium- and diacylglycerol (DAG)-regulated nucleotide exchange factor specifically activating Ras through the exchange of bound GDP for GTP (PubMed:15899849, PubMed:23908768, PubMed:27776107, PubMed:29155103). Activates the Erk/MAP kinase cascade (PubMed:15899849). Regulates T-cell/B-cell development, homeostasis and differentiation by coupling T-lymphocyte/B-lymphocyte antigen receptors to Ras (PubMed:10807788, PubMed:12839994, PubMed:27776107, PubMed:29155103). Regulates NK cell cytotoxicity and ITAM-dependent cytokine production by activation of Ras-mediated ERK and JNK pathways (PubMed:19933860). Functions in mast cell degranulation and cytokine secretion, regulating FcERI-evoked allergic responses. May also function in differentiation of other cell types (PubMed:12845332). {ECO:0000250|UniProtKB:Q9Z1S3, ECO:0000269|PubMed:10807788, ECO:0000269|PubMed:12782630, ECO:0000269|PubMed:12839994, ECO:0000269|PubMed:12845332, ECO:0000269|PubMed:15060167, ECO:0000269|PubMed:15184873, ECO:0000269|PubMed:15899849, ECO:0000269|PubMed:19933860, ECO:0000269|PubMed:23908768, ECO:0000269|PubMed:27776107, ECO:0000269|PubMed:29155103}. |
O95429 | BAG4 | S281 | ochoa | BAG family molecular chaperone regulator 4 (BAG-4) (Bcl-2-associated athanogene 4) (Silencer of death domains) | Inhibits the chaperone activity of HSP70/HSC70 by promoting substrate release (By similarity). Prevents constitutive TNFRSF1A signaling. Negative regulator of PRKN translocation to damaged mitochondria. {ECO:0000250, ECO:0000269|PubMed:24270810}. |
O95613 | PCNT | S1630 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
P02675 | FGB | S67 | ochoa | Fibrinogen beta chain [Cleaved into: Fibrinopeptide B; Fibrinogen beta chain] | Cleaved by the protease thrombin to yield monomers which, together with fibrinogen alpha (FGA) and fibrinogen gamma (FGG), polymerize to form an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of the primary components of blood clots. In addition, functions during the early stages of wound repair to stabilize the lesion and guide cell migration during re-epithelialization. Was originally thought to be essential for platelet aggregation, based on in vitro studies using anticoagulated blood. However subsequent studies have shown that it is not absolutely required for thrombus formation in vivo. Enhances expression of SELP in activated platelets. Maternal fibrinogen is essential for successful pregnancy. Fibrin deposition is also associated with infection, where it protects against IFNG-mediated hemorrhage. May also facilitate the antibacterial immune response via both innate and T-cell mediated pathways. {ECO:0000250|UniProtKB:E9PV24}. |
P04626 | ERBB2 | S1151 | psp | Receptor tyrosine-protein kinase erbB-2 (EC 2.7.10.1) (Metastatic lymph node gene 19 protein) (MLN 19) (Proto-oncogene Neu) (Proto-oncogene c-ErbB-2) (Tyrosine kinase-type cell surface receptor HER2) (p185erbB2) (CD antigen CD340) | Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. {ECO:0000305}.; FUNCTION: In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth. {ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:15380516, ECO:0000269|PubMed:21555369}. |
P07766 | CD3E | Y188 | ochoa|psp | T-cell surface glycoprotein CD3 epsilon chain (T-cell surface antigen T3/Leu-4 epsilon chain) (CD antigen CD3e) | Part of the TCR-CD3 complex present on T-lymphocyte cell surface that plays an essential role in adaptive immune response. When antigen presenting cells (APCs) activate T-cell receptor (TCR), TCR-mediated signals are transmitted across the cell membrane by the CD3 chains CD3D, CD3E, CD3G and CD3Z. All CD3 chains contain immunoreceptor tyrosine-based activation motifs (ITAMs) in their cytoplasmic domain. Upon TCR engagement, these motifs become phosphorylated by Src family protein tyrosine kinases LCK and FYN, resulting in the activation of downstream signaling pathways (PubMed:2470098). In addition of this role of signal transduction in T-cell activation, CD3E plays an essential role in correct T-cell development. Initiates the TCR-CD3 complex assembly by forming the two heterodimers CD3D/CD3E and CD3G/CD3E. Also participates in internalization and cell surface down-regulation of TCR-CD3 complexes via endocytosis sequences present in CD3E cytosolic region (PubMed:10384095, PubMed:26507128). In addition to its role as a TCR coreceptor, it serves as a receptor for ITPRIPL1. Ligand recognition inhibits T-cell activation by promoting interaction with NCK1, which prevents CD3E-ZAP70 interaction and blocks the ERK-NFkB signaling cascade and calcium influx (PubMed:38614099). {ECO:0000269|PubMed:10384095, ECO:0000269|PubMed:12110186, ECO:0000269|PubMed:15294938, ECO:0000269|PubMed:15546002, ECO:0000269|PubMed:2470098, ECO:0000269|PubMed:26507128, ECO:0000269|PubMed:38614099, ECO:0000269|PubMed:8490660}. |
P08574 | CYC1 | S182 | ochoa | Cytochrome c1, heme protein, mitochondrial (EC 7.1.1.8) (Complex III subunit 4) (Complex III subunit IV) (Cytochrome b-c1 complex subunit 4) (Ubiquinol-cytochrome-c reductase complex cytochrome c1 subunit) (Cytochrome c-1) | Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. The cytochrome b-c1 complex catalyzes electron transfer from ubiquinol to cytochrome c, linking this redox reaction to translocation of protons across the mitochondrial inner membrane, with protons being carried across the membrane as hydrogens on the quinol. In the process called Q cycle, 2 protons are consumed from the matrix, 4 protons are released into the intermembrane space and 2 electrons are passed to cytochrome c. Cytochrome c1 is a catalytic core subunit containing a c-type heme. It transfers electrons from the [2Fe-2S] iron-sulfur cluster of the Rieske protein to cytochrome c. {ECO:0000250|UniProtKB:P07143}. |
P0C1Z6 | TFPT | S180 | ochoa|psp | TCF3 fusion partner (INO80 complex subunit F) (Protein FB1) | Appears to promote apoptosis in a p53/TP53-independent manner.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. |
P12980 | LYL1 | S36 | ochoa|psp | Protein lyl-1 (Class A basic helix-loop-helix protein 18) (bHLHa18) (Lymphoblastic leukemia-derived sequence 1) | None |
P15311 | EZR | Y478 | psp | Ezrin (Cytovillin) (Villin-2) (p81) | Probably involved in connections of major cytoskeletal structures to the plasma membrane. In epithelial cells, required for the formation of microvilli and membrane ruffles on the apical pole. Along with PLEKHG6, required for normal macropinocytosis. {ECO:0000269|PubMed:17881735, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19111582}. |
P15336 | ATF2 | S266 | ochoa | Cyclic AMP-dependent transcription factor ATF-2 (cAMP-dependent transcription factor ATF-2) (Activating transcription factor 2) (Cyclic AMP-responsive element-binding protein 2) (CREB-2) (cAMP-responsive element-binding protein 2) (HB16) (cAMP response element-binding protein CRE-BP1) | Transcriptional activator which regulates the transcription of various genes, including those involved in anti-apoptosis, cell growth, and DNA damage response. Dependent on its binding partner, binds to CRE (cAMP response element) consensus sequences (5'-TGACGTCA-3') or to AP-1 (activator protein 1) consensus sequences (5'-TGACTCA-3'). In the nucleus, contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. In the cytoplasm, interacts with and perturbs HK1- and VDAC1-containing complexes at the mitochondrial outer membrane, thereby impairing mitochondrial membrane potential, inducing mitochondrial leakage and promoting cell death. The phosphorylated form (mediated by ATM) plays a role in the DNA damage response and is involved in the ionizing radiation (IR)-induced S phase checkpoint control and in the recruitment of the MRN complex into the IR-induced foci (IRIF). Exhibits histone acetyltransferase (HAT) activity which specifically acetylates histones H2B and H4 in vitro (PubMed:10821277). In concert with CUL3 and RBX1, promotes the degradation of KAT5 thereby attenuating its ability to acetylate and activate ATM. Can elicit oncogenic or tumor suppressor activities depending on the tissue or cell type. {ECO:0000269|PubMed:10821277, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:18397884, ECO:0000269|PubMed:22304920}. |
P15391 | CD19 | S342 | ochoa | B-lymphocyte antigen CD19 (B-lymphocyte surface antigen B4) (Differentiation antigen CD19) (T-cell surface antigen Leu-12) (CD antigen CD19) | Functions as a coreceptor for the B-cell antigen receptor complex (BCR) on B-lymphocytes (PubMed:29523808). Decreases the threshold for activation of downstream signaling pathways and for triggering B-cell responses to antigens (PubMed:1373518, PubMed:16672701, PubMed:2463100). Activates signaling pathways that lead to the activation of phosphatidylinositol 3-kinase and the mobilization of intracellular Ca(2+) stores (PubMed:12387743, PubMed:16672701, PubMed:9317126, PubMed:9382888). Is not required for early steps during B cell differentiation in the blood marrow (PubMed:9317126). Required for normal differentiation of B-1 cells (By similarity). Required for normal B cell differentiation and proliferation in response to antigen challenges (PubMed:1373518, PubMed:2463100). Required for normal levels of serum immunoglobulins, and for production of high-affinity antibodies in response to antigen challenge (PubMed:12387743, PubMed:16672701, PubMed:9317126). {ECO:0000250|UniProtKB:P25918, ECO:0000269|PubMed:12387743, ECO:0000269|PubMed:1373518, ECO:0000269|PubMed:16672701, ECO:0000269|PubMed:2463100, ECO:0000269|PubMed:29523808, ECO:0000269|PubMed:9317126, ECO:0000269|PubMed:9382888}. |
P16383 | GCFC2 | S40 | ochoa | Intron Large complex component GCFC2 (GC-rich sequence DNA-binding factor) (GC-rich sequence DNA-binding factor 2) (Transcription factor 9) (TCF-9) | Involved in pre-mRNA splicing through regulating spliceosome C complex formation (PubMed:24304693). May play a role during late-stage splicing events and turnover of excised introns (PubMed:24304693). {ECO:0000269|PubMed:24304693}. |
P17600 | SYN1 | S70 | ochoa | Synapsin-1 (Brain protein 4.1) (Synapsin I) | Neuronal phosphoprotein that coats synaptic vesicles, and binds to the cytoskeleton. Acts as a regulator of synaptic vesicles trafficking, involved in the control of neurotransmitter release at the pre-synaptic terminal (PubMed:21441247, PubMed:23406870). Also involved in the regulation of axon outgrowth and synaptogenesis (By similarity). The complex formed with NOS1 and CAPON proteins is necessary for specific nitric-oxid functions at a presynaptic level (By similarity). {ECO:0000250|UniProtKB:O88935, ECO:0000250|UniProtKB:P09951, ECO:0000269|PubMed:21441247, ECO:0000269|PubMed:23406870}. |
P17600 | SYN1 | S513 | ochoa | Synapsin-1 (Brain protein 4.1) (Synapsin I) | Neuronal phosphoprotein that coats synaptic vesicles, and binds to the cytoskeleton. Acts as a regulator of synaptic vesicles trafficking, involved in the control of neurotransmitter release at the pre-synaptic terminal (PubMed:21441247, PubMed:23406870). Also involved in the regulation of axon outgrowth and synaptogenesis (By similarity). The complex formed with NOS1 and CAPON proteins is necessary for specific nitric-oxid functions at a presynaptic level (By similarity). {ECO:0000250|UniProtKB:O88935, ECO:0000250|UniProtKB:P09951, ECO:0000269|PubMed:21441247, ECO:0000269|PubMed:23406870}. |
P19532 | TFE3 | S149 | ochoa | Transcription factor E3 (Class E basic helix-loop-helix protein 33) (bHLHe33) | Transcription factor that acts as a master regulator of lysosomal biogenesis and immune response (PubMed:2338243, PubMed:24448649, PubMed:29146937, PubMed:30733432, PubMed:31672913, PubMed:37079666). Specifically recognizes and binds E-box sequences (5'-CANNTG-3'); efficient DNA-binding requires dimerization with itself or with another MiT/TFE family member such as TFEB or MITF (PubMed:24448649). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, TFE3 phosphorylation by MTOR promotes its inactivation (PubMed:24448649, PubMed:31672913, PubMed:36608670). Upon starvation or lysosomal stress, inhibition of MTOR induces TFE3 dephosphorylation, resulting in transcription factor activity (PubMed:24448649, PubMed:31672913, PubMed:36608670). Specifically recognizes and binds the CLEAR-box sequence (5'-GTCACGTGAC-3') present in the regulatory region of many lysosomal genes, leading to activate their expression, thereby playing a central role in expression of lysosomal genes (PubMed:24448649). Maintains the pluripotent state of embryonic stem cells by promoting the expression of genes such as ESRRB; mTOR-dependent TFE3 cytosolic retention and inactivation promotes exit from pluripotency (By similarity). Required to maintain the naive pluripotent state of hematopoietic stem cell; mTOR-dependent cytoplasmic retention of TFE3 promotes the exit of hematopoietic stem cell from pluripotency (PubMed:30733432). TFE3 activity is also involved in the inhibition of neuronal progenitor differentiation (By similarity). Acts as a positive regulator of browning of adipose tissue by promoting expression of target genes; mTOR-dependent phosphorylation promotes cytoplasmic retention of TFE3 and inhibits browning of adipose tissue (By similarity). In association with TFEB, activates the expression of CD40L in T-cells, thereby playing a role in T-cell-dependent antibody responses in activated CD4(+) T-cells and thymus-dependent humoral immunity (By similarity). Specifically recognizes the MUE3 box, a subset of E-boxes, present in the immunoglobulin enhancer (PubMed:2338243). It also binds very well to a USF/MLTF site (PubMed:2338243). Promotes TGF-beta-induced transcription of COL1A2; via its interaction with TSC22D1 at E-boxes in the gene proximal promoter (By similarity). May regulate lysosomal positioning in response to nutrient deprivation by promoting the expression of PIP4P1 (PubMed:29146937). {ECO:0000250|UniProtKB:Q64092, ECO:0000269|PubMed:2338243, ECO:0000269|PubMed:24448649, ECO:0000269|PubMed:29146937, ECO:0000269|PubMed:30733432, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:37079666}. |
P20719 | HOXA5 | S104 | ochoa | Homeobox protein Hox-A5 (Homeobox protein Hox-1C) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Also binds to its own promoter. Binds specifically to the motif 5'-CYYNATTA[TG]Y-3'. |
P21917 | DRD4 | S245 | psp | D(4) dopamine receptor (D(2C) dopamine receptor) (Dopamine D4 receptor) | Dopamine receptor responsible for neuronal signaling in the mesolimbic system of the brain, an area of the brain that regulates emotion and complex behavior. Activated by dopamine, but also by epinephrine and norepinephrine, and by numerous synthetic agonists and drugs (PubMed:16423344, PubMed:27659709, PubMed:29051383, PubMed:9003072). Agonist binding triggers signaling via G proteins that inhibit adenylyl cyclase (PubMed:16423344, PubMed:27659709, PubMed:29051383, PubMed:7512953, PubMed:7643093). Modulates the circadian rhythm of contrast sensitivity by regulating the rhythmic expression of NPAS2 in the retinal ganglion cells (By similarity). {ECO:0000250|UniProtKB:P51436, ECO:0000269|PubMed:16423344, ECO:0000269|PubMed:1840645, ECO:0000269|PubMed:27659709, ECO:0000269|PubMed:29051383, ECO:0000269|PubMed:7512953, ECO:0000269|PubMed:7643093, ECO:0000269|PubMed:8078498, ECO:0000269|PubMed:9003072}. |
P22314 | UBA1 | S21 | ochoa | Ubiquitin-like modifier-activating enzyme 1 (EC 6.2.1.45) (Protein A1S9) (Ubiquitin-activating enzyme E1) | Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system (PubMed:1447181, PubMed:1606621, PubMed:33108101). Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:1447181). Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (PubMed:22456334). {ECO:0000269|PubMed:1447181, ECO:0000269|PubMed:1606621, ECO:0000269|PubMed:22456334, ECO:0000269|PubMed:33108101}. |
P25786 | PSMA1 | S106 | ochoa | Proteasome subunit alpha type-1 (30 kDa prosomal protein) (PROS-30) (Macropain subunit C2) (Multicatalytic endopeptidase complex subunit C2) (Proteasome component C2) (Proteasome nu chain) (Proteasome subunit alpha-6) (alpha-6) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P26373 | RPL13 | S52 | ochoa | Large ribosomal subunit protein eL13 (60S ribosomal protein L13) (Breast basic conserved protein 1) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:31630789, PubMed:32669547). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (Probable). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (Probable). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (Probable). As part of the LSU, it is probably required for its formation and the maturation of rRNAs (PubMed:31630789). Plays a role in bone development (PubMed:31630789). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:31630789, ECO:0000269|PubMed:32669547}. |
P26640 | VARS1 | S299 | ochoa | Valine--tRNA ligase (EC 6.1.1.9) (Protein G7a) (Valyl-tRNA synthetase) (ValRS) | Catalyzes the attachment of valine to tRNA(Val). {ECO:0000269|PubMed:8428657}. |
P32121 | ARRB2 | S360 | ochoa | Beta-arrestin-2 (Arrestin beta-2) (Non-visual arrestin-3) | Functions in regulating agonist-mediated G-protein coupled receptor (GPCR) signaling by mediating both receptor desensitization and resensitization processes. During homologous desensitization, beta-arrestins bind to the GPRK-phosphorylated receptor and sterically preclude its coupling to the cognate G-protein; the binding appears to require additional receptor determinants exposed only in the active receptor conformation. The beta-arrestins target many receptors for internalization by acting as endocytic adapters (CLASPs, clathrin-associated sorting proteins) and recruiting the GPRCs to the adapter protein 2 complex 2 (AP-2) in clathrin-coated pits (CCPs). However, the extent of beta-arrestin involvement appears to vary significantly depending on the receptor, agonist and cell type. Internalized arrestin-receptor complexes traffic to intracellular endosomes, where they remain uncoupled from G-proteins. Two different modes of arrestin-mediated internalization occur. Class A receptors, like ADRB2, OPRM1, ENDRA, D1AR and ADRA1B dissociate from beta-arrestin at or near the plasma membrane and undergo rapid recycling. Class B receptors, like AVPR2, AGTR1, NTSR1, TRHR and TACR1 internalize as a complex with arrestin and traffic with it to endosomal vesicles, presumably as desensitized receptors, for extended periods of time. Receptor resensitization then requires that receptor-bound arrestin is removed so that the receptor can be dephosphorylated and returned to the plasma membrane. Mediates endocytosis of CCR7 following ligation of CCL19 but not CCL21. Involved in internalization of P2RY1, P2RY4, P2RY6 and P2RY11 and ATP-stimulated internalization of P2RY2. Involved in phosphorylation-dependent internalization of OPRD1 and subsequent recycling or degradation. Involved in ubiquitination of IGF1R. Beta-arrestins function as multivalent adapter proteins that can switch the GPCR from a G-protein signaling mode that transmits short-lived signals from the plasma membrane via small molecule second messengers and ion channels to a beta-arrestin signaling mode that transmits a distinct set of signals that are initiated as the receptor internalizes and transits the intracellular compartment. Acts as a signaling scaffold for MAPK pathways such as MAPK1/3 (ERK1/2) and MAPK10 (JNK3). ERK1/2 and JNK3 activated by the beta-arrestin scaffold are largely excluded from the nucleus and confined to cytoplasmic locations such as endocytic vesicles, also called beta-arrestin signalosomes. Acts as a signaling scaffold for the AKT1 pathway. GPCRs for which the beta-arrestin-mediated signaling relies on both ARRB1 and ARRB2 (codependent regulation) include ADRB2, F2RL1 and PTH1R. For some GPCRs the beta-arrestin-mediated signaling relies on either ARRB1 or ARRB2 and is inhibited by the other respective beta-arrestin form (reciprocal regulation). Increases ERK1/2 signaling in AGTR1- and AVPR2-mediated activation (reciprocal regulation). Involved in CCR7-mediated ERK1/2 signaling involving ligand CCL19. Is involved in type-1A angiotensin II receptor/AGTR1-mediated ERK activity. Is involved in type-1A angiotensin II receptor/AGTR1-mediated MAPK10 activity. Is involved in dopamine-stimulated AKT1 activity in the striatum by disrupting the association of AKT1 with its negative regulator PP2A. Involved in AGTR1-mediated chemotaxis. Appears to function as signaling scaffold involved in regulation of MIP-1-beta-stimulated CCR5-dependent chemotaxis. Involved in attenuation of NF-kappa-B-dependent transcription in response to GPCR or cytokine stimulation by interacting with and stabilizing CHUK. Suppresses UV-induced NF-kappa-B-dependent activation by interacting with CHUK. The function is promoted by stimulation of ADRB2 and dephosphorylation of ARRB2. Involved in p53/TP53-mediated apoptosis by regulating MDM2 and reducing the MDM2-mediated degradation of p53/TP53. May serve as nuclear messenger for GPCRs. Upon stimulation of OR1D2, may be involved in regulation of gene expression during the early processes of fertilization. Also involved in regulation of receptors other than GPCRs. Involved in endocytosis of TGFBR2 and TGFBR3 and down-regulates TGF-beta signaling such as NF-kappa-B activation. Involved in endocytosis of low-density lipoprotein receptor/LDLR. Involved in endocytosis of smoothened homolog/Smo, which also requires GRK2. Involved in endocytosis of SLC9A5. Involved in endocytosis of ENG and subsequent TGF-beta-mediated ERK activation and migration of epithelial cells. Involved in Toll-like receptor and IL-1 receptor signaling through the interaction with TRAF6 which prevents TRAF6 autoubiquitination and oligomerization required for activation of NF-kappa-B and JUN (PubMed:26839314). Involved in insulin resistance by acting as insulin-induced signaling scaffold for SRC, AKT1 and INSR. Involved in regulation of inhibitory signaling of natural killer cells by recruiting PTPN6 and PTPN11 to KIR2DL1. Involved in IL8-mediated granule release in neutrophils. Involved in the internalization of the atypical chemokine receptor ACKR3. Acts as an adapter protein coupling FFAR4 receptor to specific downstream signaling pathways, as well as mediating receptor endocytosis (PubMed:22282525, PubMed:23809162). During the activation step of NLRP3 inflammasome, directly associates with NLRP3 leading to inhibition of pro-inflammatory cytokine release and inhibition of inflammation (PubMed:23809162). {ECO:0000269|PubMed:10644702, ECO:0000269|PubMed:11877451, ECO:0000269|PubMed:12488444, ECO:0000269|PubMed:12582207, ECO:0000269|PubMed:12949261, ECO:0000269|PubMed:12958365, ECO:0000269|PubMed:14711824, ECO:0000269|PubMed:15054093, ECO:0000269|PubMed:15125834, ECO:0000269|PubMed:15205453, ECO:0000269|PubMed:15475570, ECO:0000269|PubMed:15618519, ECO:0000269|PubMed:15635042, ECO:0000269|PubMed:15671180, ECO:0000269|PubMed:15699339, ECO:0000269|PubMed:15878855, ECO:0000269|PubMed:16144840, ECO:0000269|PubMed:16280323, ECO:0000269|PubMed:16378096, ECO:0000269|PubMed:16492667, ECO:0000269|PubMed:16820410, ECO:0000269|PubMed:17540773, ECO:0000269|PubMed:18419762, ECO:0000269|PubMed:18604210, ECO:0000269|PubMed:19325136, ECO:0000269|PubMed:19620252, ECO:0000269|PubMed:19643177, ECO:0000269|PubMed:20048153, ECO:0000269|PubMed:22282525, ECO:0000269|PubMed:22457824, ECO:0000269|PubMed:23809162, ECO:0000269|PubMed:24817116, ECO:0000269|PubMed:26839314}. |
P35269 | GTF2F1 | S442 | ochoa | General transcription factor IIF subunit 1 (General transcription factor IIF 74 kDa subunit) (Transcription initiation factor IIF subunit alpha) (TFIIF-alpha) (Transcription initiation factor RAP74) | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. {ECO:0000269|PubMed:10428810}. |
P36507 | MAP2K2 | S26 | ochoa | Dual specificity mitogen-activated protein kinase kinase 2 (MAP kinase kinase 2) (MAPKK 2) (EC 2.7.12.2) (ERK activator kinase 2) (MAPK/ERK kinase 2) (MEK 2) | Catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in MAP kinases. Activates the ERK1 and ERK2 MAP kinases (By similarity). Activates BRAF in a KSR1 or KSR2-dependent manner; by binding to KSR1 or KSR2 releases the inhibitory intramolecular interaction between KSR1 or KSR2 protein kinase and N-terminal domains which promotes KSR1 or KSR2-BRAF dimerization and BRAF activation (PubMed:29433126). {ECO:0000250|UniProtKB:Q63932, ECO:0000269|PubMed:29433126}. |
P39880 | CUX1 | S914 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P40123 | CAP2 | S312 | ochoa | Adenylyl cyclase-associated protein 2 (CAP 2) | Involved in the regulation of actin polymerization. {ECO:0000269|PubMed:30518548}. |
P41212 | ETV6 | Y27 | ochoa|psp | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P42684 | ABL2 | S1051 | ochoa | Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) | Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}. |
P42694 | HELZ | S1623 | ochoa | Probable helicase with zinc finger domain (EC 3.6.4.-) (Down-regulated in human cancers protein) | May act as a helicase that plays a role in RNA metabolism in multiple tissues and organs within the developing embryo. |
P43354 | NR4A2 | S359 | ochoa | Nuclear receptor subfamily 4 group A member 2 (Immediate-early response protein NOT) (Orphan nuclear receptor NURR1) (Transcriptionally-inducible nuclear receptor) | Transcriptional regulator which is important for the differentiation and maintenance of meso-diencephalic dopaminergic (mdDA) neurons during development (PubMed:15716272, PubMed:17184956). It is crucial for expression of a set of genes such as SLC6A3, SLC18A2, TH and DRD2 which are essential for development of mdDA neurons (By similarity). {ECO:0000250|UniProtKB:Q06219, ECO:0000269|PubMed:15716272, ECO:0000269|PubMed:17184956}. |
P46109 | CRKL | Y105 | ochoa | Crk-like protein | May mediate the transduction of intracellular signals. |
P46821 | MAP1B | S1387 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46937 | YAP1 | S103 | ochoa | Transcriptional coactivator YAP1 (Yes-associated protein 1) (Protein yorkie homolog) (Yes-associated protein YAP65 homolog) | Transcriptional regulator with dual roles as a coactivator and corepressor. Critical downstream regulatory target in the Hippo signaling pathway, crucial for organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:17974916, PubMed:18280240, PubMed:18579750, PubMed:21364637, PubMed:30447097). The Hippo signaling pathway core involves a kinase cascade featuring STK3/MST2 and STK4/MST1, along with its regulatory partner SAV1, which phosphorylates and activates LATS1/2 in complex with their regulatory protein, MOB1. This activation leads to the phosphorylation and inactivation of the YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288). Phosphorylation of YAP1 by LATS1/2 prevents its nuclear translocation, thereby regulating the expression of its target genes (PubMed:18158288, PubMed:26598551, PubMed:34404733). The transcriptional regulation of gene expression requires TEAD transcription factors and modulates cell growth, anchorage-independent growth, and induction of epithelial-mesenchymal transition (EMT) (PubMed:18579750). Plays a key role in tissue tension and 3D tissue shape by regulating the cortical actomyosin network, acting via ARHGAP18, a Rho GTPase activating protein that suppresses F-actin polymerization (PubMed:25778702). It also suppresses ciliogenesis by acting as a transcriptional corepressor of TEAD4 target genes AURKA and PLK1 (PubMed:25849865). In conjunction with WWTR1, regulates TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). Synergizes with WBP2 to enhance PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:P46938, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:17974916, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:18280240, ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:25778702, ECO:0000269|PubMed:25849865, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:30447097, ECO:0000269|PubMed:34404733}.; FUNCTION: [Isoform 2]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.; FUNCTION: [Isoform 3]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}. |
P47974 | ZFP36L2 | S73 | ochoa | mRNA decay activator protein ZFP36L2 (Butyrate response factor 2) (EGF-response factor 2) (ERF-2) (TPA-induced sequence 11d) (Zinc finger protein 36, C3H1 type-like 2) (ZFP36-like 2) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:14981510, PubMed:25106868, PubMed:34611029). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:25106868). Functions by recruiting the CCR4-NOT deadenylase complex and probably other components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:25106868). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:14981510, PubMed:20506496, PubMed:25106868). Promotes ARE-containing mRNA decay of the low-density lipoprotein (LDL) receptor (LDLR) mRNA in response to phorbol 12-myristate 13-acetate (PMA) treatment in a p38 MAPK-dependent manner (PubMed:25106868). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs). Plays a role in mature peripheral neuron integrity by promoting ARE-containing mRNA decay of the transcriptional repressor REST mRNA. Plays a role in ovulation and oocyte meiotic maturation by promoting ARE-mediated mRNA decay of the luteinizing hormone receptor LHCGR mRNA. Acts as a negative regulator of erythroid cell differentiation: promotes glucocorticoid-induced self-renewal of erythroid cells by binding mRNAs that are induced or highly expressed during terminal erythroid differentiation and promotes their degradation, preventing erythroid cell differentiation. In association with ZFP36L1 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination process and functional immune cell formation. Together with ZFP36L1 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA. {ECO:0000250|UniProtKB:P23949, ECO:0000269|PubMed:14981510, ECO:0000269|PubMed:20506496, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:34611029}. |
P48382 | RFX5 | S347 | ochoa | DNA-binding protein RFX5 (Regulatory factor X 5) | Activates transcription from class II MHC promoters. Recognizes X-boxes. Mediates cooperative binding between RFX and NF-Y. RFX binds the X1 box of MHC-II promoters. |
P48634 | PRRC2A | S114 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S119 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S932 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48730 | CSNK1D | S361 | ochoa | Casein kinase I isoform delta (CKI-delta) (CKId) (EC 2.7.11.1) (Tau-protein kinase CSNK1D) (EC 2.7.11.26) | Essential serine/threonine-protein kinase that regulates diverse cellular growth and survival processes including Wnt signaling, DNA repair and circadian rhythms. It can phosphorylate a large number of proteins. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. Phosphorylates connexin-43/GJA1, MAP1A, SNAPIN, MAPT/TAU, TOP2A, DCK, HIF1A, EIF6, p53/TP53, DVL2, DVL3, ESR1, AIB1/NCOA3, DNMT1, PKD2, YAP1, PER1 and PER2. Central component of the circadian clock. In balance with PP1, determines the circadian period length through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation. Controls PER1 and PER2 nuclear transport and degradation. YAP1 phosphorylation promotes its SCF(beta-TRCP) E3 ubiquitin ligase-mediated ubiquitination and subsequent degradation. DNMT1 phosphorylation reduces its DNA-binding activity. Phosphorylation of ESR1 and AIB1/NCOA3 stimulates their activity and coactivation. Phosphorylation of DVL2 and DVL3 regulates WNT3A signaling pathway that controls neurite outgrowth. Phosphorylates NEDD9/HEF1 (By similarity). EIF6 phosphorylation promotes its nuclear export. Triggers down-regulation of dopamine receptors in the forebrain. Activates DCK in vitro by phosphorylation. TOP2A phosphorylation favors DNA cleavable complex formation. May regulate the formation of the mitotic spindle apparatus in extravillous trophoblast. Modulates connexin-43/GJA1 gap junction assembly by phosphorylation. Probably involved in lymphocyte physiology. Regulates fast synaptic transmission mediated by glutamate. {ECO:0000250|UniProtKB:Q9DC28, ECO:0000269|PubMed:10606744, ECO:0000269|PubMed:12270943, ECO:0000269|PubMed:14761950, ECO:0000269|PubMed:16027726, ECO:0000269|PubMed:17562708, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:19043076, ECO:0000269|PubMed:20041275, ECO:0000269|PubMed:20048001, ECO:0000269|PubMed:20407760, ECO:0000269|PubMed:20637175, ECO:0000269|PubMed:20696890, ECO:0000269|PubMed:20699359, ECO:0000269|PubMed:21084295, ECO:0000269|PubMed:21422228, ECO:0000269|PubMed:23636092}. |
P49023 | PXN | S332 | ochoa | Paxillin | Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}. |
P49715 | CEBPA | S190 | psp | CCAAT/enhancer-binding protein alpha (C/EBP alpha) | Transcription factor that coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, and cells of the lung and the placenta. Binds directly to the consensus DNA sequence 5'-T[TG]NNGNAA[TG]-3' acting as an activator on distinct target genes (PubMed:11242107). During early embryogenesis, plays essential and redundant functions with CEBPB. Essential for the transition from common myeloid progenitors (CMP) to granulocyte/monocyte progenitors (GMP). Critical for the proper development of the liver and the lung (By similarity). Necessary for terminal adipocyte differentiation, is required for postnatal maintenance of systemic energy homeostasis and lipid storage (By similarity). To regulate these different processes at the proper moment and tissue, interplays with other transcription factors and modulators. Down-regulates the expression of genes that maintain cells in an undifferentiated and proliferative state through E2F1 repression, which is critical for its ability to induce adipocyte and granulocyte terminal differentiation. Reciprocally E2F1 blocks adipocyte differentiation by binding to specific promoters and repressing CEBPA binding to its target gene promoters. Proliferation arrest also depends on a functional binding to SWI/SNF complex (PubMed:14660596). In liver, regulates gluconeogenesis and lipogenesis through different mechanisms. To regulate gluconeogenesis, functionally cooperates with FOXO1 binding to IRE-controlled promoters and regulating the expression of target genes such as PCK1 or G6PC1. To modulate lipogenesis, interacts and transcriptionally synergizes with SREBF1 in promoter activation of specific lipogenic target genes such as ACAS2. In adipose tissue, seems to act as FOXO1 coactivator accessing to ADIPOQ promoter through FOXO1 binding sites (By similarity). {ECO:0000250|UniProtKB:P05554, ECO:0000250|UniProtKB:P53566, ECO:0000269|PubMed:11242107, ECO:0000269|PubMed:14660596}.; FUNCTION: [Isoform 3]: Can act as dominant-negative. Binds DNA and have transctivation activity, even if much less efficiently than isoform 2. Does not inhibit cell proliferation (PubMed:14660596). {ECO:0000250|UniProtKB:P05554, ECO:0000250|UniProtKB:P53566, ECO:0000269|PubMed:14660596}.; FUNCTION: [Isoform 4]: Directly and specifically enhances ribosomal DNA transcription interacting with RNA polymerase I-specific cofactors and inducing histone acetylation. {ECO:0000269|PubMed:20075868}. |
P49757 | NUMB | S241 | ochoa | Protein numb homolog (h-Numb) (Protein S171) | Regulates clathrin-mediated receptor endocytosis (PubMed:18657069). Plays a role in the process of neurogenesis (By similarity). Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate (By similarity). Not required for the proliferation of neural progenitor cells before the onset of neurogenesis. Also involved postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity (By similarity). May also mediate local repair of brain ventricular wall damage (By similarity). {ECO:0000250|UniProtKB:Q9QZS3, ECO:0000269|PubMed:18657069}. |
P49815 | TSC2 | Y1788 | ochoa | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P50336 | PPOX | S213 | ochoa | Protoporphyrinogen oxidase (PPO) (EC 1.3.3.4) | Catalyzes the 6-electron oxidation of protoporphyrinogen-IX to form protoporphyrin-IX. {ECO:0000269|PubMed:21048046, ECO:0000269|PubMed:23467411, ECO:0000269|PubMed:7713909}. |
P51003 | PAPOLA | S628 | ochoa | Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) | Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}. |
P51116 | FXR2 | S542 | ochoa | RNA-binding protein FXR2 (FXR2P) (FMR1 autosomal homolog 2) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for adult hippocampal neurogenesis (By similarity). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (By similarity). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs: mRNAs storage into membraneless compartments regulates their translation and/or stability (By similarity). Acts as a regulator of adult hippocampal neurogenesis by regulating translation and/or stability of NOG mRNA, thereby preventing NOG protein expression in the dentate gyrus (By similarity). {ECO:0000250|UniProtKB:Q61584, ECO:0000250|UniProtKB:Q9WVR4}. |
P51531 | SMARCA2 | S175 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 2 (SAMRCA2) (EC 3.6.4.-) (BRG1-associated factor 190B) (BAF190B) (Probable global transcription activator SNF2L2) (Protein brahma homolog) (hBRM) (SNF2-alpha) | ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically (PubMed:15075294, PubMed:22952240, PubMed:26601204). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:Q6DIC0, ECO:0000269|PubMed:15075294, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
P52948 | NUP98 | S932 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P54259 | ATN1 | S358 | ochoa | Atrophin-1 (Dentatorubral-pallidoluysian atrophy protein) | Transcriptional corepressor. Recruits NR2E1 to repress transcription. Promotes vascular smooth cell (VSMC) migration and orientation (By similarity). Corepressor of MTG8 transcriptional repression. Has some intrinsic repression activity which is independent of the number of poly-Gln (polyQ) repeats. {ECO:0000250|UniProtKB:O35126, ECO:0000269|PubMed:10085113, ECO:0000269|PubMed:10973986}. |
P55287 | CDH11 | S714 | ochoa | Cadherin-11 (OSF-4) (Osteoblast cadherin) (OB-cadherin) | Cadherins are calcium-dependent cell adhesion proteins. They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types. Required for proper focal adhesion assembly (PubMed:33811546). Involved in the regulation of cell migration (PubMed:33811546). {ECO:0000269|PubMed:33811546}. |
P56524 | HDAC4 | Y346 | ochoa | Histone deacetylase 4 (HD4) (EC 3.5.1.98) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation via its interaction with the myocyte enhancer factors such as MEF2A, MEF2C and MEF2D. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Deacetylates HSPA1A and HSPA1B at 'Lys-77' leading to their preferential binding to co-chaperone STUB1 (PubMed:27708256). {ECO:0000269|PubMed:10523670, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:27708256}. |
P57078 | RIPK4 | S359 | ochoa | Receptor-interacting serine/threonine-protein kinase 4 (EC 2.7.11.1) (Ankyrin repeat domain-containing protein 3) (PKC-delta-interacting protein kinase) | Serine/threonine protein kinase (By similarity). Required for embryonic skin development and correct skin homeostasis in adults, via phosphorylation of PKP1 and subsequent promotion of keratinocyte differentiation and cell adhesion (By similarity). It is a direct transcriptional target of TP63 (PubMed:22197488). Plays a role in NF-kappa-B activation (PubMed:12446564). {ECO:0000250|UniProtKB:Q9ERK0, ECO:0000269|PubMed:12446564, ECO:0000269|PubMed:22197488}. |
P57086 | SCAND1 | S52 | ochoa | SCAN domain-containing protein 1 | May regulate transcriptional activity. |
P78325 | ADAM8 | Y766 | ochoa | Disintegrin and metalloproteinase domain-containing protein 8 (ADAM 8) (EC 3.4.24.-) (Cell surface antigen MS2) (CD antigen CD156a) | Possible involvement in extravasation of leukocytes. |
P78536 | ADAM17 | S785 | ochoa | Disintegrin and metalloproteinase domain-containing protein 17 (ADAM 17) (EC 3.4.24.86) (Snake venom-like protease) (TNF-alpha convertase) (TNF-alpha-converting enzyme) (CD antigen CD156b) | Transmembrane metalloprotease which mediates the ectodomain shedding of a myriad of transmembrane proteins including adhesion proteins, growth factor precursors and cytokines important for inflammation and immunity (PubMed:24226769, PubMed:24227843, PubMed:28060820, PubMed:28923481). Cleaves the membrane-bound precursor of TNF-alpha to its mature soluble form (PubMed:36078095, PubMed:9034191). Responsible for the proteolytical release of soluble JAM3 from endothelial cells surface (PubMed:20592283). Responsible for the proteolytic release of several other cell-surface proteins, including p75 TNF-receptor, interleukin 1 receptor type II, p55 TNF-receptor, transforming growth factor-alpha, L-selectin, growth hormone receptor, MUC1 and the amyloid precursor protein (PubMed:12441351). Acts as an activator of Notch pathway by mediating cleavage of Notch, generating the membrane-associated intermediate fragment called Notch extracellular truncation (NEXT) (PubMed:24226769). Plays a role in the proteolytic processing of ACE2 (PubMed:24227843). Plays a role in hemostasis through shedding of GP1BA, the platelet glycoprotein Ib alpha chain (By similarity). Mediates the proteolytic cleavage of LAG3, leading to release the secreted form of LAG3 (By similarity). Mediates the proteolytic cleavage of IL6R, leading to the release of secreted form of IL6R (PubMed:26876177, PubMed:28060820). Mediates the proteolytic cleavage and shedding of FCGR3A upon NK cell stimulation, a mechanism that allows for increased NK cell motility and detachment from opsonized target cells. Cleaves TREM2, resulting in shedding of the TREM2 ectodomain (PubMed:28923481). {ECO:0000250|UniProtKB:Q9Z0F8, ECO:0000269|PubMed:12441351, ECO:0000269|PubMed:20592283, ECO:0000269|PubMed:24226769, ECO:0000269|PubMed:24227843, ECO:0000269|PubMed:24337742, ECO:0000269|PubMed:26876177, ECO:0000269|PubMed:28060820, ECO:0000269|PubMed:28923481, ECO:0000269|PubMed:36078095, ECO:0000269|PubMed:9034191}. |
P78559 | MAP1A | S2649 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P98082 | DAB2 | S367 | ochoa | Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) | Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}. |
Q00613 | HSF1 | S344 | ochoa|psp | Heat shock factor protein 1 (HSF 1) (Heat shock transcription factor 1) (HSTF 1) | Functions as a stress-inducible and DNA-binding transcription factor that plays a central role in the transcriptional activation of the heat shock response (HSR), leading to the expression of a large class of molecular chaperones, heat shock proteins (HSPs), that protect cells from cellular insult damage (PubMed:11447121, PubMed:12659875, PubMed:12917326, PubMed:15016915, PubMed:18451878, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7760831, PubMed:8940068, PubMed:8946918, PubMed:9121459, PubMed:9341107, PubMed:9499401, PubMed:9535852, PubMed:9727490). In unstressed cells, is present in a HSP90-containing multichaperone complex that maintains it in a non-DNA-binding inactivated monomeric form (PubMed:11583998, PubMed:16278218, PubMed:9727490). Upon exposure to heat and other stress stimuli, undergoes homotrimerization and activates HSP gene transcription through binding to site-specific heat shock elements (HSEs) present in the promoter regions of HSP genes (PubMed:10359787, PubMed:11583998, PubMed:12659875, PubMed:16278218, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7935471, PubMed:8455624, PubMed:8940068, PubMed:9499401, PubMed:9727490). Upon heat shock stress, forms a chromatin-associated complex with TTC5/STRAP and p300/EP300 to stimulate HSR transcription, therefore increasing cell survival (PubMed:18451878). Activation is reversible, and during the attenuation and recovery phase period of the HSR, returns to its unactivated form (PubMed:11583998, PubMed:16278218). Binds to inverted 5'-NGAAN-3' pentamer DNA sequences (PubMed:1986252, PubMed:26727489). Binds to chromatin at heat shock gene promoters (PubMed:25963659). Activates transcription of transcription factor FOXR1 which in turn activates transcription of the heat shock chaperones HSPA1A and HSPA6 and the antioxidant NADPH-dependent reductase DHRS2 (PubMed:34723967). Also serves several other functions independently of its transcriptional activity. Involved in the repression of Ras-induced transcriptional activation of the c-fos gene in heat-stressed cells (PubMed:9341107). Positively regulates pre-mRNA 3'-end processing and polyadenylation of HSP70 mRNA upon heat-stressed cells in a symplekin (SYMPK)-dependent manner (PubMed:14707147). Plays a role in nuclear export of stress-induced HSP70 mRNA (PubMed:17897941). Plays a role in the regulation of mitotic progression (PubMed:18794143). Also plays a role as a negative regulator of non-homologous end joining (NHEJ) repair activity in a DNA damage-dependent manner (PubMed:26359349). Involved in stress-induced cancer cell proliferation in a IER5-dependent manner (PubMed:26754925). {ECO:0000269|PubMed:10359787, ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:11583998, ECO:0000269|PubMed:12659875, ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:1871105, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:1986252, ECO:0000269|PubMed:25963659, ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:26727489, ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:34723967, ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:7760831, ECO:0000269|PubMed:7935471, ECO:0000269|PubMed:8455624, ECO:0000269|PubMed:8940068, ECO:0000269|PubMed:8946918, ECO:0000269|PubMed:9121459, ECO:0000269|PubMed:9341107, ECO:0000269|PubMed:9499401, ECO:0000269|PubMed:9535852, ECO:0000269|PubMed:9727490}.; FUNCTION: (Microbial infection) Plays a role in latent human immunodeficiency virus (HIV-1) transcriptional reactivation. Binds to the HIV-1 long terminal repeat promoter (LTR) to reactivate viral transcription by recruiting cellular transcriptional elongation factors, such as CDK9, CCNT1 and EP300. {ECO:0000269|PubMed:27189267}. |
Q00613 | HSF1 | S368 | ochoa|psp | Heat shock factor protein 1 (HSF 1) (Heat shock transcription factor 1) (HSTF 1) | Functions as a stress-inducible and DNA-binding transcription factor that plays a central role in the transcriptional activation of the heat shock response (HSR), leading to the expression of a large class of molecular chaperones, heat shock proteins (HSPs), that protect cells from cellular insult damage (PubMed:11447121, PubMed:12659875, PubMed:12917326, PubMed:15016915, PubMed:18451878, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7760831, PubMed:8940068, PubMed:8946918, PubMed:9121459, PubMed:9341107, PubMed:9499401, PubMed:9535852, PubMed:9727490). In unstressed cells, is present in a HSP90-containing multichaperone complex that maintains it in a non-DNA-binding inactivated monomeric form (PubMed:11583998, PubMed:16278218, PubMed:9727490). Upon exposure to heat and other stress stimuli, undergoes homotrimerization and activates HSP gene transcription through binding to site-specific heat shock elements (HSEs) present in the promoter regions of HSP genes (PubMed:10359787, PubMed:11583998, PubMed:12659875, PubMed:16278218, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7935471, PubMed:8455624, PubMed:8940068, PubMed:9499401, PubMed:9727490). Upon heat shock stress, forms a chromatin-associated complex with TTC5/STRAP and p300/EP300 to stimulate HSR transcription, therefore increasing cell survival (PubMed:18451878). Activation is reversible, and during the attenuation and recovery phase period of the HSR, returns to its unactivated form (PubMed:11583998, PubMed:16278218). Binds to inverted 5'-NGAAN-3' pentamer DNA sequences (PubMed:1986252, PubMed:26727489). Binds to chromatin at heat shock gene promoters (PubMed:25963659). Activates transcription of transcription factor FOXR1 which in turn activates transcription of the heat shock chaperones HSPA1A and HSPA6 and the antioxidant NADPH-dependent reductase DHRS2 (PubMed:34723967). Also serves several other functions independently of its transcriptional activity. Involved in the repression of Ras-induced transcriptional activation of the c-fos gene in heat-stressed cells (PubMed:9341107). Positively regulates pre-mRNA 3'-end processing and polyadenylation of HSP70 mRNA upon heat-stressed cells in a symplekin (SYMPK)-dependent manner (PubMed:14707147). Plays a role in nuclear export of stress-induced HSP70 mRNA (PubMed:17897941). Plays a role in the regulation of mitotic progression (PubMed:18794143). Also plays a role as a negative regulator of non-homologous end joining (NHEJ) repair activity in a DNA damage-dependent manner (PubMed:26359349). Involved in stress-induced cancer cell proliferation in a IER5-dependent manner (PubMed:26754925). {ECO:0000269|PubMed:10359787, ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:11583998, ECO:0000269|PubMed:12659875, ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:1871105, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:1986252, ECO:0000269|PubMed:25963659, ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:26727489, ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:34723967, ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:7760831, ECO:0000269|PubMed:7935471, ECO:0000269|PubMed:8455624, ECO:0000269|PubMed:8940068, ECO:0000269|PubMed:8946918, ECO:0000269|PubMed:9121459, ECO:0000269|PubMed:9341107, ECO:0000269|PubMed:9499401, ECO:0000269|PubMed:9535852, ECO:0000269|PubMed:9727490}.; FUNCTION: (Microbial infection) Plays a role in latent human immunodeficiency virus (HIV-1) transcriptional reactivation. Binds to the HIV-1 long terminal repeat promoter (LTR) to reactivate viral transcription by recruiting cellular transcriptional elongation factors, such as CDK9, CCNT1 and EP300. {ECO:0000269|PubMed:27189267}. |
Q02156 | PRKCE | S334 | ochoa | Protein kinase C epsilon type (EC 2.7.11.13) (nPKC-epsilon) | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells (PubMed:19542546). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11884385, ECO:0000269|PubMed:1374067, ECO:0000269|PubMed:15355962, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:17603037, ECO:0000269|PubMed:17875639, ECO:0000269|PubMed:17875724, ECO:0000269|PubMed:19542546, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:36040231}. |
Q04323 | UBXN1 | S200 | ochoa|psp | UBX domain-containing protein 1 (SAPK substrate protein 1) (UBA/UBX 33.3 kDa protein) | Ubiquitin-binding protein that plays a role in the modulation of innate immune response. Blocks both the RIG-I-like receptors (RLR) and NF-kappa-B pathways. Following viral infection, UBXN1 is induced and recruited to the RLR component MAVS. In turn, interferes with MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. This function probably serves as a brake to prevent excessive RLR signaling (PubMed:23545497). Interferes with the TNFalpha-triggered NF-kappa-B pathway by interacting with cellular inhibitors of apoptosis proteins (cIAPs) and thereby inhibiting their recruitment to TNFR1 (PubMed:25681446). Also prevents the activation of NF-kappa-B by associating with CUL1 and thus inhibiting NF-kappa-B inhibitor alpha/NFKBIA degradation that remains bound to NF-kappa-B (PubMed:28152074). Interacts with the BRCA1-BARD1 heterodimer and regulates its activity. Specifically binds 'Lys-6'-linked polyubiquitin chains. Interaction with autoubiquitinated BRCA1 leads to the inhibition of the E3 ubiquitin-protein ligase activity of the BRCA1-BARD1 heterodimer (PubMed:20351172). Component of a complex required to couple deglycosylation and proteasome-mediated degradation of misfolded proteins in the endoplasmic reticulum that are retrotranslocated in the cytosol. {ECO:0000269|PubMed:20351172, ECO:0000269|PubMed:23545497, ECO:0000269|PubMed:25681446, ECO:0000269|PubMed:28152074}. |
Q04721 | NOTCH2 | S2388 | ochoa | Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}. |
Q05209 | PTPN12 | S372 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q05D60 | DEUP1 | S526 | ochoa | Deuterosome assembly protein 1 (Coiled-coil domain-containing protein 67) | Key structural component of the deuterosome, a structure that promotes de novo centriole amplification in multiciliated cells. Deuterosome-mediated centriole amplification occurs in terminally differentiated multiciliated cells and can generate more than 100 centrioles. Probably sufficient for the specification and formation of the deuterosome inner core. Interacts with CEP152 and recruits PLK4 to activate centriole biogenesis (By similarity). {ECO:0000250}. |
Q07157 | TJP1 | Y389 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08050 | FOXM1 | S704 | ochoa|psp | Forkhead box protein M1 (Forkhead-related protein FKHL16) (Hepatocyte nuclear factor 3 forkhead homolog 11) (HFH-11) (HNF-3/fork-head homolog 11) (M-phase phosphoprotein 2) (MPM-2 reactive phosphoprotein 2) (Transcription factor Trident) (Winged-helix factor from INS-1 cells) | Transcription factor regulating the expression of cell cycle genes essential for DNA replication and mitosis (PubMed:19160488, PubMed:20360045). Plays a role in the control of cell proliferation (PubMed:19160488). Also plays a role in DNA break repair, participating in the DNA damage checkpoint response (PubMed:17101782). Promotes transcription of PHB2 (PubMed:33754036). {ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:20360045, ECO:0000269|PubMed:33754036}. |
Q08AD1 | CAMSAP2 | S973 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q09472 | EP300 | S2320 | ochoa | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q0JRZ9 | FCHO2 | S468 | ochoa | F-BAR domain only protein 2 | Functions in an early step of clathrin-mediated endocytosis. Has both a membrane binding/bending activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a lipid-binding activity with a preference for membranes enriched in phosphatidylserine and phosphoinositides (Pi(4,5) biphosphate) like the plasma membrane. Its membrane-bending activity might be important for the subsequent action of clathrin and adaptors in the formation of clathrin-coated vesicles. Involved in adaptor protein complex AP-2-dependent endocytosis of the transferrin receptor, it also functions in the AP-2-independent endocytosis of the LDL receptor. {ECO:0000269|PubMed:17540576, ECO:0000269|PubMed:20448150, ECO:0000269|PubMed:21762413, ECO:0000269|PubMed:22323290}. |
Q10586 | DBP | S156 | ochoa | D site-binding protein (Albumin D box-binding protein) (Albumin D-element-binding protein) (Tax-responsive enhancer element-binding protein 302) (TaxREB302) | This transcriptional activator recognizes and binds to the sequence 5'-RTTAYGTAAY-3' found in the promoter of genes such as albumin, CYP2A4 and CYP2A5. It is not essential for circadian rhythm generation, but modulates important clock output genes. May be a direct target for regulation by the circadian pacemaker component clock. May affect circadian period and sleep regulation. |
Q12774 | ARHGEF5 | S892 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q12778 | FOXO1 | S22 | psp | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q13207 | TBX2 | S384 | ochoa | T-box transcription factor TBX2 (T-box protein 2) | Transcription factor which acts as a transcriptional repressor (PubMed:11062467, PubMed:11111039, PubMed:12000749, PubMed:22844464, PubMed:30599067). May also function as a transcriptional activator (By similarity). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:11111039, PubMed:12000749, PubMed:22844464, PubMed:30599067). Required for cardiac atrioventricular canal formation (PubMed:29726930). May cooperate with NKX2.5 to negatively modulate expression of NPPA/ANF in the atrioventricular canal (By similarity). May play a role as a positive regulator of TGFB2 expression, perhaps acting in concert with GATA4 in the developing outflow tract myocardium (By similarity). Plays a role in limb pattern formation (PubMed:29726930). Acts as a transcriptional repressor of ADAM10 gene expression, perhaps in concert with histone deacetylase HDAC1 as cofactor (PubMed:30599067). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX3 (By similarity). Required, together with TBX3, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with TBX3, in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). Acts as a negative regulator of expression of CDKN1A/p21, IL33 and CCN4; repression of CDKN1A is enhanced in response to UV-induced stress, perhaps as a result of phosphorylation by p38 MAPK (By similarity). Negatively modulates expression of CDKN2A/p14ARF and CDH1/E-cadherin (PubMed:11062467, PubMed:12000749, PubMed:22844464). Plays a role in induction of the epithelial-mesenchymal transition (EMT) (PubMed:22844464). Plays a role in melanocyte proliferation, perhaps via regulation of cyclin CCND1 (By similarity). Involved in melanogenesis, acting via negative modulation of expression of DHICA oxidase/TYRP1 and P protein/OCA2 (By similarity). Involved in regulating retinal pigment epithelium (RPE) cell proliferation, perhaps via negatively modulating transcription of the transcription factor CEBPD (PubMed:28910203). {ECO:0000250|UniProtKB:Q60707, ECO:0000269|PubMed:11062467, ECO:0000269|PubMed:11111039, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537, ECO:0000269|PubMed:22844464, ECO:0000269|PubMed:28910203, ECO:0000269|PubMed:29726930, ECO:0000269|PubMed:30599067}. |
Q13263 | TRIM28 | S816 | ochoa | Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) | Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}. |
Q13469 | NFATC2 | S243 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}. |
Q14160 | SCRIB | S1442 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14202 | ZMYM3 | S54 | ochoa | Zinc finger MYM-type protein 3 (Zinc finger protein 261) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q14244 | MAP7 | S347 | ochoa | Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) | Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}. |
Q14676 | MDC1 | S1348 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14676 | MDC1 | S1471 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14676 | MDC1 | S1553 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14738 | PPP2R5D | S533 | ochoa | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform (PP2A B subunit isoform B'-delta) (PP2A B subunit isoform B56-delta) (PP2A B subunit isoform PR61-delta) (PP2A B subunit isoform R5-delta) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q15027 | ACAP1 | S554 | psp | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 1 (Centaurin-beta-1) (Cnt-b1) | GTPase-activating protein (GAP) for ADP ribosylation factor 6 (ARF6) required for clathrin-dependent export of proteins from recycling endosomes to trans-Golgi network and cell surface. Required for regulated export of ITGB1 from recycling endosomes to the cell surface and ITGB1-dependent cell migration. {ECO:0000269|PubMed:11062263, ECO:0000269|PubMed:16256741, ECO:0000269|PubMed:17398097, ECO:0000269|PubMed:17664335, ECO:0000269|PubMed:22645133}. |
Q15032 | R3HDM1 | S361 | ochoa | R3H domain-containing protein 1 | None |
Q15572 | TAF1C | S711 | ochoa | TATA box-binding protein-associated factor RNA polymerase I subunit C (RNA polymerase I-specific TBP-associated factor 110 kDa) (TAFI110) (TATA box-binding protein-associated factor 1C) (TBP-associated factor 1C) (Transcription initiation factor SL1/TIF-IB subunit C) | Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (pre-initiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation probably is primarily dependent on the rate of association of SL1/TIF-IB with the rDNA promoter. SL1/TIF-IB is involved in stabilization of nucleolar transcription factor 1/UBTF on rDNA. Formation of SL1/TIF-IB excludes the association of TBP with TFIID subunits. Recruits RNA polymerase I to the rRNA gene promoter via interaction with RRN3. {ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:15970593}. |
Q15583 | TGIF1 | S291 | ochoa | Homeobox protein TGIF1 (5'-TG-3'-interacting factor 1) | Binds to a retinoid X receptor (RXR) responsive element from the cellular retinol-binding protein II promoter (CRBPII-RXRE). Inhibits the 9-cis-retinoic acid-dependent RXR alpha transcription activation of the retinoic acid responsive element. Active transcriptional corepressor of SMAD2. Links the nodal signaling pathway to the bifurcation of the forebrain and the establishment of ventral midline structures. May participate in the transmission of nuclear signals during development and in the adult, as illustrated by the down-modulation of the RXR alpha activities. |
Q15637 | SF1 | Y87 | ochoa | Splicing factor 1 (Mammalian branch point-binding protein) (BBP) (mBBP) (Transcription factor ZFM1) (Zinc finger gene in MEN1 locus) (Zinc finger protein 162) | Necessary for the ATP-dependent first step of spliceosome assembly. Binds to the intron branch point sequence (BPS) 5'-UACUAAC-3' of the pre-mRNA. May act as transcription repressor. {ECO:0000269|PubMed:10449420, ECO:0000269|PubMed:8752089, ECO:0000269|PubMed:9660765}. |
Q15654 | TRIP6 | Y131 | ochoa | Thyroid receptor-interacting protein 6 (TR-interacting protein 6) (TRIP-6) (Opa-interacting protein 1) (OIP-1) (Zyxin-related protein 1) (ZRP-1) | Relays signals from the cell surface to the nucleus to weaken adherens junction and promote actin cytoskeleton reorganization and cell invasiveness. Involved in lysophosphatidic acid-induced cell adhesion and migration. Acts as a transcriptional coactivator for NF-kappa-B and JUN, and mediates the transrepression of these transcription factors induced by glucocorticoid receptor. {ECO:0000269|PubMed:14688263, ECO:0000269|PubMed:15489293, ECO:0000269|PubMed:16624523, ECO:0000269|PubMed:19017743}. |
Q15654 | TRIP6 | S156 | ochoa | Thyroid receptor-interacting protein 6 (TR-interacting protein 6) (TRIP-6) (Opa-interacting protein 1) (OIP-1) (Zyxin-related protein 1) (ZRP-1) | Relays signals from the cell surface to the nucleus to weaken adherens junction and promote actin cytoskeleton reorganization and cell invasiveness. Involved in lysophosphatidic acid-induced cell adhesion and migration. Acts as a transcriptional coactivator for NF-kappa-B and JUN, and mediates the transrepression of these transcription factors induced by glucocorticoid receptor. {ECO:0000269|PubMed:14688263, ECO:0000269|PubMed:15489293, ECO:0000269|PubMed:16624523, ECO:0000269|PubMed:19017743}. |
Q15942 | ZYX | S205 | ochoa | Zyxin (Zyxin-2) | Adhesion plaque protein. Binds alpha-actinin and the CRP protein. Important for targeting TES and ENA/VASP family members to focal adhesions and for the formation of actin-rich structures. May be a component of a signal transduction pathway that mediates adhesion-stimulated changes in gene expression (By similarity). {ECO:0000250}. |
Q15942 | ZYX | S313 | ochoa | Zyxin (Zyxin-2) | Adhesion plaque protein. Binds alpha-actinin and the CRP protein. Important for targeting TES and ENA/VASP family members to focal adhesions and for the formation of actin-rich structures. May be a component of a signal transduction pathway that mediates adhesion-stimulated changes in gene expression (By similarity). {ECO:0000250}. |
Q16633 | POU2AF1 | S184 | psp | POU domain class 2-associating factor 1 (B-cell-specific coactivator OBF-1) (BOB-1) (OCA-B) (OCT-binding factor 1) | Transcriptional coactivator that specifically associates with either POU2F1/OCT1 or POU2F2/OCT2 (PubMed:7859290). It boosts the POU2F1/OCT1 mediated promoter activity and to a lesser extent, that of POU2F2/OCT2 (PubMed:7779176). It recognizes the POU domains of POU2F1/OCT1 and POU2F2/OCT2 (PubMed:7779176). It is essential for the response of B-cells to antigens and required for the formation of germinal centers (PubMed:7623806, PubMed:7859290). Regulates IL6 expression in B cells as POU2F2/OCT2 coactivator (By similarity). {ECO:0000250|UniProtKB:Q64693, ECO:0000269|PubMed:7623806, ECO:0000269|PubMed:7779176, ECO:0000269|PubMed:7859290}. |
Q1ZZU3 | SWI5 | S148 | ochoa | DNA repair protein SWI5 homolog (HBV DNAPTP1-transactivated protein A) (Protein SAE3 homolog) | Component of the SWI5-SFR1 complex, a complex required for double-strand break repair via homologous recombination. {ECO:0000269|PubMed:21252223}. |
Q2KHR3 | QSER1 | S1197 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q2KJY2 | KIF26B | S1021 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q2YD98 | UVSSA | S476 | ochoa | UV-stimulated scaffold protein A | Factor involved in transcription-coupled nucleotide excision repair (TC-NER), a mechanism that rapidly removes RNA polymerase II-blocking lesions from the transcribed strand of active genes (PubMed:22466610, PubMed:22466611, PubMed:22466612, PubMed:32142649, PubMed:32355176, PubMed:34526721, PubMed:38316879, PubMed:38600235, PubMed:38600236). Acts as a key adapter that promotes recruitment of factors involved in TC-NER (PubMed:22466611, PubMed:22466612, PubMed:32142649, PubMed:32355176, PubMed:34526721, PubMed:38600235, PubMed:38600236). Facilitates the ubiquitination of the elongating form of RNA polymerase II (RNA pol IIo) at DNA damage sites, thereby promoting RNA pol IIo backtracking and access by the TC-NER machinery to lesion sites (PubMed:22466611, PubMed:32142649). Also promotes stabilization of ERCC6/CSB by recruiting deubiquitinating enzyme USP7 to TC-NER complexes, preventing UV-induced degradation of ERCC6 by the proteasome (PubMed:22466611, PubMed:22466612). Mediates the recruitment of the TFIIH complex and other factors that are required for nucleotide excision repair to RNA polymerase II (PubMed:32142649, PubMed:32355176, PubMed:34526721, PubMed:38600235, PubMed:38600236). Also required to inactivate stalled RNA polymerase II by blocking the access of TCEA1/TFIIS, thereby preventing reactivation of RNA polymerase II (PubMed:38316879). Not involved in processing oxidative damage (PubMed:22466612). {ECO:0000269|PubMed:22466610, ECO:0000269|PubMed:22466611, ECO:0000269|PubMed:22466612, ECO:0000269|PubMed:32142649, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:34526721, ECO:0000269|PubMed:38316879, ECO:0000269|PubMed:38600235, ECO:0000269|PubMed:38600236}. |
Q38SD2 | LRRK1 | S249 | ochoa | Leucine-rich repeat serine/threonine-protein kinase 1 (EC 2.7.11.1) | Serine/threonine-protein kinase which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). Phosphorylates RAB7A; this activity is dependent on protein kinase C (PKC) activation (PubMed:36040231, PubMed:37558661, PubMed:37857821). Plays a role in the negative regulation of bone mass, acting through the maturation of osteoclasts (By similarity). {ECO:0000250|UniProtKB:Q3UHC2, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:37558661, ECO:0000269|PubMed:37857821}. |
Q3KQU3 | MAP7D1 | S41 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q4VC05 | BCL7A | S121 | ochoa | B-cell CLL/lymphoma 7 protein family member A | None |
Q504T8 | MIDN | S207 | ochoa | Midnolin (Midbrain nucleolar protein) | Facilitates the ubiquitin-independent proteasomal degradation of stimulus-induced transcription factors such as FOSB, EGR1, NR4A1, and IRF4 to the proteasome for degradation (PubMed:37616343). Promotes also the degradation of other substrates such as CBX4 (By similarity). Plays a role in inhibiting the activity of glucokinase GCK and both glucose-induced and basal insulin secretion. {ECO:0000250|UniProtKB:D4AE48, ECO:0000250|UniProtKB:Q3TPJ7, ECO:0000269|PubMed:37616343}. |
Q504T8 | MIDN | S212 | ochoa | Midnolin (Midbrain nucleolar protein) | Facilitates the ubiquitin-independent proteasomal degradation of stimulus-induced transcription factors such as FOSB, EGR1, NR4A1, and IRF4 to the proteasome for degradation (PubMed:37616343). Promotes also the degradation of other substrates such as CBX4 (By similarity). Plays a role in inhibiting the activity of glucokinase GCK and both glucose-induced and basal insulin secretion. {ECO:0000250|UniProtKB:D4AE48, ECO:0000250|UniProtKB:Q3TPJ7, ECO:0000269|PubMed:37616343}. |
Q58A45 | PAN3 | S368 | ochoa | PAN2-PAN3 deadenylation complex subunit PAN3 (PAB1P-dependent poly(A)-specific ribonuclease) (Poly(A)-nuclease deadenylation complex subunit 3) (PAN deadenylation complex subunit 3) | Regulatory subunit of the poly(A)-nuclease (PAN) deadenylation complex, one of two cytoplasmic mRNA deadenylases involved in general and miRNA-mediated mRNA turnover. PAN specifically shortens poly(A) tails of RNA and the activity is stimulated by poly(A)-binding protein (PABP). PAN deadenylation is followed by rapid degradation of the shortened mRNA tails by the CCR4-NOT complex. Deadenylated mRNAs are then degraded by two alternative mechanisms, namely exosome-mediated 3'-5' exonucleolytic degradation, or deadenylation-dependent mRNA decapping and subsequent 5'-3' exonucleolytic degradation by XRN1. PAN3 acts as a regulator for PAN activity, recruiting the catalytic subunit PAN2 to mRNA via its interaction with RNA and PABP, and to miRNA targets via its interaction with GW182 family proteins. {ECO:0000255|HAMAP-Rule:MF_03181, ECO:0000269|PubMed:14583602, ECO:0000269|PubMed:23932717}.; FUNCTION: [Isoform 1]: Decreases PAN2-mediated deadenylation, possibly by preventing progression into the second CCR4-NOT mediated stage of biphasic deadenylation. Has a significant effect on mRNA stability, generally stabilizing a subset of the transcriptome. Stabilizes mRNAs degraded by the AU-rich element (ARE)-mediated mRNA decay pathway but promotes degradation of mRNAs by the microRNA-mediated pathway (PubMed:28559491). Its activity influences mRNP remodeling, specifically reducing formation of a subset of P-bodies containing GW220, an isoform of TNRC6A (PubMed:28559491). {ECO:0000269|PubMed:28559491}.; FUNCTION: [Isoform 3]: Enhances PAN2 deadenylase activity and has an extensive effect on mRNA stability, generally enhancing mRNA decay across the transcriptome by multiple pathways, including the AU-rich element (ARE)-mediated pathway, microRNA-mediated pathway and the nonsense-mediated pathway (NMD) (PubMed:28559491). Its activity is required for efficient P-body formation (PubMed:28559491). May be involved in regulating mRNAs of genes involved in cell cycle progression and cell proliferation (PubMed:28559491). {ECO:0000269|PubMed:28559491}. |
Q58EX2 | SDK2 | S2022 | ochoa | Protein sidekick-2 | Adhesion molecule that promotes lamina-specific synaptic connections in the retina and is specifically required for the formation of neuronal circuits that detect motion. Acts by promoting formation of synapses between two specific retinal cell types: the retinal ganglion cells W3B-RGCs and the excitatory amacrine cells VG3-ACs. Formation of synapses between these two cells plays a key role in detection of motion. Promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q6V4S5}. |
Q5H9R7 | PPP6R3 | S851 | ochoa | Serine/threonine-protein phosphatase 6 regulatory subunit 3 (SAPS domain family member 3) (Sporulation-induced transcript 4-associated protein SAPL) | Regulatory subunit of protein phosphatase 6 (PP6). May function as a scaffolding PP6 subunit. May have an important role in maintaining immune self-tolerance. {ECO:0000269|PubMed:11401438, ECO:0000269|PubMed:16769727}. |
Q5JRA6 | MIA3 | S1673 | ochoa | Transport and Golgi organization protein 1 homolog (TANGO1) (C219-reactive peptide) (D320) (Melanoma inhibitory activity protein 3) | Plays a role in the transport of cargos that are too large to fit into COPII-coated vesicles and require specific mechanisms to be incorporated into membrane-bound carriers and exported from the endoplasmic reticulum. This protein is required for collagen VII (COL7A1) secretion by loading COL7A1 into transport carriers. It may participate in cargo loading of COL7A1 at endoplasmic reticulum exit sites by binding to COPII coat subunits Sec23/24 and guiding SH3-bound COL7A1 into a growing carrier. Does not play a role in global protein secretion and is apparently specific to COL7A1 cargo loading. However, it may participate in secretion of other proteins in cells that do not secrete COL7A1. It is also specifically required for the secretion of lipoproteins by participating in their export from the endoplasmic reticulum (PubMed:19269366, PubMed:27138255). Required for correct assembly of COPII coat components at endoplasmic reticulum exit sites (ERES) and for the localization of SEC16A and membrane-bound ER-resident complexes consisting of MIA2 and PREB/SEC12 to ERES (PubMed:28442536). {ECO:0000269|PubMed:19269366, ECO:0000269|PubMed:27138255, ECO:0000269|PubMed:28442536}. |
Q5JSZ5 | PRRC2B | S764 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5SQI0 | ATAT1 | S270 | ochoa | Alpha-tubulin N-acetyltransferase 1 (Alpha-TAT) (Alpha-TAT1) (TAT) (EC 2.3.1.108) (Acetyltransferase mec-17 homolog) | Specifically acetylates 'Lys-40' in alpha-tubulin on the lumenal side of microtubules. Promotes microtubule destabilization and accelerates microtubule dynamics; this activity may be independent of acetylation activity. Acetylates alpha-tubulin with a slow enzymatic rate, due to a catalytic site that is not optimized for acetyl transfer. Enters the microtubule through each end and diffuses quickly throughout the lumen of microtubules. Acetylates only long/old microtubules because of its slow acetylation rate since it does not have time to act on dynamically unstable microtubules before the enzyme is released. Required for normal sperm flagellar function. Promotes directional cell locomotion and chemotaxis, through AP2A2-dependent acetylation of alpha-tubulin at clathrin-coated pits that are concentrated at the leading edge of migrating cells. May facilitate primary cilium assembly. {ECO:0000255|HAMAP-Rule:MF_03130, ECO:0000269|PubMed:20829795, ECO:0000269|PubMed:21068373, ECO:0000269|PubMed:24097348, ECO:0000269|PubMed:24906155}. |
Q5SY16 | NOL9 | S93 | ochoa | Polynucleotide 5'-hydroxyl-kinase NOL9 (EC 2.7.1.78) (Nucleolar protein 9) | Polynucleotide kinase that can phosphorylate the 5'-hydroxyl groups of single-stranded and double-stranded RNA and DNA substrates (PubMed:21063389). Involved in rRNA processing and its kinase activity is required for the processing of the 32S precursor into 5.8S and 28S rRNAs, more specifically for the generation of the major 5.8S(S) form (PubMed:21063389). Required for the efficient pre-rRNA processing of internal transcribed spacer 2 (ITS2) (PubMed:21063389). Associates with LAS1L to form an ITS2 pre-rRNA endonuclease-kinase complex and is responsible for the transport of this complex into the nucleolus (PubMed:31288032). {ECO:0000269|PubMed:21063389, ECO:0000269|PubMed:31288032}. |
Q5T0W9 | FAM83B | S598 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T2W1 | PDZK1 | S359 | ochoa | Na(+)/H(+) exchange regulatory cofactor NHE-RF3 (NHERF-3) (CFTR-associated protein of 70 kDa) (Na(+)/H(+) exchanger regulatory factor 3) (Na/Pi cotransporter C-terminal-associated protein 1) (NaPi-Cap1) (PDZ domain-containing protein 1) (Sodium-hydrogen exchanger regulatory factor 3) | A scaffold protein that connects plasma membrane proteins and regulatory components, regulating their surface expression in epithelial cells apical domains. May be involved in the coordination of a diverse range of regulatory processes for ion transport and second messenger cascades. In complex with NHERF1, may cluster proteins that are functionally dependent in a mutual fashion and modulate the trafficking and the activity of the associated membrane proteins. May play a role in the cellular mechanisms associated with multidrug resistance through its interaction with ABCC2 and PDZK1IP1. May potentiate the CFTR chloride channel activity. Required for normal cell-surface expression of SCARB1. Plays a role in maintaining normal plasma cholesterol levels via its effects on SCARB1. Plays a role in the normal localization and function of the chloride-anion exchanger SLC26A6 to the plasma membrane in the brush border of the proximal tubule of the kidney. May be involved in the regulation of proximal tubular Na(+)-dependent inorganic phosphate cotransport therefore playing an important role in tubule function (By similarity). {ECO:0000250}. |
Q5T5P2 | KIAA1217 | S322 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T5Y3 | CAMSAP1 | S1060 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T5Y3 | CAMSAP1 | S1139 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5TCZ1 | SH3PXD2A | S596 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5TZA2 | CROCC | S1460 | ochoa | Rootletin (Ciliary rootlet coiled-coil protein) | Major structural component of the ciliary rootlet, a cytoskeletal-like structure in ciliated cells which originates from the basal body at the proximal end of a cilium and extends proximally toward the cell nucleus (By similarity). Furthermore, is required for the correct positioning of the cilium basal body relative to the cell nucleus, to allow for ciliogenesis (PubMed:27623382). Contributes to centrosome cohesion before mitosis (PubMed:16203858). {ECO:0000250|UniProtKB:Q8CJ40, ECO:0000269|PubMed:16203858, ECO:0000269|PubMed:27623382}. |
Q5VST9 | OBSCN | S7115 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VTR2 | RNF20 | S136 | ochoa | E3 ubiquitin-protein ligase BRE1A (BRE1-A) (hBRE1) (EC 2.3.2.27) (RING finger protein 20) (RING-type E3 ubiquitin transferase BRE1A) | Component of the RNF20/40 E3 ubiquitin-protein ligase complex that mediates monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1). H2BK120ub1 gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation (H3K4me and H3K79me, respectively). It thereby plays a central role inb histone code and gene regulation. The RNF20/40 complex forms a H2B ubiquitin ligase complex in cooperation with the E2 enzyme UBE2A or UBE2B; reports about the cooperation with UBE2E1/UBCH are contradictory. Required for transcriptional activation of Hox genes. Recruited to the MDM2 promoter, probably by being recruited by p53/TP53, and thereby acts as a transcriptional coactivator. Mediates the polyubiquitination of isoform 2 of PA2G4 in cancer cells leading to its proteasome-mediated degradation. {ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:16337599, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19410543}.; FUNCTION: (Microbial infection) Promotes the human herpesvirus 8 (KSHV) lytic cycle by inducing the expression of lytic viral genes including the latency switch gene RTA/ORF50. {ECO:0000269|PubMed:37888983}. |
Q5VTT5 | MYOM3 | S857 | ochoa | Myomesin-3 (Myomesin family member 3) | May link the intermediate filament cytoskeleton to the M-disk of the myofibrils in striated muscle. {ECO:0000250}. |
Q5VUB5 | FAM171A1 | S639 | ochoa | Protein FAM171A1 (Astroprincin) (APCN) | Involved in the regulation of the cytoskeletal dynamics, plays a role in actin stress fiber formation. {ECO:0000269|PubMed:30312582}. |
Q5VWN6 | TASOR2 | S601 | ochoa | Protein TASOR 2 | None |
Q5VWN6 | TASOR2 | S2035 | ochoa | Protein TASOR 2 | None |
Q5VZ89 | DENND4C | S973 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q63HK5 | TSHZ3 | S647 | ochoa | Teashirt homolog 3 (Zinc finger protein 537) | Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}. |
Q63ZY3 | KANK2 | S171 | ochoa | KN motif and ankyrin repeat domain-containing protein 2 (Ankyrin repeat domain-containing protein 25) (Matrix-remodeling-associated protein 3) (SRC-1-interacting protein) (SIP) (SRC-interacting protein) (SRC1-interacting protein) | Involved in transcription regulation by sequestering in the cytoplasm nuclear receptor coactivators such as NCOA1, NCOA2 and NCOA3 (PubMed:17476305). Involved in regulation of caspase-independent apoptosis by sequestering the proapoptotic factor AIFM1 in mitochondria (PubMed:22371500). Pro-apoptotic stimuli can induce its proteasomal degradation allowing the translocation of AIFM1 to the nucleus to induce apoptosis (PubMed:22371500). Involved in the negative control of vitamin D receptor signaling pathway (PubMed:24671081). Involved in actin stress fibers formation through its interaction with ARHGDIA and the regulation of the Rho signaling pathway (PubMed:17996375, PubMed:25961457). May thereby play a role in cell adhesion and migration, regulating for instance podocytes migration during development of the kidney (PubMed:25961457). Through the Rho signaling pathway may also regulate cell proliferation (By similarity). {ECO:0000250|UniProtKB:Q8BX02, ECO:0000269|PubMed:17476305, ECO:0000269|PubMed:17996375, ECO:0000269|PubMed:22371500, ECO:0000269|PubMed:24671081, ECO:0000269|PubMed:25961457}. |
Q66K74 | MAP1S | S643 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q66K74 | MAP1S | S759 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q68DC2 | ANKS6 | S696 | ochoa | Ankyrin repeat and SAM domain-containing protein 6 (Ankyrin repeat domain-containing protein 14) (SamCystin) (Sterile alpha motif domain-containing protein 6) (SAM domain-containing protein 6) | Required for renal function. {ECO:0000269|PubMed:23793029}. |
Q68EM7 | ARHGAP17 | S762 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q6IBW4 | NCAPH2 | S308 | ochoa | Condensin-2 complex subunit H2 (Chromosome-associated protein H2) (hCAP-H2) (Kleisin-beta) (Non-SMC condensin II complex subunit H2) | Regulatory subunit of the condensin-2 complex, a complex that seems to provide chromosomes with an additional level of organization and rigidity and in establishing mitotic chromosome architecture (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of chromatin bridges at anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (By similarity). Seems to have lineage-specific role in T-cell development (PubMed:14532007). {ECO:0000250|UniProtKB:Q8BSP2, ECO:0000269|PubMed:14532007}. |
Q6N021 | TET2 | S402 | ochoa | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6NYC8 | PPP1R18 | S432 | ochoa | Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) | [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}. |
Q6NZI2 | CAVIN1 | S26 | ochoa | Caveolae-associated protein 1 (Cavin-1) (Polymerase I and transcript release factor) | Plays an important role in caveolae formation and organization. Essential for the formation of caveolae in all tissues (PubMed:18056712, PubMed:18191225, PubMed:19726876). Core component of the CAVIN complex which is essential for recruitment of the complex to the caveolae in presence of calveolin-1 (CAV1). Essential for normal oligomerization of CAV1. Promotes ribosomal transcriptional activity in response to metabolic challenges in the adipocytes and plays an important role in the formation of the ribosomal transcriptional loop. Dissociates transcription complexes paused by DNA-bound TTF1, thereby releasing both RNA polymerase I and pre-RNA from the template (By similarity) (PubMed:18056712, PubMed:18191225, PubMed:19726876). The caveolae biogenesis pathway is required for the secretion of proteins such as GASK1A (By similarity). {ECO:0000250|UniProtKB:O54724, ECO:0000269|PubMed:18056712, ECO:0000269|PubMed:18191225, ECO:0000269|PubMed:19726876}. |
Q6P1N0 | CC2D1A | S253 | ochoa | Coiled-coil and C2 domain-containing protein 1A (Akt kinase-interacting protein 1) (Five prime repressor element under dual repression-binding protein 1) (FRE under dual repression-binding protein 1) (Freud-1) (Putative NF-kappa-B-activating protein 023N) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. The combination of calcium and ATP specifically inactivates the binding with FRE. May play a role in the altered regulation of HTR1A associated with anxiety and major depression. Mediates HDAC-independent repression of HTR1A promoter in neuronal cell. Performs essential function in controlling functional maturation of synapses (By similarity). Plays distinct roles depending on its localization. When cytoplasmic, acts as a scaffold protein in the PI3K/PDK1/AKT pathway. Repressor of HTR1A when nuclear. In the centrosome, regulates spindle pole localization of the cohesin subunit SCC1/RAD21, thereby mediating centriole cohesion during mitosis. {ECO:0000250, ECO:0000269|PubMed:20171170}. |
Q6P4Q7 | CNNM4 | S660 | ochoa | Metal transporter CNNM4 (Ancient conserved domain-containing protein 4) (Cyclin-M4) | Probable metal transporter. The interaction with the metal ion chaperone COX11 suggests that it may play a role in sensory neuron functions (By similarity). May play a role in biomineralization and retinal function. {ECO:0000250, ECO:0000269|PubMed:19200525, ECO:0000269|PubMed:19200527}. |
Q6P5Z2 | PKN3 | S866 | ochoa | Serine/threonine-protein kinase N3 (EC 2.7.11.13) (Protein kinase PKN-beta) (Protein-kinase C-related kinase 3) | Contributes to invasiveness in malignant prostate cancer. {ECO:0000269|PubMed:15282551}. |
Q6PCB5 | RSBN1L | S79 | ochoa | Lysine-specific demethylase RSBN1L (EC 1.14.11.-) (Round spermatid basic protein 1-like protein) | Lysine-specific demethylase that specifically demethylates methylated lysine residues of proteins. {ECO:0000250|UniProtKB:Q80T69}. |
Q6UXY1 | BAIAP2L2 | S474 | ochoa | BAR/IMD domain-containing adapter protein 2-like 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 2) (BAI1-associated protein 2-like protein 2) (Planar intestinal- and kidney-specific BAR domain protein) (Pinkbar) | Phosphoinositides-binding protein that induces the formation of planar or gently curved membrane structures. Binds to phosphoinositides, including to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) headgroups. There seems to be no clear preference for a specific phosphoinositide (By similarity). {ECO:0000250}. |
Q6UXY8 | TMC5 | Y110 | ochoa | Transmembrane channel-like protein 5 | Probable component of an ion channel (Probable). Molecular function hasn't been characterized yet (Probable). {ECO:0000305}. |
Q6VMQ6 | ATF7IP | S123 | ochoa | Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}. |
Q6WCQ1 | MPRIP | S329 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q6ZSS7 | MFSD6 | S644 | ochoa | Major facilitator superfamily domain-containing protein 6 (Macrophage MHC class I receptor 2 homolog) | None |
Q6ZU35 | CRACD | S969 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q6ZUM4 | ARHGAP27 | S451 | ochoa | Rho GTPase-activating protein 27 (CIN85-associated multi-domain-containing Rho GTPase-activating protein 1) (Rho-type GTPase-activating protein 27) (SH3 domain-containing protein 20) | Rho GTPase-activating protein which may be involved in clathrin-mediated endocytosis. GTPase activators for the Rho-type GTPases act by converting them to an inactive GDP-bound state. Has activity toward CDC42 and RAC1 (By similarity). {ECO:0000250}. |
Q702N8 | XIRP1 | S1737 | ochoa | Xin actin-binding repeat-containing protein 1 (Cardiomyopathy-associated protein 1) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct cardiac intercalated disk ultrastructure via maintenance of cell-cell adhesion stability, and as a result maintains cardiac organ morphology, conductance and heart beat rhythm (By similarity). Required for development of normal skeletal muscle morphology and muscle fiber type composition (By similarity). Plays a role in regulating muscle satellite cell activation and survival, as a result promotes muscle fiber recovery from injury and fatigue (By similarity). {ECO:0000250|UniProtKB:O70373, ECO:0000269|PubMed:15454575}. |
Q70E73 | RAPH1 | S856 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q70E73 | RAPH1 | S1069 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q70EL1 | USP54 | Y635 | ochoa | Ubiquitin carboxyl-terminal hydrolase 54 (EC 3.4.19.12) (Ubiquitin-specific peptidase 54) | Deubiquitinase that specifically mediates 'Lys-63'-linked deubiquitination of substrates with a polyubiquitin chain composed of at least 3 ubiquitins (PubMed:39587316). Specifically recognizes ubiquitin chain in position S2 and catalyzes cleavage of polyubiquitin within 'Lys-63'-linked chains (PubMed:39587316). Not able to deubiquitinate substrates with shorter ubiquitin chains (PubMed:39587316). Mediates deubiquitination of PLK4, maintaining PLK4 stability by reducing its ubiquitination-mediated degradation (PubMed:36590171). {ECO:0000269|PubMed:36590171, ECO:0000269|PubMed:39587316}. |
Q70SY1 | CREB3L2 | S72 | ochoa | Cyclic AMP-responsive element-binding protein 3-like protein 2 (cAMP-responsive element-binding protein 3-like protein 2) (BBF2 human homolog on chromosome 7) [Cleaved into: Processed cyclic AMP-responsive element-binding protein 3-like protein 2] | Transcription factor involved in unfolded protein response (UPR). In the absence of endoplasmic reticulum (ER) stress, inserted into ER membranes, with N-terminal DNA-binding and transcription activation domains oriented toward the cytosolic face of the membrane. In response to ER stress, transported to the Golgi, where it is cleaved in a site-specific manner by resident proteases S1P/MBTPS1 and S2P/MBTPS2. The released N-terminal cytosolic domain is translocated to the nucleus to effect transcription of specific target genes. Plays a critical role in chondrogenesis by activating the transcription of SEC23A, which promotes the transport and secretion of cartilage matrix proteins, and possibly that of ER biogenesis-related genes (By similarity). In a neuroblastoma cell line, protects cells from ER stress-induced death (PubMed:17178827). In vitro activates transcription of target genes via direct binding to the CRE site (PubMed:17178827). {ECO:0000250|UniProtKB:Q8BH52, ECO:0000269|PubMed:17178827}. |
Q7L1V2 | MON1B | S66 | ochoa | Vacuolar fusion protein MON1 homolog B (HSV-1 stimulation-related gene 1 protein) (HSV-I stimulating-related protein) | None |
Q7L9B9 | EEPD1 | S223 | ochoa | Endonuclease/exonuclease/phosphatase family domain-containing protein 1 | None |
Q7Z5H3 | ARHGAP22 | S557 | ochoa | Rho GTPase-activating protein 22 (Rho-type GTPase-activating protein 22) | Rho GTPase-activating protein involved in the signal transduction pathway that regulates endothelial cell capillary tube formation during angiogenesis. Acts as a GTPase activator for the RAC1 by converting it to an inactive GDP-bound state. Inhibits RAC1-dependent lamellipodia formation. May also play a role in transcription regulation via its interaction with VEZF1, by regulating activity of the endothelin-1 (EDN1) promoter (By similarity). {ECO:0000250}. |
Q7Z6G3 | NECAB2 | S57 | ochoa | N-terminal EF-hand calcium-binding protein 2 (EF-hand calcium-binding protein 2) (Neuronal calcium-binding protein 2) (Synaptotagmin-interacting protein 2) (Stip-2) | May act as a signaling scaffold protein that senses intracellular calcium. Can modulate ligand-induced internalization of ADORA2A and coupling efficiency of mGluR5/GRM5; for both receptors may regulate signaling activity such as promoting MAPK1/3 (ERK1/2) activation. {ECO:0000305|PubMed:17689978, ECO:0000305|PubMed:19694902}. |
Q86T03 | PIP4P1 | S162 | ochoa | Type 1 phosphatidylinositol 4,5-bisphosphate 4-phosphatase (Type 1 PtdIns-4,5-P2 4-Ptase) (EC 3.1.3.78) (PtdIns-4,5-P2 4-Ptase I) (Transmembrane protein 55B) | Catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) to phosphatidylinositol-4-phosphate (PtdIns-4-P) (PubMed:16365287). Does not hydrolyze phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3,4-bisphosphate, inositol 3,5-bisphosphate, inositol 3,4-bisphosphate, phosphatidylinositol 5-monophosphate, phosphatidylinositol 4-monophosphate and phosphatidylinositol 3-monophosphate (PubMed:16365287). Regulates lysosomal positioning by recruiting JIP4 to lysosomal membranes, thus inducing retrograde transport of lysosomes along microtubules (PubMed:29146937). Contributes to assembly of the V-ATPase complex in lipid rafts of the lysosomal membrane and to subsequent amino acid-dependent activation of mTORC1 (PubMed:29644770). May play a role in the regulation of cellular cholesterol metabolism (PubMed:25035345). {ECO:0000269|PubMed:16365287, ECO:0000269|PubMed:25035345, ECO:0000269|PubMed:29146937, ECO:0000269|PubMed:29644770}. |
Q86T82 | USP37 | S312 | ochoa | Ubiquitin carboxyl-terminal hydrolase 37 (EC 3.4.19.12) (Deubiquitinating enzyme 37) (Ubiquitin thioesterase 37) (Ubiquitin-specific-processing protease 37) | Deubiquitinase that plays a role in different processes including cell cycle regulation, DNA replication or DNA damage response (PubMed:26299517, PubMed:27296872, PubMed:31911859, PubMed:34509474). Antagonizes the anaphase-promoting complex (APC/C) during G1/S transition by mediating deubiquitination of cyclin-A (CCNA1 and CCNA2), thereby promoting S phase entry. Specifically mediates deubiquitination of 'Lys-11'-linked polyubiquitin chains, a specific ubiquitin-linkage type mediated by the APC/C complex. Phosphorylation at Ser-628 during G1/S phase maximizes the deubiquitinase activity, leading to prevent degradation of cyclin-A (CCNA1 and CCNA2) (PubMed:21596315). Plays an important role in the regulation of DNA replication by stabilizing the licensing factor CDT1 (PubMed:27296872). Also plays an essential role beyond S-phase entry to promote the efficiency and fidelity of replication by deubiquitinating checkpoint kinase 1/CHK1, promoting its stability (PubMed:34509474). Sustains the DNA damage response (DDR) by deubiquitinating and stabilizing the ATP-dependent DNA helicase BLM (PubMed:34606619). Mechanistically, DNA double-strand breaks (DSB) promotes ATM-mediated phosphorylation of USP37 and enhances the binding between USP37 and BLM (PubMed:34606619). Promotes cell migration by deubiquitinating and stabilizing the epithelial-mesenchymal transition (EMT)-inducing transcription factor SNAI (PubMed:31911859). Plays a role in the regulation of mitotic spindle assembly and mitotic progression by associating with chromatin-associated WAPL and stabilizing it through deubiquitination (PubMed:26299517). {ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:26299517, ECO:0000269|PubMed:27296872, ECO:0000269|PubMed:31911859, ECO:0000269|PubMed:34509474, ECO:0000269|PubMed:34606619}. |
Q86TC9 | MYPN | S818 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86U42 | PABPN1 | S90 | ochoa | Polyadenylate-binding protein 2 (PABP-2) (Poly(A)-binding protein 2) (Nuclear poly(A)-binding protein 1) (Poly(A)-binding protein II) (PABII) (Polyadenylate-binding nuclear protein 1) | Involved in the 3'-end formation of mRNA precursors (pre-mRNA) by the addition of a poly(A) tail of 200-250 nt to the upstream cleavage product (By similarity). Stimulates poly(A) polymerase (PAPOLA) conferring processivity on the poly(A) tail elongation reaction and also controls the poly(A) tail length (By similarity). Increases the affinity of poly(A) polymerase for RNA (By similarity). Is also present at various stages of mRNA metabolism including nucleocytoplasmic trafficking and nonsense-mediated decay (NMD) of mRNA. Cooperates with SKIP to synergistically activate E-box-mediated transcription through MYOD1 and may regulate the expression of muscle-specific genes (PubMed:11371506). Binds to poly(A) and to poly(G) with high affinity (By similarity). May protect the poly(A) tail from degradation (By similarity). Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters (PubMed:27871484). {ECO:0000250|UniProtKB:Q28165, ECO:0000269|PubMed:11371506, ECO:0000269|PubMed:27871484}. |
Q86V48 | LUZP1 | S690 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86VV8 | RTTN | S308 | ochoa | Rotatin | Involved in the genetic cascade that governs left-right specification. Plays a role in the maintenance of a normal ciliary structure. Required for correct asymmetric expression of NODAL, LEFTY and PITX2. {ECO:0000269|PubMed:22939636}. |
Q86X29 | LSR | S424 | ochoa | Lipolysis-stimulated lipoprotein receptor (Angulin-1) | Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}. |
Q86YN6 | PPARGC1B | S263 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) | Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}. |
Q86YW5 | TREML1 | S264 | ochoa | Trem-like transcript 1 protein (TLT-1) (Triggering receptor expressed on myeloid cells-like protein 1) | Cell surface receptor that may play a role in the innate and adaptive immune response. {ECO:0000269|PubMed:15128762}. |
Q8IU68 | TMC8 | S683 | ochoa | Transmembrane channel-like protein 8 (Epidermodysplasia verruciformis protein 2) | Acts as a regulatory protein involved in the regulation of numerous cellular processes (PubMed:18158319, PubMed:23429285, PubMed:30068544, PubMed:32917726). Together with its homolog TMC6/EVER1, forms a complex with calcium-binding protein CIB1 in lymphocytes and keratynocytes where TMC6 and TMC8 stabilize CIB1 levels and reciprocally (PubMed:30068544, PubMed:32917726). Together with TMC6, also forms a complex with and activates zinc transporter ZNT1 at the ER membrane of keratynocytes, thereby facilitating zinc uptake into the ER (PubMed:18158319). Also inhibits receptor-mediated calcium release from ER stores and calcium activated and volume regulated chloride channels (PubMed:25220380). Down-regulates the activity of transcription factors induced by zinc and cytokines (PubMed:18158319). Also sequesters TRADD which impairs the recruitment of TRAF2 and RIPK1 in the pro-survival complex I and promotes proapoptotic complex II formation, and may therefore be involved in TNF-induced cell death/survival decisions (PubMed:23429285). {ECO:0000269|PubMed:18158319, ECO:0000269|PubMed:23429285, ECO:0000269|PubMed:25220380, ECO:0000269|PubMed:30068544, ECO:0000269|PubMed:32917726}. |
Q8IUW5 | RELL1 | S166 | ochoa | RELT-like protein 1 | Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}. |
Q8IV50 | LYSMD2 | S29 | ochoa | LysM and putative peptidoglycan-binding domain-containing protein 2 | None |
Q8IWQ3 | BRSK2 | S466 | ochoa | Serine/threonine-protein kinase BRSK2 (EC 2.7.11.1) (Brain-selective kinase 2) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 2) (BR serine/threonine-protein kinase 2) (Serine/threonine-protein kinase 29) (Serine/threonine-protein kinase SAD-A) | Serine/threonine-protein kinase that plays a key role in polarization of neurons and axonogenesis, cell cycle progress and insulin secretion. Phosphorylates CDK16, CDC25C, MAPT/TAU, PAK1 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. Plays a role in the regulation of the mitotic cell cycle progress and the onset of mitosis. Plays a role in the regulation of insulin secretion in response to elevated glucose levels, probably via phosphorylation of CDK16 and PAK1. While BRSK2 phosphorylated at Thr-174 can inhibit insulin secretion (PubMed:22798068), BRSK2 phosphorylated at Thr-260 can promote insulin secretion (PubMed:22669945). Regulates reorganization of the actin cytoskeleton. May play a role in the apoptotic response triggered by endoplasmic reticulum (ER) stress. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:22798068, ECO:0000269|PubMed:23029325}. |
Q8IWU2 | LMTK2 | S1395 | ochoa | Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) | Phosphorylates PPP1C, phosphorylase b and CFTR. |
Q8IX07 | ZFPM1 | S494 | ochoa | Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) | Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}. |
Q8IX21 | SLF2 | S20 | ochoa | SMC5-SMC6 complex localization factor protein 2 (Smc5/6 localization factor 1) | Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of the SMC5-SMC6 complex to DNA lesions (PubMed:25931565). Plays a role in SMC5-SMC6 complex recruitment for viral restriction. Forms a complex with SIMC1 and this complex is required to recruit SMC5-SMC6 complex to PML nuclear bodies and sites of viral replication (PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}. |
Q8IYM2 | SLFN12 | S368 | psp | Ribonuclease SLFN12 (EC 3.1.-.-) (Schlafen family member 12) | Ribonuclease which is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34272366, PubMed:34707099, PubMed:35104454). May play a role in cell differentiation (PubMed:30045019). {ECO:0000269|PubMed:30045019, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34272366, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:35104454}. |
Q8N1G0 | ZNF687 | S145 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1G0 | ZNF687 | S1196 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N3F8 | MICALL1 | S323 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3F8 | MICALL1 | S389 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3F8 | MICALL1 | S396 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3F8 | MICALL1 | S619 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3V7 | SYNPO | S520 | ochoa | Synaptopodin | Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}. |
Q8N4C8 | MINK1 | S563 | ochoa | Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) | Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration. |
Q8N4C8 | MINK1 | S599 | ochoa | Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) | Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration. |
Q8N612 | FHIP1B | S523 | ochoa | FHF complex subunit HOOK-interacting protein 1B (FHIP1B) (FTS- and Hook-interacting protein) (FHIP) | Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}. |
Q8N8Q3 | ENDOV | S261 | ochoa | Endonuclease V (hEndoV) (EC 3.1.26.-) (Inosine-specific endoribonuclease) | [Isoform 1]: Endoribonuclease that specifically cleaves inosine-containing RNAs: cleaves RNA at the second phosphodiester bond 3' to inosine (PubMed:23912683, PubMed:23912718, PubMed:25195743, PubMed:27573237, PubMed:31703097). Active against both single-stranded and double-stranded RNAs (PubMed:25195743, PubMed:31703097). Has strong preference for single-stranded RNAs (ssRNAs) toward double-stranded RNAs (dsRNAs) (PubMed:23912718). Cleaves mRNAs and tRNAs containing inosine (PubMed:23912683, PubMed:31703097). Also able to cleave structure-specific dsRNA substrates containing the specific sites 5'-IIUI-3' and 5'-UIUU-3' (PubMed:23912718, PubMed:27573237). Inosine is present in a number of RNAs following editing; the function of inosine-specific endoribonuclease is still unclear: it could either play a regulatory role in edited RNAs, or be involved in antiviral response by removing the hyperedited long viral dsRNA genome that has undergone A-to-I editing (Probable). Binds branched DNA structures (PubMed:23139746). {ECO:0000269|PubMed:23139746, ECO:0000269|PubMed:23912683, ECO:0000269|PubMed:23912718, ECO:0000269|PubMed:25195743, ECO:0000269|PubMed:27573237, ECO:0000269|PubMed:31703097, ECO:0000305}.; FUNCTION: [Isoform 6]: Endoribonuclease that specifically cleaves inosine-containing RNAs: cleaves RNA at the second phosphodiester bond 3' to inosine (PubMed:31703097). Active against both single-stranded and double-stranded RNAs (PubMed:31703097). Cleaves tRNAs containing inosine (PubMed:31703097). {ECO:0000269|PubMed:31703097}.; FUNCTION: [Isoform 7]: Endoribonuclease that specifically cleaves inosine-containing RNAs: cleaves RNA at the second phosphodiester bond 3' to inosine (PubMed:31703097). Active against both single-stranded and double-stranded RNAs (PubMed:31703097). Cleaves tRNAs containing inosine (PubMed:31703097). {ECO:0000269|PubMed:31703097}. |
Q8N8Z6 | DCBLD1 | Y600 | ochoa|psp | Discoidin, CUB and LCCL domain-containing protein 1 | None |
Q8NBF6 | AVL9 | S326 | ochoa | Late secretory pathway protein AVL9 homolog | Functions in cell migration. {ECO:0000269|PubMed:22595670}. |
Q8NBZ0 | INO80E | S109 | ochoa | INO80 complex subunit E (Coiled-coil domain-containing protein 95) | Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. |
Q8NC06 | ACBD4 | S169 | psp | Acyl-CoA-binding domain-containing protein 4 | Binds medium- and long-chain acyl-CoA esters and may function as an intracellular carrier of acyl-CoA esters. |
Q8NC42 | RNF149 | S334 | ochoa | E3 ubiquitin-protein ligase RNF149 (EC 2.3.2.27) (DNA polymerase-transactivated protein 2) (RING finger protein 149) (RING-type E3 ubiquitin transferase RNF149) | E3 ubiquitin-protein ligase. Ubiquitinates BRAF, inducing its proteasomal degradation. {ECO:0000269|PubMed:22628551}. |
Q8ND24 | RNF214 | S506 | ochoa | RING finger protein 214 | None |
Q8NEY1 | NAV1 | S1823 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NFH5 | NUP35 | S53 | ochoa | Nucleoporin NUP35 (35 kDa nucleoporin) (Mitotic phosphoprotein 44) (MP-44) (Nuclear pore complex protein Nup53) (Nucleoporin NUP53) | Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. May play a role in the association of MAD1 with the NPC. {ECO:0000269|PubMed:15703211}. |
Q8NFY4 | SEMA6D | S776 | ochoa | Semaphorin-6D | Shows growth cone collapsing activity on dorsal root ganglion (DRG) neurons in vitro. May be a stop signal for the DRG neurons in their target areas, and possibly also for other neurons. May also be involved in the maintenance and remodeling of neuronal connections. Ligand of TREM2 with PLXNA1 as coreceptor in dendritic cells, plays a role in the generation of immune responses and skeletal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q76KF0}. |
Q8NHM5 | KDM2B | S1054 | ochoa | Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) | Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}. |
Q8NI27 | THOC2 | S1448 | ochoa | THO complex subunit 2 (Tho2) (hTREX120) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q8TAP8 | PPP1R35 | S52 | ochoa | Protein phosphatase 1 regulatory subunit 35 | During centriole duplication, plays a role in the centriole elongation by promoting the recruitment of the microtubule-binding elongation machinery through its interaction with RTTN, leading to the centriole to centrosome conversion (PubMed:30168418, PubMed:30230954). In addition, may play a role in the primary cilia assembly (By similarity). {ECO:0000250|UniProtKB:Q9D8C8, ECO:0000269|PubMed:30168418, ECO:0000269|PubMed:30230954}. |
Q8TBE0 | BAHD1 | S101 | ochoa | Bromo adjacent homology domain-containing 1 protein (BAH domain-containing protein 1) | Heterochromatin protein that acts as a transcription repressor and has the ability to promote the formation of large heterochromatic domains. May act by recruiting heterochromatin proteins such as CBX5 (HP1 alpha), HDAC5 and MBD1. Represses IGF2 expression by binding to its CpG-rich P3 promoter and recruiting heterochromatin proteins. At specific stages of Listeria infection, in complex with TRIM28, corepresses interferon-stimulated genes, including IFNL1, IFNL2 and IFNL3. {ECO:0000269|PubMed:19666599, ECO:0000269|PubMed:21252314}. |
Q8TBE0 | BAHD1 | S106 | ochoa | Bromo adjacent homology domain-containing 1 protein (BAH domain-containing protein 1) | Heterochromatin protein that acts as a transcription repressor and has the ability to promote the formation of large heterochromatic domains. May act by recruiting heterochromatin proteins such as CBX5 (HP1 alpha), HDAC5 and MBD1. Represses IGF2 expression by binding to its CpG-rich P3 promoter and recruiting heterochromatin proteins. At specific stages of Listeria infection, in complex with TRIM28, corepresses interferon-stimulated genes, including IFNL1, IFNL2 and IFNL3. {ECO:0000269|PubMed:19666599, ECO:0000269|PubMed:21252314}. |
Q8TC26 | TMEM163 | S37 | ochoa | Transmembrane protein 163 | Zinc ion transporter that mediates zinc efflux and plays a crucial role in intracellular zinc homeostasis (PubMed:25130899, PubMed:31697912, PubMed:36204728). Binds the divalent cations Zn(2+), Ni(2+), and to a minor extent Cu(2+) (By similarity). Is a functional modulator of P2X purinoceptors, including P2RX1, P2RX3, P2RX4 and P2RX7 (PubMed:32492420). Plays a role in central nervous system development and is required for myelination, and survival and proliferation of oligodendrocytes (PubMed:35455965). {ECO:0000250|UniProtKB:A9CMA6, ECO:0000269|PubMed:25130899, ECO:0000269|PubMed:31697912, ECO:0000269|PubMed:32492420, ECO:0000269|PubMed:35455965, ECO:0000269|PubMed:36204728}. |
Q8TER5 | ARHGEF40 | S1490 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8TF40 | FNIP1 | S275 | ochoa | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8TF74 | WIPF2 | Y255 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8TF76 | HASPIN | S179 | ochoa|psp | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8WU58 | FAM222B | S299 | ochoa | Protein FAM222B | None |
Q8WUA4 | GTF3C2 | S211 | ochoa | General transcription factor 3C polypeptide 2 (TF3C-beta) (Transcription factor IIIC 110 kDa subunit) (TFIIIC 110 kDa subunit) (TFIIIC110) (Transcription factor IIIC subunit beta) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. May play a direct role in stabilizing interactions of TFIIIC2 with TFIIIC1. |
Q8WUM4 | PDCD6IP | Y727 | ochoa | Programmed cell death 6-interacting protein (PDCD6-interacting protein) (ALG-2-interacting protein 1) (ALG-2-interacting protein X) (Hp95) | Multifunctional protein involved in endocytosis, multivesicular body biogenesis, membrane repair, cytokinesis, apoptosis and maintenance of tight junction integrity. Class E VPS protein involved in concentration and sorting of cargo proteins of the multivesicular body (MVB) for incorporation into intralumenal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome. Binds to the phospholipid lysobisphosphatidic acid (LBPA) which is abundant in MVBs internal membranes. The MVB pathway requires the sequential function of ESCRT-O, -I,-II and -III complexes (PubMed:14739459). The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:17556548, PubMed:17853893). Adapter for a subset of ESCRT-III proteins, such as CHMP4, to function at distinct membranes. Required for completion of cytokinesis (PubMed:17556548, PubMed:17853893, PubMed:18641129). May play a role in the regulation of both apoptosis and cell proliferation. Regulates exosome biogenesis in concert with SDC1/4 and SDCBP (PubMed:22660413). By interacting with F-actin, PARD3 and TJP1 secures the proper assembly and positioning of actomyosin-tight junction complex at the apical sides of adjacent epithelial cells that defines a spatial membrane domain essential for the maintenance of epithelial cell polarity and barrier (By similarity). {ECO:0000250|UniProtKB:Q9WU78, ECO:0000269|PubMed:14739459, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:18641129, ECO:0000269|PubMed:22660413}.; FUNCTION: (Microbial infection) Involved in HIV-1 virus budding. Can replace TSG101 it its role of supporting HIV-1 release; this function requires the interaction with CHMP4B. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:14505569, ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:18641129}. |
Q8WUX1 | SLC38A5 | S36 | ochoa | Sodium-coupled neutral amino acid transporter 5 (Solute carrier family 38 member 5) (System N transporter 2) | Symporter that cotransports neutral amino acids and sodium ions, coupled to an H(+) antiporter activity (PubMed:11243884). Releases L-glutamine and glycine from astroglial cells and may participate in the glutamate/GABA-L-glutamine cycle and the NMDA receptors activation (By similarity). In addition, contributes significantly to L-glutamine uptake in retina, namely in ganglion and Mueller cells therefore, participates in the retinal glutamate-glutamine cycle (By similarity). The transport activity is pH sensitive and Li(+) tolerant (PubMed:11243884). Moreover functions in both direction and is associated with large uncoupled fluxes of protons (By similarity). The transport is electroneutral coupled to the cotransport of 1 Na(+) and the antiport of 1 H(+) (By similarity). May have a particular importance for modulation of net hepatic glutamine flux (By similarity). {ECO:0000250|UniProtKB:A2VCW5, ECO:0000250|UniProtKB:Q3U1J0, ECO:0000269|PubMed:11243884}. |
Q8WWI1 | LMO7 | S1591 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WX93 | PALLD | S684 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WX93 | PALLD | S766 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WXD9 | CASKIN1 | S1034 | ochoa | Caskin-1 (CASK-interacting protein 1) | May link the scaffolding protein CASK to downstream intracellular effectors. {ECO:0000250}. |
Q8WXE0 | CASKIN2 | S1135 | ochoa | Caskin-2 (CASK-interacting protein 2) | None |
Q8WY91 | THAP4 | S407 | ochoa | Peroxynitrite isomerase THAP4 (EC 5.99.-.-) (Ferric Homo sapiens nitrobindin) (Hs-Nb(III)) (THAP domain-containing protein 4) | Heme-binding protein able to scavenge peroxynitrite and to protect free L-tyrosine against peroxynitrite-mediated nitration, by acting as a peroxynitrite isomerase that converts peroxynitrite to nitrate. Therefore, this protein likely plays a role in peroxynitrite sensing and in the detoxification of reactive nitrogen and oxygen species (RNS and ROS, respectively). Is able to bind nitric oxide (NO) in vitro, but may act as a sensor of peroxynitrite levels in vivo, possibly modulating the transcriptional activity residing in the N-terminal region. {ECO:0000269|PubMed:30524950, ECO:0000269|PubMed:32295384}. |
Q92793 | CREBBP | S977 | ochoa | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q92793 | CREBBP | S2356 | ochoa | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q92888 | ARHGEF1 | S779 | ochoa | Rho guanine nucleotide exchange factor 1 (115 kDa guanine nucleotide exchange factor) (p115-RhoGEF) (p115RhoGEF) (Sub1.5) | Seems to play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13) subunits (PubMed:9641915, PubMed:9641916). Acts as a GTPase-activating protein (GAP) for GNA12 and GNA13, and as guanine nucleotide exchange factor (GEF) for RhoA GTPase (PubMed:30521495, PubMed:8810315, PubMed:9641915, PubMed:9641916). Activated G alpha 13/GNA13 stimulates the RhoGEF activity through interaction with the RGS-like domain (PubMed:9641916). This GEF activity is inhibited by binding to activated GNA12 (PubMed:9641916). Mediates angiotensin-2-induced RhoA activation (PubMed:20098430). In lymphoid follicles, may trigger activation of GNA13 as part of S1PR2-dependent signaling pathway that leads to inhibition of germinal center (GC) B cell growth and migration outside the GC niche. {ECO:0000250|UniProtKB:Q61210, ECO:0000269|PubMed:20098430, ECO:0000269|PubMed:30521495, ECO:0000269|PubMed:8810315, ECO:0000269|PubMed:9641915, ECO:0000269|PubMed:9641916}. |
Q96B36 | AKT1S1 | S88 | ochoa | Proline-rich AKT1 substrate 1 (40 kDa proline-rich AKT substrate) | Negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:17277771, PubMed:17386266, PubMed:17510057, PubMed:29236692). In absence of insulin and nutrients, AKT1S1 associates with the mTORC1 complex and directly inhibits mTORC1 activity by blocking the MTOR substrate-recruitment site (PubMed:29236692). In response to insulin and nutrients, AKT1S1 dissociates from mTORC1 (PubMed:17386266, PubMed:18372248). Its activity is dependent on its phosphorylation state and binding to 14-3-3 (PubMed:16174443, PubMed:18372248). May also play a role in nerve growth factor-mediated neuroprotection (By similarity). {ECO:0000250|UniProtKB:Q9D1F4, ECO:0000269|PubMed:16174443, ECO:0000269|PubMed:17277771, ECO:0000269|PubMed:17386266, ECO:0000269|PubMed:17510057, ECO:0000269|PubMed:18372248, ECO:0000269|PubMed:29236692}. |
Q96DF8 | ESS2 | S446 | ochoa | Splicing factor ESS-2 homolog (DiGeorge syndrome critical region 13) (DiGeorge syndrome critical region 14) (DiGeorge syndrome protein H) (DGS-H) (Protein ES2) | May be involved in pre-mRNA splicing. {ECO:0000250|UniProtKB:P34420}. |
Q96EZ8 | MCRS1 | S108 | ochoa | Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) | Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}. |
Q96HR8 | NAF1 | S34 | ochoa | H/ACA ribonucleoprotein complex non-core subunit NAF1 (hNAF1) | RNA-binding protein required for the maturation of box H/ACA snoRNPs complex and ribosome biogenesis. During assembly of the H/ACA snoRNPs complex, it associates with the complex and disappears during maturation of the complex and is replaced by NOLA1/GAR1 to yield mature H/ACA snoRNPs complex. Probably competes with NOLA1/GAR1 for binding with DKC1/NOLA4. {ECO:0000269|PubMed:16618814}. |
Q96II8 | LRCH3 | S633 | ochoa | DISP complex protein LRCH3 (Leucine-rich repeat and calponin homology domain-containing protein 3) | As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton. {ECO:0000269|PubMed:29467281}. |
Q96JM2 | ZNF462 | S298 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96JY6 | PDLIM2 | S202 | ochoa | PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) | Probable adapter protein located at the actin cytoskeleton that promotes cell attachment. Necessary for the migratory capacity of epithelial cells. Overexpression enhances cell adhesion to collagen and fibronectin and suppresses anchorage independent growth. May contribute to tumor cell migratory capacity. {ECO:0000269|PubMed:15659642}. |
Q96KG9 | SCYL1 | S754 | ochoa|psp | N-terminal kinase-like protein (Coated vesicle-associated kinase of 90 kDa) (SCY1-like protein 1) (Telomerase regulation-associated protein) (Telomerase transcriptional element-interacting factor) (Teratoma-associated tyrosine kinase) | Regulates COPI-mediated retrograde protein traffic at the interface between the Golgi apparatus and the endoplasmic reticulum (PubMed:18556652). Involved in the maintenance of the Golgi apparatus morphology (PubMed:26581903). {ECO:0000269|PubMed:18556652, ECO:0000269|PubMed:26581903}.; FUNCTION: [Isoform 6]: Acts as a transcriptional activator. It binds to three different types of GC-rich DNA binding sites (box-A, -B and -C) in the beta-polymerase promoter region. It also binds to the TERT promoter region. {ECO:0000269|PubMed:15963946}. |
Q96KQ7 | EHMT2 | S569 | ochoa|psp | Histone-lysine N-methyltransferase EHMT2 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 2) (HLA-B-associated transcript 8) (Histone H3-K9 methyltransferase 3) (H3-K9-HMTase 3) (Lysine N-methyltransferase 1C) (Protein G9a) | Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also mediates monomethylation of 'Lys-56' of histone H3 (H3K56me1) in G1 phase, leading to promote interaction between histone H3 and PCNA and regulating DNA replication. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. May also methylate histone H1. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Also methylates CDYL, WIZ, ACIN1, DNMT1, HDAC1, ERCC6, KLF12 and itself. {ECO:0000250|UniProtKB:Q9Z148, ECO:0000269|PubMed:11316813, ECO:0000269|PubMed:18438403, ECO:0000269|PubMed:20084102, ECO:0000269|PubMed:20118233, ECO:0000269|PubMed:22387026, ECO:0000269|PubMed:8457211}. |
Q96L73 | NSD1 | S2374 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L73 | NSD1 | S2571 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96LL9 | DNAJC30 | S137 | ochoa | DnaJ homolog subfamily C member 30, mitochondrial (Williams-Beuren syndrome chromosomal region 18 protein) | Mitochondrial protein enriched in neurons that acts as a regulator of mitochondrial respiration (By similarity). Associates with the ATP synthase complex and facilitates ATP synthesis (By similarity). May be a chaperone protein involved in the turnover of the subunits of mitochondrial complex I N-module. It facilitates the degradation of N-module subunits damaged by oxidative stress, and contributes to complex I functional efficiency (PubMed:33465056). {ECO:0000250|UniProtKB:P59041, ECO:0000269|PubMed:33465056}. |
Q96MY1 | NOL4L | S387 | ochoa | Nucleolar protein 4-like | None |
Q96PE2 | ARHGEF17 | S527 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PV7 | FAM193B | S709 | ochoa | Protein FAM193B | None |
Q96QT6 | PHF12 | S772 | ochoa | PHD finger protein 12 (PHD factor 1) (Pf1) | Transcriptional repressor acting as key scaffolding subunit of SIN3 complexes which contributes to complex assembly by contacting each core subunit domain, stabilizes the complex and constitutes the substrate receptor by recruiting the H3 histone tail (PubMed:37137925). SIN3 complexes are composed of a SIN3 scaffold subunit, one catalytic core (HDAC1 or HDAC2) and 2 chromatin targeting modules (PubMed:11390640, PubMed:37137925). SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). May also repress transcription in a SIN3A-independent manner through recruitment of functional TLE5 complexes to DNA (PubMed:11390640). May also play a role in ribosomal biogenesis (By similarity). {ECO:0000250|UniProtKB:Q5SPL2, ECO:0000269|PubMed:11390640, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
Q96RU3 | FNBP1 | S347 | ochoa | Formin-binding protein 1 (Formin-binding protein 17) (hFBP17) | May act as a link between RND2 signaling and regulation of the actin cytoskeleton (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during the late stage of clathrin-mediated endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also enhances actin polymerization via the recruitment of WASL/N-WASP, which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:15252009, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:16418535, ECO:0000269|PubMed:17512409}. |
Q96ST3 | SIN3A | Y272 | ochoa | Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) | Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}. |
Q96T17 | MAP7D2 | S315 | ochoa | MAP7 domain-containing protein 2 | Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}. |
Q96T58 | SPEN | S3436 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99081 | TCF12 | Y70 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99466 | NOTCH4 | S125 | ochoa | Neurogenic locus notch homolog protein 4 (Notch 4) (hNotch4) [Cleaved into: Notch 4 extracellular truncation; Notch 4 intracellular domain] | Functions as a receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. May regulate branching morphogenesis in the developing vascular system (By similarity). {ECO:0000250}. |
Q99501 | GAS2L1 | S306 | ochoa | GAS2-like protein 1 (GAS2-related protein on chromosome 22) (Growth arrest-specific protein 2-like 1) | Involved in the cross-linking of microtubules and microfilaments (PubMed:12584248, PubMed:24706950). Regulates microtubule dynamics and stability by interacting with microtubule plus-end tracking proteins, such as MAPRE1, to regulate microtubule growth along actin stress fibers (PubMed:24706950). {ECO:0000269|PubMed:12584248, ECO:0000269|PubMed:24706950}. |
Q99638 | RAD9A | S341 | ochoa|psp | Cell cycle checkpoint control protein RAD9A (hRAD9) (EC 3.1.11.2) (DNA repair exonuclease rad9 homolog A) | Component of the 9-1-1 cell-cycle checkpoint response complex that plays a major role in DNA repair (PubMed:10713044, PubMed:17575048, PubMed:20545769, PubMed:21659603, PubMed:31135337). The 9-1-1 complex is recruited to DNA lesion upon damage by the RAD17-replication factor C (RFC) clamp loader complex (PubMed:21659603). Acts then as a sliding clamp platform on DNA for several proteins involved in long-patch base excision repair (LP-BER) (PubMed:21659603). The 9-1-1 complex stimulates DNA polymerase beta (POLB) activity by increasing its affinity for the 3'-OH end of the primer-template and stabilizes POLB to those sites where LP-BER proceeds; endonuclease FEN1 cleavage activity on substrates with double, nick, or gap flaps of distinct sequences and lengths; and DNA ligase I (LIG1) on long-patch base excision repair substrates (PubMed:21659603). The 9-1-1 complex is necessary for the recruitment of RHNO1 to sites of double-stranded breaks (DSB) occurring during the S phase (PubMed:21659603). RAD9A possesses 3'->5' double stranded DNA exonuclease activity (PubMed:10713044). {ECO:0000269|PubMed:10713044, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:31135337}. |
Q99640 | PKMYT1 | S22 | ochoa | Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase (EC 2.7.11.1) (Myt1 kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins (PubMed:10373560, PubMed:10504341, PubMed:9001210, PubMed:9268380). Mediates phosphorylation of CDK1 predominantly on 'Thr-14'. Also involved in Golgi fragmentation (PubMed:9001210, PubMed:9268380). May be involved in phosphorylation of CDK1 on 'Tyr-15' to a lesser degree, however tyrosine kinase activity is unclear and may be indirect (PubMed:9001210, PubMed:9268380). {ECO:0000269|PubMed:10373560, ECO:0000269|PubMed:10504341, ECO:0000269|PubMed:9001210, ECO:0000269|PubMed:9268380}. |
Q99640 | PKMYT1 | Y31 | ochoa | Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase (EC 2.7.11.1) (Myt1 kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins (PubMed:10373560, PubMed:10504341, PubMed:9001210, PubMed:9268380). Mediates phosphorylation of CDK1 predominantly on 'Thr-14'. Also involved in Golgi fragmentation (PubMed:9001210, PubMed:9268380). May be involved in phosphorylation of CDK1 on 'Tyr-15' to a lesser degree, however tyrosine kinase activity is unclear and may be indirect (PubMed:9001210, PubMed:9268380). {ECO:0000269|PubMed:10373560, ECO:0000269|PubMed:10504341, ECO:0000269|PubMed:9001210, ECO:0000269|PubMed:9268380}. |
Q99700 | ATXN2 | S561 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q9BQ13 | KCTD14 | S23 | ochoa | BTB/POZ domain-containing protein KCTD14 | None |
Q9BQ70 | TCF25 | S172 | ochoa | Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) | Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}. |
Q9BQI3 | EIF2AK1 | Y38 | ochoa | Eukaryotic translation initiation factor 2-alpha kinase 1 (EC 2.7.11.1) (Heme-controlled repressor) (HCR) (Heme-regulated eukaryotic initiation factor eIF-2-alpha kinase) (Heme-regulated inhibitor) (hHRI) (Hemin-sensitive initiation factor 2-alpha kinase) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress conditions (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:38340717). Key activator of the integrated stress response (ISR) required for adaptation to various stress, such as heme deficiency, oxidative stress, osmotic shock, mitochondrial dysfunction and heat shock (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:38340717). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming (PubMed:32132706, PubMed:32132707, PubMed:37327776). Acts as a key sensor of heme-deficiency: in normal conditions, binds hemin via a cysteine thiolate and histidine nitrogenous coordination, leading to inhibit the protein kinase activity (By similarity). This binding occurs with moderate affinity, allowing it to sense the heme concentration within the cell: heme depletion relieves inhibition and stimulates kinase activity, activating the ISR (By similarity). Thanks to this unique heme-sensing capacity, plays a crucial role to shut off protein synthesis during acute heme-deficient conditions (By similarity). In red blood cells (RBCs), controls hemoglobin synthesis ensuring a coordinated regulation of the synthesis of its heme and globin moieties (By similarity). It thereby plays an essential protective role for RBC survival in anemias of iron deficiency (By similarity). Iron deficiency also triggers activation by full-length DELE1 (PubMed:37327776). Also activates the ISR in response to mitochondrial dysfunction: HRI/EIF2AK1 protein kinase activity is activated upon binding to the processed form of DELE1 (S-DELE1), thereby promoting the ATF4-mediated reprogramming (PubMed:32132706, PubMed:32132707). Also acts as an activator of mitophagy in response to mitochondrial damage: catalyzes phosphorylation of eIF-2-alpha (EIF2S1) following activation by S-DELE1, thereby promoting mitochondrial localization of EIF2S1, triggering PRKN-independent mitophagy (PubMed:38340717). {ECO:0000250|UniProtKB:Q9Z2R9, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:32197074, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:38340717}. |
Q9BQQ3 | GORASP1 | S274 | psp | Golgi reassembly-stacking protein 1 (Golgi peripheral membrane protein p65) (Golgi phosphoprotein 5) (GOLPH5) (Golgi reassembly-stacking protein of 65 kDa) (GRASP65) | Key structural protein of the Golgi apparatus (PubMed:33301566). The membrane cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon (PubMed:33301566). Acting in concert with GORASP2/GRASP55, is required for the formation and maintenance of the Golgi ribbon, and may be dispensable for the formation of stacks (PubMed:33301566). However, other studies suggest that GORASP1 plays an important role in assembly and membrane stacking of the cisternae, and in the reassembly of Golgi stacks after breakdown during mitosis (By similarity). Caspase-mediated cleavage of GORASP1 is required for fragmentation of the Golgi during apoptosis (By similarity). Also mediates, via its interaction with GOLGA2/GM130, the docking of transport vesicles with the Golgi membranes (PubMed:16489344). Mediates ER stress-induced unconventional (ER/Golgi-independent) trafficking of core-glycosylated CFTR to cell membrane (PubMed:21884936). {ECO:0000250|UniProtKB:O35254, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:21884936, ECO:0000269|PubMed:33301566}. |
Q9BRQ0 | PYGO2 | S26 | ochoa | Pygopus homolog 2 | Involved in signal transduction through the Wnt pathway. |
Q9BT67 | NDFIP1 | S66 | ochoa | NEDD4 family-interacting protein 1 (Breast cancer-associated protein SGA-1M) (NEDD4 WW domain-binding protein 5) (Putative MAPK-activating protein PM13) (Putative NF-kappa-B-activating protein 164) (Putative NFKB and MAPK-activating protein) | Activates HECT domain-containing E3 ubiquitin-protein ligases, including NEDD4 and ITCH, and consequently modulates the stability of their targets. As a result, controls many cellular processes. Prevents chronic T-helper cell-mediated inflammation by activating ITCH and thus controlling JUNB degradation (By similarity). Promotes pancreatic beta cell death through degradation of JUNB and inhibition of the unfolded protein response, leading to reduction of insulin secretion (PubMed:26319551). Restricts the production of pro-inflammatory cytokines in effector Th17 T-cells by promoting ITCH-mediated ubiquitination and degradation of RORC (By similarity). Together with NDFIP2, limits the cytokine signaling and expansion of effector Th2 T-cells by promoting degradation of JAK1, probably by ITCH- and NEDD4L-mediated ubiquitination (By similarity). Regulates peripheral T-cell tolerance to self and foreign antigens, forcing the exit of naive CD4+ T-cells from the cell cycle before they become effector T-cells (By similarity). Negatively regulates RLR-mediated antiviral response by promoting SMURF1-mediated ubiquitination and subsequent degradation of MAVS (PubMed:23087404). Negatively regulates KCNH2 potassium channel activity by decreasing its cell-surface expression and interfering with channel maturation through recruitment of NEDD4L to the Golgi apparatus where it mediates KCNH2 degradation (PubMed:26363003). In cortical neurons, mediates the ubiquitination of the divalent metal transporter SLC11A2/DMT1 by NEDD4L, leading to its down-regulation and protection of the cells from cobalt and iron toxicity (PubMed:19706893). Important for normal development of dendrites and dendritic spines in cortex (By similarity). Enhances the ubiquitination of BRAT1 mediated by: NEDD4, NEDD4L and ITCH and is required for the nuclear localization of ubiquitinated BRAT1 (PubMed:25631046). Enhances the ITCH-mediated ubiquitination of MAP3K7 by recruiting E2 ubiquitin-conjugating enzyme UBE2L3 to ITCH (By similarity). Modulates EGFR signaling through multiple pathways. In particular, may regulate the ratio of AKT1-to-MAPK8 signaling in response to EGF, acting on AKT1 probably through PTEN destabilization and on MAPK8 through ITCH-dependent MAP2K4 inactivation. As a result, may control cell growth rate (PubMed:20534535). Inhibits cell proliferation by promoting PTEN nuclear localization and changing its signaling specificity (PubMed:25801959). {ECO:0000250|UniProtKB:Q8R0W6, ECO:0000269|PubMed:19343052, ECO:0000269|PubMed:19706893, ECO:0000269|PubMed:20534535, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:25801959, ECO:0000269|PubMed:26319551, ECO:0000269|PubMed:26363003}. |
Q9BTC0 | DIDO1 | S898 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BUA3 | SPINDOC | S248 | ochoa | Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) | Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}. |
Q9BUL9 | RPP25 | S162 | ochoa | Ribonuclease P protein subunit p25 (RNase P protein subunit p25) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:12003489, PubMed:16723659, PubMed:30454648). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:12003489, ECO:0000269|PubMed:16723659, ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648}. |
Q9BUT9 | MCRIP2 | S60 | ochoa | MAPK regulated corepressor interacting protein 2 (Protein FAM195A) | None |
Q9BW04 | SARG | S462 | ochoa | Specifically androgen-regulated gene protein | Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}. |
Q9BX66 | SORBS1 | S452 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BXP5 | SRRT | S550 | ochoa | Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) | Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}. |
Q9BY44 | EIF2A | S517 | ochoa | Eukaryotic translation initiation factor 2A (eIF-2A) (65 kDa eukaryotic translation initiation factor 2A) [Cleaved into: Eukaryotic translation initiation factor 2A, N-terminally processed] | Functions in the early steps of protein synthesis of a small number of specific mRNAs. Acts by directing the binding of methionyl-tRNAi to 40S ribosomal subunits. In contrast to the eIF-2 complex, it binds methionyl-tRNAi to 40S subunits in a codon-dependent manner, whereas the eIF-2 complex binds methionyl-tRNAi to 40S subunits in a GTP-dependent manner. {ECO:0000269|PubMed:12133843}. |
Q9BYE7 | PCGF6 | S233 | ochoa | Polycomb group RING finger protein 6 (Mel18 and Bmi1-like RING finger) (RING finger protein 134) | Transcriptional repressor (PubMed:12167161). May modulate the levels of histone H3K4Me3 by activating KDM5D histone demethylase (PubMed:17320162). Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167161). Within the PRC1-like complex, regulates RNF2 ubiquitin ligase activity (PubMed:26151332). {ECO:0000269|PubMed:12167161, ECO:0000269|PubMed:17320162, ECO:0000269|PubMed:26151332}. |
Q9BZL4 | PPP1R12C | S407 | ochoa | Protein phosphatase 1 regulatory subunit 12C (Protein phosphatase 1 myosin-binding subunit of 85 kDa) (Protein phosphatase 1 myosin-binding subunit p85) | Regulates myosin phosphatase activity. {ECO:0000269|PubMed:11399775}. |
Q9C0A6 | SETD5 | S861 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0B9 | ZCCHC2 | S803 | ochoa | Zinc finger CCHC domain-containing protein 2 | None |
Q9C0C2 | TNKS1BP1 | S369 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0H2 | TTYH3 | Y501 | ochoa | Protein tweety homolog 3 (hTTY3) (Volume-regulated anion channel subunit TTYH3) | Calcium-independent, swelling-dependent volume-regulated anion channel (VRAC-swell) which plays a pivotal role in the process of regulatory volume decrease (RVD) in the brain through the efflux of anions like chloride and organic osmolytes like glutamate (By similarity). Probable large-conductance Ca(2+)-activated chloride channel (PubMed:15010458). {ECO:0000250|UniProtKB:Q6P5F7, ECO:0000269|PubMed:15010458}. |
Q9H0C5 | BTBD1 | S33 | ochoa | BTB/POZ domain-containing protein 1 (Hepatitis C virus NS5A-transactivated protein 8) (HCV NS5A-transactivated protein 8) | Probable substrate-specific adapter of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14528312). Seems to regulate expression levels and/or subnuclear distribution of TOP1, via an unknown mechanism (By similarity). May play a role in mesenchymal differentiation where it promotes myogenic differentiation and suppresses adipogenesis (By similarity). {ECO:0000250|UniProtKB:P58544, ECO:0000269|PubMed:14528312}. |
Q9H0X9 | OSBPL5 | S67 | ochoa | Oxysterol-binding protein-related protein 5 (ORP-5) (OSBP-related protein 5) (Oxysterol-binding protein homolog 1) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:23934110, PubMed:26206935). May cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes (PubMed:21220512). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:21220512, ECO:0000269|PubMed:23934110, ECO:0000269|PubMed:26206935}. |
Q9H1K0 | RBSN | S583 | ochoa | Rabenosyn-5 (110 kDa protein) (FYVE finger-containing Rab5 effector protein rabenosyn-5) (RAB effector RBSN) (Zinc finger FYVE domain-containing protein 20) | Rab4/Rab5 effector protein acting in early endocytic membrane fusion and membrane trafficking of recycling endosomes. Required for endosome fusion either homotypically or with clathrin coated vesicles. Plays a role in the lysosomal trafficking of CTSD/cathepsin D from the Golgi to lysosomes. Also promotes the recycling of transferrin directly from early endosomes to the plasma membrane. Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate (PtdInsP3) (PubMed:11062261, PubMed:11788822, PubMed:15020713). Plays a role in the recycling of transferrin receptor to the plasma membrane (PubMed:22308388). {ECO:0000269|PubMed:11062261, ECO:0000269|PubMed:11788822, ECO:0000269|PubMed:15020713, ECO:0000269|PubMed:22308388}. |
Q9H2E6 | SEMA6A | S760 | ochoa | Semaphorin-6A (Semaphorin VIA) (Sema VIA) (Semaphorin-6A-1) (SEMA6A-1) | Cell surface receptor for PLXNA2 that plays an important role in cell-cell signaling. Required for normal granule cell migration in the developing cerebellum. Promotes reorganization of the actin cytoskeleton and plays an important role in axon guidance in the developing central nervous system. Can act as repulsive axon guidance cue. Has repulsive action towards migrating granular neurons. May play a role in channeling sympathetic axons into the sympathetic chains and controlling the temporal sequence of sympathetic target innervation. {ECO:0000250|UniProtKB:O35464}.; FUNCTION: (Microbial infection) Acts as a receptor for P.sordellii toxin TcsL in the in the vascular endothelium. {ECO:0000269|PubMed:32302524, ECO:0000269|PubMed:32589945}. |
Q9H330 | TMEM245 | S325 | ochoa | Transmembrane protein 245 (Protein CG-2) | None |
Q9H3Q1 | CDC42EP4 | S295 | ochoa | Cdc42 effector protein 4 (Binder of Rho GTPases 4) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation, when overexpressed in fibroblasts. |
Q9H3R0 | KDM4C | S352 | ochoa | Lysine-specific demethylase 4C (EC 1.14.11.66) (Gene amplified in squamous cell carcinoma 1 protein) (GASC-1 protein) (JmjC domain-containing histone demethylation protein 3C) (Jumonji domain-containing protein 2C) ([histone H3]-trimethyl-L-lysine(9) demethylase 4C) | Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. {ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:28262558}. |
Q9H4M7 | PLEKHA4 | S613 | ochoa | Pleckstrin homology domain-containing family A member 4 (PH domain-containing family A member 4) (Phosphoinositol 3-phosphate-binding protein 1) (PEPP-1) | Binds specifically to phosphatidylinositol 3-phosphate (PtdIns3P), but not to other phosphoinositides. {ECO:0000269|PubMed:11001876}. |
Q9H6F5 | CCDC86 | S160 | ochoa | Coiled-coil domain-containing protein 86 (Cytokine-induced protein with coiled-coil domain) | Required for proper chromosome segregation during mitosis and error-free mitotic progression. {ECO:0000269|PubMed:36695333}. |
Q9H6K5 | PRR36 | S115 | ochoa | Proline-rich protein 36 | None |
Q9H6K5 | PRR36 | S1107 | ochoa | Proline-rich protein 36 | None |
Q9H7D0 | DOCK5 | S1824 | ochoa | Dedicator of cytokinesis protein 5 | Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}. |
Q9H7E9 | C8orf33 | S33 | ochoa | UPF0488 protein C8orf33 | None |
Q9H7N4 | SCAF1 | S548 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7N4 | SCAF1 | S724 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H8N7 | ZNF395 | S386 | ochoa | Zinc finger protein 395 (HD-regulating factor 2) (HDRF-2) (Huntington disease gene regulatory region-binding protein 2) (HD gene regulatory region-binding protein 2) (HDBP-2) (Papillomavirus regulatory factor 1) (PRF-1) (Papillomavirus-binding factor) | Plays a role in papillomavirus genes transcription. |
Q9H987 | SYNPO2L | S788 | ochoa | Synaptopodin 2-like protein | Actin-associated protein that may play a role in modulating actin-based shape. {ECO:0000250}. |
Q9HAU0 | PLEKHA5 | S860 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HCK8 | CHD8 | S2218 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9NPF5 | DMAP1 | S418 | ochoa | DNA methyltransferase 1-associated protein 1 (DNMAP1) (DNMT1-associated protein 1) | Involved in transcription repression and activation. Its interaction with HDAC2 may provide a mechanism for histone deacetylation in heterochromatin following replication of DNA at late firing origins. Can also repress transcription independently of histone deacetylase activity. May specifically potentiate DAXX-mediated repression of glucocorticoid receptor-dependent transcription. Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Participates in the nuclear localization of URI1 and increases its transcriptional corepressor activity. {ECO:0000269|PubMed:14665632, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:14978102, ECO:0000269|PubMed:15367675}. |
Q9NPG3 | UBN1 | S953 | ochoa | Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) | Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}. |
Q9NQ66 | PLCB1 | S887 | psp | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (EC 3.1.4.11) (PLC-154) (Phosphoinositide phospholipase C-beta-1) (Phospholipase C-I) (PLC-I) (Phospholipase C-beta-1) (PLC-beta-1) | Catalyzes the hydrolysis of 1-phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) and mediates intracellular signaling downstream of G protein-coupled receptors (PubMed:9188725). Regulates the function of the endothelial barrier. {ECO:0000250|UniProtKB:Q9Z1B3, ECO:0000269|PubMed:9188725}. |
Q9NQ75 | CASS4 | Y113 | ochoa | Cas scaffolding protein family member 4 (HEF-like protein) (HEF1-EFS-p130Cas-like protein) (HEPL) | Docking protein that plays a role in tyrosine kinase-based signaling related to cell adhesion and cell spreading. Regulates PTK2/FAK1 activity, focal adhesion integrity, and cell spreading. {ECO:0000269|PubMed:18256281}. |
Q9NQC3 | RTN4 | S150 | ochoa | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
Q9NQS7 | INCENP | S202 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NQU5 | PAK6 | S165 | ochoa|psp | Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) | Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}. |
Q9NQX7 | ITM2C | S30 | ochoa | Integral membrane protein 2C (Cerebral protein 14) (Transmembrane protein BRI3) [Cleaved into: CT-BRI3] | Negative regulator of amyloid-beta peptide production. May inhibit the processing of APP by blocking its access to alpha- and beta-secretase. Binding to the beta-secretase-cleaved APP C-terminal fragment is negligible, suggesting that ITM2C is a poor gamma-secretase cleavage inhibitor. May play a role in TNF-induced cell death and neuronal differentiation (By similarity). {ECO:0000250, ECO:0000269|PubMed:18452648, ECO:0000269|PubMed:19366692}. |
Q9NR09 | BIRC6 | S3937 | ochoa | Dual E2 ubiquitin-conjugating enzyme/E3 ubiquitin-protein ligase BIRC6 (EC 2.3.2.24) (BIR repeat-containing ubiquitin-conjugating enzyme) (BRUCE) (Baculoviral IAP repeat-containing protein 6) (Ubiquitin-conjugating BIR domain enzyme apollon) (APOLLON) | Anti-apoptotic protein known as inhibitor of apoptosis (IAP) which can regulate cell death by controlling caspases and by acting as an E3 ubiquitin-protein ligase (PubMed:14765125, PubMed:15200957, PubMed:18329369). Unlike most IAPs, does not contain a RING domain and it is not a RING-type E3 ligase (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Instead acts as a dual E2/E3 enzyme that combines ubiquitin conjugating (E2) and ubiquitin ligase (E3) activities in a single polypeptide (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitination is mediated by a non-canonical E1 ubiquitin activating enzyme UBA6 (PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates CASP3, CASP7 and CASP9 and inhibits their caspase activity; also ubiquitinates their procaspases but to a weaker extent (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates pro-apoptotic factors DIABLO/SMAC and HTRA2 (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). DIABLO/SMAC antagonizes the caspase inhibition activity of BIRC6 by competing for the same binding sites as the caspases (PubMed:18329369, PubMed:36758106). Ubiquitinates the autophagy protein MAP1LC3B; this activity is also inhibited by DIABLO/SMAC (PubMed:36758105). Important regulator for the final stages of cytokinesis (PubMed:18329369). Crucial for normal vesicle targeting to the site of abscission, but also for the integrity of the midbody and the midbody ring, and its striking ubiquitin modification (PubMed:18329369). {ECO:0000269|PubMed:14765125, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105, ECO:0000269|PubMed:36758106}. |
Q9NR12 | PDLIM7 | S220 | ochoa | PDZ and LIM domain protein 7 (LIM mineralization protein) (LMP) (Protein enigma) | May function as a scaffold on which the coordinated assembly of proteins can occur. May play a role as an adapter that, via its PDZ domain, localizes LIM-binding proteins to actin filaments of both skeletal muscle and nonmuscle tissues. Involved in both of the two fundamental mechanisms of bone formation, direct bone formation (e.g. embryonic flat bones mandible and cranium), and endochondral bone formation (e.g. embryonic long bone development). Plays a role during fracture repair. Involved in BMP6 signaling pathway (By similarity). {ECO:0000250, ECO:0000269|PubMed:11874232, ECO:0000269|PubMed:7929196}. |
Q9NR48 | ASH1L | S1189 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NRR5 | UBQLN4 | S106 | ochoa | Ubiquilin-4 (Ataxin-1 interacting ubiquitin-like protein) (A1Up) (Ataxin-1 ubiquitin-like-interacting protein A1U) (Connexin43-interacting protein of 75 kDa) (CIP75) | Regulator of protein degradation that mediates the proteasomal targeting of misfolded, mislocalized or accumulated proteins (PubMed:15280365, PubMed:27113755, PubMed:29666234, PubMed:30612738). Acts by binding polyubiquitin chains of target proteins via its UBA domain and by interacting with subunits of the proteasome via its ubiquitin-like domain (PubMed:15280365, PubMed:27113755, PubMed:30612738). Key regulator of DNA repair that represses homologous recombination repair: in response to DNA damage, recruited to sites of DNA damage following phosphorylation by ATM and acts by binding and removing ubiquitinated MRE11 from damaged chromatin, leading to MRE11 degradation by the proteasome (PubMed:30612738). MRE11 degradation prevents homologous recombination repair, redirecting double-strand break repair toward non-homologous end joining (NHEJ) (PubMed:30612738). Specifically recognizes and binds mislocalized transmembrane-containing proteins and targets them to proteasomal degradation (PubMed:27113755). Collaborates with DESI1/POST in the export of ubiquitinated proteins from the nucleus to the cytoplasm (PubMed:29666234). Also plays a role in the regulation of the proteasomal degradation of non-ubiquitinated GJA1 (By similarity). Acts as an adapter protein that recruits UBQLN1 to the autophagy machinery (PubMed:23459205). Mediates the association of UBQLN1 with autophagosomes and the autophagy-related protein LC3 (MAP1LC3A/B/C) and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion (PubMed:23459205). {ECO:0000250|UniProtKB:Q99NB8, ECO:0000269|PubMed:15280365, ECO:0000269|PubMed:23459205, ECO:0000269|PubMed:27113755, ECO:0000269|PubMed:29666234, ECO:0000269|PubMed:30612738}. |
Q9NSV4 | DIAPH3 | S24 | ochoa | Protein diaphanous homolog 3 (Diaphanous-related formin-3) (DRF3) (MDia2) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers. Required for cytokinesis, stress fiber formation and transcriptional activation of the serum response factor. Binds to GTP-bound form of Rho and to profilin: acts in a Rho-dependent manner to recruit profilin to the membrane, where it promotes actin polymerization. DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics. Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity. {ECO:0000250|UniProtKB:Q9Z207}. |
Q9NW07 | ZNF358 | S482 | ochoa | Zinc finger protein 358 | May be involved in transcriptional regulation. |
Q9NXR1 | NDE1 | S196 | ochoa | Nuclear distribution protein nudE homolog 1 (NudE) | Required for centrosome duplication and formation and function of the mitotic spindle. Essential for the development of the cerebral cortex. May regulate the production of neurons by controlling the orientation of the mitotic spindle during division of cortical neuronal progenitors of the proliferative ventricular zone of the brain. Orientation of the division plane perpendicular to the layers of the cortex gives rise to two proliferative neuronal progenitors whereas parallel orientation of the division plane yields one proliferative neuronal progenitor and a postmitotic neuron. A premature shift towards a neuronal fate within the progenitor population may result in an overall reduction in the final number of neurons and an increase in the number of neurons in the deeper layers of the cortex. Acts as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:21529752, ECO:0000269|PubMed:34793709}. |
Q9NYZ3 | GTSE1 | S520 | ochoa | G2 and S phase-expressed protein 1 (GTSE-1) (Protein B99 homolog) | May be involved in p53-induced cell cycle arrest in G2/M phase by interfering with microtubule rearrangements that are required to enter mitosis. Overexpression delays G2/M phase progression. |
Q9NZN5 | ARHGEF12 | S1147 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9NZT2 | OGFR | S349 | ochoa | Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) | Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation. |
Q9NZT2 | OGFR | S403 | ochoa | Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) | Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation. |
Q9P015 | MRPL15 | S33 | ochoa | Large ribosomal subunit protein uL15m (39S ribosomal protein L15, mitochondrial) (L15mt) (MRP-L15) | None |
Q9P0L0 | VAPA | S164 | ochoa | Vesicle-associated membrane protein-associated protein A (VAMP-A) (VAMP-associated protein A) (VAP-A) (33 kDa VAMP-associated protein) (VAP-33) | Endoplasmic reticulum (ER)-anchored protein that mediates the formation of contact sites between the ER and endosomes via interaction with FFAT motif-containing proteins such as STARD3 or WDR44 (PubMed:32344433, PubMed:33124732). STARD3-VAPA interaction enables cholesterol transfer from the ER to endosomes (PubMed:33124732). Via interaction with WDR44 participates in neosynthesized protein export (PubMed:32344433). In addition, recruited to the plasma membrane through OSBPL3 binding (PubMed:25447204). The OSBPL3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:25447204). With OSBPL3, may regulate ER morphology (PubMed:16143324). May play a role in vesicle trafficking (PubMed:11511104, PubMed:19289470). {ECO:0000269|PubMed:11511104, ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:19289470, ECO:0000269|PubMed:25447204, ECO:0000269|PubMed:32344433, ECO:0000269|PubMed:33124732}. |
Q9P107 | GMIP | S421 | ochoa | GEM-interacting protein (GMIP) | Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}. |
Q9P206 | NHSL3 | S612 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P227 | ARHGAP23 | S332 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P242 | NYAP2 | S183 | ochoa | Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 2 | Activates PI3K and concomitantly recruits the WAVE1 complex to the close vicinity of PI3K and regulates neuronal morphogenesis. {ECO:0000250}. |
Q9P2Y5 | UVRAG | Y523 | psp | UV radiation resistance-associated gene protein (p63) | Versatile protein that is involved in regulation of different cellular pathways implicated in membrane trafficking. Involved in regulation of the COPI-dependent retrograde transport from Golgi and the endoplasmic reticulum by associating with the NRZ complex; the function is dependent on its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) (PubMed:16799551, PubMed:18552835, PubMed:20643123, PubMed:24056303, PubMed:28306502). During autophagy acts as a regulatory subunit of the alternative PI3K complex II (PI3KC3-C2) that mediates formation of phosphatidylinositol 3-phosphate and is believed to be involved in maturation of autophagosomes and endocytosis. Activates lipid kinase activity of PIK3C3 (PubMed:16799551, PubMed:20643123, PubMed:24056303, PubMed:28306502). Involved in the regulation of degradative endocytic trafficking and cytokinesis, and in regulation of ATG9A transport from the Golgi to the autophagosome; the functions seems to implicate its association with PI3KC3-C2 (PubMed:16799551, PubMed:20643123, PubMed:24056303). Involved in maturation of autophagosomes and degradative endocytic trafficking independently of BECN1 but depending on its association with a class C Vps complex (possibly the HOPS complex); the association is also proposed to promote autophagosome recruitment and activation of Rab7 and endosome-endosome fusion events (PubMed:18552835, PubMed:28306502). Enhances class C Vps complex (possibly HOPS complex) association with a SNARE complex and promotes fusogenic SNARE complex formation during late endocytic membrane fusion (PubMed:24550300). In case of negative-strand RNA virus infection is required for efficient virus entry, promotes endocytic transport of virions and is implicated in a VAMP8-specific fusogenic SNARE complex assembly (PubMed:24550300). {ECO:0000269|PubMed:18552835, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:24056303, ECO:0000269|PubMed:28306502, ECO:0000305}.; FUNCTION: Involved in maintaining chromosomal stability. Promotes DNA double-strand break (DSB) repair by association with DNA-dependent protein kinase complex DNA-PK and activating it in non-homologous end joining (NHEJ) (PubMed:22542840). Required for centrosome stability and proper chromosome segregation (PubMed:22542840). {ECO:0000269|PubMed:22542840}. |
Q9UGU0 | TCF20 | S430 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHV7 | MED13 | S537 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UHV7 | MED13 | S839 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UIS9 | MBD1 | S295 | ochoa | Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) | Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}. |
Q9UJM3 | ERRFI1 | S337 | ochoa | ERBB receptor feedback inhibitor 1 (Mitogen-inducible gene 6 protein) (MIG-6) | Negative regulator of EGFR signaling in skin morphogenesis. Acts as a negative regulator for several EGFR family members, including ERBB2, ERBB3 and ERBB4. Inhibits EGFR catalytic activity by interfering with its dimerization. Inhibits autophosphorylation of EGFR, ERBB2 and ERBB4. Important for normal keratinocyte proliferation and differentiation. Plays a role in modulating the response to steroid hormones in the uterus. Required for normal response to progesterone in the uterus and for fertility. Mediates epithelial estrogen responses in the uterus by regulating ESR1 levels and activation. Important for regulation of endometrium cell proliferation. Important for normal prenatal and perinatal lung development (By similarity). {ECO:0000250}. |
Q9UK80 | USP21 | S93 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 21 (EC 3.4.19.12) (Deubiquitinating enzyme 21) (Ubiquitin thioesterase 21) (Ubiquitin-specific-processing protease 21) | Deubiquitinates histone H2A, a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (By similarity). Deubiquitination of histone H2A releaves the repression of di- and trimethylation of histone H3 at 'Lys-4', resulting in regulation of transcriptional initiation (By similarity). Regulates gene expression via histone H2A deubiquitination (By similarity). Deubiquitinates BAZ2A/TIP5 leading to its stabilization (PubMed:26100909). Also capable of removing NEDD8 from NEDD8 conjugates but has no effect on Sentrin-1 conjugates (PubMed:10799498). Also acts as a negative regulator of the ribosome quality control (RQC) by mediating deubiquitination of 40S ribosomal proteins RPS10/eS10 and RPS20/uS10, thereby antagonizing ZNF598-mediated 40S ubiquitination (PubMed:32011234). {ECO:0000250|UniProtKB:Q9QZL6, ECO:0000269|PubMed:10799498, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:32011234}. |
Q9UL54 | TAOK2 | S449 | ochoa | Serine/threonine-protein kinase TAO2 (EC 2.7.11.1) (Kinase from chicken homolog C) (hKFC-C) (Prostate-derived sterile 20-like kinase 1) (PSK-1) (PSK1) (Prostate-derived STE20-like kinase 1) (Thousand and one amino acid protein kinase 2) | Serine/threonine-protein kinase involved in different processes such as membrane blebbing and apoptotic bodies formation DNA damage response and MAPK14/p38 MAPK stress-activated MAPK cascade. Phosphorylates itself, MBP, activated MAPK8, MAP2K3, MAP2K6 and tubulins. Activates the MAPK14/p38 MAPK signaling pathway through the specific activation and phosphorylation of the upstream MAP2K3 and MAP2K6 kinases. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Isoform 1, but not isoform 2, plays a role in apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation. This function, which requires the activation of MAPK8/JNK and nuclear localization of C-terminally truncated isoform 1, may be linked to the mitochondrial CASP9-associated death pathway. Isoform 1 binds to microtubules and affects their organization and stability independently of its kinase activity. Prevents MAP3K7-mediated activation of CHUK, and thus NF-kappa-B activation, but not that of MAPK8/JNK. May play a role in the osmotic stress-MAPK8 pathway. Isoform 2, but not isoform 1, is required for PCDH8 endocytosis. Following homophilic interactions between PCDH8 extracellular domains, isoform 2 phosphorylates and activates MAPK14/p38 MAPK which in turn phosphorylates isoform 2. This process leads to PCDH8 endocytosis and CDH2 cointernalization. Both isoforms are involved in MAPK14 phosphorylation. {ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:11279118, ECO:0000269|PubMed:12639963, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16893890, ECO:0000269|PubMed:17158878, ECO:0000269|PubMed:17396146}. |
Q9ULC8 | ZDHHC8 | S524 | ochoa | Palmitoyltransferase ZDHHC8 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 8) (DHHC-8) (Zinc finger protein 378) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates and therefore functions in several unrelated biological processes (Probable). Through the palmitoylation of ABCA1 regulates the localization of the transporter to the plasma membrane and thereby regulates its function in cholesterol and phospholipid efflux (Probable). Could also pamitoylate the D(2) dopamine receptor DRD2 and regulate its stability and localization to the plasma membrane (Probable). Could also play a role in glutamatergic transmission (By similarity). {ECO:0000250|UniProtKB:Q5Y5T5, ECO:0000305|PubMed:19556522, ECO:0000305|PubMed:23034182, ECO:0000305|PubMed:26535572}.; FUNCTION: (Microbial infection) Able to palmitoylate SARS coronavirus-2/SARS-CoV-2 spike protein following its synthesis in the endoplasmic reticulum (ER). In the infected cell, promotes spike biogenesis by protecting it from premature ER degradation, increases half-life and controls the lipid organization of its immediate membrane environment. Once the virus has formed, spike palmitoylation controls fusion with the target cell. {ECO:0000269|PubMed:34599882}. |
Q9ULD4 | BRPF3 | S792 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULE3 | DENND2A | S310 | ochoa | DENN domain-containing protein 2A | Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. May play a role in late endosomes back to trans-Golgi network/TGN transport. {ECO:0000269|PubMed:20937701}. |
Q9ULH7 | MRTFB | S388 | ochoa | Myocardin-related transcription factor B (MRTF-B) (MKL/myocardin-like protein 2) (Megakaryoblastic leukemia 2) | Acts as a transcriptional coactivator of serum response factor (SRF). Required for skeletal myogenic differentiation. {ECO:0000269|PubMed:14565952}. |
Q9ULK2 | ATXN7L1 | S134 | ochoa | Ataxin-7-like protein 1 (Ataxin-7-like protein 4) | None |
Q9UMN6 | KMT2B | S1890 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UMS6 | SYNPO2 | S623 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UNF1 | MAGED2 | S157 | ochoa | Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) | Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}. |
Q9UPQ9 | TNRC6B | S882 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UQ35 | SRRM2 | S1497 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y2G3 | ATP11B | S445 | ochoa | Phospholipid-transporting ATPase IF (EC 7.6.2.1) (ATPase IR) (ATPase class VI type 11B) (P4-ATPase flippase complex alpha subunit ATP11B) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids, phosphatidylserines (PS) and phosphatidylethanolamines (PE), from the outer to the inner leaflet of intracellular membranes (PubMed:30018401). May contribute to the maintenance of membrane lipid asymmetry in endosome compartment (PubMed:30018401). {ECO:0000269|PubMed:30018401}. |
Q9Y2H0 | DLGAP4 | S742 | ochoa | Disks large-associated protein 4 (DAP-4) (PSD-95/SAP90-binding protein 4) (SAP90/PSD-95-associated protein 4) (SAPAP-4) | May play a role in the molecular organization of synapses and neuronal cell signaling. Could be an adapter protein linking ion channel to the subsynaptic cytoskeleton. May induce enrichment of PSD-95/SAP90 at the plasma membrane. |
Q9Y2H9 | MAST1 | S1252 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2T7 | YBX2 | S189 | ochoa | Y-box-binding protein 2 (Contrin) (DNA-binding protein C) (Dbpc) (Germ cell-specific Y-box-binding protein) (MSY2 homolog) | Major constituent of messenger ribonucleoprotein particles (mRNPs). Involved in the regulation of the stability and/or translation of germ cell mRNAs. Binds to Y-box consensus promoter element. Binds to full-length mRNA with high affinity in a sequence-independent manner. Binds to short RNA sequences containing the consensus site 5'-UCCAUCA-3' with low affinity and limited sequence specificity. Its binding with maternal mRNAs is necessary for its cytoplasmic retention. May mark specific mRNAs (those transcribed from Y-box promoters) in the nucleus for cytoplasmic storage, thereby linking transcription and mRNA storage/translational delay (By similarity). {ECO:0000250|UniProtKB:Q9Z2C8}. |
Q9Y3M8 | STARD13 | S602 | ochoa | StAR-related lipid transfer protein 13 (46H23.2) (Deleted in liver cancer 2 protein) (DLC-2) (Rho GTPase-activating protein) (START domain-containing protein 13) (StARD13) | GTPase-activating protein for RhoA, and perhaps for Cdc42. May be involved in regulation of cytoskeletal reorganization, cell proliferation and cell motility. Acts a tumor suppressor in hepatocellular carcinoma cells. {ECO:0000269|PubMed:14697242, ECO:0000269|PubMed:16217026}. |
Q9Y4B5 | MTCL1 | S1536 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4F5 | CEP170B | S483 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4H2 | IRS2 | S592 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y4R8 | TELO2 | S637 | ochoa | Telomere length regulation protein TEL2 homolog (Protein clk-2 homolog) (hCLK2) | Regulator of the DNA damage response (DDR). Part of the TTT complex that is required to stabilize protein levels of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family proteins. The TTT complex is involved in the cellular resistance to DNA damage stresses, like ionizing radiation (IR), ultraviolet (UV) and mitomycin C (MMC). Together with the TTT complex and HSP90 may participate in the proper folding of newly synthesized PIKKs. Promotes assembly, stabilizes and maintains the activity of mTORC1 and mTORC2 complexes, which regulate cell growth and survival in response to nutrient and hormonal signals. May be involved in telomere length regulation. {ECO:0000269|PubMed:12670948, ECO:0000269|PubMed:20810650}. |
Q9Y572 | RIPK3 | S413 | ochoa | Receptor-interacting serine/threonine-protein kinase 3 (EC 2.7.11.1) (RIP-like protein kinase 3) (Receptor-interacting protein 3) (RIP-3) | Serine/threonine-protein kinase that activates necroptosis and apoptosis, two parallel forms of cell death (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:29883609, PubMed:32657447). Necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members, is triggered by RIPK3 following activation by ZBP1 (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:29883609, PubMed:32298652). Activated RIPK3 forms a necrosis-inducing complex and mediates phosphorylation of MLKL, promoting MLKL localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:25316792, PubMed:29883609). In addition to TNF-induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: following ZBP1 activation, which senses double-stranded Z-RNA structures, nuclear RIPK3 catalyzes phosphorylation and activation of MLKL, promoting disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (By similarity). Also regulates apoptosis: apoptosis depends on RIPK1, FADD and CASP8, and is independent of MLKL and RIPK3 kinase activity (By similarity). Phosphorylates RIPK1: RIPK1 and RIPK3 undergo reciprocal auto- and trans-phosphorylation (PubMed:19524513). In some cell types, also able to restrict viral replication by promoting cell death-independent responses (By similarity). In response to Zika virus infection in neurons, promotes a cell death-independent pathway that restricts viral replication: together with ZBP1, promotes a death-independent transcriptional program that modifies the cellular metabolism via up-regulation expression of the enzyme ACOD1/IRG1 and production of the metabolite itaconate (By similarity). Itaconate inhibits the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes (By similarity). RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL (PubMed:19498109). These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production (PubMed:19498109). {ECO:0000250|UniProtKB:Q9QZL0, ECO:0000269|PubMed:19498109, ECO:0000269|PubMed:19524512, ECO:0000269|PubMed:19524513, ECO:0000269|PubMed:22265413, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:22421439, ECO:0000269|PubMed:25316792, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:32298652, ECO:0000269|PubMed:32657447}.; FUNCTION: (Microbial infection) In case of herpes simplex virus 1/HHV-1 infection, forms heteromeric amyloid structures with HHV-1 protein RIR1/ICP6 which may inhibit RIPK3-mediated necroptosis, thereby preventing host cell death pathway and allowing viral evasion. {ECO:0000269|PubMed:33348174}. |
Q9Y5A9 | YTHDF2 | S238 | ochoa | YTH domain-containing family protein 2 (DF2) (CLL-associated antigen KW-14) (High-glucose-regulated protein 8) (Renal carcinoma antigen NY-REN-2) | Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, and regulates their stability (PubMed:24284625, PubMed:26046440, PubMed:26318451, PubMed:32492408). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (PubMed:22575960, PubMed:24284625, PubMed:25412658, PubMed:25412661, PubMed:32492408). Acts as a regulator of mRNA stability by promoting degradation of m6A-containing mRNAs via interaction with the CCR4-NOT and ribonuclease P/MRP complexes, depending on the context (PubMed:24284625, PubMed:26046440, PubMed:27558897, PubMed:30930054, PubMed:32492408). The YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3) share m6A-containing mRNAs targets and act redundantly to mediate mRNA degradation and cellular differentiation (PubMed:28106072, PubMed:32492408). M6A-containing mRNAs containing a binding site for RIDA/HRSP12 (5'-GGUUC-3') are preferentially degraded by endoribonucleolytic cleavage: cooperative binding of RIDA/HRSP12 and YTHDF2 to transcripts leads to recruitment of the ribonuclease P/MRP complex (PubMed:30930054). Other m6A-containing mRNAs undergo deadenylation via direct interaction between YTHDF2 and CNOT1, leading to recruitment of the CCR4-NOT and subsequent deadenylation of m6A-containing mRNAs (PubMed:27558897). Required maternally to regulate oocyte maturation: probably acts by binding to m6A-containing mRNAs, thereby regulating maternal transcript dosage during oocyte maturation, which is essential for the competence of oocytes to sustain early zygotic development (By similarity). Also required during spermatogenesis: regulates spermagonial adhesion by promoting degradation of m6A-containing transcripts coding for matrix metallopeptidases (By similarity). Also involved in hematopoietic stem cells specification by binding to m6A-containing mRNAs, leading to promote their degradation (PubMed:30065315). Also acts as a regulator of neural development by promoting m6A-dependent degradation of neural development-related mRNA targets (By similarity). Inhibits neural specification of induced pluripotent stem cells by binding to methylated neural-specific mRNAs and promoting their degradation, thereby restraining neural differentiation (PubMed:32169943). Regulates circadian regulation of hepatic lipid metabolism: acts by promoting m6A-dependent degradation of PPARA transcripts (PubMed:30428350). Regulates the innate immune response to infection by inhibiting the type I interferon response: acts by binding to m6A-containing IFNB transcripts and promoting their degradation (PubMed:30559377). May also act as a promoter of cap-independent mRNA translation following heat shock stress: upon stress, relocalizes to the nucleus and specifically binds mRNAs with some m6A methylation mark at their 5'-UTR, protecting demethylation of mRNAs by FTO, thereby promoting cap-independent mRNA translation (PubMed:26458103). Regulates mitotic entry by promoting the phase-specific m6A-dependent degradation of WEE1 transcripts (PubMed:32267835). Promotes formation of phase-separated membraneless compartments, such as P-bodies or stress granules, by undergoing liquid-liquid phase separation upon binding to mRNAs containing multiple m6A-modified residues: polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their disordered regions and thereby leading to phase separation (PubMed:31292544, PubMed:31388144, PubMed:31642031, PubMed:32451507). The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated membraneless compartments, such as P-bodies, stress granules or neuronal RNA granules (PubMed:31292544). May also recognize and bind RNAs modified by C5-methylcytosine (m5C) and act as a regulator of rRNA processing (PubMed:31815440). {ECO:0000250|UniProtKB:Q91YT7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25412658, ECO:0000269|PubMed:25412661, ECO:0000269|PubMed:26046440, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26458103, ECO:0000269|PubMed:27558897, ECO:0000269|PubMed:28106072, ECO:0000269|PubMed:30065315, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:30930054, ECO:0000269|PubMed:31292544, ECO:0000269|PubMed:31388144, ECO:0000269|PubMed:31642031, ECO:0000269|PubMed:31815440, ECO:0000269|PubMed:32169943, ECO:0000269|PubMed:32267835, ECO:0000269|PubMed:32451507, ECO:0000269|PubMed:32492408}.; FUNCTION: (Microbial infection) Promotes viral gene expression and replication of polyomavirus SV40: acts by binding to N6-methyladenosine (m6A)-containing viral RNAs (PubMed:29447282). {ECO:0000269|PubMed:29447282}.; FUNCTION: (Microbial infection) Promotes viral gene expression and virion production of kaposis sarcoma-associated herpesvirus (KSHV) at some stage of the KSHV life cycle (in iSLK.219 and iSLK.BAC16 cells) (PubMed:29659627). Acts by binding to N6-methyladenosine (m6A)-containing viral RNAs (PubMed:29659627). {ECO:0000269|PubMed:29659627}. |
Q9Y5Z4 | HEBP2 | S37 | ochoa | Heme-binding protein 2 (Placental protein 23) (PP23) (Protein SOUL) | Can promote mitochondrial permeability transition and facilitate necrotic cell death under different types of stress conditions. {ECO:0000269|PubMed:17098234}. |
Q9Y6C2 | EMILIN1 | S281 | ochoa | EMILIN-1 (Elastin microfibril interface-located protein 1) (Elastin microfibril interfacer 1) | Involved in elastic and collagen fibers formation. It is required for EFEMP2 deposition into the extracellular matrix, and collagen network assembly and cross-linking via protein-lysine 6-oxidase/LOX activity (PubMed:36351433). May be responsible for anchoring smooth muscle cells to elastic fibers, and may be involved in the processes that regulate vessel assembly. Has cell adhesive capacity. {ECO:0000269|PubMed:36351433}. |
Q9Y6D6 | ARFGEF1 | S1558 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) | Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}. |
Q9Y6K9 | IKBKG | Y374 | ochoa|psp | NF-kappa-B essential modulator (NEMO) (FIP-3) (IkB kinase-associated protein 1) (IKKAP1) (Inhibitor of nuclear factor kappa-B kinase subunit gamma) (I-kappa-B kinase subunit gamma) (IKK-gamma) (IKKG) (IkB kinase subunit gamma) (NF-kappa-B essential modifier) | Regulatory subunit of the IKK core complex which phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor (PubMed:14695475, PubMed:20724660, PubMed:21518757, PubMed:9751060). Its binding to scaffolding polyubiquitin plays a key role in IKK activation by multiple signaling receptor pathways (PubMed:16547522, PubMed:18287044, PubMed:19033441, PubMed:19185524, PubMed:21606507, PubMed:27777308, PubMed:33567255). Can recognize and bind both 'Lys-63'-linked and linear polyubiquitin upon cell stimulation, with a much higher affinity for linear polyubiquitin (PubMed:16547522, PubMed:18287044, PubMed:19033441, PubMed:19185524, PubMed:21606507, PubMed:27777308). Could be implicated in NF-kappa-B-mediated protection from cytokine toxicity. Essential for viral activation of IRF3 (PubMed:19854139). Involved in TLR3- and IFIH1-mediated antiviral innate response; this function requires 'Lys-27'-linked polyubiquitination (PubMed:20724660). {ECO:0000269|PubMed:14695475, ECO:0000269|PubMed:16547522, ECO:0000269|PubMed:18287044, ECO:0000269|PubMed:19033441, ECO:0000269|PubMed:19185524, ECO:0000269|PubMed:19854139, ECO:0000269|PubMed:20724660, ECO:0000269|PubMed:21518757, ECO:0000269|PubMed:21606507, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:33567255, ECO:0000269|PubMed:9751060}.; FUNCTION: (Microbial infection) Also considered to be a mediator for HTLV-1 Tax oncoprotein activation of NF-kappa-B. {ECO:0000269|PubMed:10364167, ECO:0000269|PubMed:11064457}. |
Q14687 | GSE1 | Y724 | Sugiyama | Genetic suppressor element 1 | None |
P41143 | OPRD1 | S344 | ELM | Delta-type opioid receptor (D-OR-1) (DOR-1) | G-protein coupled receptor that functions as a receptor for endogenous enkephalins and for a subset of other opioids. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling leads to the inhibition of adenylate cyclase activity. Inhibits neurotransmitter release by reducing calcium ion currents and increasing potassium ion conductance. Plays a role in the perception of pain and in opiate-mediated analgesia. Plays a role in developing analgesic tolerance to morphine. {ECO:0000269|PubMed:22184124, ECO:0000269|PubMed:7808419, ECO:0000269|PubMed:8201839}. |
Q4VCS5 | AMOT | S847 | EPSD | Angiomotin | Plays a central role in tight junction maintenance via the complex formed with ARHGAP17, which acts by regulating the uptake of polarity proteins at tight junctions. Appears to regulate endothelial cell migration and tube formation. May also play a role in the assembly of endothelial cell-cell junctions. Repressor of YAP1 and WWTR1/TAZ transcription of target genes, potentially via regulation of Hippo signaling-mediated phosphorylation of YAP1 which results in its recruitment to tight junctions (PubMed:21205866). {ECO:0000269|PubMed:11257124, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21205866}. |
Q9BZI1 | IRX2 | S325 | SIGNOR | Iroquois-class homeodomain protein IRX-2 (Homeodomain protein IRXA2) (Iroquois homeobox protein 2) | None |
Q15831 | STK11 | S325 | Sugiyama | Serine/threonine-protein kinase STK11 (EC 2.7.11.1) (Liver kinase B1) (LKB1) (hLKB1) (Renal carcinoma antigen NY-REN-19) | Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP53. Acts as a key upstream regulator of AMPK by mediating phosphorylation and activation of AMPK catalytic subunits PRKAA1 and PRKAA2 and thereby regulates processes including: inhibition of signaling pathways that promote cell growth and proliferation when energy levels are low, glucose homeostasis in liver, activation of autophagy when cells undergo nutrient deprivation, and B-cell differentiation in the germinal center in response to DNA damage. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton. Required for cortical neuron polarization by mediating phosphorylation and activation of BRSK1 and BRSK2, leading to axon initiation and specification. Involved in DNA damage response: interacts with p53/TP53 and recruited to the CDKN1A/WAF1 promoter to participate in transcription activation. Able to phosphorylate p53/TP53; the relevance of such result in vivo is however unclear and phosphorylation may be indirect and mediated by downstream STK11/LKB1 kinase NUAK1. Also acts as a mediator of p53/TP53-dependent apoptosis via interaction with p53/TP53: translocates to the mitochondrion during apoptosis and regulates p53/TP53-dependent apoptosis pathways. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with NUAK1, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:11430832, ECO:0000269|PubMed:12805220, ECO:0000269|PubMed:14517248, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15016379, ECO:0000269|PubMed:15733851, ECO:0000269|PubMed:15987703, ECO:0000269|PubMed:17108107, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}.; FUNCTION: [Isoform 2]: Has a role in spermiogenesis. {ECO:0000250}. |
Q9UQ07 | MOK | S315 | Sugiyama | MAPK/MAK/MRK overlapping kinase (EC 2.7.11.22) (MOK protein kinase) (Renal tumor antigen 1) (RAGE-1) | Able to phosphorylate several exogenous substrates and to undergo autophosphorylation. Negatively regulates cilium length in a cAMP and mTORC1 signaling-dependent manner. {ECO:0000250|UniProtKB:Q9WVS4}. |
A0A0C4DFX4 | None | S1705 | ochoa | Snf2 related CREBBP activator protein | None |
A0A0G2JLL6 | None | S202 | ochoa | Proline-rich transmembrane protein 2 | None |
A4D1S0 | KLRG2 | S95 | ochoa | Killer cell lectin-like receptor subfamily G member 2 (C-type lectin domain family 15 member B) | None |
A6NC98 | CCDC88B | S436 | ochoa | Coiled-coil domain-containing protein 88B (Brain leucine zipper domain-containing protein) (Gipie) (Hook-related protein 3) (HkRP3) | Acts as a positive regulator of T-cell maturation and inflammatory function. Required for several functions of T-cells, in both the CD4(+) and the CD8(+) compartments and this includes expression of cell surface markers of activation, proliferation, and cytokine production in response to specific or non-specific stimulation (By similarity). Enhances NK cell cytotoxicity by positively regulating polarization of microtubule-organizing center (MTOC) to cytotoxic synapse, lytic granule transport along microtubules, and dynein-mediated clustering to MTOC (PubMed:25762780). Interacts with HSPA5 and stabilizes the interaction between HSPA5 and ERN1, leading to suppression of ERN1-induced JNK activation and endoplasmic reticulum stress-induced apoptosis (PubMed:21289099). {ECO:0000250|UniProtKB:Q4QRL3, ECO:0000269|PubMed:21289099, ECO:0000269|PubMed:25762780}. |
A6ND36 | FAM83G | S760 | ochoa | Protein FAM83G (Protein associated with SMAD1) | Substrate for type I BMP receptor kinase involved in regulation of some target genes of the BMP signaling pathway. Also regulates the expression of several non-BMP target genes, suggesting a role in other signaling pathways. {ECO:0000269|PubMed:24554596}. |
A6NGC4 | TLCD2 | S235 | ochoa | TLC domain-containing protein 2 | Regulates the composition and fluidity of the plasma membrane (PubMed:30509349). Inhibits the incorporation of membrane-fluidizing phospholipids containing omega-3 long-chain polyunsaturated fatty acids (LCPUFA) and thereby promotes membrane rigidity (PubMed:30509349). Does not appear to have any effect on LCPUFA synthesis (PubMed:30509349). {ECO:0000269|PubMed:30509349}. |
A7MBM2 | DISP2 | S1263 | ochoa | Protein dispatched homolog 2 | None |
D6RIA3 | C4orf54 | S1423 | ochoa | Uncharacterized protein C4orf54 (Familial obliterative portal venopathy) | None |
E7EW31 | PROB1 | S218 | ochoa | Proline-rich basic protein 1 | None |
E7EW31 | PROB1 | S803 | ochoa | Proline-rich basic protein 1 | None |
E9PAV3 | NACA | S1411 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
G3V3Y1 | None | S200 | ochoa | 15-oxoprostaglandin 13-reductase (EC 1.3.1.48) (15-oxoprostaglandin 13-reductase) | None |
O00267 | SUPT5H | S867 | ochoa | Transcription elongation factor SPT5 (hSPT5) (DRB sensitivity-inducing factor 160 kDa subunit) (DSIF p160) (DRB sensitivity-inducing factor large subunit) (DSIF large subunit) (Tat-cotransactivator 1 protein) (Tat-CT1 protein) | Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A (PubMed:10075709, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter (PubMed:10075709, PubMed:10199401, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II (PubMed:16214896). TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme (PubMed:16214896). Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites (PubMed:16214896). Following phosphorylation by CDK9, DSIF can also positively regulate transcriptional elongation (PubMed:16427012). Required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat (PubMed:10393184, PubMed:10454543, PubMed:11809800, PubMed:9514752). DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences (PubMed:11112772, PubMed:14701750). {ECO:0000269|PubMed:10075709, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10421630, ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11553615, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:12653964, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15136722, ECO:0000269|PubMed:15380072, ECO:0000269|PubMed:16214896, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:9450929, ECO:0000269|PubMed:9514752, ECO:0000269|PubMed:9857195}. |
O00268 | TAF4 | S109 | ochoa | Transcription initiation factor TFIID subunit 4 (RNA polymerase II TBP-associated factor subunit C) (TBP-associated factor 4) (Transcription initiation factor TFIID 130 kDa subunit) (TAF(II)130) (TAFII-130) (TAFII130) (Transcription initiation factor TFIID 135 kDa subunit) (TAF(II)135) (TAFII-135) (TAFII135) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10594036, PubMed:33795473, PubMed:8942982). TAF4 may maintain an association between the TFIID and TFIIA complexes, while bound to the promoter, together with TBP, during PIC assembly (PubMed:33795473). Potentiates transcriptional activation by the AF-2S of the retinoic acid, vitamin D3 and thyroid hormone (PubMed:9192867). {ECO:0000269|PubMed:10594036, ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:8942982, ECO:0000269|PubMed:9192867}. |
O00459 | PIK3R2 | S263 | ochoa | Phosphatidylinositol 3-kinase regulatory subunit beta (PI3-kinase regulatory subunit beta) (PI3K regulatory subunit beta) (PtdIns-3-kinase regulatory subunit beta) (Phosphatidylinositol 3-kinase 85 kDa regulatory subunit beta) (PI3-kinase subunit p85-beta) (PtdIns-3-kinase regulatory subunit p85-beta) | Regulatory subunit of phosphoinositide-3-kinase (PI3K), a kinase that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Binds to activated (phosphorylated) protein-tyrosine kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Indirectly regulates autophagy (PubMed:23604317). Promotes nuclear translocation of XBP1 isoform 2 in a ER stress- and/or insulin-dependent manner during metabolic overloading in the liver and hence plays a role in glucose tolerance improvement (By similarity). {ECO:0000250|UniProtKB:O08908, ECO:0000269|PubMed:23604317}. |
O14497 | ARID1A | S382 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14686 | KMT2D | S2155 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14901 | KLF11 | S166 | ochoa|psp | Krueppel-like factor 11 (Transforming growth factor-beta-inducible early growth response protein 2) (TGFB-inducible early growth response protein 2) (TIEG-2) | Transcription factor (PubMed:10207080, PubMed:9748269). Activates the epsilon- and gamma-globin gene promoters and, to a much lower degree, the beta-globin gene and represses promoters containing SP1-like binding inhibiting cell growth (PubMed:10207080, PubMed:16131492, PubMed:9748269). Represses transcription of SMAD7 which enhances TGF-beta signaling (By similarity). Induces apoptosis (By similarity). {ECO:0000250|UniProtKB:Q8K1S5, ECO:0000269|PubMed:10207080, ECO:0000269|PubMed:16131492}. |
O15020 | SPTBN2 | S2171 | ochoa | Spectrin beta chain, non-erythrocytic 2 (Beta-III spectrin) (Spinocerebellar ataxia 5 protein) | Probably plays an important role in neuronal membrane skeleton. |
O15047 | SETD1A | S464 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15054 | KDM6B | S799 | ochoa | Lysine-specific demethylase 6B (EC 1.14.11.68) (JmjC domain-containing protein 3) (Jumonji domain-containing protein 3) (Lysine demethylase 6B) ([histone H3]-trimethyl-L-lysine(27) demethylase 6B) | Histone demethylase that specifically demethylates 'Lys-27' of histone H3, thereby playing a central role in histone code (PubMed:17713478, PubMed:17825402, PubMed:17851529, PubMed:18003914). Demethylates trimethylated and dimethylated H3 'Lys-27' (PubMed:17713478, PubMed:17825402, PubMed:17851529, PubMed:18003914). Plays a central role in regulation of posterior development, by regulating HOX gene expression (PubMed:17851529). Involved in inflammatory response by participating in macrophage differentiation in case of inflammation by regulating gene expression and macrophage differentiation (PubMed:17825402). Plays a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression by acting as a link between T-box factors and the SMARCA4-containing SWI/SNF remodeling complex (By similarity). {ECO:0000250|UniProtKB:Q5NCY0, ECO:0000269|PubMed:17713478, ECO:0000269|PubMed:17825402, ECO:0000269|PubMed:17851529, ECO:0000269|PubMed:18003914, ECO:0000269|PubMed:28262558}. |
O15061 | SYNM | S1049 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15075 | DCLK1 | S337 | ochoa | Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) | Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system. |
O15357 | INPPL1 | S1003 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2 (EC 3.1.3.86) (Inositol polyphosphate phosphatase-like protein 1) (INPPL-1) (Protein 51C) (SH2 domain-containing inositol 5'-phosphatase 2) (SH2 domain-containing inositol phosphatase 2) (SHIP-2) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:16824732). Required for correct mitotic spindle orientation and therefore progression of mitosis (By similarity). Plays a central role in regulation of PI3K-dependent insulin signaling, although the precise molecular mechanisms and signaling pathways remain unclear (PubMed:9660833). While overexpression reduces both insulin-stimulated MAP kinase and Akt activation, its absence does not affect insulin signaling or GLUT4 trafficking (By similarity). Confers resistance to dietary obesity (By similarity). May act by regulating AKT2, but not AKT1, phosphorylation at the plasma membrane (By similarity). Part of a signaling pathway that regulates actin cytoskeleton remodeling (PubMed:11739414, PubMed:12676785). Required for the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation (PubMed:15668240). Participates in regulation of cortical and submembraneous actin by hydrolyzing PtdIns(3,4,5)P3 thereby regulating membrane ruffling (PubMed:21624956). Regulates cell adhesion and cell spreading (PubMed:12235291). Required for HGF-mediated lamellipodium formation, cell scattering and spreading (PubMed:15735664). Acts as a negative regulator of EPHA2 receptor endocytosis by inhibiting via PI3K-dependent Rac1 activation (PubMed:17135240). Acts as a regulator of neuritogenesis by regulating PtdIns(3,4,5)P3 level and is required to form an initial protrusive pattern, and later, maintain proper neurite outgrowth (By similarity). Acts as a negative regulator of the FC-gamma-RIIA receptor (FCGR2A) (PubMed:12690104). Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems (PubMed:11016922). Involved in EGF signaling pathway (PubMed:11349134). Upon stimulation by EGF, it is recruited by EGFR and dephosphorylates PtdIns(3,4,5)P3 (PubMed:11349134). Plays a negative role in regulating the PI3K-PKB pathway, possibly by inhibiting PKB activity (PubMed:11349134). Down-regulates Fc-gamma-R-mediated phagocytosis in macrophages independently of INPP5D/SHIP1 (By similarity). In macrophages, down-regulates NF-kappa-B-dependent gene transcription by regulating macrophage colony-stimulating factor (M-CSF)-induced signaling (By similarity). Plays a role in the localization of AURKA and NEDD9/HEF1 to the basolateral membrane at interphase in polarized cysts, thereby mediates cell cycle homeostasis, cell polarization and cilia assembly (By similarity). Additionally promotion of cilia growth is also facilitated by hydrolysis of (PtdIns(3,4,5)P3) to PtdIns(3,4)P2 (By similarity). Promotes formation of apical membrane-initiation sites during the initial stages of lumen formation via Rho family-induced actin filament organization and CTNNB1 localization to cell-cell contacts (By similarity). May also hydrolyze PtdIns(1,3,4,5)P4, and could thus affect the levels of the higher inositol polyphosphates like InsP6. Involved in endochondral ossification (PubMed:23273569). {ECO:0000250|UniProtKB:F1PNY0, ECO:0000250|UniProtKB:Q6P549, ECO:0000250|UniProtKB:Q9WVR3, ECO:0000269|PubMed:11016922, ECO:0000269|PubMed:11349134, ECO:0000269|PubMed:11739414, ECO:0000269|PubMed:12235291, ECO:0000269|PubMed:12676785, ECO:0000269|PubMed:12690104, ECO:0000269|PubMed:15668240, ECO:0000269|PubMed:15735664, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:17135240, ECO:0000269|PubMed:21624956, ECO:0000269|PubMed:23273569, ECO:0000269|PubMed:9660833}. |
O15417 | TNRC18 | S1038 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15417 | TNRC18 | S1957 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15503 | INSIG1 | S74 | psp | Insulin-induced gene 1 protein (INSIG-1) | Oxysterol-binding protein that mediates feedback control of cholesterol synthesis by controlling both endoplasmic reticulum to Golgi transport of SCAP and degradation of HMGCR (PubMed:12202038, PubMed:12535518, PubMed:16168377, PubMed:16399501, PubMed:16606821, PubMed:32322062). Acts as a negative regulator of cholesterol biosynthesis by mediating the retention of the SCAP-SREBP complex in the endoplasmic reticulum, thereby blocking the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:12202038, PubMed:16399501, PubMed:26311497, PubMed:32322062). Binds oxysterol, including 25-hydroxycholesterol, regulating interaction with SCAP and retention of the SCAP-SREBP complex in the endoplasmic reticulum (PubMed:32322062). In presence of oxysterol, interacts with SCAP, retaining the SCAP-SREBP complex in the endoplasmic reticulum, thereby preventing SCAP from escorting SREBF1/SREBP1 and SREBF2/SREBP2 to the Golgi (PubMed:15899885, PubMed:32322062). Sterol deprivation or phosphorylation by PCK1 reduce oxysterol-binding, disrupting the interaction between INSIG1 and SCAP, thereby promoting Golgi transport of the SCAP-SREBP complex, followed by processing and nuclear translocation of SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:26311497, PubMed:32322062). Also regulates cholesterol synthesis by regulating degradation of HMGCR: initiates the sterol-mediated ubiquitin-mediated endoplasmic reticulum-associated degradation (ERAD) of HMGCR via recruitment of the reductase to the ubiquitin ligases AMFR/gp78 and/or RNF139 (PubMed:12535518, PubMed:16168377, PubMed:22143767). Also regulates degradation of SOAT2/ACAT2 when the lipid levels are low: initiates the ubiquitin-mediated degradation of SOAT2/ACAT2 via recruitment of the ubiquitin ligases AMFR/gp78 (PubMed:28604676). {ECO:0000269|PubMed:12202038, ECO:0000269|PubMed:12535518, ECO:0000269|PubMed:15899885, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16399501, ECO:0000269|PubMed:16606821, ECO:0000269|PubMed:22143767, ECO:0000269|PubMed:26311497, ECO:0000269|PubMed:28604676, ECO:0000269|PubMed:32322062}. |
O43379 | WDR62 | S1348 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43464 | HTRA2 | S142 | psp | Serine protease HTRA2, mitochondrial (EC 3.4.21.108) (High temperature requirement protein A2) (HtrA2) (Omi stress-regulated endoprotease) (Serine protease 25) (Serine proteinase OMI) | [Isoform 1]: Serine protease that shows proteolytic activity against a non-specific substrate beta-casein (PubMed:10873535). Promotes apoptosis by either relieving the inhibition of BIRC proteins on caspases, leading to an increase in caspase activity; or by a BIRC inhibition-independent, caspase-independent and serine protease activity-dependent mechanism (PubMed:15200957). Cleaves BIRC6 and relieves its inhibition on CASP3, CASP7 and CASP9, but it is also prone to inhibition by BIRC6 (PubMed:36758104, PubMed:36758105). Cleaves THAP5 and promotes its degradation during apoptosis (PubMed:19502560). {ECO:0000269|PubMed:10873535, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:19502560, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105}.; FUNCTION: [Isoform 2]: Seems to be proteolytically inactive. {ECO:0000269|PubMed:10995577}. |
O43561 | LAT | S84 | ochoa | Linker for activation of T-cells family member 1 (36 kDa phosphotyrosine adapter protein) (pp36) (p36-38) | Required for TCR (T-cell antigen receptor)- and pre-TCR-mediated signaling, both in mature T-cells and during their development (PubMed:23514740, PubMed:25907557). Involved in FCGR3 (low affinity immunoglobulin gamma Fc region receptor III)-mediated signaling in natural killer cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Couples activation of these receptors and their associated kinases with distal intracellular events such as mobilization of intracellular calcium stores, PKC activation, MAPK activation or cytoskeletal reorganization through the recruitment of PLCG1, GRB2, GRAP2, and other signaling molecules. {ECO:0000269|PubMed:10072481, ECO:0000269|PubMed:23514740, ECO:0000269|PubMed:25907557}. |
O43566 | RGS14 | S478 | ochoa | Regulator of G-protein signaling 14 (RGS14) | Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Besides, modulates signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor (GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o)-alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pathways. Inhibits platelet-derived growth factor (PDGF)-stimulated ERK1/ERK2 phosphorylation; a process depending on its interaction with HRAS and that is reversed by G(i) alpha subunit GNAI1. Acts as a positive modulator of microtubule polymerisation and spindle organization through a G(i)-alpha-dependent mechanism. Plays a role in cell division. Required for the nerve growth factor (NGF)-mediated neurite outgrowth. Involved in stress resistance. May be involved in visual memory processing capacity and hippocampal-based learning and memory. {ECO:0000269|PubMed:15917656, ECO:0000269|PubMed:17635935}. |
O43734 | TRAF3IP2 | S383 | ochoa | E3 ubiquitin ligase TRAF3IP2 (EC 2.3.2.27) (Adapter protein CIKS) (Connection to IKK and SAPK/JNK) (E3 ubiquitin-protein ligase CIKS) (Nuclear factor NF-kappa-B activator 1) (ACT1) (TRAF3-interacting protein 2) | E3 ubiquitin ligase that catalyzes 'Lys-63'-linked polyubiquitination of target protein, enhancing protein-protein interaction and cell signaling (PubMed:19825828). Transfers ubiquitin from E2 ubiquitin-conjugating enzyme UBE2V1-UBE2N to substrate protein (PubMed:19825828). Essential adapter molecule in IL17A-mediated signaling (PubMed:19825828, PubMed:24120361). Upon IL17A stimulation, interacts with IL17RA and IL17RC receptor chains through SEFIR domains and catalyzes 'Lys-63'-linked polyubiquitination of TRAF6, leading to TRAF6-mediated activation of NF-kappa-B and MAPkinase pathways (PubMed:19825828). {ECO:0000269|PubMed:19825828, ECO:0000269|PubMed:24120361, ECO:0000269|PubMed:33723527}. |
O43900 | PRICKLE3 | S453 | ochoa | Prickle planar cell polarity protein 3 (LIM domain only protein 6) (LMO-6) (Prickle-like protein 3) (Pk3) (Triple LIM domain protein 6) | Involved in the planar cell polarity (PCP) pathway that is essential for the polarization of epithelial cells during morphogenetic processes, including gastrulation and neurulation (By similarity). PCP is maintained by two molecular modules, the global and the core modules, PRICKLE3 being part of the core module (By similarity). Distinct complexes of the core module segregate to opposite sides of the cell, where they interact with the opposite complex in the neighboring cell at or near the adherents junctions (By similarity). Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). Required for proper assembly, stability, and function of mitochondrial membrane ATP synthase (mitochondrial complex V) (PubMed:32516135). {ECO:0000250|UniProtKB:A8WH69, ECO:0000269|PubMed:32516135}. |
O60307 | MAST3 | S348 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60336 | MAPKBP1 | S1367 | ochoa | Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) | Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}. |
O75128 | COBL | S347 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75128 | COBL | S815 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75154 | RAB11FIP3 | S52 | ochoa | Rab11 family-interacting protein 3 (FIP3) (FIP3-Rab11) (Rab11-FIP3) (Arfophilin-1) (EF hands-containing Rab-interacting protein) (Eferin) (MU-MB-17.148) | Downstream effector molecule for Rab11 GTPase which is involved in endocytic trafficking, cytokinesis and intracellular ciliogenesis by participating in membrane delivery (PubMed:15601896, PubMed:16148947, PubMed:17394487, PubMed:17628206, PubMed:18511905, PubMed:19327867, PubMed:20026645, PubMed:25673879, PubMed:26258637, PubMed:31204173). Recruited by Rab11 to endosomes where it links Rab11 to dynein motor complex (PubMed:20026645). The functional Rab11-RAB11FIP3-dynein complex regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endocytic recycling compartment (ERC) during interphase of cell cycle (PubMed:17394487, PubMed:20026645). Facilitates the interaction between dynein and dynactin and activates dynein processivity (PubMed:25035494). Binding with ASAP1 is needed to regulate the pericentrosomal localization of recycling endosomes (By similarity). The Rab11-RAB11FIP3 complex is also implicated in the transport during telophase of vesicles derived from recycling endosomes to the cleavage furrow via centrosome-anchored microtubules, where the vesicles function to deliver membrane during late cytokinesis and abscission (PubMed:15601896, PubMed:16148947). The recruitment of Rab11-RAB11FIP3-containing endosomes to the cleavage furrow and tethering to the midbody is co-mediated by RAB11FIP3 interaction with ARF6-exocyst and RACGAP1-MKLP1 tethering complexes (PubMed:17628206, PubMed:18511905). Also involved in the Rab11-Rabin8-Rab8 ciliogenesis cascade by facilitating the orderly assembly of a ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which directs preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:26258637, PubMed:31204173). Also promotes the activity of Rab11 and ASAP1 in the ARF4-dependent Golgi-to-cilia transport of the sensory receptor rhodopsin (PubMed:25673879). Competes with WDR44 for binding to Rab11, which controls intracellular ciliogenesis pathway (PubMed:31204173). May play a role in breast cancer cell motility by regulating actin cytoskeleton (PubMed:19327867). {ECO:0000250|UniProtKB:Q8CHD8, ECO:0000269|PubMed:15601896, ECO:0000269|PubMed:16148947, ECO:0000269|PubMed:17394487, ECO:0000269|PubMed:17628206, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19327867, ECO:0000269|PubMed:20026645, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26258637, ECO:0000269|PubMed:31204173}. |
O75376 | NCOR1 | Y1597 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75398 | DEAF1 | S176 | ochoa | Deformed epidermal autoregulatory factor 1 homolog (Nuclear DEAF-1-related transcriptional regulator) (NUDR) (Suppressin) (Zinc finger MYND domain-containing protein 5) | Transcription factor that binds to sequence with multiple copies of 5'-TTC[CG]G-3' present in its own promoter and that of the HNRPA2B1 gene. Down-regulates transcription of these genes. Binds to the retinoic acid response element (RARE) 5'-AGGGTTCACCGAAAGTTCA-3'. Activates the proenkephalin gene independently of promoter binding, probably through protein-protein interaction. When secreted, behaves as an inhibitor of cell proliferation, by arresting cells in the G0 or G1 phase. Required for neural tube closure and skeletal patterning. Regulates epithelial cell proliferation and side-branching in the mammary gland. Controls the expression of peripheral tissue antigens in pancreatic lymph nodes. Isoform 1 displays greater transcriptional activity than isoform 4. Isoform 4 may inhibit transcriptional activity of isoform 1 by interacting with isoform 1 and retaining it in the cytoplasm. Transcriptional activator of EIF4G3. {ECO:0000269|PubMed:10521432, ECO:0000269|PubMed:11427895, ECO:0000269|PubMed:11705868, ECO:0000269|PubMed:18826651, ECO:0000269|PubMed:19668219, ECO:0000269|PubMed:24726472}. |
O75815 | BCAR3 | S363 | ochoa | Breast cancer anti-estrogen resistance protein 3 (Novel SH2-containing protein 2) (SH2 domain-containing protein 3B) | Acts as an adapter protein downstream of several growth factor receptors to promote cell proliferation, migration, and redistribution of actin fibers (PubMed:24216110). Specifically involved in INS/insulin signaling pathway by mediating MAPK1/ERK2-MAPK3/ERK1 activation and DNA synthesis (PubMed:24216110). Promotes insulin-mediated membrane ruffling (By similarity). In response to vasoconstrictor peptide EDN1, involved in the activation of RAP1 downstream of PTK2B via interaction with phosphorylated BCAR1 (PubMed:19086031). Inhibits cell migration and invasion via regulation of TGFB-mediated matrix digestion, actin filament rearrangement, and inhibition of invadopodia activity (By similarity). May inhibit TGFB-SMAD signaling, via facilitating BCAR1 and SMAD2 and/or SMAD3 interaction (By similarity). Regulates EGF-induced DNA synthesis (PubMed:18722344). Required for the maintenance of ocular lens morphology and structural integrity, potentially via regulation of focal adhesion complex signaling (By similarity). Acts upstream of PTPRA to regulate the localization of BCAR1 and PTPRA to focal adhesions, via regulation of SRC-mediated phosphorylation of PTPRA (By similarity). Positively regulates integrin-induced tyrosine phosphorylation of BCAR1 (By similarity). Acts as a guanine nucleotide exchange factor (GEF) for small GTPases RALA, RAP1A and RRAS (By similarity). However, in a contrasting study, lacks GEF activity towards RAP1 (PubMed:22081014). {ECO:0000250|UniProtKB:D3ZAZ5, ECO:0000250|UniProtKB:Q9QZK2, ECO:0000269|PubMed:18722344, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:22081014, ECO:0000269|PubMed:24216110}. |
O75864 | PPP1R37 | S597 | ochoa | Protein phosphatase 1 regulatory subunit 37 (Leucine-rich repeat-containing protein 68) | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. {ECO:0000269|PubMed:19389623}. |
O75909 | CCNK | S329 | ochoa | Cyclin-K | Regulatory subunit of cyclin-dependent kinases that mediates activation of target kinases. Plays a role in transcriptional regulation via its role in regulating the phosphorylation of the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A). {ECO:0000269|PubMed:10574912, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:9632813}. |
O75970 | MPDZ | S790 | ochoa | Multiple PDZ domain protein (Multi-PDZ domain protein 1) | Member of the NMDAR signaling complex that may play a role in control of AMPAR potentiation and synaptic plasticity in excitatory synapses (PubMed:11150294, PubMed:15312654). Promotes clustering of HT2RC at the cell surface (By similarity). {ECO:0000250|UniProtKB:O55164, ECO:0000269|PubMed:11150294, ECO:0000269|PubMed:15312654}. |
O95171 | SCEL | S196 | ochoa | Sciellin | May function in the assembly or regulation of proteins in the cornified envelope. The LIM domain may be involved in homotypic or heterotypic associations and may function to localize sciellin to the cornified envelope. |
O95180 | CACNA1H | S758 | ochoa | Voltage-dependent T-type calcium channel subunit alpha-1H (Low-voltage-activated calcium channel alpha1 3.2 subunit) (Voltage-gated calcium channel subunit alpha Cav3.2) | Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation (PubMed:27149520, PubMed:9670923, PubMed:9930755). T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons (PubMed:15048902). In the adrenal zona glomerulosa, participates in the signaling pathway leading to aldosterone production in response to either AGT/angiotensin II, or hyperkalemia (PubMed:25907736, PubMed:27729216). {ECO:0000269|PubMed:24277868, ECO:0000269|PubMed:25907736, ECO:0000269|PubMed:27149520, ECO:0000269|PubMed:27729216, ECO:0000269|PubMed:9670923, ECO:0000269|PubMed:9930755, ECO:0000305, ECO:0000305|PubMed:15048902}. |
O95466 | FMNL1 | S1031 | ochoa | Formin-like protein 1 (CLL-associated antigen KW-13) (Leukocyte formin) | May play a role in the control of cell motility and survival of macrophages (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics and cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
O95644 | NFATC1 | S403 | psp | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
O95785 | WIZ | S1017 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O95785 | WIZ | S1314 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O95863 | SNAI1 | S107 | psp | Zinc finger protein SNAI1 (Protein snail homolog 1) (Protein sna) | Involved in induction of the epithelial to mesenchymal transition (EMT), formation and maintenance of embryonic mesoderm, growth arrest, survival and cell migration (PubMed:10655587, PubMed:15647282, PubMed:20389281, PubMed:20562920, PubMed:21952048, PubMed:25827072). Binds to 3 E-boxes of the E-cadherin/CDH1 gene promoter and to the promoters of CLDN7 and KRT8 and, in association with histone demethylase KDM1A which it recruits to the promoters, causes a decrease in dimethylated H3K4 levels and represses transcription (PubMed:10655587, PubMed:20389281, PubMed:20562920). The N-terminal SNAG domain competes with histone H3 for the same binding site on the histone demethylase complex formed by KDM1A and RCOR1, and thereby inhibits demethylation of histone H3 at 'Lys-4' (in vitro) (PubMed:20389281, PubMed:21300290, PubMed:23721412). During EMT, involved with LOXL2 in negatively regulating pericentromeric heterochromatin transcription (PubMed:16096638). SNAI1 recruits LOXL2 to pericentromeric regions to oxidize histone H3 and repress transcription which leads to release of heterochromatin component CBX5/HP1A, enabling chromatin reorganization and acquisition of mesenchymal traits (By similarity). Associates with EGR1 and SP1 to mediate tetradecanoyl phorbol acetate (TPA)-induced up-regulation of CDKN2B, possibly by binding to the CDKN2B promoter region 5'-TCACA-3 (PubMed:20121949). In addition, may also activate the CDKN2B promoter by itself (PubMed:20121949). {ECO:0000250|UniProtKB:Q02085, ECO:0000269|PubMed:10655587, ECO:0000269|PubMed:15647282, ECO:0000269|PubMed:16096638, ECO:0000269|PubMed:20121949, ECO:0000269|PubMed:20389281, ECO:0000269|PubMed:20562920, ECO:0000269|PubMed:21300290, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:23721412, ECO:0000269|PubMed:25827072}. |
O96013 | PAK4 | S291 | ochoa|psp | Serine/threonine-protein kinase PAK 4 (EC 2.7.11.1) (p21-activated kinase 4) (PAK-4) | Serine/threonine-protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell adhesion turnover, cell migration, growth, proliferation or cell survival (PubMed:26598620). Activation by various effectors including growth factor receptors or active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates and inactivates the protein phosphatase SSH1, leading to increased inhibitory phosphorylation of the actin binding/depolymerizing factor cofilin. Decreased cofilin activity may lead to stabilization of actin filaments. Phosphorylates LIMK1, a kinase that also inhibits the activity of cofilin. Phosphorylates integrin beta5/ITGB5 and thus regulates cell motility. Phosphorylates ARHGEF2 and activates the downstream target RHOA that plays a role in the regulation of assembly of focal adhesions and actin stress fibers. Stimulates cell survival by phosphorylating the BCL2 antagonist of cell death BAD. Alternatively, inhibits apoptosis by preventing caspase-8 binding to death domain receptors in a kinase independent manner. Plays a role in cell-cycle progression by controlling levels of the cell-cycle regulatory protein CDKN1A and by phosphorylating RAN. Promotes kinase-independent stabilization of RHOU, thereby contributing to focal adhesion disassembly during cell migration (PubMed:26598620). {ECO:0000269|PubMed:11278822, ECO:0000269|PubMed:11313478, ECO:0000269|PubMed:14560027, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:20507994, ECO:0000269|PubMed:20631255, ECO:0000269|PubMed:20805321, ECO:0000269|PubMed:26598620, ECO:0000269|PubMed:26607847}. |
P07101 | TH | S62 | psp | Tyrosine 3-monooxygenase (EC 1.14.16.2) (Tyrosine 3-hydroxylase) (TH) | Catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-Dopa), the rate-limiting step in the biosynthesis of catecholamines, dopamine, noradrenaline, and adrenaline. Uses tetrahydrobiopterin and molecular oxygen to convert tyrosine to L-Dopa (PubMed:15287903, PubMed:1680128, PubMed:17391063, PubMed:24753243, PubMed:34922205, PubMed:8528210, Ref.18). In addition to tyrosine, is able to catalyze the hydroxylation of phenylalanine and tryptophan with lower specificity (By similarity). Positively regulates the regression of retinal hyaloid vessels during postnatal development (By similarity). {ECO:0000250|UniProtKB:P04177, ECO:0000250|UniProtKB:P24529, ECO:0000269|PubMed:15287903, ECO:0000269|PubMed:1680128, ECO:0000269|PubMed:17391063, ECO:0000269|PubMed:24753243, ECO:0000269|PubMed:34922205, ECO:0000269|PubMed:8528210, ECO:0000269|Ref.18}.; FUNCTION: [Isoform 5]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}.; FUNCTION: [Isoform 6]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}. |
P08235 | NR3C2 | S703 | ochoa | Mineralocorticoid receptor (MR) (Nuclear receptor subfamily 3 group C member 2) | Receptor for both mineralocorticoids (MC) such as aldosterone and glucocorticoids (GC) such as corticosterone or cortisol. Binds to mineralocorticoid response elements (MRE) and transactivates target genes. The effect of MC is to increase ion and water transport and thus raise extracellular fluid volume and blood pressure and lower potassium levels. {ECO:0000269|PubMed:3037703}. |
P10276 | RARA | S77 | psp | Retinoic acid receptor alpha (RAR-alpha) (Nuclear receptor subfamily 1 group B member 1) | Receptor for retinoic acid (PubMed:16417524, PubMed:19850744, PubMed:20215566, PubMed:21152046, PubMed:37478846). Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes (PubMed:21152046, PubMed:28167758, PubMed:37478846). The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 (PubMed:19398580, PubMed:28167758). In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone deacetylation, chromatin condensation and transcriptional suppression (PubMed:16417524). On ligand binding, the corepressors dissociate from the receptors and associate with the coactivators leading to transcriptional activation (PubMed:19850744, PubMed:20215566, PubMed:37478846, PubMed:9267036). Formation of a complex with histone deacetylases might lead to inhibition of RARE DNA element binding and to transcriptional repression (PubMed:28167758). Transcriptional activation and RARE DNA element binding might be supported by the transcription factor KLF2 (PubMed:28167758). RARA plays an essential role in the regulation of retinoic acid-induced germ cell development during spermatogenesis (By similarity). Has a role in the survival of early spermatocytes at the beginning prophase of meiosis (By similarity). In Sertoli cells, may promote the survival and development of early meiotic prophase spermatocytes (By similarity). In concert with RARG, required for skeletal growth, matrix homeostasis and growth plate function (By similarity). Together with RXRA, positively regulates microRNA-10a expression, thereby inhibiting the GATA6/VCAM1 signaling response to pulsatile shear stress in vascular endothelial cells (PubMed:28167758). In association with HDAC3, HDAC5 and HDAC7 corepressors, plays a role in the repression of microRNA-10a and thereby promotes the inflammatory response (PubMed:28167758). {ECO:0000250|UniProtKB:P11416, ECO:0000269|PubMed:16417524, ECO:0000269|PubMed:19398580, ECO:0000269|PubMed:19850744, ECO:0000269|PubMed:20215566, ECO:0000269|PubMed:21152046, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9267036}. |
P22681 | CBL | S486 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P26651 | ZFP36 | S93 | ochoa|psp | mRNA decay activator protein ZFP36 (G0/G1 switch regulatory protein 24) (Growth factor-inducible nuclear protein NUP475) (Tristetraprolin) (Zinc finger protein 36) (Zfp-36) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:10330172, PubMed:10751406, PubMed:11279239, PubMed:12115244, PubMed:12748283, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:23644599, PubMed:25815583, PubMed:27193233, PubMed:31439631, PubMed:9703499). Acts as an 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258, PubMed:23644599). Recruits deadenylase CNOT7 (and probably the CCR4-NOT complex) via association with CNOT1, and hence promotes ARE-mediated mRNA deadenylation (PubMed:23644599). Functions also by recruiting components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs (PubMed:11719186, PubMed:12748283, PubMed:15687258, PubMed:16364915). Self regulates by destabilizing its own mRNA (PubMed:15187101). Binds to 3'-UTR ARE of numerous mRNAs and of its own mRNA (PubMed:10330172, PubMed:10751406, PubMed:12115244, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:19188452, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:25815583). Plays a role in anti-inflammatory responses; suppresses tumor necrosis factor (TNF)-alpha production by stimulating ARE-mediated TNF-alpha mRNA decay and several other inflammatory ARE-containing mRNAs in interferon (IFN)- and/or lipopolysaccharide (LPS)-induced macrophages (By similarity). Also plays a role in the regulation of dendritic cell maturation at the post-transcriptional level, and hence operates as part of a negative feedback loop to limit the inflammatory response (PubMed:18367721). Promotes ARE-mediated mRNA decay of hypoxia-inducible factor HIF1A mRNA during the response of endothelial cells to hypoxia (PubMed:21775632). Positively regulates early adipogenesis of preadipocytes by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Plays a role in maintaining skeletal muscle satellite cell quiescence by promoting ARE-mediated mRNA decay of the myogenic determination factor MYOD1 mRNA (By similarity). Associates also with and regulates the expression of non-ARE-containing target mRNAs at the post-transcriptional level, such as MHC class I mRNAs (PubMed:18367721). Participates in association with argonaute RISC catalytic components in the ARE-mediated mRNA decay mechanism; assists microRNA (miRNA) targeting ARE-containing mRNAs (PubMed:15766526). May also play a role in the regulation of cytoplasmic mRNA decapping; enhances decapping of ARE-containing RNAs, in vitro (PubMed:16364915). Involved in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, affects nuclear pre-mRNA processing (By similarity). Negatively regulates nuclear poly(A)-binding protein PABPN1-stimulated polyadenylation activity on ARE-containing pre-mRNA during LPS-stimulated macrophages (By similarity). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role as a tumor suppressor by inhibiting cell proliferation in breast cancer cells (PubMed:26926077). {ECO:0000250|UniProtKB:P22893, ECO:0000269|PubMed:10330172, ECO:0000269|PubMed:10751406, ECO:0000269|PubMed:11279239, ECO:0000269|PubMed:11719186, ECO:0000269|PubMed:12115244, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15187101, ECO:0000269|PubMed:15634918, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15766526, ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:16702957, ECO:0000269|PubMed:17030620, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18367721, ECO:0000269|PubMed:19188452, ECO:0000269|PubMed:20221403, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21775632, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:26926077, ECO:0000269|PubMed:27182009, ECO:0000269|PubMed:27193233, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:9703499}.; FUNCTION: (Microbial infection) Negatively regulates HTLV-1 TAX-dependent transactivation of viral long terminal repeat (LTR) promoter. {ECO:0000269|PubMed:14679154}. |
P27037 | ACVR2A | S184 | ochoa | Activin receptor type-2A (EC 2.7.11.30) (Activin receptor type IIA) (ACTR-IIA) (ACTRIIA) | On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for activin A, activin B and inhibin A (PubMed:17911401, PubMed:10652306). Mediates induction of adipogenesis by GDF6 (By similarity). {ECO:0000250|UniProtKB:P27038, ECO:0000269|PubMed:1314589, ECO:0000269|PubMed:17911401}. |
P29590 | PML | S530 | ochoa|psp | Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) | Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}. |
P32519 | ELF1 | S187 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P33991 | MCM4 | S54 | ochoa|psp | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P35568 | IRS1 | S892 | ochoa|psp | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P41162 | ETV3 | S245 | ochoa|psp | ETS translocation variant 3 (ETS domain transcriptional repressor PE1) (PE-1) (Mitogenic Ets transcriptional suppressor) | Transcriptional repressor that contribute to growth arrest during terminal macrophage differentiation by repressing target genes involved in Ras-dependent proliferation. Represses MMP1 promoter activity. {ECO:0000269|PubMed:12007404}. |
P41212 | ETV6 | S257 | psp | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P46108 | CRK | S74 | ochoa | Adapter molecule crk (Proto-oncogene c-Crk) (p38) | Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1. {ECO:0000269|PubMed:12432078}.; FUNCTION: [Isoform Crk-II]: Regulates cell adhesion, spreading and migration (PubMed:31311869). Mediates attachment-induced MAPK8 activation, membrane ruffling and cell motility in a Rac-dependent manner. Involved in phagocytosis of apoptotic cells and cell motility via its interaction with DOCK1 and DOCK4 (PubMed:19004829). May regulate the EFNA5-EPHA3 signaling (By similarity). {ECO:0000250|UniProtKB:Q64010, ECO:0000269|PubMed:11870224, ECO:0000269|PubMed:1630456, ECO:0000269|PubMed:17515907, ECO:0000269|PubMed:19004829, ECO:0000269|PubMed:31311869}. |
P46531 | NOTCH1 | S2516 | psp | Neurogenic locus notch homolog protein 1 (Notch 1) (hN1) (Translocation-associated notch protein TAN-1) [Cleaved into: Notch 1 extracellular truncation (NEXT); Notch 1 intracellular domain (NICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the maturation of both CD4(+) and CD8(+) cells in the thymus. Important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, functions as a receptor for neuronal DNER and is involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May play an essential role in postimplantation development, probably in some aspect of cell specification and/or differentiation. May be involved in mesoderm development, somite formation and neurogenesis. May enhance HIF1A function by sequestering HIF1AN away from HIF1A. Required for the THBS4 function in regulating protective astrogenesis from the subventricular zone (SVZ) niche after injury. Involved in determination of left/right symmetry by modulating the balance between motile and immotile (sensory) cilia at the left-right organiser (LRO). {ECO:0000269|PubMed:20616313}. |
P48378 | RFX2 | S28 | ochoa | DNA-binding protein RFX2 (Regulatory factor X 2) | Transcription factor that acts as a key regulator of spermatogenesis. Acts by regulating expression of genes required for the haploid phase during spermiogenesis, such as genes required for cilium assembly and function (By similarity). Recognizes and binds the X-box, a regulatory motif with DNA sequence 5'-GTNRCC(0-3N)RGYAAC-3' present on promoters (PubMed:10330134). Probably activates transcription of the testis-specific histone gene H1-6 (By similarity). {ECO:0000250|UniProtKB:P48379, ECO:0000269|PubMed:10330134}. |
P48634 | PRRC2A | S1219 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49716 | CEBPD | S167 | psp | CCAAT/enhancer-binding protein delta (C/EBP delta) (Nuclear factor NF-IL6-beta) (NF-IL6-beta) | Transcription activator that recognizes two different DNA motifs: the CCAAT homology common to many promoters and the enhanced core homology common to many enhancers (PubMed:16397300). Important transcription factor regulating the expression of genes involved in immune and inflammatory responses (PubMed:16397300, PubMed:1741402). Transcriptional activator that enhances IL6 transcription alone and as heterodimer with CEBPB (PubMed:1741402). {ECO:0000269|PubMed:1741402}. |
P50548 | ERF | S246 | psp | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P50548 | ERF | S251 | psp | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P51617 | IRAK1 | S173 | psp | Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}. |
P51816 | AFF2 | S918 | ochoa | AF4/FMR2 family member 2 (Protein FMR-2) (FMR2P) (Protein Ox19) | RNA-binding protein. Might be involved in alternative splicing regulation through an interaction with G-quartet RNA structure. {ECO:0000269|PubMed:19136466}. |
P52746 | ZNF142 | S904 | ochoa | Zinc finger protein 142 | May be involved in transcriptional regulation. {ECO:0000305}. |
P52746 | ZNF142 | S1319 | ochoa | Zinc finger protein 142 | May be involved in transcriptional regulation. {ECO:0000305}. |
P54259 | ATN1 | S101 | ochoa | Atrophin-1 (Dentatorubral-pallidoluysian atrophy protein) | Transcriptional corepressor. Recruits NR2E1 to repress transcription. Promotes vascular smooth cell (VSMC) migration and orientation (By similarity). Corepressor of MTG8 transcriptional repression. Has some intrinsic repression activity which is independent of the number of poly-Gln (polyQ) repeats. {ECO:0000250|UniProtKB:O35126, ECO:0000269|PubMed:10085113, ECO:0000269|PubMed:10973986}. |
P55196 | AFDN | S1455 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P56945 | BCAR1 | S355 | ochoa | Breast cancer anti-estrogen resistance protein 1 (CRK-associated substrate) (Cas scaffolding protein family member 1) (p130cas) | Docking protein which plays a central coordinating role for tyrosine kinase-based signaling related to cell adhesion (PubMed:12432078, PubMed:12832404). Implicated in induction of cell migration and cell branching (PubMed:12432078, PubMed:12832404, PubMed:17038317). Involved in the BCAR3-mediated inhibition of TGFB signaling (By similarity). {ECO:0000250|UniProtKB:Q61140, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:17038317}. |
P78559 | MAP1A | S1069 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S1172 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S2238 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S2252 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P98171 | ARHGAP4 | S906 | ochoa | Rho GTPase-activating protein 4 (Rho-GAP hematopoietic protein C1) (Rho-type GTPase-activating protein 4) (p115) | Inhibitory effect on stress fiber organization. May down-regulate Rho-like GTPase in hematopoietic cells. |
Q01094 | E2F1 | S337 | ochoa|psp | Transcription factor E2F1 (E2F-1) (PBR3) (Retinoblastoma-associated protein 1) (RBAP-1) (Retinoblastoma-binding protein 3) (RBBP-3) (pRB-binding protein E2F-1) | Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication (PubMed:10675335, PubMed:12717439, PubMed:17050006, PubMed:17704056, PubMed:18625225, PubMed:28992046). The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase (PubMed:10675335, PubMed:12717439, PubMed:17704056). E2F1 binds preferentially RB1 in a cell-cycle dependent manner (PubMed:10675335, PubMed:12717439, PubMed:17704056). It can mediate both cell proliferation and TP53/p53-dependent apoptosis (PubMed:8170954). Blocks adipocyte differentiation by binding to specific promoters repressing CEBPA binding to its target gene promoters (PubMed:20176812). Directly activates transcription of PEG10 (PubMed:17050006, PubMed:18625225, PubMed:28992046). Positively regulates transcription of RRP1B (PubMed:20040599). {ECO:0000269|PubMed:10675335, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:17050006, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:18625225, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20176812, ECO:0000269|PubMed:28992046, ECO:0000269|PubMed:8170954}. |
Q02086 | SP2 | S78 | ochoa | Transcription factor Sp2 | Binds to GC box promoters elements and selectively activates mRNA synthesis from genes that contain functional recognition sites. |
Q03111 | MLLT1 | Y158 | ochoa | Protein ENL (YEATS domain-containing protein 1) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948). Specifically recognizes and binds acetylated and crotonylated histones, with a preference for histones that are crotonylated (PubMed:27105114). Has a slightly higher affinity for binding histone H3 crotonylated at 'Lys-27' (H3K27cr) than 'Lys-20' (H3K9cr20) (PubMed:27105114). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:27105114}.; FUNCTION: Acts as a key chromatin reader in acute myeloid leukemia by recognizing and binding to acetylated histones via its YEATS domain, thereby regulating oncogenic gene transcription. {ECO:0000269|PubMed:28241139, ECO:0000269|PubMed:28241141}. |
Q06190 | PPP2R3A | S692 | ochoa | Serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit alpha (PP2A subunit B isoform PR72/PR130) (PP2A subunit B isoform R3 isoform) (PP2A subunit B isoforms B''-PR72/PR130) (PP2A subunit B isoforms B72/B130) (Serine/threonine-protein phosphatase 2A 72/130 kDa regulatory subunit B) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q09472 | EP300 | S2279 | psp | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q0JRZ9 | FCHO2 | S488 | ochoa | F-BAR domain only protein 2 | Functions in an early step of clathrin-mediated endocytosis. Has both a membrane binding/bending activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a lipid-binding activity with a preference for membranes enriched in phosphatidylserine and phosphoinositides (Pi(4,5) biphosphate) like the plasma membrane. Its membrane-bending activity might be important for the subsequent action of clathrin and adaptors in the formation of clathrin-coated vesicles. Involved in adaptor protein complex AP-2-dependent endocytosis of the transferrin receptor, it also functions in the AP-2-independent endocytosis of the LDL receptor. {ECO:0000269|PubMed:17540576, ECO:0000269|PubMed:20448150, ECO:0000269|PubMed:21762413, ECO:0000269|PubMed:22323290}. |
Q12756 | KIF1A | S1532 | ochoa | Kinesin-like protein KIF1A (EC 5.6.1.3) (Axonal transporter of synaptic vesicles) (Microtubule-based motor KIF1A) (Unc-104- and KIF1A-related protein) (hUnc-104) | Kinesin motor with a plus-end-directed microtubule motor activity (By similarity). It is required for anterograde axonal transport of synaptic vesicle precursors (PubMed:33880452). Also required for neuronal dense core vesicles (DCVs) transport to the dendritic spines and axons. The interaction calcium-dependent with CALM1 increases vesicle motility and interaction with the scaffolding proteins PPFIA2 and TANC2 recruits DCVs to synaptic sites. {ECO:0000250|UniProtKB:F1M4A4, ECO:0000250|UniProtKB:P33173, ECO:0000269|PubMed:33880452}. |
Q12774 | ARHGEF5 | S1126 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q12948 | FOXC1 | S241 | ochoa|psp | Forkhead box protein C1 (Forkhead-related protein FKHL7) (Forkhead-related transcription factor 3) (FREAC-3) | DNA-binding transcriptional factor that plays a role in a broad range of cellular and developmental processes such as eye, bones, cardiovascular, kidney and skin development (PubMed:11782474, PubMed:14506133, PubMed:14578375, PubMed:15277473, PubMed:15299087, PubMed:15684392, PubMed:16449236, PubMed:16492674, PubMed:17210863, PubMed:19279310, PubMed:19793056, PubMed:25786029, PubMed:27804176, PubMed:27907090). Acts either as a transcriptional activator or repressor (PubMed:11782474). Binds to the consensus binding site 5'-[G/C][A/T]AAA[T/C]AA[A/C]-3' in promoter of target genes (PubMed:11782474, PubMed:12533514, PubMed:14506133, PubMed:19793056, PubMed:27804176, PubMed:7957066). Upon DNA-binding, promotes DNA bending (PubMed:14506133, PubMed:7957066). Acts as a transcriptional coactivator (PubMed:26565916). Stimulates Indian hedgehog (Ihh)-induced target gene expression mediated by the transcription factor GLI2, and hence regulates endochondral ossification (By similarity). Also acts as a transcriptional coregulator by increasing DNA-binding capacity of GLI2 in breast cancer cells (PubMed:26565916). Regulates FOXO1 through binding to a conserved element, 5'-GTAAACAAA-3' in its promoter region, implicating FOXC1 as an important regulator of cell viability and resistance to oxidative stress in the eye (PubMed:17993506). Cooperates with transcription factor FOXC2 in regulating expression of genes that maintain podocyte integrity (By similarity). Promotes cell growth inhibition by stopping the cell cycle in the G1 phase through TGFB1-mediated signals (PubMed:12408963). Involved in epithelial-mesenchymal transition (EMT) induction by increasing cell proliferation, migration and invasion (PubMed:20406990, PubMed:22991501). Involved in chemokine CXCL12-induced endothelial cell migration through the control of CXCR4 expression (By similarity). Plays a role in the gene regulatory network essential for epidermal keratinocyte terminal differentiation (PubMed:27907090). Essential developmental transcriptional factor required for mesoderm-derived tissues, such as the somites, skin, bone and cartilage. Positively regulates CXCL12 and stem cell factor expression in bone marrow mesenchymal progenitor cells, and hence plays a role in the development and maintenance of mesenchymal niches for haematopoietic stem and progenitor cells (HSPC). Plays a role in corneal transparency by preventing both blood vessel and lymphatic vessel growth during embryonic development in a VEGF-dependent manner. Involved in chemokine CXCL12-induced endothelial cell migration through the control of CXCR4 expression (By similarity). May function as a tumor suppressor (PubMed:12408963). {ECO:0000250|UniProtKB:Q61572, ECO:0000269|PubMed:11782474, ECO:0000269|PubMed:12408963, ECO:0000269|PubMed:12533514, ECO:0000269|PubMed:14506133, ECO:0000269|PubMed:14578375, ECO:0000269|PubMed:15277473, ECO:0000269|PubMed:15299087, ECO:0000269|PubMed:15684392, ECO:0000269|PubMed:16449236, ECO:0000269|PubMed:16492674, ECO:0000269|PubMed:17210863, ECO:0000269|PubMed:17993506, ECO:0000269|PubMed:19279310, ECO:0000269|PubMed:19793056, ECO:0000269|PubMed:20406990, ECO:0000269|PubMed:22991501, ECO:0000269|PubMed:25786029, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:27804176, ECO:0000269|PubMed:27907090, ECO:0000269|PubMed:7957066}. |
Q13094 | LCP2 | S410 | ochoa|psp | Lymphocyte cytosolic protein 2 (SH2 domain-containing leukocyte protein of 76 kDa) (SLP-76 tyrosine phosphoprotein) (SLP76) | Adapter protein primarily involved in signaling pathways within T-cells, as well as other immune cells such as platelets, mast cells, and natural killer (NK) cells (PubMed:11313406, PubMed:33159816). Plays a crucial role for transducing signal from the T-cell receptor (TCR) after antigen recognition leading to T-cell activation. Mechanistically, once phosphorylated by the kinase ZAP70, mediates interactions with the guanine-nucleotide exchange factor VAV1, the adapter protein NCK and the kinase ITK (PubMed:8673706, PubMed:8702662). In turn, stimulates the activation of PKC-theta/PRKCQ and NF-kappa-B transcriptional activity in response to CD3 and CD28 costimulation (PubMed:11313406). Also plays an essential role in AGER-induced signaling pathways including p38 MAPK and ERK1/2 activation leading to cytokine release and pro-inflammatory responses (PubMed:33436632). {ECO:0000269|PubMed:11313406, ECO:0000269|PubMed:33436632, ECO:0000269|PubMed:8673706, ECO:0000269|PubMed:8702662}. |
Q13118 | KLF10 | S249 | ochoa | Krueppel-like factor 10 (EGR-alpha) (Transforming growth factor-beta-inducible early growth response protein 1) (TGFB-inducible early growth response protein 1) (TIEG-1) | Transcriptional repressor which binds to the consensus sequence 5'-GGTGTG-3'. Plays a role in the regulation of the circadian clock; binds to the GC box sequence in the promoter of the core clock component ARTNL/BMAL1 and represses its transcriptional activity. Regulates the circadian expression of genes involved in lipogenesis, gluconeogenesis, and glycolysis in the liver. Represses the expression of PCK2, a rate-limiting step enzyme of gluconeogenesis (By similarity). May play a role in the cell cycle regulation. {ECO:0000250|UniProtKB:O89091, ECO:0000269|PubMed:8584037}. |
Q13370 | PDE3B | S65 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13625 | TP53BP2 | Y874 | psp | Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) | Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}. |
Q13884 | SNTB1 | S219 | ochoa | Beta-1-syntrophin (59 kDa dystrophin-associated protein A1 basic component 1) (DAPA1B) (BSYN2) (Syntrophin-2) (Tax interaction protein 43) (TIP-43) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin glycoprotein complex. |
Q13905 | RAPGEF1 | S217 | ochoa | Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) | Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}. |
Q14135 | VGLL4 | S52 | ochoa | Transcription cofactor vestigial-like protein 4 (Vgl-4) | May act as a specific coactivator for the mammalian TEFs. {ECO:0000250}. |
Q14157 | UBAP2L | S454 | ochoa|psp | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14160 | SCRIB | S1309 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14526 | HIC1 | S270 | ochoa | Hypermethylated in cancer 1 protein (Hic-1) (Zinc finger and BTB domain-containing protein 29) | Transcriptional repressor (PubMed:12052894, PubMed:15231840). Recognizes and binds to the consensus sequence '5-[CG]NG[CG]GGGCA[CA]CC-3' (PubMed:15231840). May act as a tumor suppressor (PubMed:20154726). Involved in development of head, face, limbs and ventral body wall (By similarity). Involved in down-regulation of SIRT1 and thereby is involved in regulation of p53/TP53-dependent apoptotic DNA-damage responses (PubMed:16269335). The specific target gene promoter association seems to be depend on corepressors, such as CTBP1 or CTBP2 and MTA1 (PubMed:12052894, PubMed:20547755). In cooperation with MTA1 (indicative for an association with the NuRD complex) represses transcription from CCND1/cyclin-D1 and CDKN1C/p57Kip2 specifically in quiescent cells (PubMed:20547755). Involved in regulation of the Wnt signaling pathway probably by association with TCF7L2 and preventing TCF7L2 and CTNNB1 association with promoters of TCF-responsive genes (PubMed:16724116). Seems to repress transcription from E2F1 and ATOH1 which involves ARID1A, indicative for the participation of a distinct SWI/SNF-type chromatin-remodeling complex (PubMed:18347096, PubMed:19486893). Probably represses transcription of ACKR3, FGFBP1 and EFNA1 (PubMed:16690027, PubMed:19525223, PubMed:20154726). {ECO:0000250|UniProtKB:Q9R1Y5, ECO:0000269|PubMed:12052894, ECO:0000269|PubMed:15231840, ECO:0000269|PubMed:16269335, ECO:0000269|PubMed:16690027, ECO:0000269|PubMed:16724116, ECO:0000269|PubMed:18347096, ECO:0000269|PubMed:19486893, ECO:0000269|PubMed:19525223, ECO:0000269|PubMed:20154726, ECO:0000269|PubMed:20547755}. |
Q14676 | MDC1 | S1775 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14934 | NFATC4 | S259 | ochoa|psp | Nuclear factor of activated T-cells, cytoplasmic 4 (NF-ATc4) (NFATc4) (T-cell transcription factor NFAT3) (NF-AT3) | Ca(2+)-regulated transcription factor that is involved in several processes, including the development and function of the immune, cardiovascular, musculoskeletal, and nervous systems (PubMed:11514544, PubMed:11997522, PubMed:17213202, PubMed:17875713, PubMed:18668201, PubMed:25663301, PubMed:7749981). Involved in T-cell activation, stimulating the transcription of cytokine genes, including that of IL2 and IL4 (PubMed:18347059, PubMed:18668201, PubMed:7749981). Along with NFATC3, involved in embryonic heart development. Following JAK/STAT signaling activation and as part of a complex with NFATC3 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). Involved in mitochondrial energy metabolism required for cardiac morphogenesis and function (By similarity). Transactivates many genes involved in the cardiovascular system, including AGTR2, NPPB/BNP (in synergy with GATA4), NPPA/ANP/ANF and MYH7/beta-MHC (By similarity). Involved in the regulation of adult hippocampal neurogenesis. Involved in BDNF-driven pro-survival signaling in hippocampal adult-born neurons. Involved in the formation of long-term spatial memory and long-term potentiation (By similarity). In cochlear nucleus neurons, may play a role in deafferentation-induced apoptosis during the developmental critical period, when auditory neurons depend on afferent input for survival (By similarity). Binds to and activates the BACE1/Beta-secretase 1 promoter, hence may regulate the proteolytic processing of the amyloid precursor protein (APP) (PubMed:25663301). Plays a role in adipocyte differentiation (PubMed:11997522). May be involved in myoblast differentiation into myotubes (PubMed:17213202). Binds the consensus DNA sequence 5'-GGAAAAT-3' (Probable). In the presence of CREBBP, activates TNF transcription (PubMed:11514544). Binds to PPARG gene promoter and regulates its activity (PubMed:11997522). Binds to PPARG and REG3G gene promoters (By similarity). {ECO:0000250|UniProtKB:D3Z9H7, ECO:0000250|UniProtKB:Q8K120, ECO:0000269|PubMed:11514544, ECO:0000269|PubMed:11997522, ECO:0000269|PubMed:17213202, ECO:0000269|PubMed:17875713, ECO:0000269|PubMed:18347059, ECO:0000269|PubMed:18668201, ECO:0000269|PubMed:25663301, ECO:0000269|PubMed:7749981, ECO:0000305}. |
Q14934 | NFATC4 | S819 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 4 (NF-ATc4) (NFATc4) (T-cell transcription factor NFAT3) (NF-AT3) | Ca(2+)-regulated transcription factor that is involved in several processes, including the development and function of the immune, cardiovascular, musculoskeletal, and nervous systems (PubMed:11514544, PubMed:11997522, PubMed:17213202, PubMed:17875713, PubMed:18668201, PubMed:25663301, PubMed:7749981). Involved in T-cell activation, stimulating the transcription of cytokine genes, including that of IL2 and IL4 (PubMed:18347059, PubMed:18668201, PubMed:7749981). Along with NFATC3, involved in embryonic heart development. Following JAK/STAT signaling activation and as part of a complex with NFATC3 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). Involved in mitochondrial energy metabolism required for cardiac morphogenesis and function (By similarity). Transactivates many genes involved in the cardiovascular system, including AGTR2, NPPB/BNP (in synergy with GATA4), NPPA/ANP/ANF and MYH7/beta-MHC (By similarity). Involved in the regulation of adult hippocampal neurogenesis. Involved in BDNF-driven pro-survival signaling in hippocampal adult-born neurons. Involved in the formation of long-term spatial memory and long-term potentiation (By similarity). In cochlear nucleus neurons, may play a role in deafferentation-induced apoptosis during the developmental critical period, when auditory neurons depend on afferent input for survival (By similarity). Binds to and activates the BACE1/Beta-secretase 1 promoter, hence may regulate the proteolytic processing of the amyloid precursor protein (APP) (PubMed:25663301). Plays a role in adipocyte differentiation (PubMed:11997522). May be involved in myoblast differentiation into myotubes (PubMed:17213202). Binds the consensus DNA sequence 5'-GGAAAAT-3' (Probable). In the presence of CREBBP, activates TNF transcription (PubMed:11514544). Binds to PPARG gene promoter and regulates its activity (PubMed:11997522). Binds to PPARG and REG3G gene promoters (By similarity). {ECO:0000250|UniProtKB:D3Z9H7, ECO:0000250|UniProtKB:Q8K120, ECO:0000269|PubMed:11514544, ECO:0000269|PubMed:11997522, ECO:0000269|PubMed:17213202, ECO:0000269|PubMed:17875713, ECO:0000269|PubMed:18347059, ECO:0000269|PubMed:18668201, ECO:0000269|PubMed:25663301, ECO:0000269|PubMed:7749981, ECO:0000305}. |
Q15018 | ABRAXAS2 | S309 | ochoa | BRISC complex subunit Abraxas 2 (Abraxas brother protein 1) (Protein FAM175B) | Component of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked polyubiquitin, leaving the last ubiquitin chain attached to its substrates (PubMed:19214193, PubMed:20032457, PubMed:20656690, PubMed:24075985). May act as a central scaffold protein that assembles the various components of the BRISC complex and retains them in the cytoplasm (PubMed:20656690). Plays a role in regulating the onset of apoptosis via its role in modulating 'Lys-63'-linked ubiquitination of target proteins (By similarity). Required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubiquitinating NUMA1 (PubMed:26195665). Plays a role in interferon signaling via its role in the deubiquitination of the interferon receptor IFNAR1; deubiquitination increases IFNAR1 activities by enhancing its stability and cell surface expression (PubMed:24075985, PubMed:26344097). Down-regulates the response to bacterial lipopolysaccharide (LPS) via its role in IFNAR1 deubiquitination (PubMed:24075985). Required for normal induction of p53/TP53 in response to DNA damage (PubMed:25283148). Independent of the BRISC complex, promotes interaction between USP7 and p53/TP53, and thereby promotes deubiquitination of p53/TP53, preventing its degradation and resulting in increased p53/TP53-mediated transcription regulation and p53/TP53-dependent apoptosis in response to DNA damage (PubMed:25283148). {ECO:0000250|UniProtKB:Q3TCJ1, ECO:0000269|PubMed:19214193, ECO:0000269|PubMed:20032457, ECO:0000269|PubMed:20656690, ECO:0000269|PubMed:24075985, ECO:0000269|PubMed:25283148}. |
Q15642 | TRIP10 | S335 | ochoa | Cdc42-interacting protein 4 (Protein Felic) (Salt tolerant protein) (hSTP) (Thyroid receptor-interacting protein 10) (TR-interacting protein 10) (TRIP-10) | Required for translocation of GLUT4 to the plasma membrane in response to insulin signaling (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by recruiting WASL/N-WASP which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Required for the formation of podosomes, actin-rich adhesion structures specific to monocyte-derived cells. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:11069762, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391}. |
Q15654 | TRIP6 | S142 | ochoa | Thyroid receptor-interacting protein 6 (TR-interacting protein 6) (TRIP-6) (Opa-interacting protein 1) (OIP-1) (Zyxin-related protein 1) (ZRP-1) | Relays signals from the cell surface to the nucleus to weaken adherens junction and promote actin cytoskeleton reorganization and cell invasiveness. Involved in lysophosphatidic acid-induced cell adhesion and migration. Acts as a transcriptional coactivator for NF-kappa-B and JUN, and mediates the transrepression of these transcription factors induced by glucocorticoid receptor. {ECO:0000269|PubMed:14688263, ECO:0000269|PubMed:15489293, ECO:0000269|PubMed:16624523, ECO:0000269|PubMed:19017743}. |
Q15788 | NCOA1 | S1185 | psp | Nuclear receptor coactivator 1 (NCoA-1) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 74) (bHLHe74) (Protein Hin-2) (RIP160) (Renal carcinoma antigen NY-REN-52) (Steroid receptor coactivator 1) (SRC-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:10449719, ECO:0000269|PubMed:12954634, ECO:0000269|PubMed:7481822, ECO:0000269|PubMed:9223281, ECO:0000269|PubMed:9223431, ECO:0000269|PubMed:9296499, ECO:0000269|PubMed:9427757}. |
Q15797 | SMAD1 | S187 | psp | Mothers against decapentaplegic homolog 1 (MAD homolog 1) (Mothers against DPP homolog 1) (JV4-1) (Mad-related protein 1) (SMAD family member 1) (SMAD 1) (Smad1) (hSMAD1) (Transforming growth factor-beta-signaling protein 1) (BSP-1) | Transcriptional modulator that plays a role in various cellular processes, including embryonic development, cell differentiation, and tissue homeostasis (PubMed:9335504). Upon BMP ligand binding to their receptors at the cell surface, is phosphorylated by activated type I BMP receptors (BMPRIs) and associates with SMAD4 to form a heteromeric complex which translocates into the nucleus acting as transcription factor (PubMed:33667543). In turn, the hetero-trimeric complex recognizes cis-regulatory elements containing Smad Binding Elements (SBEs) to modulate the outcome of the signaling network (PubMed:33667543). SMAD1/OAZ1/PSMB4 complex mediates the degradation of the CREBBP/EP300 repressor SNIP1. Positively regulates BMP4-induced expression of odontogenic development regulator MSX1 following IPO7-mediated nuclear import (By similarity). {ECO:0000250|UniProtKB:P70340, ECO:0000269|PubMed:12097147, ECO:0000269|PubMed:33667543, ECO:0000269|PubMed:9335504}. |
Q2KHM9 | KIAA0753 | S564 | ochoa | Protein moonraker (MNR) (OFD1- and FOPNL-interacting protein) | Involved in centriole duplication (PubMed:24613305, PubMed:26297806). Positively regulates CEP63 centrosomal localization (PubMed:24613305, PubMed:26297806). Required for WDR62 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:24613305, PubMed:26297806). May play a role in cilium assembly. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:28220259}. |
Q3T8J9 | GON4L | S1977 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q504U0 | C4orf46 | S19 | ochoa | Renal cancer differentiation gene 1 protein | None |
Q5JR12 | PPM1J | S25 | ochoa | Protein phosphatase 1J (EC 3.1.3.16) (Protein phosphatase 2C isoform zeta) (PP2C-zeta) | None |
Q5QP82 | DCAF10 | S92 | ochoa | DDB1- and CUL4-associated factor 10 (WD repeat-containing protein 32) | May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16949367}. |
Q5R372 | RABGAP1L | S119 | ochoa | Rab GTPase-activating protein 1-like | GTP-hydrolysis activating protein (GAP) for small GTPase RAB22A, converting active RAB22A-GTP to the inactive form RAB22A-GDP (PubMed:16923123). Plays a role in endocytosis and intracellular protein transport. Recruited by ANK2 to phosphatidylinositol 3-phosphate (PI3P)-positive early endosomes, where it inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:A6H6A9, ECO:0000269|PubMed:16923123}. |
Q5SV97 | PERM1 | S242 | ochoa | PGC-1 and ERR-induced regulator in muscle protein 1 (PPARGC1 and ESRR-induced regulator in muscle 1) (Peroxisome proliferator-activated receptor gamma coactivator 1 and estrogen-related receptor-induced regulator in muscle 1) | Regulates the expression of selective PPARGC1A/B and ESRRA/B/G target genes with roles in glucose and lipid metabolism, energy transfer, contractile function, muscle mitochondrial biogenesis and oxidative capacity. Required for the efficient induction of MT-CO2, MT-CO3, COX4I1, TFB1M, TFB2M, POLRMT and SIRT3 by PPARGC1A. Positively regulates the PPARGC1A/ESRRG-induced expression of CKMT2, TNNI3 and SLC2A4 and negatively regulates the PPARGC1A/ESRRG-induced expression of PDK4. {ECO:0000250|UniProtKB:Q149B8}. |
Q5T0Z8 | C6orf132 | S449 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T8A7 | PPP1R26 | S460 | ochoa | Protein phosphatase 1 regulatory subunit 26 | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. May positively regulate cell proliferation. {ECO:0000269|PubMed:16053918, ECO:0000269|PubMed:19389623}. |
Q5THJ4 | VPS13D | S1573 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5UE93 | PIK3R6 | S358 | ochoa|psp | Phosphoinositide 3-kinase regulatory subunit 6 (Phosphoinositide 3-kinase gamma adapter protein of 87 kDa) (p84 PI3K adapter protein) (p84 PIKAP) (p87 PI3K adapter protein) (p87PIKAP) | Regulatory subunit of the PI3K gamma complex. Acts as an adapter to drive activation of PIK3CG by beta-gamma G protein dimers. The PIK3CG:PIK3R6 heterodimer is much less sensitive to beta-gamma G protein dimers than PIK3CG:PIK3R5 and its membrane recruitment and beta-gamma G protein dimer-dependent activation requires HRAS bound to PIK3CG. Recruits of the PI3K gamma complex to a PDE3B:RAPGEF3 signaling complex involved in angiogenesis; signaling seems to involve RRAS. {ECO:0000269|PubMed:21393242}. |
Q5VUB5 | FAM171A1 | S525 | ochoa | Protein FAM171A1 (Astroprincin) (APCN) | Involved in the regulation of the cytoskeletal dynamics, plays a role in actin stress fiber formation. {ECO:0000269|PubMed:30312582}. |
Q5VV67 | PPRC1 | S1063 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) | Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}. |
Q5VWQ8 | DAB2IP | S995 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q63HR2 | TNS2 | S975 | ochoa | Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) | Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}. |
Q63ZY3 | KANK2 | S19 | ochoa | KN motif and ankyrin repeat domain-containing protein 2 (Ankyrin repeat domain-containing protein 25) (Matrix-remodeling-associated protein 3) (SRC-1-interacting protein) (SIP) (SRC-interacting protein) (SRC1-interacting protein) | Involved in transcription regulation by sequestering in the cytoplasm nuclear receptor coactivators such as NCOA1, NCOA2 and NCOA3 (PubMed:17476305). Involved in regulation of caspase-independent apoptosis by sequestering the proapoptotic factor AIFM1 in mitochondria (PubMed:22371500). Pro-apoptotic stimuli can induce its proteasomal degradation allowing the translocation of AIFM1 to the nucleus to induce apoptosis (PubMed:22371500). Involved in the negative control of vitamin D receptor signaling pathway (PubMed:24671081). Involved in actin stress fibers formation through its interaction with ARHGDIA and the regulation of the Rho signaling pathway (PubMed:17996375, PubMed:25961457). May thereby play a role in cell adhesion and migration, regulating for instance podocytes migration during development of the kidney (PubMed:25961457). Through the Rho signaling pathway may also regulate cell proliferation (By similarity). {ECO:0000250|UniProtKB:Q8BX02, ECO:0000269|PubMed:17476305, ECO:0000269|PubMed:17996375, ECO:0000269|PubMed:22371500, ECO:0000269|PubMed:24671081, ECO:0000269|PubMed:25961457}. |
Q63ZY3 | KANK2 | S323 | ochoa | KN motif and ankyrin repeat domain-containing protein 2 (Ankyrin repeat domain-containing protein 25) (Matrix-remodeling-associated protein 3) (SRC-1-interacting protein) (SIP) (SRC-interacting protein) (SRC1-interacting protein) | Involved in transcription regulation by sequestering in the cytoplasm nuclear receptor coactivators such as NCOA1, NCOA2 and NCOA3 (PubMed:17476305). Involved in regulation of caspase-independent apoptosis by sequestering the proapoptotic factor AIFM1 in mitochondria (PubMed:22371500). Pro-apoptotic stimuli can induce its proteasomal degradation allowing the translocation of AIFM1 to the nucleus to induce apoptosis (PubMed:22371500). Involved in the negative control of vitamin D receptor signaling pathway (PubMed:24671081). Involved in actin stress fibers formation through its interaction with ARHGDIA and the regulation of the Rho signaling pathway (PubMed:17996375, PubMed:25961457). May thereby play a role in cell adhesion and migration, regulating for instance podocytes migration during development of the kidney (PubMed:25961457). Through the Rho signaling pathway may also regulate cell proliferation (By similarity). {ECO:0000250|UniProtKB:Q8BX02, ECO:0000269|PubMed:17476305, ECO:0000269|PubMed:17996375, ECO:0000269|PubMed:22371500, ECO:0000269|PubMed:24671081, ECO:0000269|PubMed:25961457}. |
Q68CZ2 | TNS3 | S690 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q6B0I6 | KDM4D | S505 | ochoa | Lysine-specific demethylase 4D (EC 1.14.11.66) (JmjC domain-containing histone demethylation protein 3D) (Jumonji domain-containing protein 2D) ([histone H3]-trimethyl-L-lysine(9) demethylase 4D) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27', H3 'Lys-36' nor H4 'Lys-20'. Demethylates both di- and trimethylated H3 'Lys-9' residue, while it has no activity on monomethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. {ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:35145029}. |
Q6F5E8 | CARMIL2 | S1315 | ochoa | Capping protein, Arp2/3 and myosin-I linker protein 2 (Capping protein regulator and myosin 1 linker 2) (F-actin-uncapping protein RLTPR) (Leucine-rich repeat-containing protein 16C) (RGD, leucine-rich repeat, tropomodulin and proline-rich-containing protein) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization (PubMed:26466680). Plays a role in cell protrusion formations; involved in cell polarity, lamellipodial assembly, membrane ruffling and macropinosome formations (PubMed:19846667, PubMed:26466680, PubMed:26578515). Involved as well in cell migration and invadopodia formation during wound healing (PubMed:19846667, PubMed:26466680, PubMed:26578515). Required for CD28-mediated stimulation of NF-kappa-B signaling, involved in naive T cells activation, maturation into T memory cells, and differentiation into T helper and T regulatory cells (PubMed:27647348, PubMed:27647349, PubMed:28112205). {ECO:0000269|PubMed:19846667, ECO:0000269|PubMed:26466680, ECO:0000269|PubMed:26578515, ECO:0000269|PubMed:27647348, ECO:0000269|PubMed:27647349, ECO:0000269|PubMed:28112205}. |
Q6IPM2 | IQCE | S42 | ochoa | IQ domain-containing protein E | Component of the EvC complex that positively regulates ciliary Hedgehog (Hh) signaling (By similarity). Required for proper limb morphogenesis (PubMed:28488682). {ECO:0000250|UniProtKB:Q6PCQ0, ECO:0000269|PubMed:28488682}. |
Q6N043 | ZNF280D | S104 | ochoa | Zinc finger protein 280D (Suppressor of hairy wing homolog 4) (Zinc finger protein 634) | May function as a transcription factor. |
Q6P4R8 | NFRKB | S896 | ochoa | Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) | Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}. |
Q6T310 | RASL11A | S217 | ochoa | Ras-like protein family member 11A (EC 3.6.5.2) | Regulator of rDNA transcription. Acts in cooperation UBF/UBTF and positively regulates RNA polymerase I transcription (By similarity). {ECO:0000250}. |
Q6UUV7 | CRTC3 | Y448 | ochoa | CREB-regulated transcription coactivator 3 (Transducer of regulated cAMP response element-binding protein 3) (TORC-3) (Transducer of CREB protein 3) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:15466468, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223, ECO:0000269|PubMed:17644518}. |
Q6WCQ1 | MPRIP | S289 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q6ZRS2 | SRCAP | S1882 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q6ZTU2 | EP400P1 | S310 | ochoa | Putative EP400-like protein (EP400 pseudogene 1) | None |
Q6ZVH7 | ESPNL | S786 | ochoa | Espin-like protein | Binds to but does not cross-link actin. Required for the formation and maintenance of inner ear hair cell stereocilia and staircase formation. Essential for normal hearing. {ECO:0000250|UniProtKB:Q3UYR4}. |
Q76G19 | PDZD4 | S490 | ochoa | PDZ domain-containing protein 4 (PDZ domain-containing RING finger protein 4-like protein) | None |
Q7RTP6 | MICAL3 | S1406 | ochoa | [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}. |
Q7Z3B3 | KANSL1 | S971 | ochoa | KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) | Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}. |
Q7Z589 | EMSY | S173 | ochoa | BRCA2-interacting transcriptional repressor EMSY | Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin (PubMed:14651845). Its interaction with BRCA2 suggests that it may play a central role in the DNA repair function of BRCA2 (PubMed:14651845). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). {ECO:0000269|PubMed:14651845, ECO:0000269|PubMed:19131338}. |
Q7Z6L0 | PRRT2 | S202 | ochoa | Proline-rich transmembrane protein 2 (Dispanin subfamily B member 3) (DSPB3) | As a component of the outer core of AMPAR complex, may be involved in synaptic transmission in the central nervous system. In hippocampal neurons, in presynaptic terminals, plays an important role in the final steps of neurotransmitter release, possibly by regulating Ca(2+)-sensing. In the cerebellum, may inhibit SNARE complex formation and down-regulate short-term facilitation. {ECO:0000250|UniProtKB:E9PUL5}. |
Q7Z6Z7 | HUWE1 | S3919 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q7Z7G8 | VPS13B | S1263 | ochoa | Intermembrane lipid transfer protein VPS13B (Cohen syndrome protein 1) (Vacuolar protein sorting-associated protein 13B) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phosphatidylinositol 3-phosphate (By similarity). Functions as a tethering factor in the slow endocytic recycling pathway, to assist traffic between early and recycling endosomes (PubMed:24334764, PubMed:30962439, PubMed:32375900). Involved in the transport of proacrosomal vesicles to the nuclear dense lamina (NDL) during spermatid development (By similarity). Plays a role in the assembly of the Golgi apparatus, possibly by mediating trafficking to the Golgi membrane (PubMed:21865173). Plays a role in the development of the nervous system, and may be required for neuron projection development (PubMed:25492866, PubMed:32560273). May also play a role during adipose tissue development (PubMed:26358774). Required for maintenance of the ocular lens (By similarity). {ECO:0000250|UniProtKB:Q07878, ECO:0000250|UniProtKB:Q80TY5, ECO:0000269|PubMed:21865173, ECO:0000269|PubMed:24334764, ECO:0000269|PubMed:26358774, ECO:0000269|PubMed:30962439, ECO:0000269|PubMed:32375900, ECO:0000269|PubMed:32560273, ECO:0000305|PubMed:25492866, ECO:0000305|PubMed:32560273}. |
Q86TC9 | MYPN | S644 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86TI0 | TBC1D1 | S585 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86VM9 | ZC3H18 | S487 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q86VQ1 | GLCCI1 | S108 | ochoa | Glucocorticoid-induced transcript 1 protein | None |
Q8IUG5 | MYO18B | S25 | ochoa | Unconventional myosin-XVIIIb | May be involved in intracellular trafficking of the muscle cell when in the cytoplasm, whereas entering the nucleus, may be involved in the regulation of muscle specific genes. May play a role in the control of tumor development and progression; restored MYO18B expression in lung cancer cells suppresses anchorage-independent growth. |
Q8IUW3 | SPATA2L | S252 | ochoa | Spermatogenesis-associated protein 2-like protein (SPATA2-like protein) | None |
Q8IV56 | PRR15 | S49 | ochoa | Proline-rich protein 15 | May have a role in proliferation and/or differentiation. {ECO:0000250}. |
Q8IVJ1 | SLC41A1 | S89 | ochoa | Solute carrier family 41 member 1 | Na(+)/Mg(2+) ion exchanger that acts as a predominant Mg(2+) efflux system at the plasma membrane (PubMed:18367447, PubMed:22031603, PubMed:23661805, PubMed:23976986). Transporter activity is driven by the inwardly directed electrochemical gradient for Na(+) ions, thus directly depends on the extracellular Na(+) ion concentration set by Na(+)/K(+) pump (PubMed:22031603, PubMed:23661805). Generates circadian cellular Mg(2+) fluxes that feed back to regulate clock-controlled gene expression and metabolism and facilitate higher energetic demands during the day (PubMed:27074515). Has a role in regulating the activity of ATP-dependent enzymes, including those operating in Krebs cycle and the electron transport chain (By similarity). {ECO:0000250|UniProtKB:Q8BJA2, ECO:0000269|PubMed:18367447, ECO:0000269|PubMed:22031603, ECO:0000269|PubMed:23661805, ECO:0000269|PubMed:23976986, ECO:0000269|PubMed:27074515}. |
Q8IX07 | ZFPM1 | S61 | ochoa | Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) | Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}. |
Q8IY33 | MICALL2 | S649 | ochoa | MICAL-like protein 2 (Junctional Rab13-binding protein) (Molecule interacting with CasL-like 2) (MICAL-L2) | Effector of small Rab GTPases which is involved in junctional complexes assembly through the regulation of cell adhesion molecules transport to the plasma membrane and actin cytoskeleton reorganization. Regulates the endocytic recycling of occludins, claudins and E-cadherin to the plasma membrane and may thereby regulate the establishment of tight junctions and adherens junctions. In parallel, may regulate actin cytoskeleton reorganization directly through interaction with F-actin or indirectly through actinins and filamins. Most probably involved in the processes of epithelial cell differentiation, cell spreading and neurite outgrowth (By similarity). Undergoes liquid-liquid phase separation to form tubular recycling endosomes. Plays 2 sequential roles in the biogenesis of tubular recycling endosomes: first organizes phase separation and then the closed form formed by interaction with RAB8A promotes endosomal tubulation (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q3TN34}. |
Q8IYK8 | REM2 | S295 | ochoa | GTP-binding protein REM 2 (Rad and Gem-like GTP-binding protein 2) | Binds GTP saturably and exhibits a low intrinsic rate of GTP hydrolysis. {ECO:0000250|UniProtKB:Q9WTY2}. |
Q8IZD0 | SAMD14 | S179 | ochoa | Sterile alpha motif domain-containing protein 14 (SAM domain-containing protein 14) | None |
Q8IZL8 | PELP1 | S991 | psp | Proline-, glutamic acid- and leucine-rich protein 1 (Modulator of non-genomic activity of estrogen receptor) (Transcription factor HMX3) | Coactivator of estrogen receptor-mediated transcription and a corepressor of other nuclear hormone receptors and sequence-specific transcription factors (PubMed:14963108). Plays a role in estrogen receptor (ER) genomic activity when present in the nuclear compartment by activating the ER target genes in a hormonal stimulation dependent manner. Can facilitate ER non-genomic signaling via SRC and PI3K interaction in the cytosol. Plays a role in E2-mediated cell cycle progression by interacting with RB1. May have important functional implications in ER/growth factor cross-talk. Interacts with several growth factor signaling components including EGFR and HRS. Functions as the key stabilizing component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes. Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit. Regulates pre-60S association of the critical remodeling factor MDN1 (PubMed:21326211). May promote tumorigenesis via its interaction with and modulation of several oncogenes including SRC, PI3K, STAT3 and EGFR. Plays a role in cancer cell metastasis via its ability to modulate E2-mediated cytoskeleton changes and cell migration via its interaction with SRC and PI3K. {ECO:0000269|PubMed:11481323, ECO:0000269|PubMed:12682072, ECO:0000269|PubMed:14963108, ECO:0000269|PubMed:15374949, ECO:0000269|PubMed:15456770, ECO:0000269|PubMed:15579769, ECO:0000269|PubMed:15994929, ECO:0000269|PubMed:16140940, ECO:0000269|PubMed:16352611, ECO:0000269|PubMed:16574651, ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}. |
Q8N3V7 | SYNPO | S235 | ochoa | Synaptopodin | Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}. |
Q8N490 | PNKD | S57 | ochoa | Probable thioesterase PNKD (EC 3.1.2.-) (Myofibrillogenesis regulator 1) (MR-1) (Paroxysmal nonkinesiogenic dyskinesia protein) (Trans-activated by hepatitis C virus core protein 2) | Probable thioesterase that may play a role in cellular detoxification processes; it likely acts on a yet-unknown alpha-hydroxythioester substrate (Probable). In vitro, it is able to catalyze the hydrolysis of S-D-lactoyl-glutathione to form glutathione and D-lactic acid at very low rate, though this reaction is not physiologically relevant in vivo (PubMed:21487022). {ECO:0000269|PubMed:21487022, ECO:0000305|PubMed:21487022}. |
Q8N543 | OGFOD1 | S256 | psp | Prolyl 3-hydroxylase OGFOD1 (EC 1.14.11.-) (2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1) (Termination and polyadenylation 1 homolog) (uS12 prolyl 3-hydroxylase) | Prolyl 3-hydroxylase that catalyzes 3-hydroxylation of 'Pro-62' of small ribosomal subunit uS12 (RPS23), thereby regulating protein translation termination efficiency. Involved in stress granule formation. {ECO:0000269|PubMed:20154146, ECO:0000269|PubMed:24550447, ECO:0000269|PubMed:24550462}. |
Q8N556 | AFAP1 | S265 | ochoa | Actin filament-associated protein 1 (110 kDa actin filament-associated protein) (AFAP-110) | Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. {ECO:0000250, ECO:0000269|PubMed:15485829}. |
Q8N8N7 | PTGR2 | S270 | ochoa | Prostaglandin reductase 2 (PRG-2) (EC 1.3.1.48) (15-oxoprostaglandin 13-reductase) (Zinc-binding alcohol dehydrogenase domain-containing protein 1) | Functions as 15-oxo-prostaglandin 13-reductase and acts on 15-keto-PGE1, 15-keto-PGE2, 15-keto-PGE1-alpha and 15-keto-PGE2-alpha with highest activity towards 15-keto-PGE2 (PubMed:19000823). Overexpression represses transcriptional activity of PPARG and inhibits adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q8VDQ1, ECO:0000269|PubMed:19000823}. |
Q8NC06 | ACBD4 | S166 | ochoa|psp | Acyl-CoA-binding domain-containing protein 4 | Binds medium- and long-chain acyl-CoA esters and may function as an intracellular carrier of acyl-CoA esters. |
Q8NC96 | NECAP1 | S202 | ochoa | Adaptin ear-binding coat-associated protein 1 (NECAP endocytosis-associated protein 1) (NECAP-1) | Involved in endocytosis. {ECO:0000250}. |
Q8NDX1 | PSD4 | S448 | ochoa | PH and SEC7 domain-containing protein 4 (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6 B) (Exchange factor for ARF6 B) (Pleckstrin homology and SEC7 domain-containing protein 4) (Telomeric of interleukin-1 cluster protein) | Guanine nucleotide exchange factor for ARF6 and ARL14/ARF7. Through ARL14 activation, controls the movement of MHC class II-containing vesicles along the actin cytoskeleton in dendritic cells. Involved in membrane recycling. Interacts with several phosphatidylinositol phosphate species, including phosphatidylinositol 3,4-bisphosphate, phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 4,5-bisphosphate. {ECO:0000269|PubMed:12082148, ECO:0000269|PubMed:21458045}. |
Q8NE71 | ABCF1 | S621 | ochoa | ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) | Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}. |
Q8NHM5 | KDM2B | S1049 | ochoa | Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) | Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}. |
Q8TD19 | NEK9 | S827 | ochoa | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q8TD43 | TRPM4 | S1103 | ochoa | Transient receptor potential cation channel subfamily M member 4 (hTRPM4) (Calcium-activated non-selective cation channel 1) (Long transient receptor potential channel 4) (LTrpC-4) (LTrpC4) (Melastatin-4) | Calcium-activated selective cation channel that mediates membrane depolarization (PubMed:12015988, PubMed:12842017, PubMed:29211723, PubMed:30528822). While it is activated by increase in intracellular Ca(2+), it is impermeable to it (PubMed:12015988). Mediates transport of monovalent cations (Na(+) > K(+) > Cs(+) > Li(+)), leading to depolarize the membrane (PubMed:12015988). It thereby plays a central role in cadiomyocytes, neurons from entorhinal cortex, dorsal root and vomeronasal neurons, endocrine pancreas cells, kidney epithelial cells, cochlea hair cells etc. Participates in T-cell activation by modulating Ca(2+) oscillations after T lymphocyte activation, which is required for NFAT-dependent IL2 production. Involved in myogenic constriction of cerebral arteries. Controls insulin secretion in pancreatic beta-cells. May also be involved in pacemaking or could cause irregular electrical activity under conditions of Ca(2+) overload. Affects T-helper 1 (Th1) and T-helper 2 (Th2) cell motility and cytokine production through differential regulation of calcium signaling and NFATC1 localization. Enhances cell proliferation through up-regulation of the beta-catenin signaling pathway. Plays a role in keratinocyte differentiation (PubMed:30528822). {ECO:0000269|PubMed:11535825, ECO:0000269|PubMed:12015988, ECO:0000269|PubMed:12799367, ECO:0000269|PubMed:12842017, ECO:0000269|PubMed:14758478, ECO:0000269|PubMed:15121803, ECO:0000269|PubMed:15331675, ECO:0000269|PubMed:15472118, ECO:0000269|PubMed:15550671, ECO:0000269|PubMed:15590641, ECO:0000269|PubMed:15845551, ECO:0000269|PubMed:16186107, ECO:0000269|PubMed:16407466, ECO:0000269|PubMed:16424899, ECO:0000269|PubMed:16806463, ECO:0000269|PubMed:20625999, ECO:0000269|PubMed:20656926, ECO:0000269|PubMed:29211723, ECO:0000269|PubMed:30528822}.; FUNCTION: [Isoform 2]: Lacks channel activity. {ECO:0000269|PubMed:12842017}. |
Q8TEK3 | DOT1L | S834 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TF74 | WIPF2 | S267 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q92508 | PIEZO1 | S1391 | ochoa | Piezo-type mechanosensitive ion channel component 1 (Membrane protein induced by beta-amyloid treatment) (Mib) (Protein FAM38A) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:23479567, PubMed:23695678, PubMed:25955826, PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Generates currents characterized by a linear current-voltage relationship that are sensitive to ruthenium red and gadolinium (By similarity). Conductance to monovalent alkali ions is highest for K(+), intermediate for Na(+) and lowest for Li(+) (PubMed:25955826). Divalent ions except for Mn(2+) permeate the channel but more slowly than the monovalent ions and they also reduce K(+) currents (PubMed:25955826). Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling (PubMed:20016066). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing (By similarity). Acts as a shear-stress sensor that promotes endothelial cell organization and alignment in the direction of blood flow through calpain activation (PubMed:25119035). Plays a key role in blood vessel formation and vascular structure in both development and adult physiology (By similarity). Acts as a sensor of phosphatidylserine (PS) flipping at the plasma membrane and governs morphogenesis of muscle cells (By similarity). In myoblasts, flippase-mediated PS enrichment at the inner leaflet of plasma membrane triggers channel activation and Ca2+ influx followed by Rho GTPases signal transduction, leading to assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). {ECO:0000250|UniProtKB:E2JF22, ECO:0000250|UniProtKB:Q91X60, ECO:0000269|PubMed:25955826, ECO:0000269|PubMed:29799007}. |
Q93074 | MED12 | S635 | ochoa | Mediator of RNA polymerase II transcription subunit 12 (Activator-recruited cofactor 240 kDa component) (ARC240) (CAG repeat protein 45) (Mediator complex subunit 12) (OPA-containing protein) (Thyroid hormone receptor-associated protein complex 230 kDa component) (Trap230) (Trinucleotide repeat-containing gene 11 protein) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. {ECO:0000269|PubMed:16565090, ECO:0000269|PubMed:16595664, ECO:0000269|PubMed:17000779}. |
Q969V6 | MRTFA | S807 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q96AP7 | ESAM | S359 | ochoa | Endothelial cell-selective adhesion molecule | Can mediate aggregation most likely through a homophilic molecular interaction. {ECO:0000250|UniProtKB:Q925F2}. |
Q96AY4 | TTC28 | S2120 | ochoa | Tetratricopeptide repeat protein 28 (TPR repeat protein 28) (TPR repeat-containing big gene cloned at Keio) | During mitosis, may be involved in the condensation of spindle midzone microtubules, leading to the formation of midbody. {ECO:0000269|PubMed:23036704}. |
Q96F63 | CCDC97 | S212 | ochoa | Coiled-coil domain-containing protein 97 | May play a role pre-mRNA splicing through the association with the splicing factor SF3B complex which is involved in branch-site recognition. {ECO:0000269|PubMed:26344197}. |
Q96FS4 | SIPA1 | S67 | ochoa | Signal-induced proliferation-associated protein 1 (Sipa-1) (GTPase-activating protein Spa-1) (p130 SPA-1) | GTPase activator for the nuclear Ras-related regulatory proteins Rap1 and Rap2 in vitro, converting them to the putatively inactive GDP-bound state (PubMed:9346962). Affects cell cycle progression (By similarity). {ECO:0000250|UniProtKB:P46062, ECO:0000269|PubMed:9346962}. |
Q96HE9 | PRR11 | S40 | ochoa | Proline-rich protein 11 | Plays a critical role in cell cycle progression. {ECO:0000269|PubMed:23246489}. |
Q96KN4 | LRATD1 | S67 | ochoa | Protein LRATD1 (LRAT domain-containing 1) (Neurologic sensory protein 1) (NSE1) (Protein FAM84A) | May play a role in cell morphology and motility. {ECO:0000269|PubMed:16820875}. |
Q96L91 | EP400 | S321 | ochoa | E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q96M27 | PRRC1 | S95 | ochoa | Protein PRRC1 (Proline-rich and coiled-coil-containing protein 1) | May act as a regulator of the protein kinase A (PKA) activity during embryonic development. {ECO:0000250|UniProtKB:Q5XJA3}. |
Q96MK2 | RIPOR3 | S603 | ochoa | RIPOR family member 3 | None |
Q96N64 | PWWP2A | S119 | ochoa | PWWP domain-containing protein 2A | Chromatin-binding protein that acts as an adapter between distinct nucleosome components (H3K36me3 or H2A.Z) and chromatin-modifying complexes, contributing to the regulation of the levels of histone acetylation at actively transcribed genes (PubMed:30228260, PubMed:30327463). Competes with CHD4 and MBD3 for interaction with MTA1 to form a NuRD subcomplex, preventing the formation of full NuRD complex (containing CHD4 and MBD3), leading to recruitment of HDACs to gene promoters resulting in turn in the deacetylation of nearby H3K27 and H2A.Z (PubMed:30228260, PubMed:30327463). Plays a role in facilitating transcriptional elongation and repression of spurious transcription initiation through regulation of histone acetylation (By similarity). Essential for proper mitosis progression (PubMed:28645917). {ECO:0000250|UniProtKB:Q69Z61, ECO:0000269|PubMed:28645917, ECO:0000269|PubMed:30228260, ECO:0000269|PubMed:30327463}. |
Q96N66 | MBOAT7 | S285 | ochoa | Membrane-bound acylglycerophosphatidylinositol O-acyltransferase MBOAT7 (EC 2.3.1.-) (1-acylglycerophosphatidylinositol O-acyltransferase) (Bladder and breast carcinoma-overexpressed gene 1 protein) (Leukocyte receptor cluster member 4) (Lysophosphatidylinositol acyltransferase) (LPIAT) (Lyso-PI acyltransferase) (Lysophospholipid acyltransferase 7) (LPLAT 7) (Membrane-bound O-acyltransferase domain-containing protein 7) (O-acyltransferase domain-containing protein 7) (h-mboa-7) | Acyltransferase which catalyzes the transfer of an acyl group from an acyl-CoA to a lysophosphatidylinositol (1-acylglycerophosphatidylinositol or LPI) leading to the production of a phosphatidylinositol (1,2-diacyl-sn-glycero-3-phosphoinositol or PI) and participates in the reacylation step of the phospholipid remodeling pathway also known as the Lands cycle (PubMed:18094042, PubMed:18772128). Prefers arachidonoyl-CoA as the acyl donor, thus contributing to the regulation of free levels arachidonic acid in cell (PubMed:18094042, PubMed:18772128). In liver, participates in the regulation of triglyceride metabolism through the phosphatidylinositol acyl-chain remodeling regulation (PubMed:32253259). {ECO:0000269|PubMed:18094042, ECO:0000269|PubMed:18772128, ECO:0000269|PubMed:32253259}. |
Q96PM9 | ZNF385A | S153 | ochoa | Zinc finger protein 385A (Hematopoietic zinc finger protein) (Retinal zinc finger protein) | RNA-binding protein that affects the localization and the translation of a subset of mRNA. May play a role in adipogenesis through binding to the 3'-UTR of CEBPA mRNA and regulation of its translation. Targets ITPR1 mRNA to dendrites in Purkinje cells, and may regulate its activity-dependent translation. With ELAVL1, binds the 3'-UTR of p53/TP53 mRNAs to control their nuclear export induced by CDKN2A. Hence, may regulate p53/TP53 expression and mediate in part the CDKN2A anti-proliferative activity. May also bind CCNB1 mRNA. Alternatively, may also regulate p53/TP53 activity through direct protein-protein interaction. Interacts with p53/TP53 and promotes cell-cycle arrest over apoptosis enhancing preferentially the DNA binding and transactivation of p53/TP53 on cell-cycle arrest target genes over proapoptotic target genes. May also regulate the ubiquitination and stability of CDKN1A promoting DNA damage-induced cell cycle arrest. Also plays a role in megakaryocytes differentiation. {ECO:0000269|PubMed:17719541}. |
Q96SK2 | TMEM209 | S131 | ochoa | Transmembrane protein 209 | Nuclear envelope protein which in association with NUP205, may be involved in nuclear transport of various nuclear proteins in addition to MYC. {ECO:0000269|PubMed:22719065}. |
Q96SK2 | TMEM209 | S201 | ochoa | Transmembrane protein 209 | Nuclear envelope protein which in association with NUP205, may be involved in nuclear transport of various nuclear proteins in addition to MYC. {ECO:0000269|PubMed:22719065}. |
Q96ST8 | CEP89 | S40 | ochoa | Centrosomal protein of 89 kDa (Cep89) (Centrosomal protein 123) (Cep123) (Coiled-coil domain-containing protein 123) | Required for ciliogenesis. Also plays a role in mitochondrial metabolism where it may modulate complex IV activity. {ECO:0000269|PubMed:23348840, ECO:0000269|PubMed:23575228}. |
Q96TA1 | NIBAN2 | S646 | ochoa|psp | Protein Niban 2 (Meg-3) (Melanoma invasion by ERK) (MINERVA) (Niban-like protein 1) (Protein FAM129B) | May play a role in apoptosis suppression. May promote melanoma cell invasion in vitro. {ECO:0000269|PubMed:19362540, ECO:0000269|PubMed:21148485}. |
Q99700 | ATXN2 | S733 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q9BT49 | THAP7 | S210 | ochoa | THAP domain-containing protein 7 | Chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressors. {ECO:0000269|PubMed:15561719}. |
Q9BUA3 | SPINDOC | S251 | ochoa | Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) | Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}. |
Q9BUG6 | ZSCAN5A | S340 | ochoa | Zinc finger and SCAN domain-containing protein 5A (Zinc finger protein 495) | May be involved in transcriptional regulation. |
Q9BVG8 | KIFC3 | S41 | ochoa | Kinesin-like protein KIFC3 | Minus-end microtubule-dependent motor protein. Involved in apically targeted transport (By similarity). Required for zonula adherens maintenance. {ECO:0000250, ECO:0000269|PubMed:19041755}. |
Q9BVI0 | PHF20 | S902 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BVT8 | TMUB1 | S98 | ochoa | Transmembrane and ubiquitin-like domain-containing protein 1 (Dendritic cell-derived ubiquitin-like protein) (DULP) (Hepatocyte odd protein shuttling protein) (Ubiquitin-like protein SB144) [Cleaved into: iHOPS] | Involved in sterol-regulated ubiquitination and degradation of HMG-CoA reductase HMGCR (PubMed:21343306). Involved in positive regulation of AMPA-selective glutamate receptor GRIA2 recycling to the cell surface (By similarity). Acts as a negative regulator of hepatocyte growth during regeneration (By similarity). {ECO:0000250|UniProtKB:Q53AQ4, ECO:0000250|UniProtKB:Q9JMG3, ECO:0000269|PubMed:21343306}.; FUNCTION: [iHOPS]: May contribute to the regulation of translation during cell-cycle progression. May contribute to the regulation of cell proliferation (By similarity). May be involved in centrosome assembly. Modulates stabilization and nucleolar localization of tumor suppressor CDKN2A and enhances association between CDKN2A and NPM1 (By similarity). {ECO:0000250|UniProtKB:Q9JMG3}. |
Q9BVW5 | TIPIN | S31 | ochoa | TIMELESS-interacting protein | Plays an important role in the control of DNA replication and the maintenance of replication fork stability (PubMed:17102137, PubMed:23359676, PubMed:35585232). Important for cell survival after DNA damage or replication stress (PubMed:17116885). May be specifically required for the ATR-CHEK1 pathway in the replication checkpoint induced by hydroxyurea or ultraviolet light (PubMed:17296725). Forms a complex with TIMELESS and this complex regulates DNA replication processes under both normal and stress conditions, stabilizes replication forks and influences both CHEK1 phosphorylation and the intra-S phase checkpoint in response to genotoxic stress (PubMed:17102137, PubMed:17116885, PubMed:17296725, PubMed:23359676, PubMed:35585232). {ECO:0000269|PubMed:17102137, ECO:0000269|PubMed:17116885, ECO:0000269|PubMed:17296725, ECO:0000269|PubMed:23359676, ECO:0000269|PubMed:35585232}. |
Q9BWG6 | SCNM1 | S183 | ochoa | Sodium channel modifier 1 | As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:36084634). Plays a role in the regulation of primary cilia length and Hedgehog signaling (PubMed:36084634). {ECO:0000269|PubMed:36084634}. |
Q9BWN1 | PRR14 | S277 | ochoa | Proline-rich protein 14 | Functions in tethering peripheral heterochromatin to the nuclear lamina during interphase, possibly through the interaction with heterochromatin protein CBX5/HP1 alpha (PubMed:24209742). Might play a role in reattaching heterochromatin to the nuclear lamina at mitotic exit (PubMed:24209742). Promotes myoblast differentiation during skeletal myogenesis, possibly by stimulating transcription factor MyoD activity via binding to CBX5/HP1 alpha (PubMed:25906157). Involved in the positive regulation of the PI3K-Akt-mTOR signaling pathway and in promoting cell proliferation, possibly via binding to GRB2 (PubMed:27041574). {ECO:0000269|PubMed:24209742, ECO:0000269|PubMed:25906157, ECO:0000269|PubMed:27041574}. |
Q9BYE7 | PCGF6 | S30 | psp | Polycomb group RING finger protein 6 (Mel18 and Bmi1-like RING finger) (RING finger protein 134) | Transcriptional repressor (PubMed:12167161). May modulate the levels of histone H3K4Me3 by activating KDM5D histone demethylase (PubMed:17320162). Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167161). Within the PRC1-like complex, regulates RNF2 ubiquitin ligase activity (PubMed:26151332). {ECO:0000269|PubMed:12167161, ECO:0000269|PubMed:17320162, ECO:0000269|PubMed:26151332}. |
Q9BZD6 | PRRG4 | Y207 | psp | Transmembrane gamma-carboxyglutamic acid protein 4 (Proline-rich gamma-carboxyglutamic acid protein 4) (Proline-rich Gla protein 4) | May control axon guidance across the CNS (PubMed:28859078). Prevents the delivery of ROBO1 at the cell surface and down-regulates its expression (PubMed:28859078). {ECO:0000269|PubMed:28859078}. |
Q9BZL4 | PPP1R12C | S509 | ochoa|psp | Protein phosphatase 1 regulatory subunit 12C (Protein phosphatase 1 myosin-binding subunit of 85 kDa) (Protein phosphatase 1 myosin-binding subunit p85) | Regulates myosin phosphatase activity. {ECO:0000269|PubMed:11399775}. |
Q9C0D6 | FHDC1 | S525 | ochoa | FH2 domain-containing protein 1 (Inverted formin-1) | Microtubule-associated formin which regulates both actin and microtubule dynamics. Induces microtubule acetylation and stabilization and actin stress fiber formation (PubMed:18815276). Regulates Golgi ribbon formation (PubMed:26564798). Required for normal cilia assembly. Early in cilia assembly, may assist in the maturation and positioning of the centrosome/basal body, and once cilia assembly has initiated, may also promote cilia elongation by inhibiting disassembly (PubMed:29742020). {ECO:0000269|PubMed:18815276, ECO:0000269|PubMed:26564798, ECO:0000269|PubMed:29742020}. |
Q9C0K0 | BCL11B | S256 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9C0K0 | BCL11B | S381 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9H0C5 | BTBD1 | S30 | ochoa | BTB/POZ domain-containing protein 1 (Hepatitis C virus NS5A-transactivated protein 8) (HCV NS5A-transactivated protein 8) | Probable substrate-specific adapter of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14528312). Seems to regulate expression levels and/or subnuclear distribution of TOP1, via an unknown mechanism (By similarity). May play a role in mesenchymal differentiation where it promotes myogenic differentiation and suppresses adipogenesis (By similarity). {ECO:0000250|UniProtKB:P58544, ECO:0000269|PubMed:14528312}. |
Q9H2J1 | ARRDC1-AS1 | S71 | ochoa | Uncharacterized protein ARRDC1-AS1 (ARRDC1 antisense RNA 1) (ARRDC1 antisense gene protein 1) | None |
Q9H2S9 | IKZF4 | S148 | ochoa | Zinc finger protein Eos (Ikaros family zinc finger protein 4) | DNA-binding protein that binds to the 5'GGGAATRCC-3' Ikaros-binding sequence. Transcriptional repressor. Interacts with SPI1 and MITF to repress transcription of the CTSK and ACP5 promoters via recruitment of corepressors SIN3A and CTBP2. May be involved in the development of central and peripheral nervous systems. Essential for the inhibitory function of regulatory T-cells (Treg). Mediates FOXP3-mediated gene silencing in regulatory T-cells (Treg) via recruitment of corepressor CTBP1 (By similarity). {ECO:0000250|UniProtKB:Q8C208, ECO:0000269|PubMed:10978333, ECO:0000269|PubMed:12015313, ECO:0000269|PubMed:12444977}. |
Q9H2Z4 | NKX2-4 | S271 | ochoa | Homeobox protein Nkx-2.4 (Homeobox protein NK-2 homolog D) | Probable transcription factor. |
Q9H3T3 | SEMA6B | S822 | ochoa | Semaphorin-6B (Semaphorin-Z) (Sema Z) | Functions as a cell surface repellent for mossy fibers of developing neurons in the hippocampus where it plays a role in axon guidance. May function through the PLXNA4 receptor expressed by mossy cell axons. {ECO:0000250|UniProtKB:O54951}.; FUNCTION: (Microbial infection) Acts as a receptor for P.sordellii toxin TcsL in the in the vascular endothelium. {ECO:0000269|PubMed:32302524, ECO:0000269|PubMed:32589945}. |
Q9H4L7 | SMARCAD1 | S34 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) | DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}. |
Q9H4M7 | PLEKHA4 | S723 | ochoa | Pleckstrin homology domain-containing family A member 4 (PH domain-containing family A member 4) (Phosphoinositol 3-phosphate-binding protein 1) (PEPP-1) | Binds specifically to phosphatidylinositol 3-phosphate (PtdIns3P), but not to other phosphoinositides. {ECO:0000269|PubMed:11001876}. |
Q9H5J0 | ZBTB3 | S549 | ochoa | Zinc finger and BTB domain-containing protein 3 | May be involved in transcriptional regulation. |
Q9H5V8 | CDCP1 | S797 | ochoa | CUB domain-containing protein 1 (Membrane glycoprotein gp140) (Subtractive immunization M plus HEp3-associated 135 kDa protein) (SIMA135) (Transmembrane and associated with src kinases) (CD antigen CD318) | May be involved in cell adhesion and cell matrix association. May play a role in the regulation of anchorage versus migration or proliferation versus differentiation via its phosphorylation. May be a novel marker for leukemia diagnosis and for immature hematopoietic stem cell subsets. Belongs to the tetraspanin web involved in tumor progression and metastasis. {ECO:0000269|PubMed:11466621, ECO:0000269|PubMed:12799299, ECO:0000269|PubMed:15153610, ECO:0000269|PubMed:16007225, ECO:0000269|PubMed:16404722, ECO:0000269|PubMed:8647901}. |
Q9H6A9 | PCNX3 | S1909 | ochoa | Pecanex-like protein 3 (Pecanex homolog protein 3) | None |
Q9H9J4 | USP42 | S754 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9HA65 | TBC1D17 | S613 | ochoa | TBC1 domain family member 17 | Probable RAB GTPase-activating protein that inhibits RAB8A/B function. Reduces Rab8 recruitment to tubules emanating from the endocytic recycling compartment (ERC) and inhibits Rab8-mediated endocytic trafficking, such as that of transferrin receptor (TfR) (PubMed:22854040). Involved in regulation of autophagy. {ECO:0000269|PubMed:22854040, ECO:0000269|PubMed:24752605}. |
Q9HBB8 | CDHR5 | S754 | ochoa | Cadherin-related family member 5 (Mu-protocadherin) (Mucin and cadherin-like protein) (Mucin-like protocadherin) (MLPCDH) | Intermicrovillar adhesion molecule that forms, via its extracellular domain, calcium-dependent heterophilic complexes with CDHR2 on adjacent microvilli. Thereby, controls the packing of microvilli at the apical membrane of epithelial cells. Through its cytoplasmic domain, interacts with microvillus cytoplasmic proteins to form the intermicrovillar adhesion complex/IMAC. This complex plays a central role in microvilli and epithelial brush border differentiation. {ECO:0000269|PubMed:24725409}. |
Q9HBD1 | RC3H2 | S808 | ochoa | Roquin-2 (EC 2.3.2.27) (Membrane-associated nucleic acid-binding protein) (RING finger and CCCH-type zinc finger domain-containing protein 2) (RING finger protein 164) (RING-type E3 ubiquitin transferase Roquin-2) | Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF and in many more mRNAs. Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs. In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity. In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression. Also recognizes CDE in its own mRNA and in that of paralogous RC3H1, possibly leading to feedback loop regulation (By similarity). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2B, UBE2D2, UBE2E2, UBE2E3, UBE2G2, UBE2K and UBE2Q2 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). Involved in the ubiquitination of MAP3K5 (PubMed:24448648, PubMed:26489670, PubMed:29186683). Able to interact with double-stranded RNA (dsRNA) (PubMed:26489670). {ECO:0000250|UniProtKB:P0C090, ECO:0000269|PubMed:24448648, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:29186683}. |
Q9NPC6 | MYOZ2 | S116 | ochoa | Myozenin-2 (Calsarcin-1) (FATZ-related protein 2) | Myozenins may serve as intracellular binding proteins involved in linking Z line proteins such as alpha-actinin, gamma-filamin, TCAP/telethonin, LDB3/ZASP and localizing calcineurin signaling to the sarcomere. Plays an important role in the modulation of calcineurin signaling. May play a role in myofibrillogenesis. |
Q9NQG7 | HPS4 | S313 | ochoa | BLOC-3 complex member HPS4 (Hermansky-Pudlak syndrome 4 protein) (Light-ear protein homolog) | Component of the BLOC-3 complex, a complex that acts as a guanine exchange factor (GEF) for RAB32 and RAB38, promotes the exchange of GDP to GTP, converting them from an inactive GDP-bound form into an active GTP-bound form. The BLOC-3 complex plays an important role in the control of melanin production and melanosome biogenesis and promotes the membrane localization of RAB32 and RAB38 (PubMed:23084991). {ECO:0000269|PubMed:23084991}. |
Q9NQW6 | ANLN | S102 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NQX3 | GPHN | S194 | ochoa|psp | Gephyrin [Includes: Molybdopterin adenylyltransferase (MPT adenylyltransferase) (EC 2.7.7.75) (Domain G); Molybdopterin molybdenumtransferase (MPT Mo-transferase) (EC 2.10.1.1) (Domain E)] | Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to anchor the inhibitory glycine receptor (GLYR) to subsynaptic microtubules (By similarity). Acts as a major instructive molecule at inhibitory synapses, where it also clusters GABA type A receptors (PubMed:25025157, PubMed:26613940). {ECO:0000250|UniProtKB:Q03555, ECO:0000269|PubMed:25025157, ECO:0000269|PubMed:26613940}.; FUNCTION: Also has a catalytic activity and catalyzes two steps in the biosynthesis of the molybdenum cofactor. In the first step, molybdopterin is adenylated. Subsequently, molybdate is inserted into adenylated molybdopterin and AMP is released. {ECO:0000269|PubMed:26613940}. |
Q9NRS6 | SNX15 | S180 | ochoa | Sorting nexin-15 | May be involved in several stages of intracellular trafficking. Overexpression of SNX15 disrupts the normal trafficking of proteins from the plasma membrane to recycling endosomes or the TGN. {ECO:0000269|PubMed:11085978}. |
Q9NTJ3 | SMC4 | S22 | ochoa | Structural maintenance of chromosomes protein 4 (SMC protein 4) (SMC-4) (Chromosome-associated polypeptide C) (hCAP-C) (XCAP-C homolog) | Central component of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}. |
Q9NW07 | ZNF358 | S146 | ochoa | Zinc finger protein 358 | May be involved in transcriptional regulation. |
Q9NYQ7 | CELSR3 | S3175 | ochoa | Cadherin EGF LAG seven-pass G-type receptor 3 (Cadherin family member 11) (Epidermal growth factor-like protein 1) (EGF-like protein 1) (Flamingo homolog 1) (hFmi1) (Multiple epidermal growth factor-like domains protein 2) (Multiple EGF-like domains protein 2) | Receptor that may have an important role in cell/cell signaling during nervous system formation. |
Q9NZJ0 | DTL | S626 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9NZJ0 | DTL | S679 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9NZT2 | OGFR | S378 | ochoa | Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) | Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation. |
Q9P0K7 | RAI14 | S281 | ochoa | Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) | Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}. |
Q9P206 | NHSL3 | S869 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P206 | NHSL3 | S979 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P275 | USP36 | S713 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P2R6 | RERE | S1113 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9UER7 | DAXX | S671 | ochoa | Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) | Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}. |
Q9UGJ0 | PRKAG2 | S87 | ochoa | 5'-AMP-activated protein kinase subunit gamma-2 (AMPK gamma2) (AMPK subunit gamma-2) (H91620p) | AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:14722619, PubMed:24563466). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:14722619, PubMed:24563466). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:14722619, PubMed:24563466). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:14722619, PubMed:24563466). Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits (PubMed:14722619, PubMed:24563466). ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit (PubMed:14722619, PubMed:24563466). ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive (PubMed:14722619, PubMed:24563466). {ECO:0000269|PubMed:14722619, ECO:0000269|PubMed:24563466}. |
Q9UGK3 | STAP2 | S289 | ochoa | Signal-transducing adaptor protein 2 (STAP-2) (Breast tumor kinase substrate) (BRK substrate) | Substrate of protein kinase PTK6. May play a regulatory role in the acute-phase response in systemic inflammation and may modulate STAT3 activity. {ECO:0000269|PubMed:10980601}. |
Q9UHB7 | AFF4 | S1058 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UHF7 | TRPS1 | S216 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9ULD5 | ZNF777 | S623 | ochoa | Zinc finger protein 777 | May be involved in transcriptional repression (PubMed:31856708). Inhibits cell proliferation through CDKN1A/p21 induction by down-regulation of NIBAN1/FAM129A at low cell density (PubMed:25560148). {ECO:0000269|PubMed:25560148, ECO:0000269|PubMed:31856708}. |
Q9ULU8 | CADPS | S488 | ochoa | Calcium-dependent secretion activator 1 (Calcium-dependent activator protein for secretion 1) (CAPS-1) | Calcium-binding protein involved in exocytosis of vesicles filled with neurotransmitters and neuropeptides. Probably acts upstream of fusion in the biogenesis or maintenance of mature secretory vesicles. Regulates catecholamine loading of DCVs. May specifically mediate the Ca(2+)-dependent exocytosis of large dense-core vesicles (DCVs) and other dense-core vesicles by acting as a PtdIns(4,5)P2-binding protein that acts at prefusion step following ATP-dependent priming and participates in DCVs-membrane fusion. However, it may also participate in small clear synaptic vesicles (SVs) exocytosis and it is unclear whether its function is related to Ca(2+) triggering (By similarity). {ECO:0000250}. |
Q9UPA5 | BSN | S2857 | ochoa | Protein bassoon (Zinc finger protein 231) | Scaffold protein of the presynaptic cytomatrix at the active zone (CAZ) which is the place in the synapse where neurotransmitter is released (PubMed:12812759). After synthesis, participates in the formation of Golgi-derived membranous organelles termed Piccolo-Bassoon transport vesicles (PTVs) that are transported along axons to sites of nascent synaptic contacts (PubMed:19380881). At the presynaptic active zone, regulates the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis (By similarity). Also functions in processes other than assembly such as the regulation of specific presynaptic protein ubiquitination by interacting with SIAH1 or the regulation of presynaptic autophagy by associating with ATG5 (By similarity). Also mediates synapse to nucleus communication leading to reconfiguration of gene expression by associating with the transcriptional corepressor CTBP1 and by subsequently reducing the size of its pool available for nuclear import (By similarity). Inhibits the activity of the proportion of DAO enzyme that localizes to the presynaptic active zone, which may modulate synaptic transmission (By similarity). {ECO:0000250|UniProtKB:O35078, ECO:0000250|UniProtKB:O88778, ECO:0000269|PubMed:12812759, ECO:0000269|PubMed:19380881}. |
Q9UPG8 | PLAGL2 | S381 | ochoa | Zinc finger protein PLAGL2 (Pleiomorphic adenoma-like protein 2) | Shows weak transcriptional activatory activity. |
Q9UPQ9 | TNRC6B | S1612 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UQ35 | SRRM2 | S2664 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y2K7 | KDM2A | S718 | ochoa | Lysine-specific demethylase 2A (EC 1.14.11.27) (CXXC-type zinc finger protein 8) (F-box and leucine-rich repeat protein 11) (F-box protein FBL7) (F-box protein Lilina) (F-box/LRR-repeat protein 11) (JmjC domain-containing histone demethylation protein 1A) ([Histone-H3]-lysine-36 demethylase 1A) | Histone demethylase that specifically demethylates 'Lys-36' of histone H3, thereby playing a central role in histone code. Preferentially demethylates dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36'. May also recognize and bind to some phosphorylated proteins and promote their ubiquitination and degradation. Required to maintain the heterochromatic state. Associates with centromeres and represses transcription of small non-coding RNAs that are encoded by the clusters of satellite repeats at the centromere. Required to sustain centromeric integrity and genomic stability, particularly during mitosis. Regulates circadian gene expression by repressing the transcriptional activator activity of CLOCK-BMAL1 heterodimer and RORA in a catalytically-independent manner (PubMed:26037310). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:19001877, ECO:0000269|PubMed:26037310, ECO:0000269|PubMed:28262558}. |
Q9Y3L3 | SH3BP1 | S544 | ochoa | SH3 domain-binding protein 1 | GTPase activating protein (GAP) which specifically converts GTP-bound Rho-type GTPases including RAC1 and CDC42 in their inactive GDP-bound form. By specifically inactivating RAC1 at the leading edge of migrating cells, it regulates the spatiotemporal organization of cell protrusions which is important for proper cell migration (PubMed:21658605). Also negatively regulates CDC42 in the process of actin remodeling and the formation of epithelial cell junctions (PubMed:22891260). Through its GAP activity toward RAC1 and/or CDC42 plays a specific role in phagocytosis of large particles. Specifically recruited by a PI3 kinase/PI3K-dependent mechanism to sites of large particles engagement, inactivates RAC1 and/or CDC42 allowing the reorganization of the underlying actin cytoskeleton required for engulfment (PubMed:26465210). It also plays a role in angiogenesis and the process of repulsive guidance as part of a semaphorin-plexin signaling pathway. Following the binding of PLXND1 to extracellular SEMA3E it dissociates from PLXND1 and inactivates RAC1, inducing the intracellular reorganization of the actin cytoskeleton and the collapse of cells (PubMed:24841563). {ECO:0000269|PubMed:21658605, ECO:0000269|PubMed:22891260, ECO:0000269|PubMed:24841563, ECO:0000269|PubMed:26465210}. |
Q9Y3Q8 | TSC22D4 | S158 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y4F5 | CEP170B | S655 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4H2 | IRS2 | S915 | ochoa|psp | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y6D6 | ARFGEF1 | S1555 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) | Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}. |
Q9Y6N7 | ROBO1 | S1442 | ochoa | Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) | Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}. |
Q8IZQ8 | MYOCD | S862 | GPS6 | Myocardin | Smooth muscle cells (SM) and cardiac muscle cells-specific transcriptional factor which uses the canonical single or multiple CArG boxes DNA sequence. Acts as a cofactor of serum response factor (SRF) with the potential to modulate SRF-target genes. Plays a crucial role in cardiogenesis, urinary bladder development, and differentiation of the smooth muscle cell lineage (myogenesis) (By similarity). Positively regulates the transcription of genes involved in vascular smooth muscle contraction (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q8R5I7, ECO:0000269|PubMed:12640126, ECO:0000269|PubMed:31513549}. |
Q13409 | DYNC1I2 | S87 | SIGNOR | Cytoplasmic dynein 1 intermediate chain 2 (Cytoplasmic dynein intermediate chain 2) (Dynein intermediate chain 2, cytosolic) (DH IC-2) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function (PubMed:31079899). Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules (PubMed:31079899). The intermediate chains mediate the binding of dynein to dynactin via its 150 kDa component (p150-glued) DCTN1 (By similarity). Involved in membrane-transport, such as Golgi apparatus, late endosomes and lysosomes (By similarity). {ECO:0000250|UniProtKB:Q62871, ECO:0000269|PubMed:31079899}. |
Q15569 | TESK1 | S367 | Sugiyama | Dual specificity testis-specific protein kinase 1 (EC 2.7.12.1) (Testicular protein kinase 1) | Dual specificity protein kinase activity catalyzing autophosphorylation and phosphorylation of exogenous substrates on both serine/threonine and tyrosine residues (By similarity). Regulates the cellular cytoskeleton by enhancing actin stress fiber formation via phosphorylation of cofilin and by preventing microtubule breakdown via inhibition of TAOK1/MARKK kinase activity (By similarity). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Positively regulates integrin-mediated cell spreading, via phosphorylation of cofilin (PubMed:15584898). Suppresses ciliogenesis via multiple pathways; phosphorylation of CFL1, suppression of ciliary vesicle directional trafficking to the ciliary base, and by facilitating YAP1 nuclear localization where it acts as a transcriptional corepressor of the TEAD4 target genes AURKA and PLK1 (PubMed:25849865). Probably plays a central role at and after the meiotic phase of spermatogenesis (By similarity). {ECO:0000250|UniProtKB:O70146, ECO:0000250|UniProtKB:Q63572, ECO:0000269|PubMed:15584898, ECO:0000269|PubMed:25849865}. |
Q9C0C2 | TNKS1BP1 | S680 | Sugiyama | 182 kDa tankyrase-1-binding protein | None |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-4839726 | Chromatin organization | 0.000003 | 5.596 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.000007 | 5.144 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.000073 | 4.136 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.000106 | 3.977 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.000218 | 3.661 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.000289 | 3.539 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.000676 | 3.170 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.000779 | 3.109 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.000842 | 3.074 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.001060 | 2.975 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.001517 | 2.819 |
R-HSA-5083630 | Defective LFNG causes SCDO3 | 0.001935 | 2.713 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.001751 | 2.757 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.002067 | 2.685 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.001850 | 2.733 |
R-HSA-3214842 | HDMs demethylate histones | 0.001766 | 2.753 |
R-HSA-73887 | Death Receptor Signaling | 0.001969 | 2.706 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.002580 | 2.588 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.002892 | 2.539 |
R-HSA-912631 | Regulation of signaling by CBL | 0.003090 | 2.510 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.003669 | 2.435 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.004184 | 2.378 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.004184 | 2.378 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.004322 | 2.364 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.005370 | 2.270 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.005370 | 2.270 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.005224 | 2.282 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.004802 | 2.319 |
R-HSA-157118 | Signaling by NOTCH | 0.005035 | 2.298 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.005224 | 2.282 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.006048 | 2.218 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.005978 | 2.223 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.005912 | 2.228 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.006048 | 2.218 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.005630 | 2.249 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.006483 | 2.188 |
R-HSA-180746 | Nuclear import of Rev protein | 0.006786 | 2.168 |
R-HSA-9909396 | Circadian clock | 0.007850 | 2.105 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.007587 | 2.120 |
R-HSA-1912399 | Pre-NOTCH Processing in the Endoplasmic Reticulum | 0.007962 | 2.099 |
R-HSA-169893 | Prolonged ERK activation events | 0.009117 | 2.040 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.009391 | 2.027 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.010744 | 1.969 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.010398 | 1.983 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.010890 | 1.963 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.011480 | 1.940 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.011480 | 1.940 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.011342 | 1.945 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.012640 | 1.898 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.012474 | 1.904 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.012781 | 1.893 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.012640 | 1.898 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.012640 | 1.898 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.012976 | 1.887 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.013879 | 1.858 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.014367 | 1.843 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.014796 | 1.830 |
R-HSA-3214847 | HATs acetylate histones | 0.014829 | 1.829 |
R-HSA-9762292 | Regulation of CDH11 function | 0.016024 | 1.795 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.016024 | 1.795 |
R-HSA-198203 | PI3K/AKT activation | 0.016024 | 1.795 |
R-HSA-193648 | NRAGE signals death through JNK | 0.015947 | 1.797 |
R-HSA-9843745 | Adipogenesis | 0.017393 | 1.760 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.017193 | 1.765 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.018169 | 1.741 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.018506 | 1.733 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.016606 | 1.780 |
R-HSA-186763 | Downstream signal transduction | 0.017715 | 1.752 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.019072 | 1.720 |
R-HSA-428540 | Activation of RAC1 | 0.023224 | 1.634 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.024513 | 1.611 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.021722 | 1.663 |
R-HSA-3371556 | Cellular response to heat stress | 0.022419 | 1.649 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.024460 | 1.612 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.024513 | 1.611 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.021356 | 1.670 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.022862 | 1.641 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.023124 | 1.636 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.024460 | 1.612 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.023124 | 1.636 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 0.024687 | 1.608 |
R-HSA-74160 | Gene expression (Transcription) | 0.025448 | 1.594 |
R-HSA-8848021 | Signaling by PTK6 | 0.026132 | 1.583 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.026132 | 1.583 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.027380 | 1.563 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.027380 | 1.563 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.030565 | 1.515 |
R-HSA-170968 | Frs2-mediated activation | 0.031905 | 1.496 |
R-HSA-74713 | IRS activation | 0.032737 | 1.485 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 0.032737 | 1.485 |
R-HSA-68911 | G2 Phase | 0.032737 | 1.485 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.032737 | 1.485 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.036795 | 1.434 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.036795 | 1.434 |
R-HSA-446728 | Cell junction organization | 0.034876 | 1.457 |
R-HSA-9839394 | TGFBR3 expression | 0.037520 | 1.426 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.037520 | 1.426 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.037520 | 1.426 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.038184 | 1.418 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.038184 | 1.418 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.041323 | 1.384 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.038383 | 1.416 |
R-HSA-166520 | Signaling by NTRKs | 0.038605 | 1.413 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.041388 | 1.383 |
R-HSA-2660826 | Constitutive Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 0.041661 | 1.380 |
R-HSA-2660825 | Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 0.041661 | 1.380 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.041661 | 1.380 |
R-HSA-5362798 | Release of Hh-Np from the secreting cell | 0.041661 | 1.380 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.041661 | 1.380 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.041661 | 1.380 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.042046 | 1.376 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.042046 | 1.376 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.045932 | 1.338 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.042046 | 1.376 |
R-HSA-75893 | TNF signaling | 0.046336 | 1.334 |
R-HSA-162582 | Signal Transduction | 0.043943 | 1.357 |
R-HSA-68875 | Mitotic Prophase | 0.046858 | 1.329 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.047251 | 1.326 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.047251 | 1.326 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.047651 | 1.322 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 0.047651 | 1.322 |
R-HSA-112412 | SOS-mediated signalling | 0.061815 | 1.209 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.059894 | 1.223 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.058630 | 1.232 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.058608 | 1.232 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.058608 | 1.232 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.058608 | 1.232 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.058608 | 1.232 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.058608 | 1.232 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.059214 | 1.228 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.059214 | 1.228 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.059214 | 1.228 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.061815 | 1.209 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.049825 | 1.303 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.058280 | 1.234 |
R-HSA-8948747 | Regulation of PTEN localization | 0.061815 | 1.209 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.053604 | 1.271 |
R-HSA-162587 | HIV Life Cycle | 0.053287 | 1.273 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.058072 | 1.236 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.055282 | 1.257 |
R-HSA-2028269 | Signaling by Hippo | 0.059894 | 1.223 |
R-HSA-191859 | snRNP Assembly | 0.055375 | 1.257 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.055375 | 1.257 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.060997 | 1.215 |
R-HSA-418990 | Adherens junctions interactions | 0.060600 | 1.218 |
R-HSA-1500931 | Cell-Cell communication | 0.055236 | 1.258 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.052797 | 1.277 |
R-HSA-5688426 | Deubiquitination | 0.055524 | 1.256 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.061449 | 1.211 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.077104 | 1.113 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.077104 | 1.113 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.077104 | 1.113 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.077104 | 1.113 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.077104 | 1.113 |
R-HSA-5602636 | IKBKB deficiency causes SCID | 0.113400 | 0.945 |
R-HSA-5603027 | IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (E... | 0.113400 | 0.945 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 0.148271 | 0.829 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 0.148271 | 0.829 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 0.148271 | 0.829 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 0.148271 | 0.829 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 0.148271 | 0.829 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 0.148271 | 0.829 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 0.148271 | 0.829 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 0.148271 | 0.829 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 0.148271 | 0.829 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 0.148271 | 0.829 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 0.148271 | 0.829 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 0.148271 | 0.829 |
R-HSA-8853336 | Signaling by plasma membrane FGFR1 fusions | 0.181773 | 0.740 |
R-HSA-8941237 | Invadopodia formation | 0.181773 | 0.740 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 0.181773 | 0.740 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 0.181773 | 0.740 |
R-HSA-8875656 | MET receptor recycling | 0.072898 | 1.137 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.084559 | 1.073 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 0.213958 | 0.670 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.213958 | 0.670 |
R-HSA-211163 | AKT-mediated inactivation of FOXO1A | 0.213958 | 0.670 |
R-HSA-2644607 | Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling | 0.213958 | 0.670 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 0.213958 | 0.670 |
R-HSA-9652169 | Signaling by MAP2K mutants | 0.213958 | 0.670 |
R-HSA-2644605 | FBXW7 Mutants and NOTCH1 in Cancer | 0.213958 | 0.670 |
R-HSA-111463 | SMAC (DIABLO) binds to IAPs | 0.244880 | 0.611 |
R-HSA-111464 | SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes | 0.244880 | 0.611 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.244880 | 0.611 |
R-HSA-9706377 | FLT3 signaling by CBL mutants | 0.244880 | 0.611 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.122417 | 0.912 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 0.073451 | 1.134 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.135811 | 0.867 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.135811 | 0.867 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.135811 | 0.867 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 0.135811 | 0.867 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 0.135811 | 0.867 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 0.135811 | 0.867 |
R-HSA-937039 | IRAK1 recruits IKK complex | 0.135811 | 0.867 |
R-HSA-111469 | SMAC, XIAP-regulated apoptotic response | 0.274587 | 0.561 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 0.274587 | 0.561 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 0.274587 | 0.561 |
R-HSA-109703 | PKB-mediated events | 0.274587 | 0.561 |
R-HSA-165160 | PDE3B signalling | 0.274587 | 0.561 |
R-HSA-111459 | Activation of caspases through apoptosome-mediated cleavage | 0.274587 | 0.561 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.274587 | 0.561 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.149510 | 0.825 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 0.149510 | 0.825 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 0.303127 | 0.518 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.303127 | 0.518 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.303127 | 0.518 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.177646 | 0.750 |
R-HSA-163767 | PP2A-mediated dephosphorylation of key metabolic factors | 0.330546 | 0.481 |
R-HSA-72731 | Recycling of eIF2:GDP | 0.330546 | 0.481 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.148253 | 0.829 |
R-HSA-1169092 | Activation of RAS in B cells | 0.356887 | 0.447 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.356887 | 0.447 |
R-HSA-196025 | Formation of annular gap junctions | 0.356887 | 0.447 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.157704 | 0.802 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.157704 | 0.802 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.167333 | 0.776 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.096374 | 1.016 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.177130 | 0.752 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.177130 | 0.752 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.250550 | 0.601 |
R-HSA-170984 | ARMS-mediated activation | 0.382194 | 0.418 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 0.382194 | 0.418 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 0.382194 | 0.418 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.382194 | 0.418 |
R-HSA-190873 | Gap junction degradation | 0.382194 | 0.418 |
R-HSA-112411 | MAPK1 (ERK2) activation | 0.382194 | 0.418 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.382194 | 0.418 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.101489 | 0.994 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.073587 | 1.133 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.406506 | 0.391 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.115349 | 0.938 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 0.309520 | 0.509 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.429863 | 0.367 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.429863 | 0.367 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.429863 | 0.367 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.159516 | 0.797 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.159516 | 0.797 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.324154 | 0.489 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 0.324154 | 0.489 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 0.324154 | 0.489 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.172473 | 0.763 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.214144 | 0.669 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.179099 | 0.747 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.292318 | 0.534 |
R-HSA-3371568 | Attenuation phase | 0.292318 | 0.534 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.292318 | 0.534 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.227907 | 0.642 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.314032 | 0.503 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.314032 | 0.503 |
R-HSA-167161 | HIV Transcription Initiation | 0.314032 | 0.503 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.314032 | 0.503 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.381721 | 0.418 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.381721 | 0.418 |
R-HSA-380287 | Centrosome maturation | 0.242519 | 0.615 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.324906 | 0.488 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.335779 | 0.474 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.395799 | 0.403 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.395799 | 0.403 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.357491 | 0.447 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.423499 | 0.373 |
R-HSA-182971 | EGFR downregulation | 0.437100 | 0.359 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.153174 | 0.815 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.349877 | 0.456 |
R-HSA-72187 | mRNA 3'-end processing | 0.432318 | 0.364 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.442773 | 0.354 |
R-HSA-167172 | Transcription of the HIV genome | 0.192630 | 0.715 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.272873 | 0.564 |
R-HSA-9609690 | HCMV Early Events | 0.097229 | 1.012 |
R-HSA-72086 | mRNA Capping | 0.409729 | 0.388 |
R-HSA-209543 | p75NTR recruits signalling complexes | 0.135811 | 0.867 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.081847 | 1.087 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.209947 | 0.678 |
R-HSA-202433 | Generation of second messenger molecules | 0.292318 | 0.534 |
R-HSA-156711 | Polo-like kinase mediated events | 0.066513 | 1.177 |
R-HSA-9646399 | Aggrephagy | 0.292318 | 0.534 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.270713 | 0.567 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.082056 | 1.086 |
R-HSA-9614085 | FOXO-mediated transcription | 0.281916 | 0.550 |
R-HSA-2424491 | DAP12 signaling | 0.177130 | 0.752 |
R-HSA-201451 | Signaling by BMP | 0.381721 | 0.418 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.207388 | 0.683 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.177646 | 0.750 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.302467 | 0.519 |
R-HSA-163680 | AMPK inhibits chREBP transcriptional activation activity | 0.084559 | 1.073 |
R-HSA-191650 | Regulation of gap junction activity | 0.213958 | 0.670 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 0.135811 | 0.867 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.177646 | 0.750 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.148253 | 0.829 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.300853 | 0.522 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.073772 | 1.132 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.314032 | 0.503 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.368313 | 0.434 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.368313 | 0.434 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.368313 | 0.434 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.390715 | 0.408 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 0.244880 | 0.611 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.122417 | 0.912 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 0.177646 | 0.750 |
R-HSA-354192 | Integrin signaling | 0.073772 | 1.132 |
R-HSA-8849473 | PTK6 Expression | 0.330546 | 0.481 |
R-HSA-8847453 | Synthesis of PIPs in the nucleus | 0.330546 | 0.481 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.250550 | 0.601 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.280081 | 0.553 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 0.429863 | 0.367 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.259976 | 0.585 |
R-HSA-112399 | IRS-mediated signalling | 0.265477 | 0.576 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.118029 | 0.928 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.318594 | 0.497 |
R-HSA-9609646 | HCMV Infection | 0.201702 | 0.695 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.088617 | 1.052 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.367504 | 0.435 |
R-HSA-9692913 | SARS-CoV-1-mediated effects on programmed cell death | 0.213958 | 0.670 |
R-HSA-69560 | Transcriptional activation of p53 responsive genes | 0.213958 | 0.670 |
R-HSA-69895 | Transcriptional activation of cell cycle inhibitor p21 | 0.213958 | 0.670 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.244880 | 0.611 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.206505 | 0.685 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.138996 | 0.857 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.197169 | 0.705 |
R-HSA-9930044 | Nuclear RNA decay | 0.207388 | 0.683 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.207388 | 0.683 |
R-HSA-5221030 | TET1,2,3 and TDG demethylate DNA | 0.406506 | 0.391 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.429863 | 0.367 |
R-HSA-202403 | TCR signaling | 0.365418 | 0.437 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.166059 | 0.780 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.122417 | 0.912 |
R-HSA-6807070 | PTEN Regulation | 0.101807 | 0.992 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.292318 | 0.534 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.292318 | 0.534 |
R-HSA-3295583 | TRP channels | 0.367504 | 0.435 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.423499 | 0.373 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.390715 | 0.408 |
R-HSA-68877 | Mitotic Prometaphase | 0.150328 | 0.823 |
R-HSA-6802949 | Signaling by RAS mutants | 0.368313 | 0.434 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.314032 | 0.503 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.096993 | 1.013 |
R-HSA-376176 | Signaling by ROBO receptors | 0.400110 | 0.398 |
R-HSA-2428924 | IGF1R signaling cascade | 0.327728 | 0.484 |
R-HSA-177929 | Signaling by EGFR | 0.117620 | 0.930 |
R-HSA-165159 | MTOR signalling | 0.143651 | 0.843 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.442941 | 0.354 |
R-HSA-373756 | SDK interactions | 0.077104 | 1.113 |
R-HSA-168315 | Inhibition of Host mRNA Processing and RNA Silencing | 0.113400 | 0.945 |
R-HSA-9839406 | TGFBR3 regulates activin signaling | 0.148271 | 0.829 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 0.148271 | 0.829 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.181773 | 0.740 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.181773 | 0.740 |
R-HSA-9927354 | Co-stimulation by ICOS | 0.072898 | 1.137 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.213958 | 0.670 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.244880 | 0.611 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.122417 | 0.912 |
R-HSA-389397 | Orexin and neuropeptides FF and QRFP bind to their respective receptors | 0.274587 | 0.561 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 0.274587 | 0.561 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 0.149510 | 0.825 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 0.149510 | 0.825 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 0.149510 | 0.825 |
R-HSA-69478 | G2/M DNA replication checkpoint | 0.303127 | 0.518 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 0.356887 | 0.447 |
R-HSA-8875878 | MET promotes cell motility | 0.109284 | 0.961 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.235808 | 0.627 |
R-HSA-176974 | Unwinding of DNA | 0.382194 | 0.418 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.406506 | 0.391 |
R-HSA-4839744 | Signaling by APC mutants | 0.429863 | 0.367 |
R-HSA-109704 | PI3K Cascade | 0.205868 | 0.686 |
R-HSA-429947 | Deadenylation of mRNA | 0.338707 | 0.470 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.381721 | 0.418 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.241883 | 0.616 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.409729 | 0.388 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.442941 | 0.354 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.327728 | 0.484 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.133718 | 0.874 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.090690 | 1.042 |
R-HSA-9824272 | Somitogenesis | 0.357491 | 0.447 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.336722 | 0.473 |
R-HSA-9610379 | HCMV Late Events | 0.272873 | 0.564 |
R-HSA-69275 | G2/M Transition | 0.310884 | 0.507 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.177646 | 0.750 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.115834 | 0.936 |
R-HSA-8849474 | PTK6 Activates STAT3 | 0.244880 | 0.611 |
R-HSA-9686347 | Microbial modulation of RIPK1-mediated regulated necrosis | 0.330546 | 0.481 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.228159 | 0.642 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.415934 | 0.381 |
R-HSA-74749 | Signal attenuation | 0.096738 | 1.014 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.356887 | 0.447 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 0.265316 | 0.576 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.443823 | 0.353 |
R-HSA-68886 | M Phase | 0.197009 | 0.706 |
R-HSA-2172127 | DAP12 interactions | 0.346644 | 0.460 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.443823 | 0.353 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.443823 | 0.353 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.235808 | 0.627 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.265316 | 0.576 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.173791 | 0.760 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.146976 | 0.833 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.379102 | 0.421 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.407797 | 0.390 |
R-HSA-187687 | Signalling to ERKs | 0.090690 | 1.042 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.200363 | 0.698 |
R-HSA-111448 | Activation of NOXA and translocation to mitochondria | 0.213958 | 0.670 |
R-HSA-9842663 | Signaling by LTK | 0.135811 | 0.867 |
R-HSA-9005895 | Pervasive developmental disorders | 0.135811 | 0.867 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.135811 | 0.867 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.135811 | 0.867 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.330546 | 0.481 |
R-HSA-9707616 | Heme signaling | 0.065406 | 1.184 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 0.382194 | 0.418 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 0.382194 | 0.418 |
R-HSA-9693928 | Defective RIPK1-mediated regulated necrosis | 0.406506 | 0.391 |
R-HSA-9761174 | Formation of intermediate mesoderm | 0.406506 | 0.391 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.172555 | 0.763 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.268396 | 0.571 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.148253 | 0.829 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.192003 | 0.717 |
R-HSA-193697 | p75NTR regulates axonogenesis | 0.382194 | 0.418 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.310405 | 0.508 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.109485 | 0.961 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.206505 | 0.685 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.145770 | 0.836 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.207388 | 0.683 |
R-HSA-9612973 | Autophagy | 0.398336 | 0.400 |
R-HSA-1640170 | Cell Cycle | 0.159632 | 0.797 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.102907 | 0.988 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.207388 | 0.683 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.262403 | 0.581 |
R-HSA-2559583 | Cellular Senescence | 0.181210 | 0.742 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 0.324154 | 0.489 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.099077 | 1.004 |
R-HSA-162906 | HIV Infection | 0.198373 | 0.703 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 0.084559 | 1.073 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 0.213958 | 0.670 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 0.274587 | 0.561 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.088237 | 1.054 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.192003 | 0.717 |
R-HSA-5635838 | Activation of SMO | 0.192003 | 0.717 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 0.330546 | 0.481 |
R-HSA-8964046 | VLDL clearance | 0.330546 | 0.481 |
R-HSA-1433617 | Regulation of signaling by NODAL | 0.382194 | 0.418 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.280081 | 0.553 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.324154 | 0.489 |
R-HSA-5689901 | Metalloprotease DUBs | 0.367504 | 0.435 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.423499 | 0.373 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.310822 | 0.507 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.316318 | 0.500 |
R-HSA-212436 | Generic Transcription Pathway | 0.108118 | 0.966 |
R-HSA-421270 | Cell-cell junction organization | 0.084135 | 1.075 |
R-HSA-2262752 | Cellular responses to stress | 0.319245 | 0.496 |
R-HSA-5689880 | Ub-specific processing proteases | 0.246278 | 0.609 |
R-HSA-1632852 | Macroautophagy | 0.303308 | 0.518 |
R-HSA-114452 | Activation of BH3-only proteins | 0.423499 | 0.373 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.249298 | 0.603 |
R-HSA-445355 | Smooth Muscle Contraction | 0.442773 | 0.354 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.274255 | 0.562 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.179431 | 0.746 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.391125 | 0.408 |
R-HSA-9663891 | Selective autophagy | 0.197614 | 0.704 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.338707 | 0.470 |
R-HSA-8953897 | Cellular responses to stimuli | 0.333103 | 0.477 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.360236 | 0.443 |
R-HSA-199991 | Membrane Trafficking | 0.292326 | 0.534 |
R-HSA-392517 | Rap1 signalling | 0.250550 | 0.601 |
R-HSA-8934903 | Receptor Mediated Mitophagy | 0.406506 | 0.391 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.192630 | 0.715 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.189226 | 0.723 |
R-HSA-68882 | Mitotic Anaphase | 0.350179 | 0.456 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.206505 | 0.685 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.235808 | 0.627 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.065406 | 1.184 |
R-HSA-5689603 | UCH proteinases | 0.249918 | 0.602 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.355164 | 0.450 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.140871 | 0.851 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.421794 | 0.375 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.292318 | 0.534 |
R-HSA-9006936 | Signaling by TGFB family members | 0.107618 | 0.968 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.238688 | 0.622 |
R-HSA-1538133 | G0 and Early G1 | 0.450525 | 0.346 |
R-HSA-422475 | Axon guidance | 0.340401 | 0.468 |
R-HSA-6806834 | Signaling by MET | 0.280038 | 0.553 |
R-HSA-5683057 | MAPK family signaling cascades | 0.403212 | 0.394 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 0.084559 | 1.073 |
R-HSA-390651 | Dopamine receptors | 0.213958 | 0.670 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.244880 | 0.611 |
R-HSA-9842640 | Signaling by LTK in cancer | 0.303127 | 0.518 |
R-HSA-9839389 | TGFBR3 regulates TGF-beta signaling | 0.330546 | 0.481 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 0.356887 | 0.447 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.382194 | 0.418 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.406506 | 0.391 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.294823 | 0.530 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.207911 | 0.682 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.213566 | 0.670 |
R-HSA-9675108 | Nervous system development | 0.381748 | 0.418 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.096708 | 1.015 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.381721 | 0.418 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.291949 | 0.535 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.326389 | 0.486 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.365418 | 0.437 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.088237 | 1.054 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.111244 | 0.954 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.138996 | 0.857 |
R-HSA-400685 | Sema4D in semaphorin signaling | 0.353162 | 0.452 |
R-HSA-9659379 | Sensory processing of sound | 0.272437 | 0.565 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.334203 | 0.476 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.365418 | 0.437 |
R-HSA-9007101 | Rab regulation of trafficking | 0.275551 | 0.560 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.400554 | 0.397 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.400554 | 0.397 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.135811 | 0.867 |
R-HSA-416700 | Other semaphorin interactions | 0.177646 | 0.750 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.381721 | 0.418 |
R-HSA-373755 | Semaphorin interactions | 0.159516 | 0.797 |
R-HSA-450294 | MAP kinase activation | 0.146976 | 0.833 |
R-HSA-5632684 | Hedgehog 'on' state | 0.390715 | 0.408 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.330264 | 0.481 |
R-HSA-201556 | Signaling by ALK | 0.115834 | 0.936 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.123252 | 0.909 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.206507 | 0.685 |
R-HSA-8854214 | TBC/RABGAPs | 0.335779 | 0.474 |
R-HSA-9758941 | Gastrulation | 0.231811 | 0.635 |
R-HSA-389356 | Co-stimulation by CD28 | 0.389851 | 0.409 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.417521 | 0.379 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.096061 | 1.017 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.096061 | 1.017 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.079218 | 1.101 |
R-HSA-9613354 | Lipophagy | 0.382194 | 0.418 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 0.382194 | 0.418 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.105964 | 0.975 |
R-HSA-9754560 | SARS-CoV-2 modulates autophagy | 0.429863 | 0.367 |
R-HSA-427601 | Inorganic anion exchange by SLC26 transporters | 0.429863 | 0.367 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.429863 | 0.367 |
R-HSA-448424 | Interleukin-17 signaling | 0.206507 | 0.685 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.230509 | 0.637 |
R-HSA-8874211 | CREB3 factors activate genes | 0.303127 | 0.518 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.088237 | 1.054 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.409729 | 0.388 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.250550 | 0.601 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.076957 | 1.114 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.338707 | 0.470 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.357491 | 0.447 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.065689 | 1.183 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 0.274587 | 0.561 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.163468 | 0.787 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.112512 | 0.949 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.207388 | 0.683 |
R-HSA-9627069 | Regulation of the apoptosome activity | 0.406506 | 0.391 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.259976 | 0.585 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.437100 | 0.359 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.202131 | 0.694 |
R-HSA-186797 | Signaling by PDGF | 0.065406 | 1.184 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.091151 | 1.040 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.256752 | 0.590 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.428299 | 0.368 |
R-HSA-186712 | Regulation of beta-cell development | 0.283081 | 0.548 |
R-HSA-168255 | Influenza Infection | 0.275534 | 0.560 |
R-HSA-5210891 | Uptake and function of anthrax toxins | 0.221116 | 0.655 |
R-HSA-9733709 | Cardiogenesis | 0.207388 | 0.683 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.450525 | 0.346 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.406506 | 0.391 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.204924 | 0.688 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.204924 | 0.688 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.177130 | 0.752 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.432318 | 0.364 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.236817 | 0.626 |
R-HSA-70171 | Glycolysis | 0.162294 | 0.790 |
R-HSA-162909 | Host Interactions of HIV factors | 0.319330 | 0.496 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.389851 | 0.409 |
R-HSA-1483255 | PI Metabolism | 0.172555 | 0.763 |
R-HSA-9831926 | Nephron development | 0.235808 | 0.627 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.206505 | 0.685 |
R-HSA-9031628 | NGF-stimulated transcription | 0.189612 | 0.722 |
R-HSA-2586552 | Signaling by Leptin | 0.096738 | 1.014 |
R-HSA-9827857 | Specification of primordial germ cells | 0.221116 | 0.655 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.220700 | 0.656 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.356887 | 0.447 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.382194 | 0.418 |
R-HSA-111458 | Formation of apoptosome | 0.406506 | 0.391 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.436073 | 0.360 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 0.235808 | 0.627 |
R-HSA-8853659 | RET signaling | 0.249298 | 0.603 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.381737 | 0.418 |
R-HSA-1266695 | Interleukin-7 signaling | 0.129944 | 0.886 |
R-HSA-211000 | Gene Silencing by RNA | 0.204924 | 0.688 |
R-HSA-70326 | Glucose metabolism | 0.275551 | 0.560 |
R-HSA-982772 | Growth hormone receptor signaling | 0.112512 | 0.949 |
R-HSA-9008059 | Interleukin-37 signaling | 0.423499 | 0.373 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.158454 | 0.800 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.120194 | 0.920 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.450525 | 0.346 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.386320 | 0.413 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 0.452302 | 0.345 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.452302 | 0.345 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.452302 | 0.345 |
R-HSA-202670 | ERKs are inactivated | 0.452302 | 0.345 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.452302 | 0.345 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.452302 | 0.345 |
R-HSA-113501 | Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 0.452302 | 0.345 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 0.452302 | 0.345 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.452811 | 0.344 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.463448 | 0.334 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.463767 | 0.334 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.463767 | 0.334 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.463767 | 0.334 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.463836 | 0.334 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.463836 | 0.334 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.470198 | 0.328 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.473660 | 0.325 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.473860 | 0.324 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.473860 | 0.324 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.473860 | 0.324 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.473860 | 0.324 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.473860 | 0.324 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.473860 | 0.324 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.473860 | 0.324 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 0.473860 | 0.324 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.476819 | 0.322 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.476819 | 0.322 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.482237 | 0.317 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.489675 | 0.310 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.489675 | 0.310 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.489675 | 0.310 |
R-HSA-5673000 | RAF activation | 0.489675 | 0.310 |
R-HSA-5205647 | Mitophagy | 0.489675 | 0.310 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.489675 | 0.310 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.492663 | 0.307 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.494570 | 0.306 |
R-HSA-9796292 | Formation of axial mesoderm | 0.494570 | 0.306 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 0.494570 | 0.306 |
R-HSA-1059683 | Interleukin-6 signaling | 0.494570 | 0.306 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.497211 | 0.303 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.497211 | 0.303 |
R-HSA-9833110 | RSV-host interactions | 0.497211 | 0.303 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.498939 | 0.302 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.504326 | 0.297 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.504686 | 0.297 |
R-HSA-69481 | G2/M Checkpoints | 0.504959 | 0.297 |
R-HSA-114608 | Platelet degranulation | 0.504959 | 0.297 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.505396 | 0.296 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.505396 | 0.296 |
R-HSA-195721 | Signaling by WNT | 0.510806 | 0.292 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.513569 | 0.289 |
R-HSA-1227986 | Signaling by ERBB2 | 0.513569 | 0.289 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.514466 | 0.289 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 0.514466 | 0.289 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.514466 | 0.289 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.514466 | 0.289 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.514466 | 0.289 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 0.514466 | 0.289 |
R-HSA-1433559 | Regulation of KIT signaling | 0.514466 | 0.289 |
R-HSA-8963896 | HDL assembly | 0.514466 | 0.289 |
R-HSA-9682385 | FLT3 signaling in disease | 0.514783 | 0.288 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.514783 | 0.288 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.516990 | 0.287 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.523294 | 0.281 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.526841 | 0.278 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.527026 | 0.278 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.527026 | 0.278 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.529271 | 0.276 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.532726 | 0.273 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.533580 | 0.273 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.533580 | 0.273 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.533580 | 0.273 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 0.533580 | 0.273 |
R-HSA-1502540 | Signaling by Activin | 0.533580 | 0.273 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 0.533580 | 0.273 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 0.533580 | 0.273 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.533580 | 0.273 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.533580 | 0.273 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.533580 | 0.273 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.534130 | 0.272 |
R-HSA-1989781 | PPARA activates gene expression | 0.542104 | 0.266 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.542418 | 0.266 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.550878 | 0.259 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.550878 | 0.259 |
R-HSA-69541 | Stabilization of p53 | 0.550878 | 0.259 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.550878 | 0.259 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.551416 | 0.259 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.551812 | 0.258 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.551942 | 0.258 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.551942 | 0.258 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 0.551942 | 0.258 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 0.551942 | 0.258 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.551942 | 0.258 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.551942 | 0.258 |
R-HSA-9945266 | Differentiation of T cells | 0.551942 | 0.258 |
R-HSA-9634600 | Regulation of glycolysis by fructose 2,6-bisphosphate metabolism | 0.551942 | 0.258 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.560132 | 0.252 |
R-HSA-1234174 | Cellular response to hypoxia | 0.561091 | 0.251 |
R-HSA-202424 | Downstream TCR signaling | 0.561543 | 0.251 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.562362 | 0.250 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.562483 | 0.250 |
R-HSA-167169 | HIV Transcription Elongation | 0.562483 | 0.250 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.562483 | 0.250 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.562483 | 0.250 |
R-HSA-5260271 | Diseases of Immune System | 0.562483 | 0.250 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.562483 | 0.250 |
R-HSA-451927 | Interleukin-2 family signaling | 0.562483 | 0.250 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.562756 | 0.250 |
R-HSA-1266738 | Developmental Biology | 0.563322 | 0.249 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.569583 | 0.244 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 0.569583 | 0.244 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 0.569583 | 0.244 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 0.569583 | 0.244 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 0.569583 | 0.244 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 0.569583 | 0.244 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.569583 | 0.244 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.569773 | 0.244 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.570252 | 0.244 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 0.573871 | 0.241 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.573871 | 0.241 |
R-HSA-9607240 | FLT3 Signaling | 0.573871 | 0.241 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.577054 | 0.239 |
R-HSA-9830369 | Kidney development | 0.579295 | 0.237 |
R-HSA-74752 | Signaling by Insulin receptor | 0.584938 | 0.233 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.585041 | 0.233 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.585041 | 0.233 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.585041 | 0.233 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.585041 | 0.233 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.586531 | 0.232 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.586531 | 0.232 |
R-HSA-209905 | Catecholamine biosynthesis | 0.586531 | 0.232 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 0.586531 | 0.232 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.586531 | 0.232 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.586531 | 0.232 |
R-HSA-5218859 | Regulated Necrosis | 0.588217 | 0.230 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.588217 | 0.230 |
R-HSA-5358351 | Signaling by Hedgehog | 0.589596 | 0.229 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.590468 | 0.229 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.595994 | 0.225 |
R-HSA-373760 | L1CAM interactions | 0.597243 | 0.224 |
R-HSA-5617833 | Cilium Assembly | 0.600487 | 0.221 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.602812 | 0.220 |
R-HSA-418217 | G beta:gamma signalling through PLC beta | 0.602812 | 0.220 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.602812 | 0.220 |
R-HSA-500657 | Presynaptic function of Kainate receptors | 0.602812 | 0.220 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.602812 | 0.220 |
R-HSA-111471 | Apoptotic factor-mediated response | 0.602812 | 0.220 |
R-HSA-432142 | Platelet sensitization by LDL | 0.602812 | 0.220 |
R-HSA-180292 | GAB1 signalosome | 0.602812 | 0.220 |
R-HSA-210993 | Tie2 Signaling | 0.602812 | 0.220 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.602812 | 0.220 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.605692 | 0.218 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.605797 | 0.218 |
R-HSA-9711123 | Cellular response to chemical stress | 0.605880 | 0.218 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.606728 | 0.217 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.607594 | 0.216 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.614243 | 0.212 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.614976 | 0.211 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.617188 | 0.210 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.617245 | 0.210 |
R-HSA-373752 | Netrin-1 signaling | 0.617245 | 0.210 |
R-HSA-69236 | G1 Phase | 0.617245 | 0.210 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.617245 | 0.210 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 0.618453 | 0.209 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 0.618453 | 0.209 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.619767 | 0.208 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.622271 | 0.206 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.627544 | 0.202 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.630156 | 0.201 |
R-HSA-4086398 | Ca2+ pathway | 0.630967 | 0.200 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.633478 | 0.198 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.633478 | 0.198 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 0.633478 | 0.198 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.633478 | 0.198 |
R-HSA-6807004 | Negative regulation of MET activity | 0.633478 | 0.198 |
R-HSA-1181150 | Signaling by NODAL | 0.633478 | 0.198 |
R-HSA-1482922 | Acyl chain remodelling of PI | 0.633478 | 0.198 |
R-HSA-140875 | Common Pathway of Fibrin Clot Formation | 0.633478 | 0.198 |
R-HSA-9629569 | Protein hydroxylation | 0.633478 | 0.198 |
R-HSA-445144 | Signal transduction by L1 | 0.633478 | 0.198 |
R-HSA-373753 | Nephrin family interactions | 0.633478 | 0.198 |
R-HSA-72306 | tRNA processing | 0.634229 | 0.198 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.637627 | 0.195 |
R-HSA-75153 | Apoptotic execution phase | 0.637627 | 0.195 |
R-HSA-1236394 | Signaling by ERBB4 | 0.639139 | 0.194 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.639627 | 0.194 |
R-HSA-8852135 | Protein ubiquitination | 0.647183 | 0.189 |
R-HSA-437239 | Recycling pathway of L1 | 0.647494 | 0.189 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.647914 | 0.188 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 0.647914 | 0.188 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 0.647914 | 0.188 |
R-HSA-198753 | ERK/MAPK targets | 0.647914 | 0.188 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.647914 | 0.188 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.647914 | 0.188 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.655099 | 0.184 |
R-HSA-9020702 | Interleukin-1 signaling | 0.657416 | 0.182 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.661781 | 0.179 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.661781 | 0.179 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.661781 | 0.179 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 0.661781 | 0.179 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.661781 | 0.179 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.661781 | 0.179 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.661781 | 0.179 |
R-HSA-947581 | Molybdenum cofactor biosynthesis | 0.661781 | 0.179 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.661781 | 0.179 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.666587 | 0.176 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.669196 | 0.174 |
R-HSA-4086400 | PCP/CE pathway | 0.670547 | 0.174 |
R-HSA-6803529 | FGFR2 alternative splicing | 0.675103 | 0.171 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.675103 | 0.171 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.675103 | 0.171 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.675103 | 0.171 |
R-HSA-166208 | mTORC1-mediated signalling | 0.675103 | 0.171 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.675103 | 0.171 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.675103 | 0.171 |
R-HSA-9669938 | Signaling by KIT in disease | 0.675103 | 0.171 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.675103 | 0.171 |
R-HSA-8964038 | LDL clearance | 0.675103 | 0.171 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.675103 | 0.171 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.675816 | 0.170 |
R-HSA-446652 | Interleukin-1 family signaling | 0.676991 | 0.169 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.677416 | 0.169 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.677416 | 0.169 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.678078 | 0.169 |
R-HSA-5357801 | Programmed Cell Death | 0.680832 | 0.167 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.684837 | 0.164 |
R-HSA-9864848 | Complex IV assembly | 0.684837 | 0.164 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.685481 | 0.164 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 0.687901 | 0.162 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 0.687901 | 0.162 |
R-HSA-200425 | Carnitine shuttle | 0.687901 | 0.162 |
R-HSA-9830674 | Formation of the ureteric bud | 0.687901 | 0.162 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.692757 | 0.159 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.693650 | 0.159 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.693650 | 0.159 |
R-HSA-68949 | Orc1 removal from chromatin | 0.693650 | 0.159 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.693650 | 0.159 |
R-HSA-6794361 | Neurexins and neuroligins | 0.693650 | 0.159 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.693650 | 0.159 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.693650 | 0.159 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 0.693650 | 0.159 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.696591 | 0.157 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.700196 | 0.155 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 0.700196 | 0.155 |
R-HSA-9865881 | Complex III assembly | 0.700196 | 0.155 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.700196 | 0.155 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.700196 | 0.155 |
R-HSA-8963898 | Plasma lipoprotein assembly | 0.700196 | 0.155 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.700196 | 0.155 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.702260 | 0.154 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.702260 | 0.154 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.702260 | 0.154 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.702260 | 0.154 |
R-HSA-9711097 | Cellular response to starvation | 0.708379 | 0.150 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.708913 | 0.149 |
R-HSA-9620244 | Long-term potentiation | 0.712007 | 0.148 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.712007 | 0.148 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.713820 | 0.146 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.718874 | 0.143 |
R-HSA-3214815 | HDACs deacetylate histones | 0.718874 | 0.143 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.718874 | 0.143 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.720588 | 0.142 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.723353 | 0.141 |
R-HSA-525793 | Myogenesis | 0.723353 | 0.141 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.723353 | 0.141 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 0.723353 | 0.141 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.726885 | 0.139 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.726885 | 0.139 |
R-HSA-109581 | Apoptosis | 0.728117 | 0.138 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.734253 | 0.134 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 0.734253 | 0.134 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 0.734253 | 0.134 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.734253 | 0.134 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 0.734253 | 0.134 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.739378 | 0.131 |
R-HSA-5653656 | Vesicle-mediated transport | 0.743470 | 0.129 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.744724 | 0.128 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.744724 | 0.128 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.744724 | 0.128 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.744724 | 0.128 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 0.744724 | 0.128 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.744724 | 0.128 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.749764 | 0.125 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.749764 | 0.125 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.750354 | 0.125 |
R-HSA-5619102 | SLC transporter disorders | 0.751446 | 0.124 |
R-HSA-1236974 | ER-Phagosome pathway | 0.752571 | 0.123 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.754539 | 0.122 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.754784 | 0.122 |
R-HSA-9615710 | Late endosomal microautophagy | 0.754784 | 0.122 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.754784 | 0.122 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.754784 | 0.122 |
R-HSA-210745 | Regulation of gene expression in beta cells | 0.754784 | 0.122 |
R-HSA-180024 | DARPP-32 events | 0.754784 | 0.122 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.757016 | 0.121 |
R-HSA-983189 | Kinesins | 0.757016 | 0.121 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.759836 | 0.119 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.764086 | 0.117 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.764447 | 0.117 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.764447 | 0.117 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 0.764447 | 0.117 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.769038 | 0.114 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.770976 | 0.113 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.770976 | 0.113 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.770976 | 0.113 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.770976 | 0.113 |
R-HSA-1268020 | Mitochondrial protein import | 0.770976 | 0.113 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.773730 | 0.111 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.773730 | 0.111 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.773730 | 0.111 |
R-HSA-5694530 | Cargo concentration in the ER | 0.773730 | 0.111 |
R-HSA-2129379 | Molecules associated with elastic fibres | 0.773730 | 0.111 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.774845 | 0.111 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.777480 | 0.109 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.777691 | 0.109 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.782604 | 0.106 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.782648 | 0.106 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.782648 | 0.106 |
R-HSA-69190 | DNA strand elongation | 0.782648 | 0.106 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.786475 | 0.104 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.791215 | 0.102 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.791215 | 0.102 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.791215 | 0.102 |
R-HSA-159418 | Recycling of bile acids and salts | 0.791215 | 0.102 |
R-HSA-72172 | mRNA Splicing | 0.793867 | 0.100 |
R-HSA-390522 | Striated Muscle Contraction | 0.799445 | 0.097 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.799445 | 0.097 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.799445 | 0.097 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.799445 | 0.097 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.799445 | 0.097 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.802851 | 0.095 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.807351 | 0.093 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.807351 | 0.093 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.807351 | 0.093 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.807351 | 0.093 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.807351 | 0.093 |
R-HSA-5686938 | Regulation of TLR by endogenous ligand | 0.807351 | 0.093 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.807351 | 0.093 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.807415 | 0.093 |
R-HSA-8939211 | ESR-mediated signaling | 0.808592 | 0.092 |
R-HSA-449147 | Signaling by Interleukins | 0.810391 | 0.091 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.811401 | 0.091 |
R-HSA-1483257 | Phospholipid metabolism | 0.811475 | 0.091 |
R-HSA-194138 | Signaling by VEGF | 0.812366 | 0.090 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.814459 | 0.089 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.814945 | 0.089 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.814945 | 0.089 |
R-HSA-169911 | Regulation of Apoptosis | 0.814945 | 0.089 |
R-HSA-381042 | PERK regulates gene expression | 0.814945 | 0.089 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.814945 | 0.089 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.820030 | 0.086 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.820030 | 0.086 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.820030 | 0.086 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.822040 | 0.085 |
R-HSA-69205 | G1/S-Specific Transcription | 0.822241 | 0.085 |
R-HSA-3371511 | HSF1 activation | 0.822241 | 0.085 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.822241 | 0.085 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.822241 | 0.085 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.822241 | 0.085 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.822241 | 0.085 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 0.822241 | 0.085 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 0.822241 | 0.085 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.825451 | 0.083 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.825451 | 0.083 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.825451 | 0.083 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.829250 | 0.081 |
R-HSA-4641258 | Degradation of DVL | 0.829250 | 0.081 |
R-HSA-4641257 | Degradation of AXIN | 0.829250 | 0.081 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.829250 | 0.081 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 0.829250 | 0.081 |
R-HSA-419037 | NCAM1 interactions | 0.829250 | 0.081 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.830725 | 0.081 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.830725 | 0.081 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.830725 | 0.081 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.830725 | 0.081 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.835855 | 0.078 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.835855 | 0.078 |
R-HSA-1566948 | Elastic fibre formation | 0.835982 | 0.078 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.835982 | 0.078 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.835982 | 0.078 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 0.835982 | 0.078 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.836804 | 0.077 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.840844 | 0.075 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.841403 | 0.075 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.842450 | 0.074 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.842450 | 0.074 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.842450 | 0.074 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.844357 | 0.073 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.845696 | 0.073 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.848663 | 0.071 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.848663 | 0.071 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.849463 | 0.071 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.854631 | 0.068 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.854631 | 0.068 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.854631 | 0.068 |
R-HSA-9694548 | Maturation of spike protein | 0.854631 | 0.068 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.854631 | 0.068 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.855955 | 0.068 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.859771 | 0.066 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.859771 | 0.066 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.859771 | 0.066 |
R-HSA-2672351 | Stimuli-sensing channels | 0.859771 | 0.066 |
R-HSA-6811438 | Intra-Golgi traffic | 0.860364 | 0.065 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.860364 | 0.065 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.860364 | 0.065 |
R-HSA-189451 | Heme biosynthesis | 0.860364 | 0.065 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.860364 | 0.065 |
R-HSA-163685 | Integration of energy metabolism | 0.861925 | 0.065 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.865872 | 0.063 |
R-HSA-5654738 | Signaling by FGFR2 | 0.867993 | 0.061 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.867993 | 0.061 |
R-HSA-9833482 | PKR-mediated signaling | 0.867993 | 0.061 |
R-HSA-9948299 | Ribosome-associated quality control | 0.868463 | 0.061 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.871162 | 0.060 |
R-HSA-5654743 | Signaling by FGFR4 | 0.871162 | 0.060 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.871162 | 0.060 |
R-HSA-9907900 | Proteasome assembly | 0.876244 | 0.057 |
R-HSA-190828 | Gap junction trafficking | 0.876244 | 0.057 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.876244 | 0.057 |
R-HSA-375280 | Amine ligand-binding receptors | 0.876244 | 0.057 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.880857 | 0.055 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.881126 | 0.055 |
R-HSA-5654741 | Signaling by FGFR3 | 0.881126 | 0.055 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.881126 | 0.055 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.881126 | 0.055 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.881126 | 0.055 |
R-HSA-1489509 | DAG and IP3 signaling | 0.881126 | 0.055 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.885816 | 0.053 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.885816 | 0.053 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.885816 | 0.053 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.885816 | 0.053 |
R-HSA-9675135 | Diseases of DNA repair | 0.885816 | 0.053 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.887297 | 0.052 |
R-HSA-8953854 | Metabolism of RNA | 0.887507 | 0.052 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.888685 | 0.051 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.890321 | 0.050 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.890321 | 0.050 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.890829 | 0.050 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.893300 | 0.049 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.893300 | 0.049 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.894649 | 0.048 |
R-HSA-425410 | Metal ion SLC transporters | 0.894649 | 0.048 |
R-HSA-438064 | Post NMDA receptor activation events | 0.897588 | 0.047 |
R-HSA-9766229 | Degradation of CDH1 | 0.898806 | 0.046 |
R-HSA-73893 | DNA Damage Bypass | 0.898806 | 0.046 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.898806 | 0.046 |
R-HSA-5693538 | Homology Directed Repair | 0.899075 | 0.046 |
R-HSA-156902 | Peptide chain elongation | 0.900820 | 0.045 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.902799 | 0.044 |
R-HSA-2162123 | Synthesis of Prostaglandins (PG) and Thromboxanes (TX) | 0.902799 | 0.044 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.906635 | 0.043 |
R-HSA-9824446 | Viral Infection Pathways | 0.907558 | 0.042 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.909953 | 0.041 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.910543 | 0.041 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.911795 | 0.040 |
R-HSA-2132295 | MHC class II antigen presentation | 0.912298 | 0.040 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.912818 | 0.040 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.913859 | 0.039 |
R-HSA-1221632 | Meiotic synapsis | 0.913859 | 0.039 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.915598 | 0.038 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.915598 | 0.038 |
R-HSA-72649 | Translation initiation complex formation | 0.917259 | 0.038 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.917259 | 0.038 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.918294 | 0.037 |
R-HSA-69206 | G1/S Transition | 0.919457 | 0.036 |
R-HSA-418597 | G alpha (z) signalling events | 0.920525 | 0.036 |
R-HSA-8951664 | Neddylation | 0.920829 | 0.036 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.923445 | 0.035 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.923662 | 0.034 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.923662 | 0.034 |
R-HSA-5654736 | Signaling by FGFR1 | 0.923662 | 0.034 |
R-HSA-209776 | Metabolism of amine-derived hormones | 0.923662 | 0.034 |
R-HSA-9679506 | SARS-CoV Infections | 0.924818 | 0.034 |
R-HSA-109582 | Hemostasis | 0.924854 | 0.034 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.925905 | 0.033 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.925905 | 0.033 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.926676 | 0.033 |
R-HSA-1483166 | Synthesis of PA | 0.926676 | 0.033 |
R-HSA-5389840 | Mitochondrial translation elongation | 0.928289 | 0.032 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.928289 | 0.032 |
R-HSA-6782135 | Dual incision in TC-NER | 0.929571 | 0.032 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.929571 | 0.032 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.929571 | 0.032 |
R-HSA-157579 | Telomere Maintenance | 0.930602 | 0.031 |
R-HSA-1474165 | Reproduction | 0.932198 | 0.030 |
R-HSA-180786 | Extension of Telomeres | 0.932351 | 0.030 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.932351 | 0.030 |
R-HSA-5368286 | Mitochondrial translation initiation | 0.932843 | 0.030 |
R-HSA-190236 | Signaling by FGFR | 0.932843 | 0.030 |
R-HSA-5362517 | Signaling by Retinoic Acid | 0.935023 | 0.029 |
R-HSA-351202 | Metabolism of polyamines | 0.935023 | 0.029 |
R-HSA-379724 | tRNA Aminoacylation | 0.935023 | 0.029 |
R-HSA-5610787 | Hedgehog 'off' state | 0.937122 | 0.028 |
R-HSA-211976 | Endogenous sterols | 0.937588 | 0.028 |
R-HSA-112043 | PLC beta mediated events | 0.937588 | 0.028 |
R-HSA-1442490 | Collagen degradation | 0.937588 | 0.028 |
R-HSA-72312 | rRNA processing | 0.938375 | 0.028 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.938592 | 0.028 |
R-HSA-2408557 | Selenocysteine synthesis | 0.939164 | 0.027 |
R-HSA-73894 | DNA Repair | 0.939854 | 0.027 |
R-HSA-597592 | Post-translational protein modification | 0.940219 | 0.027 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.941142 | 0.026 |
R-HSA-6799198 | Complex I biogenesis | 0.942420 | 0.026 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 0.943060 | 0.025 |
R-HSA-192823 | Viral mRNA Translation | 0.943060 | 0.025 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.944694 | 0.025 |
R-HSA-111885 | Opioid Signalling | 0.944917 | 0.025 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.950581 | 0.022 |
R-HSA-112040 | G-protein mediated events | 0.950993 | 0.022 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.950993 | 0.022 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.950993 | 0.022 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 0.950993 | 0.022 |
R-HSA-69239 | Synthesis of DNA | 0.951787 | 0.021 |
R-HSA-5419276 | Mitochondrial translation termination | 0.954908 | 0.020 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.954908 | 0.020 |
R-HSA-611105 | Respiratory electron transport | 0.955669 | 0.020 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.957648 | 0.019 |
R-HSA-189445 | Metabolism of porphyrins | 0.958290 | 0.019 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.958408 | 0.018 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.959229 | 0.018 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.959229 | 0.018 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.959229 | 0.018 |
R-HSA-69242 | S Phase | 0.962438 | 0.017 |
R-HSA-913531 | Interferon Signaling | 0.962675 | 0.017 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.964503 | 0.016 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.964503 | 0.016 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.965563 | 0.015 |
R-HSA-9694635 | Translation of Structural Proteins | 0.967253 | 0.014 |
R-HSA-983712 | Ion channel transport | 0.967272 | 0.014 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.967354 | 0.014 |
R-HSA-9609507 | Protein localization | 0.967710 | 0.014 |
R-HSA-216083 | Integrin cell surface interactions | 0.968548 | 0.014 |
R-HSA-5619084 | ABC transporter disorders | 0.968548 | 0.014 |
R-HSA-73886 | Chromosome Maintenance | 0.971921 | 0.012 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.973234 | 0.012 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.974293 | 0.011 |
R-HSA-390918 | Peroxisomal lipid metabolism | 0.975309 | 0.011 |
R-HSA-1500620 | Meiosis | 0.976286 | 0.010 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.978124 | 0.010 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.978990 | 0.009 |
R-HSA-9645723 | Diseases of programmed cell death | 0.979821 | 0.009 |
R-HSA-112310 | Neurotransmitter release cycle | 0.981386 | 0.008 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.981474 | 0.008 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.982045 | 0.008 |
R-HSA-397014 | Muscle contraction | 0.983486 | 0.007 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.983509 | 0.007 |
R-HSA-391251 | Protein folding | 0.983509 | 0.007 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.983509 | 0.007 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.984161 | 0.007 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.984788 | 0.007 |
R-HSA-5368287 | Mitochondrial translation | 0.985924 | 0.006 |
R-HSA-1280218 | Adaptive Immune System | 0.986006 | 0.006 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.986407 | 0.006 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.986524 | 0.006 |
R-HSA-1296071 | Potassium Channels | 0.986524 | 0.006 |
R-HSA-9664407 | Parasite infection | 0.986874 | 0.006 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.986874 | 0.006 |
R-HSA-9664417 | Leishmania phagocytosis | 0.986874 | 0.006 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.987325 | 0.006 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.987569 | 0.005 |
R-HSA-422356 | Regulation of insulin secretion | 0.987569 | 0.005 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.988061 | 0.005 |
R-HSA-3781865 | Diseases of glycosylation | 0.988079 | 0.005 |
R-HSA-9734767 | Developmental Cell Lineages | 0.988635 | 0.005 |
R-HSA-416476 | G alpha (q) signalling events | 0.988948 | 0.005 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.988988 | 0.005 |
R-HSA-418346 | Platelet homeostasis | 0.991359 | 0.004 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.991689 | 0.004 |
R-HSA-69306 | DNA Replication | 0.991978 | 0.003 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.992649 | 0.003 |
R-HSA-6803157 | Antimicrobial peptides | 0.992940 | 0.003 |
R-HSA-877300 | Interferon gamma signaling | 0.993515 | 0.003 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.993534 | 0.003 |
R-HSA-72766 | Translation | 0.993716 | 0.003 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.993994 | 0.003 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.994573 | 0.002 |
R-HSA-1474244 | Extracellular matrix organization | 0.995106 | 0.002 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.995337 | 0.002 |
R-HSA-388396 | GPCR downstream signalling | 0.995358 | 0.002 |
R-HSA-418555 | G alpha (s) signalling events | 0.995924 | 0.002 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 0.995992 | 0.002 |
R-HSA-977606 | Regulation of Complement cascade | 0.996304 | 0.002 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.996960 | 0.001 |
R-HSA-9717189 | Sensory perception of taste | 0.997326 | 0.001 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.997345 | 0.001 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.997627 | 0.001 |
R-HSA-166658 | Complement cascade | 0.998601 | 0.001 |
R-HSA-428157 | Sphingolipid metabolism | 0.998625 | 0.001 |
R-HSA-6798695 | Neutrophil degranulation | 0.998807 | 0.001 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.998858 | 0.000 |
R-HSA-2142753 | Arachidonate metabolism | 0.998947 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 0.999170 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.999427 | 0.000 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.999476 | 0.000 |
R-HSA-9658195 | Leishmania infection | 0.999548 | 0.000 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.999548 | 0.000 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.999569 | 0.000 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.999569 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999578 | 0.000 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.999648 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.999711 | 0.000 |
R-HSA-112316 | Neuronal System | 0.999711 | 0.000 |
R-HSA-168249 | Innate Immune System | 0.999716 | 0.000 |
R-HSA-5663205 | Infectious disease | 0.999807 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 0.999859 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999887 | 0.000 |
R-HSA-8957322 | Metabolism of steroids | 0.999900 | 0.000 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.999959 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.999991 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999992 | 0.000 |
R-HSA-168256 | Immune System | 0.999992 | 0.000 |
R-HSA-1643685 | Disease | 0.999993 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999993 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999994 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999995 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999998 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 1.000000 | 0.000 |
R-HSA-382551 | Transport of small molecules | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
MAK |
0.758 | 0.599 | -2 | 0.653 |
HIPK2 |
0.757 | 0.470 | 1 | 0.941 |
HIPK4 |
0.749 | 0.507 | 1 | 0.857 |
CDK19 |
0.747 | 0.488 | 1 | 0.929 |
CDK18 |
0.745 | 0.458 | 1 | 0.936 |
P38B |
0.745 | 0.533 | 1 | 0.945 |
KIS |
0.744 | 0.328 | 1 | 0.939 |
CLK3 |
0.740 | 0.356 | 1 | 0.846 |
CDK8 |
0.739 | 0.472 | 1 | 0.930 |
ERK1 |
0.739 | 0.487 | 1 | 0.943 |
DYRK2 |
0.738 | 0.416 | 1 | 0.945 |
CDK1 |
0.735 | 0.411 | 1 | 0.947 |
CDK7 |
0.735 | 0.441 | 1 | 0.946 |
P38D |
0.733 | 0.433 | 1 | 0.924 |
P38A |
0.733 | 0.521 | 1 | 0.945 |
CDK17 |
0.731 | 0.415 | 1 | 0.920 |
DYRK4 |
0.731 | 0.387 | 1 | 0.951 |
P38G |
0.728 | 0.409 | 1 | 0.924 |
CDK3 |
0.727 | 0.361 | 1 | 0.930 |
CDKL5 |
0.726 | 0.376 | -3 | 0.778 |
JNK2 |
0.726 | 0.405 | 1 | 0.938 |
HIPK1 |
0.726 | 0.365 | 1 | 0.940 |
ICK |
0.725 | 0.492 | -3 | 0.817 |
CDK16 |
0.724 | 0.406 | 1 | 0.922 |
CDK5 |
0.723 | 0.404 | 1 | 0.942 |
DYRK1A |
0.722 | 0.406 | 1 | 0.921 |
CDK13 |
0.719 | 0.345 | 1 | 0.942 |
SRPK1 |
0.719 | 0.194 | -3 | 0.755 |
MOK |
0.717 | 0.444 | 1 | 0.904 |
CDK10 |
0.716 | 0.339 | 1 | 0.939 |
CDK12 |
0.716 | 0.343 | 1 | 0.936 |
DYRK1B |
0.715 | 0.337 | 1 | 0.941 |
CDK14 |
0.715 | 0.373 | 1 | 0.937 |
JNK3 |
0.714 | 0.373 | 1 | 0.941 |
HIPK3 |
0.713 | 0.349 | 1 | 0.912 |
ERK5 |
0.712 | 0.287 | 1 | 0.837 |
CLK2 |
0.710 | 0.196 | -3 | 0.743 |
CDKL1 |
0.710 | 0.292 | -3 | 0.783 |
NLK |
0.706 | 0.299 | 1 | 0.870 |
DYRK3 |
0.706 | 0.263 | 1 | 0.920 |
CDK9 |
0.706 | 0.312 | 1 | 0.942 |
SRPK2 |
0.705 | 0.165 | -3 | 0.681 |
ERK2 |
0.705 | 0.379 | 1 | 0.940 |
COT |
0.701 | 0.038 | 2 | 0.841 |
NDR2 |
0.701 | 0.142 | -3 | 0.820 |
MTOR |
0.700 | 0.160 | 1 | 0.705 |
JNK1 |
0.699 | 0.336 | 1 | 0.931 |
PIM3 |
0.698 | 0.083 | -3 | 0.820 |
GRK1 |
0.697 | 0.128 | -2 | 0.131 |
AURC |
0.697 | 0.038 | -2 | 0.089 |
CDK4 |
0.697 | 0.357 | 1 | 0.932 |
MOS |
0.696 | 0.143 | 1 | 0.675 |
CDK6 |
0.695 | 0.336 | 1 | 0.930 |
CLK4 |
0.694 | 0.133 | -3 | 0.751 |
CDC7 |
0.693 | 0.077 | 1 | 0.635 |
CLK1 |
0.692 | 0.145 | -3 | 0.726 |
SRPK3 |
0.690 | 0.108 | -3 | 0.721 |
CHAK2 |
0.690 | 0.121 | -1 | 0.795 |
GRK7 |
0.689 | 0.137 | 1 | 0.606 |
PRP4 |
0.688 | 0.224 | -3 | 0.747 |
SKMLCK |
0.687 | 0.071 | -2 | 0.156 |
CDK2 |
0.686 | 0.213 | 1 | 0.919 |
ATR |
0.686 | 0.060 | 1 | 0.642 |
MPSK1 |
0.685 | 0.343 | 1 | 0.641 |
IKKB |
0.683 | -0.093 | -2 | 0.070 |
PRPK |
0.683 | 0.042 | -1 | 0.819 |
PRKD1 |
0.682 | 0.008 | -3 | 0.807 |
IKKA |
0.681 | 0.014 | -2 | 0.097 |
PKACB |
0.681 | 0.010 | -2 | 0.072 |
TBK1 |
0.681 | 0.044 | 1 | 0.518 |
PIM1 |
0.680 | 0.030 | -3 | 0.776 |
PRKX |
0.680 | 0.022 | -3 | 0.691 |
RSK2 |
0.679 | -0.001 | -3 | 0.762 |
MLK2 |
0.678 | 0.167 | 2 | 0.789 |
MLK3 |
0.678 | 0.134 | 2 | 0.713 |
NDR1 |
0.678 | -0.009 | -3 | 0.799 |
PRKD2 |
0.677 | -0.011 | -3 | 0.761 |
RAF1 |
0.677 | -0.080 | 1 | 0.610 |
P90RSK |
0.676 | 0.008 | -3 | 0.764 |
PDHK4 |
0.676 | -0.085 | 1 | 0.659 |
PKACG |
0.675 | -0.030 | -2 | 0.096 |
GRK5 |
0.675 | -0.048 | -3 | 0.802 |
IKKE |
0.674 | -0.040 | 1 | 0.514 |
RSK4 |
0.674 | 0.050 | -3 | 0.747 |
LATS1 |
0.674 | 0.089 | -3 | 0.826 |
CAMK1B |
0.673 | -0.059 | -3 | 0.810 |
LATS2 |
0.673 | 0.013 | -5 | 0.735 |
ERK7 |
0.672 | 0.152 | 2 | 0.548 |
CAMLCK |
0.672 | -0.011 | -2 | 0.135 |
NUAK2 |
0.672 | -0.024 | -3 | 0.810 |
BMPR2 |
0.672 | -0.098 | -2 | 0.130 |
BMPR1B |
0.672 | -0.018 | 1 | 0.617 |
WNK1 |
0.672 | -0.029 | -2 | 0.178 |
MAPKAPK2 |
0.671 | 0.001 | -3 | 0.726 |
MST4 |
0.671 | -0.043 | 2 | 0.839 |
MNK2 |
0.671 | 0.007 | -2 | 0.114 |
DAPK2 |
0.670 | -0.010 | -3 | 0.815 |
NEK6 |
0.670 | -0.047 | -2 | 0.097 |
GSK3A |
0.670 | 0.148 | 4 | 0.510 |
MLK1 |
0.670 | -0.006 | 2 | 0.781 |
PAK1 |
0.670 | 0.007 | -2 | 0.173 |
TGFBR2 |
0.670 | -0.092 | -2 | 0.079 |
PKCD |
0.670 | 0.008 | 2 | 0.748 |
RSK3 |
0.669 | -0.017 | -3 | 0.747 |
PKG2 |
0.669 | -0.020 | -2 | 0.085 |
CK1E |
0.669 | 0.048 | -3 | 0.636 |
NIK |
0.669 | -0.057 | -3 | 0.814 |
RIPK3 |
0.669 | -0.010 | 3 | 0.686 |
AURB |
0.669 | -0.034 | -2 | 0.082 |
PKN3 |
0.668 | -0.035 | -3 | 0.786 |
PKCA |
0.667 | 0.050 | 2 | 0.697 |
MAPKAPK3 |
0.667 | -0.037 | -3 | 0.749 |
MARK4 |
0.667 | -0.032 | 4 | 0.822 |
GCN2 |
0.667 | -0.155 | 2 | 0.759 |
CAMK2D |
0.667 | -0.053 | -3 | 0.787 |
PDHK1 |
0.667 | -0.114 | 1 | 0.627 |
CAMK2A |
0.667 | 0.022 | 2 | 0.769 |
MASTL |
0.667 | -0.086 | -2 | 0.132 |
PKCZ |
0.667 | 0.042 | 2 | 0.748 |
MNK1 |
0.666 | -0.005 | -2 | 0.110 |
DLK |
0.666 | -0.009 | 1 | 0.618 |
CAMK2G |
0.666 | -0.097 | 2 | 0.769 |
PKN2 |
0.665 | -0.066 | -3 | 0.790 |
AMPKA1 |
0.665 | -0.018 | -3 | 0.812 |
P70S6KB |
0.665 | -0.028 | -3 | 0.759 |
PKCG |
0.665 | 0.012 | 2 | 0.707 |
PAK6 |
0.665 | -0.022 | -2 | 0.107 |
ULK2 |
0.664 | -0.139 | 2 | 0.737 |
PKCB |
0.664 | 0.008 | 2 | 0.707 |
AMPKA2 |
0.664 | 0.007 | -3 | 0.787 |
DSTYK |
0.664 | -0.186 | 2 | 0.864 |
PAK3 |
0.663 | -0.032 | -2 | 0.143 |
AKT2 |
0.663 | 0.005 | -3 | 0.690 |
MSK1 |
0.662 | -0.014 | -3 | 0.733 |
PKACA |
0.662 | -0.018 | -2 | 0.060 |
AURA |
0.662 | -0.045 | -2 | 0.076 |
CK1D |
0.661 | 0.023 | -3 | 0.590 |
IRE1 |
0.661 | -0.005 | 1 | 0.600 |
MSK2 |
0.661 | -0.032 | -3 | 0.741 |
BCKDK |
0.660 | -0.089 | -1 | 0.741 |
TGFBR1 |
0.660 | -0.048 | -2 | 0.089 |
PIM2 |
0.660 | 0.001 | -3 | 0.726 |
PASK |
0.660 | 0.091 | -3 | 0.844 |
GRK2 |
0.659 | -0.048 | -2 | 0.096 |
QSK |
0.659 | -0.015 | 4 | 0.797 |
ALK4 |
0.659 | -0.066 | -2 | 0.101 |
MLK4 |
0.659 | 0.036 | 2 | 0.687 |
FAM20C |
0.658 | -0.000 | 2 | 0.601 |
VRK2 |
0.657 | 0.078 | 1 | 0.699 |
CAMK2B |
0.657 | -0.039 | 2 | 0.746 |
PRKD3 |
0.657 | -0.043 | -3 | 0.727 |
GRK6 |
0.657 | -0.101 | 1 | 0.620 |
PHKG1 |
0.657 | -0.024 | -3 | 0.790 |
NEK7 |
0.657 | -0.189 | -3 | 0.773 |
BUB1 |
0.657 | 0.111 | -5 | 0.793 |
SGK3 |
0.657 | -0.012 | -3 | 0.741 |
SMG1 |
0.656 | -0.040 | 1 | 0.602 |
NEK9 |
0.656 | -0.108 | 2 | 0.799 |
YSK4 |
0.656 | -0.069 | 1 | 0.560 |
GRK4 |
0.655 | -0.119 | -2 | 0.106 |
TSSK1 |
0.655 | -0.057 | -3 | 0.831 |
PAK2 |
0.655 | -0.046 | -2 | 0.156 |
MYLK4 |
0.654 | -0.059 | -2 | 0.088 |
PKR |
0.654 | -0.035 | 1 | 0.633 |
ACVR2B |
0.654 | -0.080 | -2 | 0.073 |
RIPK1 |
0.654 | -0.098 | 1 | 0.599 |
ULK1 |
0.654 | -0.134 | -3 | 0.726 |
DNAPK |
0.653 | -0.014 | 1 | 0.541 |
CHAK1 |
0.653 | -0.035 | 2 | 0.761 |
ACVR2A |
0.652 | -0.095 | -2 | 0.072 |
NUAK1 |
0.652 | -0.047 | -3 | 0.746 |
WNK3 |
0.652 | -0.133 | 1 | 0.590 |
MST3 |
0.652 | -0.017 | 2 | 0.829 |
NIM1 |
0.651 | -0.099 | 3 | 0.716 |
CK1A2 |
0.651 | 0.007 | -3 | 0.593 |
TLK2 |
0.651 | -0.055 | 1 | 0.576 |
TAO3 |
0.651 | 0.041 | 1 | 0.606 |
MELK |
0.651 | -0.068 | -3 | 0.760 |
ATM |
0.651 | -0.061 | 1 | 0.580 |
SIK |
0.651 | -0.042 | -3 | 0.728 |
MARK3 |
0.651 | -0.028 | 4 | 0.756 |
GRK3 |
0.650 | -0.053 | -2 | 0.080 |
IRE2 |
0.650 | -0.022 | 2 | 0.695 |
PINK1 |
0.650 | -0.052 | 1 | 0.752 |
HUNK |
0.650 | -0.184 | 2 | 0.779 |
ANKRD3 |
0.650 | -0.186 | 1 | 0.629 |
GSK3B |
0.650 | 0.049 | 4 | 0.502 |
TTBK2 |
0.650 | -0.115 | 2 | 0.669 |
PAK5 |
0.650 | -0.040 | -2 | 0.118 |
PKCH |
0.650 | -0.041 | 2 | 0.682 |
TSSK2 |
0.649 | -0.134 | -5 | 0.833 |
QIK |
0.649 | -0.116 | -3 | 0.778 |
MEK1 |
0.649 | -0.145 | 2 | 0.807 |
ALK2 |
0.648 | -0.088 | -2 | 0.081 |
CAMK4 |
0.648 | -0.133 | -3 | 0.771 |
AKT1 |
0.648 | -0.021 | -3 | 0.704 |
PAK4 |
0.648 | -0.032 | -2 | 0.126 |
BMPR1A |
0.647 | -0.059 | 1 | 0.586 |
AKT3 |
0.646 | 0.002 | -3 | 0.651 |
BRSK2 |
0.646 | -0.021 | -3 | 0.761 |
LKB1 |
0.646 | 0.029 | -3 | 0.763 |
BRSK1 |
0.646 | -0.023 | -3 | 0.755 |
DCAMKL1 |
0.646 | -0.041 | -3 | 0.765 |
CK1G1 |
0.646 | -0.018 | -3 | 0.610 |
GCK |
0.646 | 0.057 | 1 | 0.602 |
DRAK1 |
0.645 | -0.066 | 1 | 0.579 |
PLK1 |
0.645 | -0.153 | -2 | 0.075 |
MEK5 |
0.644 | -0.103 | 2 | 0.788 |
PKCE |
0.643 | -0.012 | 2 | 0.695 |
NEK2 |
0.643 | -0.122 | 2 | 0.785 |
CHK1 |
0.642 | -0.098 | -3 | 0.769 |
MEKK2 |
0.641 | -0.075 | 2 | 0.761 |
SGK1 |
0.640 | 0.011 | -3 | 0.626 |
PKCI |
0.640 | -0.058 | 2 | 0.716 |
SLK |
0.640 | 0.010 | -2 | 0.113 |
NEK5 |
0.640 | -0.069 | 1 | 0.607 |
MAPKAPK5 |
0.639 | -0.101 | -3 | 0.687 |
PKCT |
0.639 | -0.051 | 2 | 0.688 |
SMMLCK |
0.639 | -0.075 | -3 | 0.772 |
CAMK1G |
0.639 | -0.082 | -3 | 0.727 |
IRAK4 |
0.639 | -0.048 | 1 | 0.582 |
WNK4 |
0.639 | -0.069 | -2 | 0.188 |
MARK2 |
0.639 | -0.071 | 4 | 0.711 |
MEKK3 |
0.638 | -0.148 | 1 | 0.600 |
ROCK2 |
0.638 | 0.009 | -3 | 0.760 |
MAP3K15 |
0.638 | 0.077 | 1 | 0.563 |
ZAK |
0.638 | -0.104 | 1 | 0.565 |
BRAF |
0.638 | -0.128 | -4 | 0.163 |
PDHK3_TYR |
0.638 | 0.234 | 4 | 0.894 |
MEKK1 |
0.638 | -0.103 | 1 | 0.588 |
PERK |
0.637 | -0.148 | -2 | 0.085 |
PBK |
0.637 | 0.026 | 1 | 0.611 |
PLK4 |
0.637 | -0.093 | 2 | 0.573 |
CAMKK2 |
0.636 | -0.099 | -2 | 0.081 |
HPK1 |
0.636 | -0.034 | 1 | 0.593 |
DAPK3 |
0.636 | -0.048 | -3 | 0.776 |
KHS1 |
0.636 | 0.040 | 1 | 0.575 |
MARK1 |
0.636 | -0.086 | 4 | 0.772 |
TNIK |
0.636 | 0.005 | 3 | 0.852 |
NEK11 |
0.635 | -0.055 | 1 | 0.593 |
CK1A |
0.635 | -0.001 | -3 | 0.513 |
PDK1 |
0.635 | -0.032 | 1 | 0.596 |
SBK |
0.635 | 0.011 | -3 | 0.588 |
P70S6K |
0.635 | -0.055 | -3 | 0.680 |
GAK |
0.635 | -0.061 | 1 | 0.670 |
MRCKB |
0.635 | -0.027 | -3 | 0.708 |
PLK3 |
0.635 | -0.125 | 2 | 0.736 |
LRRK2 |
0.634 | -0.002 | 2 | 0.813 |
HGK |
0.633 | -0.028 | 3 | 0.846 |
KHS2 |
0.633 | 0.017 | 1 | 0.594 |
TAO2 |
0.633 | -0.047 | 2 | 0.811 |
MRCKA |
0.633 | -0.027 | -3 | 0.718 |
PHKG2 |
0.633 | -0.093 | -3 | 0.748 |
PDHK4_TYR |
0.633 | 0.125 | 2 | 0.856 |
EEF2K |
0.633 | 0.008 | 3 | 0.792 |
SSTK |
0.632 | -0.096 | 4 | 0.778 |
LOK |
0.632 | -0.039 | -2 | 0.100 |
MEKK6 |
0.631 | -0.037 | 1 | 0.600 |
LIMK2_TYR |
0.631 | 0.160 | -3 | 0.816 |
HRI |
0.631 | -0.177 | -2 | 0.105 |
CAMKK1 |
0.631 | -0.164 | -2 | 0.061 |
DCAMKL2 |
0.631 | -0.068 | -3 | 0.770 |
SNRK |
0.630 | -0.160 | 2 | 0.631 |
DMPK1 |
0.630 | -0.012 | -3 | 0.739 |
DAPK1 |
0.630 | -0.059 | -3 | 0.766 |
MST2 |
0.630 | -0.099 | 1 | 0.590 |
CK2A2 |
0.630 | -0.038 | 1 | 0.542 |
TLK1 |
0.630 | -0.173 | -2 | 0.087 |
TESK1_TYR |
0.629 | 0.108 | 3 | 0.848 |
HASPIN |
0.629 | 0.051 | -1 | 0.690 |
MINK |
0.629 | -0.065 | 1 | 0.573 |
CAMK1D |
0.628 | -0.062 | -3 | 0.666 |
MAP2K4_TYR |
0.628 | 0.077 | -1 | 0.834 |
MAP2K6_TYR |
0.627 | 0.061 | -1 | 0.838 |
NEK8 |
0.626 | -0.148 | 2 | 0.781 |
PKN1 |
0.626 | -0.061 | -3 | 0.699 |
PDHK1_TYR |
0.625 | 0.088 | -1 | 0.841 |
PKMYT1_TYR |
0.625 | 0.078 | 3 | 0.816 |
PKG1 |
0.624 | -0.074 | -2 | 0.049 |
NEK4 |
0.624 | -0.117 | 1 | 0.571 |
CK2A1 |
0.623 | -0.037 | 1 | 0.527 |
VRK1 |
0.622 | -0.041 | 2 | 0.794 |
NEK1 |
0.622 | -0.068 | 1 | 0.578 |
CHK2 |
0.622 | -0.048 | -3 | 0.639 |
BMPR2_TYR |
0.622 | -0.018 | -1 | 0.838 |
TAK1 |
0.621 | -0.148 | 1 | 0.585 |
CRIK |
0.621 | -0.004 | -3 | 0.711 |
MAP2K7_TYR |
0.620 | 0.002 | 2 | 0.823 |
ROCK1 |
0.620 | -0.034 | -3 | 0.720 |
CAMK1A |
0.620 | -0.055 | -3 | 0.652 |
TTBK1 |
0.619 | -0.134 | 2 | 0.589 |
OSR1 |
0.619 | -0.036 | 2 | 0.771 |
MST1 |
0.618 | -0.120 | 1 | 0.572 |
STK33 |
0.617 | -0.103 | 2 | 0.584 |
YSK1 |
0.617 | -0.081 | 2 | 0.780 |
PLK2 |
0.616 | -0.068 | -3 | 0.706 |
EPHB4 |
0.615 | 0.086 | -1 | 0.767 |
TXK |
0.615 | 0.079 | 1 | 0.621 |
ABL2 |
0.613 | 0.064 | -1 | 0.746 |
PINK1_TYR |
0.613 | -0.128 | 1 | 0.655 |
MYO3B |
0.613 | -0.039 | 2 | 0.800 |
LIMK1_TYR |
0.612 | -0.001 | 2 | 0.811 |
YANK3 |
0.612 | -0.020 | 2 | 0.392 |
RET |
0.611 | 0.007 | 1 | 0.601 |
CSF1R |
0.611 | 0.074 | 3 | 0.762 |
TNK2 |
0.611 | 0.079 | 3 | 0.727 |
EPHA6 |
0.610 | 0.006 | -1 | 0.806 |
TTK |
0.609 | -0.093 | -2 | 0.096 |
ASK1 |
0.609 | -0.016 | 1 | 0.552 |
MEK2 |
0.609 | -0.179 | 2 | 0.767 |
BIKE |
0.608 | -0.029 | 1 | 0.595 |
IRAK1 |
0.608 | -0.242 | -1 | 0.696 |
MST1R |
0.608 | 0.010 | 3 | 0.783 |
FGR |
0.608 | -0.042 | 1 | 0.635 |
JAK2 |
0.608 | -0.005 | 1 | 0.595 |
ABL1 |
0.608 | 0.034 | -1 | 0.739 |
LCK |
0.607 | 0.024 | -1 | 0.796 |
MYO3A |
0.606 | -0.071 | 1 | 0.582 |
TAO1 |
0.606 | -0.047 | 1 | 0.531 |
ROS1 |
0.605 | -0.002 | 3 | 0.729 |
TYRO3 |
0.605 | -0.019 | 3 | 0.766 |
YES1 |
0.605 | -0.007 | -1 | 0.803 |
TNK1 |
0.604 | 0.063 | 3 | 0.747 |
TYK2 |
0.603 | -0.099 | 1 | 0.586 |
BLK |
0.603 | 0.020 | -1 | 0.798 |
AAK1 |
0.603 | 0.002 | 1 | 0.543 |
NEK3 |
0.602 | -0.168 | 1 | 0.557 |
TNNI3K_TYR |
0.602 | -0.002 | 1 | 0.615 |
ALPHAK3 |
0.602 | -0.027 | -1 | 0.718 |
JAK3 |
0.602 | -0.043 | 1 | 0.586 |
NEK10_TYR |
0.601 | -0.017 | 1 | 0.509 |
EPHA4 |
0.601 | 0.008 | 2 | 0.751 |
JAK1 |
0.601 | 0.016 | 1 | 0.542 |
DDR1 |
0.601 | -0.051 | 4 | 0.802 |
RIPK2 |
0.601 | -0.217 | 1 | 0.521 |
MET |
0.601 | 0.011 | 3 | 0.761 |
DDR2 |
0.600 | 0.077 | 3 | 0.678 |
ITK |
0.600 | 0.005 | -1 | 0.743 |
HCK |
0.600 | -0.038 | -1 | 0.788 |
FYN |
0.600 | 0.022 | -1 | 0.787 |
SRMS |
0.599 | -0.019 | 1 | 0.616 |
KIT |
0.599 | -0.027 | 3 | 0.760 |
KDR |
0.599 | -0.024 | 3 | 0.713 |
FER |
0.597 | -0.085 | 1 | 0.636 |
BMX |
0.596 | 0.002 | -1 | 0.671 |
EPHB1 |
0.596 | -0.014 | 1 | 0.613 |
FGFR2 |
0.595 | -0.035 | 3 | 0.740 |
INSRR |
0.595 | -0.067 | 3 | 0.693 |
EPHB3 |
0.594 | -0.027 | -1 | 0.748 |
EPHB2 |
0.593 | -0.025 | -1 | 0.742 |
CK1G3 |
0.592 | -0.040 | -3 | 0.469 |
MERTK |
0.591 | -0.027 | 3 | 0.736 |
FLT1 |
0.590 | -0.073 | -1 | 0.770 |
PDGFRB |
0.590 | -0.089 | 3 | 0.766 |
WEE1_TYR |
0.590 | -0.066 | -1 | 0.686 |
CK1G2 |
0.590 | -0.031 | -3 | 0.544 |
EPHA7 |
0.589 | 0.007 | 2 | 0.744 |
PTK2 |
0.589 | -0.000 | -1 | 0.765 |
FLT3 |
0.588 | -0.108 | 3 | 0.765 |
FGFR1 |
0.588 | -0.056 | 3 | 0.716 |
TEK |
0.588 | -0.058 | 3 | 0.688 |
PTK2B |
0.587 | -0.008 | -1 | 0.714 |
AXL |
0.587 | -0.067 | 3 | 0.736 |
SYK |
0.587 | -0.029 | -1 | 0.739 |
STLK3 |
0.587 | -0.135 | 1 | 0.533 |
SRC |
0.586 | -0.035 | -1 | 0.773 |
PDGFRA |
0.586 | -0.072 | 3 | 0.764 |
LYN |
0.585 | -0.058 | 3 | 0.672 |
FGFR3 |
0.585 | -0.058 | 3 | 0.710 |
FRK |
0.585 | -0.045 | -1 | 0.785 |
BTK |
0.584 | -0.094 | -1 | 0.705 |
TEC |
0.584 | -0.071 | -1 | 0.672 |
EPHA3 |
0.584 | -0.056 | 2 | 0.714 |
MATK |
0.584 | -0.055 | -1 | 0.668 |
CSK |
0.583 | -0.006 | 2 | 0.743 |
ALK |
0.583 | -0.060 | 3 | 0.668 |
YANK2 |
0.583 | -0.035 | 2 | 0.403 |
ZAP70 |
0.583 | 0.006 | -1 | 0.669 |
EPHA1 |
0.582 | -0.037 | 3 | 0.740 |
PTK6 |
0.581 | -0.105 | -1 | 0.663 |
NTRK3 |
0.580 | -0.067 | -1 | 0.706 |
LTK |
0.580 | -0.079 | 3 | 0.691 |
NTRK1 |
0.580 | -0.118 | -1 | 0.749 |
EPHA8 |
0.579 | -0.037 | -1 | 0.743 |
ERBB2 |
0.579 | -0.120 | 1 | 0.559 |
INSR |
0.579 | -0.070 | 3 | 0.679 |
EPHA5 |
0.578 | -0.043 | 2 | 0.728 |
EGFR |
0.578 | -0.060 | 1 | 0.489 |
FGFR4 |
0.575 | -0.060 | -1 | 0.698 |
FLT4 |
0.574 | -0.126 | 3 | 0.694 |
NTRK2 |
0.573 | -0.137 | 3 | 0.707 |
ERBB4 |
0.571 | -0.040 | 1 | 0.512 |
EPHA2 |
0.570 | -0.040 | -1 | 0.708 |
MUSK |
0.563 | -0.100 | 1 | 0.486 |
IGF1R |
0.562 | -0.097 | 3 | 0.611 |
FES |
0.553 | -0.081 | -1 | 0.643 |