Motif 263 (n=640)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0C4DFX4 | None | S1705 | ochoa | Snf2 related CREBBP activator protein | None |
A0JNW5 | BLTP3B | S418 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A6NC98 | CCDC88B | S436 | ochoa | Coiled-coil domain-containing protein 88B (Brain leucine zipper domain-containing protein) (Gipie) (Hook-related protein 3) (HkRP3) | Acts as a positive regulator of T-cell maturation and inflammatory function. Required for several functions of T-cells, in both the CD4(+) and the CD8(+) compartments and this includes expression of cell surface markers of activation, proliferation, and cytokine production in response to specific or non-specific stimulation (By similarity). Enhances NK cell cytotoxicity by positively regulating polarization of microtubule-organizing center (MTOC) to cytotoxic synapse, lytic granule transport along microtubules, and dynein-mediated clustering to MTOC (PubMed:25762780). Interacts with HSPA5 and stabilizes the interaction between HSPA5 and ERN1, leading to suppression of ERN1-induced JNK activation and endoplasmic reticulum stress-induced apoptosis (PubMed:21289099). {ECO:0000250|UniProtKB:Q4QRL3, ECO:0000269|PubMed:21289099, ECO:0000269|PubMed:25762780}. |
A6NDB9 | PALM3 | S155 | ochoa | Paralemmin-3 | ATP-binding protein, which may act as a adapter in the Toll-like receptor (TLR) signaling. {ECO:0000269|PubMed:21187075}. |
A6NGB9 | WIPF3 | S149 | ochoa | WAS/WASL-interacting protein family member 3 (Corticosteroids and regional expression protein 16 homolog) | May be a regulator of cytoskeletal organization. May have a role in spermatogenesis (By similarity). {ECO:0000250}. |
A6NLC5 | C3orf70 | S120 | ochoa | UPF0524 protein C3orf70 | May play a role in neuronal and neurobehavioral development. {ECO:0000250|UniProtKB:Q1LY84}. |
A8MW92 | PHF20L1 | S368 | ochoa | PHD finger protein 20-like protein 1 | Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}. |
C9J798 | RASA4B | S760 | ochoa | Ras GTPase-activating protein 4B | Ca(2+)-dependent Ras GTPase-activating protein, that may play a role in the Ras-MAPK pathway. {ECO:0000250|UniProtKB:O43374}. |
G3V3Y1 | None | S200 | ochoa | 15-oxoprostaglandin 13-reductase (EC 1.3.1.48) (15-oxoprostaglandin 13-reductase) | None |
O00255 | MEN1 | S543 | psp | Menin | Essential component of a MLL/SET1 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3 (H3K4). Functions as a transcriptional regulator. Binds to the TERT promoter and represses telomerase expression. Plays a role in TGFB1-mediated inhibition of cell-proliferation, possibly regulating SMAD3 transcriptional activity. Represses JUND-mediated transcriptional activation on AP1 sites, as well as that mediated by NFKB subunit RELA. Positively regulates HOXC8 and HOXC6 gene expression. May be involved in normal hematopoiesis through the activation of HOXA9 expression (By similarity). May be involved in DNA repair. {ECO:0000250|UniProtKB:O88559, ECO:0000269|PubMed:11274402, ECO:0000269|PubMed:11526476, ECO:0000269|PubMed:12837246, ECO:0000269|PubMed:12874027, ECO:0000269|PubMed:14992727, ECO:0000269|PubMed:22327296}. |
O00459 | PIK3R2 | S263 | ochoa | Phosphatidylinositol 3-kinase regulatory subunit beta (PI3-kinase regulatory subunit beta) (PI3K regulatory subunit beta) (PtdIns-3-kinase regulatory subunit beta) (Phosphatidylinositol 3-kinase 85 kDa regulatory subunit beta) (PI3-kinase subunit p85-beta) (PtdIns-3-kinase regulatory subunit p85-beta) | Regulatory subunit of phosphoinositide-3-kinase (PI3K), a kinase that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Binds to activated (phosphorylated) protein-tyrosine kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Indirectly regulates autophagy (PubMed:23604317). Promotes nuclear translocation of XBP1 isoform 2 in a ER stress- and/or insulin-dependent manner during metabolic overloading in the liver and hence plays a role in glucose tolerance improvement (By similarity). {ECO:0000250|UniProtKB:O08908, ECO:0000269|PubMed:23604317}. |
O14544 | SOCS6 | S311 | ochoa | Suppressor of cytokine signaling 6 (SOCS-6) (Cytokine-inducible SH2 protein 4) (CIS-4) (Suppressor of cytokine signaling 4) (SOCS-4) | SOCS family proteins form part of a classical negative feedback system that regulates cytokine signal transduction. May be a substrate recognition component of a SCF-like ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Regulates KIT degradation by ubiquitination of the tyrosine-phosphorylated receptor. {ECO:0000250, ECO:0000269|PubMed:21030588}. |
O14654 | IRS4 | S757 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14901 | KLF11 | S111 | psp | Krueppel-like factor 11 (Transforming growth factor-beta-inducible early growth response protein 2) (TGFB-inducible early growth response protein 2) (TIEG-2) | Transcription factor (PubMed:10207080, PubMed:9748269). Activates the epsilon- and gamma-globin gene promoters and, to a much lower degree, the beta-globin gene and represses promoters containing SP1-like binding inhibiting cell growth (PubMed:10207080, PubMed:16131492, PubMed:9748269). Represses transcription of SMAD7 which enhances TGF-beta signaling (By similarity). Induces apoptosis (By similarity). {ECO:0000250|UniProtKB:Q8K1S5, ECO:0000269|PubMed:10207080, ECO:0000269|PubMed:16131492}. |
O15018 | PDZD2 | S1613 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15020 | SPTBN2 | S2359 | ochoa | Spectrin beta chain, non-erythrocytic 2 (Beta-III spectrin) (Spinocerebellar ataxia 5 protein) | Probably plays an important role in neuronal membrane skeleton. |
O15049 | N4BP3 | S159 | ochoa | NEDD4-binding protein 3 (N4BP3) | Plays a positive role in the antiviral innate immune signaling pathway. Mechanistically, interacts with MAVS and functions as a positive regulator to promote 'Lys-63'-linked polyubiquitination of MAVS and thus strengthens the interaction between MAVS and TRAF2 (PubMed:34880843). Also plays a role in axon and dendrite arborization during cranial nerve development. May also be important for neural crest migration and early development of other anterior structures including eye, brain and cranial cartilage (By similarity). {ECO:0000250|UniProtKB:A0A1L8GXY6, ECO:0000269|PubMed:34880843}. |
O15287 | FANCG | S387 | psp | Fanconi anemia group G protein (Protein FACG) (DNA repair protein XRCC9) | DNA repair protein that may operate in a postreplication repair or a cell cycle checkpoint function. May be implicated in interstrand DNA cross-link repair and in the maintenance of normal chromosome stability. Candidate tumor suppressor gene. |
O15417 | TNRC18 | S416 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15417 | TNRC18 | S995 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15417 | TNRC18 | S1038 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O43290 | SART1 | S486 | ochoa | U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) | Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}. |
O43294 | TGFB1I1 | S37 | ochoa | Transforming growth factor beta-1-induced transcript 1 protein (Androgen receptor coactivator 55 kDa protein) (Androgen receptor-associated protein of 55 kDa) (Hydrogen peroxide-inducible clone 5 protein) (Hic-5) | Functions as a molecular adapter coordinating multiple protein-protein interactions at the focal adhesion complex and in the nucleus. Links various intracellular signaling modules to plasma membrane receptors and regulates the Wnt and TGFB signaling pathways. May also regulate SLC6A3 and SLC6A4 targeting to the plasma membrane hence regulating their activity. In the nucleus, functions as a nuclear receptor coactivator regulating glucocorticoid, androgen, mineralocorticoid and progesterone receptor transcriptional activity. May play a role in the processes of cell growth, proliferation, migration, differentiation and senescence. May have a zinc-dependent DNA-binding activity. {ECO:0000269|PubMed:10075738, ECO:0000269|PubMed:11463817, ECO:0000269|PubMed:11856738, ECO:0000269|PubMed:12177201, ECO:0000269|PubMed:12445807, ECO:0000269|PubMed:12700349, ECO:0000269|PubMed:15211577, ECO:0000269|PubMed:15561701, ECO:0000269|PubMed:16141357, ECO:0000269|PubMed:16624805, ECO:0000269|PubMed:16803896, ECO:0000269|PubMed:16849583, ECO:0000269|PubMed:17166536, ECO:0000269|PubMed:17233630, ECO:0000269|PubMed:9032249}. |
O43374 | RASA4 | S760 | ochoa | Ras GTPase-activating protein 4 (Calcium-promoted Ras inactivator) (Ras p21 protein activator 4) (RasGAP-activating-like protein 2) | Ca(2+)-dependent Ras GTPase-activating protein, that switches off the Ras-MAPK pathway following a stimulus that elevates intracellular calcium. Functions as an adaptor for Cdc42 and Rac1 during FcR-mediated phagocytosis. {ECO:0000269|PubMed:11448776}. |
O43464 | HTRA2 | S142 | psp | Serine protease HTRA2, mitochondrial (EC 3.4.21.108) (High temperature requirement protein A2) (HtrA2) (Omi stress-regulated endoprotease) (Serine protease 25) (Serine proteinase OMI) | [Isoform 1]: Serine protease that shows proteolytic activity against a non-specific substrate beta-casein (PubMed:10873535). Promotes apoptosis by either relieving the inhibition of BIRC proteins on caspases, leading to an increase in caspase activity; or by a BIRC inhibition-independent, caspase-independent and serine protease activity-dependent mechanism (PubMed:15200957). Cleaves BIRC6 and relieves its inhibition on CASP3, CASP7 and CASP9, but it is also prone to inhibition by BIRC6 (PubMed:36758104, PubMed:36758105). Cleaves THAP5 and promotes its degradation during apoptosis (PubMed:19502560). {ECO:0000269|PubMed:10873535, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:19502560, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105}.; FUNCTION: [Isoform 2]: Seems to be proteolytically inactive. {ECO:0000269|PubMed:10995577}. |
O43566 | RGS14 | S52 | ochoa | Regulator of G-protein signaling 14 (RGS14) | Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Besides, modulates signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor (GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o)-alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pathways. Inhibits platelet-derived growth factor (PDGF)-stimulated ERK1/ERK2 phosphorylation; a process depending on its interaction with HRAS and that is reversed by G(i) alpha subunit GNAI1. Acts as a positive modulator of microtubule polymerisation and spindle organization through a G(i)-alpha-dependent mechanism. Plays a role in cell division. Required for the nerve growth factor (NGF)-mediated neurite outgrowth. Involved in stress resistance. May be involved in visual memory processing capacity and hippocampal-based learning and memory. {ECO:0000269|PubMed:15917656, ECO:0000269|PubMed:17635935}. |
O43566 | RGS14 | S478 | ochoa | Regulator of G-protein signaling 14 (RGS14) | Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Besides, modulates signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor (GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o)-alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pathways. Inhibits platelet-derived growth factor (PDGF)-stimulated ERK1/ERK2 phosphorylation; a process depending on its interaction with HRAS and that is reversed by G(i) alpha subunit GNAI1. Acts as a positive modulator of microtubule polymerisation and spindle organization through a G(i)-alpha-dependent mechanism. Plays a role in cell division. Required for the nerve growth factor (NGF)-mediated neurite outgrowth. Involved in stress resistance. May be involved in visual memory processing capacity and hippocampal-based learning and memory. {ECO:0000269|PubMed:15917656, ECO:0000269|PubMed:17635935}. |
O43900 | PRICKLE3 | S453 | ochoa | Prickle planar cell polarity protein 3 (LIM domain only protein 6) (LMO-6) (Prickle-like protein 3) (Pk3) (Triple LIM domain protein 6) | Involved in the planar cell polarity (PCP) pathway that is essential for the polarization of epithelial cells during morphogenetic processes, including gastrulation and neurulation (By similarity). PCP is maintained by two molecular modules, the global and the core modules, PRICKLE3 being part of the core module (By similarity). Distinct complexes of the core module segregate to opposite sides of the cell, where they interact with the opposite complex in the neighboring cell at or near the adherents junctions (By similarity). Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). Required for proper assembly, stability, and function of mitochondrial membrane ATP synthase (mitochondrial complex V) (PubMed:32516135). {ECO:0000250|UniProtKB:A8WH69, ECO:0000269|PubMed:32516135}. |
O60248 | SOX15 | S215 | ochoa | Transcription factor SOX-15 (Protein SOX-12) (Protein SOX-20) (SRY-box transcription factor 15) | Transcription factor that binds to DNA at the 5'-AACAATG-3' consensus sequence (By similarity). Acts as a transcriptional activator and repressor (By similarity). Binds synergistically with POU5F1 (OCT3/4) to gene promoters (By similarity). Binds to the FOXK1 promoter and recruits FHL3, resulting in transcriptional activation of FOXK1 which leads to myoblast proliferation (By similarity). Acts as an inhibitor of myoblast differentiation via transcriptional repression which leads to down-regulation of the muscle-specific genes MYOD and MYOG (By similarity). Involved in trophoblast giant cell differentiation via enhancement of HAND1 transcriptional activity (By similarity). Regulates transcription of HRC via binding to it proximal enhancer region (By similarity). Involved in skeletal muscle regeneration (By similarity). Also plays a role in the development of myogenic precursor cells (By similarity). {ECO:0000250|UniProtKB:P43267}. |
O60303 | KATNIP | S718 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O60343 | TBC1D4 | S617 | ochoa | TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) | May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}. |
O60732 | MAGEC1 | S1063 | ochoa | Melanoma-associated antigen C1 (Cancer/testis antigen 7.1) (CT7.1) (MAGE-C1 antigen) | None |
O75037 | KIF21B | S1241 | ochoa | Kinesin-like protein KIF21B | Plus-end directed microtubule-dependent motor protein which displays processive activity. Is involved in regulation of microtubule dynamics, synapse function and neuronal morphology, including dendritic tree branching and spine formation. Plays a role in lerning and memory. Involved in delivery of gamma-aminobutyric acid (GABA(A)) receptor to cell surface. {ECO:0000250|UniProtKB:Q9QXL1}. |
O75128 | COBL | S347 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75143 | ATG13 | S224 | psp | Autophagy-related protein 13 | Autophagy factor required for autophagosome formation and mitophagy. Target of the TOR kinase signaling pathway that regulates autophagy through the control of the phosphorylation status of ATG13 and ULK1, and the regulation of the ATG13-ULK1-RB1CC1 complex. Through its regulation of ULK1 activity, plays a role in the regulation of the kinase activity of mTORC1 and cell proliferation. {ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:19211835, ECO:0000269|PubMed:19225151, ECO:0000269|PubMed:19287211, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:21855797}. |
O75151 | PHF2 | S655 | ochoa|psp | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75175 | CNOT3 | S507 | ochoa | CCR4-NOT transcription complex subunit 3 (CCR4-associated factor 3) (Leukocyte receptor cluster member 2) | Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. May be involved in metabolic regulation; may be involved in recruitment of the CCR4-NOT complex to deadenylation target mRNAs involved in energy metabolism. Involved in mitotic progression and regulation of the spindle assembly checkpoint by regulating the stability of MAD1L1 mRNA. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may involve histone deacetylases. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:22342980, ECO:0000269|PubMed:22367759}. |
O75335 | PPFIA4 | S704 | ochoa | Liprin-alpha-4 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-4) (PTPRF-interacting protein alpha-4) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates (By similarity). {ECO:0000250}. |
O75420 | GIGYF1 | S28 | ochoa | GRB10-interacting GYF protein 1 (PERQ amino acid-rich with GYF domain-containing protein 1) | May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling. May increase IGF1 receptor phosphorylation under IGF1 stimulation as well as phosphorylation of IRS1 and SHC1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:12771153}. |
O75676 | RPS6KA4 | S347 | ochoa|psp | Ribosomal protein S6 kinase alpha-4 (S6K-alpha-4) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 4) (Nuclear mitogen- and stress-activated protein kinase 2) (Ribosomal protein kinase B) (RSKB) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factor RELA, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes. Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin. Plays an essential role in the control of RELA transcriptional activity in response to TNF. Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN. May also phosphorylate 'Ser-28' of histone H3. Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines. Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors. {ECO:0000269|PubMed:11035004, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:9792677}. |
O75808 | CAPN15 | S233 | ochoa | Calpain-15 (EC 3.4.22.-) (Small optic lobes homolog) | None |
O75864 | PPP1R37 | S548 | ochoa | Protein phosphatase 1 regulatory subunit 37 (Leucine-rich repeat-containing protein 68) | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. {ECO:0000269|PubMed:19389623}. |
O75952 | CABYR | S155 | psp | Calcium-binding tyrosine phosphorylation-regulated protein (Calcium-binding protein 86) (Cancer/testis antigen 88) (CT88) (Fibrousheathin II) (Fibrousheathin-2) (FSP-2) (Testis-specific calcium-binding protein CBP86) | May function as a regulator of both motility- and head-associated functions such as capacitation and the acrosome reaction. Isoform 1 binds calcium in vitro. Isoform 2 and isoform 6 probably bind calcium. Isoform 3 and isoform 5 do not bind calcium in vitro. Isoform 4 probably does not bind calcium. |
O76094 | SRP72 | S625 | ochoa | Signal recognition particle subunit SRP72 (SRP72) (Signal recognition particle 72 kDa protein) | Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA) in presence of SRP68 (PubMed:21073748, PubMed:27899666). Can bind 7SL RNA with low affinity (PubMed:21073748, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38688, ECO:0000269|PubMed:21073748, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}. |
O94887 | FARP2 | S876 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) | Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}. |
O95071 | UBR5 | S612 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95159 | ZFPL1 | S189 | ochoa | Zinc finger protein-like 1 (Zinc finger protein MCG4) | Required for cis-Golgi integrity and efficient ER to Golgi transport. Involved in the maintenance of the integrity of the cis-Golgi, possibly via its interaction with GOLGA2/GM130. {ECO:0000269|PubMed:18323775}. |
O95359 | TACC2 | S493 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95359 | TACC2 | S2321 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95400 | CD2BP2 | S247 | ochoa | CD2 antigen cytoplasmic tail-binding protein 2 (CD2 cytoplasmic domain-binding protein 2) (CD2 tail-binding protein 2) (U5 snRNP 52K protein) (U5-52K) | Involved in pre-mRNA splicing as component of the U5 snRNP complex that is involved in spliceosome assembly. {ECO:0000269|PubMed:15840814}. |
O95503 | CBX6 | S151 | ochoa | Chromobox protein homolog 6 | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. Possibly contributes to the target selectivity of the PRC1 complex by binding specific regions of chromatin (PubMed:18927235). Recruitment to chromatin might occur in an H3K27me3-independent fashion (By similarity). May have a PRC1-independent function in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:Q9DBY5, ECO:0000269|PubMed:18927235, ECO:0000269|PubMed:21282530}. |
O95758 | PTBP3 | S56 | ochoa | Polypyrimidine tract-binding protein 3 (Regulator of differentiation 1) (Rod1) | RNA-binding protein that mediates pre-mRNA alternative splicing regulation. Plays a role in the regulation of cell proliferation, differentiation and migration. Positive regulator of EPO-dependent erythropoiesis. Participates in cell differentiation regulation by repressing tissue-specific exons. Promotes FAS exon 6 skipping. Binds RNA, preferentially to both poly(G) and poly(U). {ECO:0000269|PubMed:10207106, ECO:0000269|PubMed:18335065, ECO:0000269|PubMed:19441079, ECO:0000269|PubMed:20937273}. |
O95785 | WIZ | S983 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
P00519 | ABL1 | S659 | ochoa | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P01106 | MYC | S77 | psp | Myc proto-oncogene protein (Class E basic helix-loop-helix protein 39) (bHLHe39) (Proto-oncogene c-Myc) (Transcription factor p64) | Transcription factor that binds DNA in a non-specific manner, yet also specifically recognizes the core sequence 5'-CAC[GA]TG-3' (PubMed:24940000, PubMed:25956029). Activates the transcription of growth-related genes (PubMed:24940000, PubMed:25956029). Binds to the VEGFA promoter, promoting VEGFA production and subsequent sprouting angiogenesis (PubMed:24940000, PubMed:25956029). Regulator of somatic reprogramming, controls self-renewal of embryonic stem cells (By similarity). Functions with TAF6L to activate target gene expression through RNA polymerase II pause release (By similarity). Positively regulates transcription of HNRNPA1, HNRNPA2 and PTBP1 which in turn regulate splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). {ECO:0000250|UniProtKB:P01108, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:25956029}. |
P04198 | MYCN | S62 | ochoa|psp | N-myc proto-oncogene protein (Class E basic helix-loop-helix protein 37) (bHLHe37) | Positively regulates the transcription of MYCNOS in neuroblastoma cells. {ECO:0000269|PubMed:24391509}. |
P05412 | JUN | S243 | ochoa|psp | Transcription factor Jun (Activator protein 1) (AP1) (Proto-oncogene c-Jun) (Transcription factor AP-1 subunit Jun) (V-jun avian sarcoma virus 17 oncogene homolog) (p39) | Transcription factor that recognizes and binds to the AP-1 consensus motif 5'-TGA[GC]TCA-3' (PubMed:10995748, PubMed:22083952). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to the AP-1 consensus sequence 5'-TGA[GC]TCA-3' and enhancing its transcriptional activity (By similarity). Together with FOSB, plays a role in activation-induced cell death of T cells by binding to the AP-1 promoter site of FASLG/CD95L, and inducing its transcription in response to activation of the TCR/CD3 signaling pathway (PubMed:12618758). Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation (PubMed:17210646). Involved in activated KRAS-mediated transcriptional activation of USP28 in colorectal cancer (CRC) cells (PubMed:24623306). Binds to the USP28 promoter in colorectal cancer (CRC) cells (PubMed:24623306). {ECO:0000250|UniProtKB:P05627, ECO:0000269|PubMed:10995748, ECO:0000269|PubMed:12618758, ECO:0000269|PubMed:17210646, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24623306}.; FUNCTION: (Microbial infection) Upon Epstein-Barr virus (EBV) infection, binds to viral BZLF1 Z promoter and activates viral BZLF1 expression. {ECO:0000269|PubMed:31341047}. |
P06239 | LCK | S59 | ochoa|psp | Tyrosine-protein kinase Lck (EC 2.7.10.2) (Leukocyte C-terminal Src kinase) (LSK) (Lymphocyte cell-specific protein-tyrosine kinase) (Protein YT16) (Proto-oncogene Lck) (T cell-specific protein-tyrosine kinase) (p56-LCK) | Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP. Interacts with FYB2 (PubMed:27335501). {ECO:0000269|PubMed:16339550, ECO:0000269|PubMed:16709819, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20851766, ECO:0000269|PubMed:21269457, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:27335501, ECO:0000269|PubMed:38614099}. |
P08151 | GLI1 | S1078 | psp | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
P08235 | NR3C2 | S703 | ochoa | Mineralocorticoid receptor (MR) (Nuclear receptor subfamily 3 group C member 2) | Receptor for both mineralocorticoids (MC) such as aldosterone and glucocorticoids (GC) such as corticosterone or cortisol. Binds to mineralocorticoid response elements (MRE) and transactivates target genes. The effect of MC is to increase ion and water transport and thus raise extracellular fluid volume and blood pressure and lower potassium levels. {ECO:0000269|PubMed:3037703}. |
P08588 | ADRB1 | S423 | ochoa|psp | Beta-1 adrenergic receptor (Beta-1 adrenoreceptor) (Beta-1 adrenoceptor) | Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. This receptor binds epinephrine and norepinephrine with approximately equal affinity. Mediates Ras activation through G(s)-alpha- and cAMP-mediated signaling. Involved in the regulation of sleep/wake behaviors (PubMed:31473062). {ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:31473062}. |
P09874 | PARP1 | S372 | ochoa|psp | Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] | Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}. |
P10275 | AR | S516 | psp | Androgen receptor (Dihydrotestosterone receptor) (Nuclear receptor subfamily 3 group C member 4) | Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues (PubMed:19022849). Transcription factor activity is modulated by bound coactivator and corepressor proteins like ZBTB7A that recruits NCOR1 and NCOR2 to the androgen response elements/ARE on target genes, negatively regulating androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Transcription activation is also down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3. {ECO:0000269|PubMed:14664718, ECO:0000269|PubMed:15563469, ECO:0000269|PubMed:17591767, ECO:0000269|PubMed:17911242, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:19022849, ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:25091737}.; FUNCTION: [Isoform 3]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}.; FUNCTION: [Isoform 4]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}. |
P10636 | MAPT | S438 | ochoa | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P10636 | MAPT | S552 | ochoa | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P11137 | MAP2 | S140 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11137 | MAP2 | S1653 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P12524 | MYCL | S42 | psp | Protein L-Myc (Class E basic helix-loop-helix protein 38) (bHLHe38) (Protein L-Myc-1) (V-myc myelocytomatosis viral oncogene homolog) | None |
P13051 | UNG | S64 | ochoa|psp | Uracil-DNA glycosylase (UDG) (EC 3.2.2.27) | Uracil-DNA glycosylase that hydrolyzes the N-glycosidic bond between uracil and deoxyribose in single- and double-stranded DNA (ssDNA and dsDNA) to release a free uracil residue and form an abasic (apurinic/apyrimidinic; AP) site. Excises uracil residues arising as a result of misincorporation of dUMP residues by DNA polymerase during replication or due to spontaneous or enzymatic deamination of cytosine (PubMed:12958596, PubMed:15967827, PubMed:17101234, PubMed:22521144, PubMed:7671300, PubMed:8900285, PubMed:9016624, PubMed:9776759). Mediates error-free base excision repair (BER) of uracil at replication forks. According to the model, it is recruited by PCNA to S-phase replication forks to remove misincorporated uracil at U:A base mispairs in nascent DNA strands. Via trimeric RPA it is recruited to ssDNA stretches ahead of the polymerase to allow detection and excision of deaminated cytosines prior to replication. The resultant AP sites temporarily stall replication, allowing time to repair the lesion (PubMed:22521144). Mediates mutagenic uracil processing involved in antibody affinity maturation. Processes AICDA-induced U:G base mispairs at variable immunoglobulin (Ig) regions leading to the generation of transversion mutations (PubMed:12958596). Operates at switch sites of Ig constant regions where it mediates Ig isotype class switch recombination. Excises AICDA-induced uracil residues forming AP sites that are subsequently nicked by APEX1 endonuclease. The accumulation of staggered nicks in opposite strands results in double strand DNA breaks that are finally resolved via non-homologous end joining repair pathway (By similarity) (PubMed:12958596). {ECO:0000250|UniProtKB:P97931, ECO:0000269|PubMed:12958596, ECO:0000269|PubMed:15967827, ECO:0000269|PubMed:17101234, ECO:0000269|PubMed:22521144, ECO:0000269|PubMed:7671300, ECO:0000269|PubMed:8900285, ECO:0000269|PubMed:9016624, ECO:0000269|PubMed:9776759}. |
P15822 | HIVEP1 | S1409 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P17096 | HMGA1 | S36 | ochoa|psp | High mobility group protein HMG-I/HMG-Y (HMG-I(Y)) (High mobility group AT-hook protein 1) (High mobility group protein A1) (High mobility group protein R) | HMG-I/Y bind preferentially to the minor groove of A+T rich regions in double-stranded DNA. It is suggested that these proteins could function in nucleosome phasing and in the 3'-end processing of mRNA transcripts. They are also involved in the transcription regulation of genes containing, or in close proximity to A+T-rich regions. |
P17275 | JUNB | S259 | ochoa|psp | Transcription factor JunB (Transcription factor AP-1 subunit JunB) | Transcription factor involved in regulating gene activity following the primary growth factor response. Binds to the DNA sequence 5'-TGA[GC]TCA-3'. Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to an AP-1 consensus sequence and its transcriptional activity (By similarity). {ECO:0000250|UniProtKB:P09450}. |
P17535 | JUND | S259 | ochoa | Transcription factor JunD (Transcription factor AP-1 subunit JunD) | Transcription factor binding AP-1 sites (PubMed:9989505). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription factor complex, thereby enhancing their DNA binding activity to an AP-1 consensus sequence 3'-TGA[GC]TCA-5' and enhancing their transcriptional activity (PubMed:28981703, PubMed:9989505). {ECO:0000269|PubMed:28981703, ECO:0000269|PubMed:9989505}. |
P19484 | TFEB | S332 | ochoa | Transcription factor EB (Class E basic helix-loop-helix protein 35) (bHLHe35) | Transcription factor that acts as a master regulator of lysosomal biogenesis, autophagy, lysosomal exocytosis, lipid catabolism, energy metabolism and immune response (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:30120233, PubMed:31672913, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823, PubMed:36749723, PubMed:37079666). Specifically recognizes and binds E-box sequences (5'-CANNTG-3'); efficient DNA-binding requires dimerization with itself or with another MiT/TFE family member such as TFE3 or MITF (PubMed:1748288, PubMed:19556463, PubMed:29146937). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, TFEB phosphorylation by MTOR promotes its cytosolic retention and subsequent inactivation (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of MTOR induces TFEB dephosphorylation, resulting in nuclear localization and transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Specifically recognizes and binds the CLEAR-box sequence (5'-GTCACGTGAC-3') present in the regulatory region of many lysosomal genes, leading to activate their expression, thereby playing a central role in expression of lysosomal genes (PubMed:19556463, PubMed:22692423). Regulates lysosomal positioning in response to nutrient deprivation by promoting the expression of PIP4P1 (PubMed:29146937). Acts as a positive regulator of autophagy by promoting expression of genes involved in autophagy (PubMed:21617040, PubMed:22576015, PubMed:23434374, PubMed:27278822). In association with TFE3, activates the expression of CD40L in T-cells, thereby playing a role in T-cell-dependent antibody responses in activated CD4(+) T-cells and thymus-dependent humoral immunity (By similarity). Specifically recognizes the gamma-E3 box, a subset of E-boxes, present in the heavy-chain immunoglobulin enhancer (PubMed:2115126). Plays a role in the signal transduction processes required for normal vascularization of the placenta (By similarity). Involved in the immune response to infection by the bacteria S.aureus, S.typhimurium or S.enterica: infection promotes itaconate production, leading to alkylation, resulting in nuclear localization and transcription factor activity (PubMed:35662396). Itaconate-mediated alkylation activates TFEB-dependent lysosomal biogenesis, facilitating the bacteria clearance during the antibacterial innate immune response (PubMed:35662396). In association with ACSS2, promotes the expression of genes involved in lysosome biogenesis and both autophagy upon glucose deprivation (PubMed:28552616). {ECO:0000250|UniProtKB:Q9R210, ECO:0000269|PubMed:1748288, ECO:0000269|PubMed:19556463, ECO:0000269|PubMed:2115126, ECO:0000269|PubMed:21617040, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23434374, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:27278822, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:29146937, ECO:0000269|PubMed:30120233, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:32753672, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:36749723, ECO:0000269|PubMed:37079666}. |
P19793 | RXRA | S260 | ochoa|psp | Retinoic acid receptor RXR-alpha (Nuclear receptor subfamily 2 group B member 1) (Retinoid X receptor alpha) | Receptor for retinoic acid that acts as a transcription factor (PubMed:10874028, PubMed:11162439, PubMed:11915042, PubMed:37478846). Forms homo- or heterodimers with retinoic acid receptors (RARs) and binds to target response elements in response to their ligands, all-trans or 9-cis retinoic acid, to regulate gene expression in various biological processes (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:16107141, PubMed:17761950, PubMed:18800767, PubMed:19167885, PubMed:28167758, PubMed:37478846). The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 to regulate transcription (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:17761950, PubMed:28167758). The high affinity ligand for retinoid X receptors (RXRs) is 9-cis retinoic acid (PubMed:1310260). In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone deacetylation, chromatin condensation and transcriptional suppression (PubMed:20215566). On ligand binding, the corepressors dissociate from the receptors and coactivators are recruited leading to transcriptional activation (PubMed:20215566, PubMed:37478846, PubMed:9267036). Serves as a common heterodimeric partner for a number of nuclear receptors, such as RARA, RARB and PPARA (PubMed:10195690, PubMed:11915042, PubMed:28167758, PubMed:29021580). The RXRA/RARB heterodimer can act as a transcriptional repressor or transcriptional activator, depending on the RARE DNA element context (PubMed:29021580). The RXRA/PPARA heterodimer is required for PPARA transcriptional activity on fatty acid oxidation genes such as ACOX1 and the P450 system genes (PubMed:10195690). Together with RARA, positively regulates microRNA-10a expression, thereby inhibiting the GATA6/VCAM1 signaling response to pulsatile shear stress in vascular endothelial cells (PubMed:28167758). Acts as an enhancer of RARA binding to RARE DNA element (PubMed:28167758). May facilitate the nuclear import of heterodimerization partners such as VDR and NR4A1 (PubMed:12145331, PubMed:15509776). Promotes myelin debris phagocytosis and remyelination by macrophages (PubMed:26463675). Plays a role in the attenuation of the innate immune system in response to viral infections, possibly by negatively regulating the transcription of antiviral genes such as type I IFN genes (PubMed:25417649). Involved in the regulation of calcium signaling by repressing ITPR2 gene expression, thereby controlling cellular senescence (PubMed:30216632). {ECO:0000269|PubMed:10195690, ECO:0000269|PubMed:10874028, ECO:0000269|PubMed:11162439, ECO:0000269|PubMed:11915042, ECO:0000269|PubMed:12145331, ECO:0000269|PubMed:1310260, ECO:0000269|PubMed:15509776, ECO:0000269|PubMed:16107141, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18800767, ECO:0000269|PubMed:19167885, ECO:0000269|PubMed:20215566, ECO:0000269|PubMed:25417649, ECO:0000269|PubMed:26463675, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:29021580, ECO:0000269|PubMed:30216632, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9267036}. |
P20393 | NR1D1 | S278 | ochoa | Nuclear receptor subfamily 1 group D member 1 (Rev-erbA-alpha) (V-erbA-related protein 1) (EAR-1) | Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components BMAL1, CLOCK and CRY1. Also regulates genes involved in metabolic functions, including lipid and bile acid metabolism, adipogenesis, gluconeogenesis and the macrophage inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nucleotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and regulates the levels of its ligand heme by repressing the expression of PPARGC1A, a potent inducer of heme synthesis. Regulates lipid metabolism by repressing the expression of APOC3 and by influencing the activity of sterol response element binding proteins (SREBPs); represses INSIG2 which interferes with the proteolytic activation of SREBPs which in turn govern the rhythmic expression of enzymes with key functions in sterol and fatty acid synthesis. Regulates gluconeogenesis via repression of G6PC1 and PEPCK and adipocyte differentiation via repression of PPARG. Regulates glucagon release in pancreatic alpha-cells via the AMPK-NAMPT-SIRT1 pathway and the proliferation, glucose-induced insulin secretion and expression of key lipogenic genes in pancreatic-beta cells. Positively regulates bile acid synthesis by increasing hepatic expression of CYP7A1 via repression of NR0B2 and NFIL3 which are negative regulators of CYP7A1. Modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy; controls mitochondrial biogenesis and respiration by interfering with the STK11-PRKAA1/2-SIRT1-PPARGC1A signaling pathway. Represses the expression of SERPINE1/PAI1, an important modulator of cardiovascular disease and the expression of inflammatory cytokines and chemokines in macrophages. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). Plays a role in the circadian regulation of body temperature and negatively regulates thermogenic transcriptional programs in brown adipose tissue (BAT); imposes a circadian oscillation in BAT activity, increasing body temperature when awake and depressing thermogenesis during sleep. In concert with NR2E3, regulates transcriptional networks critical for photoreceptor development and function. In addition to its activity as a repressor, can also act as a transcriptional activator. In the ovarian granulosa cells acts as a transcriptional activator of STAR which plays a role in steroid biosynthesis. In collaboration with SP1, activates GJA1 transcription in a heme-independent manner. Represses the transcription of CYP2B10, CYP4A10 and CYP4A14 (By similarity). Represses the transcription of CES2 (By similarity). Represses and regulates the circadian expression of TSHB in a NCOR1-dependent manner (By similarity). Negatively regulates the protein stability of NR3C1 and influences the time-dependent subcellular distribution of NR3C1, thereby affecting its transcriptional regulatory activity (By similarity). Plays a critical role in the circadian control of neutrophilic inflammation in the lung; under resting, non-stress conditions, acts as a rhythmic repressor to limit inflammatory activity whereas in the presence of inflammatory triggers undergoes ubiquitin-mediated degradation thereby relieving inhibition of the inflammatory response (By similarity). Plays a key role in the circadian regulation of microglial activation and neuroinflammation; suppresses microglial activation through the NF-kappaB pathway in the central nervous system (By similarity). Plays a role in the regulation of the diurnal rhythms of lipid and protein metabolism in the skeletal muscle via transcriptional repression of genes controlling lipid and amino acid metabolism in the muscle (By similarity). {ECO:0000250|UniProtKB:Q3UV55, ECO:0000269|PubMed:12021280, ECO:0000269|PubMed:15761026, ECO:0000269|PubMed:16968709, ECO:0000269|PubMed:18006707, ECO:0000269|PubMed:19710360, ECO:0000269|PubMed:1971514, ECO:0000269|PubMed:21479263, ECO:0000269|PubMed:22184247, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:2539258}. |
P23415 | GLRA1 | S408 | psp | Glycine receptor subunit alpha-1 (Glycine receptor 48 kDa subunit) (Glycine receptor strychnine-binding subunit) | Subunit of heteromeric glycine-gated chloride channels (PubMed:14551753, PubMed:23994010, PubMed:25730860, PubMed:37821459). Plays an important role in the down-regulation of neuronal excitability (PubMed:8298642, PubMed:9009272). Contributes to the generation of inhibitory postsynaptic currents (PubMed:25445488). Channel activity is potentiated by ethanol (PubMed:25973519). Potentiation of channel activity by intoxicating levels of ethanol contribute to the sedative effects of ethanol (By similarity). {ECO:0000250|UniProtKB:Q64018, ECO:0000269|PubMed:14551753, ECO:0000269|PubMed:16144831, ECO:0000269|PubMed:2155780, ECO:0000269|PubMed:22715885, ECO:0000269|PubMed:22973015, ECO:0000269|PubMed:23994010, ECO:0000269|PubMed:25445488, ECO:0000269|PubMed:25730860, ECO:0000269|PubMed:25973519, ECO:0000269|PubMed:7920629, ECO:0000269|PubMed:7925268, ECO:0000269|PubMed:9009272, ECO:0000305|PubMed:8298642}. |
P23677 | ITPKA | S95 | ochoa | Inositol-trisphosphate 3-kinase A (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase A) (IP3 3-kinase A) (IP3K A) (InsP 3-kinase A) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:15350214, ECO:0000269|PubMed:1847047}. |
P24394 | IL4R | S474 | ochoa | Interleukin-4 receptor subunit alpha (IL-4 receptor subunit alpha) (IL-4R subunit alpha) (IL-4R-alpha) (IL-4RA) (CD antigen CD124) [Cleaved into: Soluble interleukin-4 receptor subunit alpha (Soluble IL-4 receptor subunit alpha) (Soluble IL-4R-alpha) (sIL4Ralpha/prot) (IL-4-binding protein) (IL4-BP)] | Receptor for both interleukin 4 and interleukin 13 (PubMed:17030238). Couples to the JAK1/2/3-STAT6 pathway. The IL4 response is involved in promoting Th2 differentiation. The IL4/IL13 responses are involved in regulating IgE production and, chemokine and mucus production at sites of allergic inflammation. In certain cell types, can signal through activation of insulin receptor substrates, IRS1/IRS2. {ECO:0000269|PubMed:17030238, ECO:0000269|PubMed:8124718}.; FUNCTION: Soluble IL4R (sIL4R) inhibits IL4-mediated cell proliferation and IL5 up-regulation by T-cells. {ECO:0000269|PubMed:8124718}. |
P25054 | APC | S1371 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P27037 | ACVR2A | S184 | ochoa | Activin receptor type-2A (EC 2.7.11.30) (Activin receptor type IIA) (ACTR-IIA) (ACTRIIA) | On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for activin A, activin B and inhibin A (PubMed:17911401, PubMed:10652306). Mediates induction of adipogenesis by GDF6 (By similarity). {ECO:0000250|UniProtKB:P27038, ECO:0000269|PubMed:1314589, ECO:0000269|PubMed:17911401}. |
P27448 | MARK3 | S583 | ochoa | MAP/microtubule affinity-regulating kinase 3 (EC 2.7.11.1) (C-TAK1) (cTAK1) (Cdc25C-associated protein kinase 1) (ELKL motif kinase 2) (EMK-2) (Protein kinase STK10) (Ser/Thr protein kinase PAR-1) (Par-1a) (Serine/threonine-protein kinase p78) | Serine/threonine-protein kinase (PubMed:16822840, PubMed:16980613, PubMed:23666762). Involved in the specific phosphorylation of microtubule-associated proteins for MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Phosphorylates CDC25C on 'Ser-216' (PubMed:12941695). Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus (PubMed:16980613). Regulates localization and activity of MITF by mediating its phosphorylation, promoting subsequent interaction between MITF and 14-3-3 and retention in the cytosol (PubMed:16822840). Negatively regulates the Hippo signaling pathway and antagonizes the phosphorylation of LATS1. Cooperates with DLG5 to inhibit the kinase activity of STK3/MST2 toward LATS1 (PubMed:28087714). Phosphorylates PKP2 and KSR1 (PubMed:12941695). {ECO:0000269|PubMed:12941695, ECO:0000269|PubMed:16822840, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:28087714}. |
P29474 | NOS3 | S57 | ochoa | Nitric oxide synthase 3 (EC 1.14.13.39) (Constitutive NOS) (cNOS) (EC-NOS) (NOS type III) (NOSIII) (Nitric oxide synthase, endothelial) (Endothelial NOS) (eNOS) | Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway (PubMed:1378832). NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. {ECO:0000269|PubMed:1378832}.; FUNCTION: [Isoform eNOS13C]: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1. |
P33241 | LSP1 | S193 | ochoa | Lymphocyte-specific protein 1 (47 kDa actin-binding protein) (52 kDa phosphoprotein) (pp52) (Lymphocyte-specific antigen WP34) | May play a role in mediating neutrophil activation and chemotaxis. {ECO:0000250}. |
P40818 | USP8 | S355 | ochoa | Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) | Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}. |
P41235 | HNF4A | S436 | ochoa|psp | Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) | Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}. |
P41440 | SLC19A1 | S503 | ochoa | Reduced folate transporter (FOLT) (Cyclic dinucleotide:anion antiporter SLC19A1) (Folate:anion antiporter SLC19A1) (Intestinal folate carrier 1) (IFC-1) (Placental folate transporter) (Reduced folate carrier protein) (RFC) (hRFC) (Reduced folate transporter 1) (RFT-1) (Solute carrier family 19 member 1) (hSLC19A1) | Antiporter that mediates the import of reduced folates or a subset of cyclic dinucleotides, driven by the export of organic anions (PubMed:10787414, PubMed:15337749, PubMed:16115875, PubMed:22554803, PubMed:31126740, PubMed:31511694, PubMed:32276275, PubMed:36071163, PubMed:36265513, PubMed:36575193, PubMed:7826387, PubMed:9041240). Acts as an importer of immunoreactive cyclic dinucleotides, such as cyclic GMP-AMP (2'-3'-cGAMP), an immune messenger produced in response to DNA virus in the cytosol, and its linkage isomer 3'-3'-cGAMP, thus playing a role in triggering larger immune responses (PubMed:31126740, PubMed:31511694, PubMed:36745868). Mechanistically, acts as a secondary active transporter, which exports intracellular organic anions down their concentration gradients to facilitate the uptake of its substrates (PubMed:22554803, PubMed:31126740, PubMed:31511694). Has high affinity for N5-methyltetrahydrofolate, the predominant circulating form of folate (PubMed:10787414, PubMed:14609557, PubMed:22554803, PubMed:36071163, PubMed:36265513, PubMed:36575193). Also mediates the import of antifolate drug methotrexate (PubMed:22554803, PubMed:36071163, PubMed:7615551, PubMed:7641195, PubMed:9767079). 5-amino-4-imidazolecarboxamide riboside (AICAR), when phosphorylated to AICAR monophosphate, can serve as an organic anion for antiporter activity (PubMed:22554803). {ECO:0000269|PubMed:10787414, ECO:0000269|PubMed:14609557, ECO:0000269|PubMed:15337749, ECO:0000269|PubMed:16115875, ECO:0000269|PubMed:22554803, ECO:0000269|PubMed:31126740, ECO:0000269|PubMed:31511694, ECO:0000269|PubMed:32276275, ECO:0000269|PubMed:36071163, ECO:0000269|PubMed:36265513, ECO:0000269|PubMed:36575193, ECO:0000269|PubMed:36745868, ECO:0000269|PubMed:7615551, ECO:0000269|PubMed:7641195, ECO:0000269|PubMed:7826387, ECO:0000269|PubMed:9041240, ECO:0000269|PubMed:9767079}. |
P43364 | MAGEA11 | S174 | psp | Melanoma-associated antigen 11 (Cancer/testis antigen 1.11) (CT1.11) (MAGE-11 antigen) | Acts as androgen receptor coregulator that increases androgen receptor activity by modulating the receptors interdomain interaction. May play a role in embryonal development and tumor transformation or aspects of tumor progression. {ECO:0000269|PubMed:15684378}. |
P46013 | MKI67 | S2708 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P48681 | NES | S471 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49327 | FASN | S1411 | ochoa | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P51617 | IRAK1 | S173 | psp | Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}. |
P51812 | RPS6KA3 | S369 | ochoa|psp | Ribosomal protein S6 kinase alpha-3 (S6K-alpha-3) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 3) (p90-RSK 3) (p90RSK3) (Insulin-stimulated protein kinase 1) (ISPK-1) (MAP kinase-activated protein kinase 1b) (MAPK-activated protein kinase 1b) (MAPKAP kinase 1b) (MAPKAPK-1b) (Ribosomal S6 kinase 2) (RSK-2) (pp90RSK2) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:16213824, PubMed:16223362, PubMed:17360704, PubMed:9770464). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:10436156, PubMed:9770464). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:8250835). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:18508509, PubMed:18813292). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:18722121). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (By similarity). In LPS-stimulated dendritic cells, is involved in TLR4-induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3 (By similarity). Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1 (By similarity). Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation (By similarity). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity (By similarity). {ECO:0000250|UniProtKB:P18654, ECO:0000269|PubMed:10436156, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:8250835, ECO:0000269|PubMed:9770464, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}. |
P51816 | AFF2 | S918 | ochoa | AF4/FMR2 family member 2 (Protein FMR-2) (FMR2P) (Protein Ox19) | RNA-binding protein. Might be involved in alternative splicing regulation through an interaction with G-quartet RNA structure. {ECO:0000269|PubMed:19136466}. |
P51825 | AFF1 | S212 | ochoa|psp | AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) | None |
P51825 | AFF1 | S667 | ochoa | AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) | None |
P51825 | AFF1 | S715 | ochoa | AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) | None |
P53805 | RCAN1 | S167 | ochoa|psp | Calcipressin-1 (Adapt78) (Down syndrome critical region protein 1) (Myocyte-enriched calcineurin-interacting protein 1) (MCIP1) (Regulator of calcineurin 1) | Inhibits calcineurin-dependent transcriptional responses by binding to the catalytic domain of calcineurin A (PubMed:12809556). Could play a role during central nervous system development (By similarity). {ECO:0000250|UniProtKB:Q9JHG6, ECO:0000269|PubMed:12809556}. |
P53992 | SEC24C | S218 | ochoa | Protein transport protein Sec24C (SEC24-related protein C) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:10214955, PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24D may have a different specificity compared to SEC24A and SEC24B (PubMed:17499046, PubMed:18843296, PubMed:20427317). May more specifically package GPI-anchored proteins through the cargo receptor TMED10 (PubMed:20427317). May also be specific for IxM motif-containing cargos like the SNAREs GOSR2 and STX5 (PubMed:18843296). {ECO:0000269|PubMed:10214955, ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}. |
P55265 | ADAR | S491 | ochoa | Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:12618436, PubMed:7565688, PubMed:7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}. |
P55317 | FOXA1 | S331 | ochoa | Hepatocyte nuclear factor 3-alpha (HNF-3-alpha) (HNF-3A) (Forkhead box protein A1) (Transcription factor 3A) (TCF-3A) | Transcription factor that is involved in embryonic development, establishment of tissue-specific gene expression and regulation of gene expression in differentiated tissues. Is thought to act as a 'pioneer' factor opening the compacted chromatin for other proteins through interactions with nucleosomal core histones and thereby replacing linker histones at target enhancer and/or promoter sites. Binds DNA with the consensus sequence 5'-[AC]A[AT]T[AG]TT[GT][AG][CT]T[CT]-3' (By similarity). Proposed to play a role in translating the epigenetic signatures into cell type-specific enhancer-driven transcriptional programs. Its differential recruitment to chromatin is dependent on distribution of histone H3 methylated at 'Lys-5' (H3K4me2) in estrogen-regulated genes. Involved in the development of multiple endoderm-derived organ systems such as liver, pancreas, lung and prostate; FOXA1 and FOXA2 seem to have at least in part redundant roles (By similarity). Modulates the transcriptional activity of nuclear hormone receptors. Is involved in ESR1-mediated transcription; required for ESR1 binding to the NKX2-1 promoter in breast cancer cells; binds to the RPRM promoter and is required for the estrogen-induced repression of RPRM. Involved in regulation of apoptosis by inhibiting the expression of BCL2. Involved in cell cycle regulation by activating expression of CDKN1B, alone or in conjunction with BRCA1. Originally described as a transcription activator for a number of liver genes such as AFP, albumin, tyrosine aminotransferase, PEPCK, etc. Interacts with the cis-acting regulatory regions of these genes. Involved in glucose homeostasis. {ECO:0000250, ECO:0000269|PubMed:16087863, ECO:0000269|PubMed:16331276, ECO:0000269|PubMed:18358809, ECO:0000269|PubMed:19127412, ECO:0000269|PubMed:19917725}. |
P56945 | BCAR1 | S355 | ochoa | Breast cancer anti-estrogen resistance protein 1 (CRK-associated substrate) (Cas scaffolding protein family member 1) (p130cas) | Docking protein which plays a central coordinating role for tyrosine kinase-based signaling related to cell adhesion (PubMed:12432078, PubMed:12832404). Implicated in induction of cell migration and cell branching (PubMed:12432078, PubMed:12832404, PubMed:17038317). Involved in the BCAR3-mediated inhibition of TGFB signaling (By similarity). {ECO:0000250|UniProtKB:Q61140, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:17038317}. |
P57682 | KLF3 | S250 | ochoa|psp | Krueppel-like factor 3 (Basic krueppel-like factor) (CACCC-box-binding protein BKLF) (TEF-2) | Binds to the CACCC box of erythroid cell-expressed genes. May play a role in hematopoiesis (By similarity). {ECO:0000250}. |
P58012 | FOXL2 | S33 | ochoa|psp | Forkhead box protein L2 | Transcriptional regulator. Critical factor essential for ovary differentiation and maintenance, and repression of the genetic program for somatic testis determination. Prevents trans-differentiation of ovary to testis through transcriptional repression of the Sertoli cell-promoting gene SOX9 (By similarity). Has apoptotic activity in ovarian cells. Suppresses ESR1-mediated transcription of PTGS2/COX2 stimulated by tamoxifen (By similarity). Is a regulator of CYP19 expression (By similarity). Participates in SMAD3-dependent transcription of FST via the intronic SMAD-binding element (By similarity). Is a transcriptional repressor of STAR. Activates SIRT1 transcription under cellular stress conditions. Activates transcription of OSR2. {ECO:0000250, ECO:0000269|PubMed:16153597, ECO:0000269|PubMed:19010791, ECO:0000269|PubMed:19429596, ECO:0000269|PubMed:19744555}. |
P78356 | PIP4K2B | S326 | ochoa|psp | Phosphatidylinositol 5-phosphate 4-kinase type-2 beta (EC 2.7.1.149) (1-phosphatidylinositol 5-phosphate 4-kinase 2-beta) (Diphosphoinositide kinase 2-beta) (Phosphatidylinositol 5-phosphate 4-kinase type II beta) (PI(5)P 4-kinase type II beta) (PIP4KII-beta) (PtdIns(5)P-4-kinase isoform 2-beta) | Participates in the biosynthesis of phosphatidylinositol 4,5-bisphosphate (PubMed:26774281, PubMed:9038203). Preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation and its activity reflects changes in direct proportion to the physiological GTP concentration (PubMed:26774281). Its GTP-sensing activity is critical for metabolic adaptation (PubMed:26774281). PIP4Ks negatively regulate insulin signaling through a catalytic-independent mechanism. They interact with PIP5Ks and suppress PIP5K-mediated PtdIns(4,5)P2 synthesis and insulin-dependent conversion to PtdIns(3,4,5)P3 (PubMed:31091439). {ECO:0000269|PubMed:26774281, ECO:0000269|PubMed:31091439, ECO:0000269|PubMed:9038203}. |
P78559 | MAP1A | S1069 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S1801 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P80192 | MAP3K9 | S552 | ochoa | Mitogen-activated protein kinase kinase kinase 9 (EC 2.7.11.25) (Mixed lineage kinase 1) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade through the phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7 which in turn activate the JNKs. The MKK/JNK signaling pathway regulates stress response via activator protein-1 (JUN) and GATA4 transcription factors. Also plays a role in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. {ECO:0000269|PubMed:11416147, ECO:0000269|PubMed:15610029}. |
P81274 | GPSM2 | S541 | ochoa | G-protein-signaling modulator 2 (Mosaic protein LGN) | Plays an important role in mitotic spindle pole organization via its interaction with NUMA1 (PubMed:11781568, PubMed:15632202, PubMed:21816348). Required for cortical dynein-dynactin complex recruitment during metaphase (PubMed:22327364). Plays a role in metaphase spindle orientation (PubMed:22327364). Also plays an important role in asymmetric cell divisions (PubMed:21816348). Has guanine nucleotide dissociation inhibitor (GDI) activity towards G(i) alpha proteins, such as GNAI1 and GNAI3, and thereby regulates their activity (By similarity). {ECO:0000250|UniProtKB:Q8VDU0, ECO:0000269|PubMed:11781568, ECO:0000269|PubMed:15632202, ECO:0000269|PubMed:21816348, ECO:0000269|PubMed:22327364}. |
P98164 | LRP2 | S4616 | ochoa|psp | Low-density lipoprotein receptor-related protein 2 (LRP-2) (Glycoprotein 330) (gp330) (Megalin) | Multiligand endocytic receptor (By similarity). Acts together with CUBN to mediate endocytosis of high-density lipoproteins (By similarity). Mediates receptor-mediated uptake of polybasic drugs such as aprotinin, aminoglycosides and polymyxin B (By similarity). In the kidney, mediates the tubular uptake and clearance of leptin (By similarity). Also mediates transport of leptin across the blood-brain barrier through endocytosis at the choroid plexus epithelium (By similarity). Endocytosis of leptin in neuronal cells is required for hypothalamic leptin signaling and leptin-mediated regulation of feeding and body weight (By similarity). Mediates endocytosis and subsequent lysosomal degradation of CST3 in kidney proximal tubule cells (By similarity). Mediates renal uptake of 25-hydroxyvitamin D3 in complex with the vitamin D3 transporter GC/DBP (By similarity). Mediates renal uptake of metallothionein-bound heavy metals (PubMed:15126248). Together with CUBN, mediates renal reabsorption of myoglobin (By similarity). Mediates renal uptake and subsequent lysosomal degradation of APOM (By similarity). Plays a role in kidney selenium homeostasis by mediating renal endocytosis of selenoprotein SEPP1 (By similarity). Mediates renal uptake of the antiapoptotic protein BIRC5/survivin which may be important for functional integrity of the kidney (PubMed:23825075). Mediates renal uptake of matrix metalloproteinase MMP2 in complex with metalloproteinase inhibitor TIMP1 (By similarity). Mediates endocytosis of Sonic hedgehog protein N-product (ShhN), the active product of SHH (By similarity). Also mediates ShhN transcytosis (By similarity). In the embryonic neuroepithelium, mediates endocytic uptake and degradation of BMP4, is required for correct SHH localization in the ventral neural tube and plays a role in patterning of the ventral telencephalon (By similarity). Required at the onset of neurulation to sequester SHH on the apical surface of neuroepithelial cells of the rostral diencephalon ventral midline and to control PTCH1-dependent uptake and intracellular trafficking of SHH (By similarity). During neurulation, required in neuroepithelial cells for uptake of folate bound to the folate receptor FOLR1 which is necessary for neural tube closure (By similarity). In the adult brain, negatively regulates BMP signaling in the subependymal zone which enables neurogenesis to proceed (By similarity). In astrocytes, mediates endocytosis of ALB which is required for the synthesis of the neurotrophic factor oleic acid (By similarity). Involved in neurite branching (By similarity). During optic nerve development, required for SHH-mediated migration and proliferation of oligodendrocyte precursor cells (By similarity). Mediates endocytic uptake and clearance of SHH in the retinal margin which protects retinal progenitor cells from mitogenic stimuli and keeps them quiescent (By similarity). Plays a role in reproductive organ development by mediating uptake in reproductive tissues of androgen and estrogen bound to the sex hormone binding protein SHBG (By similarity). Mediates endocytosis of angiotensin-2 (By similarity). Also mediates endocytosis of angiotensis 1-7 (By similarity). Binds to the complex composed of beta-amyloid protein 40 and CLU/APOJ and mediates its endocytosis and lysosomal degradation (By similarity). Required for embryonic heart development (By similarity). Required for normal hearing, possibly through interaction with estrogen in the inner ear (By similarity). {ECO:0000250|UniProtKB:A2ARV4, ECO:0000250|UniProtKB:C0HL13, ECO:0000250|UniProtKB:P98158, ECO:0000269|PubMed:15126248, ECO:0000269|PubMed:23825075}. |
P98174 | FGD1 | S715 | ochoa | FYVE, RhoGEF and PH domain-containing protein 1 (Faciogenital dysplasia 1 protein) (Rho/Rac guanine nucleotide exchange factor FGD1) (Rho/Rac GEF) (Zinc finger FYVE domain-containing protein 3) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:8969170}. |
Q01094 | E2F1 | S337 | ochoa|psp | Transcription factor E2F1 (E2F-1) (PBR3) (Retinoblastoma-associated protein 1) (RBAP-1) (Retinoblastoma-binding protein 3) (RBBP-3) (pRB-binding protein E2F-1) | Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication (PubMed:10675335, PubMed:12717439, PubMed:17050006, PubMed:17704056, PubMed:18625225, PubMed:28992046). The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase (PubMed:10675335, PubMed:12717439, PubMed:17704056). E2F1 binds preferentially RB1 in a cell-cycle dependent manner (PubMed:10675335, PubMed:12717439, PubMed:17704056). It can mediate both cell proliferation and TP53/p53-dependent apoptosis (PubMed:8170954). Blocks adipocyte differentiation by binding to specific promoters repressing CEBPA binding to its target gene promoters (PubMed:20176812). Directly activates transcription of PEG10 (PubMed:17050006, PubMed:18625225, PubMed:28992046). Positively regulates transcription of RRP1B (PubMed:20040599). {ECO:0000269|PubMed:10675335, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:17050006, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:18625225, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20176812, ECO:0000269|PubMed:28992046, ECO:0000269|PubMed:8170954}. |
Q01484 | ANK2 | S1976 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q03989 | ARID5A | S23 | ochoa | AT-rich interactive domain-containing protein 5A (ARID domain-containing protein 5A) (Modulator recognition factor 1) (MRF-1) | DNA-binding protein that may regulate transcription and act as a repressor by binding to AT-rich stretches in the promoter region of target genes (PubMed:8649988). May positively regulate chondrocyte-specific transcription such as of COL2A1 in collaboration with SOX9 and positively regulate histone H3 acetylation at chondrocyte-specific genes. May stimulate early-stage chondrocyte differentiation and inhibit later stage differention (By similarity). Can repress ESR1-mediated transcriptional activation; proposed to act as corepressor for selective nuclear hormone receptors (PubMed:15941852). As an RNA-binding protein, involved in the regulation of inflammatory response by stabilizing selective inflammation-related mRNAs, such as STAT3 and TBX21 (By similarity). Also stabilizes IL6 mRNA (PubMed:32209697). Binds to stem loop structures located in the 3'UTRs of IL6, STAT3 and TBX21 mRNAs; at least for STAT3 prevents binding of ZC3H12A to the mRNA stem loop structure thus inhibiting its degradation activity. Contributes to elevated IL6 levels possibly implicated in autoimmunity processes. IL6-dependent stabilization of STAT3 mRNA may promote differentiation of naive CD4+ T-cells into T-helper Th17 cells. In CD4+ T-cells may also inhibit RORC-induced Th17 cell differentiation independently of IL6 signaling. Stabilization of TBX21 mRNA contributes to elevated interferon-gamma secretion in Th1 cells possibly implicated in the establishment of septic shock (By similarity). Stabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR; thereby competing with the mRNA-destabilizing functions of RC3H1 and endoribonuclease ZC3H12A (By similarity). {ECO:0000250|UniProtKB:Q3U108, ECO:0000269|PubMed:15941852, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:8649988}. |
Q04637 | EIF4G1 | S1231 | ochoa|psp | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q06710 | PAX8 | S170 | ochoa | Paired box protein Pax-8 | Transcription factor for the thyroid-specific expression of the genes exclusively expressed in the thyroid cell type, maintaining the functional differentiation of such cells. |
Q07157 | TJP1 | S899 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08495 | DMTN | S96 | ochoa|psp | Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) | Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}. |
Q08999 | RBL2 | S1035 | ochoa|psp | Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) | Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor. |
Q12767 | TMEM94 | S221 | ochoa | Transmembrane protein 94 (Endoplasmic reticulum magnesium ATPase) | Could function in the uptake of Mg(2+) from the cytosol into the endoplasmic reticulum and regulate intracellular Mg(2+) homeostasis. {ECO:0000269|PubMed:38513662}. |
Q12767 | TMEM94 | S225 | ochoa | Transmembrane protein 94 (Endoplasmic reticulum magnesium ATPase) | Could function in the uptake of Mg(2+) from the cytosol into the endoplasmic reticulum and regulate intracellular Mg(2+) homeostasis. {ECO:0000269|PubMed:38513662}. |
Q12873 | CHD3 | S713 | ochoa | Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}. |
Q13029 | PRDM2 | S743 | ochoa | PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) | S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}. |
Q13085 | ACACA | S1263 | ochoa|psp | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13112 | CHAF1B | S513 | ochoa | Chromatin assembly factor 1 subunit B (CAF-1 subunit B) (Chromatin assembly factor I p60 subunit) (CAF-I 60 kDa subunit) (CAF-I p60) (M-phase phosphoprotein 7) | Acts as a component of the histone chaperone complex chromatin assembly factor 1 (CAF-1), which assembles histone octamers onto DNA during replication and repair. CAF-1 performs the first step of the nucleosome assembly process, bringing newly synthesized histones H3 and H4 to replicating DNA; histones H2A/H2B can bind to this chromatin precursor subsequent to DNA replication to complete the histone octamer. {ECO:0000269|PubMed:9813080}. |
Q13136 | PPFIA1 | S745 | ochoa | Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}. |
Q13207 | TBX2 | S336 | ochoa | T-box transcription factor TBX2 (T-box protein 2) | Transcription factor which acts as a transcriptional repressor (PubMed:11062467, PubMed:11111039, PubMed:12000749, PubMed:22844464, PubMed:30599067). May also function as a transcriptional activator (By similarity). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:11111039, PubMed:12000749, PubMed:22844464, PubMed:30599067). Required for cardiac atrioventricular canal formation (PubMed:29726930). May cooperate with NKX2.5 to negatively modulate expression of NPPA/ANF in the atrioventricular canal (By similarity). May play a role as a positive regulator of TGFB2 expression, perhaps acting in concert with GATA4 in the developing outflow tract myocardium (By similarity). Plays a role in limb pattern formation (PubMed:29726930). Acts as a transcriptional repressor of ADAM10 gene expression, perhaps in concert with histone deacetylase HDAC1 as cofactor (PubMed:30599067). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX3 (By similarity). Required, together with TBX3, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with TBX3, in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). Acts as a negative regulator of expression of CDKN1A/p21, IL33 and CCN4; repression of CDKN1A is enhanced in response to UV-induced stress, perhaps as a result of phosphorylation by p38 MAPK (By similarity). Negatively modulates expression of CDKN2A/p14ARF and CDH1/E-cadherin (PubMed:11062467, PubMed:12000749, PubMed:22844464). Plays a role in induction of the epithelial-mesenchymal transition (EMT) (PubMed:22844464). Plays a role in melanocyte proliferation, perhaps via regulation of cyclin CCND1 (By similarity). Involved in melanogenesis, acting via negative modulation of expression of DHICA oxidase/TYRP1 and P protein/OCA2 (By similarity). Involved in regulating retinal pigment epithelium (RPE) cell proliferation, perhaps via negatively modulating transcription of the transcription factor CEBPD (PubMed:28910203). {ECO:0000250|UniProtKB:Q60707, ECO:0000269|PubMed:11062467, ECO:0000269|PubMed:11111039, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537, ECO:0000269|PubMed:22844464, ECO:0000269|PubMed:28910203, ECO:0000269|PubMed:29726930, ECO:0000269|PubMed:30599067}. |
Q13233 | MAP3K1 | S1018 | ochoa | Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) | Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}. |
Q13470 | TNK1 | S96 | ochoa | Non-receptor tyrosine-protein kinase TNK1 (EC 2.7.10.2) (CD38 negative kinase 1) | Involved in negative regulation of cell growth. Has tumor suppressor properties. Plays a negative regulatory role in the Ras-MAPK pathway. May function in signaling pathways utilized broadly during fetal development and more selectively in adult tissues and in cells of the lymphohematopoietic system. Could specifically be involved in phospholipid signal transduction. {ECO:0000269|PubMed:10873601, ECO:0000269|PubMed:18974114}. |
Q13563 | PKD2 | S166 | ochoa | Polycystin-2 (PC2) (Autosomal dominant polycystic kidney disease type II protein) (Polycystic kidney disease 2 protein) (Polycystwin) (R48321) (Transient receptor potential cation channel subfamily P member 2) | Forms a nonselective cation channel (PubMed:11854751, PubMed:11991947, PubMed:15692563, PubMed:26269590, PubMed:27071085, PubMed:31441214, PubMed:39009345). Can function as a homotetrameric ion channel or can form heteromer with PKD1 (PubMed:31441214, PubMed:33164752). Displays distinct function depending on its subcellular localization and regulation by its binding partners (PubMed:11854751, PubMed:11991947, PubMed:27214281, PubMed:29899465). In primary cilium functions as a cation channel, with a preference for monovalent cations over divalent cations that allows K(+), Na(+) and Ca(2+) influx, with low selectivity for Ca(2+) (PubMed:27071085). Involved in fluid-flow mechanosensation by the primary cilium in renal epithelium (By similarity). In the endoplasmic reticulum, likely functions as a K(+) channel to facilitate Ca(2+) release (By similarity). The heterotetrameric PKD1/PKD2 channel has higher Ca(2+) permeability than homomeric PKD2 channel and acts as a primarily Ca(2+)-permeable channel (PubMed:31441214). Interacts with and acts as a regulator of a number of other channels, such as TRPV4, TRPC1, IP3R, RYR2, ultimately further affecting intracellular signaling, to modulate intracellular Ca(2+) signaling (PubMed:11854751, PubMed:11991947, PubMed:27214281, PubMed:29899465). Together with TRPV4, forms mechano- and thermosensitive channels in cilium (PubMed:18695040). In cardiomyocytes, PKD2 modulates Ca(2+) release from stimulated RYR2 receptors through direct association (By similarity). Also involved in left-right axis specification via its role in sensing nodal flow; forms a complex with PKD1L1 in cilia to facilitate flow detection in left-right patterning (By similarity). Acts as a regulator of cilium length together with PKD1 (By similarity). Mediates systemic blood pressure and contributes to the myogenic response in cerebral arteries though vasoconstriction (By similarity). {ECO:0000250|UniProtKB:O35245, ECO:0000269|PubMed:11854751, ECO:0000269|PubMed:11991947, ECO:0000269|PubMed:15692563, ECO:0000269|PubMed:18695040, ECO:0000269|PubMed:26269590, ECO:0000269|PubMed:27071085, ECO:0000269|PubMed:27214281, ECO:0000269|PubMed:29899465, ECO:0000269|PubMed:31441214, ECO:0000269|PubMed:33164752, ECO:0000269|PubMed:39009345}. |
Q13625 | TP53BP2 | Y874 | psp | Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) | Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}. |
Q14135 | VGLL4 | S52 | ochoa | Transcription cofactor vestigial-like protein 4 (Vgl-4) | May act as a specific coactivator for the mammalian TEFs. {ECO:0000250}. |
Q14156 | EFR3A | S220 | ochoa | Protein EFR3 homolog A (Protein EFR3-like) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:23229899, PubMed:25608530, PubMed:26571211). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (Probable). In the complex, EFR3A probably acts as the membrane-anchoring component (PubMed:23229899). Also involved in responsiveness to G-protein-coupled receptors; it is however unclear whether this role is direct or indirect (PubMed:25380825). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:25380825, ECO:0000269|PubMed:25608530, ECO:0000305}. |
Q14156 | EFR3A | S791 | ochoa | Protein EFR3 homolog A (Protein EFR3-like) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:23229899, PubMed:25608530, PubMed:26571211). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (Probable). In the complex, EFR3A probably acts as the membrane-anchoring component (PubMed:23229899). Also involved in responsiveness to G-protein-coupled receptors; it is however unclear whether this role is direct or indirect (PubMed:25380825). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:25380825, ECO:0000269|PubMed:25608530, ECO:0000305}. |
Q14157 | UBAP2L | S454 | ochoa|psp | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14160 | SCRIB | S423 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14160 | SCRIB | S853 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14168 | MPP2 | S145 | ochoa | MAGUK p55 subfamily member 2 (Discs large homolog 2) (Protein MPP2) | Postsynaptic MAGUK scaffold protein that links CADM1 cell adhesion molecules to core components of the postsynaptic density (By similarity). In CA1 pyramidal neurons, required for synaptic KCNN2-containing channel function and long-term potentiation expression (By similarity). Seems to negatively regulate SRC function in epithelial cells (PubMed:19665017). {ECO:0000250|UniProtKB:D3ZAA9, ECO:0000250|UniProtKB:Q9WV34, ECO:0000269|PubMed:19665017}. |
Q14206 | RCAN2 | S116 | ochoa | Calcipressin-2 (Down syndrome candidate region 1-like 1) (Myocyte-enriched calcineurin-interacting protein 2) (MCIP2) (Regulator of calcineurin 2) (Thyroid hormone-responsive protein ZAKI-4) | Inhibits calcineurin-dependent transcriptional responses by binding to the catalytic domain of calcineurin A. Could play a role during central nervous system development. |
Q14247 | CTTN | S405 | ochoa|psp | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14596 | NBR1 | S825 | ochoa | Next to BRCA1 gene 1 protein (Cell migration-inducing gene 19 protein) (Membrane component chromosome 17 surface marker 2) (Neighbor of BRCA1 gene 1 protein) (Protein 1A1-3B) | Ubiquitin-binding autophagy adapter that participates in different processes including host defense or intracellular homeostasis (PubMed:24692539, PubMed:33577621). Possesses a double function during the selective autophagy by acting as a shuttle bringing ubiquitinated proteins to autophagosomes and also by participating in the formation of protein aggregates (PubMed:24879152, PubMed:34471133). Plays a role in the regulation of the innate immune response by modulating type I interferon production and targeting ubiquitinated IRF3 for autophagic degradation (PubMed:35914352). In response to oxidative stress, promotes an increase in SQSTM1 levels, phosphorylation, and body formation by preventing its autophagic degradation (By similarity). In turn, activates the KEAP1-NRF2/NFE2L2 antioxidant pathway (By similarity). Also plays non-autophagy role by mediating the shuttle of IL-12 to late endosome for subsequent secretion (By similarity). {ECO:0000250|UniProtKB:P97432, ECO:0000269|PubMed:19250911, ECO:0000269|PubMed:24692539, ECO:0000269|PubMed:24879152, ECO:0000269|PubMed:33577621, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:35914352}. |
Q14643 | ITPR1 | S436 | ochoa | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR1 (IP3 receptor isoform 1) (IP3R 1) (InsP3R1) (Inositol 1,4,5 trisphosphate receptor) (Inositol 1,4,5-trisphosphate receptor type 1) (Type 1 inositol 1,4,5-trisphosphate receptor) (Type 1 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that, upon inositol 1,4,5-trisphosphate binding, mediates calcium release from the endoplasmic reticulum (ER) (PubMed:10620513, PubMed:27108797). Undergoes conformational changes upon ligand binding, suggesting structural flexibility that allows the channel to switch from a closed state, capable of interacting with its ligands such as 1,4,5-trisphosphate and calcium, to an open state, capable of transferring calcium ions across the ER membrane (By similarity). Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CAMK2 complex (By similarity). Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Part of a complex composed of HSPA9, ITPR1 and VDAC1 that regulates mitochondrial calcium-dependent apoptosis by facilitating calcium transport from the ER lumen to the mitochondria intermembrane space thus providing calcium for the downstream calcium channel MCU that directly releases it into mitochondria matrix (By similarity). Regulates fertilization and egg activation by tuning the frequency and amplitude of calcium oscillations (By similarity). {ECO:0000250|UniProtKB:P11881, ECO:0000250|UniProtKB:P29994, ECO:0000269|PubMed:10620513, ECO:0000269|PubMed:27108797}. |
Q14678 | KANK1 | S144 | ochoa | KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) | Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}. |
Q14721 | KCNB1 | S737 | ochoa | Potassium voltage-gated channel subfamily B member 1 (Delayed rectifier potassium channel 1) (DRK1) (h-DRK1) (Voltage-gated potassium channel subunit Kv2.1) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain, but also in the pancreas and cardiovascular system. Contributes to the regulation of the action potential (AP) repolarization, duration and frequency of repetitive AP firing in neurons, muscle cells and endocrine cells and plays a role in homeostatic attenuation of electrical excitability throughout the brain (PubMed:23161216). Plays also a role in the regulation of exocytosis independently of its electrical function (By similarity). Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization (PubMed:10484328, PubMed:12560340, PubMed:1283219, PubMed:19074135, PubMed:19717558, PubMed:24901643, PubMed:8081723). Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB2; channel properties depend on the type of alpha subunits that are part of the channel (By similarity). Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNF1, KCNG1, KCNG3, KCNG4, KCNH1, KCNH2, KCNS1, KCNS2, KCNS3 and KCNV1, creating a functionally diverse range of channel complexes (PubMed:10484328, PubMed:11852086, PubMed:12060745, PubMed:19074135, PubMed:19717558, PubMed:24901643). Heterotetrameric channel activity formed with KCNS3 show increased current amplitude with the threshold for action potential activation shifted towards more negative values in hypoxic-treated pulmonary artery smooth muscle cells (By similarity). Channel properties are also modulated by cytoplasmic ancillary beta subunits such as AMIGO1, KCNE1, KCNE2 and KCNE3, slowing activation and inactivation rate of the delayed rectifier potassium channels (By similarity). In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Major contributor to the slowly inactivating delayed-rectifier voltage-gated potassium current in neurons of the central nervous system, sympathetic ganglion neurons, neuroendocrine cells, pancreatic beta cells, cardiomyocytes and smooth muscle cells. Mediates the major part of the somatodendritic delayed-rectifier potassium current in hippocampal and cortical pyramidal neurons and sympathetic superior cervical ganglion (CGC) neurons that acts to slow down periods of firing, especially during high frequency stimulation. Plays a role in the induction of long-term potentiation (LTP) of neuron excitability in the CA3 layer of the hippocampus (By similarity). Contributes to the regulation of glucose-induced action potential amplitude and duration in pancreatic beta cells, hence limiting calcium influx and insulin secretion (PubMed:23161216). Plays a role in the regulation of resting membrane potential and contraction in hypoxia-treated pulmonary artery smooth muscle cells. May contribute to the regulation of the duration of both the action potential of cardiomyocytes and the heart ventricular repolarization QT interval. Contributes to the pronounced pro-apoptotic potassium current surge during neuronal apoptotic cell death in response to oxidative injury. May confer neuroprotection in response to hypoxia/ischemic insults by suppressing pyramidal neurons hyperexcitability in hippocampal and cortical regions (By similarity). Promotes trafficking of KCNG3, KCNH1 and KCNH2 to the cell surface membrane, presumably by forming heterotetrameric channels with these subunits (PubMed:12060745). Plays a role in the calcium-dependent recruitment and release of fusion-competent vesicles from the soma of neurons, neuroendocrine and glucose-induced pancreatic beta cells by binding key components of the fusion machinery in a pore-independent manner (By similarity). {ECO:0000250|UniProtKB:P15387, ECO:0000250|UniProtKB:Q03717, ECO:0000269|PubMed:10484328, ECO:0000269|PubMed:11852086, ECO:0000269|PubMed:12060745, ECO:0000269|PubMed:12560340, ECO:0000269|PubMed:1283219, ECO:0000269|PubMed:19074135, ECO:0000269|PubMed:19717558, ECO:0000269|PubMed:23161216, ECO:0000269|PubMed:24901643, ECO:0000269|PubMed:8081723}. |
Q14789 | GOLGB1 | S2872 | ochoa | Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) | May participate in forming intercisternal cross-bridges of the Golgi complex. |
Q15025 | TNIP1 | S77 | ochoa | TNFAIP3-interacting protein 1 (A20-binding inhibitor of NF-kappa-B activation 1) (ABIN-1) (HIV-1 Nef-interacting protein) (Nef-associated factor 1) (Naf1) (Nip40-1) (Virion-associated nuclear shuttling protein) (VAN) (hVAN) | Inhibits NF-kappa-B activation and TNF-induced NF-kappa-B-dependent gene expression by regulating TAX1BP1 and A20/TNFAIP3-mediated deubiquitination of IKBKG; proposed to link A20/TNFAIP3 to ubiquitinated IKBKG (PubMed:21885437). Involved in regulation of EGF-induced ERK1/ERK2 signaling pathway; blocks MAPK3/MAPK1 nuclear translocation and MAPK1-dependent transcription. Increases cell surface CD4(T4) antigen expression. Involved in the anti-inflammatory response of macrophages and positively regulates TLR-induced activation of CEBPB. Involved in the prevention of autoimmunity; this function implicates binding to polyubiquitin. Involved in leukocyte integrin activation during inflammation; this function is mediated by association with SELPLG and dependent on phosphorylation by SRC-family kinases. Interacts with HIV-1 matrix protein and is packaged into virions and overexpression can inhibit viral replication. May regulate matrix nuclear localization, both nuclear import of PIC (Preintegration complex) and export of GAG polyprotein and viral genomic RNA during virion production. In case of infection, promotes association of IKBKG with Shigella flexneri E3 ubiquitin-protein ligase ipah9.8 p which in turn promotes polyubiquitination of IKBKG leading to its proteasome-dependent degradation and thus is perturbing NF-kappa-B activation during bacterial infection. {ECO:0000269|PubMed:12220502, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17016622, ECO:0000269|PubMed:17632516, ECO:0000269|PubMed:20010814, ECO:0000269|PubMed:21885437}. |
Q15025 | TNIP1 | S435 | ochoa | TNFAIP3-interacting protein 1 (A20-binding inhibitor of NF-kappa-B activation 1) (ABIN-1) (HIV-1 Nef-interacting protein) (Nef-associated factor 1) (Naf1) (Nip40-1) (Virion-associated nuclear shuttling protein) (VAN) (hVAN) | Inhibits NF-kappa-B activation and TNF-induced NF-kappa-B-dependent gene expression by regulating TAX1BP1 and A20/TNFAIP3-mediated deubiquitination of IKBKG; proposed to link A20/TNFAIP3 to ubiquitinated IKBKG (PubMed:21885437). Involved in regulation of EGF-induced ERK1/ERK2 signaling pathway; blocks MAPK3/MAPK1 nuclear translocation and MAPK1-dependent transcription. Increases cell surface CD4(T4) antigen expression. Involved in the anti-inflammatory response of macrophages and positively regulates TLR-induced activation of CEBPB. Involved in the prevention of autoimmunity; this function implicates binding to polyubiquitin. Involved in leukocyte integrin activation during inflammation; this function is mediated by association with SELPLG and dependent on phosphorylation by SRC-family kinases. Interacts with HIV-1 matrix protein and is packaged into virions and overexpression can inhibit viral replication. May regulate matrix nuclear localization, both nuclear import of PIC (Preintegration complex) and export of GAG polyprotein and viral genomic RNA during virion production. In case of infection, promotes association of IKBKG with Shigella flexneri E3 ubiquitin-protein ligase ipah9.8 p which in turn promotes polyubiquitination of IKBKG leading to its proteasome-dependent degradation and thus is perturbing NF-kappa-B activation during bacterial infection. {ECO:0000269|PubMed:12220502, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17016622, ECO:0000269|PubMed:17632516, ECO:0000269|PubMed:20010814, ECO:0000269|PubMed:21885437}. |
Q15418 | RPS6KA1 | S363 | ochoa|psp | Ribosomal protein S6 kinase alpha-1 (S6K-alpha-1) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 1) (p90-RSK 1) (p90RSK1) (p90S6K) (MAP kinase-activated protein kinase 1a) (MAPK-activated protein kinase 1a) (MAPKAP kinase 1a) (MAPKAPK-1a) (Ribosomal S6 kinase 1) (RSK-1) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:10679322, PubMed:12213813, PubMed:15117958, PubMed:16223362, PubMed:17360704, PubMed:18722121, PubMed:26158630, PubMed:35772404, PubMed:9430688). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:18508509, PubMed:18813292). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:12213813, PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:18508509, PubMed:18813292). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the pre-initiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:16763566). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:15342917). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:10679322, PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:11684016). Mediates induction of hepatocyte prolifration by TGFA through phosphorylation of CEBPB (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (PubMed:18508509, PubMed:18813292). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). In response to mTORC1 activation, phosphorylates EIF4B at 'Ser-406' and 'Ser-422' which stimulates bicarbonate cotransporter SLC4A7 mRNA translation, increasing SLC4A7 protein abundance and function (PubMed:35772404). {ECO:0000269|PubMed:10679322, ECO:0000269|PubMed:11684016, ECO:0000269|PubMed:12213813, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:15342917, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:16763566, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:35772404, ECO:0000269|PubMed:9430688, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}.; FUNCTION: (Microbial infection) Promotes the late transcription and translation of viral lytic genes during Kaposi's sarcoma-associated herpesvirus/HHV-8 infection, when constitutively activated. {ECO:0000269|PubMed:30842327}. |
Q15633 | TARBP2 | S152 | ochoa|psp | RISC-loading complex subunit TARBP2 (TAR RNA-binding protein 2) (Trans-activation-responsive RNA-binding protein) | Required for formation of the RNA induced silencing complex (RISC). Component of the RISC loading complex (RLC), also known as the micro-RNA (miRNA) loading complex (miRLC), which is composed of DICER1, AGO2 and TARBP2. Within the RLC/miRLC, DICER1 and TARBP2 are required to process precursor miRNAs (pre-miRNAs) to mature miRNAs and then load them onto AGO2. AGO2 bound to the mature miRNA constitutes the minimal RISC and may subsequently dissociate from DICER1 and TARBP2. May also play a role in the production of short interfering RNAs (siRNAs) from double-stranded RNA (dsRNA) by DICER1 (By similarity) (PubMed:15973356, PubMed:16142218, PubMed:16271387, PubMed:16357216, PubMed:16424907, PubMed:17452327, PubMed:18178619). Binds in vitro to the PRM1 3'-UTR (By similarity). Seems to act as a repressor of translation (By similarity). For some pre-miRNA substrates, may also alter the choice of cleavage site by DICER1 (PubMed:23063653). Negatively regulates IRF7-mediated IFN-beta signaling triggered by viral infection by inhibiting the phosphorylation of IRF7 and promoting its 'Lys'-48-linked ubiquitination and degradation (PubMed:30927622). {ECO:0000250|UniProtKB:P97473, ECO:0000255|HAMAP-Rule:MF_03034, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619, ECO:0000269|PubMed:23063653, ECO:0000269|PubMed:30927622}.; FUNCTION: (Microbial infection) Binds to the HIV-1 TAR RNA which is located in the long terminal repeat (LTR) of HIV-1, and stimulates translation of TAR-containing RNAs (PubMed:11438532, PubMed:12475984, PubMed:2011739). This is achieved in part at least by binding to and inhibiting EIF2AK2/PKR, thereby reducing phosphorylation and inhibition of EIF2S1/eIF-2-alpha (PubMed:11438532). May also promote translation of TAR-containing RNAs independently of EIF2AK2/PKR (PubMed:12475984). Mediates recruitment of FTSJ3 methyltransferase to HIV-1 RNA, leading to 2'-O-methylation of the viral genome, allowing HIV-1 to escape the innate immune system (PubMed:30626973). {ECO:0000269|PubMed:11438532, ECO:0000269|PubMed:12475984, ECO:0000269|PubMed:2011739, ECO:0000269|PubMed:30626973}. |
Q15642 | TRIP10 | S335 | ochoa | Cdc42-interacting protein 4 (Protein Felic) (Salt tolerant protein) (hSTP) (Thyroid receptor-interacting protein 10) (TR-interacting protein 10) (TRIP-10) | Required for translocation of GLUT4 to the plasma membrane in response to insulin signaling (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by recruiting WASL/N-WASP which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Required for the formation of podosomes, actin-rich adhesion structures specific to monocyte-derived cells. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:11069762, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391}. |
Q15700 | DLG2 | S323 | ochoa|psp | Disks large homolog 2 (Channel-associated protein of synapse-110) (Chapsyn-110) (Postsynaptic density protein PSD-93) | Required for perception of chronic pain through NMDA receptor signaling. Regulates surface expression of NMDA receptors in dorsal horn neurons of the spinal cord. Interacts with the cytoplasmic tail of NMDA receptor subunits as well as inward rectifying potassium channels. Involved in regulation of synaptic stability at cholinergic synapses. Part of the postsynaptic protein scaffold of excitatory synapses (By similarity). {ECO:0000250}. |
Q15744 | CEBPE | S181 | ochoa | CCAAT/enhancer-binding protein epsilon (C/EBP epsilon) | Transcriptional activator (PubMed:26019275). C/EBP are DNA-binding proteins that recognize two different motifs: the CCAAT homology common to many promoters and the enhanced core homology common to many enhancers. Required for the promyelocyte-myelocyte transition in myeloid differentiation (PubMed:10359588). {ECO:0000269|PubMed:10359588, ECO:0000269|PubMed:26019275}. |
Q16584 | MAP3K11 | S570 | ochoa | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q16875 | PFKFB3 | S467 | ochoa|psp | 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (6PF-2-K/Fru-2,6-P2ase 3) (PFK/FBPase 3) (6PF-2-K/Fru-2,6-P2ase brain/placenta-type isozyme) (Renal carcinoma antigen NY-REN-56) (iPFK-2) [Includes: 6-phosphofructo-2-kinase (EC 2.7.1.105); Fructose-2,6-bisphosphatase (EC 3.1.3.46)] | Catalyzes both the synthesis and degradation of fructose 2,6-bisphosphate. {ECO:0000269|PubMed:10077634, ECO:0000269|PubMed:17499765, ECO:0000305|PubMed:16316985}. |
Q2KHM9 | KIAA0753 | S568 | ochoa | Protein moonraker (MNR) (OFD1- and FOPNL-interacting protein) | Involved in centriole duplication (PubMed:24613305, PubMed:26297806). Positively regulates CEP63 centrosomal localization (PubMed:24613305, PubMed:26297806). Required for WDR62 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:24613305, PubMed:26297806). May play a role in cilium assembly. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:28220259}. |
Q2KJY2 | KIF26B | S1084 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q2M2I8 | AAK1 | S624 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q2M2Z5 | KIZ | S321 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q2NL68 | PROSER3 | S463 | ochoa | Proline and serine-rich protein 3 | None |
Q2TAL5 | SMTNL2 | S278 | ochoa | Smoothelin-like protein 2 | None |
Q2TAZ0 | ATG2A | S1327 | ochoa | Autophagy-related protein 2 homolog A | Lipid transfer protein involved in autophagosome assembly (PubMed:28561066, PubMed:30952800, PubMed:31271352). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:30952800, PubMed:31271352). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (PubMed:30952800, PubMed:31271352). Lipid transfer activity is enhanced by WIPI1 and WDR45/WIPI4, which promote ATG2A-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31271352). Also regulates lipid droplets morphology and distribution within the cell (PubMed:22219374, PubMed:28561066). {ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:30952800, ECO:0000269|PubMed:31271352}. |
Q2VPK5 | CTU2 | S435 | ochoa | Cytoplasmic tRNA 2-thiolation protein 2 (Cytosolic thiouridylase subunit 2) | Plays a central role in 2-thiolation of mcm(5)S(2)U at tRNA wobble positions of tRNA(Lys), tRNA(Glu) and tRNA(Gln). May act by forming a heterodimer with CTU1/ATPBD3 that ligates sulfur from thiocarboxylated URM1 onto the uridine of tRNAs at wobble position. {ECO:0000255|HAMAP-Rule:MF_03054, ECO:0000269|PubMed:19017811}. |
Q3MIN7 | RGL3 | S573 | ochoa | Ral guanine nucleotide dissociation stimulator-like 3 (RalGDS-like 3) | Guanine nucleotide exchange factor (GEF) for Ral-A. Potential effector of GTPase HRas and Ras-related protein M-Ras. Negatively regulates Elk-1-dependent gene induction downstream of HRas and MEKK1 (By similarity). {ECO:0000250}. |
Q3T8J9 | GON4L | S1977 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q49AM3 | TTC31 | S434 | ochoa | Tetratricopeptide repeat protein 31 (TPR repeat protein 31) | None |
Q4AC94 | C2CD3 | S976 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q53GA4 | PHLDA2 | S42 | ochoa | Pleckstrin homology-like domain family A member 2 (Beckwith-Wiedemann syndrome chromosomal region 1 candidate gene C protein) (Imprinted in placenta and liver protein) (Tumor-suppressing STF cDNA 3 protein) (Tumor-suppressing subchromosomal transferable fragment candidate gene 3 protein) (p17-Beckwith-Wiedemann region 1 C) (p17-BWR1C) | Plays a role in regulating placenta growth. May act via its PH domain that competes with other PH domain-containing proteins, thereby preventing their binding to membrane lipids (By similarity). {ECO:0000250}. |
Q53GL0 | PLEKHO1 | S342 | ochoa | Pleckstrin homology domain-containing family O member 1 (PH domain-containing family O member 1) (C-Jun-binding protein) (JBP) (Casein kinase 2-interacting protein 1) (CK2-interacting protein 1) (CKIP-1) (Osteoclast maturation-associated gene 120 protein) | Plays a role in the regulation of the actin cytoskeleton through its interactions with actin capping protein (CP). May function to target CK2 to the plasma membrane thereby serving as an adapter to facilitate the phosphorylation of CP by protein kinase 2 (CK2). Appears to target ATM to the plasma membrane. Appears to also inhibit tumor cell growth by inhibiting AKT-mediated cell-survival. Also implicated in PI3K-regulated muscle differentiation, the regulation of AP-1 activity (plasma membrane bound AP-1 regulator that translocates to the nucleus) and the promotion of apoptosis induced by tumor necrosis factor TNF. When bound to PKB, it inhibits it probably by decreasing PKB level of phosphorylation. {ECO:0000269|PubMed:14729969, ECO:0000269|PubMed:15706351, ECO:0000269|PubMed:15831458, ECO:0000269|PubMed:16325375, ECO:0000269|PubMed:16987810, ECO:0000269|PubMed:17197158, ECO:0000269|PubMed:17942896}. |
Q5JTC6 | AMER1 | S246 | ochoa | APC membrane recruitment protein 1 (Amer1) (Protein FAM123B) (Wilms tumor gene on the X chromosome protein) | Regulator of the canonical Wnt signaling pathway. Acts by specifically binding phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), translocating to the cell membrane and interacting with key regulators of the canonical Wnt signaling pathway, such as components of the beta-catenin destruction complex. Acts both as a positive and negative regulator of the Wnt signaling pathway, depending on the context: acts as a positive regulator by promoting LRP6 phosphorylation. Also acts as a negative regulator by acting as a scaffold protein for the beta-catenin destruction complex and promoting stabilization of Axin at the cell membrane. Promotes CTNNB1 ubiquitination and degradation. Involved in kidney development. {ECO:0000269|PubMed:17510365, ECO:0000269|PubMed:17925383, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:21304492, ECO:0000269|PubMed:21498506}. |
Q5JTD0 | TJAP1 | S320 | ochoa | Tight junction-associated protein 1 (Protein incorporated later into tight junctions) (Tight junction protein 4) | Plays a role in regulating the structure of the Golgi apparatus. {ECO:0000250|UniProtKB:Q9DCD5}. |
Q5SV97 | PERM1 | S179 | ochoa | PGC-1 and ERR-induced regulator in muscle protein 1 (PPARGC1 and ESRR-induced regulator in muscle 1) (Peroxisome proliferator-activated receptor gamma coactivator 1 and estrogen-related receptor-induced regulator in muscle 1) | Regulates the expression of selective PPARGC1A/B and ESRRA/B/G target genes with roles in glucose and lipid metabolism, energy transfer, contractile function, muscle mitochondrial biogenesis and oxidative capacity. Required for the efficient induction of MT-CO2, MT-CO3, COX4I1, TFB1M, TFB2M, POLRMT and SIRT3 by PPARGC1A. Positively regulates the PPARGC1A/ESRRG-induced expression of CKMT2, TNNI3 and SLC2A4 and negatively regulates the PPARGC1A/ESRRG-induced expression of PDK4. {ECO:0000250|UniProtKB:Q149B8}. |
Q5SXM2 | SNAPC4 | S702 | ochoa | snRNA-activating protein complex subunit 4 (SNAPc subunit 4) (Proximal sequence element-binding transcription factor subunit alpha) (PSE-binding factor subunit alpha) (PTF subunit alpha) (snRNA-activating protein complex 190 kDa subunit) (SNAPc 190 kDa subunit) | Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023, ECO:0000269|PubMed:9418884}. |
Q5T0Z8 | C6orf132 | S279 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T0Z8 | C6orf132 | S558 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T1M5 | FKBP15 | S326 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T5P2 | KIAA1217 | S474 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T7N3 | KANK4 | S554 | ochoa | KN motif and ankyrin repeat domain-containing protein 4 (Ankyrin repeat domain-containing protein 38) | May be involved in the control of cytoskeleton formation by regulating actin polymerization. {ECO:0000269|PubMed:17996375}. |
Q5T8A7 | PPP1R26 | S460 | ochoa | Protein phosphatase 1 regulatory subunit 26 | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. May positively regulate cell proliferation. {ECO:0000269|PubMed:16053918, ECO:0000269|PubMed:19389623}. |
Q5TBA9 | FRY | S2662 | ochoa | Protein furry homolog | Plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting PLK1 activity at the spindle poles in early mitosis. May function as a scaffold promoting the interaction between AURKA and PLK1, thereby enhancing AURKA-mediated PLK1 phosphorylation. {ECO:0000269|PubMed:22753416}. |
Q5TCX8 | MAP3K21 | S547 | ochoa | Mitogen-activated protein kinase kinase kinase 21 (EC 2.7.11.25) (Mitogen-activated protein kinase kinase kinase MLK4) (Mixed lineage kinase 4) | Negative regulator of TLR4 signaling. Does not activate JNK1/MAPK8 pathway, p38/MAPK14, nor ERK2/MAPK1 pathways. {ECO:0000269|PubMed:21602844}. |
Q5TCZ1 | SH3PXD2A | S1056 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5TGY3 | AHDC1 | S46 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5THJ4 | VPS13D | S1765 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5THJ4 | VPS13D | S2079 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5THK1 | PRR14L | S1994 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5VST9 | OBSCN | S6851 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VT97 | SYDE2 | S64 | ochoa | Rho GTPase-activating protein SYDE2 (Synapse defective protein 1 homolog 2) (Protein syd-1 homolog 2) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q5XUX1 | FBXW9 | S59 | ochoa | F-box/WD repeat-containing protein 9 (F-box and WD-40 domain-containing protein 9) | Substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. {ECO:0000250}. |
Q63ZY3 | KANK2 | S323 | ochoa | KN motif and ankyrin repeat domain-containing protein 2 (Ankyrin repeat domain-containing protein 25) (Matrix-remodeling-associated protein 3) (SRC-1-interacting protein) (SIP) (SRC-interacting protein) (SRC1-interacting protein) | Involved in transcription regulation by sequestering in the cytoplasm nuclear receptor coactivators such as NCOA1, NCOA2 and NCOA3 (PubMed:17476305). Involved in regulation of caspase-independent apoptosis by sequestering the proapoptotic factor AIFM1 in mitochondria (PubMed:22371500). Pro-apoptotic stimuli can induce its proteasomal degradation allowing the translocation of AIFM1 to the nucleus to induce apoptosis (PubMed:22371500). Involved in the negative control of vitamin D receptor signaling pathway (PubMed:24671081). Involved in actin stress fibers formation through its interaction with ARHGDIA and the regulation of the Rho signaling pathway (PubMed:17996375, PubMed:25961457). May thereby play a role in cell adhesion and migration, regulating for instance podocytes migration during development of the kidney (PubMed:25961457). Through the Rho signaling pathway may also regulate cell proliferation (By similarity). {ECO:0000250|UniProtKB:Q8BX02, ECO:0000269|PubMed:17476305, ECO:0000269|PubMed:17996375, ECO:0000269|PubMed:22371500, ECO:0000269|PubMed:24671081, ECO:0000269|PubMed:25961457}. |
Q68DK2 | ZFYVE26 | S1109 | ochoa | Zinc finger FYVE domain-containing protein 26 (FYVE domain-containing centrosomal protein) (FYVE-CENT) (Spastizin) | Phosphatidylinositol 3-phosphate-binding protein required for the abscission step in cytokinesis: recruited to the midbody during cytokinesis and acts as a regulator of abscission. May also be required for efficient homologous recombination DNA double-strand break repair. {ECO:0000269|PubMed:20208530}. |
Q68DK7 | MSL1 | S442 | ochoa | Male-specific lethal 1 homolog (MSL-1) (Male-specific lethal 1-like 1) (MSL1-like 1) (Male-specific lethal-1 homolog 1) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16227571, PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). Within the MSL complex, acts as a scaffold to tether MSL3 and KAT8 together for enzymatic activity regulation (PubMed:22547026). Greatly enhances MSL2 E3 ubiquitin ligase activity, promoting monoubiquitination of histone H2B at 'Lys-34' (H2BK34Ub) (PubMed:21726816, PubMed:30930284). This modification in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). {ECO:0000250|UniProtKB:Q6PDM1, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q6AI12 | ANKRD40 | S214 | ochoa | Ankyrin repeat domain-containing protein 40 | None |
Q6BDS2 | BLTP3A | Y1334 | ochoa | Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) | Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}. |
Q6IPM2 | IQCE | S42 | ochoa | IQ domain-containing protein E | Component of the EvC complex that positively regulates ciliary Hedgehog (Hh) signaling (By similarity). Required for proper limb morphogenesis (PubMed:28488682). {ECO:0000250|UniProtKB:Q6PCQ0, ECO:0000269|PubMed:28488682}. |
Q6IQ23 | PLEKHA7 | S871 | ochoa | Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) | Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}. |
Q6P0Q8 | MAST2 | S1399 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P5Z2 | PKN3 | S548 | ochoa | Serine/threonine-protein kinase N3 (EC 2.7.11.13) (Protein kinase PKN-beta) (Protein-kinase C-related kinase 3) | Contributes to invasiveness in malignant prostate cancer. {ECO:0000269|PubMed:15282551}. |
Q6PJG9 | LRFN4 | S575 | ochoa | Leucine-rich repeat and fibronectin type-III domain-containing protein 4 | Promotes neurite outgrowth in hippocampal neurons. May play a role in redistributing DLG4 to the cell periphery (By similarity). {ECO:0000250}. |
Q6RFH5 | WDR74 | S214 | ochoa | WD repeat-containing protein 74 (NOP seven-associated protein 1) | Regulatory protein of the MTREX-exosome complex involved in the synthesis of the 60S ribosomal subunit (PubMed:26456651). Participates in an early cleavage of the pre-rRNA processing pathway in cooperation with NVL (PubMed:29107693). Required for blastocyst formation, is necessary for RNA transcription, processing and/or stability during preimplantation development (By similarity). {ECO:0000250|UniProtKB:Q8VCG3, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:29107693}. |
Q6UB99 | ANKRD11 | S2021 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6UWZ7 | ABRAXAS1 | S336 | ochoa | BRCA1-A complex subunit Abraxas 1 (Coiled-coil domain-containing protein 98) (Protein FAM175A) | Involved in DNA damage response and double-strand break (DSB) repair. Component of the BRCA1-A complex, acting as a central scaffold protein that assembles the various components of the complex and mediates the recruitment of BRCA1. The BRCA1-A complex specifically recognizes 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesion sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at DSBs. This complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. {ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:17643122, ECO:0000269|PubMed:18077395, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:22357538, ECO:0000269|PubMed:26778126}. |
Q6VMQ6 | ATF7IP | S673 | ochoa | Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}. |
Q6WCQ1 | MPRIP | S289 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q6Y7W6 | GIGYF2 | S30 | ochoa|psp | GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) | Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}. |
Q6ZRI6 | C15orf39 | S497 | ochoa | Uncharacterized protein C15orf39 | None |
Q6ZRS2 | SRCAP | S1882 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q6ZS81 | WDFY4 | S3123 | ochoa | WD repeat- and FYVE domain-containing protein 4 | Plays a critical role in the regulation of cDC1-mediated cross-presentation of viral and tumor antigens in dendritic cells. Mechanistically, acts near the plasma membrane and interacts with endosomal membranes to promote endosomal-to-cytosol antigen trafficking. Also plays a role in B-cell survival through regulation of autophagy. {ECO:0000250|UniProtKB:E9Q2M9}. |
Q6ZTU2 | EP400P1 | S310 | ochoa | Putative EP400-like protein (EP400 pseudogene 1) | None |
Q6ZTU2 | EP400P1 | S347 | ochoa | Putative EP400-like protein (EP400 pseudogene 1) | None |
Q6ZU35 | CRACD | S975 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q6ZUM4 | ARHGAP27 | S249 | ochoa | Rho GTPase-activating protein 27 (CIN85-associated multi-domain-containing Rho GTPase-activating protein 1) (Rho-type GTPase-activating protein 27) (SH3 domain-containing protein 20) | Rho GTPase-activating protein which may be involved in clathrin-mediated endocytosis. GTPase activators for the Rho-type GTPases act by converting them to an inactive GDP-bound state. Has activity toward CDC42 and RAC1 (By similarity). {ECO:0000250}. |
Q75VX8 | GAREM2 | S784 | ochoa | GRB2-associated and regulator of MAPK protein 2 (GRB2-associated and regulator of MAPK1-like) | Probable adapter protein that may provide a link between cell surface epidermal growth factor receptor and the MAPK/ERK signaling pathway. {ECO:0000250}. |
Q765P7 | MTSS2 | S428 | ochoa | Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) | Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}. |
Q7L4P6 | BEND5 | S361 | ochoa | BEN domain-containing protein 5 | Acts as a transcriptional repressor (PubMed:23468431). {ECO:0000269|PubMed:23468431}. |
Q7Z2Z1 | TICRR | S1750 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z3K3 | POGZ | S445 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z401 | DENND4A | S1256 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z4H7 | HAUS6 | S406 | ochoa | HAUS augmin-like complex subunit 6 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q7Z4S6 | KIF21A | S1275 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z6J0 | SH3RF1 | S739 | ochoa | E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) | Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}. |
Q7Z6J4 | FGD2 | S48 | ochoa | FYVE, RhoGEF and PH domain-containing protein 2 (Zinc finger FYVE domain-containing protein 4) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Activates JNK1 via CDC42 but not RAC1. Binds to phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 5-monophosphate, phosphatidylinositol 4-monophosphate and phosphatidylinositol 3-monophosphate (By similarity). {ECO:0000250}. |
Q7Z6Z7 | HUWE1 | S3919 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86TC9 | MYPN | S684 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86TI0 | TBC1D1 | S695 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86UU1 | PHLDB1 | S157 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86UU1 | PHLDB1 | S443 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86UU1 | PHLDB1 | S461 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86VW2 | ARHGEF25 | S560 | ochoa | Rho guanine nucleotide exchange factor 25 (Guanine nucleotide exchange factor GEFT) (Rac/Cdc42/Rho exchange factor GEFT) (RhoA/Rac/Cdc42 guanine nucleotide exchange factor GEFT) (p63RhoGEF) | May play a role in actin cytoskeleton reorganization in different tissues since its activation induces formation of actin stress fibers. It works as a guanine nucleotide exchange factor for Rho family of small GTPases. Links specifically G alpha q/11-coupled receptors to RHOA activation. May be an important regulator of processes involved in axon and dendrite formation. In neurons seems to be an exchange factor primarily for RAC1. Involved in skeletal myogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:11861769, ECO:0000269|PubMed:12547822, ECO:0000269|PubMed:15069594, ECO:0000269|PubMed:15632174, ECO:0000269|PubMed:16314529, ECO:0000269|PubMed:17606614}. |
Q86W56 | PARG | S54 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86W92 | PPFIBP1 | S579 | ochoa | Liprin-beta-1 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 1) (PTPRF-interacting protein-binding protein 1) (hSGT2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q86XN8 | MEX3D | S514 | ochoa | RNA-binding protein MEX3D (RING finger and KH domain-containing protein 1) (RING finger protein 193) (TINO) | RNA binding protein, may be involved in post-transcriptional regulatory mechanisms. {ECO:0000250}. |
Q8IUG5 | MYO18B | S25 | ochoa | Unconventional myosin-XVIIIb | May be involved in intracellular trafficking of the muscle cell when in the cytoplasm, whereas entering the nucleus, may be involved in the regulation of muscle specific genes. May play a role in the control of tumor development and progression; restored MYO18B expression in lung cancer cells suppresses anchorage-independent growth. |
Q8IV53 | DENND1C | S715 | ochoa | DENN domain-containing protein 1C (Connecdenn 3) (Protein FAM31C) | Guanine nucleotide exchange factor (GEF) which may activate RAB8A, RAB13 and RAB35. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701}. |
Q8IWE2 | FAM114A1 | S200 | ochoa | Protein NOXP20 (Nervous system overexpressed protein 20) (Protein FAM114A1) | May play a role in neuronal cell development. {ECO:0000250}. |
Q8IWQ3 | BRSK2 | S467 | ochoa | Serine/threonine-protein kinase BRSK2 (EC 2.7.11.1) (Brain-selective kinase 2) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 2) (BR serine/threonine-protein kinase 2) (Serine/threonine-protein kinase 29) (Serine/threonine-protein kinase SAD-A) | Serine/threonine-protein kinase that plays a key role in polarization of neurons and axonogenesis, cell cycle progress and insulin secretion. Phosphorylates CDK16, CDC25C, MAPT/TAU, PAK1 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. Plays a role in the regulation of the mitotic cell cycle progress and the onset of mitosis. Plays a role in the regulation of insulin secretion in response to elevated glucose levels, probably via phosphorylation of CDK16 and PAK1. While BRSK2 phosphorylated at Thr-174 can inhibit insulin secretion (PubMed:22798068), BRSK2 phosphorylated at Thr-260 can promote insulin secretion (PubMed:22669945). Regulates reorganization of the actin cytoskeleton. May play a role in the apoptotic response triggered by endoplasmic reticulum (ER) stress. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:22798068, ECO:0000269|PubMed:23029325}. |
Q8IWT3 | CUL9 | S930 | ochoa | Cullin-9 (CUL-9) (UbcH7-associated protein 1) (p53-associated parkin-like cytoplasmic protein) | Core component of a Cul9-RING ubiquitin-protein ligase complex composed of CUL9 and RBX1 (PubMed:38605244). The CUL9-RBX1 complex mediates ubiquitination and subsequent degradation of BIRC5 and is required to maintain microtubule dynamics and genome integrity. Acts downstream of the 3M complex, which inhibits the ubiquitination of BIRC5 (PubMed:24793696). The CUL9-RBX1 complex also mediates mono-ubiquitination of p53/TP53 (PubMed:38605244). Acts as a cytoplasmic anchor protein in p53/TP53-associated protein complex. Regulates the subcellular localization of p53/TP53 and its subsequent function (PubMed:12526791, PubMed:17332328). Ubiquitinates apurinic/apyrimidinic endodeoxyribonuclease APEX2 (PubMed:38605244). Ubiquitination by the CUL9-RBX1 complex is predominantly mediated by E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2D2 (PubMed:38605244). {ECO:0000269|PubMed:12526791, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:38605244}. |
Q8IX03 | WWC1 | S548 | psp | Protein KIBRA (HBeAg-binding protein 3) (Kidney and brain protein) (KIBRA) (WW domain-containing protein 1) | Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway (PubMed:24682284). Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway (PubMed:24682284). Along with NF2 can synergistically induce the phosphorylation of LATS1 and LATS2 and function in the regulation of Hippo signaling pathway (PubMed:20159598). Acts as a transcriptional coactivator of ESR1 which plays an essential role in DYNLL1-mediated ESR1 transactivation (PubMed:16684779). Regulates collagen-stimulated activation of the ERK/MAPK cascade (PubMed:18190796). Modulates directional migration of podocytes (PubMed:18596123). Plays a role in cognition and memory performance (PubMed:18672031). Plays an important role in regulating AMPA-selective glutamate receptors (AMPARs) trafficking underlying synaptic plasticity and learning (By similarity). {ECO:0000250|UniProtKB:Q5SXA9, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:18190796, ECO:0000269|PubMed:18596123, ECO:0000269|PubMed:18672031, ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:24682284}. |
Q8IY33 | MICALL2 | S153 | ochoa | MICAL-like protein 2 (Junctional Rab13-binding protein) (Molecule interacting with CasL-like 2) (MICAL-L2) | Effector of small Rab GTPases which is involved in junctional complexes assembly through the regulation of cell adhesion molecules transport to the plasma membrane and actin cytoskeleton reorganization. Regulates the endocytic recycling of occludins, claudins and E-cadherin to the plasma membrane and may thereby regulate the establishment of tight junctions and adherens junctions. In parallel, may regulate actin cytoskeleton reorganization directly through interaction with F-actin or indirectly through actinins and filamins. Most probably involved in the processes of epithelial cell differentiation, cell spreading and neurite outgrowth (By similarity). Undergoes liquid-liquid phase separation to form tubular recycling endosomes. Plays 2 sequential roles in the biogenesis of tubular recycling endosomes: first organizes phase separation and then the closed form formed by interaction with RAB8A promotes endosomal tubulation (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q3TN34}. |
Q8IY92 | SLX4 | S467 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IYB7 | DIS3L2 | S517 | ochoa | DIS3-like exonuclease 2 (hDIS3L2) (EC 3.1.13.-) | 3'-5'-exoribonuclease that specifically recognizes RNAs polyuridylated at their 3' end and mediates their degradation. Component of an exosome-independent RNA degradation pathway that mediates degradation of both mRNAs and miRNAs that have been polyuridylated by a terminal uridylyltransferase, such as ZCCHC11/TUT4. Mediates degradation of cytoplasmic mRNAs that have been deadenylated and subsequently uridylated at their 3'. Mediates degradation of uridylated pre-let-7 miRNAs, contributing to the maintenance of embryonic stem (ES) cells. Essential for correct mitosis, and negatively regulates cell proliferation. {ECO:0000255|HAMAP-Rule:MF_03045, ECO:0000269|PubMed:23756462, ECO:0000269|PubMed:24141620}. |
Q8IZD0 | SAMD14 | S117 | ochoa | Sterile alpha motif domain-containing protein 14 (SAM domain-containing protein 14) | None |
Q8IZW8 | TNS4 | S228 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8N0Z3 | SPICE1 | S764 | ochoa | Spindle and centriole-associated protein 1 (Coiled-coil domain-containing protein 52) (Spindle and centriole-associated protein) | Regulator required for centriole duplication, for proper bipolar spindle formation and chromosome congression in mitosis. {ECO:0000269|PubMed:20736305}. |
Q8N137 | CNTROB | S62 | ochoa | Centrobin (Centrosomal BRCA2-interacting protein) (LYST-interacting protein 8) | Required for centriole duplication. Inhibition of centriole duplication leading to defects in cytokinesis. {ECO:0000269|PubMed:16275750}. |
Q8N157 | AHI1 | S1127 | ochoa | Jouberin (Abelson helper integration site 1 protein homolog) (AHI-1) | Involved in vesicle trafficking and required for ciliogenesis, formation of primary non-motile cilium, and recruitment of RAB8A to the basal body of primary cilium. Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Involved in neuronal differentiation. As a positive modulator of classical Wnt signaling, may play a crucial role in ciliary signaling during cerebellum embryonic development (PubMed:21623382). {ECO:0000250|UniProtKB:Q8K3E5, ECO:0000269|PubMed:21623382}. |
Q8N201 | INTS1 | S1327 | ochoa | Integrator complex subunit 1 (Int1) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:25201415, PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:26308897, PubMed:30737432). Within the integrator complex, INTS1 is involved in the post-termination step: INTS1 displaces INTS3 and the SOSS factors, allowing the integrator complex to return to the closed conformation, ready to bind to the paused elongation complex for another termination cycle (PubMed:38570683). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:25201415, ECO:0000269|PubMed:26308897, ECO:0000269|PubMed:30737432, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}. |
Q8N328 | PGBD3 | S102 | ochoa | PiggyBac transposable element-derived protein 3 | Binds in vitro to PGBD3-related transposable elements, called MER85s; these non-autonomous 140 bp elements are characterized by the presence of PGBD3 terminal inverted repeats and the absence of internal transposase ORF. {ECO:0000269|PubMed:22483866}. |
Q8N350 | CBARP | S484 | ochoa | Voltage-dependent calcium channel beta subunit-associated regulatory protein | Negatively regulates voltage-gated calcium channels by preventing the interaction between their alpha and beta subunits. Thereby, negatively regulates calcium channels activity at the plasma membrane and indirectly inhibits calcium-regulated exocytosis. {ECO:0000250|UniProtKB:Q66L44}. |
Q8N4S9 | MARVELD2 | S120 | ochoa | MARVEL domain-containing protein 2 (Tricellulin) | Plays a role in the formation of tricellular tight junctions and of epithelial barriers (By similarity). Required for normal hearing via its role in the separation of the endolymphatic and perilymphatic spaces of the organ of Corti in the inner ear, and for normal survival of hair cells in the organ of Corti (PubMed:17186462). {ECO:0000250|UniProtKB:Q3UZP0, ECO:0000269|PubMed:17186462}. |
Q8N4X5 | AFAP1L2 | S640 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q8N556 | AFAP1 | S265 | ochoa | Actin filament-associated protein 1 (110 kDa actin filament-associated protein) (AFAP-110) | Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. {ECO:0000250, ECO:0000269|PubMed:15485829}. |
Q8N8N7 | PTGR2 | S270 | ochoa | Prostaglandin reductase 2 (PRG-2) (EC 1.3.1.48) (15-oxoprostaglandin 13-reductase) (Zinc-binding alcohol dehydrogenase domain-containing protein 1) | Functions as 15-oxo-prostaglandin 13-reductase and acts on 15-keto-PGE1, 15-keto-PGE2, 15-keto-PGE1-alpha and 15-keto-PGE2-alpha with highest activity towards 15-keto-PGE2 (PubMed:19000823). Overexpression represses transcriptional activity of PPARG and inhibits adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q8VDQ1, ECO:0000269|PubMed:19000823}. |
Q8NDX5 | PHC3 | S315 | ochoa | Polyhomeotic-like protein 3 (Early development regulatory protein 3) (Homolog of polyhomeotic 3) (hPH3) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:12167701}. |
Q8NE71 | ABCF1 | S621 | ochoa | ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) | Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}. |
Q8NEZ4 | KMT2C | S4267 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NEZ4 | KMT2C | S4304 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NFH8 | REPS2 | S199 | ochoa | RalBP1-associated Eps domain-containing protein 2 (Partner of RalBP1) (RalBP1-interacting protein 2) | Involved in ligand-dependent receptor mediated endocytosis of the EGF and insulin receptors as part of the Ral signaling pathway (PubMed:10393179, PubMed:12771942, PubMed:9422736). By controlling growth factor receptors endocytosis may regulate cell survival (PubMed:12771942). Through ASAP1 may regulate cell adhesion and migration (PubMed:12149250). {ECO:0000269|PubMed:10393179, ECO:0000269|PubMed:12149250, ECO:0000269|PubMed:12771942, ECO:0000269|PubMed:9422736}. |
Q8NG31 | KNL1 | S32 | ochoa | Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) | Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}. |
Q8NHM5 | KDM2B | S1049 | ochoa | Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) | Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}. |
Q8TAY7 | FAM110D | S63 | ochoa | Protein FAM110D | None |
Q8TBB5 | KLHDC4 | S62 | ochoa | Kelch domain-containing protein 4 | None |
Q8TDD1 | DDX54 | S527 | ochoa | ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) | Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}. |
Q8TDM6 | DLG5 | S1305 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8WUF5 | PPP1R13L | S358 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WUY3 | PRUNE2 | S754 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WVT3 | TRAPPC12 | S276 | ochoa | Trafficking protein particle complex subunit 12 (Tetratricopeptide repeat protein 15) (TPR repeat protein 15) (TTC-15) (Trafficking of membranes and mitosis) | Component of the TRAPP complex, which is involved in endoplasmic reticulum to Golgi apparatus trafficking at a very early stage (PubMed:21525244, PubMed:28777934). Also plays a role in chromosome congression, kinetochore assembly and stability and controls the recruitment of CENPE to the kinetochores (PubMed:25918224). {ECO:0000269|PubMed:21525244, ECO:0000269|PubMed:25918224, ECO:0000269|PubMed:28777934}. |
Q8WWM7 | ATXN2L | S111 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q8WWM7 | ATXN2L | S449 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q8WWQ0 | PHIP | S136 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q92574 | TSC1 | S361 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92574 | TSC1 | S1141 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92585 | MAML1 | S159 | ochoa | Mastermind-like protein 1 (Mam-1) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in the nucleus through interaction with CDK8. Binds to CREBBP/CBP which promotes nucleosome acetylation at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate decisions. {ECO:0000269|PubMed:11101851, ECO:0000269|PubMed:11390662, ECO:0000269|PubMed:12050117, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:17317671}. |
Q92667 | AKAP1 | S151 | ochoa|psp | A-kinase anchor protein 1, mitochondrial (A-kinase anchor protein 149 kDa) (AKAP 149) (Dual specificity A-kinase-anchoring protein 1) (D-AKAP-1) (Protein kinase A-anchoring protein 1) (PRKA1) (Spermatid A-kinase anchor protein 84) (S-AKAP84) | Binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane (By similarity). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Promotes translocation of NDUFS1 into mitochondria to regulate mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) activity (By similarity). {ECO:0000250|UniProtKB:O08715, ECO:0000269|PubMed:31522117}. |
Q92831 | KAT2B | S117 | ochoa | Histone acetyltransferase KAT2B (EC 2.3.1.48) (Histone acetyltransferase PCAF) (Histone acetylase PCAF) (Lysine acetyltransferase 2B) (P300/CBP-associated factor) (P/CAF) (Spermidine acetyltransferase KAT2B) (EC 2.3.1.57) | Functions as a histone acetyltransferase (HAT) to promote transcriptional activation (PubMed:8945521). Has significant histone acetyltransferase activity with core histones (H3 and H4), and also with nucleosome core particles (PubMed:8945521). Has a a strong preference for acetylation of H3 at 'Lys-9' (H3K9ac) (PubMed:21131905). Also acetylates non-histone proteins, such as ACLY, MAPRE1/EB1, PLK4, RRP9/U3-55K and TBX5 (PubMed:10675335, PubMed:23001180, PubMed:23932781, PubMed:26867678, PubMed:27796307, PubMed:29174768, PubMed:9707565). Inhibits cell-cycle progression and counteracts the mitogenic activity of the adenoviral oncoprotein E1A (PubMed:8684459). Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Involved in heart and limb development by mediating acetylation of TBX5, acetylation regulating nucleocytoplasmic shuttling of TBX5 (PubMed:29174768). Acts as a negative regulator of centrosome amplification by mediating acetylation of PLK4 (PubMed:27796307). Acetylates RRP9/U3-55K, a core subunit of the U3 snoRNP complex, impairing pre-rRNA processing (PubMed:26867678). Acetylates MAPRE1/EB1, promoting dynamic kinetochore-microtubule interactions in early mitosis (PubMed:23001180). Also acetylates spermidine (PubMed:27389534). {ECO:0000269|PubMed:10675335, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:23001180, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:26867678, ECO:0000269|PubMed:27389534, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:29174768, ECO:0000269|PubMed:8684459, ECO:0000269|PubMed:8945521, ECO:0000269|PubMed:9707565}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. {ECO:0000269|PubMed:12486002}. |
Q92835 | INPP5D | S971 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (EC 3.1.3.86) (Inositol polyphosphate-5-phosphatase D) (EC 3.1.3.56) (Inositol polyphosphate-5-phosphatase of 145 kDa) (SIP-145) (Phosphatidylinositol 4,5-bisphosphate 5-phosphatase) (EC 3.1.3.36) (SH2 domain-containing inositol 5'-phosphatase 1) (SH2 domain-containing inositol phosphatase 1) (SHIP-1) (p150Ship) (hp51CN) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:10764818, PubMed:8723348, PubMed:8769125). Able also to hydrolyzes the 5-phosphate of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (PubMed:10764818, PubMed:8769125, PubMed:9108392). Acts as a negative regulator of B-cell antigen receptor signaling. Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Acts as a negative regulator of myeloid cell proliferation/survival and chemotaxis, mast cell degranulation, immune cells homeostasis, integrin alpha-IIb/beta-3 signaling in platelets and JNK signaling in B-cells. Regulates proliferation of osteoclast precursors, macrophage programming, phagocytosis and activation and is required for endotoxin tolerance. Involved in the control of cell-cell junctions, CD32a signaling in neutrophils and modulation of EGF-induced phospholipase C activity (PubMed:16682172). Key regulator of neutrophil migration, by governing the formation of the leading edge and polarization required for chemotaxis. Modulates FCGR3/CD16-mediated cytotoxicity in NK cells. Mediates the activin/TGF-beta-induced apoptosis through its Smad-dependent expression. {ECO:0000269|PubMed:10764818, ECO:0000269|PubMed:12421919, ECO:0000269|PubMed:16682172, ECO:0000269|PubMed:8723348, ECO:0000269|PubMed:8769125, ECO:0000269|PubMed:9108392}. |
Q969V6 | MRTFA | S454 | ochoa|psp | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q969V6 | MRTFA | S807 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q96B18 | DACT3 | S348 | ochoa | Dapper homolog 3 (Antagonist of beta-catenin Dapper homolog 3) (Arginine-rich region 1 protein) (Dapper antagonist of catenin 3) | May be involved in regulation of intracellular signaling pathways during development. Specifically thought to play a role in canonical and/or non-canonical Wnt signaling pathways through interaction with DSH (Dishevelled) family proteins. {ECO:0000269|PubMed:18538736}. |
Q96B36 | AKT1S1 | S212 | ochoa|psp | Proline-rich AKT1 substrate 1 (40 kDa proline-rich AKT substrate) | Negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:17277771, PubMed:17386266, PubMed:17510057, PubMed:29236692). In absence of insulin and nutrients, AKT1S1 associates with the mTORC1 complex and directly inhibits mTORC1 activity by blocking the MTOR substrate-recruitment site (PubMed:29236692). In response to insulin and nutrients, AKT1S1 dissociates from mTORC1 (PubMed:17386266, PubMed:18372248). Its activity is dependent on its phosphorylation state and binding to 14-3-3 (PubMed:16174443, PubMed:18372248). May also play a role in nerve growth factor-mediated neuroprotection (By similarity). {ECO:0000250|UniProtKB:Q9D1F4, ECO:0000269|PubMed:16174443, ECO:0000269|PubMed:17277771, ECO:0000269|PubMed:17386266, ECO:0000269|PubMed:17510057, ECO:0000269|PubMed:18372248, ECO:0000269|PubMed:29236692}. |
Q96C34 | RUNDC1 | S75 | ochoa | RUN domain-containing protein 1 | May play a role as p53/TP53 inhibitor and thus may have oncogenic activity. {ECO:0000269|PubMed:16929179}. |
Q96DX5 | ASB9 | S243 | ochoa | Ankyrin repeat and SOCS box protein 9 (ASB-9) | Substrate-recognition component of a cullin-5-RING E3 ubiquitin-protein ligase complex (ECS complex, also named CRL5 complex), which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:25654263, PubMed:33268465). The ECS(ASB9) complex catalyzes ubiquitination of creatine kinases CKB and CKMT1A (PubMed:20302626, PubMed:22418839, PubMed:25654263, PubMed:33268465). {ECO:0000269|PubMed:20302626, ECO:0000269|PubMed:22418839, ECO:0000269|PubMed:25654263, ECO:0000269|PubMed:33268465}.; FUNCTION: [Isoform 2]: Does not interact with the Elongin BC complex, likely to be a negative regulator of isoform 1. {ECO:0000269|PubMed:20302626}. |
Q96G46 | DUS3L | S277 | ochoa | tRNA-dihydrouridine(47) synthase [NAD(P)(+)]-like (EC 1.3.1.89) (mRNA-dihydrouridine synthase DUS3L) (EC 1.3.1.-) (tRNA-dihydrouridine synthase 3-like) | Catalyzes the synthesis of dihydrouridine, a modified base, in various RNAs, such as tRNAs, mRNAs and some long non-coding RNAs (lncRNAs) (PubMed:34556860). Mainly modifies the uridine in position 47 (U47) in the D-loop of most cytoplasmic tRNAs (PubMed:34556860). Also able to mediate the formation of dihydrouridine in some mRNAs, thereby regulating their translation (PubMed:34556860). {ECO:0000269|PubMed:34556860}. |
Q96HA7 | TONSL | S905 | ochoa | Tonsoku-like protein (Inhibitor of kappa B-related protein) (I-kappa-B-related protein) (IkappaBR) (NF-kappa-B inhibitor-like protein 2) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 2) | Component of the MMS22L-TONSL complex, a complex that promotes homologous recombination-mediated repair of double-strand breaks (DSBs) at stalled or collapsed replication forks (PubMed:21055983, PubMed:21055984, PubMed:21055985, PubMed:21113133, PubMed:26527279, PubMed:27338793, PubMed:27797818, PubMed:29478807, PubMed:30773278). The MMS22L-TONSL complex is required to maintain genome integrity during DNA replication (PubMed:21055983, PubMed:21055984, PubMed:21055985). It mediates the assembly of RAD51 filaments on single-stranded DNA (ssDNA): the MMS22L-TONSL complex is recruited to DSBs following histone replacement by histone chaperones and eviction of the replication protein A complex (RPA/RP-A) from DSBs (PubMed:21055983, PubMed:21055984, PubMed:21055985, PubMed:27797818, PubMed:29478807). Following recruitment to DSBs, the TONSL-MMS22L complex promotes recruitment of RAD51 filaments and subsequent homologous recombination (PubMed:27797818, PubMed:29478807). Within the complex, TONSL acts as a histone reader, which recognizes and binds newly synthesized histones following their replacement by histone chaperones (PubMed:27338793, PubMed:29478807). Specifically binds histone H4 lacking methylation at 'Lys-20' (H4K20me0) and histone H3.1 (PubMed:27338793). {ECO:0000269|PubMed:21055983, ECO:0000269|PubMed:21055984, ECO:0000269|PubMed:21055985, ECO:0000269|PubMed:21113133, ECO:0000269|PubMed:26527279, ECO:0000269|PubMed:27338793, ECO:0000269|PubMed:27797818, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30773278}. |
Q96HE9 | PRR11 | S40 | ochoa | Proline-rich protein 11 | Plays a critical role in cell cycle progression. {ECO:0000269|PubMed:23246489}. |
Q96JM3 | CHAMP1 | S542 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JM7 | L3MBTL3 | S608 | ochoa | Lethal(3)malignant brain tumor-like protein 3 (H-l(3)mbt-like protein 3) (L(3)mbt-like protein 3) (L3mbt-like 3) (MBT-1) | Is a negative regulator of Notch target genes expression, required for RBPJ-mediated transcriptional repression (PubMed:29030483). It recruits KDM1A to Notch-responsive elements and promotes KDM1A-mediated H3K4me demethylation (PubMed:29030483). Involved in the regulation of ubiquitin-dependent degradation of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1. It acts as an adapter recruiting the CRL4-DCAF5 E3 ubiquitin ligase complex to methylated target proteins (PubMed:29691401, PubMed:30442713). Required for normal maturation of myeloid progenitor cells (By similarity). {ECO:0000250|UniProtKB:Q8BLB7, ECO:0000269|PubMed:29030483, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}. |
Q96JZ2 | HSH2D | S194 | ochoa | Hematopoietic SH2 domain-containing protein (Hematopoietic SH2 protein) (Adaptor in lymphocytes of unknown function X) | May be a modulator of the apoptotic response through its ability to affect mitochondrial stability (By similarity). Adapter protein involved in tyrosine kinase and CD28 signaling. Seems to affect CD28-mediated activation of the RE/AP element of the interleukin-2 promoter. {ECO:0000250, ECO:0000269|PubMed:11700021, ECO:0000269|PubMed:12960172, ECO:0000269|PubMed:15284240}. |
Q96KM6 | ZNF512B | S409 | ochoa | Zinc finger protein 512B | Involved in transcriptional regulation by repressing gene expression (PubMed:39460621). Associates with the nucleosome remodeling and histone deacetylase (NuRD) complex, which promotes transcriptional repression by histone deacetylation and nucleosome remodeling (PubMed:39460621). {ECO:0000269|PubMed:39460621}. |
Q96L34 | MARK4 | S543 | ochoa | MAP/microtubule affinity-regulating kinase 4 (EC 2.7.11.1) (MAP/microtubule affinity-regulating kinase-like 1) | Serine/threonine-protein kinase (PubMed:14594945, PubMed:15009667, PubMed:23184942, PubMed:23666762). Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:14594945, PubMed:23666762). Also phosphorylates the microtubule-associated proteins MAP2 and MAP4 (PubMed:14594945). Involved in regulation of the microtubule network, causing reorganization of microtubules into bundles (PubMed:14594945, PubMed:25123532). Required for the initiation of axoneme extension during cilium assembly (PubMed:23400999). Regulates the centrosomal location of ODF2 and phosphorylates ODF2 in vitro (PubMed:23400999). Plays a role in cell cycle progression, specifically in the G1/S checkpoint (PubMed:25123532). Reduces neuronal cell survival (PubMed:15009667). Plays a role in energy homeostasis by regulating satiety and metabolic rate (By similarity). Promotes adipogenesis by activating JNK1 and inhibiting the p38MAPK pathway, and triggers apoptosis by activating the JNK1 pathway (By similarity). Phosphorylates mTORC1 complex member RPTOR and acts as a negative regulator of the mTORC1 complex, probably due to disruption of the interaction between phosphorylated RPTOR and the RRAGA/RRAGC heterodimer which is required for mTORC1 activation (PubMed:23184942). Involved in NLRP3 positioning along microtubules by mediating NLRP3 recruitment to microtubule organizing center (MTOC) upon inflammasome activation (PubMed:28656979). {ECO:0000250|UniProtKB:Q8CIP4, ECO:0000269|PubMed:14594945, ECO:0000269|PubMed:15009667, ECO:0000269|PubMed:23184942, ECO:0000269|PubMed:23400999, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:25123532, ECO:0000269|PubMed:28656979}. |
Q96L91 | EP400 | S321 | ochoa | E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q96L91 | EP400 | S358 | ochoa | E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q96LR2 | LURAP1 | S213 | ochoa | Leucine rich adaptor protein 1 (Leucine repeat adapter protein 35A) | Acts as an activator of the canonical NF-kappa-B pathway and drive the production of pro-inflammatory cytokines. Promotes the antigen (Ag)-presenting and priming function of dendritic cells via the canonical NF-kappa-B pathway (PubMed:21048106). In concert with MYO18A and CDC42BPA/CDC42BPB, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration. Activates CDC42BPA/CDC42BPB and targets it to actomyosin through its interaction with MYO18A, leading to MYL9/MLC2 phosphorylation and MYH9/MYH10-dependent actomyosin assembly in the lamella (By similarity). {ECO:0000250|UniProtKB:D4A8G3, ECO:0000269|PubMed:21048106}. |
Q96M27 | PRRC1 | S95 | ochoa | Protein PRRC1 (Proline-rich and coiled-coil-containing protein 1) | May act as a regulator of the protein kinase A (PKA) activity during embryonic development. {ECO:0000250|UniProtKB:Q5XJA3}. |
Q96MM6 | HSPA12B | S29 | ochoa | Heat shock 70 kDa protein 12B (Heat shock protein family A member 12B) | None |
Q96N66 | MBOAT7 | S285 | ochoa | Membrane-bound acylglycerophosphatidylinositol O-acyltransferase MBOAT7 (EC 2.3.1.-) (1-acylglycerophosphatidylinositol O-acyltransferase) (Bladder and breast carcinoma-overexpressed gene 1 protein) (Leukocyte receptor cluster member 4) (Lysophosphatidylinositol acyltransferase) (LPIAT) (Lyso-PI acyltransferase) (Lysophospholipid acyltransferase 7) (LPLAT 7) (Membrane-bound O-acyltransferase domain-containing protein 7) (O-acyltransferase domain-containing protein 7) (h-mboa-7) | Acyltransferase which catalyzes the transfer of an acyl group from an acyl-CoA to a lysophosphatidylinositol (1-acylglycerophosphatidylinositol or LPI) leading to the production of a phosphatidylinositol (1,2-diacyl-sn-glycero-3-phosphoinositol or PI) and participates in the reacylation step of the phospholipid remodeling pathway also known as the Lands cycle (PubMed:18094042, PubMed:18772128). Prefers arachidonoyl-CoA as the acyl donor, thus contributing to the regulation of free levels arachidonic acid in cell (PubMed:18094042, PubMed:18772128). In liver, participates in the regulation of triglyceride metabolism through the phosphatidylinositol acyl-chain remodeling regulation (PubMed:32253259). {ECO:0000269|PubMed:18094042, ECO:0000269|PubMed:18772128, ECO:0000269|PubMed:32253259}. |
Q96P47 | AGAP3 | S538 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3 (AGAP-3) (CRAM-associated GTPase) (CRAG) (Centaurin-gamma-3) (Cnt-g3) (MR1-interacting protein) (MRIP-1) | GTPase-activating protein for the ADP ribosylation factor family (Potential). GTPase which may be involved in the degradation of expanded polyglutamine proteins through the ubiquitin-proteasome pathway. {ECO:0000269|PubMed:16461359, ECO:0000305}. |
Q96PE2 | ARHGEF17 | S332 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PE2 | ARHGEF17 | S619 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96QU8 | XPO6 | S208 | ochoa | Exportin-6 (Exp6) (Ran-binding protein 20) | Mediates the nuclear export of actin and profilin-actin complexes in somatic cells. {ECO:0000269|PubMed:14592989}. |
Q96S38 | RPS6KC1 | S449 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96ST8 | CEP89 | S221 | ochoa | Centrosomal protein of 89 kDa (Cep89) (Centrosomal protein 123) (Cep123) (Coiled-coil domain-containing protein 123) | Required for ciliogenesis. Also plays a role in mitochondrial metabolism where it may modulate complex IV activity. {ECO:0000269|PubMed:23348840, ECO:0000269|PubMed:23575228}. |
Q96TA1 | NIBAN2 | S646 | ochoa|psp | Protein Niban 2 (Meg-3) (Melanoma invasion by ERK) (MINERVA) (Niban-like protein 1) (Protein FAM129B) | May play a role in apoptosis suppression. May promote melanoma cell invasion in vitro. {ECO:0000269|PubMed:19362540, ECO:0000269|PubMed:21148485}. |
Q96TA1 | NIBAN2 | S696 | ochoa|psp | Protein Niban 2 (Meg-3) (Melanoma invasion by ERK) (MINERVA) (Niban-like protein 1) (Protein FAM129B) | May play a role in apoptosis suppression. May promote melanoma cell invasion in vitro. {ECO:0000269|PubMed:19362540, ECO:0000269|PubMed:21148485}. |
Q99490 | AGAP2 | S827 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 2 (AGAP-2) (Centaurin-gamma-1) (Cnt-g1) (GTP-binding and GTPase-activating protein 2) (GGAP2) (Phosphatidylinositol 3-kinase enhancer) (PIKE) | GTPase-activating protein (GAP) for ARF1 and ARF5, which also shows strong GTPase activity. Isoform 1 participates in the prevention of neuronal apoptosis by enhancing PI3 kinase activity. It aids the coupling of metabotropic glutamate receptor 1 (GRM1) to cytoplasmic PI3 kinase by interacting with Homer scaffolding proteins, and also seems to mediate anti-apoptotic effects of NGF by activating nuclear PI3 kinase. Isoform 2 does not stimulate PI3 kinase but may protect cells from apoptosis by stimulating Akt. It also regulates the adapter protein 1 (AP-1)-dependent trafficking of proteins in the endosomal system. It seems to be oncogenic. It is overexpressed in cancer cells, prevents apoptosis and promotes cancer cell invasion. {ECO:0000269|PubMed:12640130, ECO:0000269|PubMed:14761976, ECO:0000269|PubMed:15118108, ECO:0000269|PubMed:16079295}. |
Q99640 | PKMYT1 | S416 | psp | Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase (EC 2.7.11.1) (Myt1 kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins (PubMed:10373560, PubMed:10504341, PubMed:9001210, PubMed:9268380). Mediates phosphorylation of CDK1 predominantly on 'Thr-14'. Also involved in Golgi fragmentation (PubMed:9001210, PubMed:9268380). May be involved in phosphorylation of CDK1 on 'Tyr-15' to a lesser degree, however tyrosine kinase activity is unclear and may be indirect (PubMed:9001210, PubMed:9268380). {ECO:0000269|PubMed:10373560, ECO:0000269|PubMed:10504341, ECO:0000269|PubMed:9001210, ECO:0000269|PubMed:9268380}. |
Q99741 | CDC6 | S74 | ochoa|psp | Cell division control protein 6 homolog (CDC6-related protein) (Cdc18-related protein) (HsCdc18) (p62(cdc6)) (HsCDC6) | Involved in the initiation of DNA replication. Also participates in checkpoint controls that ensure DNA replication is completed before mitosis is initiated. |
Q99759 | MAP3K3 | S355 | ochoa | Mitogen-activated protein kinase kinase kinase 3 (EC 2.7.11.25) (MAPK/ERK kinase kinase 3) (MEK kinase 3) (MEKK 3) | Component of a protein kinase signal transduction cascade. Mediates activation of the NF-kappa-B, AP1 and DDIT3 transcriptional regulators. {ECO:0000269|PubMed:12912994, ECO:0000269|PubMed:14661019, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:33729480, ECO:0000269|PubMed:33891857, ECO:0000269|PubMed:9006902}. |
Q99814 | EPAS1 | S672 | psp | Endothelial PAS domain-containing protein 1 (EPAS-1) (Basic-helix-loop-helix-PAS protein MOP2) (Class E basic helix-loop-helix protein 73) (bHLHe73) (HIF-1-alpha-like factor) (HLF) (Hypoxia-inducible factor 2-alpha) (HIF-2-alpha) (HIF2-alpha) (Member of PAS protein 2) (PAS domain-containing protein 2) | Transcription factor involved in the induction of oxygen regulated genes. Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Regulates the vascular endothelial growth factor (VEGF) expression and seems to be implicated in the development of blood vessels and the tubular system of lung. May also play a role in the formation of the endothelium that gives rise to the blood brain barrier. Potent activator of the Tie-2 tyrosine kinase expression. Activation requires recruitment of transcriptional coactivators such as CREBBP and probably EP300. Interaction with redox regulatory protein APEX1 seems to activate CTAD (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:P97481}. |
Q99973 | TEP1 | S397 | ochoa | Telomerase protein component 1 (Telomerase-associated protein 1) (Telomerase protein 1) (p240) (p80 telomerase homolog) | Component of the telomerase ribonucleoprotein complex that is essential for the replication of chromosome termini (PubMed:19179534). Also a component of the ribonucleoprotein vaults particle, a multi-subunit structure involved in nucleo-cytoplasmic transport (By similarity). Responsible for the localizing and stabilizing vault RNA (vRNA) association in the vault ribonucleoprotein particle. Binds to TERC (By similarity). {ECO:0000250|UniProtKB:P97499, ECO:0000269|PubMed:19179534}. |
Q9BSQ5 | CCM2 | S164 | ochoa | Cerebral cavernous malformations 2 protein (Malcavernin) | Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions (By similarity). May function as a scaffold protein for MAP2K3-MAP3K3 signaling. Seems to play a major role in the modulation of MAP3K3-dependent p38 activation induced by hyperosmotic shock (By similarity). {ECO:0000250}. |
Q9BTA9 | WAC | S266 | ochoa | WW domain-containing adapter protein with coiled-coil | Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}. |
Q9BTL3 | RAMAC | S36 | ochoa|psp | RNA guanine-N7 methyltransferase activating subunit (Protein FAM103A1) (RNA guanine-7 methyltransferase activating subunit) (RNMT-activating mRNA cap methyltransferase subunit) (RNMT-activating mini protein) (RAM) | Regulatory subunit of the mRNA-capping methyltransferase RNMT:RAMAC complex that methylates the N7 position of the added guanosine to the 5'-cap structure of mRNAs (PubMed:22099306, PubMed:27422871). Promotes the recruitment of the methyl donor, S-adenosyl-L-methionine, to RNMT (PubMed:27422871). Regulates RNMT expression by a post-transcriptional stabilizing mechanism (PubMed:22099306). Binds RNA (PubMed:22099306). {ECO:0000269|PubMed:22099306, ECO:0000269|PubMed:27422871}. |
Q9BVC5 | C2orf49 | S193 | ochoa | Ashwin | None |
Q9BVW5 | TIPIN | S31 | ochoa | TIMELESS-interacting protein | Plays an important role in the control of DNA replication and the maintenance of replication fork stability (PubMed:17102137, PubMed:23359676, PubMed:35585232). Important for cell survival after DNA damage or replication stress (PubMed:17116885). May be specifically required for the ATR-CHEK1 pathway in the replication checkpoint induced by hydroxyurea or ultraviolet light (PubMed:17296725). Forms a complex with TIMELESS and this complex regulates DNA replication processes under both normal and stress conditions, stabilizes replication forks and influences both CHEK1 phosphorylation and the intra-S phase checkpoint in response to genotoxic stress (PubMed:17102137, PubMed:17116885, PubMed:17296725, PubMed:23359676, PubMed:35585232). {ECO:0000269|PubMed:17102137, ECO:0000269|PubMed:17116885, ECO:0000269|PubMed:17296725, ECO:0000269|PubMed:23359676, ECO:0000269|PubMed:35585232}. |
Q9BWN1 | PRR14 | S277 | ochoa | Proline-rich protein 14 | Functions in tethering peripheral heterochromatin to the nuclear lamina during interphase, possibly through the interaction with heterochromatin protein CBX5/HP1 alpha (PubMed:24209742). Might play a role in reattaching heterochromatin to the nuclear lamina at mitotic exit (PubMed:24209742). Promotes myoblast differentiation during skeletal myogenesis, possibly by stimulating transcription factor MyoD activity via binding to CBX5/HP1 alpha (PubMed:25906157). Involved in the positive regulation of the PI3K-Akt-mTOR signaling pathway and in promoting cell proliferation, possibly via binding to GRB2 (PubMed:27041574). {ECO:0000269|PubMed:24209742, ECO:0000269|PubMed:25906157, ECO:0000269|PubMed:27041574}. |
Q9BY89 | KIAA1671 | S1063 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYB0 | SHANK3 | S1133 | ochoa | SH3 and multiple ankyrin repeat domains protein 3 (Shank3) (Proline-rich synapse-associated protein 2) (ProSAP2) | Major scaffold postsynaptic density protein which interacts with multiple proteins and complexes to orchestrate the dendritic spine and synapse formation, maturation and maintenance. Interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and HOMER, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction through the interaction with Arp2/3 and WAVE1 complex as well as the promotion of the F-actin clusters. By way of this control of actin dynamics, participates in the regulation of developing neurons growth cone motility and the NMDA receptor-signaling. Also modulates GRIA1 exocytosis and GRM5/MGLUR5 expression and signaling to control the AMPA and metabotropic glutamate receptor-mediated synaptic transmission and plasticity. May be required at an early stage of synapse formation and be inhibited by IGF1 to promote synapse maturation. {ECO:0000269|PubMed:24132240}. |
Q9BYE7 | PCGF6 | S30 | psp | Polycomb group RING finger protein 6 (Mel18 and Bmi1-like RING finger) (RING finger protein 134) | Transcriptional repressor (PubMed:12167161). May modulate the levels of histone H3K4Me3 by activating KDM5D histone demethylase (PubMed:17320162). Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167161). Within the PRC1-like complex, regulates RNF2 ubiquitin ligase activity (PubMed:26151332). {ECO:0000269|PubMed:12167161, ECO:0000269|PubMed:17320162, ECO:0000269|PubMed:26151332}. |
Q9BYP7 | WNK3 | S1585 | ochoa | Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) | Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}. |
Q9BZD6 | PRRG4 | Y207 | psp | Transmembrane gamma-carboxyglutamic acid protein 4 (Proline-rich gamma-carboxyglutamic acid protein 4) (Proline-rich Gla protein 4) | May control axon guidance across the CNS (PubMed:28859078). Prevents the delivery of ROBO1 at the cell surface and down-regulates its expression (PubMed:28859078). {ECO:0000269|PubMed:28859078}. |
Q9C0C2 | TNKS1BP1 | S498 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0D5 | TANC1 | S1564 | ochoa|psp | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9C0D6 | FHDC1 | S664 | ochoa | FH2 domain-containing protein 1 (Inverted formin-1) | Microtubule-associated formin which regulates both actin and microtubule dynamics. Induces microtubule acetylation and stabilization and actin stress fiber formation (PubMed:18815276). Regulates Golgi ribbon formation (PubMed:26564798). Required for normal cilia assembly. Early in cilia assembly, may assist in the maturation and positioning of the centrosome/basal body, and once cilia assembly has initiated, may also promote cilia elongation by inhibiting disassembly (PubMed:29742020). {ECO:0000269|PubMed:18815276, ECO:0000269|PubMed:26564798, ECO:0000269|PubMed:29742020}. |
Q9C0K0 | BCL11B | S381 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9GZR1 | SENP6 | S221 | ochoa | Sentrin-specific protease 6 (EC 3.4.22.-) (SUMO-1-specific protease 1) (Sentrin/SUMO-specific protease SENP6) | Protease that deconjugates SUMO1, SUMO2 and SUMO3 from targeted proteins. Processes preferentially poly-SUMO2 and poly-SUMO3 chains, but does not efficiently process SUMO1, SUMO2 and SUMO3 precursors. Deconjugates SUMO1 from RXRA, leading to transcriptional activation. Involved in chromosome alignment and spindle assembly, by regulating the kinetochore CENPH-CENPI-CENPK complex. Desumoylates PML and CENPI, protecting them from degradation by the ubiquitin ligase RNF4, which targets polysumoylated proteins for proteasomal degradation. Also desumoylates RPA1, thus preventing recruitment of RAD51 to the DNA damage foci to initiate DNA repair through homologous recombination. {ECO:0000269|PubMed:16912044, ECO:0000269|PubMed:17000875, ECO:0000269|PubMed:18799455, ECO:0000269|PubMed:20212317, ECO:0000269|PubMed:20705237, ECO:0000269|PubMed:21148299}. |
Q9H000 | MKRN2 | S139 | ochoa | E3 ubiquitin-protein ligase makorin-2 (EC 2.3.2.27) (RING finger protein 62) (RING-type E3 ubiquitin transferase makorin-2) | E3 ubiquitin ligase catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (By similarity). Promotes the polyubiquitination and proteasome-dependent degradation of RELA/p65, thereby suppressing RELA-mediated NF-kappaB transactivation and negatively regulating inflammatory responses (By similarity). Plays a role in the regulation of spermiation and in male fertility (By similarity). {ECO:0000250|UniProtKB:Q9ERV1}. |
Q9H0C5 | BTBD1 | S30 | ochoa | BTB/POZ domain-containing protein 1 (Hepatitis C virus NS5A-transactivated protein 8) (HCV NS5A-transactivated protein 8) | Probable substrate-specific adapter of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14528312). Seems to regulate expression levels and/or subnuclear distribution of TOP1, via an unknown mechanism (By similarity). May play a role in mesenchymal differentiation where it promotes myogenic differentiation and suppresses adipogenesis (By similarity). {ECO:0000250|UniProtKB:P58544, ECO:0000269|PubMed:14528312}. |
Q9H0W5 | CCDC8 | S261 | ochoa|psp | Coiled-coil domain-containing protein 8 | Core component of the 3M complex, a complex required to regulate microtubule dynamics and genome integrity. It is unclear how the 3M complex regulates microtubules, it could act by controlling the level of a microtubule stabilizer (PubMed:24793695, PubMed:24793696). Required for localization of CUL7 to the centrosome (PubMed:24793695). {ECO:0000269|PubMed:24793695, ECO:0000269|PubMed:24793696}. |
Q9H165 | BCL11A | S332 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H1A4 | ANAPC1 | S202 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9H2Z4 | NKX2-4 | S271 | ochoa | Homeobox protein Nkx-2.4 (Homeobox protein NK-2 homolog D) | Probable transcription factor. |
Q9H3P7 | ACBD3 | S43 | ochoa | Golgi resident protein GCP60 (Acyl-CoA-binding domain-containing protein 3) (Golgi complex-associated protein 1) (GOCAP1) (Golgi phosphoprotein 1) (GOLPH1) (PBR- and PKA-associated protein 7) (Peripheral benzodiazepine receptor-associated protein PAP7) [Cleaved into: Golgi resident protein GCP60, N-terminally processed] | Involved in the maintenance of Golgi structure by interacting with giantin, affecting protein transport between the endoplasmic reticulum and Golgi (PubMed:11590181). Involved in hormone-induced steroid biosynthesis in testicular Leydig cells (By similarity). Recruits PI4KB to the Golgi apparatus membrane; enhances the enzyme activity of PI4KB activity via its membrane recruitment thereby increasing the local concentration of the substrate in the vicinity of the kinase (PubMed:27009356). {ECO:0000250|UniProtKB:Q8BMP6, ECO:0000269|PubMed:11590181, ECO:0000269|PubMed:27009356}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication by recruiting PI4KB at the viral replication sites. {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}. |
Q9H4B6 | SAV1 | S56 | ochoa | Protein salvador homolog 1 (45 kDa WW domain protein) (hWW45) | Regulator of STK3/MST2 and STK4/MST1 in the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:29063833). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. SAV1 is required for STK3/MST2 and STK4/MST1 activation and promotes cell-cycle exit and terminal differentiation in developing epithelial tissues. Plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosomes, and its ability to phosphorylate CROCC and CEP250. In conjunction with STK3/MST2, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation. {ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:19212654, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:29063833}. |
Q9H4M7 | PLEKHA4 | S723 | ochoa | Pleckstrin homology domain-containing family A member 4 (PH domain-containing family A member 4) (Phosphoinositol 3-phosphate-binding protein 1) (PEPP-1) | Binds specifically to phosphatidylinositol 3-phosphate (PtdIns3P), but not to other phosphoinositides. {ECO:0000269|PubMed:11001876}. |
Q9H5V8 | CDCP1 | S797 | ochoa | CUB domain-containing protein 1 (Membrane glycoprotein gp140) (Subtractive immunization M plus HEp3-associated 135 kDa protein) (SIMA135) (Transmembrane and associated with src kinases) (CD antigen CD318) | May be involved in cell adhesion and cell matrix association. May play a role in the regulation of anchorage versus migration or proliferation versus differentiation via its phosphorylation. May be a novel marker for leukemia diagnosis and for immature hematopoietic stem cell subsets. Belongs to the tetraspanin web involved in tumor progression and metastasis. {ECO:0000269|PubMed:11466621, ECO:0000269|PubMed:12799299, ECO:0000269|PubMed:15153610, ECO:0000269|PubMed:16007225, ECO:0000269|PubMed:16404722, ECO:0000269|PubMed:8647901}. |
Q9H792 | PEAK1 | S779 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H792 | PEAK1 | S898 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H7P9 | PLEKHG2 | S1261 | ochoa | Pleckstrin homology domain-containing family G member 2 (PH domain-containing family G member 2) | May be a transforming oncogene with exchange activity for CDC42 (By similarity). May be a guanine-nucleotide exchange factor (GEF) for RAC1 and CDC42. Activated by the binding to subunits beta and gamma of the heterotrimeric guanine nucleotide-binding protein (G protein) (PubMed:18045877). Involved in the regulation of actin polymerization (PubMed:26573021). {ECO:0000250|UniProtKB:Q6KAU7, ECO:0000269|PubMed:18045877, ECO:0000269|PubMed:26573021}. |
Q9H9A5 | CNOT10 | S521 | ochoa | CCR4-NOT transcription complex subunit 10 | Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Is not required for association of CNOT7 to the CCR4-NOT complex. {ECO:0000269|PubMed:23221646}. |
Q9HC52 | CBX8 | S110 | ochoa | Chromobox protein homolog 8 (Polycomb 3 homolog) (Pc3) (hPc3) (Rectachrome 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:21282530}. |
Q9HCD6 | TANC2 | S1446 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCD6 | TANC2 | S1534 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCH0 | NCKAP5L | S577 | psp | Nck-associated protein 5-like (NCKAP5-like) (Centrosomal protein of 169 kDa) (Cep169) | Regulates microtubule organization and stabilization. Promotes microtubule growth and bundling formation and stabilizes microtubules by increasing intense acetylation of microtubules (PubMed:26482847, PubMed:26485573). Both tubulin-binding and homodimer formation are required for NCKAP5L-mediated microtubule bundle formation (PubMed:26485573). {ECO:0000269|PubMed:26482847, ECO:0000269|PubMed:26485573}. |
Q9NP61 | ARFGAP3 | S143 | ochoa | ADP-ribosylation factor GTPase-activating protein 3 (ARF GAP 3) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:11172815}. |
Q9NQX3 | GPHN | S194 | ochoa|psp | Gephyrin [Includes: Molybdopterin adenylyltransferase (MPT adenylyltransferase) (EC 2.7.7.75) (Domain G); Molybdopterin molybdenumtransferase (MPT Mo-transferase) (EC 2.10.1.1) (Domain E)] | Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to anchor the inhibitory glycine receptor (GLYR) to subsynaptic microtubules (By similarity). Acts as a major instructive molecule at inhibitory synapses, where it also clusters GABA type A receptors (PubMed:25025157, PubMed:26613940). {ECO:0000250|UniProtKB:Q03555, ECO:0000269|PubMed:25025157, ECO:0000269|PubMed:26613940}.; FUNCTION: Also has a catalytic activity and catalyzes two steps in the biosynthesis of the molybdenum cofactor. In the first step, molybdopterin is adenylated. Subsequently, molybdate is inserted into adenylated molybdopterin and AMP is released. {ECO:0000269|PubMed:26613940}. |
Q9NRA8 | EIF4ENIF1 | S301 | ochoa|psp | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NRG9 | AAAS | S495 | ochoa | Aladin (Adracalin) | Plays a role in the normal development of the peripheral and central nervous system (PubMed:11062474, PubMed:11159947, PubMed:16022285). Required for the correct localization of aurora kinase AURKA and the microtubule minus end-binding protein NUMA1 as well as a subset of AURKA targets which ensures proper spindle formation and timely chromosome alignment (PubMed:26246606). {ECO:0000269|PubMed:11062474, ECO:0000269|PubMed:11159947, ECO:0000269|PubMed:16022285, ECO:0000269|PubMed:26246606}. |
Q9NRS6 | SNX15 | S180 | ochoa | Sorting nexin-15 | May be involved in several stages of intracellular trafficking. Overexpression of SNX15 disrupts the normal trafficking of proteins from the plasma membrane to recycling endosomes or the TGN. {ECO:0000269|PubMed:11085978}. |
Q9NTJ3 | SMC4 | S22 | ochoa | Structural maintenance of chromosomes protein 4 (SMC protein 4) (SMC-4) (Chromosome-associated polypeptide C) (hCAP-C) (XCAP-C homolog) | Central component of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}. |
Q9NUL3 | STAU2 | S492 | ochoa | Double-stranded RNA-binding protein Staufen homolog 2 | RNA-binding protein required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite. As protein synthesis occurs within the dendrite, the localization of specific mRNAs to dendrites may be a prerequisite for neurite outgrowth and plasticity at sites distant from the cell body (By similarity). {ECO:0000250|UniProtKB:Q68SB1}. |
Q9NXL9 | MCM9 | S915 | ochoa | DNA helicase MCM9 (hMCM9) (EC 3.6.4.12) (Mini-chromosome maintenance deficient domain-containing protein 1) (Minichromosome maintenance 9) | Component of the MCM8-MCM9 complex, a complex involved in the repair of double-stranded DNA breaks (DBSs) and DNA interstrand cross-links (ICLs) by homologous recombination (HR) (PubMed:23401855). Required for DNA resection by the MRE11-RAD50-NBN/NBS1 (MRN) complex by recruiting the MRN complex to the repair site and by promoting the complex nuclease activity (PubMed:26215093). Probably by regulating the localization of the MRN complex, indirectly regulates the recruitment of downstream effector RAD51 to DNA damage sites including DBSs and ICLs (PubMed:23401855). Acts as a helicase in DNA mismatch repair (MMR) following DNA replication errors to unwind the mismatch containing DNA strand (PubMed:26300262). In addition, recruits MLH1, a component of the MMR complex, to chromatin (PubMed:26300262). The MCM8-MCM9 complex is dispensable for DNA replication and S phase progression (PubMed:23401855). Probably by regulating HR, plays a key role during gametogenesis (By similarity). {ECO:0000250|UniProtKB:Q2KHI9, ECO:0000269|PubMed:23401855, ECO:0000269|PubMed:26215093, ECO:0000269|PubMed:26300262}. |
Q9NZU5 | LMCD1 | S254 | ochoa | LIM and cysteine-rich domains protein 1 (Dyxin) | Transcriptional cofactor that restricts GATA6 function by inhibiting DNA-binding, resulting in repression of GATA6 transcriptional activation of downstream target genes. Represses GATA6-mediated trans activation of lung- and cardiac tissue-specific promoters. Inhibits DNA-binding by GATA4 and GATA1 to the cTNC promoter (By similarity). Plays a critical role in the development of cardiac hypertrophy via activation of calcineurin/nuclear factor of activated T-cells signaling pathway. {ECO:0000250, ECO:0000269|PubMed:20026769}. |
Q9NZW5 | PALS2 | S110 | ochoa | Protein PALS2 (MAGUK p55 subfamily member 6) (Membrane protein, palmitoylated 6) (Veli-associated MAGUK 1) (VAM-1) | None |
Q9P0K7 | RAI14 | S281 | ochoa | Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) | Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}. |
Q9P0L2 | MARK1 | S633 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P0U3 | SENP1 | S157 | ochoa | Sentrin-specific protease 1 (EC 3.4.22.-) (Sentrin/SUMO-specific protease SENP1) | Protease that catalyzes two essential functions in the SUMO pathway (PubMed:10652325, PubMed:15199155, PubMed:15487983, PubMed:16253240, PubMed:16553580, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). The first is the hydrolysis of an alpha-linked peptide bond at the C-terminal end of the small ubiquitin-like modifier (SUMO) propeptides, SUMO1, SUMO2 and SUMO3 leading to the mature form of the proteins (PubMed:15487983). The second is the deconjugation of SUMO1, SUMO2 and SUMO3 from targeted proteins, by cleaving an epsilon-linked peptide bond between the C-terminal glycine of the mature SUMO and the lysine epsilon-amino group of the target protein (PubMed:15199155, PubMed:16253240, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). Deconjugates SUMO1 from HIPK2 (PubMed:16253240). Deconjugates SUMO1 from HDAC1 and BHLHE40/DEC1, which decreases its transcriptional repression activity (PubMed:15199155, PubMed:21829689). Deconjugates SUMO1 from CLOCK, which decreases its transcriptional activation activity (PubMed:23160374). Deconjugates SUMO2 from MTA1 (PubMed:21965678). Inhibits N(6)-methyladenosine (m6A) RNA methylation by mediating SUMO1 deconjugation from METTL3 and ALKBH5: METTL3 inhibits the m6A RNA methyltransferase activity, while ALKBH5 desumoylation promotes m6A demethylation (PubMed:29506078, PubMed:34048572, PubMed:37257451). Desumoylates CCAR2 which decreases its interaction with SIRT1 (PubMed:25406032). Deconjugates SUMO1 from GPS2 (PubMed:24943844). {ECO:0000269|PubMed:10652325, ECO:0000269|PubMed:15199155, ECO:0000269|PubMed:15487983, ECO:0000269|PubMed:16253240, ECO:0000269|PubMed:16553580, ECO:0000269|PubMed:21829689, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:23160374, ECO:0000269|PubMed:24943844, ECO:0000269|PubMed:25406032, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:37257451}. |
Q9P206 | NHSL3 | S906 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P270 | SLAIN2 | S247 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P275 | USP36 | S713 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P275 | USP36 | S756 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P275 | USP36 | S807 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P2D1 | CHD7 | S734 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2R6 | RERE | S1113 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9P2Y5 | UVRAG | S522 | ochoa|psp | UV radiation resistance-associated gene protein (p63) | Versatile protein that is involved in regulation of different cellular pathways implicated in membrane trafficking. Involved in regulation of the COPI-dependent retrograde transport from Golgi and the endoplasmic reticulum by associating with the NRZ complex; the function is dependent on its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) (PubMed:16799551, PubMed:18552835, PubMed:20643123, PubMed:24056303, PubMed:28306502). During autophagy acts as a regulatory subunit of the alternative PI3K complex II (PI3KC3-C2) that mediates formation of phosphatidylinositol 3-phosphate and is believed to be involved in maturation of autophagosomes and endocytosis. Activates lipid kinase activity of PIK3C3 (PubMed:16799551, PubMed:20643123, PubMed:24056303, PubMed:28306502). Involved in the regulation of degradative endocytic trafficking and cytokinesis, and in regulation of ATG9A transport from the Golgi to the autophagosome; the functions seems to implicate its association with PI3KC3-C2 (PubMed:16799551, PubMed:20643123, PubMed:24056303). Involved in maturation of autophagosomes and degradative endocytic trafficking independently of BECN1 but depending on its association with a class C Vps complex (possibly the HOPS complex); the association is also proposed to promote autophagosome recruitment and activation of Rab7 and endosome-endosome fusion events (PubMed:18552835, PubMed:28306502). Enhances class C Vps complex (possibly HOPS complex) association with a SNARE complex and promotes fusogenic SNARE complex formation during late endocytic membrane fusion (PubMed:24550300). In case of negative-strand RNA virus infection is required for efficient virus entry, promotes endocytic transport of virions and is implicated in a VAMP8-specific fusogenic SNARE complex assembly (PubMed:24550300). {ECO:0000269|PubMed:18552835, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:24056303, ECO:0000269|PubMed:28306502, ECO:0000305}.; FUNCTION: Involved in maintaining chromosomal stability. Promotes DNA double-strand break (DSB) repair by association with DNA-dependent protein kinase complex DNA-PK and activating it in non-homologous end joining (NHEJ) (PubMed:22542840). Required for centrosome stability and proper chromosome segregation (PubMed:22542840). {ECO:0000269|PubMed:22542840}. |
Q9UBN7 | HDAC6 | S1035 | psp | Protein deacetylase HDAC6 (EC 3.5.1.-) (E3 ubiquitin-protein ligase HDAC6) (EC 2.3.2.-) (Tubulin-lysine deacetylase HDAC6) (EC 3.5.1.-) | Deacetylates a wide range of non-histone substrates (PubMed:12024216, PubMed:18606987, PubMed:20308065, PubMed:24882211, PubMed:26246421, PubMed:30538141, PubMed:31857589, PubMed:30770470, PubMed:38534334, PubMed:39567688). Plays a central role in microtubule-dependent cell motility by mediating deacetylation of tubulin (PubMed:12024216, PubMed:20308065, PubMed:26246421). Required for cilia disassembly via deacetylation of alpha-tubulin (PubMed:17604723, PubMed:26246421). Alpha-tubulin deacetylation results in destabilization of dynamic microtubules (By similarity). Promotes deacetylation of CTTN, leading to actin polymerization, promotion of autophagosome-lysosome fusion and completion of autophagy (PubMed:30538141). Deacetylates SQSTM1 (PubMed:31857589). Deacetylates peroxiredoxins PRDX1 and PRDX2, decreasing their reducing activity (PubMed:18606987). Deacetylates antiviral protein RIGI in the presence of viral mRNAs which is required for viral RNA detection by RIGI (By similarity). Sequentially deacetylates and polyubiquitinates DNA mismatch repair protein MSH2 which leads to MSH2 degradation, reducing cellular sensitivity to DNA-damaging agents and decreasing cellular DNA mismatch repair activities (PubMed:24882211). Deacetylates DNA mismatch repair protein MLH1 which prevents recruitment of the MutL alpha complex (formed by the MLH1-PMS2 heterodimer) to the MutS alpha complex (formed by the MSH2-MSH6 heterodimer), leading to tolerance of DNA damage (PubMed:30770470). Deacetylates RHOT1/MIRO1 which blocks mitochondrial transport and mediates axon growth inhibition (By similarity). Deacetylates transcription factor SP1 which leads to increased expression of ENG, positively regulating angiogenesis (PubMed:38534334). Deacetylates KHDRBS1/SAM68 which regulates alternative splicing by inhibiting the inclusion of CD44 alternate exons (PubMed:26080397). Acts as a valine sensor by binding to valine through the primate-specific SE14 repeat region (PubMed:39567688). In valine deprivation conditions, translocates from the cytoplasm to the nucleus where it deacetylates TET2 which promotes TET2-dependent DNA demethylation, leading to DNA damage (PubMed:39567688). Promotes odontoblast differentiation following IPO7-mediated nuclear import and subsequent repression of RUNX2 expression (By similarity). In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome (PubMed:17846173). Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and targets them to the aggresome, facilitating their clearance by autophagy (PubMed:17846173). Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer (PubMed:24413532). {ECO:0000250|UniProtKB:D3ZVD8, ECO:0000250|UniProtKB:Q9Z2V5, ECO:0000269|PubMed:12024216, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:17846173, ECO:0000269|PubMed:18606987, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:24882211, ECO:0000269|PubMed:26080397, ECO:0000269|PubMed:26246421, ECO:0000269|PubMed:30538141, ECO:0000269|PubMed:30770470, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:38534334, ECO:0000269|PubMed:39567688}.; FUNCTION: (Microbial infection) Deacetylates the SARS-CoV-2 N protein which promotes association of the viral N protein with human G3BP1, leading to disruption of cellular stress granule formation and facilitating viral replication. {ECO:0000269|PubMed:39135075}. |
Q9UBW7 | ZMYM2 | S838 | ochoa | Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) | Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}. |
Q9UET6 | FTSJ1 | S271 | ochoa | tRNA (cytidine(32)/guanosine(34)-2'-O)-methyltransferase (EC 2.1.1.205) (2'-O-ribose RNA methyltransferase TRM7 homolog) (Protein ftsJ homolog 1) | Methylates the 2'-O-ribose of nucleotides at positions 32 and 34 of the tRNA anticodon loop of substrate tRNAs (PubMed:25404562, PubMed:26310293, PubMed:32198346, PubMed:32558197, PubMed:33771871, PubMed:36720500). Requisite for faithful cytoplasmic translation (PubMed:32393790). Requires THADA for methylation of the nucleotide at position 32 of the anticodon loop of substrate tRNAs (PubMed:25404562, PubMed:26310293). Requires WDR6 for methylation of the nucleotide at position 34 of the anticodon loop of substrate tRNAs (PubMed:32558197, PubMed:33771871). Promotes translation efficiency of the UUU codon (PubMed:32558197). Plays a role in neurogenesis (PubMed:36720500). Required for expression of genes involved in neurogenesis, mitochondrial translation and energy generation, and lipid biosynthesis (PubMed:33771871, PubMed:36720500). Requisite for RNA-mediated gene silencing (PubMed:36720500). May modify position 32 in tRNA(Arg(ACG)), tRNA(Arg(CCG)), tRNA(Arg(UCG)), tRNA(Cys(GCA)), tRNA(Cys(ACA)), tRNA(Gln(CUG)), tRNA(Gln(UUG)), tRNA(Gly(CCC)), tRNA(Leu(CAG))/tRNA(Leu(CAA)), tRNA(Leu(A/IAG)), tRNA(Leu(UAG)), tRNA(Phe(GAA)), tRNA(Pro(AGG))/tRNA(Pro(CGG))/tRNA(Pro(UGG)) and tRNA(Trp(CCA)), and position 34 in tRNA(Phe(GAA)), tRNA(Leu(CAA)), tRNA(Sec(UCA)), and tRNA(Trp(CCA)) (PubMed:26310293, PubMed:32198346, PubMed:32558197, PubMed:33771871, PubMed:36720500). {ECO:0000269|PubMed:25404562, ECO:0000269|PubMed:26310293, ECO:0000269|PubMed:32198346, ECO:0000269|PubMed:32393790, ECO:0000269|PubMed:32558197, ECO:0000269|PubMed:33771871, ECO:0000269|PubMed:36720500}. |
Q9UGJ0 | PRKAG2 | S117 | ochoa | 5'-AMP-activated protein kinase subunit gamma-2 (AMPK gamma2) (AMPK subunit gamma-2) (H91620p) | AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:14722619, PubMed:24563466). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:14722619, PubMed:24563466). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:14722619, PubMed:24563466). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:14722619, PubMed:24563466). Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits (PubMed:14722619, PubMed:24563466). ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit (PubMed:14722619, PubMed:24563466). ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive (PubMed:14722619, PubMed:24563466). {ECO:0000269|PubMed:14722619, ECO:0000269|PubMed:24563466}. |
Q9UGQ3 | SLC2A6 | S23 | ochoa | Solute carrier family 2, facilitated glucose transporter member 6 (Glucose transporter type 6) (GLUT-6) | Probable sugar transporter that acts as a regulator of glycolysis in macrophages (Probable). Does not transport glucose (PubMed:30431159). {ECO:0000269|PubMed:30431159, ECO:0000305|PubMed:30431159}. |
Q9UHB7 | AFF4 | S32 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UHF7 | TRPS1 | S1085 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHL9 | GTF2IRD1 | S448 | ochoa | General transcription factor II-I repeat domain-containing protein 1 (GTF2I repeat domain-containing protein 1) (General transcription factor III) (MusTRD1/BEN) (Muscle TFII-I repeat domain-containing protein 1) (Slow-muscle-fiber enhancer-binding protein) (USE B1-binding protein) (Williams-Beuren syndrome chromosomal region 11 protein) (Williams-Beuren syndrome chromosomal region 12 protein) | May be a transcription regulator involved in cell-cycle progression and skeletal muscle differentiation. May repress GTF2I transcriptional functions, by preventing its nuclear residency, or by inhibiting its transcriptional activation. May contribute to slow-twitch fiber type specificity during myogenesis and in regenerating muscles. Binds troponin I slow-muscle fiber enhancer (USE B1). Binds specifically and with high affinity to the EFG sequences derived from the early enhancer of HOXC8 (By similarity). {ECO:0000250, ECO:0000269|PubMed:11438732}. |
Q9UHV7 | MED13 | S330 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UIF8 | BAZ2B | S556 | ochoa | Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) | Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}. |
Q9UK32 | RPS6KA6 | S372 | ochoa|psp | Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) | Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}. |
Q9UK61 | TASOR | S1103 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UK80 | USP21 | S335 | psp | Ubiquitin carboxyl-terminal hydrolase 21 (EC 3.4.19.12) (Deubiquitinating enzyme 21) (Ubiquitin thioesterase 21) (Ubiquitin-specific-processing protease 21) | Deubiquitinates histone H2A, a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (By similarity). Deubiquitination of histone H2A releaves the repression of di- and trimethylation of histone H3 at 'Lys-4', resulting in regulation of transcriptional initiation (By similarity). Regulates gene expression via histone H2A deubiquitination (By similarity). Deubiquitinates BAZ2A/TIP5 leading to its stabilization (PubMed:26100909). Also capable of removing NEDD8 from NEDD8 conjugates but has no effect on Sentrin-1 conjugates (PubMed:10799498). Also acts as a negative regulator of the ribosome quality control (RQC) by mediating deubiquitination of 40S ribosomal proteins RPS10/eS10 and RPS20/uS10, thereby antagonizing ZNF598-mediated 40S ubiquitination (PubMed:32011234). {ECO:0000250|UniProtKB:Q9QZL6, ECO:0000269|PubMed:10799498, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:32011234}. |
Q9UKA8 | RCAN3 | S152 | ochoa | Calcipressin-3 (Down syndrome candidate region 1-like protein 2) (Myocyte-enriched calcineurin-interacting protein 3) (MCIP3) (Regulator of calcineurin 3) | Inhibits calcineurin-dependent transcriptional responses by binding to the catalytic domain of calcineurin A. Could play a role during central nervous system development (By similarity). {ECO:0000250}. |
Q9UPS6 | SETD1B | S1298 | ochoa | Histone-lysine N-methyltransferase SETD1B (EC 2.1.1.364) (Lysine N-methyltransferase 2G) (SET domain-containing protein 1B) (hSET1B) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:17355966, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17355966, PubMed:25561738). Plays an essential role in regulating the transcriptional programming of multipotent hematopoietic progenitor cells and lymphoid lineage specification during hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CFT2, ECO:0000269|PubMed:17355966, ECO:0000269|PubMed:25561738}. |
Q9UQ16 | DNM3 | S773 | ochoa | Dynamin-3 (EC 3.6.5.5) (Dynamin, testicular) (T-dynamin) | Microtubule-associated force-producing protein involved in producing microtubule bundles and able to bind and hydrolyze GTP. Most probably involved in vesicular trafficking processes, in particular endocytosis (By similarity). {ECO:0000250}. |
Q9Y2H5 | PLEKHA6 | S1021 | ochoa | Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) | None |
Q9Y2H6 | FNDC3A | S207 | ochoa | Fibronectin type-III domain-containing protein 3A (Human gene expressed in odontoblasts) | Mediates spermatid-Sertoli adhesion during spermatogenesis. {ECO:0000250}. |
Q9Y2H9 | MAST1 | S1258 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2K7 | KDM2A | S718 | ochoa | Lysine-specific demethylase 2A (EC 1.14.11.27) (CXXC-type zinc finger protein 8) (F-box and leucine-rich repeat protein 11) (F-box protein FBL7) (F-box protein Lilina) (F-box/LRR-repeat protein 11) (JmjC domain-containing histone demethylation protein 1A) ([Histone-H3]-lysine-36 demethylase 1A) | Histone demethylase that specifically demethylates 'Lys-36' of histone H3, thereby playing a central role in histone code. Preferentially demethylates dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36'. May also recognize and bind to some phosphorylated proteins and promote their ubiquitination and degradation. Required to maintain the heterochromatic state. Associates with centromeres and represses transcription of small non-coding RNAs that are encoded by the clusters of satellite repeats at the centromere. Required to sustain centromeric integrity and genomic stability, particularly during mitosis. Regulates circadian gene expression by repressing the transcriptional activator activity of CLOCK-BMAL1 heterodimer and RORA in a catalytically-independent manner (PubMed:26037310). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:19001877, ECO:0000269|PubMed:26037310, ECO:0000269|PubMed:28262558}. |
Q9Y3S1 | WNK2 | S1276 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y4B5 | MTCL1 | S1421 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S1679 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4E6 | WDR7 | S1456 | ochoa | WD repeat-containing protein 7 (Rabconnectin-3 beta) (TGF-beta resistance-associated protein TRAG) | None |
Q9Y4F5 | CEP170B | S1088 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y5B0 | CTDP1 | S395 | ochoa | RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) | Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}. |
Q9Y5W3 | KLF2 | S248 | ochoa | Krueppel-like factor 2 (Lung krueppel-like factor) | Transcription factor that binds to the CACCC box in the promoter of target genes such as HBB/beta globin or NOV and activates their transcription (PubMed:21063504). Might be involved in transcriptional regulation by modulating the binding of the RARA nuclear receptor to RARE DNA elements (PubMed:28167758). {ECO:0000269|PubMed:21063504, ECO:0000269|PubMed:28167758}. |
Q9Y5Y0 | FLVCR1 | S536 | ochoa | Choline/ethanolamine transporter FLVCR1 (Feline leukemia virus subgroup C receptor-related protein 1) (Feline leukemia virus subgroup C receptor) (hFLVCR) (Heme transporter FLVCR1) | Uniporter that mediates the transport of extracellular choline and ethanolamine into cells, thereby playing a key role in phospholipid biosynthesis (PubMed:37100056, PubMed:38693265, PubMed:38778100, PubMed:39306721). Choline and ethanolamine are the precursors of phosphatidylcholine and phosphatidylethanolamine, respectively, the two most abundant phospholipids (PubMed:38693265, PubMed:38778100). Transport is not coupled with proton transport and is exclusively driven by the choline (or ethanolamine) gradient across the plasma membrane (PubMed:38693265, PubMed:38778100). Also acts as a heme b transporter that mediates heme efflux from the cytoplasm to the extracellular compartment (PubMed:15369674, PubMed:20610401, PubMed:22483575, PubMed:23187127, PubMed:27923065). {ECO:0000269|PubMed:15369674, ECO:0000269|PubMed:20610401, ECO:0000269|PubMed:22483575, ECO:0000269|PubMed:23187127, ECO:0000269|PubMed:27923065, ECO:0000269|PubMed:37100056, ECO:0000269|PubMed:38693265, ECO:0000269|PubMed:38778100, ECO:0000269|PubMed:39306721}.; FUNCTION: [Isoform 1]: Uniporter that mediates the transport of extracellular choline and ethanolamine into cells (PubMed:37100056, PubMed:38693265). Choline and ethanolamine are the precursors of phosphatidylcholine and phosphatidylethanolamine, respectively, the two most abundant phospholipids (PubMed:38693265). Transport is not coupled with proton transport and is exclusively driven by the choline (or ethanolamine) gradient across the plasma membrane (PubMed:38693265). Also acts as a heme b transporter that mediates heme efflux from the cytoplasm to the extracellular compartment (PubMed:15369674, PubMed:20610401, PubMed:22483575, PubMed:23187127, PubMed:27923065). Heme export depends on the presence of HPX and is required to maintain intracellular free heme balance, protecting cells from heme toxicity (PubMed:20610401). Heme export provides protection from heme or ferrous iron toxicities in liver, brain, sensory neurons and during erythropoiesis, a process in which heme synthesis intensifies (PubMed:20610401, PubMed:23187127). Possibly export coproporphyrin and protoporphyrin IX, which are both intermediate products in the heme biosynthetic pathway (PubMed:20610401). Does not export bilirubin (PubMed:20610401). The molecular mechanism of heme transport, whether electrogenic, electroneutral or coupled to other ions, remains to be elucidated (PubMed:20610401, PubMed:23187127). {ECO:0000269|PubMed:15369674, ECO:0000269|PubMed:20610401, ECO:0000269|PubMed:22483575, ECO:0000269|PubMed:23187127, ECO:0000269|PubMed:27923065, ECO:0000269|PubMed:37100056, ECO:0000269|PubMed:38693265}.; FUNCTION: [Isoform 2]: Heme b transporter that promotes heme efflux from the mitochondrion to the cytoplasm. Essential for erythroid differentiation. {ECO:0000269|PubMed:23187127}.; FUNCTION: [Isoform 1]: (Microbial infection) Confers susceptibility to feline leukemia virus subgroup C (FeLV-C) infection in vitro. {ECO:0000269|PubMed:10400745}. |
Q9Y614 | ACTL7B | S155 | ochoa | Actin-like protein 7B (Actin-like-7-beta) | None |
Q9Y6A5 | TACC3 | S434 | ochoa | Transforming acidic coiled-coil-containing protein 3 (ERIC-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:21297582, PubMed:23532825). May be involved in the control of cell growth and differentiation. May contribute to cancer (PubMed:14767476). {ECO:0000250|UniProtKB:Q9JJ11, ECO:0000269|PubMed:14767476, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q9Y6D6 | ARFGEF1 | S1555 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) | Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}. |
P00540 | MOS | S26 | Sugiyama | Proto-oncogene serine/threonine-protein kinase mos (EC 2.7.11.1) (Oocyte maturation factor mos) (Proto-oncogene c-Mos) | Serine/threonine kinase involved in the regulation of MAPK signaling. Is an activator of the ERK1/2 signaling cascade playing an essential role in the stimulation of oocyte maturation. {ECO:0000269|PubMed:34779126, ECO:0000269|PubMed:34997960, ECO:0000269|PubMed:35670744}. |
Q13435 | SF3B2 | Y645 | Sugiyama | Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
Q7Z6M1 | RABEPK | S137 | Sugiyama | Rab9 effector protein with kelch motifs (40 kDa Rab9 effector protein) (p40) | Rab9 effector required for endosome to trans-Golgi network (TGN) transport. {ECO:0000269|PubMed:9230071}. |
Q8IZQ8 | MYOCD | S459 | SIGNOR|iPTMNet|EPSD | Myocardin | Smooth muscle cells (SM) and cardiac muscle cells-specific transcriptional factor which uses the canonical single or multiple CArG boxes DNA sequence. Acts as a cofactor of serum response factor (SRF) with the potential to modulate SRF-target genes. Plays a crucial role in cardiogenesis, urinary bladder development, and differentiation of the smooth muscle cell lineage (myogenesis) (By similarity). Positively regulates the transcription of genes involved in vascular smooth muscle contraction (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q8R5I7, ECO:0000269|PubMed:12640126, ECO:0000269|PubMed:31513549}. |
P08151 | GLI1 | S569 | GPS6 | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
Q15349 | RPS6KA2 | S360 | Sugiyama | Ribosomal protein S6 kinase alpha-2 (S6K-alpha-2) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 2) (p90-RSK 2) (p90RSK2) (MAP kinase-activated protein kinase 1c) (MAPK-activated protein kinase 1c) (MAPKAP kinase 1c) (MAPKAPK-1c) (Ribosomal S6 kinase 3) (RSK-3) (pp90RSK3) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. {ECO:0000269|PubMed:16878154, ECO:0000269|PubMed:7623830}. |
Q13438 | OS9 | S529 | Sugiyama | Protein OS-9 (Amplified in osteosarcoma 9) | Lectin component of the HRD1 complex, which functions in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) (PubMed:18264092, PubMed:18417469, PubMed:19084021, PubMed:19346256, PubMed:21172656, PubMed:24899641). Specifically recognizes and binds improperly folded glycoproteins as well as hyperglycosylated proteins, retain them in the ER, and transfers them to the ubiquitination machinery and promote their degradation (PubMed:18264092, PubMed:18417469, PubMed:19084021, PubMed:19346256, PubMed:21172656, PubMed:24899641). Possible targets include TRPV4 as well as hyperglycosylated HSP90B1 (PubMed:17932042). {ECO:0000269|PubMed:17932042, ECO:0000269|PubMed:18264092, ECO:0000269|PubMed:18417469, ECO:0000269|PubMed:19084021, ECO:0000269|PubMed:19346256, ECO:0000269|PubMed:21172656, ECO:0000269|PubMed:24899641}. |
H0YC42 | None | S40 | ochoa | Tumor protein D52 | None |
K7ELQ4 | ATF7-NPFF | S121 | ochoa | ATF7-NPFF readthrough | None |
O00141 | SGK1 | S78 | ochoa|psp | Serine/threonine-protein kinase Sgk1 (EC 2.7.11.1) (Serum/glucocorticoid-regulated kinase 1) | Serine/threonine-protein kinase which is involved in the regulation of a wide variety of ion channels, membrane transporters, cellular enzymes, transcription factors, neuronal excitability, cell growth, proliferation, survival, migration and apoptosis. Plays an important role in cellular stress response. Contributes to regulation of renal Na(+) retention, renal K(+) elimination, salt appetite, gastric acid secretion, intestinal Na(+)/H(+) exchange and nutrient transport, insulin-dependent salt sensitivity of blood pressure, salt sensitivity of peripheral glucose uptake, cardiac repolarization and memory consolidation. Up-regulates Na(+) channels: SCNN1A/ENAC, SCN5A and ASIC1/ACCN2, K(+) channels: KCNJ1/ROMK1, KCNA1-5, KCNQ1-5 and KCNE1, epithelial Ca(2+) channels: TRPV5 and TRPV6, chloride channels: BSND, CLCN2 and CFTR, glutamate transporters: SLC1A3/EAAT1, SLC1A2 /EAAT2, SLC1A1/EAAT3, SLC1A6/EAAT4 and SLC1A7/EAAT5, amino acid transporters: SLC1A5/ASCT2, SLC38A1/SN1 and SLC6A19, creatine transporter: SLC6A8, Na(+)/dicarboxylate cotransporter: SLC13A2/NADC1, Na(+)-dependent phosphate cotransporter: SLC34A2/NAPI-2B, glutamate receptor: GRIK2/GLUR6. Up-regulates carriers: SLC9A3/NHE3, SLC12A1/NKCC2, SLC12A3/NCC, SLC5A3/SMIT, SLC2A1/GLUT1, SLC5A1/SGLT1 and SLC15A2/PEPT2. Regulates enzymes: GSK3A/B, PMM2 and Na(+)/K(+) ATPase, and transcription factors: CTNNB1 and nuclear factor NF-kappa-B. Stimulates sodium transport into epithelial cells by enhancing the stability and expression of SCNN1A/ENAC. This is achieved by phosphorylating the NEDD4L ubiquitin E3 ligase, promoting its interaction with 14-3-3 proteins, thereby preventing it from binding to SCNN1A/ENAC and targeting it for degradation. Regulates store-operated Ca(+2) entry (SOCE) by stimulating ORAI1 and STIM1. Regulates KCNJ1/ROMK1 directly via its phosphorylation or indirectly via increased interaction with SLC9A3R2/NHERF2. Phosphorylates MDM2 and activates MDM2-dependent ubiquitination of p53/TP53. Phosphorylates MAPT/TAU and mediates microtubule depolymerization and neurite formation in hippocampal neurons. Phosphorylates SLC2A4/GLUT4 and up-regulates its activity. Phosphorylates APBB1/FE65 and promotes its localization to the nucleus. Phosphorylates MAPK1/ERK2 and activates it by enhancing its interaction with MAP2K1/MEK1 and MAP2K2/MEK2. Phosphorylates FBXW7 and plays an inhibitory role in the NOTCH1 signaling. Phosphorylates FOXO1 resulting in its relocalization from the nucleus to the cytoplasm. Phosphorylates FOXO3, promoting its exit from the nucleus and interference with FOXO3-dependent transcription. Phosphorylates BRAF and MAP3K3/MEKK3 and inhibits their activity. Phosphorylates SLC9A3/NHE3 in response to dexamethasone, resulting in its activation and increased localization at the cell membrane. Phosphorylates CREB1. Necessary for vascular remodeling during angiogenesis. Sustained high levels and activity may contribute to conditions such as hypertension and diabetic nephropathy. Isoform 2 exhibited a greater effect on cell plasma membrane expression of SCNN1A/ENAC and Na(+) transport than isoform 1. {ECO:0000269|PubMed:11154281, ECO:0000269|PubMed:11410590, ECO:0000269|PubMed:11696533, ECO:0000269|PubMed:12397388, ECO:0000269|PubMed:12590200, ECO:0000269|PubMed:12634932, ECO:0000269|PubMed:12650886, ECO:0000269|PubMed:12761204, ECO:0000269|PubMed:12911626, ECO:0000269|PubMed:14623317, ECO:0000269|PubMed:14706641, ECO:0000269|PubMed:15040001, ECO:0000269|PubMed:15044175, ECO:0000269|PubMed:15234985, ECO:0000269|PubMed:15319523, ECO:0000269|PubMed:15496163, ECO:0000269|PubMed:15733869, ECO:0000269|PubMed:15737648, ECO:0000269|PubMed:15845389, ECO:0000269|PubMed:15888551, ECO:0000269|PubMed:16036218, ECO:0000269|PubMed:16443776, ECO:0000269|PubMed:16982696, ECO:0000269|PubMed:17382906, ECO:0000269|PubMed:18005662, ECO:0000269|PubMed:18304449, ECO:0000269|PubMed:18753299, ECO:0000269|PubMed:19447520, ECO:0000269|PubMed:19756449, ECO:0000269|PubMed:20511718, ECO:0000269|PubMed:20730100, ECO:0000269|PubMed:21865597}. |
O00515 | LAD1 | S298 | ochoa | Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) | Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}. |
O43312 | MTSS1 | S262 | ochoa | Protein MTSS 1 (Metastasis suppressor YGL-1) (Metastasis suppressor protein 1) (Missing in metastasis protein) | May be related to cancer progression or tumor metastasis in a variety of organ sites, most likely through an interaction with the actin cytoskeleton. |
O60296 | TRAK2 | S780 | ochoa | Trafficking kinesin-binding protein 2 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 3 protein) | May regulate endosome-to-lysosome trafficking of membrane cargo, including EGFR. {ECO:0000250}. |
O60343 | TBC1D4 | S649 | ochoa | TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) | May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}. |
O75208 | COQ9 | S57 | ochoa | Ubiquinone biosynthesis protein COQ9, mitochondrial | Membrane-associated protein that warps the membrane surface to access and bind aromatic isoprenes with high specificity, including ubiquinone (CoQ) isoprene intermediates and presents them directly to COQ7, therefore facilitating the COQ7-mediated hydroxylase step (PubMed:25339443, PubMed:30661980, PubMed:38425362). Participates in the biosynthesis of coenzyme Q, also named ubiquinone, an essential lipid-soluble electron transporter for aerobic cellular respiration (PubMed:25339443, PubMed:30661980). {ECO:0000269|PubMed:25339443, ECO:0000269|PubMed:30661980, ECO:0000269|PubMed:38425362}. |
O75962 | TRIO | S2477 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O95155 | UBE4B | S383 | ochoa | Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}. |
O95478 | NSA2 | S205 | ochoa | Ribosome biogenesis protein NSA2 homolog (Hairy cell leukemia protein 1) (TGF-beta-inducible nuclear protein 1) | Involved in the biogenesis of the 60S ribosomal subunit. May play a part in the quality control of pre-60S particles (By similarity). {ECO:0000250}. |
P01106 | MYC | S308 | psp | Myc proto-oncogene protein (Class E basic helix-loop-helix protein 39) (bHLHe39) (Proto-oncogene c-Myc) (Transcription factor p64) | Transcription factor that binds DNA in a non-specific manner, yet also specifically recognizes the core sequence 5'-CAC[GA]TG-3' (PubMed:24940000, PubMed:25956029). Activates the transcription of growth-related genes (PubMed:24940000, PubMed:25956029). Binds to the VEGFA promoter, promoting VEGFA production and subsequent sprouting angiogenesis (PubMed:24940000, PubMed:25956029). Regulator of somatic reprogramming, controls self-renewal of embryonic stem cells (By similarity). Functions with TAF6L to activate target gene expression through RNA polymerase II pause release (By similarity). Positively regulates transcription of HNRNPA1, HNRNPA2 and PTBP1 which in turn regulate splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). {ECO:0000250|UniProtKB:P01108, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:25956029}. |
P15056 | BRAF | S405 | ochoa | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P24394 | IL4R | S664 | ochoa | Interleukin-4 receptor subunit alpha (IL-4 receptor subunit alpha) (IL-4R subunit alpha) (IL-4R-alpha) (IL-4RA) (CD antigen CD124) [Cleaved into: Soluble interleukin-4 receptor subunit alpha (Soluble IL-4 receptor subunit alpha) (Soluble IL-4R-alpha) (sIL4Ralpha/prot) (IL-4-binding protein) (IL4-BP)] | Receptor for both interleukin 4 and interleukin 13 (PubMed:17030238). Couples to the JAK1/2/3-STAT6 pathway. The IL4 response is involved in promoting Th2 differentiation. The IL4/IL13 responses are involved in regulating IgE production and, chemokine and mucus production at sites of allergic inflammation. In certain cell types, can signal through activation of insulin receptor substrates, IRS1/IRS2. {ECO:0000269|PubMed:17030238, ECO:0000269|PubMed:8124718}.; FUNCTION: Soluble IL4R (sIL4R) inhibits IL4-mediated cell proliferation and IL5 up-regulation by T-cells. {ECO:0000269|PubMed:8124718}. |
P28749 | RBL1 | S964 | ochoa|psp | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P33991 | MCM4 | S54 | ochoa|psp | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P35236 | PTPN7 | S93 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 7 (EC 3.1.3.48) (Hematopoietic protein-tyrosine phosphatase) (HEPTP) (Protein-tyrosine phosphatase LC-PTP) | Protein phosphatase that acts preferentially on tyrosine-phosphorylated MAPK1. Plays a role in the regulation of T and B-lymphocyte development and signal transduction. {ECO:0000269|PubMed:10206983, ECO:0000269|PubMed:10559944, ECO:0000269|PubMed:10702794, ECO:0000269|PubMed:1510684, ECO:0000269|PubMed:1530918, ECO:0000269|PubMed:9624114}. |
P41212 | ETV6 | S22 | ochoa|psp | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P49585 | PCYT1A | S347 | ochoa | Choline-phosphate cytidylyltransferase A (EC 2.7.7.15) (CCT-alpha) (CTP:phosphocholine cytidylyltransferase A) (CCT A) (CT A) (Phosphorylcholine transferase A) | Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912, ECO:0000269|PubMed:30559292, ECO:0000269|PubMed:7918629}. |
P51116 | FXR2 | S542 | ochoa | RNA-binding protein FXR2 (FXR2P) (FMR1 autosomal homolog 2) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for adult hippocampal neurogenesis (By similarity). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (By similarity). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs: mRNAs storage into membraneless compartments regulates their translation and/or stability (By similarity). Acts as a regulator of adult hippocampal neurogenesis by regulating translation and/or stability of NOG mRNA, thereby preventing NOG protein expression in the dentate gyrus (By similarity). {ECO:0000250|UniProtKB:Q61584, ECO:0000250|UniProtKB:Q9WVR4}. |
P52179 | MYOM1 | S1044 | ochoa | Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
Q00613 | HSF1 | S307 | ochoa|psp | Heat shock factor protein 1 (HSF 1) (Heat shock transcription factor 1) (HSTF 1) | Functions as a stress-inducible and DNA-binding transcription factor that plays a central role in the transcriptional activation of the heat shock response (HSR), leading to the expression of a large class of molecular chaperones, heat shock proteins (HSPs), that protect cells from cellular insult damage (PubMed:11447121, PubMed:12659875, PubMed:12917326, PubMed:15016915, PubMed:18451878, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7760831, PubMed:8940068, PubMed:8946918, PubMed:9121459, PubMed:9341107, PubMed:9499401, PubMed:9535852, PubMed:9727490). In unstressed cells, is present in a HSP90-containing multichaperone complex that maintains it in a non-DNA-binding inactivated monomeric form (PubMed:11583998, PubMed:16278218, PubMed:9727490). Upon exposure to heat and other stress stimuli, undergoes homotrimerization and activates HSP gene transcription through binding to site-specific heat shock elements (HSEs) present in the promoter regions of HSP genes (PubMed:10359787, PubMed:11583998, PubMed:12659875, PubMed:16278218, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7935471, PubMed:8455624, PubMed:8940068, PubMed:9499401, PubMed:9727490). Upon heat shock stress, forms a chromatin-associated complex with TTC5/STRAP and p300/EP300 to stimulate HSR transcription, therefore increasing cell survival (PubMed:18451878). Activation is reversible, and during the attenuation and recovery phase period of the HSR, returns to its unactivated form (PubMed:11583998, PubMed:16278218). Binds to inverted 5'-NGAAN-3' pentamer DNA sequences (PubMed:1986252, PubMed:26727489). Binds to chromatin at heat shock gene promoters (PubMed:25963659). Activates transcription of transcription factor FOXR1 which in turn activates transcription of the heat shock chaperones HSPA1A and HSPA6 and the antioxidant NADPH-dependent reductase DHRS2 (PubMed:34723967). Also serves several other functions independently of its transcriptional activity. Involved in the repression of Ras-induced transcriptional activation of the c-fos gene in heat-stressed cells (PubMed:9341107). Positively regulates pre-mRNA 3'-end processing and polyadenylation of HSP70 mRNA upon heat-stressed cells in a symplekin (SYMPK)-dependent manner (PubMed:14707147). Plays a role in nuclear export of stress-induced HSP70 mRNA (PubMed:17897941). Plays a role in the regulation of mitotic progression (PubMed:18794143). Also plays a role as a negative regulator of non-homologous end joining (NHEJ) repair activity in a DNA damage-dependent manner (PubMed:26359349). Involved in stress-induced cancer cell proliferation in a IER5-dependent manner (PubMed:26754925). {ECO:0000269|PubMed:10359787, ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:11583998, ECO:0000269|PubMed:12659875, ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:1871105, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:1986252, ECO:0000269|PubMed:25963659, ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:26727489, ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:34723967, ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:7760831, ECO:0000269|PubMed:7935471, ECO:0000269|PubMed:8455624, ECO:0000269|PubMed:8940068, ECO:0000269|PubMed:8946918, ECO:0000269|PubMed:9121459, ECO:0000269|PubMed:9341107, ECO:0000269|PubMed:9499401, ECO:0000269|PubMed:9535852, ECO:0000269|PubMed:9727490}.; FUNCTION: (Microbial infection) Plays a role in latent human immunodeficiency virus (HIV-1) transcriptional reactivation. Binds to the HIV-1 long terminal repeat promoter (LTR) to reactivate viral transcription by recruiting cellular transcriptional elongation factors, such as CDK9, CCNT1 and EP300. {ECO:0000269|PubMed:27189267}. |
Q00G26 | PLIN5 | S273 | ochoa | Perilipin-5 (Lipid storage droplet protein 5) | Lipid droplet-associated protein that maintains the balance between lipogenesis and lipolysis and also regulates fatty acid oxidation in oxidative tissues. Recruits mitochondria to the surface of lipid droplets and is involved in lipid droplet homeostasis by regulating both the storage of fatty acids in the form of triglycerides and the release of fatty acids for mitochondrial fatty acid oxidation. In lipid droplet triacylglycerol hydrolysis, plays a role as a scaffolding protein for three major key lipolytic players: ABHD5, PNPLA2 and LIPE. Reduces the triacylglycerol hydrolase activity of PNPLA2 by recruiting and sequestering PNPLA2 to lipid droplets. Phosphorylation by PKA enables lipolysis probably by promoting release of ABHD5 from the perilipin scaffold and by facilitating interaction of ABHD5 with PNPLA2. Also increases lipolysis through interaction with LIPE and upon PKA-mediated phosphorylation of LIPE (By similarity). {ECO:0000250, ECO:0000269|PubMed:17234449}. |
Q01167 | FOXK2 | S262 | ochoa | Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}. |
Q01484 | ANK2 | S1929 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q07889 | SOS1 | S1210 | ochoa | Son of sevenless homolog 1 (SOS-1) | Promotes the exchange of Ras-bound GDP by GTP (PubMed:8493579). Probably by promoting Ras activation, regulates phosphorylation of MAP kinase MAPK3/ERK1 in response to EGF (PubMed:17339331). Catalytic component of a trimeric complex that participates in transduction of signals from Ras to Rac by promoting the Rac-specific guanine nucleotide exchange factor (GEF) activity (By similarity). {ECO:0000250|UniProtKB:Q62245, ECO:0000269|PubMed:17339331, ECO:0000269|PubMed:8493579}. |
Q13202 | DUSP8 | S322 | ochoa | Dual specificity protein phosphatase 8 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase hVH-5) | Has phosphatase activity with synthetic phosphatase substrates and negatively regulates mitogen-activated protein kinase activity, presumably by catalysing their dephosphorylation. Expected to display protein phosphatase activity toward phosphotyrosine, phosphoserine and phosphothreonine residues. {ECO:0000250|UniProtKB:O09112}. |
Q13370 | PDE3B | S65 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13477 | MADCAM1 | S358 | ochoa | Mucosal addressin cell adhesion molecule 1 (MAdCAM-1) (hMAdCAM-1) | Cell adhesion leukocyte receptor expressed by mucosal venules, helps to direct lymphocyte traffic into mucosal tissues including the Peyer patches and the intestinal lamina propria. It can bind both integrin alpha-4/beta-7 and L-selectin, regulating both the passage and retention of leukocytes. Isoform 2, lacking the mucin-like domain, may be specialized in supporting integrin alpha-4/beta-7-dependent adhesion strengthening, independent of L-selectin binding. |
Q13884 | SNTB1 | S87 | ochoa | Beta-1-syntrophin (59 kDa dystrophin-associated protein A1 basic component 1) (DAPA1B) (BSYN2) (Syntrophin-2) (Tax interaction protein 43) (TIP-43) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin glycoprotein complex. |
Q15742 | NAB2 | S209 | ochoa | NGFI-A-binding protein 2 (EGR-1-binding protein 2) (Melanoma-associated delayed early response protein) (Protein MADER) | Acts as a transcriptional repressor for zinc finger transcription factors EGR1 and EGR2. Isoform 2 lacks repression ability (By similarity). {ECO:0000250}. |
Q53LP3 | SOWAHC | S149 | ochoa | Ankyrin repeat domain-containing protein SOWAHC (Ankyrin repeat domain-containing protein 57) (Protein sosondowah homolog C) | None |
Q5TCY1 | TTBK1 | S441 | ochoa | Tau-tubulin kinase 1 (EC 2.7.11.1) (Brain-derived tau kinase) | Serine/threonine kinase which is able to phosphorylate TAU on serine, threonine and tyrosine residues. Induces aggregation of TAU. {ECO:0000269|PubMed:16923168}. |
Q63HN8 | RNF213 | S226 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q7L2K0 | TEDC2 | S125 | ochoa | Tubulin epsilon and delta complex protein 2 | Acts as a positive regulator of ciliary hedgehog signaling. Required for centriole stability. {ECO:0000250|UniProtKB:Q6GQV0}. |
Q86UU0 | BCL9L | S25 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86VR2 | RETREG3 | S373 | ochoa | Reticulophagy regulator 3 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Promotes ER membrane curvature and ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes (PubMed:33826365). Required for collagen quality control in a LIR motif-dependent manner (By similarity). Mediates NRF1-enhanced neurite outgrowth (PubMed:26040720). {ECO:0000250|UniProtKB:Q9CQV4, ECO:0000269|PubMed:26040720, ECO:0000269|PubMed:33826365, ECO:0000269|PubMed:34338405}. |
Q92615 | LARP4B | S664 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92974 | ARHGEF2 | S960 | ochoa|psp | Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) | Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}. |
Q96G01 | BICD1 | S610 | ochoa | Protein bicaudal D homolog 1 (Bic-D 1) | Regulates coat complex coatomer protein I (COPI)-independent Golgi-endoplasmic reticulum transport by recruiting the dynein-dynactin motor complex. |
Q96JK2 | DCAF5 | S468 | ochoa | DDB1- and CUL4-associated factor 5 (Breakpoint cluster region protein 2) (BCRP2) (WD repeat-containing protein 22) | Is a substrate receptor for the CUL4-DDB1 E3 ubiquitin-protein ligase complex (CRL4) (PubMed:29691401, PubMed:30442713). The complex CRL4-DCAF5 is involved in the ubiquitination of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1 (PubMed:29691401, PubMed:30442713). {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}. |
Q96MK2 | RIPOR3 | S603 | ochoa | RIPOR family member 3 | None |
Q9BXK5 | BCL2L13 | S240 | ochoa | Bcl-2-like protein 13 (Bcl2-L-13) (Bcl-rambo) (Protein Mil1) | May promote the activation of caspase-3 and apoptosis. |
Q9BY89 | KIAA1671 | S726 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9HAW0 | BRF2 | S376 | ochoa | Transcription factor IIIB 50 kDa subunit (TFIIIB50) (hTFIIIB50) (B-related factor 2) (BRF-2) (hBRFU) | General activator of RNA polymerase III transcription. Factor exclusively required for RNA polymerase III transcription of genes with promoter elements upstream of the initiation sites (PubMed:11040218, PubMed:11121026, PubMed:11564744, PubMed:26638071). Contributes to the regulation of gene expression; functions as activator in the absence of oxidative stress (PubMed:26638071). Down-regulates expression of target genes in response to oxidative stress (PubMed:26638071). Overexpression protects cells against apoptosis in response to oxidative stress (PubMed:26638071). {ECO:0000269|PubMed:11040218, ECO:0000269|PubMed:11121026, ECO:0000269|PubMed:11564744, ECO:0000269|PubMed:26638071}. |
Q9NPG4 | PCDH12 | S906 | ochoa | Protocadherin-12 (Vascular cadherin-2) (Vascular endothelial cadherin-2) (VE-cad-2) (VE-cadherin-2) [Cleaved into: Protocadherin-12, secreted form] | Cellular adhesion molecule that may play an important role in cell-cell interactions at interendothelial junctions (By similarity). Acts as a regulator of cell migration, probably via increasing cell-cell adhesion (PubMed:21402705). Promotes homotypic calcium-dependent aggregation and adhesion and clusters at intercellular junctions (By similarity). Unable to bind to catenins, weakly associates with the cytoskeleton (By similarity). {ECO:0000250|UniProtKB:O55134, ECO:0000269|PubMed:21402705}. |
Q9NRA8 | EIF4ENIF1 | S568 | ochoa | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NYV4 | CDK12 | S685 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9P206 | NHSL3 | S545 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9UHV7 | MED13 | S537 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UKS6 | PACSIN3 | S341 | ochoa | Protein kinase C and casein kinase substrate in neurons protein 3 (SH3 domain-containing protein 6511) | Plays a role in endocytosis and regulates internalization of plasma membrane proteins. Overexpression impairs internalization of SLC2A1/GLUT1 and TRPV4 and increases the levels of SLC2A1/GLUT1 and TRPV4 at the cell membrane. Inhibits the TRPV4 calcium channel activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11082044}. |
Q9ULI4 | KIF26A | S1471 | ochoa | Kinesin-like protein KIF26A | Atypical kinesin that plays a key role in enteric neuron development. Acts by repressing a cell growth signaling pathway in the enteric nervous system development, possibly via its interaction with GRB2 that prevents GRB2-binding to SHC, thereby attenating the GDNF-Ret signaling (By similarity). Binds to microtubules but lacks microtubule-based motility due to the absence of ATPase activity (By similarity). Plays a critical role in cerebral cortical development. It probably acts as a microtubule stabilizer that regulates neurite growth and radial migration of cortical excitatory neurons (PubMed:36228617). {ECO:0000250|UniProtKB:Q52KG5, ECO:0000269|PubMed:36228617}. |
Q9UM47 | NOTCH3 | S2117 | ochoa | Neurogenic locus notch homolog protein 3 (Notch 3) [Cleaved into: Notch 3 extracellular truncation; Notch 3 intracellular domain] | Functions as a receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to regulate cell-fate determination (PubMed:15350543). Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). {ECO:0000250|UniProtKB:Q9R172, ECO:0000269|PubMed:15350543}. |
Q9UPA5 | BSN | S1481 | ochoa | Protein bassoon (Zinc finger protein 231) | Scaffold protein of the presynaptic cytomatrix at the active zone (CAZ) which is the place in the synapse where neurotransmitter is released (PubMed:12812759). After synthesis, participates in the formation of Golgi-derived membranous organelles termed Piccolo-Bassoon transport vesicles (PTVs) that are transported along axons to sites of nascent synaptic contacts (PubMed:19380881). At the presynaptic active zone, regulates the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis (By similarity). Also functions in processes other than assembly such as the regulation of specific presynaptic protein ubiquitination by interacting with SIAH1 or the regulation of presynaptic autophagy by associating with ATG5 (By similarity). Also mediates synapse to nucleus communication leading to reconfiguration of gene expression by associating with the transcriptional corepressor CTBP1 and by subsequently reducing the size of its pool available for nuclear import (By similarity). Inhibits the activity of the proportion of DAO enzyme that localizes to the presynaptic active zone, which may modulate synaptic transmission (By similarity). {ECO:0000250|UniProtKB:O35078, ECO:0000250|UniProtKB:O88778, ECO:0000269|PubMed:12812759, ECO:0000269|PubMed:19380881}. |
Q9Y3Q8 | TSC22D4 | S158 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y3Q8 | TSC22D4 | S233 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y4B5 | MTCL1 | S263 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4H2 | IRS2 | S1203 | ochoa|psp | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q13409 | DYNC1I2 | S87 | SIGNOR | Cytoplasmic dynein 1 intermediate chain 2 (Cytoplasmic dynein intermediate chain 2) (Dynein intermediate chain 2, cytosolic) (DH IC-2) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function (PubMed:31079899). Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules (PubMed:31079899). The intermediate chains mediate the binding of dynein to dynactin via its 150 kDa component (p150-glued) DCTN1 (By similarity). Involved in membrane-transport, such as Golgi apparatus, late endosomes and lysosomes (By similarity). {ECO:0000250|UniProtKB:Q62871, ECO:0000269|PubMed:31079899}. |
A1L390 | PLEKHG3 | S1040 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A2A3K4 | PTPDC1 | S438 | ochoa | Protein tyrosine phosphatase domain-containing protein 1 (EC 3.1.3.-) | May play roles in cilia formation and/or maintenance. {ECO:0000250}. |
A2A3K4 | PTPDC1 | S547 | ochoa | Protein tyrosine phosphatase domain-containing protein 1 (EC 3.1.3.-) | May play roles in cilia formation and/or maintenance. {ECO:0000250}. |
A6NKT7 | RGPD3 | S1487 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A7KAX9 | ARHGAP32 | S856 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
B2RBV5 | MRFAP1L2 | S21 | ochoa | MORF4 family associated protein 1 like 2 (MORF4 family-associated protein 1-like protein UPP) (Unnamed protein product) (UPP) | May play a role in cell proliferation. {ECO:0000305|PubMed:24248101}. |
B7ZBB8 | PPP1R3G | S60 | ochoa | Protein phosphatase 1 regulatory subunit 3G | Glycogen-targeting subunit for protein phosphatase 1 (PP1). Involved in the regulation of hepatic glycogenesis in a manner coupled to the fasting-feeding cycle and distinct from other glycogen-targeting subunits (By similarity). {ECO:0000250}. |
E9PAV3 | NACA | S585 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
M0R1B8 | None | S36 | ochoa | Uncharacterized protein | None |
O00444 | PLK4 | S665 | ochoa | Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) | Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}. |
O00716 | E2F3 | S172 | ochoa | Transcription factor E2F3 (E2F-3) | Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase. E2F3 binds specifically to RB1 in a cell-cycle dependent manner. Inhibits adipogenesis, probably through the repression of CEBPA binding to its target gene promoters (By similarity). {ECO:0000250|UniProtKB:O35261}. |
O14545 | TRAFD1 | S480 | ochoa | TRAF-type zinc finger domain-containing protein 1 (Protein FLN29) | Negative feedback regulator that controls excessive innate immune responses. Regulates both Toll-like receptor 4 (TLR4) and DDX58/RIG1-like helicases (RLH) pathways. May inhibit the LTR pathway by direct interaction with TRAF6 and attenuation of NF-kappa-B activation. May negatively regulate the RLH pathway downstream from MAVS and upstream of NF-kappa-B and IRF3 (By similarity). {ECO:0000250, ECO:0000269|PubMed:16221674}. |
O14715 | RGPD8 | S1486 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14974 | PPP1R12A | S409 | ochoa | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O15018 | PDZD2 | S1270 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15069 | NACAD | S561 | ochoa | NAC-alpha domain-containing protein 1 | May prevent inappropriate targeting of non-secretory polypeptides to the endoplasmic reticulum (ER). May bind to nascent polypeptide chains as they emerge from the ribosome and block their interaction with the signal recognition particle (SRP), which normally targets nascent secretory peptides to the ER. May also reduce the inherent affinity of ribosomes for protein translocation sites in the ER membrane (M sites) (By similarity). {ECO:0000250}. |
O43149 | ZZEF1 | S1518 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43593 | HR | S833 | ochoa | Lysine-specific demethylase hairless (EC 1.14.11.65) ([histone H3]-dimethyl-L-lysine(9) demethylase hairless) | Histone demethylase that specifically demethylates both mono- and dimethylated 'Lys-9' of histone H3. May act as a transcription regulator controlling hair biology (via targeting of collagens), neural activity, and cell cycle. {ECO:0000269|PubMed:24334705}. |
O60303 | KATNIP | S368 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O60307 | MAST3 | S348 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60858 | TRIM13 | S275 | ochoa | E3 ubiquitin-protein ligase TRIM13 (EC 2.3.2.27) (B-cell chronic lymphocytic leukemia tumor suppressor Leu5) (Leukemia-associated protein 5) (Putative tumor suppressor RFP2) (RING finger protein 77) (RING-type E3 ubiquitin transferase TRIM13) (Ret finger protein 2) (Tripartite motif-containing protein 13) | Endoplasmic reticulum (ER) membrane anchored E3 ligase involved in the retrotranslocation and turnover of membrane and secretory proteins from the ER through a set of processes named ER-associated degradation (ERAD). This process acts on misfolded proteins as well as in the regulated degradation of correctly folded proteins. Enhances ionizing radiation-induced p53/TP53 stability and apoptosis via ubiquitinating MDM2 and AKT1 and decreasing AKT1 kinase activity through MDM2 and AKT1 proteasomal degradation. Regulates ER stress-induced autophagy, and may act as a tumor suppressor (PubMed:22178386). Also plays a role in innate immune response by stimulating NF-kappa-B activity in the TLR2 signaling pathway. Ubiquitinates TRAF6 via the 'Lys-29'-linked polyubiquitination chain resulting in NF-kappa-B activation (PubMed:28087809). Participates as well in T-cell receptor-mediated NF-kappa-B activation (PubMed:25088585). In the presence of TNF, modulates the IKK complex by regulating IKBKG/NEMO ubiquitination leading to the repression of NF-kappa-B (PubMed:25152375). {ECO:0000269|PubMed:17314412, ECO:0000269|PubMed:21333377, ECO:0000269|PubMed:22178386, ECO:0000269|PubMed:25088585, ECO:0000269|PubMed:25152375, ECO:0000269|PubMed:28087809}. |
O75128 | COBL | S269 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75132 | ZBED4 | S624 | ochoa | Zinc finger BED domain-containing protein 4 | Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}. |
O75151 | PHF2 | S474 | ochoa | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75376 | NCOR1 | S2151 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75417 | POLQ | S1414 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O95382 | MAP3K6 | S984 | ochoa | Mitogen-activated protein kinase kinase kinase 6 (EC 2.7.11.25) (Apoptosis signal-regulating kinase 2) | Component of a protein kinase signal transduction cascade. Activates the JNK, but not ERK or p38 kinase pathways. {ECO:0000269|PubMed:17210579, ECO:0000269|PubMed:9875215}. |
O95396 | MOCS3 | S47 | ochoa | Adenylyltransferase and sulfurtransferase MOCS3 (Molybdenum cofactor synthesis protein 3) (Molybdopterin synthase sulfurylase) (MPT synthase sulfurylase) [Includes: Molybdopterin-synthase adenylyltransferase (EC 2.7.7.80) (Adenylyltransferase MOCS3) (Sulfur carrier protein MOCS2A adenylyltransferase); Molybdopterin-synthase sulfurtransferase (EC 2.8.1.11) (Sulfur carrier protein MOCS2A sulfurtransferase) (Sulfurtransferase MOCS3)] | Plays a central role in 2-thiolation of mcm(5)S(2)U at tRNA wobble positions of cytosolic tRNA(Lys), tRNA(Glu) and tRNA(Gln) (PubMed:19017811, PubMed:22453920, PubMed:30817134). Also essential during biosynthesis of the molybdenum cofactor (PubMed:15073332, PubMed:22453920, PubMed:30817134). Acts by mediating the C-terminal thiocarboxylation of sulfur carriers URM1 and MOCS2A (PubMed:15073332, PubMed:19017811, PubMed:22453920). Its N-terminus first activates URM1 and MOCS2A as acyl-adenylates (-COAMP), then the persulfide sulfur on the catalytic cysteine is transferred to URM1 and MOCS2A to form thiocarboxylation (-COSH) of their C-terminus (PubMed:19017811, PubMed:22453920). The reaction probably involves hydrogen sulfide that is generated from the persulfide intermediate and that acts as a nucleophile towards URM1 and MOCS2A (PubMed:15073332, PubMed:22453920). Subsequently, a transient disulfide bond is formed (PubMed:15073332, PubMed:22453920). Does not use thiosulfate as sulfur donor; NFS1 acting as a sulfur donor for thiocarboxylation reactions (PubMed:18650437, PubMed:22453920). {ECO:0000255|HAMAP-Rule:MF_03049, ECO:0000269|PubMed:15073332, ECO:0000269|PubMed:18650437, ECO:0000269|PubMed:19017811, ECO:0000269|PubMed:22453920, ECO:0000269|PubMed:30817134}. |
P0DJD0 | RGPD1 | S1471 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | S1479 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P15056 | BRAF | S151 | ochoa|psp | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P15822 | HIVEP1 | S65 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15822 | HIVEP1 | S537 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P30101 | PDIA3 | S456 | ochoa | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
P31629 | HIVEP2 | S2301 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P35568 | IRS1 | S636 | ochoa|psp | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35680 | HNF1B | S49 | ochoa | Hepatocyte nuclear factor 1-beta (HNF-1-beta) (HNF-1B) (Homeoprotein LFB3) (Transcription factor 2) (TCF-2) (Variant hepatic nuclear factor 1) (vHNF1) | Transcription factor that binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (PubMed:17924661, PubMed:7900999). Binds to the FPC element in the cAMP regulatory unit of the PLAU gene (By similarity). Transcriptional activity is increased by coactivator PCBD1 (PubMed:24204001). {ECO:0000250|UniProtKB:Q03365, ECO:0000269|PubMed:17924661, ECO:0000269|PubMed:24204001, ECO:0000269|PubMed:7900999}. |
P37231 | PPARG | S112 | ochoa|psp | Peroxisome proliferator-activated receptor gamma (PPAR-gamma) (Nuclear receptor subfamily 1 group C member 3) | Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated pro-inflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of BMAL1 in the blood vessels (By similarity). {ECO:0000250|UniProtKB:P37238, ECO:0000269|PubMed:16150867, ECO:0000269|PubMed:20829347, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:9065481}.; FUNCTION: (Microbial infection) Upon treatment with M.tuberculosis or its lipoprotein LpqH, phosphorylation of MAPK p38 and IL-6 production are modulated, probably via this protein. {ECO:0000269|PubMed:25504154}. |
P40222 | TXLNA | S515 | ochoa | Alpha-taxilin | May be involved in intracellular vesicle traffic and potentially in calcium-dependent exocytosis in neuroendocrine cells. |
P41182 | BCL6 | S333 | ochoa|psp | B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) | Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}. |
P46013 | MKI67 | S308 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P48380 | RFX3 | S260 | ochoa | Transcription factor RFX3 (Regulatory factor X 3) | Transcription factor required for ciliogenesis and islet cell differentiation during endocrine pancreas development. Essential for the differentiation of nodal monocilia and left-right asymmetry specification during embryogenesis. Required for the biogenesis of motile cilia by governing growth and beating efficiency of motile cells. Also required for ciliated ependymal cell differentiation. Regulates the expression of genes involved in ciliary assembly (DYNC2LI1, FOXJ1 and BBS4) and genes involved in ciliary motility (DNAH11, DNAH9 and DNAH5) (By similarity). Together with RFX6, participates in the differentiation of 4 of the 5 islet cell types during endocrine pancreas development, with the exception of pancreatic PP (polypeptide-producing) cells. Regulates transcription by forming a heterodimer with another RFX protein and binding to the X-box in the promoter of target genes (PubMed:20148032). Represses transcription of MAP1A in non-neuronal cells but not in neuronal cells (PubMed:12411430). {ECO:0000250|UniProtKB:P48381, ECO:0000269|PubMed:12411430, ECO:0000269|PubMed:20148032}. |
P49792 | RANBP2 | S2462 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P55196 | AFDN | S1182 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P56182 | RRP1 | S383 | ochoa | Ribosomal RNA processing protein 1 homolog A (Novel nuclear protein 1) (NNP-1) (Nucleolar protein Nop52) (RRP1-like protein) | Plays a critical role in the generation of 28S rRNA. {ECO:0000269|PubMed:10341208}. |
P78310 | CXADR | S332 | ochoa | Coxsackievirus and adenovirus receptor (CAR) (hCAR) (CVB3-binding protein) (Coxsackievirus B-adenovirus receptor) (HCVADR) | Component of the epithelial apical junction complex that may function as a homophilic cell adhesion molecule and is essential for tight junction integrity. Also involved in transepithelial migration of leukocytes through adhesive interactions with JAML a transmembrane protein of the plasma membrane of leukocytes. The interaction between both receptors also mediates the activation of gamma-delta T-cells, a subpopulation of T-cells residing in epithelia and involved in tissue homeostasis and repair. Upon epithelial CXADR-binding, JAML induces downstream cell signaling events in gamma-delta T-cells through PI3-kinase and MAP kinases. It results in proliferation and production of cytokines and growth factors by T-cells that in turn stimulate epithelial tissues repair. {ECO:0000269|PubMed:11734628, ECO:0000269|PubMed:12297051, ECO:0000269|PubMed:15800062, ECO:0000269|PubMed:19064666, ECO:0000269|PubMed:9096397}.; FUNCTION: (Microbial infection) Acts as a receptor for adenovirus type C. {ECO:0000269|PubMed:10567268, ECO:0000269|PubMed:10666333, ECO:0000269|PubMed:12297051, ECO:0000269|PubMed:9733828}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus B1 to B6. {ECO:0000269|PubMed:10814575, ECO:0000269|PubMed:14978041}. |
P98164 | LRP2 | S4569 | ochoa | Low-density lipoprotein receptor-related protein 2 (LRP-2) (Glycoprotein 330) (gp330) (Megalin) | Multiligand endocytic receptor (By similarity). Acts together with CUBN to mediate endocytosis of high-density lipoproteins (By similarity). Mediates receptor-mediated uptake of polybasic drugs such as aprotinin, aminoglycosides and polymyxin B (By similarity). In the kidney, mediates the tubular uptake and clearance of leptin (By similarity). Also mediates transport of leptin across the blood-brain barrier through endocytosis at the choroid plexus epithelium (By similarity). Endocytosis of leptin in neuronal cells is required for hypothalamic leptin signaling and leptin-mediated regulation of feeding and body weight (By similarity). Mediates endocytosis and subsequent lysosomal degradation of CST3 in kidney proximal tubule cells (By similarity). Mediates renal uptake of 25-hydroxyvitamin D3 in complex with the vitamin D3 transporter GC/DBP (By similarity). Mediates renal uptake of metallothionein-bound heavy metals (PubMed:15126248). Together with CUBN, mediates renal reabsorption of myoglobin (By similarity). Mediates renal uptake and subsequent lysosomal degradation of APOM (By similarity). Plays a role in kidney selenium homeostasis by mediating renal endocytosis of selenoprotein SEPP1 (By similarity). Mediates renal uptake of the antiapoptotic protein BIRC5/survivin which may be important for functional integrity of the kidney (PubMed:23825075). Mediates renal uptake of matrix metalloproteinase MMP2 in complex with metalloproteinase inhibitor TIMP1 (By similarity). Mediates endocytosis of Sonic hedgehog protein N-product (ShhN), the active product of SHH (By similarity). Also mediates ShhN transcytosis (By similarity). In the embryonic neuroepithelium, mediates endocytic uptake and degradation of BMP4, is required for correct SHH localization in the ventral neural tube and plays a role in patterning of the ventral telencephalon (By similarity). Required at the onset of neurulation to sequester SHH on the apical surface of neuroepithelial cells of the rostral diencephalon ventral midline and to control PTCH1-dependent uptake and intracellular trafficking of SHH (By similarity). During neurulation, required in neuroepithelial cells for uptake of folate bound to the folate receptor FOLR1 which is necessary for neural tube closure (By similarity). In the adult brain, negatively regulates BMP signaling in the subependymal zone which enables neurogenesis to proceed (By similarity). In astrocytes, mediates endocytosis of ALB which is required for the synthesis of the neurotrophic factor oleic acid (By similarity). Involved in neurite branching (By similarity). During optic nerve development, required for SHH-mediated migration and proliferation of oligodendrocyte precursor cells (By similarity). Mediates endocytic uptake and clearance of SHH in the retinal margin which protects retinal progenitor cells from mitogenic stimuli and keeps them quiescent (By similarity). Plays a role in reproductive organ development by mediating uptake in reproductive tissues of androgen and estrogen bound to the sex hormone binding protein SHBG (By similarity). Mediates endocytosis of angiotensin-2 (By similarity). Also mediates endocytosis of angiotensis 1-7 (By similarity). Binds to the complex composed of beta-amyloid protein 40 and CLU/APOJ and mediates its endocytosis and lysosomal degradation (By similarity). Required for embryonic heart development (By similarity). Required for normal hearing, possibly through interaction with estrogen in the inner ear (By similarity). {ECO:0000250|UniProtKB:A2ARV4, ECO:0000250|UniProtKB:C0HL13, ECO:0000250|UniProtKB:P98158, ECO:0000269|PubMed:15126248, ECO:0000269|PubMed:23825075}. |
P98171 | ARHGAP4 | S860 | ochoa | Rho GTPase-activating protein 4 (Rho-GAP hematopoietic protein C1) (Rho-type GTPase-activating protein 4) (p115) | Inhibitory effect on stress fiber organization. May down-regulate Rho-like GTPase in hematopoietic cells. |
P98177 | FOXO4 | S230 | ochoa|psp | Forkhead box protein O4 (Fork head domain transcription factor AFX1) | Transcription factor involved in the regulation of the insulin signaling pathway. Binds to insulin-response elements (IREs) and can activate transcription of IGFBP1. Down-regulates expression of HIF1A and suppresses hypoxia-induced transcriptional activation of HIF1A-modulated genes. Also involved in negative regulation of the cell cycle. Involved in increased proteasome activity in embryonic stem cells (ESCs) by activating expression of PSMD11 in ESCs, leading to enhanced assembly of the 26S proteasome, followed by higher proteasome activity. {ECO:0000269|PubMed:10217147, ECO:0000269|PubMed:10783894, ECO:0000269|PubMed:12761217, ECO:0000269|PubMed:15126506, ECO:0000269|PubMed:16054032, ECO:0000269|PubMed:16964248, ECO:0000269|PubMed:20874444, ECO:0000269|PubMed:22972301}. |
Q01196 | RUNX1 | S276 | ochoa|psp | Runt-related transcription factor 1 (Acute myeloid leukemia 1 protein) (Core-binding factor subunit alpha-2) (CBF-alpha-2) (Oncogene AML-1) (Polyomavirus enhancer-binding protein 2 alpha B subunit) (PEA2-alpha B) (PEBP2-alpha B) (SL3-3 enhancer factor 1 alpha B subunit) (SL3/AKV core-binding factor alpha B subunit) | Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (Probable). Essential for the development of normal hematopoiesis (PubMed:17431401). Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the BLK promoter (PubMed:10207087, PubMed:14970218). Inhibits KAT6B-dependent transcriptional activation (By similarity). Involved in lineage commitment of immature T cell precursors. CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Controls the anergy and suppressive function of regulatory T-cells (Treg) by associating with FOXP3. Activates the expression of IL2 and IFNG and down-regulates the expression of TNFRSF18, IL2RA and CTLA4, in conventional T-cells (PubMed:17377532). Positively regulates the expression of RORC in T-helper 17 cells (By similarity). {ECO:0000250|UniProtKB:Q03347, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:14970218, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:17431401, ECO:0000305}.; FUNCTION: Isoform AML-1G shows higher binding activities for target genes and binds TCR-beta-E2 and RAG-1 target site with threefold higher affinity than other isoforms. It is less effective in the context of neutrophil terminal differentiation. {ECO:0000250|UniProtKB:Q03347}.; FUNCTION: Isoform AML-1L interferes with the transactivation activity of RUNX1. {ECO:0000269|PubMed:9199349}. |
Q01484 | ANK2 | S1917 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01826 | SATB1 | S313 | ochoa | DNA-binding protein SATB1 (Special AT-rich sequence-binding protein 1) | Crucial silencing factor contributing to the initiation of X inactivation mediated by Xist RNA that occurs during embryogenesis and in lymphoma (By similarity). Binds to DNA at special AT-rich sequences, the consensus SATB1-binding sequence (CSBS), at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcriptional repressor controlling nuclear and viral gene expression in a phosphorylated and acetylated status-dependent manner, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes (e.g. PML at the MHC-I locus) and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Modulates genes that are essential in the maturation of the immune T-cell CD8SP from thymocytes. Required for the switching of fetal globin species, and beta- and gamma-globin genes regulation during erythroid differentiation. Plays a role in chromatin organization and nuclear architecture during apoptosis. Interacts with the unique region (UR) of cytomegalovirus (CMV). Alu-like motifs and SATB1-binding sites provide a unique chromatin context which seems preferentially targeted by the HIV-1 integration machinery. Moreover, HIV-1 Tat may overcome SATB1-mediated repression of IL2 and IL2RA (interleukin) in T-cells by binding to the same domain than HDAC1. Delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. Reprograms chromatin organization and the transcription profiles of breast tumors to promote growth and metastasis. Promotes neuronal differentiation of neural stem/progenitor cells in the adult subventricular zone, possibly by positively regulating the expression of NEUROD1 (By similarity). {ECO:0000250|UniProtKB:Q60611, ECO:0000269|PubMed:10595394, ECO:0000269|PubMed:11463840, ECO:0000269|PubMed:12374985, ECO:0000269|PubMed:12692553, ECO:0000269|PubMed:1505028, ECO:0000269|PubMed:15618465, ECO:0000269|PubMed:15713622, ECO:0000269|PubMed:16377216, ECO:0000269|PubMed:16630892, ECO:0000269|PubMed:17173041, ECO:0000269|PubMed:17376900, ECO:0000269|PubMed:18337816, ECO:0000269|PubMed:19103759, ECO:0000269|PubMed:19247486, ECO:0000269|PubMed:19332023, ECO:0000269|PubMed:19430959, ECO:0000269|PubMed:33513338, ECO:0000269|PubMed:9111059, ECO:0000269|PubMed:9548713}. |
Q03989 | ARID5A | S300 | ochoa | AT-rich interactive domain-containing protein 5A (ARID domain-containing protein 5A) (Modulator recognition factor 1) (MRF-1) | DNA-binding protein that may regulate transcription and act as a repressor by binding to AT-rich stretches in the promoter region of target genes (PubMed:8649988). May positively regulate chondrocyte-specific transcription such as of COL2A1 in collaboration with SOX9 and positively regulate histone H3 acetylation at chondrocyte-specific genes. May stimulate early-stage chondrocyte differentiation and inhibit later stage differention (By similarity). Can repress ESR1-mediated transcriptional activation; proposed to act as corepressor for selective nuclear hormone receptors (PubMed:15941852). As an RNA-binding protein, involved in the regulation of inflammatory response by stabilizing selective inflammation-related mRNAs, such as STAT3 and TBX21 (By similarity). Also stabilizes IL6 mRNA (PubMed:32209697). Binds to stem loop structures located in the 3'UTRs of IL6, STAT3 and TBX21 mRNAs; at least for STAT3 prevents binding of ZC3H12A to the mRNA stem loop structure thus inhibiting its degradation activity. Contributes to elevated IL6 levels possibly implicated in autoimmunity processes. IL6-dependent stabilization of STAT3 mRNA may promote differentiation of naive CD4+ T-cells into T-helper Th17 cells. In CD4+ T-cells may also inhibit RORC-induced Th17 cell differentiation independently of IL6 signaling. Stabilization of TBX21 mRNA contributes to elevated interferon-gamma secretion in Th1 cells possibly implicated in the establishment of septic shock (By similarity). Stabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR; thereby competing with the mRNA-destabilizing functions of RC3H1 and endoribonuclease ZC3H12A (By similarity). {ECO:0000250|UniProtKB:Q3U108, ECO:0000269|PubMed:15941852, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:8649988}. |
Q06418 | TYRO3 | S869 | ochoa | Tyrosine-protein kinase receptor TYRO3 (EC 2.7.10.1) (Tyrosine-protein kinase BYK) (Tyrosine-protein kinase DTK) (Tyrosine-protein kinase RSE) (Tyrosine-protein kinase SKY) (Tyrosine-protein kinase TIF) | Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to several ligands including TULP1 or GAS6. Regulates many physiological processes including cell survival, migration and differentiation. Ligand binding at the cell surface induces dimerization and autophosphorylation of TYRO3 on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with PIK3R1 and thereby enhances PI3-kinase activity. Activates the AKT survival pathway, including nuclear translocation of NF-kappa-B and up-regulation of transcription of NF-kappa-B-regulated genes. TYRO3 signaling plays a role in various processes such as neuron protection from excitotoxic injury, platelet aggregation and cytoskeleton reorganization. Also plays an important role in inhibition of Toll-like receptors (TLRs)-mediated innate immune response by activating STAT1, which selectively induces production of suppressors of cytokine signaling SOCS1 and SOCS3. {ECO:0000269|PubMed:20546121}.; FUNCTION: (Microbial infection) Acts as a receptor for lassa virus and lymphocytic choriomeningitis virus, possibly through GAS6 binding to phosphatidyl-serine at the surface of virion envelope. {ECO:0000269|PubMed:22156524, ECO:0000269|PubMed:22673088, ECO:0000269|PubMed:25277499}.; FUNCTION: (Microbial infection) Acts as a receptor for Ebolavirus, possibly through GAS6 binding to phosphatidyl-serine at the surface of virion envelope. {ECO:0000269|PubMed:17005688}. |
Q07157 | TJP1 | S402 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q12888 | TP53BP1 | S1114 | ochoa|psp | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q13233 | MAP3K1 | S300 | ochoa | Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) | Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}. |
Q13796 | SHROOM2 | S422 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q14134 | TRIM29 | S489 | ochoa | Tripartite motif-containing protein 29 (Ataxia telangiectasia group D-associated protein) | Plays a crucial role in the regulation of macrophage activation in response to viral or bacterial infections within the respiratory tract. Mechanistically, TRIM29 interacts with IKBKG/NEMO in the lysosome where it induces its 'Lys-48' ubiquitination and subsequent degradation. In turn, the expression of type I interferons and the production of pro-inflammatory cytokines are inhibited. Additionally, induces the 'Lys-48' ubiquitination of STING1 in a similar way, leading to its degradation. {ECO:0000269|PubMed:27695001, ECO:0000269|PubMed:29038422}. |
Q15554 | TERF2 | S365 | ochoa|psp | Telomeric repeat-binding factor 2 (TTAGGG repeat-binding factor 2) (Telomeric DNA-binding protein) | Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes (PubMed:15608617, PubMed:16166375, PubMed:20655466, PubMed:28216226, PubMed:9326950, PubMed:9326951, PubMed:9476899). In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo (PubMed:16166375, PubMed:20655466). Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection (PubMed:16166375). Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways (PubMed:16166375). Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair (PubMed:20655466). Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo (PubMed:20655466, PubMed:28216226). Preferentially binds to positive supercoiled DNA (PubMed:15608617, PubMed:20655466). Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology (PubMed:20655466). Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length (By similarity). {ECO:0000250|UniProtKB:O35144, ECO:0000269|PubMed:15608617, ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:20655466, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:9326950, ECO:0000269|PubMed:9326951, ECO:0000269|PubMed:9476899}. |
Q15717 | ELAVL1 | S202 | ochoa|psp | ELAV-like protein 1 (Hu-antigen R) (HuR) | RNA-binding protein that binds to the 3'-UTR region of mRNAs and increases their stability (PubMed:14517288, PubMed:18285462, PubMed:31358969). Involved in embryonic stem cell (ESC) differentiation: preferentially binds mRNAs that are not methylated by N6-methyladenosine (m6A), stabilizing them, promoting ESC differentiation (By similarity). Has also been shown to be capable of binding to m6A-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398, PubMed:17632515, PubMed:18285462, PubMed:23519412, PubMed:8626503). Binds avidly to the AU-rich element in FOS and IL3/interleukin-3 mRNAs. In the case of the FOS AU-rich element, binds to a core element of 27 nucleotides that contain AUUUA, AUUUUA, and AUUUUUA motifs. Binds preferentially to the 5'-UUUU[AG]UUU-3' motif in vitro (PubMed:8626503). With ZNF385A, binds the 3'-UTR of p53/TP53 mRNA to control their nuclear export induced by CDKN2A. Hence, may regulate p53/TP53 expression and mediate in part the CDKN2A anti-proliferative activity. May also bind with ZNF385A the CCNB1 mRNA (By similarity). Increases the stability of the leptin mRNA harboring an AU-rich element (ARE) in its 3' UTR (PubMed:29180010). {ECO:0000250|UniProtKB:P70372, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:17632515, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:23519412, ECO:0000269|PubMed:29180010, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:32245947, ECO:0000269|PubMed:8626503}. |
Q16666 | IFI16 | S153 | ochoa|psp | Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) | Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}. |
Q3KQU3 | MAP7D1 | S446 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q5JTC6 | AMER1 | S286 | ochoa | APC membrane recruitment protein 1 (Amer1) (Protein FAM123B) (Wilms tumor gene on the X chromosome protein) | Regulator of the canonical Wnt signaling pathway. Acts by specifically binding phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), translocating to the cell membrane and interacting with key regulators of the canonical Wnt signaling pathway, such as components of the beta-catenin destruction complex. Acts both as a positive and negative regulator of the Wnt signaling pathway, depending on the context: acts as a positive regulator by promoting LRP6 phosphorylation. Also acts as a negative regulator by acting as a scaffold protein for the beta-catenin destruction complex and promoting stabilization of Axin at the cell membrane. Promotes CTNNB1 ubiquitination and degradation. Involved in kidney development. {ECO:0000269|PubMed:17510365, ECO:0000269|PubMed:17925383, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:21304492, ECO:0000269|PubMed:21498506}. |
Q5JYT7 | KIAA1755 | S429 | ochoa | Uncharacterized protein KIAA1755 | None |
Q5PRF9 | SAMD4B | S243 | ochoa | Protein Smaug homolog 2 (Smaug 2) (hSmaug2) (Sterile alpha motif domain-containing protein 4B) (SAM domain-containing protein 4B) | Has transcriptional repressor activity. Overexpression inhibits the transcriptional activities of AP-1, p53/TP53 and CDKN1A. {ECO:0000269|PubMed:20510020}. |
Q5T013 | HYI | S224 | ochoa | Putative hydroxypyruvate isomerase (EC 5.3.1.22) (Endothelial cell apoptosis protein E-CE1) | Catalyzes the reversible isomerization between hydroxypyruvate and 2-hydroxy-3-oxopropanoate (also termed tartronate semialdehyde). {ECO:0000250}. |
Q5T7B8 | KIF24 | S1268 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5TH69 | ARFGEF3 | S1991 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q63HK5 | TSHZ3 | S333 | ochoa | Teashirt homolog 3 (Zinc finger protein 537) | Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}. |
Q659C4 | LARP1B | S593 | ochoa | La-related protein 1B (La ribonucleoprotein domain family member 1B) (La ribonucleoprotein domain family member 2) (La-related protein 2) | None |
Q684P5 | RAP1GAP2 | S613 | ochoa | Rap1 GTPase-activating protein 2 (Rap1GAP2) (GTPase-activating Rap/Ran-GAP domain-like protein 4) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15632203}. |
Q6P444 | MTFR2 | S119 | ochoa | Mitochondrial fission regulator 2 (DUF729 domain-containing protein 1) | May play a role in mitochondrial aerobic respiration essentially in the testis. Can also promote mitochondrial fission (By similarity). {ECO:0000250}. |
Q6P4E1 | GOLM2 | S319 | ochoa | Protein GOLM2 (Cancer susceptibility candidate gene 4 protein) (CASC4) (Golgi membrane protein 2) | None |
Q6PI48 | DARS2 | S242 | ochoa | Aspartate--tRNA ligase, mitochondrial (EC 6.1.1.12) (Aspartyl-tRNA synthetase) (AspRS) | Catalyzes the attachment of aspartate to tRNA(Asp) in a two-step reaction: aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp). {ECO:0000269|PubMed:15779907, ECO:0000269|PubMed:23275545}. |
Q6PJ61 | FBXO46 | S293 | ochoa | F-box only protein 46 (F-box only protein 34-like) | Substrate-recognition component of the SCF(FBXO46) protein ligase complex, which mediates the ubiquitination and degradation of target proteins (PubMed:30171069). In absence of stress, the SCF(FBXO46) complex catalyzes ubiquitination and degradation of MTOR-phosphorylated FBXO31 (PubMed:30171069). {ECO:0000269|PubMed:30171069}. |
Q6PJG6 | BRAT1 | S582 | ochoa | Integrator complex assembly factor BRAT1 (BRCA1-associated ATM activator 1) (BRCA1-associated protein required for ATM activation protein 1) | Component of a multiprotein complex required for the assembly of the RNA endonuclease module of the integrator complex (PubMed:39032489, PubMed:39032490). Associates with INTS9 and INTS11 in the cytoplasm and blocks the active site of INTS11 to inhibit the endonuclease activity of INTS11 before formation of the full integrator complex (PubMed:39032489, PubMed:39032490). Following dissociation of WDR73 of the complex, BRAT1 facilitates the nuclear import of the INTS9-INTS11 heterodimer (PubMed:39032489). In the nucleus, INTS4 is integrated to the INTS9-INTS11 heterodimer and BRAT1 is released from the mature RNA endonuclease module by inositol hexakisphosphate (InsP6) (PubMed:39032489). BRAT1 is also involved in DNA damage response; activates kinases ATM, SMC1A and PRKDC by modulating their phosphorylation status following ionizing radiation (IR) stress (PubMed:16452482, PubMed:22977523). Plays a role in regulating mitochondrial function and cell proliferation (PubMed:25070371). Required for protein stability of MTOR and MTOR-related proteins, and cell cycle progress by growth factors (PubMed:25657994). {ECO:0000269|PubMed:16452482, ECO:0000269|PubMed:22977523, ECO:0000269|PubMed:25070371, ECO:0000269|PubMed:25657994, ECO:0000269|PubMed:39032489, ECO:0000269|PubMed:39032490}. |
Q6PKG0 | LARP1 | S774 | ochoa|psp | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6UUV7 | CRTC3 | S391 | ochoa|psp | CREB-regulated transcription coactivator 3 (Transducer of regulated cAMP response element-binding protein 3) (TORC-3) (Transducer of CREB protein 3) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:15466468, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223, ECO:0000269|PubMed:17644518}. |
Q6Y7W6 | GIGYF2 | S593 | ochoa|psp | GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) | Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}. |
Q6ZWB6 | KCTD8 | S78 | ochoa | BTB/POZ domain-containing protein KCTD8 | Auxiliary subunit of GABA-B receptors that determine the pharmacology and kinetics of the receptor response. Increases agonist potency and markedly alter the G-protein signaling of the receptors by accelerating onset and promoting desensitization (By similarity). {ECO:0000250}. |
Q7KZF4 | SND1 | S426 | ochoa|psp | Staphylococcal nuclease domain-containing protein 1 (EC 3.1.31.1) (100 kDa coactivator) (EBNA2 coactivator p100) (Tudor domain-containing protein 11) (p100 co-activator) | Endonuclease that mediates miRNA decay of both protein-free and AGO2-loaded miRNAs (PubMed:18453631, PubMed:28546213). As part of its function in miRNA decay, regulates mRNAs involved in G1-to-S phase transition (PubMed:28546213). Functions as a bridging factor between STAT6 and the basal transcription factor (PubMed:12234934). Plays a role in PIM1 regulation of MYB activity (PubMed:9809063). Functions as a transcriptional coactivator for STAT5 (By similarity). {ECO:0000250|UniProtKB:Q78PY7, ECO:0000269|PubMed:12234934, ECO:0000269|PubMed:18453631, ECO:0000269|PubMed:28546213, ECO:0000269|PubMed:9809063}.; FUNCTION: (Microbial infection) Functions as a transcriptional coactivator for the Epstein-Barr virus nuclear antigen 2 (EBNA2). {ECO:0000269|PubMed:7651391}.; FUNCTION: (Microbial infection) Promotes SARS-CoV-2 RNA synthesis by binding to negative-sense RNA and the viral protein nsp9. {ECO:0000269|PubMed:37794589}. |
Q7RTP6 | MICAL3 | S1458 | ochoa | [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}. |
Q7Z2Z1 | TICRR | S1222 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z3J3 | RGPD4 | S1487 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z434 | MAVS | S152 | ochoa | Mitochondrial antiviral-signaling protein (MAVS) (CARD adapter inducing interferon beta) (Cardif) (Interferon beta promoter stimulator protein 1) (IPS-1) (Putative NF-kappa-B-activating protein 031N) (Virus-induced-signaling adapter) (VISA) | Adapter required for innate immune defense against viruses (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:21170385, PubMed:23087404, PubMed:27992402, PubMed:33139700, PubMed:37582970). Acts downstream of DHX33, RIGI and IFIH1/MDA5, which detect intracellular dsRNA produced during viral replication, to coordinate pathways leading to the activation of NF-kappa-B, IRF3 and IRF7, and to the subsequent induction of antiviral cytokines such as IFNB and RANTES (CCL5) (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:20628368, PubMed:21170385, PubMed:23087404, PubMed:25636800, PubMed:27736772, PubMed:33110251). Peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state (PubMed:20451243). Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response (PubMed:20451243). May activate the same pathways following detection of extracellular dsRNA by TLR3 (PubMed:16153868). May protect cells from apoptosis (PubMed:16125763). Involved in NLRP3 inflammasome activation by mediating NLRP3 recruitment to mitochondria (PubMed:23582325). {ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:16177806, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20451243, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:27992402, ECO:0000269|PubMed:33110251, ECO:0000269|PubMed:33139700, ECO:0000269|PubMed:37582970}. |
Q86SQ0 | PHLDB2 | S204 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86U86 | PBRM1 | S131 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86VS8 | HOOK3 | S238 | ochoa | Protein Hook homolog 3 (h-hook3) (hHK3) | Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Predominantly recruits 2 dyneins, which increases both the force and speed of the microtubule motor (PubMed:25035494, PubMed:33734450). Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). May regulate clearance of endocytosed receptors such as MSR1. Participates in defining the architecture and localization of the Golgi complex. FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000250|UniProtKB:Q8BUK6, ECO:0000269|PubMed:11238449, ECO:0000269|PubMed:17237231, ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:32073997, ECO:0000269|PubMed:33734450}.; FUNCTION: (Microbial infection) May serve as a target for the spiC protein from Salmonella typhimurium, which inactivates it, leading to a strong alteration in cellular trafficking. {ECO:0000305}. |
Q86W92 | PPFIBP1 | S40 | ochoa | Liprin-beta-1 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 1) (PTPRF-interacting protein-binding protein 1) (hSGT2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q86X10 | RALGAPB | S921 | ochoa | Ral GTPase-activating protein subunit beta (p170) | Non-catalytic subunit of the heterodimeric RalGAP1 and RalGAP2 complexes which act as GTPase activators for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q8N283 | ANKRD35 | S776 | ochoa | Ankyrin repeat domain-containing protein 35 | None |
Q8N3K9 | CMYA5 | S1168 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8NCD3 | HJURP | S473 | ochoa|psp | Holliday junction recognition protein (14-3-3-associated AKT substrate) (Fetal liver-expressing gene 1 protein) (Up-regulated in lung cancer 9) | Centromeric protein that plays a central role in the incorporation and maintenance of histone H3-like variant CENPA at centromeres. Acts as a specific chaperone for CENPA and is required for the incorporation of newly synthesized CENPA molecules into nucleosomes at replicated centromeres. Prevents CENPA-H4 tetramerization and prevents premature DNA binding by the CENPA-H4 tetramer. Directly binds Holliday junctions. {ECO:0000269|PubMed:19410544, ECO:0000269|PubMed:19410545}. |
Q8NDI1 | EHBP1 | S751 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NEV8 | EXPH5 | S643 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NFH5 | NUP35 | S25 | ochoa | Nucleoporin NUP35 (35 kDa nucleoporin) (Mitotic phosphoprotein 44) (MP-44) (Nuclear pore complex protein Nup53) (Nucleoporin NUP53) | Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. May play a role in the association of MAD1 with the NPC. {ECO:0000269|PubMed:15703211}. |
Q8TAP6 | CEP76 | S83 | ochoa|psp | Centrosomal protein of 76 kDa (Cep76) | Centrosomal protein involved in regulation of centriole duplication. Required to limit centriole duplication to once per cell cycle by preventing centriole reduplication. {ECO:0000269|PubMed:19460342}. |
Q8TBE0 | BAHD1 | S44 | ochoa | Bromo adjacent homology domain-containing 1 protein (BAH domain-containing protein 1) | Heterochromatin protein that acts as a transcription repressor and has the ability to promote the formation of large heterochromatic domains. May act by recruiting heterochromatin proteins such as CBX5 (HP1 alpha), HDAC5 and MBD1. Represses IGF2 expression by binding to its CpG-rich P3 promoter and recruiting heterochromatin proteins. At specific stages of Listeria infection, in complex with TRIM28, corepresses interferon-stimulated genes, including IFNL1, IFNL2 and IFNL3. {ECO:0000269|PubMed:19666599, ECO:0000269|PubMed:21252314}. |
Q8TBN0 | RAB3IL1 | S168 | ochoa | Guanine nucleotide exchange factor for Rab-3A (Rab-3A-interacting-like protein 1) (Rab3A-interacting-like protein 1) (Rabin3-like 1) | Guanine nucleotide exchange factor (GEF) which may activate RAB3A, a GTPase that regulates synaptic vesicle exocytosis. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. May also activate RAB8A and RAB8B. {ECO:0000269|PubMed:20937701}. |
Q8TED9 | AFAP1L1 | S329 | ochoa | Actin filament-associated protein 1-like 1 (AFAP1-like protein 1) | May be involved in podosome and invadosome formation. {ECO:0000269|PubMed:21333378}. |
Q8TEV9 | SMCR8 | S498 | ochoa | Guanine nucleotide exchange protein SMCR8 (Smith-Magenis syndrome chromosomal region candidate gene 8 protein) | Component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy (PubMed:20562859, PubMed:27103069, PubMed:27193190, PubMed:27559131, PubMed:27617292, PubMed:28195531, PubMed:32303654). In the complex, C9orf72 and SMCR8 probably constitute the catalytic subunits that promote the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation (PubMed:20562859, PubMed:27103069, PubMed:27617292, PubMed:28195531). The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ULK1/ATG1 kinase complex and inhibiting its protein kinase activity (PubMed:27617292, PubMed:28195531). As part of the C9orf72-SMCR8 complex, stimulates RAB8A and RAB11A GTPase activity in vitro (PubMed:32303654). Acts as a regulator of mTORC1 signaling by promoting phosphorylation of mTORC1 substrates (PubMed:27559131, PubMed:28195531). In addition to its activity in the cytoplasm within the C9orf72-SMCR8 complex, SMCR8 also localizes in the nucleus, where it associates with chromatin and negatively regulates expression of suppresses ULK1 and WIPI2 genes (PubMed:28195531). {ECO:0000269|PubMed:20562859, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27193190, ECO:0000269|PubMed:27559131, ECO:0000269|PubMed:27617292, ECO:0000269|PubMed:28195531, ECO:0000269|PubMed:32303654}. |
Q8TEW0 | PARD3 | S1335 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8WUA7 | TBC1D22A | S132 | ochoa | TBC1 domain family member 22A | May act as a GTPase-activating protein for Rab family protein(s). {ECO:0000250}. |
Q8WUF5 | PPP1R13L | S110 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WWM7 | ATXN2L | S496 | ochoa|psp | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q8WWQ0 | PHIP | S1243 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q92608 | DOCK2 | S1685 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q92623 | TTC9 | S105 | ochoa | Tetratricopeptide repeat protein 9A (TPR repeat protein 9A) | None |
Q92828 | CORO2A | S423 | ochoa | Coronin-2A (IR10) (WD repeat-containing protein 2) | None |
Q92994 | BRF1 | S614 | ochoa | Transcription factor IIIB 90 kDa subunit (TFIIIB90) (hTFIIIB90) (B-related factor 1) (BRF-1) (hBRF) (TAF3B2) (TATA box-binding protein-associated factor, RNA polymerase III, subunit 2) | General activator of RNA polymerase which utilizes different TFIIIB complexes at structurally distinct promoters. The isoform 1 is involved in the transcription of tRNA, adenovirus VA1, 7SL and 5S RNA. Isoform 2 is required for transcription of the U6 promoter. |
Q969J2 | ZKSCAN4 | S44 | ochoa | Zinc finger protein with KRAB and SCAN domains 4 (P373c6.1) (Zinc finger protein 307) (Zinc finger protein 427) | May be involved in the transcriptional activation of MDM2 and EP300 genes. {ECO:0000269|PubMed:17910948}. |
Q96AQ1 | CCDC74A | S38 | ochoa | Coiled-coil domain-containing protein 74A | None |
Q96C19 | EFHD2 | S74 | ochoa|psp | EF-hand domain-containing protein D2 (Swiprosin-1) | May regulate B-cell receptor (BCR)-induced immature and primary B-cell apoptosis. Plays a role as negative regulator of the canonical NF-kappa-B-activating branch. Controls spontaneous apoptosis through the regulation of BCL2L1 abundance. {ECO:0000250}. |
Q96D71 | REPS1 | S482 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96I25 | RBM17 | S222 | ochoa|psp | Splicing factor 45 (45 kDa-splicing factor) (RNA-binding motif protein 17) | Splice factor that binds to the single-stranded 3'AG at the exon/intron border and promotes its utilization in the second catalytic step. Involved in the regulation of alternative splicing and the utilization of cryptic splice sites. Promotes the utilization of a cryptic splice site created by the beta-110 mutation in the HBB gene. The resulting frameshift leads to sickle cell anemia. {ECO:0000269|PubMed:12015979, ECO:0000269|PubMed:17589525}. |
Q96KB5 | PBK | S32 | ochoa|psp | Lymphokine-activated killer T-cell-originated protein kinase (EC 2.7.12.2) (Cancer/testis antigen 84) (CT84) (MAPKK-like protein kinase) (Nori-3) (PDZ-binding kinase) (Spermatogenesis-related protein kinase) (SPK) (T-LAK cell-originated protein kinase) | Phosphorylates MAP kinase p38. Seems to be active only in mitosis. May also play a role in the activation of lymphoid cells. When phosphorylated, forms a complex with TP53, leading to TP53 destabilization and attenuation of G2/M checkpoint during doxorubicin-induced DNA damage. {ECO:0000269|PubMed:10781613, ECO:0000269|PubMed:17482142}. |
Q96L91 | EP400 | S1732 | ochoa | E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q96LY2 | CCDC74B | S38 | ochoa | Coiled-coil domain-containing protein 74B | None |
Q96MH2 | HEXIM2 | S29 | ochoa|psp | Protein HEXIM2 (Hexamethylene bis-acetamide-inducible protein 2) | Transcriptional regulator which functions as a general RNA polymerase II transcription inhibitor (PubMed:15713661, PubMed:15713662). Core component of the 7SK RNP complex: in cooperation with 7SK snRNA sequesters P-TEFb in a large inactive 7SK snRNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:15713661, PubMed:15713662). {ECO:0000269|PubMed:15713661, ECO:0000269|PubMed:15713662}. |
Q96MY1 | NOL4L | S130 | ochoa | Nucleolar protein 4-like | None |
Q96NA2 | RILP | S377 | ochoa | Rab-interacting lysosomal protein | Rab effector playing a role in late endocytic transport to degradative compartments (PubMed:11179213, PubMed:11696325, PubMed:12944476, PubMed:14668488, PubMed:27113757). Involved in the regulation of lysosomal morphology and distribution (PubMed:14668488, PubMed:27113757). Induces recruitment of dynein-dynactin motor complexes to Rab7A-containing late endosome and lysosome compartments (PubMed:11179213, PubMed:11696325). Promotes centripetal migration of phagosomes and the fusion of phagosomes with the late endosomes and lysosomes (PubMed:12944476). {ECO:0000269|PubMed:11179213, ECO:0000269|PubMed:11696325, ECO:0000269|PubMed:12944476, ECO:0000269|PubMed:14668488, ECO:0000269|PubMed:27113757}. |
Q96PE2 | ARHGEF17 | S527 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PY5 | FMNL2 | S1016 | ochoa|psp | Formin-like protein 2 (Formin homology 2 domain-containing protein 2) | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics. {ECO:0000269|PubMed:21834987}. |
Q96Q05 | TRAPPC9 | S953 | ochoa | Trafficking protein particle complex subunit 9 (NIK- and IKBKB-binding protein) (Tularik gene 1 protein) | Functions as an activator of NF-kappa-B through increased phosphorylation of the IKK complex. May function in neuronal cells differentiation. May play a role in vesicular transport from endoplasmic reticulum to Golgi. {ECO:0000269|PubMed:15951441}. |
Q96S53 | TESK2 | S460 | ochoa | Dual specificity testis-specific protein kinase 2 (EC 2.7.12.1) (Testicular protein kinase 2) | Dual specificity protein kinase activity catalyzing autophosphorylation and phosphorylation of exogenous substrates on both serine/threonine and tyrosine residues. Phosphorylates cofilin at 'Ser-3'. May play an important role in spermatogenesis. |
Q99618 | CDCA3 | S87 | ochoa | Cell division cycle-associated protein 3 (Gene-rich cluster protein C8) (Trigger of mitotic entry protein 1) (TOME-1) | F-box-like protein which is required for entry into mitosis. Acts by participating in E3 ligase complexes that mediate the ubiquitination and degradation of WEE1 kinase at G2/M phase (By similarity). {ECO:0000250}. |
Q99666 | RGPD5 | S1486 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99708 | RBBP8 | S276 | psp | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99741 | CDC6 | S54 | ochoa|psp | Cell division control protein 6 homolog (CDC6-related protein) (Cdc18-related protein) (HsCdc18) (p62(cdc6)) (HsCDC6) | Involved in the initiation of DNA replication. Also participates in checkpoint controls that ensure DNA replication is completed before mitosis is initiated. |
Q9BRR0 | ZKSCAN3 | S37 | ochoa | Zinc finger protein with KRAB and SCAN domains 3 (Zinc finger and SCAN domain-containing protein 13) (Zinc finger protein 306) (Zinc finger protein 309) (Zinc finger protein 47 homolog) (Zf47) (Zfp-47) | Transcriptional factor that binds to the consensus sequence 5'-[GT][AG][AGT]GGGG-3' and acts as a repressor of autophagy. Specifically represses expression of genes involved in autophagy and lysosome biogenesis/function such as MAP1LC3B, ULK1 or WIPI2. Associates with chromatin at the ITGB4 and VEGF promoters. Also acts as a transcription activator and promotes cancer cell progression and/or migration in various tumors and myelomas. {ECO:0000269|PubMed:18940803, ECO:0000269|PubMed:21057542, ECO:0000269|PubMed:22531714, ECO:0000269|PubMed:23434374}. |
Q9BSJ5 | MTNAP1 | S442 | ochoa | Mitochondrial nucleoid-associated protein 1 (Cell migration-inducing gene 3 protein) (Human lung cancer oncogene 8 protein) (HLC-8) (Protein C17orf80) | Critical regulator of mitochondrial DNA (mtDNA) abundance (PubMed:37676315). Binds dsDNA throughout the mitochondrial genome without sequence specificity and controls mtDNA copy number by promoting its replication (PubMed:37676315). Also plays important roles in mitochondrial metabolism and cell proliferation (PubMed:37676315). {ECO:0000269|PubMed:37676315}. |
Q9BSW7 | SYT17 | S119 | ochoa | Synaptotagmin-17 (Protein B/K) (Synaptotagmin XVII) (SytXVII) | Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:23999003}. |
Q9BUB4 | ADAT1 | S191 | ochoa | tRNA-specific adenosine deaminase 1 (hADAT1) (EC 3.5.4.34) (tRNA-specific adenosine-37 deaminase) | Specifically deaminates adenosine-37 to inosine in tRNA-Ala. |
Q9BVG8 | KIFC3 | S96 | ochoa | Kinesin-like protein KIFC3 | Minus-end microtubule-dependent motor protein. Involved in apically targeted transport (By similarity). Required for zonula adherens maintenance. {ECO:0000250, ECO:0000269|PubMed:19041755}. |
Q9C0D6 | FHDC1 | S1012 | ochoa | FH2 domain-containing protein 1 (Inverted formin-1) | Microtubule-associated formin which regulates both actin and microtubule dynamics. Induces microtubule acetylation and stabilization and actin stress fiber formation (PubMed:18815276). Regulates Golgi ribbon formation (PubMed:26564798). Required for normal cilia assembly. Early in cilia assembly, may assist in the maturation and positioning of the centrosome/basal body, and once cilia assembly has initiated, may also promote cilia elongation by inhibiting disassembly (PubMed:29742020). {ECO:0000269|PubMed:18815276, ECO:0000269|PubMed:26564798, ECO:0000269|PubMed:29742020}. |
Q9H0M4 | ZCWPW1 | S36 | ochoa | Zinc finger CW-type PWWP domain protein 1 | Dual histone methylation reader specific for PRDM9-catalyzed histone marks (H3K4me3 and H3K36me3) (PubMed:20826339, PubMed:32744506). Facilitates the repair of PRDM9-induced meiotic double-strand breaks (DSBs) (By similarity). Essential for male fertility and spermatogenesis (By similarity). Required for meiosis prophase I progression in male but not in female germ cells (By similarity). {ECO:0000250|UniProtKB:Q6IR42, ECO:0000269|PubMed:20826339, ECO:0000269|PubMed:32744506}. |
Q9H2Y7 | ZNF106 | S1328 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H467 | CUEDC2 | S110 | ochoa|psp | CUE domain-containing protein 2 | Down-regulates ESR1 protein levels through the ubiquitination-proteasome pathway, regardless of the presence of 17 beta-estradiol. Also involved in 17 beta-estradiol-induced ESR1 degradation. Controls PGR protein levels through a similar mechanism. {ECO:0000269|PubMed:17347654, ECO:0000269|PubMed:21572428}. |
Q9H930 | SP140L | S180 | ochoa | Nuclear body protein SP140-like protein | None |
Q9HCK8 | CHD8 | S2519 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9NP66 | HMG20A | S105 | ochoa | High mobility group protein 20A (HMG box-containing protein 20A) (HMG domain-containing protein 1) (HMG domain-containing protein HMGX1) | Plays a role in neuronal differentiation as chromatin-associated protein. Acts as inhibitor of HMG20B. Overcomes the repressive effects of the neuronal silencer REST and induces the activation of neuronal-specific genes. Involved in the recruitment of the histone methyltransferase KMT2A/MLL1 and consequent increased methylation of histone H3 lysine 4 (By similarity). {ECO:0000250}. |
Q9NQL9 | DMRT3 | S220 | ochoa | Doublesex- and mab-3-related transcription factor 3 | Probable transcription factor that plays a role in configuring the spinal circuits controlling stride in vertebrates. Involved in neuronal specification within specific subdivision of spinal cord neurons and in the development of a coordinated locomotor network controlling limb movements. May regulate transcription during sexual development (By similarity). {ECO:0000250}. |
Q9NQS1 | AVEN | S273 | ochoa | Cell death regulator Aven | Protects against apoptosis mediated by Apaf-1. |
Q9NSC5 | HOMER3 | S141 | ochoa | Homer protein homolog 3 (Homer-3) | Postsynaptic density scaffolding protein. Binds and cross-links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER-associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses. Negatively regulates T cell activation by inhibiting the calcineurin-NFAT pathway. Acts by competing with calcineurin/PPP3CA for NFAT protein binding, hence preventing NFAT activation by PPP3CA (PubMed:18218901). {ECO:0000269|PubMed:18218901}. |
Q9NVH0 | EXD2 | S407 | ochoa | Exonuclease 3'-5' domain-containing protein 2 (EC 3.1.11.1) (3'-5' exoribonuclease EXD2) (EC 3.1.13.-) (Exonuclease 3'-5' domain-like-containing protein 2) | Exonuclease that has both 3'-5' exoribonuclease and exodeoxyribonuclease activities, depending on the divalent metal cation used as cofactor (PubMed:29335528, PubMed:31127291). In presence of Mg(2+), only shows 3'-5' exoribonuclease activity, while it shows both exoribonuclease and exodeoxyribonuclease activities in presence of Mn(2+) (PubMed:29335528, PubMed:31127291). Acts as an exoribonuclease in mitochondrion, possibly by regulating ATP production and mitochondrial translation (PubMed:29335528). Also involved in the response to DNA damage (PubMed:26807646, PubMed:31255466). Acts as 3'-5' exodeoxyribonuclease for double-strand breaks resection and efficient homologous recombination (PubMed:20603073, PubMed:26807646). Plays a key role in controlling the initial steps of chromosomal break repair, it is recruited to chromatin in a damage-dependent manner and functionally interacts with the MRN complex to accelerate resection through its 3'-5' exonuclease activity, which efficiently processes double-stranded DNA substrates containing nicks (PubMed:26807646). Also involved in response to replicative stress: recruited to stalled forks and is required to stabilize and restart stalled replication forks by restraining excessive fork regression, thereby suppressing their degradation (PubMed:31255466). {ECO:0000269|PubMed:20603073, ECO:0000269|PubMed:26807646, ECO:0000269|PubMed:29335528, ECO:0000269|PubMed:31127291, ECO:0000269|PubMed:31255466}. |
Q9NWS1 | PARPBP | S154 | ochoa | PCNA-interacting partner (PARI) (PARP-1 binding protein) (PARP1-binding protein) (PARPBP) | Required to suppress inappropriate homologous recombination, thereby playing a central role DNA repair and in the maintenance of genomic stability. Antagonizes homologous recombination by interfering with the formation of the RAD51-DNA homologous recombination structure. Binds single-strand DNA and poly(A) homopolymers. Positively regulate the poly(ADP-ribosyl)ation activity of PARP1; however such function may be indirect. {ECO:0000269|PubMed:20931645, ECO:0000269|PubMed:22153967}. |
Q9NYA1 | SPHK1 | S225 | psp | Sphingosine kinase 1 (SK 1) (SPK 1) (EC 2.7.1.91) (Acetyltransferase SPHK1) (EC 2.3.1.-) | Catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (SPP), a lipid mediator with both intra- and extracellular functions. Also acts on D-erythro-sphingosine and to a lesser extent sphinganine, but not other lipids, such as D,L-threo-dihydrosphingosine, N,N-dimethylsphingosine, diacylglycerol, ceramide, or phosphatidylinositol (PubMed:11923095, PubMed:20577214, PubMed:23602659, PubMed:24929359, PubMed:29662056). In contrast to proapoptotic SPHK2, has a negative effect on intracellular ceramide levels, enhances cell growth and inhibits apoptosis (PubMed:16118219). Involved in the regulation of inflammatory response and neuroinflammation. Via the product sphingosine 1-phosphate, stimulates TRAF2 E3 ubiquitin ligase activity, and promotes activation of NF-kappa-B in response to TNF signaling leading to IL17 secretion (PubMed:20577214). In response to TNF and in parallel to NF-kappa-B activation, negatively regulates RANTES induction through p38 MAPK signaling pathway (PubMed:23935096). Involved in endocytic membrane trafficking induced by sphingosine, recruited to dilate endosomes, also plays a role on later stages of endosomal maturation and membrane fusion independently of its kinase activity (PubMed:24929359, PubMed:28049734). In Purkinje cells, seems to be also involved in the regulation of autophagosome-lysosome fusion upon VEGFA (PubMed:25417698). {ECO:0000269|PubMed:11923095, ECO:0000269|PubMed:16118219, ECO:0000269|PubMed:20577214, ECO:0000269|PubMed:23602659, ECO:0000269|PubMed:23935096, ECO:0000269|PubMed:24929359, ECO:0000269|PubMed:25417698, ECO:0000269|PubMed:28049734, ECO:0000269|PubMed:29662056}.; FUNCTION: Has serine acetyltransferase activity on PTGS2/COX2 in an acetyl-CoA dependent manner. The acetyltransferase activity increases in presence of the kinase substrate, sphingosine. During neuroinflammation, through PTGS2 acetylation, promotes neuronal secretion of specialized preresolving mediators (SPMs), especially 15-R-lipoxin A4, which results in an increase of phagocytic microglia. {ECO:0000250|UniProtKB:Q8CI15}. |
Q9NYQ8 | FAT2 | S4258 | ochoa | Protocadherin Fat 2 (hFat2) (Cadherin family member 8) (Multiple epidermal growth factor-like domains protein 1) (Multiple EGF-like domains protein 1) | Involved in the regulation of cell migration (PubMed:18534823). May be involved in mediating the organization of the parallel fibers of granule cells during cerebellar development (By similarity). {ECO:0000250|UniProtKB:O88277, ECO:0000269|PubMed:18534823}. |
Q9NZN8 | CNOT2 | S126 | ochoa | CCR4-NOT transcription complex subunit 2 (CCR4-associated factor 2) | Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Required for the CCR4-NOT complex structural integrity. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may specifically involve the N-Cor repressor complex containing HDAC3, NCOR1 and NCOR2. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:16712523, ECO:0000269|PubMed:21299754, ECO:0000269|PubMed:22367759}. |
Q9P1Y6 | PHRF1 | S455 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P266 | JCAD | S1123 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P267 | MBD5 | S507 | ochoa | Methyl-CpG-binding domain protein 5 (Methyl-CpG-binding protein MBD5) | Non-catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:24634419). Important for stability of PR-DUB components and stimulating its ubiquitinase activity (PubMed:36180891). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in cell growth and survivability (PubMed:36180891). MBD5 and MBD6 containing complexes associate with distinct chromatin regions enriched in genes involved in different pathways (PubMed:36180891). Heterochromatin recruitment is not mediated by DNA methylation (PubMed:20700456). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:36180891). {ECO:0000269|PubMed:20700456, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:36180891}. |
Q9P275 | USP36 | S871 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9UBC3 | DNMT3B | S320 | ochoa | DNA (cytosine-5)-methyltransferase 3B (Dnmt3b) (EC 2.1.1.37) (DNA methyltransferase HsaIIIB) (DNA MTase HsaIIIB) (M.HsaIIIB) | Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. DNA methylation is coordinated with methylation of histones. May preferentially methylates nucleosomal DNA within the nucleosome core region. May function as transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. Seems to be involved in gene silencing (By similarity). In association with DNMT1 and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Isoforms 4 and 5 are probably not functional due to the deletion of two conserved methyltransferase motifs. Functions as a transcriptional corepressor by associating with ZHX1. Required for DUX4 silencing in somatic cells (PubMed:27153398). {ECO:0000250, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:17303076, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18567530, ECO:0000269|PubMed:27153398}. |
Q9UBK2 | PPARGC1A | S266 | ochoa|psp | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1-alpha) (PPAR-gamma coactivator 1-alpha) (PPARGC-1-alpha) (Ligand effect modulator 6) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:10713165, PubMed:20005308, PubMed:21376232, PubMed:28363985, PubMed:32433991). Greatly increases the transcriptional activity of PPARG and thyroid hormone receptor on the uncoupling protein promoter (PubMed:10713165, PubMed:20005308, PubMed:21376232). Can regulate key mitochondrial genes that contribute to the program of adaptive thermogenesis (PubMed:10713165, PubMed:20005308, PubMed:21376232). Plays an essential role in metabolic reprogramming in response to dietary availability through coordination of the expression of a wide array of genes involved in glucose and fatty acid metabolism (PubMed:10713165, PubMed:20005308, PubMed:21376232). Acts as a key regulator of gluconeogenesis: stimulates hepatic gluconeogenesis by increasing the expression of gluconeogenic enzymes, and acting together with FOXO1 to promote the fasting gluconeogenic program (PubMed:16753578, PubMed:23142079). Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner (PubMed:23836911). Also involved in the integration of the circadian rhythms and energy metabolism (By similarity). Required for oscillatory expression of clock genes, such as BMAL1 and NR1D1, through the coactivation of RORA and RORC, and metabolic genes, such as PDK4 and PEPCK (By similarity). {ECO:0000250|UniProtKB:O70343, ECO:0000269|PubMed:10713165, ECO:0000269|PubMed:16753578, ECO:0000269|PubMed:20005308, ECO:0000269|PubMed:21376232, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:23836911, ECO:0000269|PubMed:28363985, ECO:0000269|PubMed:32433991}. |
Q9UBS8 | RNF14 | S451 | ochoa | E3 ubiquitin-protein ligase RNF14 (EC 2.3.2.31) (Androgen receptor-associated protein 54) (HFB30) (RING finger protein 14) | E3 ubiquitin-protein ligase that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Recruited to stalled ribosomes by the ribosome collision sensor GCN1 and mediates 'Lys-6'-linked ubiquitination of target proteins, leading to their degradation (PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Mediates ubiquitination of EEF1A1/eEF1A and ETF1/eRF1 translation factors on stalled ribosomes, leading to their degradation (PubMed:36638793, PubMed:37651229). Also catalyzes ubiquitination of ribosomal proteins RPL0, RPL1, RPL12, RPS13 and RPS17 (PubMed:36638793). Specifically required to resolve RNA-protein cross-links caused by reactive aldehydes, which trigger translation stress by stalling ribosomes: acts by catalying 'Lys-6'-linked ubiquitination of RNA-protein cross-links, leading to their removal by the ATP-dependent unfoldase VCP and subsequent degradation by the proteasome (PubMed:37951215, PubMed:37951216). Independently of its function in the response to stalled ribosomes, acts as a regulator of transcription in Wnt signaling via its interaction with TCF transcription factors (TCF7/TCF1, TCF7L1/TCF3 and TCF7L2/TCF4) (PubMed:23449499). May also play a role as a coactivator for androgen- and, to a lesser extent, progesterone-dependent transcription (PubMed:19345326). {ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:23449499, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951215, ECO:0000269|PubMed:37951216}. |
Q9UEY8 | ADD3 | S423 | ochoa|psp | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UGU0 | TCF20 | S1053 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UJX6 | ANAPC2 | S314 | ochoa | Anaphase-promoting complex subunit 2 (APC2) (Cyclosome subunit 2) | Together with the RING-H2 protein ANAPC11, constitutes the catalytic component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:11739784, PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:11739784, PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). The CDC20-APC/C complex positively regulates the formation of synaptic vesicle clustering at active zone to the presynaptic membrane in postmitotic neurons (By similarity). CDC20-APC/C-induced degradation of NEUROD2 drives presynaptic differentiation (By similarity). {ECO:0000250|UniProtKB:Q8BZQ7, ECO:0000269|PubMed:11739784, ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9UL54 | TAOK2 | S777 | ochoa | Serine/threonine-protein kinase TAO2 (EC 2.7.11.1) (Kinase from chicken homolog C) (hKFC-C) (Prostate-derived sterile 20-like kinase 1) (PSK-1) (PSK1) (Prostate-derived STE20-like kinase 1) (Thousand and one amino acid protein kinase 2) | Serine/threonine-protein kinase involved in different processes such as membrane blebbing and apoptotic bodies formation DNA damage response and MAPK14/p38 MAPK stress-activated MAPK cascade. Phosphorylates itself, MBP, activated MAPK8, MAP2K3, MAP2K6 and tubulins. Activates the MAPK14/p38 MAPK signaling pathway through the specific activation and phosphorylation of the upstream MAP2K3 and MAP2K6 kinases. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Isoform 1, but not isoform 2, plays a role in apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation. This function, which requires the activation of MAPK8/JNK and nuclear localization of C-terminally truncated isoform 1, may be linked to the mitochondrial CASP9-associated death pathway. Isoform 1 binds to microtubules and affects their organization and stability independently of its kinase activity. Prevents MAP3K7-mediated activation of CHUK, and thus NF-kappa-B activation, but not that of MAPK8/JNK. May play a role in the osmotic stress-MAPK8 pathway. Isoform 2, but not isoform 1, is required for PCDH8 endocytosis. Following homophilic interactions between PCDH8 extracellular domains, isoform 2 phosphorylates and activates MAPK14/p38 MAPK which in turn phosphorylates isoform 2. This process leads to PCDH8 endocytosis and CDH2 cointernalization. Both isoforms are involved in MAPK14 phosphorylation. {ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:11279118, ECO:0000269|PubMed:12639963, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16893890, ECO:0000269|PubMed:17158878, ECO:0000269|PubMed:17396146}. |
Q9ULJ3 | ZBTB21 | S435 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULR3 | PPM1H | S221 | ochoa | Protein phosphatase 1H (EC 3.1.3.16) | Dephosphorylates CDKN1B at 'Thr-187', thus removing a signal for proteasomal degradation. {ECO:0000269|PubMed:22586611}. |
Q9UPG8 | PLAGL2 | S381 | ochoa | Zinc finger protein PLAGL2 (Pleiomorphic adenoma-like protein 2) | Shows weak transcriptional activatory activity. |
Q9UPV0 | CEP164 | S286 | ochoa | Centrosomal protein of 164 kDa (Cep164) | Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}. |
Q9UQ35 | SRRM2 | S323 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S2449 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQB3 | CTNND2 | S461 | ochoa | Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) | Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}. |
Q9UQR0 | SCML2 | S511 | ochoa|psp | Sex comb on midleg-like protein 2 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development (By similarity). {ECO:0000250}. |
Q9Y217 | MTMR6 | S561 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR6 (EC 3.1.3.95) (Myotubularin-related protein 6) (Phosphatidylinositol-3-phosphate phosphatase) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:19038970, PubMed:22647598). Binds with high affinity to phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) but also to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), and phosphatidylinositol 5-phosphate (PtdIns(5)P), phosphatidic acid and phosphatidylserine (PubMed:19038970). Negatively regulates ER-Golgi protein transport (By similarity). Probably in association with MTMR9, plays a role in the late stages of macropinocytosis by dephosphorylating phosphatidylinositol 3-phosphate in membrane ruffles (PubMed:24591580). Acts as a negative regulator of KCNN4/KCa3.1 channel activity in CD4(+) T-cells possibly by decreasing intracellular levels of phosphatidylinositol 3-phosphate (PubMed:15831468). Negatively regulates proliferation of reactivated CD4(+) T-cells (PubMed:16847315). In complex with MTMR9, negatively regulates DNA damage-induced apoptosis (PubMed:19038970, PubMed:22647598). The formation of the MTMR6-MTMR9 complex stabilizes both MTMR6 and MTMR9 protein levels (PubMed:19038970). {ECO:0000250|UniProtKB:A0A0G2JXT6, ECO:0000269|PubMed:15831468, ECO:0000269|PubMed:16847315, ECO:0000269|PubMed:19038970, ECO:0000269|PubMed:22647598, ECO:0000269|PubMed:24591580, ECO:0000305|PubMed:24591580}. |
Q9Y2F5 | ICE1 | S1903 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y3S1 | WNK2 | S1818 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y490 | TLN1 | S979 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4A5 | TRRAP | S1628 | ochoa | Transformation/transcription domain-associated protein (350/400 kDa PCAF-associated factor) (PAF350/400) (STAF40) (Tra1 homolog) | Adapter protein, which is found in various multiprotein chromatin complexes with histone acetyltransferase activity (HAT), which gives a specific tag for epigenetic transcription activation. Component of the NuA4 histone acetyltransferase complex which is responsible for acetylation of nucleosomal histones H4 and H2A. Plays a central role in MYC transcription activation, and also participates in cell transformation by MYC. Required for p53/TP53-, E2F1- and E2F4-mediated transcription activation. Also involved in transcription activation mediated by the adenovirus E1A, a viral oncoprotein that deregulates transcription of key genes. Probably acts by linking transcription factors such as E1A, MYC or E2F1 to HAT complexes such as STAGA thereby allowing transcription activation. Probably not required in the steps following histone acetylation in processes of transcription activation. May be required for the mitotic checkpoint and normal cell cycle progression. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. May play a role in the formation and maintenance of the auditory system (By similarity). {ECO:0000250|UniProtKB:A0A0R4ITC5, ECO:0000269|PubMed:11418595, ECO:0000269|PubMed:12138177, ECO:0000269|PubMed:12660246, ECO:0000269|PubMed:12743606, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:9708738}. |
Q9Y4F5 | CEP170B | S655 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y548 | YIPF1 | S43 | ochoa | Protein YIPF1 (YIP1 family member 1) | None |
Q9Y566 | SHANK1 | S1784 | ochoa | SH3 and multiple ankyrin repeat domains protein 1 (Shank1) (Somatostatin receptor-interacting protein) (SSTR-interacting protein) (SSTRIP) | Seems to be an adapter protein in the postsynaptic density (PSD) of excitatory synapses that interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and Homer, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction. |
Q9Y6D6 | ARFGEF1 | S243 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) | Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}. |
O14672 | ADAM10 | S630 | Sugiyama | Disintegrin and metalloproteinase domain-containing protein 10 (ADAM 10) (EC 3.4.24.81) (CDw156) (Kuzbanian protein homolog) (Mammalian disintegrin-metalloprotease) (CD antigen CD156c) | Transmembrane metalloprotease which mediates the ectodomain shedding of a myriad of transmembrane proteins, including adhesion proteins, growth factor precursors and cytokines being essential for development and tissue homeostasis (PubMed:11786905, PubMed:12475894, PubMed:20592283, PubMed:24990881, PubMed:26686862, PubMed:28600292, PubMed:31792032). Associates with six members of the tetraspanin superfamily TspanC8 which regulate its exit from the endoplasmic reticulum and its substrate selectivity (PubMed:26686862, PubMed:28600292, PubMed:31792032, PubMed:34739841, PubMed:37516108). Cleaves the membrane-bound precursor of TNF-alpha at '76-Ala-|-Val-77' to its mature soluble form. Responsible for the proteolytical release of soluble JAM3 from endothelial cells surface (PubMed:20592283). Responsible for the proteolytic release of several other cell-surface proteins, including heparin-binding epidermal growth-like factor, ephrin-A2, CD44, CDH2 and for constitutive and regulated alpha-secretase cleavage of amyloid precursor protein (APP) (PubMed:11786905, PubMed:26686862, PubMed:29224781, PubMed:34739841). Contributes to the normal cleavage of the cellular prion protein (PubMed:11477090). Involved in the cleavage of the adhesion molecule L1 at the cell surface and in released membrane vesicles, suggesting a vesicle-based protease activity (PubMed:12475894). Also controls the proteolytic processing of Notch and mediates lateral inhibition during neurogenesis (By similarity). Required for the development of type 1 transitional B cells into marginal zone B cells, probably by cleaving Notch (By similarity). Responsible for the FasL ectodomain shedding and for the generation of the remnant ADAM10-processed FasL (FasL APL) transmembrane form (PubMed:17557115). Also cleaves the ectodomain of the integral membrane proteins CORIN and ITM2B (PubMed:19114711, PubMed:21288900). Mediates the proteolytic cleavage of LAG3, leading to release the secreted form of LAG3 (By similarity). Mediates the proteolytic cleavage of IL6R and IL11RA, leading to the release of secreted forms of IL6R and IL11RA (PubMed:26876177). Enhances the cleavage of CHL1 by BACE1 (By similarity). Cleaves NRCAM (By similarity). Cleaves TREM2, resulting in shedding of the TREM2 ectodomain (PubMed:24990881). Involved in the development and maturation of glomerular and coronary vasculature (By similarity). During development of the cochlear organ of Corti, promotes pillar cell separation by forming a ternary complex with CADH1 and EPHA4 and cleaving CADH1 at adherens junctions (By similarity). May regulate the EFNA5-EPHA3 signaling (PubMed:16239146). Regulates leukocyte transmigration as a sheddase for the adherens junction protein VE-cadherin/CDH5 in endothelial cells (PubMed:28600292). {ECO:0000250|UniProtKB:O35598, ECO:0000269|PubMed:11477090, ECO:0000269|PubMed:11786905, ECO:0000269|PubMed:12475894, ECO:0000269|PubMed:16239146, ECO:0000269|PubMed:17557115, ECO:0000269|PubMed:19114711, ECO:0000269|PubMed:20592283, ECO:0000269|PubMed:21288900, ECO:0000269|PubMed:24990881, ECO:0000269|PubMed:26686862, ECO:0000269|PubMed:26876177, ECO:0000269|PubMed:28600292, ECO:0000269|PubMed:29224781, ECO:0000269|PubMed:31792032, ECO:0000269|PubMed:34739841, ECO:0000269|PubMed:37516108}.; FUNCTION: (Microbial infection) Promotes the cytotoxic activity of S.aureus hly by binding to the toxin at zonula adherens and promoting formation of toxin pores. {ECO:0000269|PubMed:20624979, ECO:0000269|PubMed:30463011}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.000009 | 5.024 |
R-HSA-1538133 | G0 and Early G1 | 0.000172 | 3.763 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 0.000277 | 3.557 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.000286 | 3.544 |
R-HSA-444257 | RSK activation | 0.001068 | 2.971 |
R-HSA-193648 | NRAGE signals death through JNK | 0.001246 | 2.905 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.004213 | 2.375 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.005648 | 2.248 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.005138 | 2.289 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.002726 | 2.565 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.002422 | 2.616 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.002147 | 2.668 |
R-HSA-199920 | CREB phosphorylation | 0.005827 | 2.235 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.005264 | 2.279 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.004603 | 2.337 |
R-HSA-186712 | Regulation of beta-cell development | 0.006000 | 2.222 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.005037 | 2.298 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.005795 | 2.237 |
R-HSA-112412 | SOS-mediated signalling | 0.007763 | 2.110 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.008833 | 2.054 |
R-HSA-429947 | Deadenylation of mRNA | 0.007481 | 2.126 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.008833 | 2.054 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.008999 | 2.046 |
R-HSA-166520 | Signaling by NTRKs | 0.007692 | 2.114 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.009154 | 2.038 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.009154 | 2.038 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.008377 | 2.077 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.011008 | 1.958 |
R-HSA-8951911 | RUNX3 regulates RUNX1-mediated transcription | 0.011360 | 1.945 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.012123 | 1.916 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.012123 | 1.916 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.013315 | 1.876 |
R-HSA-162582 | Signal Transduction | 0.013444 | 1.871 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.014104 | 1.851 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.015384 | 1.813 |
R-HSA-198203 | PI3K/AKT activation | 0.015636 | 1.806 |
R-HSA-74749 | Signal attenuation | 0.015636 | 1.806 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.015384 | 1.813 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.016011 | 1.796 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 0.016204 | 1.790 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.020878 | 1.680 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.020411 | 1.690 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.020411 | 1.690 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.020411 | 1.690 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.020411 | 1.690 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.020411 | 1.690 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.019476 | 1.710 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.020411 | 1.690 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.020249 | 1.694 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.020249 | 1.694 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.022674 | 1.644 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.022283 | 1.652 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.023410 | 1.631 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.023410 | 1.631 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.023687 | 1.625 |
R-HSA-437239 | Recycling pathway of L1 | 0.024021 | 1.619 |
R-HSA-9842663 | Signaling by LTK | 0.026738 | 1.573 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.026576 | 1.576 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.027515 | 1.560 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.027904 | 1.554 |
R-HSA-74713 | IRS activation | 0.032186 | 1.492 |
R-HSA-68911 | G2 Phase | 0.032186 | 1.492 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.032186 | 1.492 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.031165 | 1.506 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 0.031165 | 1.506 |
R-HSA-69205 | G1/S-Specific Transcription | 0.029993 | 1.523 |
R-HSA-2559583 | Cellular Senescence | 0.030684 | 1.513 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.030913 | 1.510 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.032608 | 1.487 |
R-HSA-157118 | Signaling by NOTCH | 0.033825 | 1.471 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.034621 | 1.461 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.038251 | 1.417 |
R-HSA-1433559 | Regulation of KIT signaling | 0.035951 | 1.444 |
R-HSA-201556 | Signaling by ALK | 0.038251 | 1.417 |
R-HSA-5467343 | Deletions in the AMER1 gene destabilize the destruction complex | 0.038966 | 1.409 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.038966 | 1.409 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.040169 | 1.396 |
R-HSA-438064 | Post NMDA receptor activation events | 0.040407 | 1.394 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.040969 | 1.388 |
R-HSA-5674404 | PTEN Loss of Function in Cancer | 0.112408 | 0.949 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.060817 | 1.216 |
R-HSA-8941237 | Invadopodia formation | 0.180246 | 0.744 |
R-HSA-5083630 | Defective LFNG causes SCDO3 | 0.212199 | 0.673 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.095242 | 1.021 |
R-HSA-4839744 | Signaling by APC mutants | 0.107708 | 0.968 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.107708 | 0.968 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.107708 | 0.968 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.107708 | 0.968 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.242907 | 0.615 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.242907 | 0.615 |
R-HSA-203754 | NOSIP mediated eNOS trafficking | 0.242907 | 0.615 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.120577 | 0.919 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.120577 | 0.919 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.133800 | 0.874 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.133800 | 0.874 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.133800 | 0.874 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.133800 | 0.874 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.133800 | 0.874 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.133800 | 0.874 |
R-HSA-68689 | CDC6 association with the ORC:origin complex | 0.272421 | 0.565 |
R-HSA-165160 | PDE3B signalling | 0.272421 | 0.565 |
R-HSA-9017802 | Noncanonical activation of NOTCH3 | 0.272421 | 0.565 |
R-HSA-109703 | PKB-mediated events | 0.272421 | 0.565 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.272421 | 0.565 |
R-HSA-9652817 | Signaling by MAPK mutants | 0.272421 | 0.565 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 0.147328 | 0.832 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 0.300785 | 0.522 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.300785 | 0.522 |
R-HSA-177539 | Autointegration results in viral DNA circles | 0.300785 | 0.522 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.102025 | 0.991 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.102025 | 0.991 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.175129 | 0.757 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.175129 | 0.757 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.189324 | 0.723 |
R-HSA-176412 | Phosphorylation of the APC/C | 0.189324 | 0.723 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 0.189324 | 0.723 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 0.328046 | 0.484 |
R-HSA-8948747 | Regulation of PTEN localization | 0.328046 | 0.484 |
R-HSA-8849473 | PTK6 Expression | 0.328046 | 0.484 |
R-HSA-9031528 | NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipo... | 0.328046 | 0.484 |
R-HSA-1912399 | Pre-NOTCH Processing in the Endoplasmic Reticulum | 0.328046 | 0.484 |
R-HSA-9031525 | NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake | 0.328046 | 0.484 |
R-HSA-9632974 | NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis | 0.328046 | 0.484 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.328046 | 0.484 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.100350 | 0.998 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.218123 | 0.661 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.354245 | 0.451 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.354245 | 0.451 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.354245 | 0.451 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.066604 | 1.177 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.066604 | 1.177 |
R-HSA-2424491 | DAP12 signaling | 0.173835 | 0.760 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.173835 | 0.760 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 0.247260 | 0.607 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 0.379424 | 0.421 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.379424 | 0.421 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.077634 | 1.110 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.183642 | 0.736 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.183642 | 0.736 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.261886 | 0.582 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.203671 | 0.691 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.203671 | 0.691 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.276517 | 0.558 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.403623 | 0.394 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.213868 | 0.670 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.213868 | 0.670 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.107099 | 0.970 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.169895 | 0.770 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.169895 | 0.770 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.169895 | 0.770 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.291129 | 0.536 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.291129 | 0.536 |
R-HSA-5673000 | RAF activation | 0.224172 | 0.649 |
R-HSA-380287 | Centrosome maturation | 0.116446 | 0.934 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.234570 | 0.630 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.305704 | 0.515 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.426880 | 0.370 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.168032 | 0.775 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.255604 | 0.592 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.449231 | 0.348 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 0.449231 | 0.348 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.449231 | 0.348 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.276884 | 0.558 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.110240 | 0.958 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.110240 | 0.958 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.287590 | 0.541 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.470712 | 0.327 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.470712 | 0.327 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 0.470712 | 0.327 |
R-HSA-937039 | IRAK1 recruits IKK complex | 0.470712 | 0.327 |
R-HSA-179812 | GRB2 events in EGFR signaling | 0.470712 | 0.327 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.192144 | 0.716 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.377379 | 0.423 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.391370 | 0.407 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 0.491356 | 0.309 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.405219 | 0.392 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.357384 | 0.447 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.484805 | 0.314 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.447186 | 0.350 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.110240 | 0.958 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.363255 | 0.440 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.471698 | 0.326 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.277121 | 0.557 |
R-HSA-3371556 | Cellular response to heat stress | 0.292551 | 0.534 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.080889 | 1.092 |
R-HSA-209543 | p75NTR recruits signalling complexes | 0.133800 | 0.874 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.276517 | 0.558 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.418914 | 0.378 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 0.328046 | 0.484 |
R-HSA-156711 | Polo-like kinase mediated events | 0.232664 | 0.633 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.437102 | 0.359 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 0.328046 | 0.484 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.309085 | 0.510 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.418914 | 0.378 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.466532 | 0.331 |
R-HSA-354192 | Integrin signaling | 0.203671 | 0.691 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.309085 | 0.510 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.491356 | 0.309 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.458994 | 0.338 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 0.266218 | 0.575 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.201438 | 0.696 |
R-HSA-9831926 | Nephron development | 0.065071 | 1.187 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.060817 | 1.216 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 0.193592 | 0.713 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.255081 | 0.593 |
R-HSA-5693538 | Homology Directed Repair | 0.159495 | 0.797 |
R-HSA-6802949 | Signaling by RAS mutants | 0.169895 | 0.770 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.175129 | 0.757 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.173835 | 0.760 |
R-HSA-8866911 | TFAP2 (AP-2) family regulates transcription of cell cycle factors | 0.212199 | 0.673 |
R-HSA-191650 | Regulation of gap junction activity | 0.212199 | 0.673 |
R-HSA-8939242 | RUNX1 regulates transcription of genes involved in differentiation of keratinocy... | 0.354245 | 0.451 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.059792 | 1.223 |
R-HSA-163680 | AMPK inhibits chREBP transcriptional activation activity | 0.379424 | 0.421 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.385406 | 0.414 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.352154 | 0.453 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.133800 | 0.874 |
R-HSA-162592 | Integration of provirus | 0.449231 | 0.348 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.281702 | 0.550 |
R-HSA-9843745 | Adipogenesis | 0.135954 | 0.867 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.245051 | 0.611 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.471995 | 0.326 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.066847 | 1.175 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.161630 | 0.791 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.057053 | 1.244 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 0.218123 | 0.661 |
R-HSA-112399 | IRS-mediated signalling | 0.119833 | 0.921 |
R-HSA-9832991 | Formation of the posterior neural plate | 0.426880 | 0.370 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.458994 | 0.338 |
R-HSA-2428924 | IGF1R signaling cascade | 0.070172 | 1.154 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.245051 | 0.611 |
R-HSA-69206 | G1/S Transition | 0.323774 | 0.490 |
R-HSA-6794361 | Neurexins and neuroligins | 0.217835 | 0.662 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.193592 | 0.713 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.484805 | 0.314 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.211036 | 0.676 |
R-HSA-426486 | Small interfering RNA (siRNA) biogenesis | 0.300785 | 0.522 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 0.379424 | 0.421 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.426880 | 0.370 |
R-HSA-8851805 | MET activates RAS signaling | 0.470712 | 0.327 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.312066 | 0.506 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.401891 | 0.396 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.147490 | 0.831 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.133241 | 0.875 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.073849 | 1.132 |
R-HSA-4641265 | Repression of WNT target genes | 0.133800 | 0.874 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 0.175129 | 0.757 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 0.175129 | 0.757 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.133800 | 0.874 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.094072 | 1.027 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.152180 | 0.818 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.125460 | 0.901 |
R-HSA-6807070 | PTEN Regulation | 0.283441 | 0.548 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.065071 | 1.187 |
R-HSA-8951664 | Neddylation | 0.488900 | 0.311 |
R-HSA-5617833 | Cilium Assembly | 0.043069 | 1.366 |
R-HSA-2172127 | DAP12 interactions | 0.341399 | 0.467 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.483006 | 0.316 |
R-HSA-77042 | Formation of editosomes by ADAR proteins | 0.076416 | 1.117 |
R-HSA-75064 | mRNA Editing: A to I Conversion | 0.147001 | 0.833 |
R-HSA-75102 | C6 deamination of adenosine | 0.147001 | 0.833 |
R-HSA-9839406 | TGFBR3 regulates activin signaling | 0.147001 | 0.833 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.060817 | 1.216 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.180246 | 0.744 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.212199 | 0.673 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.212199 | 0.673 |
R-HSA-8941333 | RUNX2 regulates genes involved in differentiation of myeloid cells | 0.212199 | 0.673 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 0.120577 | 0.919 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.120577 | 0.919 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.147328 | 0.832 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 0.147328 | 0.832 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.161118 | 0.793 |
R-HSA-69478 | G2/M DNA replication checkpoint | 0.300785 | 0.522 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.110235 | 0.958 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.189324 | 0.723 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 0.203666 | 0.691 |
R-HSA-390696 | Adrenoceptors | 0.354245 | 0.451 |
R-HSA-9927354 | Co-stimulation by ICOS | 0.354245 | 0.451 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.232664 | 0.633 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.119595 | 0.922 |
R-HSA-176974 | Unwinding of DNA | 0.379424 | 0.421 |
R-HSA-947581 | Molybdenum cofactor biosynthesis | 0.291129 | 0.536 |
R-HSA-9034864 | Activated NTRK3 signals through RAS | 0.426880 | 0.370 |
R-HSA-192814 | vRNA Synthesis | 0.426880 | 0.370 |
R-HSA-109704 | PI3K Cascade | 0.201447 | 0.696 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.334662 | 0.475 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.449231 | 0.348 |
R-HSA-9026519 | Activated NTRK2 signals through RAS | 0.449231 | 0.348 |
R-HSA-428540 | Activation of RAC1 | 0.449231 | 0.348 |
R-HSA-9796292 | Formation of axial mesoderm | 0.491356 | 0.309 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.352154 | 0.453 |
R-HSA-74752 | Signaling by Insulin receptor | 0.381726 | 0.418 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.410739 | 0.386 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.420553 | 0.376 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.252386 | 0.598 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.370794 | 0.431 |
R-HSA-165159 | MTOR signalling | 0.140293 | 0.853 |
R-HSA-68877 | Mitotic Prometaphase | 0.467054 | 0.331 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.058570 | 1.232 |
R-HSA-69236 | G1 Phase | 0.058570 | 1.232 |
R-HSA-9614085 | FOXO-mediated transcription | 0.152206 | 0.818 |
R-HSA-2028269 | Signaling by Hippo | 0.058581 | 1.232 |
R-HSA-9646399 | Aggrephagy | 0.287590 | 0.541 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.401891 | 0.396 |
R-HSA-170968 | Frs2-mediated activation | 0.491356 | 0.309 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.266611 | 0.574 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.484805 | 0.314 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.279330 | 0.554 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.138635 | 0.858 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.065270 | 1.185 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.129732 | 0.887 |
R-HSA-1640170 | Cell Cycle | 0.246202 | 0.609 |
R-HSA-9620244 | Long-term potentiation | 0.349011 | 0.457 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.484805 | 0.314 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.461950 | 0.335 |
R-HSA-9669938 | Signaling by KIT in disease | 0.102025 | 0.991 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.077450 | 1.111 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.154981 | 0.810 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.067656 | 1.170 |
R-HSA-164944 | Nef and signal transduction | 0.050538 | 1.296 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.060817 | 1.216 |
R-HSA-111448 | Activation of NOXA and translocation to mitochondria | 0.212199 | 0.673 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.066716 | 1.176 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.328046 | 0.484 |
R-HSA-9707616 | Heme signaling | 0.063144 | 1.200 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.213868 | 0.670 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.131207 | 0.882 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.305704 | 0.515 |
R-HSA-2428933 | SHC-related events triggered by IGF1R | 0.470712 | 0.327 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.355501 | 0.449 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.374684 | 0.426 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.461524 | 0.336 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.145393 | 0.837 |
R-HSA-9031628 | NGF-stimulated transcription | 0.074960 | 1.125 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.074041 | 1.131 |
R-HSA-166208 | mTORC1-mediated signalling | 0.305704 | 0.515 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 0.470712 | 0.327 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 0.491356 | 0.309 |
R-HSA-69275 | G2/M Transition | 0.197801 | 0.704 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.420553 | 0.376 |
R-HSA-5683057 | MAPK family signaling cascades | 0.149994 | 0.824 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.199231 | 0.701 |
R-HSA-74160 | Gene expression (Transcription) | 0.218873 | 0.660 |
R-HSA-187687 | Signalling to ERKs | 0.497421 | 0.303 |
R-HSA-187706 | Signalling to p38 via RIT and RIN | 0.272421 | 0.565 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 0.272421 | 0.565 |
R-HSA-175567 | Integration of viral DNA into host genomic DNA | 0.300785 | 0.522 |
R-HSA-8847453 | Synthesis of PIPs in the nucleus | 0.328046 | 0.484 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 0.203666 | 0.691 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.053079 | 1.275 |
R-HSA-75072 | mRNA Editing | 0.379424 | 0.421 |
R-HSA-170984 | ARMS-mediated activation | 0.379424 | 0.421 |
R-HSA-1433617 | Regulation of signaling by NODAL | 0.379424 | 0.421 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.077634 | 1.110 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.276517 | 0.558 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 0.403623 | 0.394 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 0.403623 | 0.394 |
R-HSA-164843 | 2-LTR circle formation | 0.403623 | 0.394 |
R-HSA-210747 | Regulation of gene expression in early pancreatic precursor cells | 0.426880 | 0.370 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.334662 | 0.475 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 0.449231 | 0.348 |
R-HSA-113501 | Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 0.449231 | 0.348 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.349011 | 0.457 |
R-HSA-5689901 | Metalloprotease DUBs | 0.363255 | 0.440 |
R-HSA-191859 | snRNP Assembly | 0.497575 | 0.303 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.497575 | 0.303 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.295241 | 0.530 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.085130 | 1.070 |
R-HSA-9830369 | Kidney development | 0.181125 | 0.742 |
R-HSA-199991 | Membrane Trafficking | 0.164614 | 0.784 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.244134 | 0.612 |
R-HSA-9612973 | Autophagy | 0.259196 | 0.586 |
R-HSA-114452 | Activation of BH3-only proteins | 0.418914 | 0.378 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.052525 | 1.280 |
R-HSA-186763 | Downstream signal transduction | 0.183642 | 0.736 |
R-HSA-212436 | Generic Transcription Pathway | 0.175558 | 0.756 |
R-HSA-9664873 | Pexophagy | 0.095242 | 1.021 |
R-HSA-9909396 | Circadian clock | 0.374684 | 0.426 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.350447 | 0.455 |
R-HSA-200425 | Carnitine shuttle | 0.110235 | 0.958 |
R-HSA-8939211 | ESR-mediated signaling | 0.443958 | 0.353 |
R-HSA-210990 | PECAM1 interactions | 0.107708 | 0.968 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.300785 | 0.522 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.100350 | 0.998 |
R-HSA-180746 | Nuclear import of Rev protein | 0.224172 | 0.649 |
R-HSA-9028731 | Activated NTRK2 signals through FRS2 and FRS3 | 0.470712 | 0.327 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.377379 | 0.423 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.303975 | 0.517 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 0.405219 | 0.392 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.268309 | 0.571 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.319581 | 0.495 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.458994 | 0.338 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.268309 | 0.571 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.268309 | 0.571 |
R-HSA-1632852 | Macroautophagy | 0.181975 | 0.740 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.378405 | 0.422 |
R-HSA-2132295 | MHC class II antigen presentation | 0.461950 | 0.335 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.399405 | 0.399 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.363255 | 0.440 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.434291 | 0.362 |
R-HSA-195721 | Signaling by WNT | 0.287202 | 0.542 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.434291 | 0.362 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.497575 | 0.303 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.455064 | 0.342 |
R-HSA-9022707 | MECP2 regulates transcription factors | 0.060817 | 1.216 |
R-HSA-9854907 | Regulation of MITF-M dependent genes involved in metabolism | 0.180246 | 0.744 |
R-HSA-9706374 | FLT3 signaling through SRC family kinases | 0.212199 | 0.673 |
R-HSA-9842640 | Signaling by LTK in cancer | 0.300785 | 0.522 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 0.328046 | 0.484 |
R-HSA-9682385 | FLT3 signaling in disease | 0.094280 | 1.026 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.379424 | 0.421 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.203671 | 0.691 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.291129 | 0.536 |
R-HSA-9833482 | PKR-mediated signaling | 0.141510 | 0.849 |
R-HSA-9839394 | TGFBR3 expression | 0.349011 | 0.457 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.287590 | 0.541 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.298327 | 0.525 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.363255 | 0.440 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.470712 | 0.327 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.470712 | 0.327 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.343480 | 0.464 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.455064 | 0.342 |
R-HSA-69481 | G2/M Checkpoints | 0.496014 | 0.305 |
R-HSA-5689880 | Ub-specific processing proteases | 0.494991 | 0.305 |
R-HSA-3214842 | HDMs demethylate histones | 0.127377 | 0.895 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.142619 | 0.846 |
R-HSA-5688426 | Deubiquitination | 0.138996 | 0.857 |
R-HSA-196780 | Biotin transport and metabolism | 0.175129 | 0.757 |
R-HSA-901042 | Calnexin/calreticulin cycle | 0.224172 | 0.649 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.298327 | 0.525 |
R-HSA-9006936 | Signaling by TGFB family members | 0.055759 | 1.254 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.245572 | 0.610 |
R-HSA-9758890 | Transport of RCbl within the body | 0.426880 | 0.370 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.377379 | 0.423 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.458994 | 0.338 |
R-HSA-450294 | MAP kinase activation | 0.143047 | 0.845 |
R-HSA-210993 | Tie2 Signaling | 0.232664 | 0.633 |
R-HSA-9663891 | Selective autophagy | 0.192144 | 0.716 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.451456 | 0.345 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.216065 | 0.665 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.102025 | 0.991 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.291129 | 0.536 |
R-HSA-4839726 | Chromatin organization | 0.122592 | 0.912 |
R-HSA-9761174 | Formation of intermediate mesoderm | 0.095242 | 1.021 |
R-HSA-2660825 | Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 0.272421 | 0.565 |
R-HSA-2660826 | Constitutive Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 0.272421 | 0.565 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.147328 | 0.832 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.175129 | 0.757 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 0.328046 | 0.484 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.127377 | 0.895 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.127377 | 0.895 |
R-HSA-9613354 | Lipophagy | 0.379424 | 0.421 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 0.379424 | 0.421 |
R-HSA-111458 | Formation of apoptosome | 0.403623 | 0.394 |
R-HSA-9754560 | SARS-CoV-2 modulates autophagy | 0.426880 | 0.370 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.266218 | 0.575 |
R-HSA-448424 | Interleukin-17 signaling | 0.201438 | 0.696 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.470712 | 0.327 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.470712 | 0.327 |
R-HSA-9005895 | Pervasive developmental disorders | 0.470712 | 0.327 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.362889 | 0.440 |
R-HSA-9007101 | Rab regulation of trafficking | 0.420367 | 0.376 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.286128 | 0.543 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.182960 | 0.738 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.061564 | 1.211 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.066604 | 1.177 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.274159 | 0.562 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.185451 | 0.732 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.489258 | 0.310 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.445810 | 0.351 |
R-HSA-162909 | Host Interactions of HIV factors | 0.468814 | 0.329 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.319855 | 0.495 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.203666 | 0.691 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.489181 | 0.311 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.426615 | 0.370 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.071845 | 1.144 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.086168 | 1.065 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.371406 | 0.430 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 0.046583 | 1.332 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.136282 | 0.866 |
R-HSA-8853659 | RET signaling | 0.094280 | 1.026 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.154698 | 0.811 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 0.379424 | 0.421 |
R-HSA-9627069 | Regulation of the apoptosome activity | 0.403623 | 0.394 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 0.449231 | 0.348 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.276884 | 0.558 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 0.470712 | 0.327 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 0.470712 | 0.327 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.394895 | 0.404 |
R-HSA-163685 | Integration of energy metabolism | 0.266611 | 0.574 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.426463 | 0.370 |
R-HSA-69242 | S Phase | 0.489258 | 0.310 |
R-HSA-1483255 | PI Metabolism | 0.167129 | 0.777 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.477685 | 0.321 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.225794 | 0.646 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.320220 | 0.495 |
R-HSA-198753 | ERK/MAPK targets | 0.086388 | 1.064 |
R-HSA-9635465 | Suppression of apoptosis | 0.426880 | 0.370 |
R-HSA-983189 | Kinesins | 0.286342 | 0.543 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.484805 | 0.314 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.298327 | 0.525 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.384130 | 0.416 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.362889 | 0.440 |
R-HSA-422475 | Axon guidance | 0.486251 | 0.313 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.467603 | 0.330 |
R-HSA-73887 | Death Receptor Signaling | 0.045371 | 1.343 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.328046 | 0.484 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.245051 | 0.611 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.236853 | 0.626 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 0.189324 | 0.723 |
R-HSA-9607240 | FLT3 Signaling | 0.298327 | 0.525 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.496565 | 0.304 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.320220 | 0.495 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.470712 | 0.327 |
R-HSA-373760 | L1CAM interactions | 0.150529 | 0.822 |
R-HSA-901032 | ER Quality Control Compartment (ERQC) | 0.377379 | 0.423 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.471995 | 0.326 |
R-HSA-2586552 | Signaling by Leptin | 0.095242 | 1.021 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.066716 | 1.176 |
R-HSA-9827857 | Specification of primordial germ cells | 0.218123 | 0.661 |
R-HSA-9830364 | Formation of the nephric duct | 0.349011 | 0.457 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.497421 | 0.303 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.354245 | 0.451 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.379424 | 0.421 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.291129 | 0.536 |
R-HSA-451927 | Interleukin-2 family signaling | 0.119595 | 0.922 |
R-HSA-210745 | Regulation of gene expression in beta cells | 0.052525 | 1.280 |
R-HSA-1266695 | Interleukin-7 signaling | 0.127377 | 0.895 |
R-HSA-9733709 | Cardiogenesis | 0.203671 | 0.691 |
R-HSA-9008059 | Interleukin-37 signaling | 0.418914 | 0.378 |
R-HSA-75153 | Apoptotic execution phase | 0.169895 | 0.770 |
R-HSA-8983432 | Interleukin-15 signaling | 0.470712 | 0.327 |
R-HSA-9020558 | Interleukin-2 signaling | 0.426880 | 0.370 |
R-HSA-982772 | Growth hormone receptor signaling | 0.320220 | 0.495 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.505407 | 0.296 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.505476 | 0.296 |
R-HSA-3371511 | HSF1 activation | 0.509837 | 0.293 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.509837 | 0.293 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.511197 | 0.291 |
R-HSA-177504 | Retrograde neurotrophin signalling | 0.511197 | 0.291 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.511197 | 0.291 |
R-HSA-418457 | cGMP effects | 0.511197 | 0.291 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.511197 | 0.291 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.511197 | 0.291 |
R-HSA-5578768 | Physiological factors | 0.511197 | 0.291 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 0.511197 | 0.291 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.513771 | 0.289 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.513771 | 0.289 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.517077 | 0.286 |
R-HSA-9675108 | Nervous system development | 0.525868 | 0.279 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.526674 | 0.278 |
R-HSA-186797 | Signaling by PDGF | 0.526674 | 0.278 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.530264 | 0.276 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.530264 | 0.276 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 0.530264 | 0.276 |
R-HSA-1502540 | Signaling by Activin | 0.530264 | 0.276 |
R-HSA-180336 | SHC1 events in EGFR signaling | 0.530264 | 0.276 |
R-HSA-418885 | DCC mediated attractive signaling | 0.530264 | 0.276 |
R-HSA-9823739 | Formation of the anterior neural plate | 0.530264 | 0.276 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.530264 | 0.276 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.530264 | 0.276 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.533168 | 0.273 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.533168 | 0.273 |
R-HSA-169893 | Prolonged ERK activation events | 0.548589 | 0.261 |
R-HSA-9634600 | Regulation of glycolysis by fructose 2,6-bisphosphate metabolism | 0.548589 | 0.261 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.548589 | 0.261 |
R-HSA-9664420 | Killing mechanisms | 0.548589 | 0.261 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.548589 | 0.261 |
R-HSA-5635838 | Activation of SMO | 0.548589 | 0.261 |
R-HSA-9945266 | Differentiation of T cells | 0.548589 | 0.261 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.548589 | 0.261 |
R-HSA-202424 | Downstream TCR signaling | 0.554236 | 0.256 |
R-HSA-73884 | Base Excision Repair | 0.554236 | 0.256 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.558395 | 0.253 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.562204 | 0.250 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 0.563973 | 0.249 |
R-HSA-2892247 | POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation | 0.566200 | 0.247 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.566200 | 0.247 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.566200 | 0.247 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 0.566200 | 0.247 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.566200 | 0.247 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 0.566200 | 0.247 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.566200 | 0.247 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 0.566200 | 0.247 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.568824 | 0.245 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.573013 | 0.242 |
R-HSA-109581 | Apoptosis | 0.573911 | 0.241 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.574180 | 0.241 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.579988 | 0.237 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.579988 | 0.237 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.579988 | 0.237 |
R-HSA-189451 | Heme biosynthesis | 0.579988 | 0.237 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.581937 | 0.235 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.582275 | 0.235 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 0.583125 | 0.234 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.583125 | 0.234 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.583125 | 0.234 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 0.583125 | 0.234 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 0.583125 | 0.234 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 0.583125 | 0.234 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.585277 | 0.233 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.590939 | 0.228 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.590939 | 0.228 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.590939 | 0.228 |
R-HSA-73928 | Depyrimidination | 0.590939 | 0.228 |
R-HSA-5653656 | Vesicle-mediated transport | 0.592413 | 0.227 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.592839 | 0.227 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.599391 | 0.222 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.599391 | 0.222 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.599391 | 0.222 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.599391 | 0.222 |
R-HSA-111471 | Apoptotic factor-mediated response | 0.599391 | 0.222 |
R-HSA-196791 | Vitamin D (calciferol) metabolism | 0.599391 | 0.222 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 0.599391 | 0.222 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.599391 | 0.222 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.599424 | 0.222 |
R-HSA-5654743 | Signaling by FGFR4 | 0.601675 | 0.221 |
R-HSA-5632684 | Hedgehog 'on' state | 0.607987 | 0.216 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.609054 | 0.215 |
R-HSA-373752 | Netrin-1 signaling | 0.612197 | 0.213 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 0.615023 | 0.211 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.615023 | 0.211 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.615023 | 0.211 |
R-HSA-392517 | Rap1 signalling | 0.615023 | 0.211 |
R-HSA-912631 | Regulation of signaling by CBL | 0.615023 | 0.211 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.615023 | 0.211 |
R-HSA-9834899 | Specification of the neural plate border | 0.615023 | 0.211 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 0.615023 | 0.211 |
R-HSA-449836 | Other interleukin signaling | 0.615023 | 0.211 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.615023 | 0.211 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.616426 | 0.210 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.616426 | 0.210 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.616426 | 0.210 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.622506 | 0.206 |
R-HSA-774815 | Nucleosome assembly | 0.622506 | 0.206 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.622506 | 0.206 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.622506 | 0.206 |
R-HSA-5654741 | Signaling by FGFR3 | 0.622506 | 0.206 |
R-HSA-1266738 | Developmental Biology | 0.623298 | 0.205 |
R-HSA-72306 | tRNA processing | 0.624654 | 0.204 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.624742 | 0.204 |
R-HSA-4086398 | Ca2+ pathway | 0.624742 | 0.204 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.630046 | 0.201 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.630046 | 0.201 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.630046 | 0.201 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.630046 | 0.201 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.630046 | 0.201 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.630046 | 0.201 |
R-HSA-1181150 | Signaling by NODAL | 0.630046 | 0.201 |
R-HSA-1482922 | Acyl chain remodelling of PI | 0.630046 | 0.201 |
R-HSA-6807004 | Negative regulation of MET activity | 0.630046 | 0.201 |
R-HSA-373753 | Nephrin family interactions | 0.630046 | 0.201 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.632601 | 0.199 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.632933 | 0.199 |
R-HSA-3214847 | HATs acetylate histones | 0.636452 | 0.196 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.641000 | 0.193 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.641769 | 0.193 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.642485 | 0.192 |
R-HSA-70171 | Glycolysis | 0.643418 | 0.192 |
R-HSA-5654704 | SHC-mediated cascade:FGFR3 | 0.644483 | 0.191 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.644483 | 0.191 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.644483 | 0.191 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.644483 | 0.191 |
R-HSA-167044 | Signalling to RAS | 0.644483 | 0.191 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.644483 | 0.191 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.644483 | 0.191 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 0.644483 | 0.191 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.651344 | 0.186 |
R-HSA-9758941 | Gastrulation | 0.651796 | 0.186 |
R-HSA-389356 | Co-stimulation by CD28 | 0.652157 | 0.186 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.652157 | 0.186 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.652468 | 0.185 |
R-HSA-194138 | Signaling by VEGF | 0.653440 | 0.185 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.655047 | 0.184 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.658018 | 0.182 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.658358 | 0.182 |
R-HSA-5654719 | SHC-mediated cascade:FGFR4 | 0.658358 | 0.182 |
R-HSA-5654706 | FRS-mediated FGFR3 signaling | 0.658358 | 0.182 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.658358 | 0.182 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.658358 | 0.182 |
R-HSA-449147 | Signaling by Interleukins | 0.660079 | 0.180 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.664446 | 0.178 |
R-HSA-2262752 | Cellular responses to stress | 0.666649 | 0.176 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.670399 | 0.174 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.670399 | 0.174 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.671693 | 0.173 |
R-HSA-5654712 | FRS-mediated FGFR4 signaling | 0.671693 | 0.173 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.671693 | 0.173 |
R-HSA-189200 | Cellular hexose transport | 0.671693 | 0.173 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.671693 | 0.173 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 0.672009 | 0.173 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.676920 | 0.169 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.676920 | 0.169 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.679447 | 0.168 |
R-HSA-6806834 | Signaling by MET | 0.679447 | 0.168 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.679924 | 0.168 |
R-HSA-1989781 | PPARA activates gene expression | 0.684481 | 0.165 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.684481 | 0.165 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.684507 | 0.165 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.688769 | 0.162 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.688769 | 0.162 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.688769 | 0.162 |
R-HSA-68949 | Orc1 removal from chromatin | 0.688769 | 0.162 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.693946 | 0.159 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.694919 | 0.158 |
R-HSA-69239 | Synthesis of DNA | 0.695942 | 0.157 |
R-HSA-211000 | Gene Silencing by RNA | 0.695942 | 0.157 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 0.696822 | 0.157 |
R-HSA-5654688 | SHC-mediated cascade:FGFR1 | 0.696822 | 0.157 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.696822 | 0.157 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 0.696822 | 0.157 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.696822 | 0.157 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.696822 | 0.157 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.697412 | 0.157 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.697412 | 0.157 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.697412 | 0.157 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.697412 | 0.157 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.705855 | 0.151 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.708171 | 0.150 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.708171 | 0.150 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.708658 | 0.150 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.708658 | 0.150 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 0.708658 | 0.150 |
R-HSA-420029 | Tight junction interactions | 0.708658 | 0.150 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.708658 | 0.150 |
R-HSA-5654693 | FRS-mediated FGFR1 signaling | 0.708658 | 0.150 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.714101 | 0.146 |
R-HSA-3214815 | HDACs deacetylate histones | 0.714101 | 0.146 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.714101 | 0.146 |
R-HSA-202403 | TCR signaling | 0.714150 | 0.146 |
R-HSA-525793 | Myogenesis | 0.720031 | 0.143 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.720031 | 0.143 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.720031 | 0.143 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.720031 | 0.143 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.722153 | 0.141 |
R-HSA-5654736 | Signaling by FGFR1 | 0.722153 | 0.141 |
R-HSA-177929 | Signaling by EGFR | 0.722153 | 0.141 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.726914 | 0.139 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.728013 | 0.138 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.728783 | 0.137 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.729619 | 0.137 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.730962 | 0.136 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.730962 | 0.136 |
R-HSA-171306 | Packaging Of Telomere Ends | 0.730962 | 0.136 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.730962 | 0.136 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 0.730962 | 0.136 |
R-HSA-5654699 | SHC-mediated cascade:FGFR2 | 0.730962 | 0.136 |
R-HSA-201451 | Signaling by BMP | 0.730962 | 0.136 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.730962 | 0.136 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.730962 | 0.136 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.730962 | 0.136 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 0.730962 | 0.136 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 0.730962 | 0.136 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.730962 | 0.136 |
R-HSA-913531 | Interferon Signaling | 0.733204 | 0.135 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.734458 | 0.134 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.737165 | 0.132 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.737681 | 0.132 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.741466 | 0.130 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.741466 | 0.130 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.741466 | 0.130 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.741466 | 0.130 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.741466 | 0.130 |
R-HSA-5654700 | FRS-mediated FGFR2 signaling | 0.741466 | 0.130 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.741466 | 0.130 |
R-HSA-112316 | Neuronal System | 0.744194 | 0.128 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.748137 | 0.126 |
R-HSA-9615710 | Late endosomal microautophagy | 0.751561 | 0.124 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.751561 | 0.124 |
R-HSA-5334118 | DNA methylation | 0.751561 | 0.124 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.751561 | 0.124 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 0.751561 | 0.124 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.751561 | 0.124 |
R-HSA-418360 | Platelet calcium homeostasis | 0.751561 | 0.124 |
R-HSA-1227986 | Signaling by ERBB2 | 0.752464 | 0.124 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.752464 | 0.124 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.759582 | 0.119 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.761263 | 0.118 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.761263 | 0.118 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.761263 | 0.118 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 0.761263 | 0.118 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 0.761263 | 0.118 |
R-HSA-70326 | Glucose metabolism | 0.763933 | 0.117 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.764885 | 0.116 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.766523 | 0.115 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.766523 | 0.115 |
R-HSA-8953897 | Cellular responses to stimuli | 0.766880 | 0.115 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.770586 | 0.113 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.770586 | 0.113 |
R-HSA-5694530 | Cargo concentration in the ER | 0.770586 | 0.113 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.770586 | 0.113 |
R-HSA-391251 | Protein folding | 0.770619 | 0.113 |
R-HSA-373755 | Semaphorin interactions | 0.773289 | 0.112 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.773289 | 0.112 |
R-HSA-8848021 | Signaling by PTK6 | 0.773289 | 0.112 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.774656 | 0.111 |
R-HSA-68875 | Mitotic Prophase | 0.778947 | 0.108 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.779545 | 0.108 |
R-HSA-69190 | DNA strand elongation | 0.779545 | 0.108 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.782237 | 0.107 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.783781 | 0.106 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.788155 | 0.103 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.788155 | 0.103 |
R-HSA-159418 | Recycling of bile acids and salts | 0.788155 | 0.103 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.788155 | 0.103 |
R-HSA-5357801 | Programmed Cell Death | 0.789845 | 0.102 |
R-HSA-416476 | G alpha (q) signalling events | 0.794926 | 0.100 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.796430 | 0.099 |
R-HSA-1482788 | Acyl chain remodelling of PC | 0.796430 | 0.099 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.796430 | 0.099 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.796430 | 0.099 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.796430 | 0.099 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 0.796430 | 0.099 |
R-HSA-168255 | Influenza Infection | 0.798205 | 0.098 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.798666 | 0.098 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.801513 | 0.096 |
R-HSA-1483257 | Phospholipid metabolism | 0.802692 | 0.095 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.804381 | 0.095 |
R-HSA-203615 | eNOS activation | 0.804381 | 0.095 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.804381 | 0.095 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.804381 | 0.095 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.804381 | 0.095 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.804381 | 0.095 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.804381 | 0.095 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.804381 | 0.095 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.810387 | 0.091 |
R-HSA-68886 | M Phase | 0.811340 | 0.091 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.812023 | 0.090 |
R-HSA-1482839 | Acyl chain remodelling of PE | 0.812023 | 0.090 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 0.812023 | 0.090 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 0.812023 | 0.090 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.812023 | 0.090 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 0.812023 | 0.090 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.813952 | 0.089 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.816016 | 0.088 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.816016 | 0.088 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.816016 | 0.088 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.817896 | 0.087 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.819366 | 0.087 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.819366 | 0.087 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.819366 | 0.087 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.821495 | 0.085 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.821495 | 0.085 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.821495 | 0.085 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.821495 | 0.085 |
R-HSA-8978934 | Metabolism of cofactors | 0.821495 | 0.085 |
R-HSA-189445 | Metabolism of porphyrins | 0.821495 | 0.085 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.821862 | 0.085 |
R-HSA-162587 | HIV Life Cycle | 0.824384 | 0.084 |
R-HSA-73894 | DNA Repair | 0.825120 | 0.083 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.826407 | 0.083 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.826423 | 0.083 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.826423 | 0.083 |
R-HSA-2142789 | Ubiquinol biosynthesis | 0.826423 | 0.083 |
R-HSA-110331 | Cleavage of the damaged purine | 0.826423 | 0.083 |
R-HSA-549127 | SLC-mediated transport of organic cations | 0.826423 | 0.083 |
R-HSA-196757 | Metabolism of folate and pterines | 0.826423 | 0.083 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.826827 | 0.083 |
R-HSA-68882 | Mitotic Anaphase | 0.827634 | 0.082 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.830788 | 0.081 |
R-HSA-1474165 | Reproduction | 0.831551 | 0.080 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.833205 | 0.079 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.833205 | 0.079 |
R-HSA-73927 | Depurination | 0.833205 | 0.079 |
R-HSA-8875878 | MET promotes cell motility | 0.833205 | 0.079 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.837064 | 0.077 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.837064 | 0.077 |
R-HSA-1236394 | Signaling by ERBB4 | 0.837064 | 0.077 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.839722 | 0.076 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.839722 | 0.076 |
R-HSA-3371568 | Attenuation phase | 0.845985 | 0.073 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.845985 | 0.073 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.845985 | 0.073 |
R-HSA-167169 | HIV Transcription Elongation | 0.845985 | 0.073 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.845985 | 0.073 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.845985 | 0.073 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.845985 | 0.073 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.845985 | 0.073 |
R-HSA-202433 | Generation of second messenger molecules | 0.845985 | 0.073 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.845985 | 0.073 |
R-HSA-379726 | Mitochondrial tRNA aminoacylation | 0.845985 | 0.073 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.846751 | 0.072 |
R-HSA-5689603 | UCH proteinases | 0.846751 | 0.072 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.847671 | 0.072 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.851642 | 0.070 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 0.852004 | 0.070 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.852004 | 0.070 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.852004 | 0.070 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.852004 | 0.070 |
R-HSA-9609690 | HCMV Early Events | 0.855511 | 0.068 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.855522 | 0.068 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.855522 | 0.068 |
R-HSA-2672351 | Stimuli-sensing channels | 0.855522 | 0.068 |
R-HSA-4086400 | PCP/CE pathway | 0.855911 | 0.068 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.855911 | 0.068 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.857787 | 0.067 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.857787 | 0.067 |
R-HSA-162906 | HIV Infection | 0.859871 | 0.066 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.863345 | 0.064 |
R-HSA-5358351 | Signaling by Hedgehog | 0.863796 | 0.064 |
R-HSA-5654738 | Signaling by FGFR2 | 0.864569 | 0.063 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.867759 | 0.062 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.868687 | 0.061 |
R-HSA-9710421 | Defective pyroptosis | 0.868687 | 0.061 |
R-HSA-8854214 | TBC/RABGAPs | 0.868687 | 0.061 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 0.868687 | 0.061 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.870168 | 0.060 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.870168 | 0.060 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.870168 | 0.060 |
R-HSA-375280 | Amine ligand-binding receptors | 0.873819 | 0.059 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.873819 | 0.059 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.873819 | 0.059 |
R-HSA-196741 | Cobalamin (Cbl, vitamin B12) transport and metabolism | 0.873819 | 0.059 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.873819 | 0.059 |
R-HSA-5683826 | Surfactant metabolism | 0.873819 | 0.059 |
R-HSA-376176 | Signaling by ROBO receptors | 0.874880 | 0.058 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.876665 | 0.057 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.878752 | 0.056 |
R-HSA-1489509 | DAG and IP3 signaling | 0.878752 | 0.056 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.879318 | 0.056 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.880470 | 0.055 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.883491 | 0.054 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.883491 | 0.054 |
R-HSA-9675135 | Diseases of DNA repair | 0.883491 | 0.054 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.883491 | 0.054 |
R-HSA-1500620 | Meiosis | 0.884167 | 0.053 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.887757 | 0.052 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.888046 | 0.052 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.888046 | 0.052 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.888046 | 0.052 |
R-HSA-1483191 | Synthesis of PC | 0.888046 | 0.052 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.889682 | 0.051 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.889682 | 0.051 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.891245 | 0.050 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.891245 | 0.050 |
R-HSA-5620924 | Intraflagellar transport | 0.892423 | 0.049 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.896629 | 0.047 |
R-HSA-156902 | Peptide chain elongation | 0.897919 | 0.047 |
R-HSA-9645723 | Diseases of programmed cell death | 0.897919 | 0.047 |
R-HSA-1280218 | Adaptive Immune System | 0.898328 | 0.047 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.900671 | 0.045 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.900671 | 0.045 |
R-HSA-2162123 | Synthesis of Prostaglandins (PG) and Thromboxanes (TX) | 0.900671 | 0.045 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.900966 | 0.045 |
R-HSA-73886 | Chromosome Maintenance | 0.903893 | 0.044 |
R-HSA-112310 | Neurotransmitter release cycle | 0.904211 | 0.044 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.904556 | 0.044 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.904556 | 0.044 |
R-HSA-912446 | Meiotic recombination | 0.904556 | 0.044 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.905812 | 0.043 |
R-HSA-446652 | Interleukin-1 family signaling | 0.905812 | 0.043 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.907219 | 0.042 |
R-HSA-69306 | DNA Replication | 0.908156 | 0.042 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.908288 | 0.042 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.910139 | 0.041 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.911875 | 0.040 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.911875 | 0.040 |
R-HSA-445355 | Smooth Muscle Contraction | 0.911875 | 0.040 |
R-HSA-1221632 | Meiotic synapsis | 0.911875 | 0.040 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.912973 | 0.040 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.912973 | 0.040 |
R-HSA-72649 | Translation initiation complex formation | 0.915321 | 0.038 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.915723 | 0.038 |
R-HSA-9610379 | HCMV Late Events | 0.917021 | 0.038 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.920979 | 0.036 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.920979 | 0.036 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.921816 | 0.035 |
R-HSA-5578775 | Ion homeostasis | 0.921816 | 0.035 |
R-HSA-75893 | TNF signaling | 0.921816 | 0.035 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.923490 | 0.035 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.923490 | 0.035 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.923490 | 0.035 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.925926 | 0.033 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.927814 | 0.033 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.927814 | 0.033 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.930579 | 0.031 |
R-HSA-190236 | Signaling by FGFR | 0.930579 | 0.031 |
R-HSA-422356 | Regulation of insulin secretion | 0.930579 | 0.031 |
R-HSA-180786 | Extension of Telomeres | 0.930638 | 0.031 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.933352 | 0.030 |
R-HSA-5362517 | Signaling by Retinoic Acid | 0.933352 | 0.030 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.933352 | 0.030 |
R-HSA-379724 | tRNA Aminoacylation | 0.933352 | 0.030 |
R-HSA-5610787 | Hedgehog 'off' state | 0.934956 | 0.029 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.934956 | 0.029 |
R-HSA-211976 | Endogenous sterols | 0.935959 | 0.029 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.935959 | 0.029 |
R-HSA-112043 | PLC beta mediated events | 0.935959 | 0.029 |
R-HSA-1442490 | Collagen degradation | 0.935959 | 0.029 |
R-HSA-9020702 | Interleukin-1 signaling | 0.937045 | 0.028 |
R-HSA-2408557 | Selenocysteine synthesis | 0.937045 | 0.028 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.940007 | 0.027 |
R-HSA-192823 | Viral mRNA Translation | 0.941033 | 0.026 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.942937 | 0.026 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.943187 | 0.025 |
R-HSA-9833110 | RSV-host interactions | 0.944781 | 0.025 |
R-HSA-1234174 | Cellular response to hypoxia | 0.945411 | 0.024 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.946741 | 0.024 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.946741 | 0.024 |
R-HSA-597592 | Post-translational protein modification | 0.946909 | 0.024 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.948141 | 0.023 |
R-HSA-418346 | Platelet homeostasis | 0.948302 | 0.023 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.949508 | 0.023 |
R-HSA-112040 | G-protein mediated events | 0.949601 | 0.022 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 0.949601 | 0.022 |
R-HSA-167172 | Transcription of the HIV genome | 0.951573 | 0.022 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.951573 | 0.022 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.952595 | 0.021 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.955291 | 0.020 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.955291 | 0.020 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.957041 | 0.019 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.957041 | 0.019 |
R-HSA-975634 | Retinoid metabolism and transport | 0.957041 | 0.019 |
R-HSA-9609646 | HCMV Infection | 0.957231 | 0.019 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.957251 | 0.019 |
R-HSA-421270 | Cell-cell junction organization | 0.958237 | 0.019 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.958723 | 0.018 |
R-HSA-418990 | Adherens junctions interactions | 0.959734 | 0.018 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.961660 | 0.017 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 0.961893 | 0.017 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.963385 | 0.016 |
R-HSA-8852135 | Protein ubiquitination | 0.963385 | 0.016 |
R-HSA-917937 | Iron uptake and transport | 0.963385 | 0.016 |
R-HSA-8957322 | Metabolism of steroids | 0.963639 | 0.016 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.964142 | 0.016 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.964142 | 0.016 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.964142 | 0.016 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.965090 | 0.015 |
R-HSA-5619084 | ABC transporter disorders | 0.967521 | 0.014 |
R-HSA-216083 | Integrin cell surface interactions | 0.967521 | 0.014 |
R-HSA-9659379 | Sensory processing of sound | 0.968793 | 0.014 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.968825 | 0.014 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.969932 | 0.013 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.970016 | 0.013 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.970016 | 0.013 |
R-HSA-977225 | Amyloid fiber formation | 0.971190 | 0.013 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 0.971190 | 0.013 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.971561 | 0.013 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.974446 | 0.011 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.975370 | 0.011 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.976181 | 0.010 |
R-HSA-5619102 | SLC transporter disorders | 0.977854 | 0.010 |
R-HSA-72172 | mRNA Splicing | 0.977920 | 0.010 |
R-HSA-446728 | Cell junction organization | 0.978454 | 0.009 |
R-HSA-1236974 | ER-Phagosome pathway | 0.979896 | 0.009 |
R-HSA-1500931 | Cell-Cell communication | 0.979946 | 0.009 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.980421 | 0.009 |
R-HSA-5576891 | Cardiac conduction | 0.980518 | 0.009 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.981174 | 0.008 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.982188 | 0.008 |
R-HSA-8953854 | Metabolism of RNA | 0.983369 | 0.007 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.984185 | 0.007 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.984683 | 0.007 |
R-HSA-9948299 | Ribosome-associated quality control | 0.985203 | 0.006 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.985705 | 0.006 |
R-HSA-1296071 | Potassium Channels | 0.985974 | 0.006 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.985974 | 0.006 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.986191 | 0.006 |
R-HSA-9664407 | Parasite infection | 0.986191 | 0.006 |
R-HSA-9664417 | Leishmania phagocytosis | 0.986191 | 0.006 |
R-HSA-157579 | Telomere Maintenance | 0.986524 | 0.006 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.986660 | 0.006 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.987560 | 0.005 |
R-HSA-9734767 | Developmental Cell Lineages | 0.987778 | 0.005 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.988846 | 0.005 |
R-HSA-983712 | Ion channel transport | 0.989194 | 0.005 |
R-HSA-111885 | Opioid Signalling | 0.989816 | 0.004 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.990578 | 0.004 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.990600 | 0.004 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.990902 | 0.004 |
R-HSA-9679506 | SARS-CoV Infections | 0.991303 | 0.004 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.991664 | 0.004 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.991664 | 0.004 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.992305 | 0.003 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.992881 | 0.003 |
R-HSA-9711097 | Cellular response to starvation | 0.992881 | 0.003 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.993088 | 0.003 |
R-HSA-877300 | Interferon gamma signaling | 0.993127 | 0.003 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.993729 | 0.003 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.994238 | 0.003 |
R-HSA-388396 | GPCR downstream signalling | 0.994644 | 0.002 |
R-HSA-397014 | Muscle contraction | 0.994997 | 0.002 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.995429 | 0.002 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 0.995429 | 0.002 |
R-HSA-418555 | G alpha (s) signalling events | 0.995659 | 0.002 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.996406 | 0.002 |
R-HSA-114608 | Platelet degranulation | 0.996548 | 0.002 |
R-HSA-9711123 | Cellular response to chemical stress | 0.996694 | 0.001 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.997393 | 0.001 |
R-HSA-72312 | rRNA processing | 0.997404 | 0.001 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.997791 | 0.001 |
R-HSA-9658195 | Leishmania infection | 0.997791 | 0.001 |
R-HSA-1474244 | Extracellular matrix organization | 0.998273 | 0.001 |
R-HSA-428157 | Sphingolipid metabolism | 0.998519 | 0.001 |
R-HSA-2187338 | Visual phototransduction | 0.998628 | 0.001 |
R-HSA-2142753 | Arachidonate metabolism | 0.998878 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 0.999012 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.999386 | 0.000 |
R-HSA-109582 | Hemostasis | 0.999482 | 0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.999485 | 0.000 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.999498 | 0.000 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.999537 | 0.000 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.999537 | 0.000 |
R-HSA-3781865 | Diseases of glycosylation | 0.999702 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999840 | 0.000 |
R-HSA-9824446 | Viral Infection Pathways | 0.999893 | 0.000 |
R-HSA-72766 | Translation | 0.999921 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999939 | 0.000 |
R-HSA-168256 | Immune System | 0.999947 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999993 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999994 | 0.000 |
R-HSA-6798695 | Neutrophil degranulation | 0.999994 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 0.999994 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999999 | 0.000 |
R-HSA-1643685 | Disease | 0.999999 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 1.000000 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 1.000000 | 0.000 |
R-HSA-168249 | Innate Immune System | 1.000000 | 0.000 |
R-HSA-382551 | Transport of small molecules | 1.000000 | 0.000 |
R-HSA-5663205 | Infectious disease | 1.000000 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CDK19 |
0.814 | 0.758 | 1 | 0.849 |
CDK18 |
0.813 | 0.733 | 1 | 0.865 |
HIPK2 |
0.812 | 0.653 | 1 | 0.850 |
ERK1 |
0.807 | 0.761 | 1 | 0.850 |
P38B |
0.807 | 0.788 | 1 | 0.834 |
CDK17 |
0.806 | 0.708 | 1 | 0.894 |
MAK |
0.805 | 0.704 | -2 | 0.817 |
CDK8 |
0.805 | 0.747 | 1 | 0.814 |
P38D |
0.804 | 0.706 | 1 | 0.901 |
P38G |
0.801 | 0.699 | 1 | 0.902 |
CDK16 |
0.799 | 0.688 | 1 | 0.882 |
CDK1 |
0.798 | 0.677 | 1 | 0.844 |
KIS |
0.796 | 0.547 | 1 | 0.794 |
CDK7 |
0.795 | 0.713 | 1 | 0.819 |
CDK3 |
0.795 | 0.603 | 1 | 0.887 |
JNK2 |
0.791 | 0.683 | 1 | 0.864 |
P38A |
0.789 | 0.766 | 1 | 0.765 |
DYRK2 |
0.789 | 0.619 | 1 | 0.767 |
CDK5 |
0.786 | 0.661 | 1 | 0.792 |
DYRK4 |
0.785 | 0.600 | 1 | 0.859 |
CDK13 |
0.782 | 0.625 | 1 | 0.841 |
HIPK4 |
0.782 | 0.533 | 1 | 0.551 |
CDK14 |
0.781 | 0.646 | 1 | 0.828 |
CDK12 |
0.780 | 0.623 | 1 | 0.862 |
JNK3 |
0.779 | 0.660 | 1 | 0.836 |
HIPK1 |
0.779 | 0.556 | 1 | 0.747 |
CDK10 |
0.777 | 0.581 | 1 | 0.843 |
DYRK1A |
0.776 | 0.561 | 1 | 0.725 |
DYRK1B |
0.775 | 0.565 | 1 | 0.815 |
ERK2 |
0.773 | 0.680 | 1 | 0.801 |
CLK3 |
0.773 | 0.439 | 1 | 0.516 |
CDK9 |
0.768 | 0.589 | 1 | 0.835 |
JNK1 |
0.765 | 0.601 | 1 | 0.863 |
HIPK3 |
0.765 | 0.534 | 1 | 0.720 |
CDK4 |
0.765 | 0.627 | 1 | 0.870 |
CDK6 |
0.763 | 0.601 | 1 | 0.845 |
MOK |
0.762 | 0.552 | 1 | 0.637 |
ICK |
0.760 | 0.541 | -3 | 0.555 |
CDKL5 |
0.759 | 0.353 | -3 | 0.513 |
NLK |
0.758 | 0.573 | 1 | 0.557 |
ERK5 |
0.757 | 0.432 | 1 | 0.473 |
DYRK3 |
0.755 | 0.410 | 1 | 0.711 |
SRPK1 |
0.753 | 0.236 | -3 | 0.477 |
CLK2 |
0.742 | 0.260 | -3 | 0.461 |
CDK2 |
0.742 | 0.437 | 1 | 0.724 |
CDKL1 |
0.742 | 0.265 | -3 | 0.512 |
MTOR |
0.741 | 0.241 | 1 | 0.352 |
SRPK2 |
0.739 | 0.170 | -3 | 0.417 |
CLK1 |
0.735 | 0.241 | -3 | 0.443 |
PRP4 |
0.732 | 0.332 | -3 | 0.459 |
CLK4 |
0.732 | 0.215 | -3 | 0.458 |
COT |
0.731 | -0.007 | 2 | 0.854 |
SRPK3 |
0.727 | 0.146 | -3 | 0.445 |
MOS |
0.726 | 0.085 | 1 | 0.219 |
NDR2 |
0.724 | 0.070 | -3 | 0.604 |
MPSK1 |
0.723 | 0.351 | 1 | 0.235 |
PIM3 |
0.723 | 0.015 | -3 | 0.565 |
GRK1 |
0.723 | 0.056 | -2 | 0.329 |
CDC7 |
0.723 | 0.005 | 1 | 0.175 |
TBK1 |
0.722 | 0.002 | 1 | 0.148 |
ERK7 |
0.722 | 0.245 | 2 | 0.584 |
ATR |
0.721 | 0.042 | 1 | 0.220 |
IKKB |
0.719 | -0.114 | -2 | 0.271 |
CHAK2 |
0.719 | 0.071 | -1 | 0.784 |
AURC |
0.717 | -0.008 | -2 | 0.290 |
IKKE |
0.717 | -0.065 | 1 | 0.147 |
PRKD1 |
0.717 | 0.008 | -3 | 0.569 |
PRPK |
0.715 | -0.024 | -1 | 0.818 |
MLK3 |
0.714 | 0.104 | 2 | 0.746 |
IKKA |
0.714 | -0.015 | -2 | 0.288 |
PRKD2 |
0.712 | -0.024 | -3 | 0.512 |
GRK7 |
0.712 | 0.058 | 1 | 0.197 |
MLK2 |
0.711 | 0.096 | 2 | 0.817 |
NEK6 |
0.711 | -0.036 | -2 | 0.312 |
SKMLCK |
0.710 | -0.010 | -2 | 0.388 |
PDHK4 |
0.709 | -0.088 | 1 | 0.233 |
RSK2 |
0.709 | -0.038 | -3 | 0.500 |
RAF1 |
0.709 | -0.135 | 1 | 0.167 |
WNK1 |
0.709 | -0.039 | -2 | 0.405 |
MLK1 |
0.709 | -0.021 | 2 | 0.813 |
PIM1 |
0.708 | -0.013 | -3 | 0.498 |
NDR1 |
0.707 | -0.044 | -3 | 0.550 |
PKN3 |
0.707 | -0.054 | -3 | 0.529 |
MST4 |
0.707 | -0.065 | 2 | 0.866 |
GSK3A |
0.706 | 0.200 | 4 | 0.451 |
NUAK2 |
0.706 | -0.035 | -3 | 0.534 |
RIPK3 |
0.705 | -0.036 | 3 | 0.774 |
BMPR2 |
0.705 | -0.168 | -2 | 0.349 |
P90RSK |
0.705 | -0.038 | -3 | 0.498 |
PKCD |
0.704 | -0.022 | 2 | 0.782 |
PKACG |
0.704 | -0.061 | -2 | 0.308 |
PKACB |
0.704 | -0.033 | -2 | 0.278 |
CAMK1B |
0.704 | -0.095 | -3 | 0.525 |
PDHK1 |
0.703 | -0.139 | 1 | 0.212 |
CAMLCK |
0.703 | -0.040 | -2 | 0.363 |
GRK5 |
0.703 | -0.114 | -3 | 0.539 |
PKN2 |
0.703 | -0.090 | -3 | 0.508 |
PKCA |
0.703 | 0.023 | 2 | 0.738 |
LATS1 |
0.703 | 0.087 | -3 | 0.635 |
MAPKAPK2 |
0.703 | -0.039 | -3 | 0.484 |
GCN2 |
0.702 | -0.203 | 2 | 0.774 |
TGFBR2 |
0.702 | -0.117 | -2 | 0.281 |
PKG2 |
0.702 | -0.033 | -2 | 0.287 |
NIK |
0.702 | -0.092 | -3 | 0.543 |
ULK2 |
0.702 | -0.204 | 2 | 0.768 |
PRKX |
0.702 | -0.019 | -3 | 0.446 |
RSK3 |
0.701 | -0.064 | -3 | 0.481 |
RSK4 |
0.701 | -0.005 | -3 | 0.513 |
CK1E |
0.701 | 0.002 | -3 | 0.354 |
MAPKAPK3 |
0.700 | -0.070 | -3 | 0.499 |
NEK7 |
0.700 | -0.163 | -3 | 0.562 |
DSTYK |
0.700 | -0.218 | 2 | 0.870 |
IRE1 |
0.700 | -0.026 | 1 | 0.165 |
BMPR1B |
0.700 | -0.067 | 1 | 0.146 |
MNK2 |
0.700 | -0.035 | -2 | 0.338 |
PKCG |
0.699 | -0.007 | 2 | 0.739 |
PAK1 |
0.699 | -0.042 | -2 | 0.391 |
DAPK2 |
0.699 | -0.065 | -3 | 0.544 |
CAMK2G |
0.699 | -0.110 | 2 | 0.757 |
LATS2 |
0.699 | -0.031 | -5 | 0.751 |
PKCB |
0.698 | -0.023 | 2 | 0.747 |
PAK6 |
0.698 | -0.050 | -2 | 0.311 |
AURB |
0.697 | -0.052 | -2 | 0.283 |
PKCZ |
0.697 | -0.012 | 2 | 0.787 |
MNK1 |
0.697 | -0.028 | -2 | 0.335 |
P70S6KB |
0.696 | -0.068 | -3 | 0.485 |
MARK4 |
0.696 | -0.071 | 4 | 0.823 |
MASTL |
0.696 | -0.123 | -2 | 0.339 |
AMPKA1 |
0.696 | -0.072 | -3 | 0.548 |
PAK3 |
0.696 | -0.074 | -2 | 0.362 |
DLK |
0.695 | -0.077 | 1 | 0.176 |
PHKG1 |
0.695 | -0.061 | -3 | 0.522 |
AKT2 |
0.695 | -0.036 | -3 | 0.418 |
AMPKA2 |
0.695 | -0.053 | -3 | 0.530 |
WNK3 |
0.694 | -0.137 | 1 | 0.168 |
BCKDK |
0.694 | -0.124 | -1 | 0.715 |
IRE2 |
0.694 | -0.017 | 2 | 0.752 |
SMG1 |
0.694 | -0.051 | 1 | 0.208 |
MLK4 |
0.694 | 0.004 | 2 | 0.721 |
DNAPK |
0.694 | -0.031 | 1 | 0.215 |
BUB1 |
0.693 | 0.140 | -5 | 0.820 |
CK1D |
0.693 | -0.008 | -3 | 0.319 |
ULK1 |
0.693 | -0.189 | -3 | 0.512 |
PRKD3 |
0.693 | -0.068 | -3 | 0.452 |
VRK2 |
0.693 | 0.106 | 1 | 0.269 |
CAMK2D |
0.693 | -0.115 | -3 | 0.532 |
NEK9 |
0.693 | -0.159 | 2 | 0.833 |
SGK3 |
0.692 | -0.051 | -3 | 0.477 |
TSSK1 |
0.692 | -0.045 | -3 | 0.577 |
YSK4 |
0.691 | -0.115 | 1 | 0.152 |
PINK1 |
0.691 | 0.037 | 1 | 0.378 |
TGFBR1 |
0.690 | -0.086 | -2 | 0.291 |
CHAK1 |
0.690 | -0.058 | 2 | 0.782 |
PIM2 |
0.690 | -0.031 | -3 | 0.455 |
AURA |
0.690 | -0.062 | -2 | 0.273 |
MSK2 |
0.689 | -0.084 | -3 | 0.473 |
ALK4 |
0.689 | -0.097 | -2 | 0.308 |
PAK2 |
0.689 | -0.068 | -2 | 0.371 |
TTBK2 |
0.689 | -0.137 | 2 | 0.680 |
ATM |
0.689 | -0.084 | 1 | 0.188 |
CAMK2A |
0.688 | -0.041 | 2 | 0.739 |
GRK2 |
0.688 | -0.083 | -2 | 0.287 |
TSSK2 |
0.688 | -0.095 | -5 | 0.855 |
NUAK1 |
0.687 | -0.081 | -3 | 0.490 |
MSK1 |
0.687 | -0.070 | -3 | 0.467 |
PKR |
0.687 | -0.074 | 1 | 0.185 |
PKCH |
0.687 | -0.067 | 2 | 0.726 |
RIPK1 |
0.687 | -0.158 | 1 | 0.156 |
GRK6 |
0.687 | -0.156 | 1 | 0.163 |
ANKRD3 |
0.687 | -0.178 | 1 | 0.183 |
PKACA |
0.687 | -0.054 | -2 | 0.257 |
GRK4 |
0.687 | -0.153 | -2 | 0.314 |
FAM20C |
0.686 | -0.015 | 2 | 0.591 |
QSK |
0.686 | -0.066 | 4 | 0.803 |
HUNK |
0.686 | -0.196 | 2 | 0.773 |
NIM1 |
0.685 | -0.130 | 3 | 0.795 |
MST3 |
0.685 | -0.042 | 2 | 0.847 |
CK1A2 |
0.685 | -0.029 | -3 | 0.314 |
AKT1 |
0.685 | -0.051 | -3 | 0.438 |
PAK5 |
0.684 | -0.065 | -2 | 0.310 |
MELK |
0.684 | -0.118 | -3 | 0.499 |
NEK2 |
0.684 | -0.141 | 2 | 0.821 |
ACVR2B |
0.684 | -0.129 | -2 | 0.275 |
CAMK2B |
0.683 | -0.082 | 2 | 0.725 |
CAMK4 |
0.683 | -0.157 | -3 | 0.504 |
TLK2 |
0.683 | -0.094 | 1 | 0.158 |
PASK |
0.683 | 0.047 | -3 | 0.605 |
TAO3 |
0.683 | -0.000 | 1 | 0.197 |
ACVR2A |
0.683 | -0.131 | -2 | 0.272 |
MYLK4 |
0.682 | -0.093 | -2 | 0.311 |
QIK |
0.682 | -0.138 | -3 | 0.516 |
PAK4 |
0.682 | -0.051 | -2 | 0.320 |
CK1G1 |
0.681 | -0.063 | -3 | 0.332 |
AKT3 |
0.680 | -0.038 | -3 | 0.394 |
SIK |
0.679 | -0.104 | -3 | 0.461 |
PLK1 |
0.679 | -0.182 | -2 | 0.279 |
MEK1 |
0.679 | -0.187 | 2 | 0.808 |
GRK3 |
0.679 | -0.086 | -2 | 0.262 |
PLK4 |
0.678 | -0.087 | 2 | 0.592 |
BMPR1A |
0.678 | -0.096 | 1 | 0.134 |
GSK3B |
0.678 | 0.047 | 4 | 0.443 |
MEK5 |
0.678 | -0.110 | 2 | 0.806 |
ALK2 |
0.678 | -0.120 | -2 | 0.283 |
WNK4 |
0.677 | -0.077 | -2 | 0.407 |
PKCE |
0.677 | -0.031 | 2 | 0.732 |
PKCT |
0.677 | -0.086 | 2 | 0.734 |
MARK3 |
0.677 | -0.073 | 4 | 0.757 |
ZAK |
0.677 | -0.121 | 1 | 0.158 |
CHK1 |
0.677 | -0.067 | -3 | 0.562 |
IRAK4 |
0.676 | -0.083 | 1 | 0.147 |
DRAK1 |
0.675 | -0.131 | 1 | 0.137 |
NEK5 |
0.675 | -0.101 | 1 | 0.165 |
PKCI |
0.675 | -0.070 | 2 | 0.758 |
DCAMKL1 |
0.675 | -0.098 | -3 | 0.497 |
MEKK1 |
0.675 | -0.119 | 1 | 0.176 |
MEKK2 |
0.675 | -0.112 | 2 | 0.791 |
MAP3K15 |
0.675 | 0.037 | 1 | 0.172 |
BRSK2 |
0.674 | -0.108 | -3 | 0.496 |
BRSK1 |
0.674 | -0.098 | -3 | 0.487 |
MAPKAPK5 |
0.674 | -0.142 | -3 | 0.424 |
GCK |
0.674 | -0.013 | 1 | 0.179 |
SGK1 |
0.674 | -0.032 | -3 | 0.374 |
PHKG2 |
0.673 | -0.116 | -3 | 0.466 |
MEKK3 |
0.672 | -0.174 | 1 | 0.172 |
SSTK |
0.672 | -0.070 | 4 | 0.793 |
NEK11 |
0.672 | -0.087 | 1 | 0.190 |
CAMK1G |
0.672 | -0.116 | -3 | 0.450 |
LKB1 |
0.671 | -0.041 | -3 | 0.538 |
MARK2 |
0.670 | -0.095 | 4 | 0.717 |
PDK1 |
0.670 | -0.061 | 1 | 0.204 |
P70S6K |
0.670 | -0.094 | -3 | 0.418 |
HASPIN |
0.669 | 0.042 | -1 | 0.650 |
GAK |
0.669 | -0.068 | 1 | 0.224 |
PERK |
0.669 | -0.193 | -2 | 0.291 |
SLK |
0.669 | -0.053 | -2 | 0.307 |
SMMLCK |
0.669 | -0.100 | -3 | 0.496 |
HGK |
0.669 | -0.053 | 3 | 0.894 |
PKN1 |
0.669 | -0.080 | -3 | 0.426 |
PLK3 |
0.669 | -0.159 | 2 | 0.715 |
HRI |
0.668 | -0.193 | -2 | 0.317 |
TAO2 |
0.668 | -0.067 | 2 | 0.842 |
CAMKK2 |
0.668 | -0.103 | -2 | 0.280 |
SBK |
0.668 | 0.016 | -3 | 0.342 |
KHS1 |
0.668 | -0.014 | 1 | 0.174 |
SNRK |
0.668 | -0.186 | 2 | 0.656 |
TNIK |
0.668 | -0.037 | 3 | 0.889 |
PBK |
0.667 | -0.022 | 1 | 0.206 |
MEKK6 |
0.666 | -0.072 | 1 | 0.176 |
ROCK2 |
0.666 | -0.042 | -3 | 0.494 |
LOK |
0.666 | -0.082 | -2 | 0.307 |
EEF2K |
0.666 | -0.009 | 3 | 0.849 |
HPK1 |
0.666 | -0.082 | 1 | 0.180 |
TLK1 |
0.666 | -0.179 | -2 | 0.297 |
MRCKB |
0.666 | -0.063 | -3 | 0.436 |
KHS2 |
0.665 | -0.016 | 1 | 0.186 |
MST2 |
0.665 | -0.118 | 1 | 0.163 |
DAPK3 |
0.665 | -0.086 | -3 | 0.497 |
MARK1 |
0.664 | -0.123 | 4 | 0.774 |
CK2A2 |
0.664 | -0.060 | 1 | 0.126 |
BRAF |
0.664 | -0.194 | -4 | 0.804 |
CAMKK1 |
0.664 | -0.196 | -2 | 0.259 |
LRRK2 |
0.663 | -0.026 | 2 | 0.838 |
MINK |
0.663 | -0.108 | 1 | 0.155 |
DCAMKL2 |
0.663 | -0.112 | -3 | 0.499 |
NEK8 |
0.662 | -0.172 | 2 | 0.815 |
NEK4 |
0.662 | -0.144 | 1 | 0.154 |
MRCKA |
0.662 | -0.069 | -3 | 0.454 |
TTBK1 |
0.661 | -0.145 | 2 | 0.593 |
CK1A |
0.660 | -0.032 | -3 | 0.256 |
PDHK3_TYR |
0.660 | 0.304 | 4 | 0.888 |
PKG1 |
0.659 | -0.091 | -2 | 0.238 |
DAPK1 |
0.659 | -0.092 | -3 | 0.478 |
CAMK1D |
0.659 | -0.105 | -3 | 0.410 |
DMPK1 |
0.658 | -0.041 | -3 | 0.459 |
NEK1 |
0.658 | -0.110 | 1 | 0.148 |
VRK1 |
0.658 | -0.063 | 2 | 0.825 |
TAK1 |
0.657 | -0.172 | 1 | 0.154 |
CHK2 |
0.657 | -0.089 | -3 | 0.368 |
CK2A1 |
0.656 | -0.064 | 1 | 0.118 |
YSK1 |
0.656 | -0.096 | 2 | 0.818 |
MST1 |
0.655 | -0.122 | 1 | 0.154 |
LIMK2_TYR |
0.654 | 0.173 | -3 | 0.583 |
CRIK |
0.654 | -0.037 | -3 | 0.467 |
OSR1 |
0.653 | -0.052 | 2 | 0.793 |
CAMK1A |
0.653 | -0.092 | -3 | 0.389 |
AAK1 |
0.653 | 0.015 | 1 | 0.226 |
PDHK4_TYR |
0.652 | 0.170 | 2 | 0.847 |
BIKE |
0.652 | -0.026 | 1 | 0.218 |
ROCK1 |
0.651 | -0.074 | -3 | 0.443 |
TESK1_TYR |
0.650 | 0.110 | 3 | 0.905 |
PLK2 |
0.649 | -0.099 | -3 | 0.478 |
STK33 |
0.648 | -0.133 | 2 | 0.578 |
ASK1 |
0.648 | -0.040 | 1 | 0.171 |
IRAK1 |
0.647 | -0.248 | -1 | 0.686 |
PDHK1_TYR |
0.646 | 0.089 | -1 | 0.850 |
PKMYT1_TYR |
0.646 | 0.092 | 3 | 0.880 |
MYO3B |
0.646 | -0.068 | 2 | 0.837 |
MAP2K4_TYR |
0.646 | 0.025 | -1 | 0.829 |
MYO3A |
0.645 | -0.072 | 1 | 0.173 |
TAO1 |
0.644 | -0.069 | 1 | 0.167 |
RIPK2 |
0.644 | -0.221 | 1 | 0.141 |
MEK2 |
0.643 | -0.212 | 2 | 0.788 |
TTK |
0.642 | -0.111 | -2 | 0.303 |
MAP2K6_TYR |
0.642 | -0.000 | -1 | 0.836 |
NEK3 |
0.642 | -0.179 | 1 | 0.174 |
MAP2K7_TYR |
0.641 | -0.033 | 2 | 0.828 |
BMPR2_TYR |
0.640 | -0.024 | -1 | 0.837 |
JAK2 |
0.639 | 0.009 | 1 | 0.201 |
RET |
0.639 | -0.038 | 1 | 0.193 |
ALPHAK3 |
0.638 | -0.052 | -1 | 0.733 |
CSF1R |
0.637 | 0.028 | 3 | 0.831 |
LIMK1_TYR |
0.636 | 0.016 | 2 | 0.837 |
PINK1_TYR |
0.636 | -0.127 | 1 | 0.222 |
YANK3 |
0.636 | -0.055 | 2 | 0.364 |
JAK1 |
0.636 | 0.010 | 1 | 0.173 |
TXK |
0.634 | 0.008 | 1 | 0.143 |
ROS1 |
0.633 | -0.014 | 3 | 0.807 |
MST1R |
0.633 | -0.027 | 3 | 0.848 |
TYK2 |
0.633 | -0.111 | 1 | 0.180 |
EPHB4 |
0.632 | -0.006 | -1 | 0.784 |
ABL2 |
0.632 | -0.024 | -1 | 0.766 |
LCK |
0.631 | -0.017 | -1 | 0.824 |
NEK10_TYR |
0.631 | -0.060 | 1 | 0.171 |
EPHA6 |
0.630 | -0.055 | -1 | 0.825 |
YES1 |
0.630 | -0.035 | -1 | 0.819 |
JAK3 |
0.629 | -0.065 | 1 | 0.182 |
TNNI3K_TYR |
0.629 | -0.005 | 1 | 0.205 |
BLK |
0.628 | -0.023 | -1 | 0.827 |
ABL1 |
0.628 | -0.044 | -1 | 0.757 |
TYRO3 |
0.628 | -0.068 | 3 | 0.835 |
TNK1 |
0.628 | 0.014 | 3 | 0.816 |
CK1G3 |
0.628 | -0.059 | -3 | 0.220 |
FGR |
0.627 | -0.113 | 1 | 0.159 |
STLK3 |
0.627 | -0.155 | 1 | 0.144 |
TNK2 |
0.627 | 0.012 | 3 | 0.794 |
KDR |
0.626 | -0.038 | 3 | 0.794 |
HCK |
0.625 | -0.072 | -1 | 0.814 |
KIT |
0.624 | -0.058 | 3 | 0.831 |
DDR1 |
0.623 | -0.084 | 4 | 0.807 |
FGFR2 |
0.623 | -0.040 | 3 | 0.831 |
FYN |
0.623 | -0.024 | -1 | 0.818 |
MET |
0.622 | -0.025 | 3 | 0.825 |
ITK |
0.621 | -0.044 | -1 | 0.763 |
INSRR |
0.621 | -0.089 | 3 | 0.786 |
FER |
0.620 | -0.131 | 1 | 0.168 |
DDR2 |
0.620 | 0.026 | 3 | 0.771 |
FGFR1 |
0.619 | -0.048 | 3 | 0.802 |
EPHA4 |
0.619 | -0.046 | 2 | 0.718 |
TEK |
0.619 | -0.025 | 3 | 0.771 |
EPHB1 |
0.618 | -0.074 | 1 | 0.147 |
CK1G2 |
0.617 | -0.056 | -3 | 0.280 |
BMX |
0.617 | -0.050 | -1 | 0.698 |
FLT3 |
0.616 | -0.136 | 3 | 0.834 |
PDGFRB |
0.616 | -0.128 | 3 | 0.838 |
SRMS |
0.616 | -0.114 | 1 | 0.143 |
FLT1 |
0.616 | -0.091 | -1 | 0.789 |
EPHB3 |
0.615 | -0.080 | -1 | 0.769 |
MERTK |
0.615 | -0.076 | 3 | 0.812 |
PDGFRA |
0.615 | -0.093 | 3 | 0.835 |
WEE1_TYR |
0.614 | -0.074 | -1 | 0.687 |
FGFR3 |
0.614 | -0.061 | 3 | 0.803 |
EPHB2 |
0.614 | -0.090 | -1 | 0.765 |
FRK |
0.613 | -0.075 | -1 | 0.818 |
AXL |
0.611 | -0.099 | 3 | 0.815 |
ALK |
0.611 | -0.089 | 3 | 0.756 |
YANK2 |
0.611 | -0.063 | 2 | 0.377 |
EPHA7 |
0.611 | -0.050 | 2 | 0.723 |
LYN |
0.610 | -0.068 | 3 | 0.748 |
EGFR |
0.610 | -0.075 | 1 | 0.139 |
TEC |
0.609 | -0.102 | -1 | 0.698 |
BTK |
0.608 | -0.131 | -1 | 0.723 |
SYK |
0.608 | -0.062 | -1 | 0.770 |
SRC |
0.608 | -0.076 | -1 | 0.799 |
ERBB2 |
0.608 | -0.136 | 1 | 0.164 |
MATK |
0.606 | -0.077 | -1 | 0.683 |
INSR |
0.606 | -0.102 | 3 | 0.762 |
LTK |
0.605 | -0.120 | 3 | 0.774 |
EPHA1 |
0.605 | -0.092 | 3 | 0.808 |
NTRK3 |
0.605 | -0.103 | -1 | 0.718 |
FLT4 |
0.604 | -0.127 | 3 | 0.783 |
FGFR4 |
0.604 | -0.075 | -1 | 0.719 |
CSK |
0.604 | -0.050 | 2 | 0.726 |
PTK6 |
0.603 | -0.154 | -1 | 0.679 |
PTK2 |
0.603 | -0.042 | -1 | 0.781 |
EPHA8 |
0.603 | -0.069 | -1 | 0.769 |
ZAP70 |
0.602 | -0.044 | -1 | 0.686 |
NTRK1 |
0.602 | -0.171 | -1 | 0.758 |
EPHA3 |
0.601 | -0.104 | 2 | 0.691 |
PTK2B |
0.601 | -0.082 | -1 | 0.733 |
NTRK2 |
0.600 | -0.176 | 3 | 0.791 |
ERBB4 |
0.599 | -0.065 | 1 | 0.140 |
EPHA5 |
0.597 | -0.106 | 2 | 0.697 |
MUSK |
0.596 | -0.117 | 1 | 0.128 |
EPHA2 |
0.593 | -0.074 | -1 | 0.734 |
IGF1R |
0.589 | -0.112 | 3 | 0.699 |
FES |
0.577 | -0.110 | -1 | 0.665 |