Motif 240 (n=535)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A087X0R7 | SENP3-EIF4A1 | S162 | ochoa | SENP3-EIF4A1 readthrough (NMD candidate) | None |
A1L390 | PLEKHG3 | S1037 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A6NGB9 | WIPF3 | S149 | ochoa | WAS/WASL-interacting protein family member 3 (Corticosteroids and regional expression protein 16 homolog) | May be a regulator of cytoskeletal organization. May have a role in spermatogenesis (By similarity). {ECO:0000250}. |
A6NHQ4 | EPOP | S36 | ochoa | Elongin BC and Polycomb repressive complex 2-associated protein (Proline-rich protein 28) | Scaffold protein that serves as a bridging partner between the PRC2/EZH2 complex and the elongin BC complex: required to fine-tune the transcriptional status of Polycomb group (PcG) target genes in embryonic stem cells (ESCs). Plays a key role in genomic regions that display both active and repressive chromatin properties in pluripotent stem cells by sustaining low level expression at PcG target genes: acts by recruiting the elongin BC complex, thereby restricting excessive activity of the PRC2/EZH2 complex. Interaction with USP7 promotes deubiquitination of H2B at promoter sites. Acts as a regulator of neuronal differentiation. {ECO:0000250|UniProtKB:Q7TNS8}. |
B8ZZF3 | None | S345 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Cofactor required for Sp1 transcriptional activation subunit 7) (Mediator complex subunit 26) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. {ECO:0000256|ARBA:ARBA00057523}. |
C9JH25 | PRRT4 | S724 | ochoa | Proline-rich transmembrane protein 4 | None |
E9PCH4 | None | S788 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
H0Y626 | None | S38 | ochoa | RING-type E3 ubiquitin transferase (EC 2.3.2.27) | None |
H3BNR1 | BORCS8-MEF2B | S205 | ochoa | BORCS8-MEF2B readthrough | None |
K7ELQ4 | ATF7-NPFF | S188 | ochoa | ATF7-NPFF readthrough | None |
O00192 | ARVCF | S332 | ochoa | Splicing regulator ARVCF (Armadillo repeat protein deleted in velo-cardio-facial syndrome) | Contributes to the regulation of alternative splicing of pre-mRNAs. {ECO:0000269|PubMed:24644279}. |
O00750 | PIK3C2B | S177 | ochoa | Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit beta (PI3K-C2-beta) (PtdIns-3-kinase C2 subunit beta) (EC 2.7.1.137) (EC 2.7.1.154) (C2-PI3K) (Phosphoinositide 3-kinase-C2-beta) | Phosphorylates PtdIns and PtdIns4P with a preference for PtdIns (PubMed:10805725, PubMed:11533253, PubMed:9830063). Does not phosphorylate PtdIns(4,5)P2 (PubMed:9830063). May be involved in EGF and PDGF signaling cascades (PubMed:10805725). {ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11533253, ECO:0000269|PubMed:9830063}. |
O14545 | TRAFD1 | S530 | ochoa | TRAF-type zinc finger domain-containing protein 1 (Protein FLN29) | Negative feedback regulator that controls excessive innate immune responses. Regulates both Toll-like receptor 4 (TLR4) and DDX58/RIG1-like helicases (RLH) pathways. May inhibit the LTR pathway by direct interaction with TRAF6 and attenuation of NF-kappa-B activation. May negatively regulate the RLH pathway downstream from MAVS and upstream of NF-kappa-B and IRF3 (By similarity). {ECO:0000250, ECO:0000269|PubMed:16221674}. |
O14559 | ARHGAP33 | S780 | ochoa | Rho GTPase-activating protein 33 (Rho-type GTPase-activating protein 33) (Sorting nexin-26) (Tc10/CDC42 GTPase-activating protein) | May be involved in several stages of intracellular trafficking. Could play an important role in the regulation of glucose transport by insulin. May act as a downstream effector of RHOQ/TC10 in the regulation of insulin-stimulated glucose transport (By similarity). {ECO:0000250}. |
O14647 | CHD2 | S1795 | ochoa | Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) | ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}. |
O14686 | KMT2D | S2423 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S3208 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14994 | SYN3 | S484 | ochoa | Synapsin-3 (Synapsin III) | May be involved in the regulation of neurotransmitter release and synaptogenesis. |
O15034 | RIMBP2 | S649 | ochoa | RIMS-binding protein 2 (RIM-BP2) | Plays a role in the synaptic transmission as bifunctional linker that interacts simultaneously with RIMS1, RIMS2, CACNA1D and CACNA1B. {ECO:0000250}. |
O15047 | SETD1A | S1103 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15164 | TRIM24 | S110 | ochoa | Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) | Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}. |
O15209 | ZBTB22 | S592 | ochoa | Zinc finger and BTB domain-containing protein 22 (Protein BING1) (Zinc finger and BTB domain-containing protein 22A) (Zinc finger protein 297) | May be involved in transcriptional regulation. |
O43166 | SIPA1L1 | S1639 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43182 | ARHGAP6 | S786 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43379 | WDR62 | S1325 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43426 | SYNJ1 | S1084 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43561 | LAT | S84 | ochoa | Linker for activation of T-cells family member 1 (36 kDa phosphotyrosine adapter protein) (pp36) (p36-38) | Required for TCR (T-cell antigen receptor)- and pre-TCR-mediated signaling, both in mature T-cells and during their development (PubMed:23514740, PubMed:25907557). Involved in FCGR3 (low affinity immunoglobulin gamma Fc region receptor III)-mediated signaling in natural killer cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Couples activation of these receptors and their associated kinases with distal intracellular events such as mobilization of intracellular calcium stores, PKC activation, MAPK activation or cytoskeletal reorganization through the recruitment of PLCG1, GRB2, GRAP2, and other signaling molecules. {ECO:0000269|PubMed:10072481, ECO:0000269|PubMed:23514740, ECO:0000269|PubMed:25907557}. |
O43602 | DCX | S306 | ochoa | Neuronal migration protein doublecortin (Doublin) (Lissencephalin-X) (Lis-X) | Microtubule-associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral cortex development. May act by competing with the putative neuronal protein kinase DCLK1 in binding to a target protein. May in that way participate in a signaling pathway that is crucial for neuronal interaction before and during migration, possibly as part of a calcium ion-dependent signal transduction pathway. May be part with PAFAH1B1/LIS-1 of overlapping, but distinct, signaling pathways that promote neuronal migration. {ECO:0000269|PubMed:22359282}. |
O43711 | TLX3 | S26 | ochoa | T-cell leukemia homeobox protein 3 (Homeobox protein Hox-11L2) | None |
O60244 | MED14 | S1136 | ochoa | Mediator of RNA polymerase II transcription subunit 14 (Activator-recruited cofactor 150 kDa component) (ARC150) (Cofactor required for Sp1 transcriptional activation subunit 2) (CRSP complex subunit 2) (Mediator complex subunit 14) (RGR1 homolog) (hRGR1) (Thyroid hormone receptor-associated protein complex 170 kDa component) (Trap170) (Transcriptional coactivator CRSP150) (Vitamin D3 receptor-interacting protein complex 150 kDa component) (DRIP150) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:15340088, ECO:0000269|PubMed:15625066, ECO:0000269|PubMed:16595664}. |
O60271 | SPAG9 | T226 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60292 | SIPA1L3 | S326 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60346 | PHLPP1 | S336 | ochoa|psp | PH domain leucine-rich repeat-containing protein phosphatase 1 (EC 3.1.3.16) (Pleckstrin homology domain-containing family E member 1) (PH domain-containing family E member 1) (Suprachiasmatic nucleus circadian oscillatory protein) (hSCOP) | Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT2 and AKT3, 'Ser-660' of PRKCB and 'Ser-657' of PRKCA (PubMed:15808505, PubMed:17386267, PubMed:18162466). Isoform 2 seems to have a major role in regulating Akt signaling in hippocampal neurons (By similarity). Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and suppression of tumor growth. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation (PubMed:18162466). Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor (PubMed:19079341). Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). May act as a negative regulator of K-Ras signaling in membrane rafts (By similarity). Involved in the hippocampus-dependent long-term memory formation (By similarity). Involved in circadian control by regulating the consolidation of circadian periodicity after resetting (By similarity). Involved in development and function of regulatory T-cells (By similarity). {ECO:0000250|UniProtKB:Q8CHE4, ECO:0000250|UniProtKB:Q9WTR8, ECO:0000269|PubMed:15808505, ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}. |
O75154 | RAB11FIP3 | S52 | ochoa | Rab11 family-interacting protein 3 (FIP3) (FIP3-Rab11) (Rab11-FIP3) (Arfophilin-1) (EF hands-containing Rab-interacting protein) (Eferin) (MU-MB-17.148) | Downstream effector molecule for Rab11 GTPase which is involved in endocytic trafficking, cytokinesis and intracellular ciliogenesis by participating in membrane delivery (PubMed:15601896, PubMed:16148947, PubMed:17394487, PubMed:17628206, PubMed:18511905, PubMed:19327867, PubMed:20026645, PubMed:25673879, PubMed:26258637, PubMed:31204173). Recruited by Rab11 to endosomes where it links Rab11 to dynein motor complex (PubMed:20026645). The functional Rab11-RAB11FIP3-dynein complex regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endocytic recycling compartment (ERC) during interphase of cell cycle (PubMed:17394487, PubMed:20026645). Facilitates the interaction between dynein and dynactin and activates dynein processivity (PubMed:25035494). Binding with ASAP1 is needed to regulate the pericentrosomal localization of recycling endosomes (By similarity). The Rab11-RAB11FIP3 complex is also implicated in the transport during telophase of vesicles derived from recycling endosomes to the cleavage furrow via centrosome-anchored microtubules, where the vesicles function to deliver membrane during late cytokinesis and abscission (PubMed:15601896, PubMed:16148947). The recruitment of Rab11-RAB11FIP3-containing endosomes to the cleavage furrow and tethering to the midbody is co-mediated by RAB11FIP3 interaction with ARF6-exocyst and RACGAP1-MKLP1 tethering complexes (PubMed:17628206, PubMed:18511905). Also involved in the Rab11-Rabin8-Rab8 ciliogenesis cascade by facilitating the orderly assembly of a ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which directs preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:26258637, PubMed:31204173). Also promotes the activity of Rab11 and ASAP1 in the ARF4-dependent Golgi-to-cilia transport of the sensory receptor rhodopsin (PubMed:25673879). Competes with WDR44 for binding to Rab11, which controls intracellular ciliogenesis pathway (PubMed:31204173). May play a role in breast cancer cell motility by regulating actin cytoskeleton (PubMed:19327867). {ECO:0000250|UniProtKB:Q8CHD8, ECO:0000269|PubMed:15601896, ECO:0000269|PubMed:16148947, ECO:0000269|PubMed:17394487, ECO:0000269|PubMed:17628206, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19327867, ECO:0000269|PubMed:20026645, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26258637, ECO:0000269|PubMed:31204173}. |
O75376 | NCOR1 | S172 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S1756 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75381 | PEX14 | S252 | ochoa | Peroxisomal membrane protein PEX14 (PTS1 receptor-docking protein) (Peroxin-14) (Peroxisomal membrane anchor protein PEX14) | Component of the PEX13-PEX14 docking complex, a translocon channel that specifically mediates the import of peroxisomal cargo proteins bound to PEX5 receptor (PubMed:24235149, PubMed:28765278, PubMed:9653144). The PEX13-PEX14 docking complex forms a large import pore which can be opened to a diameter of about 9 nm (By similarity). Mechanistically, PEX5 receptor along with cargo proteins associates with the PEX14 subunit of the PEX13-PEX14 docking complex in the cytosol, leading to the insertion of the receptor into the organelle membrane with the concomitant translocation of the cargo into the peroxisome matrix (PubMed:24235149, PubMed:28765278). Plays a key role for peroxisome movement through a direct interaction with tubulin (PubMed:21525035). {ECO:0000250|UniProtKB:P53112, ECO:0000269|PubMed:21525035, ECO:0000269|PubMed:24235149, ECO:0000269|PubMed:28765278, ECO:0000269|PubMed:9653144}. |
O75410 | TACC1 | S276 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75962 | TRIO | S1763 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O94868 | FCHSD2 | S665 | ochoa | F-BAR and double SH3 domains protein 2 (Carom) (Protein nervous wreck 1) (NWK1) (SH3 multiple domains protein 3) | Adapter protein that plays a role in endocytosis via clathrin-coated pits. Contributes to the internalization of cell surface receptors, such as integrin ITGB1 and transferrin receptor (PubMed:29887380). Promotes endocytosis of EGFR in cancer cells, and thereby contributes to the down-regulation of EGFR signaling (PubMed:30249660). Recruited to clathrin-coated pits during a mid-to-late stage of assembly, where it is required for normal progress from U-shaped intermediate stage pits to terminal, omega-shaped pits (PubMed:29887380). Binds to membranes enriched in phosphatidylinositol 3,4-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate (PubMed:29887380). When bound to membranes, promotes actin polymerization via its interaction with WAS and/or WASL which leads to the activation of the Arp2/3 complex. Does not promote actin polymerisation in the absence of membranes (PubMed:29887380). {ECO:0000269|PubMed:29887380, ECO:0000269|PubMed:30249660}. |
O94887 | FARP2 | S476 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) | Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}. |
O94929 | ABLIM3 | S493 | ochoa | Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
O95049 | TJP3 | S856 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95155 | UBE4B | S65 | ochoa | Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}. |
O95219 | SNX4 | S22 | ochoa | Sorting nexin-4 | Involved in the regulation of endocytosis and in several stages of intracellular trafficking (PubMed:12668730, PubMed:17994011, PubMed:32513819, PubMed:33468622). Plays a role in recycling endocytosed transferrin receptor and prevent its degradation (PubMed:17994011). Involved in autophagosome assembly by regulating trafficking and recycling of phospholipid scramblase ATG9A (PubMed:32513819, PubMed:33468622). {ECO:0000269|PubMed:12668730, ECO:0000269|PubMed:17994011, ECO:0000269|PubMed:32513819, ECO:0000269|PubMed:33468622}. |
O95297 | MPZL1 | S219 | ochoa | Myelin protein zero-like protein 1 (Protein zero-related) | Cell surface receptor, which is involved in signal transduction processes. Recruits PTPN11/SHP-2 to the cell membrane and is a putative substrate of PTPN11/SHP-2. Is a major receptor for concanavalin-A (ConA) and is involved in cellular signaling induced by ConA, which probably includes Src family tyrosine-protein kinases. Isoform 3 seems to have a dominant negative role; it blocks tyrosine phosphorylation of MPZL1 induced by ConA. Isoform 1, but not isoform 2 and isoform 3, may be involved in regulation of integrin-mediated cell motility. {ECO:0000269|PubMed:11751924, ECO:0000269|PubMed:12410637}. |
O95359 | TACC2 | S1313 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95361 | TRIM16 | S38 | ochoa | Tripartite motif-containing protein 16 (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM16) (Estrogen-responsive B box protein) | E3 ubiquitin ligase that plays an essential role in the organization of autophagic response and ubiquitination upon lysosomal and phagosomal damages. Plays a role in the stress-induced biogenesis and degradation of protein aggresomes by regulating the p62-KEAP1-NRF2 signaling and particularly by modulating the ubiquitination levels and thus stability of NRF2. Acts as a scaffold protein and facilitates autophagic degradation of protein aggregates by interacting with p62/SQSTM, ATG16L1 and LC3B/MAP1LC3B. In turn, protects the cell against oxidative stress-induced cell death as a consequence of endomembrane damage. {ECO:0000269|PubMed:22629402, ECO:0000269|PubMed:27693506, ECO:0000269|PubMed:30143514}. |
O95365 | ZBTB7A | S526 | ochoa | Zinc finger and BTB domain-containing protein 7A (Factor binding IST protein 1) (FBI-1) (Factor that binds to inducer of short transcripts protein 1) (HIV-1 1st-binding protein 1) (Leukemia/lymphoma-related factor) (POZ and Krueppel erythroid myeloid ontogenic factor) (POK erythroid myeloid ontogenic factor) (Pokemon) (Pokemon 1) (TTF-I-interacting peptide 21) (TIP21) (Zinc finger protein 857A) | Transcription factor that represses the transcription of a wide range of genes involved in cell proliferation and differentiation (PubMed:14701838, PubMed:17595526, PubMed:20812024, PubMed:25514493, PubMed:26455326, PubMed:26816381). Directly and specifically binds to the consensus sequence 5'-[GA][CA]GACCCCCCCCC-3' and represses transcription both by regulating the organization of chromatin and through the direct recruitment of transcription factors to gene regulatory regions (PubMed:12004059, PubMed:17595526, PubMed:20812024, PubMed:25514493, PubMed:26816381). Negatively regulates SMAD4 transcriptional activity in the TGF-beta signaling pathway through these two mechanisms (PubMed:25514493). That is, recruits the chromatin regulator HDAC1 to the SMAD4-DNA complex and in parallel prevents the recruitment of the transcriptional activators CREBBP and EP300 (PubMed:25514493). Collaborates with transcription factors like RELA to modify the accessibility of gene transcription regulatory regions to secondary transcription factors (By similarity). Also directly interacts with transcription factors like SP1 to prevent their binding to DNA (PubMed:12004059). Functions as an androgen receptor/AR transcriptional corepressor by recruiting NCOR1 and NCOR2 to the androgen response elements/ARE on target genes (PubMed:20812024). Thereby, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Involved in the switch between fetal and adult globin expression during erythroid cells maturation (PubMed:26816381). Through its interaction with the NuRD complex regulates chromatin at the fetal globin genes to repress their transcription (PubMed:26816381). Specifically represses the transcription of the tumor suppressor ARF isoform from the CDKN2A gene (By similarity). Efficiently abrogates E2F1-dependent CDKN2A transactivation (By similarity). Regulates chondrogenesis through the transcriptional repression of specific genes via a mechanism that also requires histone deacetylation (By similarity). Regulates cell proliferation through the transcriptional regulation of genes involved in glycolysis (PubMed:26455326). Involved in adipogenesis through the regulation of genes involved in adipocyte differentiation (PubMed:14701838). Plays a key role in the differentiation of lymphoid progenitors into B and T lineages (By similarity). Promotes differentiation towards the B lineage by inhibiting the T-cell instructive Notch signaling pathway through the specific transcriptional repression of Notch downstream target genes (By similarity). Also regulates osteoclast differentiation (By similarity). May also play a role, independently of its transcriptional activity, in double-strand break repair via classical non-homologous end joining/cNHEJ (By similarity). Recruited to double-strand break sites on damage DNA, interacts with the DNA-dependent protein kinase complex and directly regulates its stability and activity in DNA repair (By similarity). May also modulate the splicing activity of KHDRBS1 toward BCL2L1 in a mechanism which is histone deacetylase-dependent and thereby negatively regulates the pro-apoptotic effect of KHDRBS1 (PubMed:24514149). {ECO:0000250|UniProtKB:O88939, ECO:0000250|UniProtKB:Q9QZ48, ECO:0000269|PubMed:12004059, ECO:0000269|PubMed:14701838, ECO:0000269|PubMed:17595526, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:24514149, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:26455326, ECO:0000269|PubMed:26816381}. |
O95402 | MED26 | S337 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95644 | NFATC1 | S117 | psp | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
O95644 | NFATC1 | S409 | psp | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
O95785 | WIZ | S1517 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
P00918 | CA2 | S29 | ochoa | Carbonic anhydrase 2 (EC 4.2.1.1) (Carbonate dehydratase II) (Carbonic anhydrase C) (CAC) (Carbonic anhydrase II) (CA-II) (Cyanamide hydratase CA2) (EC 4.2.1.69) | Catalyzes the reversible hydration of carbon dioxide (PubMed:11327835, PubMed:11802772, PubMed:11831900, PubMed:12056894, PubMed:12171926, PubMed:1336460, PubMed:14736236, PubMed:15300855, PubMed:15453828, PubMed:15667203, PubMed:15865431, PubMed:16106378, PubMed:16214338, PubMed:16290146, PubMed:16686544, PubMed:16759856, PubMed:16807956, PubMed:17127057, PubMed:17251017, PubMed:17314045, PubMed:17330962, PubMed:17346964, PubMed:17540563, PubMed:17588751, PubMed:17705204, PubMed:18024029, PubMed:18162396, PubMed:18266323, PubMed:18374572, PubMed:18481843, PubMed:18618712, PubMed:18640037, PubMed:18942852, PubMed:1909891, PubMed:1910042, PubMed:19170619, PubMed:19186056, PubMed:19206230, PubMed:19520834, PubMed:19778001, PubMed:7761440, PubMed:7901850, PubMed:8218160, PubMed:8262987, PubMed:8399159, PubMed:8451242, PubMed:8485129, PubMed:8639494, PubMed:9265618, PubMed:9398308). Can also hydrate cyanamide to urea (PubMed:10550681, PubMed:11015219). Stimulates the chloride-bicarbonate exchange activity of SLC26A6 (PubMed:15990874). Essential for bone resorption and osteoclast differentiation (PubMed:15300855). Involved in the regulation of fluid secretion into the anterior chamber of the eye. Contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption. {ECO:0000269|PubMed:10550681, ECO:0000269|PubMed:11015219, ECO:0000269|PubMed:11327835, ECO:0000269|PubMed:11802772, ECO:0000269|PubMed:11831900, ECO:0000269|PubMed:12056894, ECO:0000269|PubMed:12171926, ECO:0000269|PubMed:1336460, ECO:0000269|PubMed:14736236, ECO:0000269|PubMed:15300855, ECO:0000269|PubMed:15453828, ECO:0000269|PubMed:15667203, ECO:0000269|PubMed:15865431, ECO:0000269|PubMed:15990874, ECO:0000269|PubMed:16106378, ECO:0000269|PubMed:16214338, ECO:0000269|PubMed:16290146, ECO:0000269|PubMed:16686544, ECO:0000269|PubMed:16759856, ECO:0000269|PubMed:16807956, ECO:0000269|PubMed:17127057, ECO:0000269|PubMed:17251017, ECO:0000269|PubMed:17314045, ECO:0000269|PubMed:17330962, ECO:0000269|PubMed:17346964, ECO:0000269|PubMed:17540563, ECO:0000269|PubMed:17588751, ECO:0000269|PubMed:17705204, ECO:0000269|PubMed:18024029, ECO:0000269|PubMed:18162396, ECO:0000269|PubMed:18266323, ECO:0000269|PubMed:18374572, ECO:0000269|PubMed:18481843, ECO:0000269|PubMed:18618712, ECO:0000269|PubMed:18640037, ECO:0000269|PubMed:18942852, ECO:0000269|PubMed:1909891, ECO:0000269|PubMed:1910042, ECO:0000269|PubMed:19170619, ECO:0000269|PubMed:19186056, ECO:0000269|PubMed:19206230, ECO:0000269|PubMed:19520834, ECO:0000269|PubMed:19778001, ECO:0000269|PubMed:7761440, ECO:0000269|PubMed:7901850, ECO:0000269|PubMed:8218160, ECO:0000269|PubMed:8262987, ECO:0000269|PubMed:8399159, ECO:0000269|PubMed:8451242, ECO:0000269|PubMed:8485129, ECO:0000269|PubMed:8639494, ECO:0000269|PubMed:9265618, ECO:0000269|PubMed:9398308}. |
P17600 | SYN1 | S551 | ochoa | Synapsin-1 (Brain protein 4.1) (Synapsin I) | Neuronal phosphoprotein that coats synaptic vesicles, and binds to the cytoskeleton. Acts as a regulator of synaptic vesicles trafficking, involved in the control of neurotransmitter release at the pre-synaptic terminal (PubMed:21441247, PubMed:23406870). Also involved in the regulation of axon outgrowth and synaptogenesis (By similarity). The complex formed with NOS1 and CAPON proteins is necessary for specific nitric-oxid functions at a presynaptic level (By similarity). {ECO:0000250|UniProtKB:O88935, ECO:0000250|UniProtKB:P09951, ECO:0000269|PubMed:21441247, ECO:0000269|PubMed:23406870}. |
P18887 | XRCC1 | S461 | ochoa|psp | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P19622 | EN2 | S150 | ochoa | Homeobox protein engrailed-2 (Homeobox protein en-2) (Hu-En-2) | None |
P20393 | NR1D1 | S278 | ochoa | Nuclear receptor subfamily 1 group D member 1 (Rev-erbA-alpha) (V-erbA-related protein 1) (EAR-1) | Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components BMAL1, CLOCK and CRY1. Also regulates genes involved in metabolic functions, including lipid and bile acid metabolism, adipogenesis, gluconeogenesis and the macrophage inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nucleotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and regulates the levels of its ligand heme by repressing the expression of PPARGC1A, a potent inducer of heme synthesis. Regulates lipid metabolism by repressing the expression of APOC3 and by influencing the activity of sterol response element binding proteins (SREBPs); represses INSIG2 which interferes with the proteolytic activation of SREBPs which in turn govern the rhythmic expression of enzymes with key functions in sterol and fatty acid synthesis. Regulates gluconeogenesis via repression of G6PC1 and PEPCK and adipocyte differentiation via repression of PPARG. Regulates glucagon release in pancreatic alpha-cells via the AMPK-NAMPT-SIRT1 pathway and the proliferation, glucose-induced insulin secretion and expression of key lipogenic genes in pancreatic-beta cells. Positively regulates bile acid synthesis by increasing hepatic expression of CYP7A1 via repression of NR0B2 and NFIL3 which are negative regulators of CYP7A1. Modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy; controls mitochondrial biogenesis and respiration by interfering with the STK11-PRKAA1/2-SIRT1-PPARGC1A signaling pathway. Represses the expression of SERPINE1/PAI1, an important modulator of cardiovascular disease and the expression of inflammatory cytokines and chemokines in macrophages. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). Plays a role in the circadian regulation of body temperature and negatively regulates thermogenic transcriptional programs in brown adipose tissue (BAT); imposes a circadian oscillation in BAT activity, increasing body temperature when awake and depressing thermogenesis during sleep. In concert with NR2E3, regulates transcriptional networks critical for photoreceptor development and function. In addition to its activity as a repressor, can also act as a transcriptional activator. In the ovarian granulosa cells acts as a transcriptional activator of STAR which plays a role in steroid biosynthesis. In collaboration with SP1, activates GJA1 transcription in a heme-independent manner. Represses the transcription of CYP2B10, CYP4A10 and CYP4A14 (By similarity). Represses the transcription of CES2 (By similarity). Represses and regulates the circadian expression of TSHB in a NCOR1-dependent manner (By similarity). Negatively regulates the protein stability of NR3C1 and influences the time-dependent subcellular distribution of NR3C1, thereby affecting its transcriptional regulatory activity (By similarity). Plays a critical role in the circadian control of neutrophilic inflammation in the lung; under resting, non-stress conditions, acts as a rhythmic repressor to limit inflammatory activity whereas in the presence of inflammatory triggers undergoes ubiquitin-mediated degradation thereby relieving inhibition of the inflammatory response (By similarity). Plays a key role in the circadian regulation of microglial activation and neuroinflammation; suppresses microglial activation through the NF-kappaB pathway in the central nervous system (By similarity). Plays a role in the regulation of the diurnal rhythms of lipid and protein metabolism in the skeletal muscle via transcriptional repression of genes controlling lipid and amino acid metabolism in the muscle (By similarity). {ECO:0000250|UniProtKB:Q3UV55, ECO:0000269|PubMed:12021280, ECO:0000269|PubMed:15761026, ECO:0000269|PubMed:16968709, ECO:0000269|PubMed:18006707, ECO:0000269|PubMed:19710360, ECO:0000269|PubMed:1971514, ECO:0000269|PubMed:21479263, ECO:0000269|PubMed:22184247, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:2539258}. |
P20823 | HNF1A | S313 | ochoa | Hepatocyte nuclear factor 1-alpha (HNF-1-alpha) (HNF-1A) (Liver-specific transcription factor LF-B1) (LFB1) (Transcription factor 1) (TCF-1) | Transcriptional activator that regulates the tissue specific expression of multiple genes, especially in pancreatic islet cells and in liver (By similarity). Binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (PubMed:10966642, PubMed:12453420). Activates the transcription of CYP1A2, CYP2E1 and CYP3A11 (By similarity). {ECO:0000250|UniProtKB:P22361, ECO:0000269|PubMed:10966642, ECO:0000269|PubMed:12453420}.; FUNCTION: (Microbial infection) Plays a crucial role for hepatitis B virus gene transcription and DNA replication. Mechanistically, synergistically cooperates with NR5A2 to up-regulate the activity of one of the critical cis-elements in the hepatitis B virus genome enhancer II (ENII). {ECO:0000269|PubMed:14728801, ECO:0000269|PubMed:38018242}. |
P21127 | CDK11B | S752 | ochoa|psp | Cyclin-dependent kinase 11B (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 1) (CLK-1) (Cell division protein kinase 11B) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L1) (p58 CLK-1) | Plays multiple roles in cell cycle progression, cytokinesis and apoptosis. Involved in pre-mRNA splicing in a kinase activity-dependent manner. Isoform 7 may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:18216018, ECO:0000269|PubMed:2217177}. |
P21554 | CNR1 | S429 | psp | Cannabinoid receptor 1 (CB-R) (CB1) (CANN6) | G-protein coupled receptor for endogenous cannabinoids (eCBs), including N-arachidonoylethanolamide (also called anandamide or AEA) and 2-arachidonoylglycerol (2-AG), as well as phytocannabinoids, such as delta(9)-tetrahydrocannabinol (THC) (PubMed:15620723, PubMed:27768894, PubMed:27851727). Mediates many cannabinoid-induced effects, acting, among others, on food intake, memory loss, gastrointestinal motility, catalepsy, ambulatory activity, anxiety, chronic pain. Signaling typically involves reduction in cyclic AMP (PubMed:1718258, PubMed:21895628, PubMed:27768894). In the hypothalamus, may have a dual effect on mitochondrial respiration depending upon the agonist dose and possibly upon the cell type. Increases respiration at low doses, while decreases respiration at high doses. At high doses, CNR1 signal transduction involves G-protein alpha-i protein activation and subsequent inhibition of mitochondrial soluble adenylate cyclase, decrease in cyclic AMP concentration, inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system, including NDUFS2. In the hypothalamus, inhibits leptin-induced reactive oxygen species (ROS) formation and mediates cannabinoid-induced increase in SREBF1 and FASN gene expression. In response to cannabinoids, drives the release of orexigenic beta-endorphin, but not that of melanocyte-stimulating hormone alpha/alpha-MSH, from hypothalamic POMC neurons, hence promoting food intake. In the hippocampus, regulates cellular respiration and energy production in response to cannabinoids. Involved in cannabinoid-dependent depolarization-induced suppression of inhibition (DSI), a process in which depolarization of CA1 postsynaptic pyramidal neurons mobilizes eCBs, which retrogradely activate presynaptic CB1 receptors, transiently decreasing GABAergic inhibitory neurotransmission. Also reduces excitatory synaptic transmission (By similarity). In superior cervical ganglions and cerebral vascular smooth muscle cells, inhibits voltage-gated Ca(2+) channels in a constitutive, as well as agonist-dependent manner (PubMed:17895407). In cerebral vascular smooth muscle cells, cannabinoid-induced inhibition of voltage-gated Ca(2+) channels leads to vasodilation and decreased vascular tone (By similarity). Induces leptin production in adipocytes and reduces LRP2-mediated leptin clearance in the kidney, hence participating in hyperleptinemia. In adipose tissue, CNR1 signaling leads to increased expression of SREBF1, ACACA and FASN genes (By similarity). In the liver, activation by endocannabinoids leads to increased de novo lipogenesis and reduced fatty acid catabolism, associated with increased expression of SREBF1/SREBP-1, GCK, ACACA, ACACB and FASN genes. May also affect de novo cholesterol synthesis and HDL-cholesteryl ether uptake. Peripherally modulates energy metabolism (By similarity). In high carbohydrate diet-induced obesity, may decrease the expression of mitochondrial dihydrolipoyl dehydrogenase/DLD in striated muscles, as well as that of selected glucose/ pyruvate metabolic enzymes, hence affecting energy expenditure through mitochondrial metabolism (By similarity). In response to cannabinoid anandamide, elicits a pro-inflammatory response in macrophages, which involves NLRP3 inflammasome activation and IL1B and IL18 secretion (By similarity). In macrophages infiltrating pancreatic islets, this process may participate in the progression of type-2 diabetes and associated loss of pancreatic beta-cells (PubMed:23955712). {ECO:0000250|UniProtKB:O02777, ECO:0000250|UniProtKB:P47746, ECO:0000269|PubMed:15620723, ECO:0000269|PubMed:1718258, ECO:0000269|PubMed:17895407, ECO:0000269|PubMed:21895628, ECO:0000269|PubMed:23955712, ECO:0000269|PubMed:27768894, ECO:0000269|PubMed:27851727}.; FUNCTION: [Isoform 1]: Binds both 2-arachidonoylglycerol (2-AG) and anandamide. {ECO:0000269|PubMed:15620723}.; FUNCTION: [Isoform 2]: Only binds 2-arachidonoylglycerol (2-AG) with high affinity. Contrary to its effect on isoform 1, 2-AG behaves as an inverse agonist on isoform 2 in assays measuring GTP binding to membranes. {ECO:0000269|PubMed:15620723}.; FUNCTION: [Isoform 3]: Only binds 2-arachidonoylglycerol (2-AG) with high affinity. Contrary to its effect on isoform 1, 2-AG behaves as an inverse agonist on isoform 3 in assays measuring GTP binding to membranes. {ECO:0000269|PubMed:15620723}. |
P29590 | PML | S527 | ochoa|psp | Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) | Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}. |
P30305 | CDC25B | S169 | psp | M-phase inducer phosphatase 2 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25B) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner (PubMed:17332740). The three isoforms seem to have a different level of activity (PubMed:1836978). {ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P31260 | HOXA10 | S322 | ochoa | Homeobox protein Hox-A10 (Homeobox protein Hox-1.8) (Homeobox protein Hox-1H) (PL) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds to the DNA sequence 5'-AA[AT]TTTTATTAC-3'. |
P33316 | DUT | S99 | ochoa | Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial (dUTPase) (EC 3.6.1.23) (dUTP pyrophosphatase) | Catalyzes the cleavage of 2'-deoxyuridine 5'-triphosphate (dUTP) into 2'-deoxyuridine 5'-monophosphate (dUMP) and inorganic pyrophosphate and through its action efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis (PubMed:17880943, PubMed:8631816, PubMed:8805593). Inhibits peroxisome proliferator-activated receptor (PPAR) activity by binding of its N-terminal to PPAR, preventing the latter's dimerization with retinoid X receptor (By similarity). Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:P70583, ECO:0000250|UniProtKB:Q9CQ43, ECO:0000269|PubMed:17880943, ECO:0000269|PubMed:8631816, ECO:0000269|PubMed:8805593}. |
P40222 | TXLNA | Y524 | ochoa | Alpha-taxilin | May be involved in intracellular vesicle traffic and potentially in calcium-dependent exocytosis in neuroendocrine cells. |
P42858 | HTT | S1179 | ochoa|psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P43268 | ETV4 | S149 | ochoa | ETS translocation variant 4 (Adenovirus E1A enhancer-binding protein) (E1A-F) (Polyomavirus enhancer activator 3 homolog) (Protein PEA3) | Transcriptional activator (PubMed:19307308, PubMed:31552090). May play a role in keratinocyte differentiation (PubMed:31552090). {ECO:0000269|PubMed:19307308, ECO:0000269|PubMed:31552090}.; FUNCTION: (Microbial infection) Binds to the enhancer of the adenovirus E1A gene and acts as a transcriptional activator; the core-binding sequence is 5'-[AC]GGA[AT]GT-3'. {ECO:0000269|PubMed:8441666}. |
P46821 | MAP1B | S1339 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S2218 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P49116 | NR2C2 | S55 | ochoa | Nuclear receptor subfamily 2 group C member 2 (Orphan nuclear receptor TAK1) (Orphan nuclear receptor TR4) (Testicular receptor 4) | Orphan nuclear receptor that can act as a repressor or activator of transcription. An important repressor of nuclear receptor signaling pathways such as retinoic acid receptor, retinoid X, vitamin D3 receptor, thyroid hormone receptor and estrogen receptor pathways. May regulate gene expression during the late phase of spermatogenesis. Together with NR2C1, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription including that of GATA1. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Plays a fundamental role in early embryonic development and embryonic stem cells. Required for normal spermatogenesis and cerebellum development. Appears to be important for neurodevelopmentally regulated behavior (By similarity). Activates transcriptional activity of LHCG. Antagonist of PPARA-mediated transactivation. {ECO:0000250, ECO:0000269|PubMed:10347174, ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:17974920, ECO:0000269|PubMed:7779113, ECO:0000269|PubMed:9556573}. |
P54725 | RAD23A | S123 | ochoa | UV excision repair protein RAD23 homolog A (HR23A) (hHR23A) | Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to 'Lys-48'-linked polyubiquitin chains in a length-dependent manner and with a lower affinity to 'Lys-63'-linked polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome.; FUNCTION: Involved in nucleotide excision repair and is thought to be functional equivalent for RAD23B in global genome nucleotide excision repair (GG-NER) by association with XPC. In vitro, the XPC:RAD23A dimer has NER activity. Can stabilize XPC.; FUNCTION: (Microbial infection) Involved in Vpr-dependent replication of HIV-1 in non-proliferating cells and primary macrophages. Required for the association of HIV-1 Vpr with the host proteasome. {ECO:0000269|PubMed:20614012}. |
P55198 | MLLT6 | S438 | ochoa | Protein AF-17 (ALL1-fused gene from chromosome 17 protein) | None |
P78314 | SH3BP2 | S416 | ochoa | SH3 domain-binding protein 2 (3BP-2) | Binds differentially to the SH3 domains of certain proteins of signal transduction pathways. Binds to phosphatidylinositols; linking the hemopoietic tyrosine kinase fes to the cytoplasmic membrane in a phosphorylation dependent mechanism. |
P78559 | MAP1A | S2252 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P85037 | FOXK1 | S445 | ochoa | Forkhead box protein K1 (Myocyte nuclear factor) (MNF) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}. |
Q01484 | ANK2 | S3840 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q02080 | MEF2B | S188 | ochoa | Myocyte-specific enhancer factor 2B (RSRFR2) (Serum response factor-like protein 2) | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Activates transcription via this element. May be involved in muscle-specific and/or growth factor-related transcription. |
Q04206 | RELA | S529 | psp | Transcription factor p65 (Nuclear factor NF-kappa-B p65 subunit) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 3) | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The heterodimeric RELA-NFKB1 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. The NF-kappa-B heterodimeric RELA-NFKB1 and RELA-REL complexes, for instance, function as transcriptional activators. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. The inhibitory effect of I-kappa-B on NF-kappa-B through retention in the cytoplasm is exerted primarily through the interaction with RELA. RELA shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Besides its activity as a direct transcriptional activator, it is also able to modulate promoters accessibility to transcription factors and thereby indirectly regulate gene expression. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1. Essential for cytokine gene expression in T-cells (PubMed:15790681). The NF-kappa-B homodimeric RELA-RELA complex appears to be involved in invasin-mediated activation of IL-8 expression. Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:10928981, ECO:0000269|PubMed:12748188, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:17000776, ECO:0000269|PubMed:17620405, ECO:0000269|PubMed:19058135, ECO:0000269|PubMed:19103749, ECO:0000269|PubMed:20547752, ECO:0000269|PubMed:33440148}. |
Q04721 | NOTCH2 | S2090 | ochoa | Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}. |
Q05397 | PTK2 | S910 | ochoa|psp | Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) | Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}. |
Q05639 | EEF1A2 | S205 | psp | Elongation factor 1-alpha 2 (EF-1-alpha-2) (EC 3.6.5.-) (Eukaryotic elongation factor 1 A-2) (eEF1A-2) (Statin-S1) | Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis. Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (By similarity). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (By similarity). {ECO:0000250|UniProtKB:P68104, ECO:0000250|UniProtKB:Q71V39}. |
Q07157 | TJP1 | S411 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q07157 | TJP1 | S1446 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q07912 | TNK2 | S757 | ochoa | Activated CDC42 kinase 1 (ACK-1) (EC 2.7.10.2) (EC 2.7.11.1) (Tyrosine kinase non-receptor protein 2) | Non-receptor tyrosine-protein and serine/threonine-protein kinase that is implicated in cell spreading and migration, cell survival, cell growth and proliferation. Transduces extracellular signals to cytosolic and nuclear effectors. Phosphorylates AKT1, AR, MCF2, WASL and WWOX. Implicated in trafficking and clathrin-mediated endocytosis through binding to epidermal growth factor receptor (EGFR) and clathrin. Binds to both poly- and mono-ubiquitin and regulates ligand-induced degradation of EGFR, thereby contributing to the accumulation of EGFR at the limiting membrane of early endosomes. Downstream effector of CDC42 which mediates CDC42-dependent cell migration via phosphorylation of BCAR1. May be involved both in adult synaptic function and plasticity and in brain development. Activates AKT1 by phosphorylating it on 'Tyr-176'. Phosphorylates AR on 'Tyr-267' and 'Tyr-363' thereby promoting its recruitment to androgen-responsive enhancers (AREs). Phosphorylates WWOX on 'Tyr-287'. Phosphorylates MCF2, thereby enhancing its activity as a guanine nucleotide exchange factor (GEF) toward Rho family proteins. Contributes to the control of AXL receptor levels. Confers metastatic properties on cancer cells and promotes tumor growth by negatively regulating tumor suppressor such as WWOX and positively regulating pro-survival factors such as AKT1 and AR. Phosphorylates WASP (PubMed:20110370). {ECO:0000269|PubMed:10652228, ECO:0000269|PubMed:11278436, ECO:0000269|PubMed:16247015, ECO:0000269|PubMed:16257963, ECO:0000269|PubMed:16472662, ECO:0000269|PubMed:17038317, ECO:0000269|PubMed:18262180, ECO:0000269|PubMed:18435854, ECO:0000269|PubMed:19815557, ECO:0000269|PubMed:20110370, ECO:0000269|PubMed:20333297, ECO:0000269|PubMed:20383201}. |
Q08J23 | NSUN2 | S473 | ochoa | RNA cytosine C(5)-methyltransferase NSUN2 (EC 2.1.1.-) (Myc-induced SUN domain-containing protein) (Misu) (NOL1/NOP2/Sun domain family member 2) (Substrate of AIM1/Aurora kinase B) (mRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-) (tRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-, EC 2.1.1.203) (tRNA methyltransferase 4 homolog) (hTrm4) | RNA cytosine C(5)-methyltransferase that methylates cytosine to 5-methylcytosine (m5C) in various RNAs, such as tRNAs, mRNAs and some long non-coding RNAs (lncRNAs) (PubMed:17071714, PubMed:22995836, PubMed:31199786, PubMed:31358969). Involved in various processes, such as epidermal stem cell differentiation, testis differentiation and maternal to zygotic transition during early development: acts by increasing protein synthesis; cytosine C(5)-methylation promoting tRNA stability and preventing mRNA decay (PubMed:31199786). Methylates cytosine to 5-methylcytosine (m5C) at positions 34 and 48 of intron-containing tRNA(Leu)(CAA) precursors, and at positions 48, 49 and 50 of tRNA(Gly)(GCC) precursors (PubMed:17071714, PubMed:22995836, PubMed:31199786). tRNA methylation is required generation of RNA fragments derived from tRNAs (tRFs) (PubMed:31199786). Also mediates C(5)-methylation of mitochondrial tRNAs (PubMed:31276587). Catalyzes cytosine C(5)-methylation of mRNAs, leading to stabilize them and prevent mRNA decay: mRNA stabilization involves YBX1 that specifically recognizes and binds m5C-modified transcripts (PubMed:22395603, PubMed:31358969, PubMed:34556860). Cytosine C(5)-methylation of mRNAs also regulates mRNA export: methylated transcripts are specifically recognized by THOC4/ALYREF, which mediates mRNA nucleo-cytoplasmic shuttling (PubMed:28418038). Also mediates cytosine C(5)-methylation of non-coding RNAs, such as vault RNAs (vtRNAs), promoting their processing into regulatory small RNAs (PubMed:23871666). Cytosine C(5)-methylation of vtRNA VTRNA1.1 promotes its processing into small-vault RNA4 (svRNA4) and regulates epidermal differentiation (PubMed:31186410). May act downstream of Myc to regulate epidermal cell growth and proliferation (By similarity). Required for proper spindle assembly and chromosome segregation, independently of its methyltransferase activity (PubMed:19596847). {ECO:0000250|UniProtKB:Q1HFZ0, ECO:0000269|PubMed:17071714, ECO:0000269|PubMed:19596847, ECO:0000269|PubMed:22395603, ECO:0000269|PubMed:22995836, ECO:0000269|PubMed:23871666, ECO:0000269|PubMed:28418038, ECO:0000269|PubMed:31186410, ECO:0000269|PubMed:31199786, ECO:0000269|PubMed:31276587, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:34556860}. |
Q12815 | TROAP | S324 | ochoa | Tastin (Trophinin-assisting protein) (Trophinin-associated protein) | Could be involved with bystin and trophinin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation. |
Q12830 | BPTF | S2465 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12888 | TP53BP1 | S782 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S1362 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S1435 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12948 | FOXC1 | S250 | ochoa | Forkhead box protein C1 (Forkhead-related protein FKHL7) (Forkhead-related transcription factor 3) (FREAC-3) | DNA-binding transcriptional factor that plays a role in a broad range of cellular and developmental processes such as eye, bones, cardiovascular, kidney and skin development (PubMed:11782474, PubMed:14506133, PubMed:14578375, PubMed:15277473, PubMed:15299087, PubMed:15684392, PubMed:16449236, PubMed:16492674, PubMed:17210863, PubMed:19279310, PubMed:19793056, PubMed:25786029, PubMed:27804176, PubMed:27907090). Acts either as a transcriptional activator or repressor (PubMed:11782474). Binds to the consensus binding site 5'-[G/C][A/T]AAA[T/C]AA[A/C]-3' in promoter of target genes (PubMed:11782474, PubMed:12533514, PubMed:14506133, PubMed:19793056, PubMed:27804176, PubMed:7957066). Upon DNA-binding, promotes DNA bending (PubMed:14506133, PubMed:7957066). Acts as a transcriptional coactivator (PubMed:26565916). Stimulates Indian hedgehog (Ihh)-induced target gene expression mediated by the transcription factor GLI2, and hence regulates endochondral ossification (By similarity). Also acts as a transcriptional coregulator by increasing DNA-binding capacity of GLI2 in breast cancer cells (PubMed:26565916). Regulates FOXO1 through binding to a conserved element, 5'-GTAAACAAA-3' in its promoter region, implicating FOXC1 as an important regulator of cell viability and resistance to oxidative stress in the eye (PubMed:17993506). Cooperates with transcription factor FOXC2 in regulating expression of genes that maintain podocyte integrity (By similarity). Promotes cell growth inhibition by stopping the cell cycle in the G1 phase through TGFB1-mediated signals (PubMed:12408963). Involved in epithelial-mesenchymal transition (EMT) induction by increasing cell proliferation, migration and invasion (PubMed:20406990, PubMed:22991501). Involved in chemokine CXCL12-induced endothelial cell migration through the control of CXCR4 expression (By similarity). Plays a role in the gene regulatory network essential for epidermal keratinocyte terminal differentiation (PubMed:27907090). Essential developmental transcriptional factor required for mesoderm-derived tissues, such as the somites, skin, bone and cartilage. Positively regulates CXCL12 and stem cell factor expression in bone marrow mesenchymal progenitor cells, and hence plays a role in the development and maintenance of mesenchymal niches for haematopoietic stem and progenitor cells (HSPC). Plays a role in corneal transparency by preventing both blood vessel and lymphatic vessel growth during embryonic development in a VEGF-dependent manner. Involved in chemokine CXCL12-induced endothelial cell migration through the control of CXCR4 expression (By similarity). May function as a tumor suppressor (PubMed:12408963). {ECO:0000250|UniProtKB:Q61572, ECO:0000269|PubMed:11782474, ECO:0000269|PubMed:12408963, ECO:0000269|PubMed:12533514, ECO:0000269|PubMed:14506133, ECO:0000269|PubMed:14578375, ECO:0000269|PubMed:15277473, ECO:0000269|PubMed:15299087, ECO:0000269|PubMed:15684392, ECO:0000269|PubMed:16449236, ECO:0000269|PubMed:16492674, ECO:0000269|PubMed:17210863, ECO:0000269|PubMed:17993506, ECO:0000269|PubMed:19279310, ECO:0000269|PubMed:19793056, ECO:0000269|PubMed:20406990, ECO:0000269|PubMed:22991501, ECO:0000269|PubMed:25786029, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:27804176, ECO:0000269|PubMed:27907090, ECO:0000269|PubMed:7957066}. |
Q13409 | DYNC1I2 | S101 | ochoa | Cytoplasmic dynein 1 intermediate chain 2 (Cytoplasmic dynein intermediate chain 2) (Dynein intermediate chain 2, cytosolic) (DH IC-2) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function (PubMed:31079899). Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules (PubMed:31079899). The intermediate chains mediate the binding of dynein to dynactin via its 150 kDa component (p150-glued) DCTN1 (By similarity). Involved in membrane-transport, such as Golgi apparatus, late endosomes and lysosomes (By similarity). {ECO:0000250|UniProtKB:Q62871, ECO:0000269|PubMed:31079899}. |
Q13409 | DYNC1I2 | S104 | ochoa | Cytoplasmic dynein 1 intermediate chain 2 (Cytoplasmic dynein intermediate chain 2) (Dynein intermediate chain 2, cytosolic) (DH IC-2) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function (PubMed:31079899). Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules (PubMed:31079899). The intermediate chains mediate the binding of dynein to dynactin via its 150 kDa component (p150-glued) DCTN1 (By similarity). Involved in membrane-transport, such as Golgi apparatus, late endosomes and lysosomes (By similarity). {ECO:0000250|UniProtKB:Q62871, ECO:0000269|PubMed:31079899}. |
Q13459 | MYO9B | S1935 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13470 | TNK1 | S546 | ochoa | Non-receptor tyrosine-protein kinase TNK1 (EC 2.7.10.2) (CD38 negative kinase 1) | Involved in negative regulation of cell growth. Has tumor suppressor properties. Plays a negative regulatory role in the Ras-MAPK pathway. May function in signaling pathways utilized broadly during fetal development and more selectively in adult tissues and in cells of the lymphohematopoietic system. Could specifically be involved in phospholipid signal transduction. {ECO:0000269|PubMed:10873601, ECO:0000269|PubMed:18974114}. |
Q13796 | SHROOM2 | S436 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q13796 | SHROOM2 | S1297 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q13950 | RUNX2 | S312 | ochoa|psp | Runt-related transcription factor 2 (Acute myeloid leukemia 3 protein) (Core-binding factor subunit alpha-1) (CBF-alpha-1) (Oncogene AML-3) (Osteoblast-specific transcription factor 2) (OSF-2) (Polyomavirus enhancer-binding protein 2 alpha A subunit) (PEA2-alpha A) (PEBP2-alpha A) (SL3-3 enhancer factor 1 alpha A subunit) (SL3/AKV core-binding factor alpha A subunit) | Transcription factor involved in osteoblastic differentiation and skeletal morphogenesis (PubMed:28505335, PubMed:28703881, PubMed:28738062). Essential for the maturation of osteoblasts and both intramembranous and endochondral ossification. CBF binds to the core site, 5'-PYGPYGGT-3', of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, osteocalcin, osteopontin, bone sialoprotein, alpha 1(I) collagen, LCK, IL-3 and GM-CSF promoters. In osteoblasts, supports transcription activation: synergizes with SPEN/MINT to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Inhibits KAT6B-dependent transcriptional activation. {ECO:0000250, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:28505335, ECO:0000269|PubMed:28703881, ECO:0000269|PubMed:28738062}. |
Q14155 | ARHGEF7 | S676 | ochoa | Rho guanine nucleotide exchange factor 7 (Beta-Pix) (COOL-1) (PAK-interacting exchange factor beta) (p85) | Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions (By similarity). May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons. {ECO:0000250, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750}. |
Q14160 | SCRIB | S835 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14160 | SCRIB | S1348 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14244 | MAP7 | S353 | ochoa | Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) | Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}. |
Q14247 | CTTN | S418 | ochoa|psp | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14289 | PTK2B | Y756 | ochoa | Protein-tyrosine kinase 2-beta (EC 2.7.10.2) (Calcium-dependent tyrosine kinase) (CADTK) (Calcium-regulated non-receptor proline-rich tyrosine kinase) (Cell adhesion kinase beta) (CAK-beta) (CAKB) (Focal adhesion kinase 2) (FADK 2) (Proline-rich tyrosine kinase 2) (Related adhesion focal tyrosine kinase) (RAFTK) | Non-receptor protein-tyrosine kinase that regulates reorganization of the actin cytoskeleton, cell polarization, cell migration, adhesion, spreading and bone remodeling. Plays a role in the regulation of the humoral immune response, and is required for normal levels of marginal B-cells in the spleen and normal migration of splenic B-cells. Required for normal macrophage polarization and migration towards sites of inflammation. Regulates cytoskeleton rearrangement and cell spreading in T-cells, and contributes to the regulation of T-cell responses. Promotes osteoclastic bone resorption; this requires both PTK2B/PYK2 and SRC. May inhibit differentiation and activity of osteoprogenitor cells. Functions in signaling downstream of integrin and collagen receptors, immune receptors, G-protein coupled receptors (GPCR), cytokine, chemokine and growth factor receptors, and mediates responses to cellular stress. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and of the AKT1 signaling cascade. Promotes activation of NOS3. Regulates production of the cellular messenger cGMP. Promotes activation of the MAP kinase signaling cascade, including activation of MAPK1/ERK2, MAPK3/ERK1 and MAPK8/JNK1. Promotes activation of Rho family GTPases, such as RHOA and RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Acts as a scaffold, binding to both PDPK1 and SRC, thereby allowing SRC to phosphorylate PDPK1 at 'Tyr-9, 'Tyr-373', and 'Tyr-376'. Promotes phosphorylation of NMDA receptors by SRC family members, and thereby contributes to the regulation of NMDA receptor ion channel activity and intracellular Ca(2+) levels. May also regulate potassium ion transport by phosphorylation of potassium channel subunits. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ASAP1, NPHP1, KCNA2 and SHC1. Promotes phosphorylation of ASAP2, RHOU and PXN; this requires both SRC and PTK2/PYK2. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:12771146, ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:15050747, ECO:0000269|PubMed:15166227, ECO:0000269|PubMed:17634955, ECO:0000269|PubMed:18086875, ECO:0000269|PubMed:18339875, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18765415, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:19207108, ECO:0000269|PubMed:19244237, ECO:0000269|PubMed:19428251, ECO:0000269|PubMed:19648005, ECO:0000269|PubMed:19880522, ECO:0000269|PubMed:20001213, ECO:0000269|PubMed:20381867, ECO:0000269|PubMed:20521079, ECO:0000269|PubMed:21357692, ECO:0000269|PubMed:21533080, ECO:0000269|PubMed:7544443, ECO:0000269|PubMed:8670418, ECO:0000269|PubMed:8849729}. |
Q14643 | ITPR1 | S421 | psp | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR1 (IP3 receptor isoform 1) (IP3R 1) (InsP3R1) (Inositol 1,4,5 trisphosphate receptor) (Inositol 1,4,5-trisphosphate receptor type 1) (Type 1 inositol 1,4,5-trisphosphate receptor) (Type 1 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that, upon inositol 1,4,5-trisphosphate binding, mediates calcium release from the endoplasmic reticulum (ER) (PubMed:10620513, PubMed:27108797). Undergoes conformational changes upon ligand binding, suggesting structural flexibility that allows the channel to switch from a closed state, capable of interacting with its ligands such as 1,4,5-trisphosphate and calcium, to an open state, capable of transferring calcium ions across the ER membrane (By similarity). Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CAMK2 complex (By similarity). Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Part of a complex composed of HSPA9, ITPR1 and VDAC1 that regulates mitochondrial calcium-dependent apoptosis by facilitating calcium transport from the ER lumen to the mitochondria intermembrane space thus providing calcium for the downstream calcium channel MCU that directly releases it into mitochondria matrix (By similarity). Regulates fertilization and egg activation by tuning the frequency and amplitude of calcium oscillations (By similarity). {ECO:0000250|UniProtKB:P11881, ECO:0000250|UniProtKB:P29994, ECO:0000269|PubMed:10620513, ECO:0000269|PubMed:27108797}. |
Q14676 | MDC1 | S995 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14676 | MDC1 | S1068 | ochoa|psp | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14676 | MDC1 | S1711 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14699 | RFTN1 | S239 | ochoa | Raftlin (Cell migration-inducing gene 2 protein) (Raft-linking protein) | Involved in protein trafficking via association with clathrin and AP2 complex (PubMed:21266579, PubMed:27022195). Upon bacterial lipopolysaccharide stimulation, mediates internalization of TLR4 to endosomes in dendritic cells and macrophages; and internalization of poly(I:C) to TLR3-positive endosomes in myeloid dendritic cells and epithelial cells; resulting in activation of TICAM1-mediated signaling and subsequent IFNB1 production (PubMed:21266579, PubMed:27022195). Involved in T-cell antigen receptor-mediated signaling by regulating tyrosine kinase LCK localization, T-cell dependent antibody production and cytokine secretion (By similarity). May regulate B-cell antigen receptor-mediated signaling (PubMed:12805216). May play a pivotal role in the formation and/or maintenance of lipid rafts (PubMed:12805216). {ECO:0000250|UniProtKB:Q6A0D4, ECO:0000269|PubMed:12805216, ECO:0000269|PubMed:21266579, ECO:0000269|PubMed:27022195}. |
Q14814 | MEF2D | S192 | ochoa|psp | Myocyte-specific enhancer factor 2D | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}. |
Q14814 | MEF2D | S472 | ochoa|psp | Myocyte-specific enhancer factor 2D | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}. |
Q15303 | ERBB4 | S1140 | ochoa | Receptor tyrosine-protein kinase erbB-4 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-4) (Tyrosine kinase-type cell surface receptor HER4) (p180erbB4) [Cleaved into: ERBB4 intracellular domain (4ICD) (E4ICD) (s80HER4)] | Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins and EGF family members and regulates development of the heart, the central nervous system and the mammary gland, gene transcription, cell proliferation, differentiation, migration and apoptosis. Required for normal cardiac muscle differentiation during embryonic development, and for postnatal cardiomyocyte proliferation. Required for normal development of the embryonic central nervous system, especially for normal neural crest cell migration and normal axon guidance. Required for mammary gland differentiation, induction of milk proteins and lactation. Acts as cell-surface receptor for the neuregulins NRG1, NRG2, NRG3 and NRG4 and the EGF family members BTC, EREG and HBEGF. Ligand binding triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Ligand specificity and signaling is modulated by alternative splicing, proteolytic processing, and by the formation of heterodimers with other ERBB family members, thereby creating multiple combinations of intracellular phosphotyrosines that trigger ligand- and context-specific cellular responses. Mediates phosphorylation of SHC1 and activation of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1. Isoform JM-A CYT-1 and isoform JM-B CYT-1 phosphorylate PIK3R1, leading to the activation of phosphatidylinositol 3-kinase and AKT1 and protect cells against apoptosis. Isoform JM-A CYT-1 and isoform JM-B CYT-1 mediate reorganization of the actin cytoskeleton and promote cell migration in response to NRG1. Isoform JM-A CYT-2 and isoform JM-B CYT-2 lack the phosphotyrosine that mediates interaction with PIK3R1, and hence do not phosphorylate PIK3R1, do not protect cells against apoptosis, and do not promote reorganization of the actin cytoskeleton and cell migration. Proteolytic processing of isoform JM-A CYT-1 and isoform JM-A CYT-2 gives rise to the corresponding soluble intracellular domains (4ICD) that translocate to the nucleus, promote nuclear import of STAT5A, activation of STAT5A, mammary epithelium differentiation, cell proliferation and activation of gene expression. The ERBB4 soluble intracellular domains (4ICD) colocalize with STAT5A at the CSN2 promoter to regulate transcription of milk proteins during lactation. The ERBB4 soluble intracellular domains can also translocate to mitochondria and promote apoptosis. {ECO:0000269|PubMed:10348342, ECO:0000269|PubMed:10353604, ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:10722704, ECO:0000269|PubMed:10867024, ECO:0000269|PubMed:11178955, ECO:0000269|PubMed:11390655, ECO:0000269|PubMed:12807903, ECO:0000269|PubMed:15534001, ECO:0000269|PubMed:15746097, ECO:0000269|PubMed:16251361, ECO:0000269|PubMed:16778220, ECO:0000269|PubMed:16837552, ECO:0000269|PubMed:17486069, ECO:0000269|PubMed:17638867, ECO:0000269|PubMed:19098003, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:8383326, ECO:0000269|PubMed:8617750, ECO:0000269|PubMed:9135143, ECO:0000269|PubMed:9168115, ECO:0000269|PubMed:9334263}. |
Q15365 | PCBP1 | S190 | ochoa | Poly(rC)-binding protein 1 (Alpha-CP1) (Heterogeneous nuclear ribonucleoprotein E1) (hnRNP E1) (Nucleic acid-binding protein SUB2.3) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:15731341, PubMed:7556077, PubMed:7607214, PubMed:8152927). Together with PCBP2, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:P60335, ECO:0000269|PubMed:15731341, ECO:0000269|PubMed:7556077, ECO:0000269|PubMed:7607214, ECO:0000269|PubMed:8152927}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. {ECO:0000269|PubMed:12414943}. |
Q15555 | MAPRE2 | S200 | ochoa | Microtubule-associated protein RP/EB family member 2 (APC-binding protein EB2) (End-binding protein 2) (EB2) | Adapter protein that is involved in microtubule polymerization, and spindle function by stabilizing microtubules and anchoring them at centrosomes. Therefore, ensures mitotic progression and genome stability (PubMed:27030108). Acts as a central regulator of microtubule reorganization in apico-basal epithelial differentiation (By similarity). Plays a role during oocyte meiosis by regulating microtubule dynamics (By similarity). Participates in neurite growth by interacting with plexin B3/PLXNB3 and microtubule reorganization during apico-basal epithelial differentiation (PubMed:22373814). Also plays an essential role for cell migration and focal adhesion dynamics. Mechanistically, recruits HAX1 to microtubules in order to regulate focal adhesion dynamics (PubMed:26527684). {ECO:0000250|UniProtKB:Q8R001, ECO:0000269|PubMed:22373814, ECO:0000269|PubMed:23844040, ECO:0000269|PubMed:26527684, ECO:0000269|PubMed:27030108}. |
Q15652 | JMJD1C | S943 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15742 | NAB2 | T190 | ochoa | NGFI-A-binding protein 2 (EGR-1-binding protein 2) (Melanoma-associated delayed early response protein) (Protein MADER) | Acts as a transcriptional repressor for zinc finger transcription factors EGR1 and EGR2. Isoform 2 lacks repression ability (By similarity). {ECO:0000250}. |
Q15911 | ZFHX3 | S3418 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q16512 | PKN1 | S579 | ochoa | Serine/threonine-protein kinase N1 (EC 2.7.11.13) (Protease-activated kinase 1) (PAK-1) (Protein kinase C-like 1) (Protein kinase C-like PKN) (Protein kinase PKN-alpha) (Protein-kinase C-related kinase 1) (Serine-threonine protein kinase N) | PKC-related serine/threonine-protein kinase involved in various processes such as regulation of the intermediate filaments of the actin cytoskeleton, cell migration, tumor cell invasion and transcription regulation. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14. Regulates the cytoskeletal network by phosphorylating proteins such as VIM and neurofilament proteins NEFH, NEFL and NEFM, leading to inhibit their polymerization. Phosphorylates 'Ser-575', 'Ser-637' and 'Ser-669' of MAPT/Tau, lowering its ability to bind to microtubules, resulting in disruption of tubulin assembly. Acts as a key coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-11' of histone H3 (H3T11ph), a specific tag for epigenetic transcriptional activation that promotes demethylation of histone H3 'Lys-9' (H3K9me) by KDM4C/JMJD2C. Phosphorylates HDAC5, HDAC7 and HDAC9, leading to impair their import in the nucleus. Phosphorylates 'Thr-38' of PPP1R14A, 'Ser-159', 'Ser-163' and 'Ser-170' of MARCKS, and GFAP. Able to phosphorylate RPS6 in vitro. {ECO:0000269|PubMed:11104762, ECO:0000269|PubMed:12514133, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:18066052, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:24248594, ECO:0000269|PubMed:8557118, ECO:0000269|PubMed:8621664, ECO:0000269|PubMed:9175763}. |
Q16584 | MAP3K11 | S727 | psp | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q16584 | MAP3K11 | S758 | ochoa|psp | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q16666 | IFI16 | S493 | ochoa | Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) | Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}. |
Q24JP5 | TMEM132A | S988 | ochoa | Transmembrane protein 132A (HSPA5-binding protein 1) | May play a role in embryonic and postnatal development of the brain. Increased resistance to cell death induced by serum starvation in cultured cells. Regulates cAMP-induced GFAP gene expression via STAT3 phosphorylation (By similarity). {ECO:0000250}. |
Q2M1Z3 | ARHGAP31 | S1071 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2M3V2 | SOWAHA | S193 | ochoa | Ankyrin repeat domain-containing protein SOWAHA (Ankyrin repeat domain-containing protein 43) (Protein sosondowah homolog A) | None |
Q2Q1W2 | TRIM71 | S189 | ochoa | E3 ubiquitin-protein ligase TRIM71 (EC 2.3.2.27) (Protein lin-41 homolog) (RING-type E3 ubiquitin transferase TRIM71) (Tripartite motif-containing protein 71) | E3 ubiquitin-protein ligase that cooperates with the microRNAs (miRNAs) machinery and promotes embryonic stem cells proliferation and maintenance (Probable). Binds to miRNAs and associates with AGO2, participating in post-transcriptional repression of transcripts such as CDKN1A (By similarity). In addition, participates in post-transcriptional mRNA repression in a miRNA independent mechanism (PubMed:23125361). Facilitates the G1-S transition to promote rapid embryonic stem cell self-renewal by repressing CDKN1A expression. Required to maintain proliferation and prevent premature differentiation of neural progenitor cells during early neural development: positively regulates FGF signaling by controlling the stability of SHCBP1 (By similarity). Specific regulator of miRNA biogenesis. Binds to miRNA MIR29A hairpin and postranscriptionally modulates MIR29A levels, which indirectly regulates TET proteins expression (PubMed:28431233). {ECO:0000250|UniProtKB:Q1PSW8, ECO:0000269|PubMed:23125361, ECO:0000269|PubMed:28431233, ECO:0000305|PubMed:24239284}. |
Q3KP66 | INAVA | S643 | ochoa | Innate immunity activator protein | Expressed in peripheral macrophages and intestinal myeloid-derived cells, is required for optimal PRR (pattern recognition receptor)-induced signaling, cytokine secretion, and bacterial clearance. Upon stimulation of a broad range of PRRs (pattern recognition receptor) such as NOD2 or TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9, associates with YWHAQ/14-3-3T, which in turn leads to the recruitment and activation of MAP kinases and NF-kappa-B signaling complexes that amplifies PRR-induced downstream signals and cytokine secretion (PubMed:28436939). In the intestine, regulates adherens junction stability by regulating the degradation of CYTH1 and CYTH2, probably acting as substrate cofactor for SCF E3 ubiquitin-protein ligase complexes. Stabilizes adherens junctions by limiting CYTH1-dependent ARF6 activation (PubMed:29420262). {ECO:0000269|PubMed:28436939, ECO:0000269|PubMed:29420262}. |
Q3KQU3 | MAP7D1 | S125 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q4AC94 | C2CD3 | S2020 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q52LW3 | ARHGAP29 | S1185 | ochoa | Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}. |
Q53ET0 | CRTC2 | S433 | ochoa|psp | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q5JSZ5 | PRRC2B | S745 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5SY16 | NOL9 | S103 | ochoa | Polynucleotide 5'-hydroxyl-kinase NOL9 (EC 2.7.1.78) (Nucleolar protein 9) | Polynucleotide kinase that can phosphorylate the 5'-hydroxyl groups of single-stranded and double-stranded RNA and DNA substrates (PubMed:21063389). Involved in rRNA processing and its kinase activity is required for the processing of the 32S precursor into 5.8S and 28S rRNAs, more specifically for the generation of the major 5.8S(S) form (PubMed:21063389). Required for the efficient pre-rRNA processing of internal transcribed spacer 2 (ITS2) (PubMed:21063389). Associates with LAS1L to form an ITS2 pre-rRNA endonuclease-kinase complex and is responsible for the transport of this complex into the nucleolus (PubMed:31288032). {ECO:0000269|PubMed:21063389, ECO:0000269|PubMed:31288032}. |
Q5T0F9 | CC2D1B | S528 | ochoa | Coiled-coil and C2 domain-containing protein 1B (Five prime repressor element under dual repression-binding protein 2) (FRE under dual repression-binding protein 2) (Freud-2) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. {ECO:0000269|PubMed:19423080}. |
Q5T0W9 | FAM83B | S869 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T0Z8 | C6orf132 | S736 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T200 | ZC3H13 | S381 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T5P2 | KIAA1217 | S363 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5TGY3 | AHDC1 | S1549 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5VV67 | PPRC1 | S842 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) | Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}. |
Q63HR2 | TNS2 | S984 | ochoa | Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) | Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}. |
Q66K74 | MAP1S | S582 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q66K74 | MAP1S | S655 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q66K74 | MAP1S | S657 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q69YH5 | CDCA2 | S608 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q6N043 | ZNF280D | S104 | ochoa | Zinc finger protein 280D (Suppressor of hairy wing homolog 4) (Zinc finger protein 634) | May function as a transcription factor. |
Q6NY19 | KANK3 | S177 | ochoa | KN motif and ankyrin repeat domain-containing protein 3 (Ankyrin repeat domain-containing protein 47) | May be involved in the control of cytoskeleton formation by regulating actin polymerization. |
Q6P0Q8 | MAST2 | S200 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P0Q8 | MAST2 | S1358 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P2E9 | EDC4 | S844 | ochoa | Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) | In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}. |
Q6P3S6 | FBXO42 | S587 | ochoa | F-box only protein 42 (Just one F-box and Kelch domain-containing protein) | Substrate-recognition component of some SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. Specifically recognizes p53/TP53, promoting its ubiquitination and degradation. {ECO:0000269|PubMed:19509332}. |
Q6VMQ6 | ATF7IP | S852 | ochoa | Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}. |
Q6VN20 | RANBP10 | S386 | ochoa | Ran-binding protein 10 (RanBP10) | May act as an adapter protein to couple membrane receptors to intracellular signaling pathways (Probable). Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1 (PubMed:29911972). Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but does not affect estrogen-induced transactivation (PubMed:18222118). Acts as a guanine nucleotide exchange factor (GEF) for RAN GTPase. May play an essential role in hemostasis and in maintaining microtubule dynamics with respect to both platelet shape and function (By similarity). {ECO:0000250|UniProtKB:Q6VN19, ECO:0000269|PubMed:18222118, ECO:0000269|PubMed:29911972, ECO:0000305}. |
Q6ZMT1 | STAC2 | S192 | ochoa | SH3 and cysteine-rich domain-containing protein 2 (24b2/STAC2) (Src homology 3 and cysteine-rich domain-containing protein 2) | Plays a redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. Slows down the inactivation rate of the calcium channel CACNA1C. {ECO:0000250|UniProtKB:Q8R1B0}. |
Q6ZNJ1 | NBEAL2 | S1350 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZRV2 | FAM83H | S945 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q71RC2 | LARP4 | S597 | ochoa | La-related protein 4 (La ribonucleoprotein domain family member 4) | RNA binding protein that binds to the poly-A tract of mRNA molecules (PubMed:21098120). Associates with the 40S ribosomal subunit and with polysomes (PubMed:21098120). Plays a role in the regulation of mRNA translation (PubMed:21098120). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987, PubMed:27615744). {ECO:0000269|PubMed:21098120, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:27615744}. |
Q765P7 | MTSS2 | S601 | ochoa | Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) | Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}. |
Q76L83 | ASXL2 | S562 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q76N32 | CEP68 | S249 | ochoa | Centrosomal protein of 68 kDa (Cep68) | Involved in maintenance of centrosome cohesion, probably as part of a linker structure which prevents centrosome splitting (PubMed:18042621). Required for localization of CDK5RAP2 to the centrosome during interphase (PubMed:24554434, PubMed:25503564). Contributes to CROCC/rootletin filament formation (PubMed:30404835). {ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:30404835}. |
Q7KZI7 | MARK2 | S486 | ochoa | Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}. |
Q7L2J0 | MEPCE | S69 | ochoa | 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) | S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}. |
Q7L2J0 | MEPCE | S254 | ochoa | 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) | S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}. |
Q7Z2K8 | GPRIN1 | S73 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z422 | SZRD1 | S74 | ochoa | SUZ RNA-binding domain-containing (SUZ domain-containing protein 1) (Putative MAPK-activating protein PM18/PM20/PM22) | None |
Q7Z5H3 | ARHGAP22 | S569 | ochoa | Rho GTPase-activating protein 22 (Rho-type GTPase-activating protein 22) | Rho GTPase-activating protein involved in the signal transduction pathway that regulates endothelial cell capillary tube formation during angiogenesis. Acts as a GTPase activator for the RAC1 by converting it to an inactive GDP-bound state. Inhibits RAC1-dependent lamellipodia formation. May also play a role in transcription regulation via its interaction with VEZF1, by regulating activity of the endothelin-1 (EDN1) promoter (By similarity). {ECO:0000250}. |
Q7Z5L9 | IRF2BP2 | S423 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q7Z6I6 | ARHGAP30 | S480 | ochoa | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q7Z6J9 | TSEN54 | S249 | ochoa | tRNA-splicing endonuclease subunit Sen54 (SEN54 homolog) (HsSEN54) (tRNA-intron endonuclease Sen54) | Non-catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5' and 3' splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3' cyclic phosphate and 5'-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant distance from the constant structural features of the tRNA body. The tRNA splicing endonuclease is also involved in mRNA processing via its association with pre-mRNA 3'-end processing factors, establishing a link between pre-tRNA splicing and pre-mRNA 3'-end formation, suggesting that the endonuclease subunits function in multiple RNA-processing events. {ECO:0000269|PubMed:15109492}. |
Q7Z7L8 | C11orf96 | S299 | ochoa | Uncharacterized protein C11orf96 (Protein Ag2 homolog) | None |
Q86UR1 | NOXA1 | S239 | psp | NADPH oxidase activator 1 (NOX activator 1) (Antigen NY-CO-31) (NCF2-like protein) (P67phox-like factor) (p51-nox) | Functions as an activator of NOX1, a superoxide-producing NADPH oxidase. Functions in the production of reactive oxygen species (ROS) which participate in a variety of biological processes including host defense, hormone biosynthesis, oxygen sensing and signal transduction. May also activate CYBB/gp91phox and NOX3. {ECO:0000269|PubMed:12657628, ECO:0000269|PubMed:12716910, ECO:0000269|PubMed:14617635, ECO:0000269|PubMed:14978110, ECO:0000269|PubMed:15181005, ECO:0000269|PubMed:15824103, ECO:0000269|PubMed:17602954, ECO:0000269|PubMed:19755710}. |
Q86X27 | RALGPS2 | S343 | ochoa | Ras-specific guanine nucleotide-releasing factor RalGPS2 (Ral GEF with PH domain and SH3-binding motif 2) (RalA exchange factor RalGPS2) | Guanine nucleotide exchange factor for the small GTPase RALA. May be involved in cytoskeletal organization. May also be involved in the stimulation of transcription in a Ras-independent fashion (By similarity). {ECO:0000250}. |
Q8IWX8 | CHERP | S695 | ochoa | Calcium homeostasis endoplasmic reticulum protein (ERPROT 213-21) (SR-related CTD-associated factor 6) | Involved in calcium homeostasis, growth and proliferation. {ECO:0000269|PubMed:10794731, ECO:0000269|PubMed:12656674}. |
Q8IX01 | SUGP2 | S757 | ochoa | SURP and G-patch domain-containing protein 2 (Arginine/serine-rich-splicing factor 14) (Splicing factor, arginine/serine-rich 14) | May play a role in mRNA splicing. {ECO:0000305}. |
Q8IX07 | ZFPM1 | S61 | ochoa | Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) | Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}. |
Q8IXT5 | RBM12B | S638 | ochoa | RNA-binding protein 12B (RNA-binding motif protein 12B) | None |
Q8IY63 | AMOTL1 | S322 | ochoa | Angiomotin-like protein 1 | Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. {ECO:0000269|PubMed:22362771}. |
Q8IY92 | SLX4 | S1329 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IYB3 | SRRM1 | S707 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8IYB3 | SRRM1 | S775 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8IZD2 | KMT2E | S854 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZW8 | TNS4 | S242 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8N1I0 | DOCK4 | S1808 | ochoa | Dedicator of cytokinesis protein 4 | Functions as a guanine nucleotide exchange factor (GEF) that promotes the exchange of GDP to GTP, converting inactive GDP-bound small GTPases into their active GTP-bound form (PubMed:12628187, PubMed:16464467). Involved in regulation of adherens junction between cells (PubMed:12628187). Plays a role in cell migration (PubMed:20679435). {ECO:0000269|PubMed:12628187, ECO:0000269|PubMed:16464467, ECO:0000269|PubMed:20679435}.; FUNCTION: [Isoform 2]: Has a higher guanine nucleotide exchange factor activity compared to other isoforms. {ECO:0000269|PubMed:16464467}. |
Q8N3F8 | MICALL1 | S612 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3V7 | SYNPO | S702 | ochoa | Synaptopodin | Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}. |
Q8N3V7 | SYNPO | S899 | ochoa | Synaptopodin | Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}. |
Q8N4S9 | MARVELD2 | Y137 | ochoa | MARVEL domain-containing protein 2 (Tricellulin) | Plays a role in the formation of tricellular tight junctions and of epithelial barriers (By similarity). Required for normal hearing via its role in the separation of the endolymphatic and perilymphatic spaces of the organ of Corti in the inner ear, and for normal survival of hair cells in the organ of Corti (PubMed:17186462). {ECO:0000250|UniProtKB:Q3UZP0, ECO:0000269|PubMed:17186462}. |
Q8N5C8 | TAB3 | S442 | ochoa | TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 3) (NF-kappa-B-activating protein 1) (TAK1-binding protein 3) (TAB-3) (TGF-beta-activated kinase 1-binding protein 3) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122, PubMed:36593296). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). {ECO:0000269|PubMed:14633987, ECO:0000269|PubMed:14766965, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:36593296}.; FUNCTION: [Isoform 2]: May be an oncogenic factor. {ECO:0000269|PubMed:14766965}. |
Q8N6T7 | SIRT6 | S303 | ochoa|psp | NAD-dependent protein deacylase sirtuin-6 (EC 2.3.1.-) (NAD-dependent protein deacetylase sirtuin-6) (EC 2.3.1.286) (Protein mono-ADP-ribosyltransferase sirtuin-6) (EC 2.4.2.-) (Regulatory protein SIR2 homolog 6) (hSIRT6) (SIR2-like protein 6) | NAD-dependent protein deacetylase, deacylase and mono-ADP-ribosyltransferase that plays an essential role in DNA damage repair, telomere maintenance, metabolic homeostasis, inflammation, tumorigenesis and aging (PubMed:18337721, PubMed:19135889, PubMed:19625767, PubMed:21362626, PubMed:21680843, PubMed:23217706, PubMed:23552949, PubMed:23653361, PubMed:24052263, PubMed:27180906, PubMed:27322069, PubMed:29555651, PubMed:30374165). Displays protein-lysine deacetylase or defatty-acylase (demyristoylase and depalmitoylase) activity, depending on the context (PubMed:23552949, PubMed:24052263, PubMed:27322069). Acts as a key histone deacetylase by catalyzing deacetylation of histone H3 at 'Lys-9', 'Lys-18' and 'Lys-56' (H3K9ac, H3K18ac and H3K56ac, respectively), suppressing target gene expression of several transcription factors, including NF-kappa-B (PubMed:19625767, PubMed:21362626, PubMed:23892288, PubMed:23911928, PubMed:24012758, PubMed:26456828, PubMed:26898756, PubMed:27043296, PubMed:27180906, PubMed:30374165, PubMed:33067423). Acts as an inhibitor of transcription elongation by mediating deacetylation of H3K9ac and H3K56ac, preventing release of NELFE from chromatin and causing transcriptional pausing (By similarity). Involved in DNA repair by promoting double-strand break (DSB) repair: acts as a DSB sensor by recognizing and binding DSB sites, leading to (1) recruitment of DNA repair proteins, such as SMARCA5/SNF2H, and (2) deacetylation of histone H3K9ac and H3K56ac (PubMed:23911928, PubMed:31995034, PubMed:32538779). SIRT6 participation to DSB repair is probably involved in extension of life span (By similarity). Also promotes DNA repair by deacetylating non-histone proteins, such as DDB2 and p53/TP53 (PubMed:29474172, PubMed:32789493). Specifically deacetylates H3K18ac at pericentric heterochromatin, thereby maintaining pericentric heterochromatin silencing at centromeres and protecting against genomic instability and cellular senescence (PubMed:27043296). Involved in telomere maintenance by catalyzing deacetylation of histone H3 in telomeric chromatin, regulating telomere position effect and telomere movement in response to DNA damage (PubMed:18337721, PubMed:19625767, PubMed:21847107). Required for embryonic stem cell differentiation by mediating histone deacetylation of H3K9ac (PubMed:25915124, PubMed:29555651). Plays a major role in metabolism by regulating processes such as glycolysis, gluconeogenesis, insulin secretion and lipid metabolism (PubMed:24012758, PubMed:26787900). Inhibits glycolysis via histone deacetylase activity and by acting as a corepressor of the transcription factor HIF1A, thereby controlling the expression of multiple glycolytic genes (By similarity). Has tumor suppressor activity by repressing glycolysis, thereby inhibiting the Warburg effect (PubMed:23217706). Also regulates glycolysis and tumorigenesis by mediating deacetylation and nuclear export of non-histone proteins, such as isoform M2 of PKM (PKM2) (PubMed:26787900). Acts as a negative regulator of gluconeogenesis by mediating deacetylation of non-histone proteins, such as FOXO1 and KAT2A/GCN5 (PubMed:23142079, PubMed:25009184). Promotes beta-oxidation of fatty acids during fasting by catalyzing deacetylation of NCOA2, inducing coactivation of PPARA (By similarity). Acts as a regulator of lipid catabolism in brown adipocytes, both by catalyzing deacetylation of histones and non-histone proteins, such as FOXO1 (By similarity). Also acts as a regulator of circadian rhythms, both by regulating expression of clock-controlled genes involved in lipid and carbohydrate metabolism, and by catalyzing deacetylation of PER2 (By similarity). The defatty-acylase activity is specifically involved in regulation of protein secretion (PubMed:23552949, PubMed:24052263, PubMed:27322069, PubMed:28406396). Has high activity toward long-chain fatty acyl groups and mediates protein-lysine demyristoylation and depalmitoylation of target proteins, such as RRAS2 and TNF, thereby regulating their secretion (PubMed:23552949, PubMed:28406396). Also acts as a mono-ADP-ribosyltransferase by mediating mono-ADP-ribosylation of PARP1, TRIM28/KAP1 or SMARCC2/BAF170 (PubMed:21680843, PubMed:22753495, PubMed:27322069, PubMed:27568560). Mono-ADP-ribosyltransferase activity is involved in DNA repair, cellular senescence, repression of LINE-1 retrotransposon elements and regulation of transcription (PubMed:21680843, PubMed:22753495, PubMed:27568560). {ECO:0000250|UniProtKB:P59941, ECO:0000269|PubMed:18337721, ECO:0000269|PubMed:19135889, ECO:0000269|PubMed:19625767, ECO:0000269|PubMed:21362626, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:21847107, ECO:0000269|PubMed:22753495, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:23217706, ECO:0000269|PubMed:23552949, ECO:0000269|PubMed:23653361, ECO:0000269|PubMed:23892288, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:24012758, ECO:0000269|PubMed:24052263, ECO:0000269|PubMed:25009184, ECO:0000269|PubMed:25915124, ECO:0000269|PubMed:26456828, ECO:0000269|PubMed:26787900, ECO:0000269|PubMed:26898756, ECO:0000269|PubMed:27043296, ECO:0000269|PubMed:27180906, ECO:0000269|PubMed:27322069, ECO:0000269|PubMed:27568560, ECO:0000269|PubMed:28406396, ECO:0000269|PubMed:29474172, ECO:0000269|PubMed:29555651, ECO:0000269|PubMed:30374165, ECO:0000269|PubMed:31995034, ECO:0000269|PubMed:32538779, ECO:0000269|PubMed:32789493, ECO:0000269|PubMed:33067423}. |
Q8NC74 | RBBP8NL | S210 | ochoa | RBBP8 N-terminal-like protein | None |
Q8ND56 | LSM14A | S192 | ochoa | Protein LSM14 homolog A (Protein FAM61A) (Protein SCD6 homolog) (Putative alpha-synuclein-binding protein) (AlphaSNBP) (RNA-associated protein 55A) (hRAP55) (hRAP55A) | Essential for formation of P-bodies, cytoplasmic structures that provide storage sites for translationally inactive mRNAs and protect them from degradation (PubMed:16484376, PubMed:17074753, PubMed:29510985). Acts as a repressor of mRNA translation (PubMed:29510985). May play a role in mitotic spindle assembly (PubMed:26339800). {ECO:0000269|PubMed:16484376, ECO:0000269|PubMed:17074753, ECO:0000269|PubMed:26339800, ECO:0000269|PubMed:29510985}. |
Q8ND82 | ZNF280C | S114 | ochoa | Zinc finger protein 280C (Suppressor of hairy wing homolog 3) (Zinc finger protein 633) | May function as a transcription factor. |
Q8NDV7 | TNRC6A | S1599 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8NDV7 | TNRC6A | S1750 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8NFH5 | NUP35 | S138 | ochoa | Nucleoporin NUP35 (35 kDa nucleoporin) (Mitotic phosphoprotein 44) (MP-44) (Nuclear pore complex protein Nup53) (Nucleoporin NUP53) | Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. May play a role in the association of MAD1 with the NPC. {ECO:0000269|PubMed:15703211}. |
Q8NFQ8 | TOR1AIP2 | S120 | ochoa | Torsin-1A-interacting protein 2 (Lumenal domain-like LAP1) | Required for endoplasmic reticulum integrity. Regulates the distribution of TOR1A between the endoplasmic reticulum and the nuclear envelope as well as induces TOR1A, TOR1B and TOR3A ATPase activity. {ECO:0000269|PubMed:19339278, ECO:0000269|PubMed:23569223, ECO:0000269|PubMed:24275647}. |
Q8NFU5 | IPMK | S22 | ochoa | Inositol polyphosphate multikinase (EC 2.7.1.140) (EC 2.7.1.151) (EC 2.7.1.153) (Inositol 1,3,4,6-tetrakisphosphate 5-kinase) | Inositol phosphate kinase with a broad substrate specificity (PubMed:12027805, PubMed:12223481, PubMed:28882892, PubMed:30420721, PubMed:30624931). Phosphorylates inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) first to inositol 1,3,4,5-tetrakisphosphate and then to inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5) (PubMed:12027805, PubMed:12223481, PubMed:28882892, PubMed:30624931). Phosphorylates inositol 1,3,4,6-tetrakisphosphate (Ins(1,3,4,6)P4) (PubMed:12223481). Phosphorylates inositol 1,4,5,6-tetrakisphosphate (Ins(1,4,5,6)P4) (By similarity). Phosphorylates glycero-3-phospho-1D-myo-inositol 4,5-bisphosphate to glycero-3-phospho-1D-myo-inositol 3,4,5-trisphosphate (PubMed:28882892, PubMed:30420721). Plays an important role in MLKL-mediated necroptosis via its role in the biosynthesis of inositol pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6). Binding of these highly phosphorylated inositol phosphates to MLKL mediates the release of an N-terminal auto-inhibitory region, leading to activation of the kinase. Essential for activated phospho-MLKL to oligomerize and localize to the cell membrane during necroptosis (PubMed:29883610). Required for normal embryonic development, probably via its role in the biosynthesis of inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5) and inositol hexakisphosphate (InsP6) (By similarity). {ECO:0000250|UniProtKB:Q7TT16, ECO:0000269|PubMed:12027805, ECO:0000269|PubMed:12223481, ECO:0000269|PubMed:28882892, ECO:0000269|PubMed:29883610, ECO:0000269|PubMed:30420721, ECO:0000269|PubMed:30624931}. |
Q8TE04 | PANK1 | S215 | ochoa | Pantothenate kinase 1 (hPanK) (hPanK1) (EC 2.7.1.33) (Pantothenic acid kinase 1) | [Isoform 1]: Catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis. {ECO:0000269|PubMed:14523052, ECO:0000269|PubMed:17631502}. |
Q8TER5 | ARHGEF40 | S226 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8TEU7 | RAPGEF6 | S738 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8TEW0 | PARD3 | S1335 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TEW8 | PARD3B | S1162 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TF72 | SHROOM3 | S927 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WUB8 | PHF10 | S36 | ochoa | PHD finger protein 10 (BRG1-associated factor 45a) (BAF45a) (XAP135) | Involved in transcription activity regulation by chromatin remodeling. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250}. |
Q8WUF5 | PPP1R13L | S84 | ochoa|psp | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WWL2 | SPIRE2 | S622 | ochoa | Protein spire homolog 2 (Spir-2) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). {ECO:0000250|UniProtKB:Q8K1S6, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480}. |
Q8WXX7 | AUTS2 | S1198 | ochoa | Autism susceptibility gene 2 protein | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). The PRC1-like complex that contains PCGF5, RNF2, CSNK2B, RYBP and AUTS2 has decreased histone H2A ubiquitination activity, due to the phosphorylation of RNF2 by CSNK2B (PubMed:25519132). As a consequence, the complex mediates transcriptional activation (PubMed:25519132). In the cytoplasm, plays a role in axon and dendrite elongation and in neuronal migration during embryonic brain development. Promotes reorganization of the actin cytoskeleton, lamellipodia formation and neurite elongation via its interaction with RAC guanine nucleotide exchange factors, which then leads to the activation of RAC1 (By similarity). {ECO:0000250|UniProtKB:A0A087WPF7, ECO:0000269|PubMed:25519132}. |
Q92545 | TMEM131 | S1621 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92608 | DOCK2 | S1780 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q92619 | ARHGAP45 | S569 | ochoa | Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}. |
Q92622 | RUBCN | S266 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q92625 | ANKS1A | S589 | ochoa | Ankyrin repeat and SAM domain-containing protein 1A (Odin) | Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}. |
Q969V6 | MRTFA | S156 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q96BT3 | CENPT | S47 | ochoa|psp | Centromere protein T (CENP-T) (Interphase centromere complex protein 22) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Part of a nucleosome-associated complex that binds specifically to histone H3-containing nucleosomes at the centromere, as opposed to nucleosomes containing CENPA. Component of the heterotetrameric CENP-T-W-S-X complex that binds and supercoils DNA, and plays an important role in kinetochore assembly. CENPT has a fundamental role in kinetochore assembly and function. It is one of the inner kinetochore proteins, with most further proteins binding downstream. Required for normal chromosome organization and normal progress through mitosis. {ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:21529714, ECO:0000269|PubMed:21695110}. |
Q96CA5 | BIRC7 | S220 | ochoa | Baculoviral IAP repeat-containing protein 7 (EC 2.3.2.27) (Kidney inhibitor of apoptosis protein) (KIAP) (Livin) (Melanoma inhibitor of apoptosis protein) (ML-IAP) (RING finger protein 50) (RING-type E3 ubiquitin transferase BIRC7) [Cleaved into: Baculoviral IAP repeat-containing protein 7 30kDa subunit (Truncated livin) (p30-Livin) (tLivin)] | Apoptotic regulator capable of exerting proapoptotic and anti-apoptotic activities and plays crucial roles in apoptosis, cell proliferation, and cell cycle control (PubMed:11024045, PubMed:11084335, PubMed:11162435, PubMed:16729033, PubMed:17294084). Its anti-apoptotic activity is mediated through the inhibition of CASP3, CASP7 and CASP9, as well as by its E3 ubiquitin-protein ligase activity (PubMed:11024045, PubMed:16729033). As it is a weak caspase inhibitor, its anti-apoptotic activity is thought to be due to its ability to ubiquitinate DIABLO/SMAC targeting it for degradation thereby promoting cell survival (PubMed:16729033). May contribute to caspase inhibition, by blocking the ability of DIABLO/SMAC to disrupt XIAP/BIRC4-caspase interactions (PubMed:16729033). Protects against apoptosis induced by TNF or by chemical agents such as adriamycin, etoposide or staurosporine (PubMed:11084335, PubMed:11162435, PubMed:11865055). Suppression of apoptosis is mediated by activation of MAPK8/JNK1, and possibly also of MAPK9/JNK2 (PubMed:11865055). This activation depends on TAB1 and MAP3K7/TAK1 (PubMed:11865055). In vitro, inhibits CASP3 and proteolytic activation of pro-CASP9 (PubMed:11024045). {ECO:0000269|PubMed:11024045, ECO:0000269|PubMed:11084335, ECO:0000269|PubMed:11162435, ECO:0000269|PubMed:11865055, ECO:0000269|PubMed:16729033, ECO:0000269|PubMed:17294084}.; FUNCTION: [Isoform 1]: Blocks staurosporine-induced apoptosis (PubMed:11322947). Promotes natural killer (NK) cell-mediated killing (PubMed:18034418). {ECO:0000269|PubMed:11322947, ECO:0000269|PubMed:18034418}.; FUNCTION: [Isoform 2]: Blocks etoposide-induced apoptosis (PubMed:11162435, PubMed:11322947). Protects against natural killer (NK) cell-mediated killing (PubMed:18034418). {ECO:0000269|PubMed:11162435, ECO:0000269|PubMed:11322947, ECO:0000269|PubMed:18034418}. |
Q96EC8 | YIPF6 | S24 | ochoa | Protein YIPF6 (YIP1 family member 6) | May be required for stable YIPF1 and YIPF2 protein expression. {ECO:0000269|PubMed:28286305}. |
Q96F45 | ZNF503 | S111 | ochoa | Zinc finger protein 503 | May function as a transcriptional repressor. {ECO:0000250}. |
Q96F45 | ZNF503 | S237 | ochoa | Zinc finger protein 503 | May function as a transcriptional repressor. {ECO:0000250}. |
Q96G01 | BICD1 | S610 | ochoa | Protein bicaudal D homolog 1 (Bic-D 1) | Regulates coat complex coatomer protein I (COPI)-independent Golgi-endoplasmic reticulum transport by recruiting the dynein-dynactin motor complex. |
Q96I34 | PPP1R16A | S418 | ochoa | Protein phosphatase 1 regulatory subunit 16A (Myosin phosphatase-targeting subunit 3) | Inhibits protein phosphatase 1 activity toward phosphorylase, myosin light chain and myosin substrates. {ECO:0000250}. |
Q96JA1 | LRIG1 | S975 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 1 (LIG-1) | Acts as a feedback negative regulator of signaling by receptor tyrosine kinases, through a mechanism that involves enhancement of receptor ubiquitination and accelerated intracellular degradation. {ECO:0000269|PubMed:15282549}. |
Q96JM3 | CHAMP1 | S223 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JM3 | CHAMP1 | S507 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96L73 | NSD1 | S2397 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96PE1 | ADGRA2 | S1116 | ochoa | Adhesion G protein-coupled receptor A2 (G-protein coupled receptor 124) (Tumor endothelial marker 5) | Endothelial receptor which functions together with RECK to enable brain endothelial cells to selectively respond to Wnt7 signals (WNT7A or WNT7B) (PubMed:28289266, PubMed:30026314). Plays a key role in Wnt7-specific responses, such as endothelial cell sprouting and migration in the forebrain and neural tube, and establishment of the blood-brain barrier (By similarity). Acts as a Wnt7-specific coactivator of canonical Wnt signaling: required to deliver RECK-bound Wnt7 to frizzled by assembling a higher-order RECK-ADGRA2-Fzd-LRP5-LRP6 complex (PubMed:30026314). ADGRA2-tethering function does not rely on its G-protein coupled receptor (GPCR) structure but instead on its combined capacity to interact with RECK extracellularly and recruit the Dishevelled scaffolding protein intracellularly (PubMed:30026314). Binds to the glycosaminoglycans heparin, heparin sulfate, chondroitin sulfate and dermatan sulfate (PubMed:16982628). {ECO:0000250|UniProtKB:Q91ZV8, ECO:0000269|PubMed:16982628, ECO:0000269|PubMed:28289266, ECO:0000269|PubMed:30026314}. |
Q96PG8 | BBC3 | S221 | ochoa | Bcl-2-binding component 3, isoforms 3/4 (JFY-1) (p53 up-regulated modulator of apoptosis) | [Isoform 3]: Does not affect cell growth. {ECO:0000269|PubMed:11463392}. |
Q96PN7 | TRERF1 | S689 | ochoa | Transcriptional-regulating factor 1 (Breast cancer anti-estrogen resistance 2) (Transcriptional-regulating protein 132) (Zinc finger protein rapa) (Zinc finger transcription factor TReP-132) | Binds DNA and activates transcription of CYP11A1. Interaction with CREBBP and EP300 results in a synergistic transcriptional activation of CYP11A1. {ECO:0000269|PubMed:11349124, ECO:0000269|PubMed:16371131}. |
Q96RG2 | PASK | S106 | ochoa | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96RN5 | MED15 | S520 | ochoa | Mediator of RNA polymerase II transcription subunit 15 (Activator-recruited cofactor 105 kDa component) (ARC105) (CTG repeat protein 7a) (Mediator complex subunit 15) (Positive cofactor 2 glutamine/Q-rich-associated protein) (PC2 glutamine/Q-rich-associated protein) (TPA-inducible gene 1 protein) (TIG-1) (Trinucleotide repeat-containing gene 7 protein) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. Required for cholesterol-dependent gene regulation. Positively regulates the Nodal signaling pathway. {ECO:0000269|PubMed:12167862, ECO:0000269|PubMed:16630888, ECO:0000269|PubMed:16799563}. |
Q96SN8 | CDK5RAP2 | S1020 | ochoa | CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) | Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}. |
Q96SY0 | INTS14 | S387 | ochoa | Integrator complex subunit 14 (von Willebrand factor A domain-containing protein 9) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683, PubMed:38823386). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:32647223). Within the integrator complex, INTS14 is part of the integrator tail module that acts as a platform for the recruitment of transcription factors at promoters (PubMed:38823386, PubMed:38906142). {ECO:0000269|PubMed:32647223, ECO:0000269|PubMed:38570683, ECO:0000269|PubMed:38823386, ECO:0000269|PubMed:38906142}. |
Q96T58 | SPEN | S2481 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99700 | ATXN2 | S207 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q9BQI5 | SGIP1 | S265 | ochoa | SH3-containing GRB2-like protein 3-interacting protein 1 (Endophilin-3-interacting protein) | May function in clathrin-mediated endocytosis. Has both a membrane binding/tubulating activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a preference for membranes enriched in phosphatidylserine and phosphoinositides and is required for the endocytosis of the transferrin receptor. May also bind tubulin. May play a role in the regulation of energy homeostasis. {ECO:0000250|UniProtKB:Q8VD37}. |
Q9BRD0 | BUD13 | S299 | ochoa | BUD13 homolog | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9BUA3 | SPINDOC | S55 | ochoa | Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) | Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}. |
Q9BUK6 | MSTO1 | S495 | ochoa | Protein misato homolog 1 | Involved in the regulation of mitochondrial distribution and morphology (PubMed:17349998, PubMed:28544275, PubMed:28554942). Required for mitochondrial fusion and mitochondrial network formation (PubMed:28544275, PubMed:28554942). {ECO:0000269|PubMed:17349998, ECO:0000269|PubMed:28544275, ECO:0000269|PubMed:28554942}. |
Q9BUL9 | RPP25 | S162 | ochoa | Ribonuclease P protein subunit p25 (RNase P protein subunit p25) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:12003489, PubMed:16723659, PubMed:30454648). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:12003489, ECO:0000269|PubMed:16723659, ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648}. |
Q9BUT9 | MCRIP2 | S61 | ochoa | MAPK regulated corepressor interacting protein 2 (Protein FAM195A) | None |
Q9BUT9 | MCRIP2 | S80 | ochoa | MAPK regulated corepressor interacting protein 2 (Protein FAM195A) | None |
Q9BXF6 | RAB11FIP5 | S538 | ochoa | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9BXH1 | BBC3 | S106 | psp | Bcl-2-binding component 3, isoforms 1/2 (JFY-1) (p53 up-regulated modulator of apoptosis) | Essential mediator of p53/TP53-dependent and p53/TP53-independent apoptosis (PubMed:11463391, PubMed:23340338). Promotes partial unfolding of BCL2L1 and dissociation of BCL2L1 from p53/TP53, releasing the bound p53/TP53 to induce apoptosis (PubMed:23340338). Regulates ER stress-induced neuronal apoptosis (By similarity). {ECO:0000250|UniProtKB:Q99ML1, ECO:0000269|PubMed:11463391, ECO:0000269|PubMed:23340338}. |
Q9BZL4 | PPP1R12C | S509 | ochoa|psp | Protein phosphatase 1 regulatory subunit 12C (Protein phosphatase 1 myosin-binding subunit of 85 kDa) (Protein phosphatase 1 myosin-binding subunit p85) | Regulates myosin phosphatase activity. {ECO:0000269|PubMed:11399775}. |
Q9C0B0 | UNK | S467 | psp | RING finger protein unkempt homolog (Zinc finger CCCH domain-containing protein 5) | Sequence-specific RNA-binding protein which plays an important role in the establishment and maintenance of the early morphology of cortical neurons during embryonic development. Acts as a translation repressor and controls a translationally regulated cell morphology program to ensure proper structuring of the nervous system. Translational control depends on recognition of its binding element within target mRNAs which consists of a mandatory UAG trimer upstream of a U/A-rich motif. Associated with polysomes (PubMed:25737280). {ECO:0000269|PubMed:25737280}. |
Q9C0H5 | ARHGAP39 | S303 | ochoa | Rho GTPase-activating protein 39 | None |
Q9GZN7 | ROGDI | S227 | ochoa | Protein rogdi homolog | None |
Q9H1B7 | IRF2BPL | S639 | ochoa | Probable E3 ubiquitin-protein ligase IRF2BPL (EC 2.3.2.27) (Enhanced at puberty protein 1) (Interferon regulatory factor 2-binding protein-like) | Probable E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins (PubMed:29374064). Through the degradation of CTNNB1, functions downstream of FOXF2 to negatively regulate the Wnt signaling pathway (PubMed:29374064). Probably plays a role in the development of the central nervous system and in neuronal maintenance (Probable). Also acts as a transcriptional regulator of genes controlling female reproductive function. May play a role in gene transcription by transactivating GNRH1 promoter and repressing PENK promoter (By similarity). {ECO:0000250|UniProtKB:Q5EIC4, ECO:0000269|PubMed:29374064, ECO:0000305|PubMed:17334524, ECO:0000305|PubMed:29374064, ECO:0000305|PubMed:30057031}. |
Q9H211 | CDT1 | S31 | ochoa|psp | DNA replication factor Cdt1 (Double parked homolog) (DUP) | Required for both DNA replication and mitosis (PubMed:11125146, PubMed:14993212, PubMed:21856198, PubMed:22581055, PubMed:26842564). DNA replication licensing factor, required for pre-replication complex assembly. Cooperates with CDC6 and the origin recognition complex (ORC) during G1 phase of the cell cycle to promote the loading of the mini-chromosome maintenance (MCM) complex onto DNA to generate pre-replication complexes (pre-RC) (PubMed:14672932). Required also for mitosis by promoting stable kinetochore-microtubule attachments (PubMed:22581055). Potential oncogene (By similarity). {ECO:0000250|UniProtKB:Q8R4E9, ECO:0000269|PubMed:11125146, ECO:0000269|PubMed:14672932, ECO:0000269|PubMed:14993212, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:22581055, ECO:0000269|PubMed:26842564}. |
Q9H211 | CDT1 | T102 | psp | DNA replication factor Cdt1 (Double parked homolog) (DUP) | Required for both DNA replication and mitosis (PubMed:11125146, PubMed:14993212, PubMed:21856198, PubMed:22581055, PubMed:26842564). DNA replication licensing factor, required for pre-replication complex assembly. Cooperates with CDC6 and the origin recognition complex (ORC) during G1 phase of the cell cycle to promote the loading of the mini-chromosome maintenance (MCM) complex onto DNA to generate pre-replication complexes (pre-RC) (PubMed:14672932). Required also for mitosis by promoting stable kinetochore-microtubule attachments (PubMed:22581055). Potential oncogene (By similarity). {ECO:0000250|UniProtKB:Q8R4E9, ECO:0000269|PubMed:11125146, ECO:0000269|PubMed:14672932, ECO:0000269|PubMed:14993212, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:22581055, ECO:0000269|PubMed:26842564}. |
Q9H211 | CDT1 | S411 | ochoa|psp | DNA replication factor Cdt1 (Double parked homolog) (DUP) | Required for both DNA replication and mitosis (PubMed:11125146, PubMed:14993212, PubMed:21856198, PubMed:22581055, PubMed:26842564). DNA replication licensing factor, required for pre-replication complex assembly. Cooperates with CDC6 and the origin recognition complex (ORC) during G1 phase of the cell cycle to promote the loading of the mini-chromosome maintenance (MCM) complex onto DNA to generate pre-replication complexes (pre-RC) (PubMed:14672932). Required also for mitosis by promoting stable kinetochore-microtubule attachments (PubMed:22581055). Potential oncogene (By similarity). {ECO:0000250|UniProtKB:Q8R4E9, ECO:0000269|PubMed:11125146, ECO:0000269|PubMed:14672932, ECO:0000269|PubMed:14993212, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:22581055, ECO:0000269|PubMed:26842564}. |
Q9H2E6 | SEMA6A | S808 | ochoa | Semaphorin-6A (Semaphorin VIA) (Sema VIA) (Semaphorin-6A-1) (SEMA6A-1) | Cell surface receptor for PLXNA2 that plays an important role in cell-cell signaling. Required for normal granule cell migration in the developing cerebellum. Promotes reorganization of the actin cytoskeleton and plays an important role in axon guidance in the developing central nervous system. Can act as repulsive axon guidance cue. Has repulsive action towards migrating granular neurons. May play a role in channeling sympathetic axons into the sympathetic chains and controlling the temporal sequence of sympathetic target innervation. {ECO:0000250|UniProtKB:O35464}.; FUNCTION: (Microbial infection) Acts as a receptor for P.sordellii toxin TcsL in the in the vascular endothelium. {ECO:0000269|PubMed:32302524, ECO:0000269|PubMed:32589945}. |
Q9H2X6 | HIPK2 | S668 | psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H3P2 | NELFA | S363 | ochoa | Negative elongation factor A (NELF-A) (Wolf-Hirschhorn syndrome candidate 2 protein) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II. The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex. {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:12563561, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}. |
Q9H4L4 | SENP3 | S232 | ochoa | Sentrin-specific protease 3 (EC 3.4.22.-) (SUMO-1-specific protease 3) (Sentrin/SUMO-specific protease SENP3) | Protease that releases SUMO2 and SUMO3 monomers from sumoylated substrates, but has only weak activity against SUMO1 conjugates (PubMed:16608850, PubMed:32832608, PubMed:36050397). Deconjugates SUMO2 from MEF2D, which increases its transcriptional activation capability (PubMed:15743823). Deconjugates SUMO2 and SUMO3 from CDCA8 (PubMed:18946085). Redox sensor that, when redistributed into nucleoplasm, can act as an effector to enhance HIF1A transcriptional activity by desumoylating EP300 (PubMed:19680224). Required for rRNA processing through deconjugation of SUMO2 and SUMO3 from nucleophosmin, NPM1 (PubMed:19015314). Plays a role in the regulation of sumoylation status of ZNF148 (PubMed:18259216). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Deconjugates SUMO2 from KAT5 (PubMed:32832608). Catalyzes desumoylation of MRE11 (PubMed:36050397). {ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:16608850, ECO:0000269|PubMed:18259216, ECO:0000269|PubMed:18946085, ECO:0000269|PubMed:19015314, ECO:0000269|PubMed:19680224, ECO:0000269|PubMed:22872859, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:36050397}. |
Q9H4M7 | PLEKHA4 | S552 | ochoa | Pleckstrin homology domain-containing family A member 4 (PH domain-containing family A member 4) (Phosphoinositol 3-phosphate-binding protein 1) (PEPP-1) | Binds specifically to phosphatidylinositol 3-phosphate (PtdIns3P), but not to other phosphoinositides. {ECO:0000269|PubMed:11001876}. |
Q9H4Z2 | ZNF335 | S976 | ochoa | Zinc finger protein 335 (NRC-interacting factor 1) (NIF-1) | Component or associated component of some histone methyltransferase complexes may regulate transcription through recruitment of those complexes on gene promoters (PubMed:19131338, PubMed:23178126). Enhances ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:12215545, PubMed:18180299, PubMed:19131338). Plays an important role in neural progenitor cell proliferation and self-renewal through the regulation of specific genes involved brain development, including REST (PubMed:23178126). Also controls the expression of genes involved in somatic development and regulates, for instance, lymphoblast proliferation (PubMed:23178126). {ECO:0000269|PubMed:12215545, ECO:0000269|PubMed:18180299, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:23178126}. |
Q9H6S3 | EPS8L2 | S217 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8-like protein 2) (Epidermal growth factor receptor pathway substrate 8-related protein 2) (EPS8-related protein 2) | Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. In the cochlea, is required for stereocilia maintenance in adult hair cells (By similarity). {ECO:0000250|UniProtKB:Q99K30, ECO:0000269|PubMed:14565974}. |
Q9H7L9 | SUDS3 | S248 | ochoa | Sin3 histone deacetylase corepressor complex component SDS3 (45 kDa Sin3-associated polypeptide) (Suppressor of defective silencing 3 protein homolog) | Regulatory protein which represses transcription and augments histone deacetylase activity of HDAC1. May have a potential role in tumor suppressor pathways through regulation of apoptosis. May function in the assembly and/or enzymatic activity of the mSin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes. {ECO:0000269|PubMed:12724404, ECO:0000269|PubMed:21239494}. |
Q9H7N4 | SCAF1 | S734 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7S9 | ZNF703 | S87 | ochoa | Zinc finger protein 703 (Zinc finger elbow-related proline domain protein 1) | Transcriptional corepressor which does not bind directly to DNA and may regulate transcription through recruitment of histone deacetylases to gene promoters. Regulates cell adhesion, migration and proliferation. May be required for segmental gene expression during hindbrain development. {ECO:0000269|PubMed:21328542, ECO:0000269|PubMed:21337521}. |
Q9H9P5 | UNKL | S344 | ochoa | Putative E3 ubiquitin-protein ligase UNKL (EC 2.3.2.-) (RING finger protein unkempt-like) (Zinc finger CCCH domain-containing protein 5-like) | May participate in a protein complex showing an E3 ligase activity regulated by RAC1. Ubiquitination is directed towards itself and possibly other substrates, such as SMARCD2/BAF60b. Intrinsic E3 ligase activity has not been proven. {ECO:0000269|PubMed:20148946}. |
Q9HCM3 | KIAA1549 | S1412 | ochoa | UPF0606 protein KIAA1549 | May play a role in photoreceptor function. {ECO:0000269|PubMed:30120214}. |
Q9HCM7 | FBRSL1 | S1017 | ochoa | Fibrosin-1-like protein (AUTS2-like protein) (HBV X-transactivated gene 9 protein) (HBV XAg-transactivated protein 9) | None |
Q9NP74 | PALMD | S498 | ochoa | Palmdelphin (Paralemmin-like protein) | None |
Q9NQS7 | INCENP | S323 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NR12 | PDLIM7 | S217 | ochoa | PDZ and LIM domain protein 7 (LIM mineralization protein) (LMP) (Protein enigma) | May function as a scaffold on which the coordinated assembly of proteins can occur. May play a role as an adapter that, via its PDZ domain, localizes LIM-binding proteins to actin filaments of both skeletal muscle and nonmuscle tissues. Involved in both of the two fundamental mechanisms of bone formation, direct bone formation (e.g. embryonic flat bones mandible and cranium), and endochondral bone formation (e.g. embryonic long bone development). Plays a role during fracture repair. Involved in BMP6 signaling pathway (By similarity). {ECO:0000250, ECO:0000269|PubMed:11874232, ECO:0000269|PubMed:7929196}. |
Q9NRR6 | INPP5E | S47 | ochoa | Phosphatidylinositol polyphosphate 5-phosphatase type IV (72 kDa inositol polyphosphate 5-phosphatase) (Inositol polyphosphate-5-phosphatase E) (Phosphatidylinositol 4,5-bisphosphate 5-phosphatase) (EC 3.1.3.36) (Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase) (EC 3.1.3.86) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (By similarity) (PubMed:10764818). Specific for lipid substrates, inactive towards water soluble inositol phosphates (PubMed:10764818). Plays an essential role in the primary cilium by controlling ciliary growth and phosphoinositide 3-kinase (PI3K) signaling and stability (By similarity). {ECO:0000250|UniProtKB:Q9JII1, ECO:0000269|PubMed:10764818}. |
Q9NUE0 | ZDHHC18 | S53 | ochoa | Palmitoyltransferase ZDHHC18 (EC 2.3.1.225) (DHHC domain-containing cysteine-rich protein 18) (DHHC-18) (Zinc finger DHHC domain-containing protein 18) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates, such as CGAS, HRAS and LCK (PubMed:23034182, PubMed:27481942, PubMed:35438208). Acts as a negative regulator of the cGAS-STING pathway be mediating palmitoylation and inactivation of CGAS (PubMed:35438208). May also have a palmitoyltransferase activity toward the beta-2 adrenergic receptor/ADRB2 and therefore regulate G protein-coupled receptor signaling (PubMed:27481942). {ECO:0000269|PubMed:23034182, ECO:0000269|PubMed:27481942, ECO:0000269|PubMed:35438208}. |
Q9NVD7 | PARVA | S28 | ochoa | Alpha-parvin (Actopaxin) (CH-ILKBP) (Calponin-like integrin-linked kinase-binding protein) (Matrix-remodeling-associated protein 2) | Plays a role in sarcomere organization and in smooth muscle cell contraction. Required for normal development of the embryonic cardiovascular system, and for normal septation of the heart outflow tract. Plays a role in sprouting angiogenesis and is required for normal adhesion of vascular smooth muscle cells to endothelial cells during blood vessel development (By similarity). Plays a role in the reorganization of the actin cytoskeleton, formation of lamellipodia and ciliogenesis. Plays a role in the establishment of cell polarity, cell adhesion, cell spreading, and directed cell migration. Within the IPP (ILK-PINCH-PARVIN) complex, binds to F-actin, promoting F-actin bundling, a process required to generate force for actin cytoskeleton reorganization and subsequent dynamic cell adhesion events such as cell spreading and migration (PubMed:30367047). {ECO:0000250, ECO:0000269|PubMed:11134073, ECO:0000269|PubMed:11331308, ECO:0000269|PubMed:15284246, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:30367047}. |
Q9NYL2 | MAP3K20 | S637 | ochoa | Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) | Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}. |
Q9NZC9 | SMARCAL1 | S129 | ochoa|psp | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1 (EC 3.6.4.-) (HepA-related protein) (hHARP) (Sucrose nonfermenting protein 2-like 1) | ATP-dependent annealing helicase that binds selectively to fork DNA relative to ssDNA or dsDNA and catalyzes the rewinding of the stably unwound DNA. Rewinds single-stranded DNA bubbles that are stably bound by replication protein A (RPA). Acts throughout the genome to reanneal stably unwound DNA, performing the opposite reaction of many enzymes, such as helicases and polymerases, that unwind DNA. May play an important role in DNA damage response by acting at stalled replication forks. {ECO:0000269|PubMed:18805831, ECO:0000269|PubMed:18974355, ECO:0000269|PubMed:19793861, ECO:0000269|PubMed:19793862}. |
Q9P1Y5 | CAMSAP3 | S351 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P1Y5 | CAMSAP3 | S756 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P206 | NHSL3 | S562 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P270 | SLAIN2 | S366 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9UBF8 | PI4KB | S275 | ochoa | Phosphatidylinositol 4-kinase beta (PI4K-beta) (PI4Kbeta) (PtdIns 4-kinase beta) (EC 2.7.1.67) (NPIK) (PI4K92) (PI4KIII) | Phosphorylates phosphatidylinositol (PI) in the first committed step in the production of the second messenger inositol-1,4,5,-trisphosphate (PIP). May regulate Golgi disintegration/reorganization during mitosis, possibly via its phosphorylation. Involved in Golgi-to-plasma membrane trafficking (By similarity) (PubMed:10559940, PubMed:11277933, PubMed:12749687, PubMed:9405935). May play an important role in the inner ear development. {ECO:0000250|UniProtKB:O08561, ECO:0000269|PubMed:10559940, ECO:0000269|PubMed:11277933, ECO:0000269|PubMed:12749687, ECO:0000269|PubMed:33358777, ECO:0000269|PubMed:9405935}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication (PubMed:22124328, PubMed:22258260, PubMed:27989622). Recruited by ACBD3 at the viral replication sites (PubMed:22124328, PubMed:27989622). {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}.; FUNCTION: (Microbial infection) Required for cellular spike-mediated entry of human coronavirus SARS-CoV. {ECO:0000269|PubMed:22253445}. |
Q9UBI9 | HECA | S281 | ochoa | Headcase protein homolog (hHDC) | May play an important role in some human cancers. May be part of the regulatory mechanism in the development of epithelial tube networks such as the circulatory system and lungs. {ECO:0000303|PubMed:11696983}. |
Q9UBK2 | PPARGC1A | S313 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1-alpha) (PPAR-gamma coactivator 1-alpha) (PPARGC-1-alpha) (Ligand effect modulator 6) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:10713165, PubMed:20005308, PubMed:21376232, PubMed:28363985, PubMed:32433991). Greatly increases the transcriptional activity of PPARG and thyroid hormone receptor on the uncoupling protein promoter (PubMed:10713165, PubMed:20005308, PubMed:21376232). Can regulate key mitochondrial genes that contribute to the program of adaptive thermogenesis (PubMed:10713165, PubMed:20005308, PubMed:21376232). Plays an essential role in metabolic reprogramming in response to dietary availability through coordination of the expression of a wide array of genes involved in glucose and fatty acid metabolism (PubMed:10713165, PubMed:20005308, PubMed:21376232). Acts as a key regulator of gluconeogenesis: stimulates hepatic gluconeogenesis by increasing the expression of gluconeogenic enzymes, and acting together with FOXO1 to promote the fasting gluconeogenic program (PubMed:16753578, PubMed:23142079). Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner (PubMed:23836911). Also involved in the integration of the circadian rhythms and energy metabolism (By similarity). Required for oscillatory expression of clock genes, such as BMAL1 and NR1D1, through the coactivation of RORA and RORC, and metabolic genes, such as PDK4 and PEPCK (By similarity). {ECO:0000250|UniProtKB:O70343, ECO:0000269|PubMed:10713165, ECO:0000269|PubMed:16753578, ECO:0000269|PubMed:20005308, ECO:0000269|PubMed:21376232, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:23836911, ECO:0000269|PubMed:28363985, ECO:0000269|PubMed:32433991}. |
Q9UDT6 | CLIP2 | S194 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UER7 | DAXX | S688 | ochoa | Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) | Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}. |
Q9UIF9 | BAZ2A | S509 | ochoa|psp | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UJY1 | HSPB8 | S57 | ochoa|psp | Heat shock protein beta-8 (HspB8) (Alpha-crystallin C chain) (E2-induced gene 1 protein) (Heat shock protein family B member 8) (Protein kinase H11) (Small stress protein-like protein HSP22) | Involved in the chaperone-assisted selective autophagy (CASA), a crucial process for protein quality control, particularly in mechanical strained cells and tissues such as muscle. Displays temperature-dependent chaperone activity. {ECO:0000250|UniProtKB:Q9JK92}. |
Q9UKA4 | AKAP11 | S433 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9UKS6 | PACSIN3 | S358 | ochoa | Protein kinase C and casein kinase substrate in neurons protein 3 (SH3 domain-containing protein 6511) | Plays a role in endocytosis and regulates internalization of plasma membrane proteins. Overexpression impairs internalization of SLC2A1/GLUT1 and TRPV4 and increases the levels of SLC2A1/GLUT1 and TRPV4 at the cell membrane. Inhibits the TRPV4 calcium channel activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11082044}. |
Q9ULI0 | ATAD2B | S318 | ochoa | ATPase family AAA domain-containing protein 2B | None |
Q9ULI4 | KIF26A | S1471 | ochoa | Kinesin-like protein KIF26A | Atypical kinesin that plays a key role in enteric neuron development. Acts by repressing a cell growth signaling pathway in the enteric nervous system development, possibly via its interaction with GRB2 that prevents GRB2-binding to SHC, thereby attenating the GDNF-Ret signaling (By similarity). Binds to microtubules but lacks microtubule-based motility due to the absence of ATPase activity (By similarity). Plays a critical role in cerebral cortical development. It probably acts as a microtubule stabilizer that regulates neurite growth and radial migration of cortical excitatory neurons (PubMed:36228617). {ECO:0000250|UniProtKB:Q52KG5, ECO:0000269|PubMed:36228617}. |
Q9ULK0 | GRID1 | S970 | ochoa | Glutamate receptor ionotropic, delta-1 (GluD1) (GluR delta-1 subunit) | Member of the ionotropic glutamate receptor family, which plays a crucial role in synaptic organization and signal transduction in the central nervous system. Although it shares structural features with ionotropic glutamate receptors, does not bind glutamate as a primary ligand (PubMed:38060673). Instead, forms trans-synaptic adhesion complexes with presynaptic neurexins and cerebellins, regulating NMDA and AMPA receptor activity and influencing synaptic plasticity through signal transduction (By similarity). In the presence of neurexins and cerebellins, forms cation-selective channels that are proposed to be gated by glycine and D-serine (By similarity). However, recent research disputes this ligand-gated cation channel activity (PubMed:39052831). Cation-selective ion channel can be triggered by GRM1 in dopaminergic neurons (By similarity). Also acts as a receptor for GABA, modulating inhibitory synaptic plasticity through non-ionotropic mechanisms (PubMed:38060673). {ECO:0000250|UniProtKB:O43424, ECO:0000250|UniProtKB:Q61627, ECO:0000269|PubMed:38060673, ECO:0000269|PubMed:39052831}. |
Q9ULM3 | YEATS2 | S627 | ochoa | YEATS domain-containing protein 2 | Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}. |
Q9UN30 | SCML1 | S150 | ochoa | Sex comb on midleg-like protein 1 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. May be involved in spermatogenesis during sexual maturation (By similarity). {ECO:0000250}. |
Q9UPN7 | PPP6R1 | S726 | ochoa | Serine/threonine-protein phosphatase 6 regulatory subunit 1 (SAPS domain family member 1) | Regulatory subunit of protein phosphatase 6 (PP6). May function as a scaffolding PP6 subunit. Involved in the PP6-mediated dephosphorylation of NFKBIE opposing its degradation in response to TNF-alpha. {ECO:0000269|PubMed:16769727}. |
Q9UPQ0 | LIMCH1 | S750 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPW6 | SATB2 | S303 | ochoa | DNA-binding protein SATB2 (Special AT-rich sequence-binding protein 2) | Binds to DNA, at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcription factor controlling nuclear gene expression, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Required for the initiation of the upper-layer neurons (UL1) specific genetic program and for the inactivation of deep-layer neurons (DL) and UL2 specific genes, probably by modulating BCL11B expression. Repressor of Ctip2 and regulatory determinant of corticocortical connections in the developing cerebral cortex. May play an important role in palate formation. Acts as a molecular node in a transcriptional network regulating skeletal development and osteoblast differentiation. {ECO:0000269|PubMed:14701874}. |
Q9UQ35 | SRRM2 | S1188 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ88 | CDK11A | S740 | ochoa | Cyclin-dependent kinase 11A (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 2) (Cell division protein kinase 11A) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L2) | Appears to play multiple roles in cell cycle progression, cytokinesis and apoptosis. The p110 isoforms have been suggested to be involved in pre-mRNA splicing, potentially by phosphorylating the splicing protein SFRS7. The p58 isoform may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090}. |
Q9UQB3 | CTNND2 | S276 | ochoa | Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) | Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}. |
Q9Y242 | TCF19 | S167 | ochoa | Transcription factor 19 (TCF-19) (Transcription factor SC1) | Potential transcription factor that may play a role in the regulation of genes involved in cell cycle G1/S transition (PubMed:1868030, PubMed:31141247). May bind to regulatory elements of genes, including the promoter of the transcription factor FOXO1 (PubMed:31141247). {ECO:0000269|PubMed:1868030, ECO:0000269|PubMed:31141247}. |
Q9Y283 | INVS | S661 | ochoa | Inversin (Inversion of embryo turning homolog) (Nephrocystin-2) | Required for normal renal development and establishment of left-right axis. Probably acts as a molecular switch between different Wnt signaling pathways. Inhibits the canonical Wnt pathway by targeting cytoplasmic disheveled (DVL1) for degradation by the ubiquitin-proteasome. This suggests that it is required in renal development to oppose the repression of terminal differentiation of tubular epithelial cells by Wnt signaling. Involved in the organization of apical junctions in kidney cells together with NPHP1, NPHP4 and RPGRIP1L/NPHP8 (By similarity). Does not seem to be strictly required for ciliogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:15852005, ECO:0000269|PubMed:18371931}. |
Q9Y2F5 | ICE1 | S533 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2G1 | MYRF | S148 | ochoa | Myelin regulatory factor (EC 3.4.-.-) (Myelin gene regulatory factor) [Cleaved into: Myelin regulatory factor, N-terminal; Myelin regulatory factor, C-terminal] | [Myelin regulatory factor]: Constitutes a precursor of the transcription factor. Mediates the autocatalytic cleavage that releases the Myelin regulatory factor, N-terminal component that specifically activates transcription of central nervous system (CNS) myelin genes (PubMed:23966832). {ECO:0000269|PubMed:23966832}.; FUNCTION: [Myelin regulatory factor, C-terminal]: Membrane-bound part that has no transcription factor activity and remains attached to the endoplasmic reticulum membrane following cleavage. {ECO:0000269|PubMed:23966832}.; FUNCTION: [Myelin regulatory factor, N-terminal]: Transcription factor that specifically activates expression of myelin genes such as MBP, MOG, MAG, DUSP15 and PLP1 during oligodendrocyte (OL) maturation, thereby playing a central role in oligodendrocyte maturation and CNS myelination. Specifically recognizes and binds DNA sequence 5'-CTGGYAC-3' in the regulatory regions of myelin-specific genes and directly activates their expression. Not only required during oligodendrocyte differentiation but is also required on an ongoing basis for the maintenance of expression of myelin genes and for the maintenance of a mature, viable oligodendrocyte phenotype (PubMed:23966832). {ECO:0000269|PubMed:23966832}. |
Q9Y2T7 | YBX2 | S74 | ochoa | Y-box-binding protein 2 (Contrin) (DNA-binding protein C) (Dbpc) (Germ cell-specific Y-box-binding protein) (MSY2 homolog) | Major constituent of messenger ribonucleoprotein particles (mRNPs). Involved in the regulation of the stability and/or translation of germ cell mRNAs. Binds to Y-box consensus promoter element. Binds to full-length mRNA with high affinity in a sequence-independent manner. Binds to short RNA sequences containing the consensus site 5'-UCCAUCA-3' with low affinity and limited sequence specificity. Its binding with maternal mRNAs is necessary for its cytoplasmic retention. May mark specific mRNAs (those transcribed from Y-box promoters) in the nucleus for cytoplasmic storage, thereby linking transcription and mRNA storage/translational delay (By similarity). {ECO:0000250|UniProtKB:Q9Z2C8}. |
Q9Y3Q8 | TSC22D4 | S49 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y4B5 | MTCL1 | S1812 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B6 | DCAF1 | S951 | ochoa | DDB1- and CUL4-associated factor 1 (HIV-1 Vpr-binding protein) (VprBP) (Serine/threonine-protein kinase VPRBP) (EC 2.7.11.1) (Vpr-interacting protein) | Acts both as a substrate recognition component of E3 ubiquitin-protein ligase complexes and as an atypical serine/threonine-protein kinase, playing key roles in various processes such as cell cycle, telomerase regulation and histone modification. Probable substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex, named CUL4A-RBX1-DDB1-DCAF1/VPRBP complex, which mediates ubiquitination and proteasome-dependent degradation of proteins such as NF2 (PubMed:23063525). Involved in the turnover of methylated proteins: recognizes and binds methylated proteins via its chromo domain, leading to ubiquitination of target proteins by the RBX1-DDB1-DCAF1/VPRBP complex (PubMed:23063525). The CUL4A-RBX1-DDB1-DCAF1/VPRBP complex is also involved in B-cell development: DCAF1 is recruited by RAG1 to ubiquitinate proteins, leading to limit error-prone repair during V(D)J recombination (By similarity). Also part of the EDVP complex, an E3 ligase complex that mediates ubiquitination of proteins such as TERT, leading to TERT degradation and telomerase inhibition (PubMed:19287380, PubMed:23362280). The EDVP complex also mediates ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Also acts as an atypical serine/threonine-protein kinase that specifically mediates phosphorylation of 'Thr-120' of histone H2A (H2AT120ph) in a nucleosomal context, thereby repressing transcription (PubMed:24140421). H2AT120ph is present in the regulatory region of many tumor suppresor genes, down-regulates their transcription and is present at high level in a number of tumors (PubMed:24140421). Involved in JNK-mediated apoptosis during cell competition process via its interaction with LLGL1 and LLGL2 (PubMed:20644714). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). {ECO:0000250|UniProtKB:Q80TR8, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:18606781, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:20644714, ECO:0000269|PubMed:22184063, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:24140421, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, it is recruited by HIV-1 Vpr in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to arrest the cell cycle in G2 phase, and also to protect the viral protein from proteasomal degradation by another E3 ubiquitin ligase. The HIV-1 Vpr protein hijacks the CUL4A-RBX1-DDB1-DCAF1/VPRBP complex to promote ubiquitination and degradation of proteins such as TERT and ZIP/ZGPAT. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:17559673, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17620334, ECO:0000269|PubMed:17626091, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:24116224}.; FUNCTION: (Microbial infection) In case of infection by HIV-2 virus, it is recruited by HIV-2 Vpx in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to enhanced efficiency of macrophage infection and promotion of the replication of cognate primate lentiviruses in cells of monocyte/macrophage lineage. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:18464893, ECO:0000269|PubMed:19264781, ECO:0000269|PubMed:19923175, ECO:0000269|PubMed:24336198}. |
Q9Y4D8 | HECTD4 | S1507 | ochoa | Probable E3 ubiquitin-protein ligase HECTD4 (EC 2.3.2.26) (HECT domain-containing protein 4) (HECT-type E3 ubiquitin transferase HECTD4) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000250}. |
Q9Y4H2 | IRS2 | S1109 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y5K6 | CD2AP | S510 | ochoa | CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) | Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}. |
Q9Y6D5 | ARFGEF2 | S227 | ochoa|psp | Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) | Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}. |
Q9Y6D6 | ARFGEF1 | S1569 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) | Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}. |
Q01082 | SPTBN1 | S2197 | Sugiyama | Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}. |
Q9Y3E1 | HDGFL3 | Y22 | Sugiyama | Hepatoma-derived growth factor-related protein 3 (HRP-3) (Hepatoma-derived growth factor 2) (HDGF-2) | Enhances DNA synthesis and may play a role in cell proliferation. {ECO:0000269|PubMed:10581169}. |
Q13233 | MAP3K1 | S970 | SIGNOR | Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) | Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}. |
Q09472 | EP300 | S24 | GPS6|ELM|EPSD | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q9UQ07 | MOK | S321 | Sugiyama | MAPK/MAK/MRK overlapping kinase (EC 2.7.11.22) (MOK protein kinase) (Renal tumor antigen 1) (RAGE-1) | Able to phosphorylate several exogenous substrates and to undergo autophosphorylation. Negatively regulates cilium length in a cAMP and mTORC1 signaling-dependent manner. {ECO:0000250|UniProtKB:Q9WVS4}. |
A0A0C4DFX4 | None | S2663 | ochoa | Snf2 related CREBBP activator protein | None |
A0A0C4DFX4 | None | S2692 | ochoa | Snf2 related CREBBP activator protein | None |
A0A1W2PPC1 | PRR33 | S409 | ochoa | Proline rich 33 | None |
A5PL33 | KRBA1 | S182 | ochoa | Protein KRBA1 | None |
A6NFI3 | ZNF316 | S112 | ochoa | Zinc finger protein 316 | May be involved in transcriptional regulation. {ECO:0000250}. |
A6NI28 | ARHGAP42 | S811 | ochoa | Rho GTPase-activating protein 42 (Rho GTPase-activating protein 10-like) (Rho-type GTPase-activating protein 42) | May influence blood pressure by functioning as a GTPase-activating protein for RHOA in vascular smooth muscle. {ECO:0000269|PubMed:24335996}. |
A7XYQ1 | SOBP | S313 | ochoa | Sine oculis-binding protein homolog (Jackson circler protein 1) | Implicated in development of the cochlea. {ECO:0000250|UniProtKB:Q0P5V2}. |
A7XYQ1 | SOBP | S583 | ochoa | Sine oculis-binding protein homolog (Jackson circler protein 1) | Implicated in development of the cochlea. {ECO:0000250|UniProtKB:Q0P5V2}. |
A8MZF0 | PRR33 | S261 | ochoa | Proline-rich protein 33 | None |
B8ZZF3 | None | S186 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Cofactor required for Sp1 transcriptional activation subunit 7) (Mediator complex subunit 26) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. {ECO:0000256|ARBA:ARBA00057523}. |
B8ZZF3 | None | S196 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Cofactor required for Sp1 transcriptional activation subunit 7) (Mediator complex subunit 26) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. {ECO:0000256|ARBA:ARBA00057523}. |
B8ZZF3 | None | S389 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Cofactor required for Sp1 transcriptional activation subunit 7) (Mediator complex subunit 26) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. {ECO:0000256|ARBA:ARBA00057523}. |
E9PAV3 | NACA | S1388 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
E9PAV3 | NACA | S1581 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
O14497 | ARID1A | S233 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14686 | KMT2D | S2274 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O15014 | ZNF609 | S900 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15020 | SPTBN2 | S2359 | ochoa | Spectrin beta chain, non-erythrocytic 2 (Beta-III spectrin) (Spinocerebellar ataxia 5 protein) | Probably plays an important role in neuronal membrane skeleton. |
O15027 | SEC16A | S1079 | psp | Protein transport protein Sec16A (SEC16 homolog A) (p250) | Acts as a molecular scaffold that plays a key role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). SAR1A-GTP-dependent assembly of SEC16A on the ER membrane forms an organized scaffold defining an ERES. Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17005010, PubMed:17192411, PubMed:17428803, PubMed:21768384, PubMed:22355596). Mediates the recruitment of MIA3/TANGO to ERES (PubMed:28442536). Regulates both conventional (ER/Golgi-dependent) and GORASP2-mediated unconventional (ER/Golgi-independent) trafficking of CFTR to cell membrane (PubMed:28067262). Positively regulates the protein stability of E3 ubiquitin-protein ligases RNF152 and RNF183 and the ER localization of RNF183 (PubMed:29300766). Acts as a RAB10 effector in the regulation of insulin-induced SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the cell membrane in adipocytes (By similarity). {ECO:0000250|UniProtKB:E9QAT4, ECO:0000269|PubMed:17005010, ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:17428803, ECO:0000269|PubMed:21768384, ECO:0000269|PubMed:22355596, ECO:0000269|PubMed:28067262, ECO:0000269|PubMed:28442536, ECO:0000269|PubMed:29300766}. |
O15054 | KDM6B | S224 | ochoa | Lysine-specific demethylase 6B (EC 1.14.11.68) (JmjC domain-containing protein 3) (Jumonji domain-containing protein 3) (Lysine demethylase 6B) ([histone H3]-trimethyl-L-lysine(27) demethylase 6B) | Histone demethylase that specifically demethylates 'Lys-27' of histone H3, thereby playing a central role in histone code (PubMed:17713478, PubMed:17825402, PubMed:17851529, PubMed:18003914). Demethylates trimethylated and dimethylated H3 'Lys-27' (PubMed:17713478, PubMed:17825402, PubMed:17851529, PubMed:18003914). Plays a central role in regulation of posterior development, by regulating HOX gene expression (PubMed:17851529). Involved in inflammatory response by participating in macrophage differentiation in case of inflammation by regulating gene expression and macrophage differentiation (PubMed:17825402). Plays a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression by acting as a link between T-box factors and the SMARCA4-containing SWI/SNF remodeling complex (By similarity). {ECO:0000250|UniProtKB:Q5NCY0, ECO:0000269|PubMed:17713478, ECO:0000269|PubMed:17825402, ECO:0000269|PubMed:17851529, ECO:0000269|PubMed:18003914, ECO:0000269|PubMed:28262558}. |
O15061 | SYNM | S1210 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15240 | VGF | S95 | ochoa | Neurosecretory protein VGF [Cleaved into: Neuroendocrine regulatory peptide-1 (NERP-1); Neuroendocrine regulatory peptide-2 (NERP-2); VGF-derived peptide TLQP-21; VGF-derived peptide TLQP-62; Antimicrobial peptide VGF[554-577]] | [Neurosecretory protein VGF]: Secreted polyprotein that is packaged and proteolytically processed by prohormone convertases PCSK1 and PCSK2 in a cell-type-specific manner (By similarity). VGF and peptides derived from its processing play many roles in neurogenesis and neuroplasticity associated with learning, memory, depression and chronic pain (By similarity). {ECO:0000250|UniProtKB:P20156, ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [Neuroendocrine regulatory peptide-1]: Plays a role in the control of body fluid homeostasis by regulating vasopressin release. Suppresses presynaptic glutamatergic neurons connected to vasopressin neurons. {ECO:0000250|UniProtKB:P20156}.; FUNCTION: [Neuroendocrine regulatory peptide-2]: Plays a role in the control of body fluid homeostasis by regulating vasopressin release. Activates GABAergic interneurons which are inhibitory neurons of the nervous system and thereby suppresses presynaptic glutamatergic neurons (By similarity). Also stimulates feeding behavior in an orexin-dependent manner in the hypothalamus (By similarity). Functions as a positive regulator for the activation of orexin neurons resulting in elevated gastric acid secretion and gastric emptying (By similarity). {ECO:0000250|UniProtKB:P20156}.; FUNCTION: [VGF-derived peptide TLQP-21]: Secreted multifunctional neuropeptide that binds to different cell receptors and thereby plays multiple physiological roles including modulation of energy expenditure, pain, response to stress, gastric regulation, glucose homeostasis as well as lipolysis (By similarity). Activates the G-protein-coupled receptor C3AR1 via a folding-upon-binding mechanism leading to enhanced lipolysis in adipocytes (By similarity). Interacts with C1QBP receptor in macrophages and microglia causing increased levels of intracellular calcium and hypersensitivity (By similarity). {ECO:0000250|UniProtKB:P20156, ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [VGF-derived peptide TLQP-62]: Plays a role in the regulation of memory formation and depression-related behaviors potentially by influencing synaptic plasticity and neurogenesis. Induces acute and transient activation of the NTRK2/TRKB receptor and subsequent CREB phosphorylation (By similarity). Also induces insulin secretion in insulinoma cells by increasing intracellular calcium mobilization (By similarity). {ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [Antimicrobial peptide VGF[554-577]]: Has bactericidal activity against M.luteus, and antifungal activity against P. Pastoris. {ECO:0000269|PubMed:23250050}. |
O15240 | VGF | S253 | ochoa | Neurosecretory protein VGF [Cleaved into: Neuroendocrine regulatory peptide-1 (NERP-1); Neuroendocrine regulatory peptide-2 (NERP-2); VGF-derived peptide TLQP-21; VGF-derived peptide TLQP-62; Antimicrobial peptide VGF[554-577]] | [Neurosecretory protein VGF]: Secreted polyprotein that is packaged and proteolytically processed by prohormone convertases PCSK1 and PCSK2 in a cell-type-specific manner (By similarity). VGF and peptides derived from its processing play many roles in neurogenesis and neuroplasticity associated with learning, memory, depression and chronic pain (By similarity). {ECO:0000250|UniProtKB:P20156, ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [Neuroendocrine regulatory peptide-1]: Plays a role in the control of body fluid homeostasis by regulating vasopressin release. Suppresses presynaptic glutamatergic neurons connected to vasopressin neurons. {ECO:0000250|UniProtKB:P20156}.; FUNCTION: [Neuroendocrine regulatory peptide-2]: Plays a role in the control of body fluid homeostasis by regulating vasopressin release. Activates GABAergic interneurons which are inhibitory neurons of the nervous system and thereby suppresses presynaptic glutamatergic neurons (By similarity). Also stimulates feeding behavior in an orexin-dependent manner in the hypothalamus (By similarity). Functions as a positive regulator for the activation of orexin neurons resulting in elevated gastric acid secretion and gastric emptying (By similarity). {ECO:0000250|UniProtKB:P20156}.; FUNCTION: [VGF-derived peptide TLQP-21]: Secreted multifunctional neuropeptide that binds to different cell receptors and thereby plays multiple physiological roles including modulation of energy expenditure, pain, response to stress, gastric regulation, glucose homeostasis as well as lipolysis (By similarity). Activates the G-protein-coupled receptor C3AR1 via a folding-upon-binding mechanism leading to enhanced lipolysis in adipocytes (By similarity). Interacts with C1QBP receptor in macrophages and microglia causing increased levels of intracellular calcium and hypersensitivity (By similarity). {ECO:0000250|UniProtKB:P20156, ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [VGF-derived peptide TLQP-62]: Plays a role in the regulation of memory formation and depression-related behaviors potentially by influencing synaptic plasticity and neurogenesis. Induces acute and transient activation of the NTRK2/TRKB receptor and subsequent CREB phosphorylation (By similarity). Also induces insulin secretion in insulinoma cells by increasing intracellular calcium mobilization (By similarity). {ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [Antimicrobial peptide VGF[554-577]]: Has bactericidal activity against M.luteus, and antifungal activity against P. Pastoris. {ECO:0000269|PubMed:23250050}. |
O15357 | INPPL1 | S158 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2 (EC 3.1.3.86) (Inositol polyphosphate phosphatase-like protein 1) (INPPL-1) (Protein 51C) (SH2 domain-containing inositol 5'-phosphatase 2) (SH2 domain-containing inositol phosphatase 2) (SHIP-2) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:16824732). Required for correct mitotic spindle orientation and therefore progression of mitosis (By similarity). Plays a central role in regulation of PI3K-dependent insulin signaling, although the precise molecular mechanisms and signaling pathways remain unclear (PubMed:9660833). While overexpression reduces both insulin-stimulated MAP kinase and Akt activation, its absence does not affect insulin signaling or GLUT4 trafficking (By similarity). Confers resistance to dietary obesity (By similarity). May act by regulating AKT2, but not AKT1, phosphorylation at the plasma membrane (By similarity). Part of a signaling pathway that regulates actin cytoskeleton remodeling (PubMed:11739414, PubMed:12676785). Required for the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation (PubMed:15668240). Participates in regulation of cortical and submembraneous actin by hydrolyzing PtdIns(3,4,5)P3 thereby regulating membrane ruffling (PubMed:21624956). Regulates cell adhesion and cell spreading (PubMed:12235291). Required for HGF-mediated lamellipodium formation, cell scattering and spreading (PubMed:15735664). Acts as a negative regulator of EPHA2 receptor endocytosis by inhibiting via PI3K-dependent Rac1 activation (PubMed:17135240). Acts as a regulator of neuritogenesis by regulating PtdIns(3,4,5)P3 level and is required to form an initial protrusive pattern, and later, maintain proper neurite outgrowth (By similarity). Acts as a negative regulator of the FC-gamma-RIIA receptor (FCGR2A) (PubMed:12690104). Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems (PubMed:11016922). Involved in EGF signaling pathway (PubMed:11349134). Upon stimulation by EGF, it is recruited by EGFR and dephosphorylates PtdIns(3,4,5)P3 (PubMed:11349134). Plays a negative role in regulating the PI3K-PKB pathway, possibly by inhibiting PKB activity (PubMed:11349134). Down-regulates Fc-gamma-R-mediated phagocytosis in macrophages independently of INPP5D/SHIP1 (By similarity). In macrophages, down-regulates NF-kappa-B-dependent gene transcription by regulating macrophage colony-stimulating factor (M-CSF)-induced signaling (By similarity). Plays a role in the localization of AURKA and NEDD9/HEF1 to the basolateral membrane at interphase in polarized cysts, thereby mediates cell cycle homeostasis, cell polarization and cilia assembly (By similarity). Additionally promotion of cilia growth is also facilitated by hydrolysis of (PtdIns(3,4,5)P3) to PtdIns(3,4)P2 (By similarity). Promotes formation of apical membrane-initiation sites during the initial stages of lumen formation via Rho family-induced actin filament organization and CTNNB1 localization to cell-cell contacts (By similarity). May also hydrolyze PtdIns(1,3,4,5)P4, and could thus affect the levels of the higher inositol polyphosphates like InsP6. Involved in endochondral ossification (PubMed:23273569). {ECO:0000250|UniProtKB:F1PNY0, ECO:0000250|UniProtKB:Q6P549, ECO:0000250|UniProtKB:Q9WVR3, ECO:0000269|PubMed:11016922, ECO:0000269|PubMed:11349134, ECO:0000269|PubMed:11739414, ECO:0000269|PubMed:12235291, ECO:0000269|PubMed:12676785, ECO:0000269|PubMed:12690104, ECO:0000269|PubMed:15668240, ECO:0000269|PubMed:15735664, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:17135240, ECO:0000269|PubMed:21624956, ECO:0000269|PubMed:23273569, ECO:0000269|PubMed:9660833}. |
O15357 | INPPL1 | S1104 | ochoa|psp | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2 (EC 3.1.3.86) (Inositol polyphosphate phosphatase-like protein 1) (INPPL-1) (Protein 51C) (SH2 domain-containing inositol 5'-phosphatase 2) (SH2 domain-containing inositol phosphatase 2) (SHIP-2) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:16824732). Required for correct mitotic spindle orientation and therefore progression of mitosis (By similarity). Plays a central role in regulation of PI3K-dependent insulin signaling, although the precise molecular mechanisms and signaling pathways remain unclear (PubMed:9660833). While overexpression reduces both insulin-stimulated MAP kinase and Akt activation, its absence does not affect insulin signaling or GLUT4 trafficking (By similarity). Confers resistance to dietary obesity (By similarity). May act by regulating AKT2, but not AKT1, phosphorylation at the plasma membrane (By similarity). Part of a signaling pathway that regulates actin cytoskeleton remodeling (PubMed:11739414, PubMed:12676785). Required for the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation (PubMed:15668240). Participates in regulation of cortical and submembraneous actin by hydrolyzing PtdIns(3,4,5)P3 thereby regulating membrane ruffling (PubMed:21624956). Regulates cell adhesion and cell spreading (PubMed:12235291). Required for HGF-mediated lamellipodium formation, cell scattering and spreading (PubMed:15735664). Acts as a negative regulator of EPHA2 receptor endocytosis by inhibiting via PI3K-dependent Rac1 activation (PubMed:17135240). Acts as a regulator of neuritogenesis by regulating PtdIns(3,4,5)P3 level and is required to form an initial protrusive pattern, and later, maintain proper neurite outgrowth (By similarity). Acts as a negative regulator of the FC-gamma-RIIA receptor (FCGR2A) (PubMed:12690104). Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems (PubMed:11016922). Involved in EGF signaling pathway (PubMed:11349134). Upon stimulation by EGF, it is recruited by EGFR and dephosphorylates PtdIns(3,4,5)P3 (PubMed:11349134). Plays a negative role in regulating the PI3K-PKB pathway, possibly by inhibiting PKB activity (PubMed:11349134). Down-regulates Fc-gamma-R-mediated phagocytosis in macrophages independently of INPP5D/SHIP1 (By similarity). In macrophages, down-regulates NF-kappa-B-dependent gene transcription by regulating macrophage colony-stimulating factor (M-CSF)-induced signaling (By similarity). Plays a role in the localization of AURKA and NEDD9/HEF1 to the basolateral membrane at interphase in polarized cysts, thereby mediates cell cycle homeostasis, cell polarization and cilia assembly (By similarity). Additionally promotion of cilia growth is also facilitated by hydrolysis of (PtdIns(3,4,5)P3) to PtdIns(3,4)P2 (By similarity). Promotes formation of apical membrane-initiation sites during the initial stages of lumen formation via Rho family-induced actin filament organization and CTNNB1 localization to cell-cell contacts (By similarity). May also hydrolyze PtdIns(1,3,4,5)P4, and could thus affect the levels of the higher inositol polyphosphates like InsP6. Involved in endochondral ossification (PubMed:23273569). {ECO:0000250|UniProtKB:F1PNY0, ECO:0000250|UniProtKB:Q6P549, ECO:0000250|UniProtKB:Q9WVR3, ECO:0000269|PubMed:11016922, ECO:0000269|PubMed:11349134, ECO:0000269|PubMed:11739414, ECO:0000269|PubMed:12235291, ECO:0000269|PubMed:12676785, ECO:0000269|PubMed:12690104, ECO:0000269|PubMed:15668240, ECO:0000269|PubMed:15735664, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:17135240, ECO:0000269|PubMed:21624956, ECO:0000269|PubMed:23273569, ECO:0000269|PubMed:9660833}. |
O43379 | WDR62 | S1070 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43683 | BUB1 | S375 | ochoa | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O60307 | MAST3 | S1215 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O75128 | COBL | S917 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75665 | OFD1 | S686 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O94761 | RECQL4 | S89 | ochoa|psp | ATP-dependent DNA helicase Q4 (EC 5.6.2.4) (DNA 3'-5' helicase RecQ4) (DNA helicase, RecQ-like type 4) (RecQ4) (RTS) (RecQ protein-like 4) | An ATP-dependent DNA helicase which unwinds dsDNA with a 3'-overhang in a 3'-5' direction (PubMed:28653661). Does not unwind more than 18 bp of dsDNA (PubMed:28653661). May modulate chromosome segregation. The N-terminal domain (residues 1-54) binds DNA Y-shaped DNA better than ss- or dsDNA (PubMed:22730300). The core helicase domain binds ssDNA (PubMed:22730300, PubMed:28653661). {ECO:0000269|PubMed:15317757, ECO:0000269|PubMed:22730300, ECO:0000269|PubMed:28653661}. |
O94761 | RECQL4 | S323 | ochoa | ATP-dependent DNA helicase Q4 (EC 5.6.2.4) (DNA 3'-5' helicase RecQ4) (DNA helicase, RecQ-like type 4) (RecQ4) (RTS) (RecQ protein-like 4) | An ATP-dependent DNA helicase which unwinds dsDNA with a 3'-overhang in a 3'-5' direction (PubMed:28653661). Does not unwind more than 18 bp of dsDNA (PubMed:28653661). May modulate chromosome segregation. The N-terminal domain (residues 1-54) binds DNA Y-shaped DNA better than ss- or dsDNA (PubMed:22730300). The core helicase domain binds ssDNA (PubMed:22730300, PubMed:28653661). {ECO:0000269|PubMed:15317757, ECO:0000269|PubMed:22730300, ECO:0000269|PubMed:28653661}. |
O94776 | MTA2 | S548 | ochoa | Metastasis-associated protein MTA2 (Metastasis-associated 1-like 1) (MTA1-L1 protein) (p53 target protein in deacetylase complex) | May function as a transcriptional coregulator (PubMed:16428440, PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
O94811 | TPPP | S35 | ochoa | Tubulin polymerization-promoting protein (TPPP) (EC 3.6.5.-) (25 kDa brain-specific protein) (TPPP/p25) (p24) (p25-alpha) | Regulator of microtubule dynamics that plays a key role in myelination by promoting elongation of the myelin sheath (PubMed:31522887). Acts as a microtubule nucleation factor in oligodendrocytes: specifically localizes to the postsynaptic Golgi apparatus region, also named Golgi outpost, and promotes microtubule nucleation, an important step for elongation of the myelin sheath (PubMed:31522887, PubMed:33831707). Required for both uniform polarized growth of distal microtubules as well as directing the branching of proximal processes (PubMed:31522887). Shows magnesium-dependent GTPase activity; the role of the GTPase activity is unclear (PubMed:21316364, PubMed:21995432). In addition to microtubule nucleation activity, also involved in microtubule bundling and stabilization of existing microtubules, thereby maintaining the integrity of the microtubule network (PubMed:17105200, PubMed:17693641, PubMed:18028908, PubMed:26289831). Regulates microtubule dynamics by promoting tubulin acetylation: acts by inhibiting the tubulin deacetylase activity of HDAC6 (PubMed:20308065, PubMed:23093407). Also regulates cell migration: phosphorylation by ROCK1 inhibits interaction with HDAC6, resulting in decreased acetylation of tubulin and increased cell motility (PubMed:23093407). Plays a role in cell proliferation by regulating the G1/S-phase transition (PubMed:23355470). Involved in astral microtubule organization and mitotic spindle orientation during early stage of mitosis; this process is regulated by phosphorylation by LIMK2 (PubMed:22328514). {ECO:0000269|PubMed:17105200, ECO:0000269|PubMed:17693641, ECO:0000269|PubMed:18028908, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:21316364, ECO:0000269|PubMed:21995432, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:26289831, ECO:0000269|PubMed:31522887}. |
O94819 | KBTBD11 | S119 | ochoa | Kelch repeat and BTB domain-containing protein 11 (Chronic myelogenous leukemia-associated protein) (Kelch domain-containing protein 7B) | None |
O94916 | NFAT5 | S561 | ochoa | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O95359 | TACC2 | S269 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95402 | MED26 | S178 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95402 | MED26 | S188 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95402 | MED26 | S381 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95685 | PPP1R3D | S78 | ochoa | Protein phosphatase 1 regulatory subunit 3D (Protein phosphatase 1 regulatory subunit 6) (PP1 subunit R6) (Protein phosphatase 1-binding subunit R6) | Seems to act as a glycogen-targeting subunit for PP1. PP1 is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. |
P09884 | POLA1 | S209 | ochoa | DNA polymerase alpha catalytic subunit (EC 2.7.7.7) (DNA polymerase alpha catalytic subunit p180) | Catalytic subunit of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which plays an essential role in the initiation of DNA synthesis. During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, a regulatory subunit POLA2 and two primase subunits PRIM1 and PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1. The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands. These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively. The reason this transfer occurs is because the polymerase alpha has limited processivity and lacks intrinsic 3' exonuclease activity for proofreading error, and therefore is not well suited for replicating long complexes. In the cytosol, responsible for a substantial proportion of the physiological concentration of cytosolic RNA:DNA hybrids, which are necessary to prevent spontaneous activation of type I interferon responses (PubMed:27019227). {ECO:0000269|PubMed:26975377, ECO:0000269|PubMed:27019227, ECO:0000269|PubMed:31006512, ECO:0000269|PubMed:9518481}. |
P10415 | BCL2 | S87 | ochoa|psp | Apoptosis regulator Bcl-2 | Suppresses apoptosis in a variety of cell systems including factor-dependent lymphohematopoietic and neural cells (PubMed:1508712, PubMed:8183370). Regulates cell death by controlling the mitochondrial membrane permeability (PubMed:11368354). Appears to function in a feedback loop system with caspases (PubMed:11368354). Inhibits caspase activity either by preventing the release of cytochrome c from the mitochondria and/or by binding to the apoptosis-activating factor (APAF-1) (PubMed:11368354). Also acts as an inhibitor of autophagy: interacts with BECN1 and AMBRA1 during non-starvation conditions and inhibits their autophagy function (PubMed:18570871, PubMed:20889974, PubMed:21358617). May attenuate inflammation by impairing NLRP1-inflammasome activation, hence CASP1 activation and IL1B release (PubMed:17418785). {ECO:0000269|PubMed:1508712, ECO:0000269|PubMed:17418785, ECO:0000269|PubMed:18570871, ECO:0000269|PubMed:20889974, ECO:0000269|PubMed:21358617, ECO:0000269|PubMed:8183370, ECO:0000303|PubMed:11368354}. |
P15923 | TCF3 | S229 | ochoa | Transcription factor E2-alpha (Class B basic helix-loop-helix protein 21) (bHLHb21) (Immunoglobulin enhancer-binding factor E12/E47) (Immunoglobulin transcription factor 1) (Kappa-E2-binding factor) (Transcription factor 3) (TCF-3) (Transcription factor ITF-1) | Transcriptional regulator involved in the initiation of neuronal differentiation and mesenchymal to epithelial transition (By similarity). Heterodimers between TCF3 and tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation (By similarity). Together with TCF15, required for the mesenchymal to epithelial transition (By similarity). Dimers bind DNA on E-box motifs: 5'-CANNTG-3' (By similarity). Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer (PubMed:2493990). Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (By similarity). {ECO:0000250|UniProtKB:P15806, ECO:0000269|PubMed:2493990}.; FUNCTION: [Isoform E47]: Facilitates ATOH7 binding to DNA at the consensus sequence 5'-CAGGTG-3', and positively regulates transcriptional activity. {ECO:0000269|PubMed:31696227}. |
P17600 | SYN1 | S62 | ochoa|psp | Synapsin-1 (Brain protein 4.1) (Synapsin I) | Neuronal phosphoprotein that coats synaptic vesicles, and binds to the cytoskeleton. Acts as a regulator of synaptic vesicles trafficking, involved in the control of neurotransmitter release at the pre-synaptic terminal (PubMed:21441247, PubMed:23406870). Also involved in the regulation of axon outgrowth and synaptogenesis (By similarity). The complex formed with NOS1 and CAPON proteins is necessary for specific nitric-oxid functions at a presynaptic level (By similarity). {ECO:0000250|UniProtKB:O88935, ECO:0000250|UniProtKB:P09951, ECO:0000269|PubMed:21441247, ECO:0000269|PubMed:23406870}. |
P17861 | XBP1 | S47 | ochoa | X-box-binding protein 1 (XBP-1) (Tax-responsive element-binding protein 5) (TREB-5) [Cleaved into: X-box-binding protein 1, cytoplasmic form; X-box-binding protein 1, luminal form] | Functions as a transcription factor during endoplasmic reticulum (ER) stress by regulating the unfolded protein response (UPR). Required for cardiac myogenesis and hepatogenesis during embryonic development, and the development of secretory tissues such as exocrine pancreas and salivary gland (By similarity). Involved in terminal differentiation of B lymphocytes to plasma cells and production of immunoglobulins (PubMed:11460154). Modulates the cellular response to ER stress in a PIK3R-dependent manner (PubMed:20348923). Binds to the cis-acting X box present in the promoter regions of major histocompatibility complex class II genes (PubMed:8349596). Involved in VEGF-induced endothelial cell (EC) proliferation and retinal blood vessel formation during embryonic development but also for angiogenesis in adult tissues under ischemic conditions. Also functions as a major regulator of the UPR in obesity-induced insulin resistance and type 2 diabetes for the management of obesity and diabetes prevention (By similarity). {ECO:0000250|UniProtKB:O35426, ECO:0000269|PubMed:11460154, ECO:0000269|PubMed:20348923, ECO:0000269|PubMed:8349596}.; FUNCTION: [Isoform 1]: Plays a role in the unconventional cytoplasmic splicing processing of its own mRNA triggered by the endoplasmic reticulum (ER) transmembrane endoribonuclease ERN1: upon ER stress, the emerging XBP1 polypeptide chain, as part of a mRNA-ribosome-nascent chain (R-RNC) complex, cotranslationally recruits its own unprocessed mRNA through transient docking to the ER membrane and translational pausing, therefore facilitating efficient IRE1-mediated XBP1 mRNA isoform 2 production (PubMed:19394296, PubMed:21233347). In endothelial cells (EC), associated with KDR, promotes IRE1-mediated XBP1 mRNA isoform 2 productions in a vascular endothelial growth factor (VEGF)-dependent manner, leading to EC proliferation and angiogenesis (PubMed:23529610). Functions as a negative feed-back regulator of the potent transcription factor XBP1 isoform 2 protein levels through proteasome-mediated degradation, thus preventing the constitutive activation of the ER stress response signaling pathway (PubMed:16461360, PubMed:25239945). Inhibits the transactivation activity of XBP1 isoform 2 in myeloma cells (By similarity). Acts as a weak transcriptional factor (PubMed:8657566). Together with HDAC3, contributes to the activation of NFE2L2-mediated HMOX1 transcription factor gene expression in a PI(3)K/mTORC2/Akt-dependent signaling pathway leading to EC survival under disturbed flow/oxidative stress (PubMed:25190803). Binds to the ER stress response element (ERSE) upon ER stress (PubMed:11779464). Binds to the consensus 5'-GATGACGTG[TG]N(3)[AT]T-3' sequence related to cAMP responsive element (CRE)-like sequences (PubMed:8657566). Binds the Tax-responsive element (TRE) present in the long terminal repeat (LTR) of T-cell leukemia virus type 1 (HTLV-I) and to the TPA response elements (TRE) (PubMed:1903538, PubMed:2196176, PubMed:2321018, PubMed:8657566). Associates preferentially to the HDAC3 gene promoter region in a static flow-dependent manner (PubMed:25190803). Binds to the CDH5/VE-cadherin gene promoter region (PubMed:19416856). {ECO:0000250|UniProtKB:O35426, ECO:0000269|PubMed:11779464, ECO:0000269|PubMed:16461360, ECO:0000269|PubMed:1903538, ECO:0000269|PubMed:19394296, ECO:0000269|PubMed:19416856, ECO:0000269|PubMed:21233347, ECO:0000269|PubMed:2196176, ECO:0000269|PubMed:2321018, ECO:0000269|PubMed:23529610, ECO:0000269|PubMed:25190803, ECO:0000269|PubMed:25239945, ECO:0000269|PubMed:8657566}.; FUNCTION: [Isoform 2]: Functions as a stress-inducible potent transcriptional activator during endoplasmic reticulum (ER) stress by inducing unfolded protein response (UPR) target genes via binding to the UPR element (UPRE). Up-regulates target genes encoding ER chaperones and ER-associated degradation (ERAD) components to enhance the capacity of productive folding and degradation mechanism, respectively, in order to maintain the homeostasis of the ER under ER stress (PubMed:11779464, PubMed:25239945). Plays a role in the production of immunoglobulins and interleukin-6 in the presence of stimuli required for plasma cell differentiation (By similarity). Induces phospholipid biosynthesis and ER expansion (PubMed:15466483). Contributes to the VEGF-induced endothelial cell (EC) growth and proliferation in a Akt/GSK-dependent and/or -independent signaling pathway, respectively, leading to beta-catenin nuclear translocation and E2F2 gene expression (PubMed:23529610). Promotes umbilical vein EC apoptosis and atherosclerotisis development in a caspase-dependent signaling pathway, and contributes to VEGF-induced EC proliferation and angiogenesis in adult tissues under ischemic conditions (PubMed:19416856, PubMed:23529610). Involved in the regulation of endostatin-induced autophagy in EC through BECN1 transcriptional activation (PubMed:23184933). Plays a role as an oncogene by promoting tumor progression: stimulates zinc finger protein SNAI1 transcription to induce epithelial-to-mesenchymal (EMT) transition, cell migration and invasion of breast cancer cells (PubMed:25280941). Involved in adipocyte differentiation by regulating lipogenic gene expression during lactation. Plays a role in the survival of both dopaminergic neurons of the substantia nigra pars compacta (SNpc), by maintaining protein homeostasis and of myeloma cells. Increases insulin sensitivity in the liver as a response to a high carbohydrate diet, resulting in improved glucose tolerance. Also improves glucose homeostasis in an ER stress- and/or insulin-independent manner through both binding and proteasome-induced degradation of the transcription factor FOXO1, hence resulting in suppression of gluconeogenic genes expression and in a reduction of blood glucose levels. Controls the induction of de novo fatty acid synthesis in hepatocytes by regulating the expression of a subset of lipogenic genes in an ER stress- and UPR-independent manner (By similarity). Associates preferentially to the HDAC3 gene promoter region in a disturbed flow-dependent manner (PubMed:25190803). Binds to the BECN1 gene promoter region (PubMed:23184933). Binds to the CDH5/VE-cadherin gene promoter region (PubMed:19416856). Binds to the ER stress response element (ERSE) upon ER stress (PubMed:11779464). Binds to the 5'-CCACG-3' motif in the PPARG promoter (By similarity). {ECO:0000250|UniProtKB:O35426, ECO:0000269|PubMed:11779464, ECO:0000269|PubMed:15466483, ECO:0000269|PubMed:19416856, ECO:0000269|PubMed:23184933, ECO:0000269|PubMed:23529610, ECO:0000269|PubMed:25190803, ECO:0000269|PubMed:25239945, ECO:0000269|PubMed:25280941}. |
P23588 | EIF4B | S93 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P24928 | POLR2A | S1514 | ochoa | DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) | Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}. |
P26651 | ZFP36 | S90 | ochoa|psp | mRNA decay activator protein ZFP36 (G0/G1 switch regulatory protein 24) (Growth factor-inducible nuclear protein NUP475) (Tristetraprolin) (Zinc finger protein 36) (Zfp-36) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:10330172, PubMed:10751406, PubMed:11279239, PubMed:12115244, PubMed:12748283, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:23644599, PubMed:25815583, PubMed:27193233, PubMed:31439631, PubMed:9703499). Acts as an 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258, PubMed:23644599). Recruits deadenylase CNOT7 (and probably the CCR4-NOT complex) via association with CNOT1, and hence promotes ARE-mediated mRNA deadenylation (PubMed:23644599). Functions also by recruiting components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs (PubMed:11719186, PubMed:12748283, PubMed:15687258, PubMed:16364915). Self regulates by destabilizing its own mRNA (PubMed:15187101). Binds to 3'-UTR ARE of numerous mRNAs and of its own mRNA (PubMed:10330172, PubMed:10751406, PubMed:12115244, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:19188452, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:25815583). Plays a role in anti-inflammatory responses; suppresses tumor necrosis factor (TNF)-alpha production by stimulating ARE-mediated TNF-alpha mRNA decay and several other inflammatory ARE-containing mRNAs in interferon (IFN)- and/or lipopolysaccharide (LPS)-induced macrophages (By similarity). Also plays a role in the regulation of dendritic cell maturation at the post-transcriptional level, and hence operates as part of a negative feedback loop to limit the inflammatory response (PubMed:18367721). Promotes ARE-mediated mRNA decay of hypoxia-inducible factor HIF1A mRNA during the response of endothelial cells to hypoxia (PubMed:21775632). Positively regulates early adipogenesis of preadipocytes by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Plays a role in maintaining skeletal muscle satellite cell quiescence by promoting ARE-mediated mRNA decay of the myogenic determination factor MYOD1 mRNA (By similarity). Associates also with and regulates the expression of non-ARE-containing target mRNAs at the post-transcriptional level, such as MHC class I mRNAs (PubMed:18367721). Participates in association with argonaute RISC catalytic components in the ARE-mediated mRNA decay mechanism; assists microRNA (miRNA) targeting ARE-containing mRNAs (PubMed:15766526). May also play a role in the regulation of cytoplasmic mRNA decapping; enhances decapping of ARE-containing RNAs, in vitro (PubMed:16364915). Involved in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, affects nuclear pre-mRNA processing (By similarity). Negatively regulates nuclear poly(A)-binding protein PABPN1-stimulated polyadenylation activity on ARE-containing pre-mRNA during LPS-stimulated macrophages (By similarity). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role as a tumor suppressor by inhibiting cell proliferation in breast cancer cells (PubMed:26926077). {ECO:0000250|UniProtKB:P22893, ECO:0000269|PubMed:10330172, ECO:0000269|PubMed:10751406, ECO:0000269|PubMed:11279239, ECO:0000269|PubMed:11719186, ECO:0000269|PubMed:12115244, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15187101, ECO:0000269|PubMed:15634918, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15766526, ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:16702957, ECO:0000269|PubMed:17030620, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18367721, ECO:0000269|PubMed:19188452, ECO:0000269|PubMed:20221403, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21775632, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:26926077, ECO:0000269|PubMed:27182009, ECO:0000269|PubMed:27193233, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:9703499}.; FUNCTION: (Microbial infection) Negatively regulates HTLV-1 TAX-dependent transactivation of viral long terminal repeat (LTR) promoter. {ECO:0000269|PubMed:14679154}. |
P27987 | ITPKB | S355 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P27987 | ITPKB | S447 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P29966 | MARCKS | S135 | ochoa | Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) | Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}. |
P33991 | MCM4 | S71 | ochoa | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P38936 | CDKN1A | S98 | ochoa|psp | Cyclin-dependent kinase inhibitor 1 (CDK-interacting protein 1) (Melanoma differentiation-associated protein 6) (MDA-6) (p21) | Plays an important role in controlling cell cycle progression and DNA damage-induced G2 arrest (PubMed:9106657). Involved in p53/TP53 mediated inhibition of cellular proliferation in response to DNA damage. Also involved in p53-independent DNA damage-induced G2 arrest mediated by CREB3L1 in astrocytes and osteoblasts (By similarity). Binds to and inhibits cyclin-dependent kinase activity, preventing phosphorylation of critical cyclin-dependent kinase substrates and blocking cell cycle progression. Functions in the nuclear localization and assembly of cyclin D-CDK4 complex and promotes its kinase activity towards RB1. At higher stoichiometric ratios, inhibits the kinase activity of the cyclin D-CDK4 complex. Inhibits DNA synthesis by DNA polymerase delta by competing with POLD3 for PCNA binding (PubMed:11595739). Negatively regulates the CDK4- and CDK6-driven phosphorylation of RB1 in keratinocytes, thereby resulting in the release of E2F1 and subsequent transcription of E2F1-driven G1/S phase promoting genes (By similarity). {ECO:0000250|UniProtKB:P39689, ECO:0000269|PubMed:11595739, ECO:0000269|PubMed:8242751, ECO:0000269|PubMed:9106657}. |
P42694 | HELZ | S1883 | ochoa | Probable helicase with zinc finger domain (EC 3.6.4.-) (Down-regulated in human cancers protein) | May act as a helicase that plays a role in RNA metabolism in multiple tissues and organs within the developing embryo. |
P47736 | RAP1GAP | S484 | ochoa|psp | Rap1 GTPase-activating protein 1 (Rap1GAP) (Rap1GAP1) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15141215}. |
P48681 | NES | S1030 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49790 | NUP153 | S257 | ochoa|psp | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49848 | TAF6 | S653 | ochoa | Transcription initiation factor TFIID subunit 6 (RNA polymerase II TBP-associated factor subunit E) (Transcription initiation factor TFIID 70 kDa subunit) (TAF(II)70) (TAFII-70) (TAFII70) (Transcription initiation factor TFIID 80 kDa subunit) (TAF(II)80) (TAFII-80) (TAFII80) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF6 homodimer connects TFIID modules, forming a rigid core (PubMed:33795473). {ECO:0000269|PubMed:33795473}.; FUNCTION: [Isoform 4]: Transcriptional regulator which acts primarily as a positive regulator of transcription (PubMed:20096117, PubMed:29358700). Recruited to the promoters of a number of genes including GADD45A and CDKN1A/p21, leading to transcriptional up-regulation and subsequent induction of apoptosis (PubMed:11583621). Also up-regulates expression of other genes including GCNA/ACRC, HES1 and IFFO1 (PubMed:18628956). In contrast, down-regulates transcription of MDM2 (PubMed:11583621). Acts as a transcriptional coactivator to enhance transcription of TP53/p53-responsive genes such as DUSP1 (PubMed:20096117). Can also activate transcription and apoptosis independently of TP53 (PubMed:18628956). Drives apoptosis via the intrinsic apoptotic pathway by up-regulating apoptosis effectors such as BCL2L11/BIM and PMAIP1/NOXA (PubMed:29358700). {ECO:0000269|PubMed:11583621, ECO:0000269|PubMed:18628956, ECO:0000269|PubMed:20096117, ECO:0000269|PubMed:29358700}. |
P51617 | IRAK1 | S601 | ochoa | Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}. |
P53990 | IST1 | S293 | ochoa | IST1 homolog (hIST1) (Charged multivesicular body protein 8) (CHMP8) (Putative MAPK-activating protein PM28) | ESCRT-III-like protein involved in cytokinesis, nuclear envelope reassembly and endosomal tubulation (PubMed:19129479, PubMed:26040712, PubMed:28242692). Is required for efficient abscission during cytokinesis (PubMed:19129479). Involved in recruiting VPS4A and/or VPS4B to the midbody of dividing cells (PubMed:19129479, PubMed:19129480). During late anaphase, involved in nuclear envelope reassembly and mitotic spindle disassembly together with the ESCRT-III complex: IST1 acts by mediating the recruitment of SPAST to the nuclear membrane, leading to microtubule severing (PubMed:26040712). Recruited to the reforming nuclear envelope (NE) during anaphase by LEMD2 (PubMed:28242692). Regulates early endosomal tubulation together with the ESCRT-III complex by mediating the recruitment of SPAST (PubMed:23897888). {ECO:0000269|PubMed:19129479, ECO:0000269|PubMed:19129480, ECO:0000269|PubMed:23897888, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692}. |
P55197 | MLLT10 | S536 | ochoa | Protein AF-10 (ALL1-fused gene from chromosome 10 protein) | Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}. |
P78413 | IRX4 | S430 | ochoa | Iroquois-class homeodomain protein IRX-4 (Homeodomain protein IRXA3) (Iroquois homeobox protein 4) | Likely to be an important mediator of ventricular differentiation during cardiac development. |
P78524 | DENND2B | S368 | ochoa | DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) | [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}. |
P78559 | MAP1A | S2307 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P98174 | FGD1 | S205 | ochoa|psp | FYVE, RhoGEF and PH domain-containing protein 1 (Faciogenital dysplasia 1 protein) (Rho/Rac guanine nucleotide exchange factor FGD1) (Rho/Rac GEF) (Zinc finger FYVE domain-containing protein 3) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:8969170}. |
Q00587 | CDC42EP1 | S303 | ochoa | Cdc42 effector protein 1 (Binder of Rho GTPases 5) (Serum protein MSE55) | Probably involved in the organization of the actin cytoskeleton. Induced membrane extensions in fibroblasts. {ECO:0000269|PubMed:10430899}. |
Q00587 | CDC42EP1 | Y331 | ochoa | Cdc42 effector protein 1 (Binder of Rho GTPases 5) (Serum protein MSE55) | Probably involved in the organization of the actin cytoskeleton. Induced membrane extensions in fibroblasts. {ECO:0000269|PubMed:10430899}. |
Q01201 | RELB | S116 | ochoa | Transcription factor RelB (I-Rel) | NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric RelB-p50 and RelB-p52 complexes are transcriptional activators. RELB neither associates with DNA nor with RELA/p65 or REL. Stimulates promoter activity in the presence of NFKB2/p49. As a member of the NUPR1/RELB/IER3 survival pathway, may provide pancreatic ductal adenocarcinoma with remarkable resistance to cell stress, such as starvation or gemcitabine treatment. Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer in a CRY1/CRY2 independent manner. Increased repression of the heterodimer is seen in the presence of NFKB2/p52. Is required for both T and B lymphocyte maturation and function (PubMed:26385063). {ECO:0000269|PubMed:1732739, ECO:0000269|PubMed:22565310, ECO:0000269|PubMed:26385063, ECO:0000269|PubMed:7925301, ECO:0000269|PubMed:8441398}. |
Q01518 | CAP1 | S308 | ochoa|psp | Adenylyl cyclase-associated protein 1 (CAP 1) | Directly regulates filament dynamics and has been implicated in a number of complex developmental and morphological processes, including mRNA localization and the establishment of cell polarity. |
Q03164 | KMT2A | S3053 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q08495 | DMTN | S307 | ochoa | Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) | Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}. |
Q12774 | ARHGEF5 | S983 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q12962 | TAF10 | S44 | ochoa | Transcription initiation factor TFIID subunit 10 (STAF28) (Transcription initiation factor TFIID 30 kDa subunit) (TAF(II)30) (TAFII-30) (TAFII30) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). TAF10 is also component of the PCAF histone acetylase complex, the TATA-binding protein-free TAF complex (TFTC) and the STAGA transcription coactivator-HAT complex (PubMed:10373431, PubMed:11564863, PubMed:12601814, PubMed:18206972, PubMed:9885574). May regulate cyclin E expression (By similarity). {ECO:0000250|UniProtKB:Q8K0H5, ECO:0000269|PubMed:10373431, ECO:0000269|PubMed:11564863, ECO:0000269|PubMed:12601814, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:9885574}. |
Q13425 | SNTB2 | S110 | ochoa | Beta-2-syntrophin (59 kDa dystrophin-associated protein A1 basic component 2) (Syntrophin-3) (SNT3) (Syntrophin-like) (SNTL) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin glycoprotein complex. May play a role in the regulation of secretory granules via its interaction with PTPRN. |
Q13459 | MYO9B | S1281 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13625 | TP53BP2 | S576 | ochoa | Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) | Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}. |
Q14596 | NBR1 | S825 | ochoa | Next to BRCA1 gene 1 protein (Cell migration-inducing gene 19 protein) (Membrane component chromosome 17 surface marker 2) (Neighbor of BRCA1 gene 1 protein) (Protein 1A1-3B) | Ubiquitin-binding autophagy adapter that participates in different processes including host defense or intracellular homeostasis (PubMed:24692539, PubMed:33577621). Possesses a double function during the selective autophagy by acting as a shuttle bringing ubiquitinated proteins to autophagosomes and also by participating in the formation of protein aggregates (PubMed:24879152, PubMed:34471133). Plays a role in the regulation of the innate immune response by modulating type I interferon production and targeting ubiquitinated IRF3 for autophagic degradation (PubMed:35914352). In response to oxidative stress, promotes an increase in SQSTM1 levels, phosphorylation, and body formation by preventing its autophagic degradation (By similarity). In turn, activates the KEAP1-NRF2/NFE2L2 antioxidant pathway (By similarity). Also plays non-autophagy role by mediating the shuttle of IL-12 to late endosome for subsequent secretion (By similarity). {ECO:0000250|UniProtKB:P97432, ECO:0000269|PubMed:19250911, ECO:0000269|PubMed:24692539, ECO:0000269|PubMed:24879152, ECO:0000269|PubMed:33577621, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:35914352}. |
Q14687 | GSE1 | S186 | ochoa | Genetic suppressor element 1 | None |
Q14934 | NFATC4 | S281 | ochoa|psp | Nuclear factor of activated T-cells, cytoplasmic 4 (NF-ATc4) (NFATc4) (T-cell transcription factor NFAT3) (NF-AT3) | Ca(2+)-regulated transcription factor that is involved in several processes, including the development and function of the immune, cardiovascular, musculoskeletal, and nervous systems (PubMed:11514544, PubMed:11997522, PubMed:17213202, PubMed:17875713, PubMed:18668201, PubMed:25663301, PubMed:7749981). Involved in T-cell activation, stimulating the transcription of cytokine genes, including that of IL2 and IL4 (PubMed:18347059, PubMed:18668201, PubMed:7749981). Along with NFATC3, involved in embryonic heart development. Following JAK/STAT signaling activation and as part of a complex with NFATC3 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). Involved in mitochondrial energy metabolism required for cardiac morphogenesis and function (By similarity). Transactivates many genes involved in the cardiovascular system, including AGTR2, NPPB/BNP (in synergy with GATA4), NPPA/ANP/ANF and MYH7/beta-MHC (By similarity). Involved in the regulation of adult hippocampal neurogenesis. Involved in BDNF-driven pro-survival signaling in hippocampal adult-born neurons. Involved in the formation of long-term spatial memory and long-term potentiation (By similarity). In cochlear nucleus neurons, may play a role in deafferentation-induced apoptosis during the developmental critical period, when auditory neurons depend on afferent input for survival (By similarity). Binds to and activates the BACE1/Beta-secretase 1 promoter, hence may regulate the proteolytic processing of the amyloid precursor protein (APP) (PubMed:25663301). Plays a role in adipocyte differentiation (PubMed:11997522). May be involved in myoblast differentiation into myotubes (PubMed:17213202). Binds the consensus DNA sequence 5'-GGAAAAT-3' (Probable). In the presence of CREBBP, activates TNF transcription (PubMed:11514544). Binds to PPARG gene promoter and regulates its activity (PubMed:11997522). Binds to PPARG and REG3G gene promoters (By similarity). {ECO:0000250|UniProtKB:D3Z9H7, ECO:0000250|UniProtKB:Q8K120, ECO:0000269|PubMed:11514544, ECO:0000269|PubMed:11997522, ECO:0000269|PubMed:17213202, ECO:0000269|PubMed:17875713, ECO:0000269|PubMed:18347059, ECO:0000269|PubMed:18668201, ECO:0000269|PubMed:25663301, ECO:0000269|PubMed:7749981, ECO:0000305}. |
Q15744 | CEBPE | S181 | ochoa | CCAAT/enhancer-binding protein epsilon (C/EBP epsilon) | Transcriptional activator (PubMed:26019275). C/EBP are DNA-binding proteins that recognize two different motifs: the CCAAT homology common to many promoters and the enhanced core homology common to many enhancers. Required for the promyelocyte-myelocyte transition in myeloid differentiation (PubMed:10359588). {ECO:0000269|PubMed:10359588, ECO:0000269|PubMed:26019275}. |
Q15788 | NCOA1 | S997 | ochoa|psp | Nuclear receptor coactivator 1 (NCoA-1) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 74) (bHLHe74) (Protein Hin-2) (RIP160) (Renal carcinoma antigen NY-REN-52) (Steroid receptor coactivator 1) (SRC-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:10449719, ECO:0000269|PubMed:12954634, ECO:0000269|PubMed:7481822, ECO:0000269|PubMed:9223281, ECO:0000269|PubMed:9223431, ECO:0000269|PubMed:9296499, ECO:0000269|PubMed:9427757}. |
Q2M3G4 | SHROOM1 | S364 | ochoa | Protein Shroom1 (Apical protein 2) | May be involved in the assembly of microtubule arrays during cell elongation. {ECO:0000250}. |
Q2Q1W2 | TRIM71 | S187 | ochoa | E3 ubiquitin-protein ligase TRIM71 (EC 2.3.2.27) (Protein lin-41 homolog) (RING-type E3 ubiquitin transferase TRIM71) (Tripartite motif-containing protein 71) | E3 ubiquitin-protein ligase that cooperates with the microRNAs (miRNAs) machinery and promotes embryonic stem cells proliferation and maintenance (Probable). Binds to miRNAs and associates with AGO2, participating in post-transcriptional repression of transcripts such as CDKN1A (By similarity). In addition, participates in post-transcriptional mRNA repression in a miRNA independent mechanism (PubMed:23125361). Facilitates the G1-S transition to promote rapid embryonic stem cell self-renewal by repressing CDKN1A expression. Required to maintain proliferation and prevent premature differentiation of neural progenitor cells during early neural development: positively regulates FGF signaling by controlling the stability of SHCBP1 (By similarity). Specific regulator of miRNA biogenesis. Binds to miRNA MIR29A hairpin and postranscriptionally modulates MIR29A levels, which indirectly regulates TET proteins expression (PubMed:28431233). {ECO:0000250|UniProtKB:Q1PSW8, ECO:0000269|PubMed:23125361, ECO:0000269|PubMed:28431233, ECO:0000305|PubMed:24239284}. |
Q460N5 | PARP14 | S33 | ochoa | Protein mono-ADP-ribosyltransferase PARP14 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 8) (ARTD8) (B aggressive lymphoma protein 2) (Poly [ADP-ribose] polymerase 14) (PARP-14) | ADP-ribosyltransferase that mediates mono-ADP-ribosylation of glutamate residues on target proteins (PubMed:16061477, PubMed:18851833, PubMed:25043379, PubMed:27796300). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed:25043379). Has been shown to catalyze the mono-ADP-ribosylation of STAT1 at 'Glu-657' and 'Glu-705', thus decreasing STAT1 phosphorylation which negatively regulates pro-inflammatory cytokine production in macrophages in response to IFNG stimulation (PubMed:27796300). However, the role of ADP-ribosylation in the prevention of STAT1 phosphorylation has been called into question and it has been suggested that the inhibition of phosphorylation may be the result of sumoylation of STAT1 'Lys-703' (PubMed:29858569). Mono-ADP-ribosylates STAT6; enhancing STAT6-dependent transcription (PubMed:27796300). In macrophages, positively regulates MRC1 expression in response to IL4 stimulation by promoting STAT6 phosphorylation (PubMed:27796300). Mono-ADP-ribosylates PARP9 (PubMed:27796300). {ECO:0000269|PubMed:16061477, ECO:0000269|PubMed:18851833, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27796300, ECO:0000305|PubMed:29858569}. |
Q5H9R7 | PPP6R3 | S853 | ochoa | Serine/threonine-protein phosphatase 6 regulatory subunit 3 (SAPS domain family member 3) (Sporulation-induced transcript 4-associated protein SAPL) | Regulatory subunit of protein phosphatase 6 (PP6). May function as a scaffolding PP6 subunit. May have an important role in maintaining immune self-tolerance. {ECO:0000269|PubMed:11401438, ECO:0000269|PubMed:16769727}. |
Q5JR12 | PPM1J | S45 | ochoa | Protein phosphatase 1J (EC 3.1.3.16) (Protein phosphatase 2C isoform zeta) (PP2C-zeta) | None |
Q5JSZ5 | PRRC2B | S595 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTC6 | AMER1 | S674 | ochoa | APC membrane recruitment protein 1 (Amer1) (Protein FAM123B) (Wilms tumor gene on the X chromosome protein) | Regulator of the canonical Wnt signaling pathway. Acts by specifically binding phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), translocating to the cell membrane and interacting with key regulators of the canonical Wnt signaling pathway, such as components of the beta-catenin destruction complex. Acts both as a positive and negative regulator of the Wnt signaling pathway, depending on the context: acts as a positive regulator by promoting LRP6 phosphorylation. Also acts as a negative regulator by acting as a scaffold protein for the beta-catenin destruction complex and promoting stabilization of Axin at the cell membrane. Promotes CTNNB1 ubiquitination and degradation. Involved in kidney development. {ECO:0000269|PubMed:17510365, ECO:0000269|PubMed:17925383, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:21304492, ECO:0000269|PubMed:21498506}. |
Q5QP82 | DCAF10 | S63 | ochoa | DDB1- and CUL4-associated factor 10 (WD repeat-containing protein 32) | May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16949367}. |
Q5SQI0 | ATAT1 | S315 | ochoa|psp | Alpha-tubulin N-acetyltransferase 1 (Alpha-TAT) (Alpha-TAT1) (TAT) (EC 2.3.1.108) (Acetyltransferase mec-17 homolog) | Specifically acetylates 'Lys-40' in alpha-tubulin on the lumenal side of microtubules. Promotes microtubule destabilization and accelerates microtubule dynamics; this activity may be independent of acetylation activity. Acetylates alpha-tubulin with a slow enzymatic rate, due to a catalytic site that is not optimized for acetyl transfer. Enters the microtubule through each end and diffuses quickly throughout the lumen of microtubules. Acetylates only long/old microtubules because of its slow acetylation rate since it does not have time to act on dynamically unstable microtubules before the enzyme is released. Required for normal sperm flagellar function. Promotes directional cell locomotion and chemotaxis, through AP2A2-dependent acetylation of alpha-tubulin at clathrin-coated pits that are concentrated at the leading edge of migrating cells. May facilitate primary cilium assembly. {ECO:0000255|HAMAP-Rule:MF_03130, ECO:0000269|PubMed:20829795, ECO:0000269|PubMed:21068373, ECO:0000269|PubMed:24097348, ECO:0000269|PubMed:24906155}. |
Q5T1R4 | HIVEP3 | S2382 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5TCZ1 | SH3PXD2A | S547 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5TGY3 | AHDC1 | S369 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5TZA2 | CROCC | S512 | ochoa | Rootletin (Ciliary rootlet coiled-coil protein) | Major structural component of the ciliary rootlet, a cytoskeletal-like structure in ciliated cells which originates from the basal body at the proximal end of a cilium and extends proximally toward the cell nucleus (By similarity). Furthermore, is required for the correct positioning of the cilium basal body relative to the cell nucleus, to allow for ciliogenesis (PubMed:27623382). Contributes to centrosome cohesion before mitosis (PubMed:16203858). {ECO:0000250|UniProtKB:Q8CJ40, ECO:0000269|PubMed:16203858, ECO:0000269|PubMed:27623382}. |
Q5U651 | RASIP1 | S299 | ochoa | Ras-interacting protein 1 (Rain) | Required for the proper formation of vascular structures that develop via both vasculogenesis and angiogenesis. Acts as a critical and vascular-specific regulator of GTPase signaling, cell architecture, and adhesion, which is essential for endothelial cell morphogenesis and blood vessel tubulogenesis. Regulates the activity of Rho GTPases in part by recruiting ARHGAP29 and suppressing RhoA signaling and dampening ROCK and MYH9 activities in endothelial cells (By similarity). May act as effector for Golgi-bound HRAS and other Ras-like proteins. May promote HRAS-mediated transformation. Negative regulator of amino acid starvation-induced autophagy. {ECO:0000250, ECO:0000269|PubMed:15031288, ECO:0000269|PubMed:22354037}. |
Q5VWG9 | TAF3 | S830 | ochoa | Transcription initiation factor TFIID subunit 3 (140 kDa TATA box-binding protein-associated factor) (TBP-associated factor 3) (Transcription initiation factor TFIID 140 kDa subunit) (TAF(II)140) (TAF140) (TAFII-140) (TAFII140) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF3 forms the TFIID-A module together with TAF5 and TBP (PubMed:33795473). Required in complex with TBPL2 for the differentiation of myoblasts into myocytes (PubMed:11438666). The TAF3-TBPL2 complex replaces TFIID at specific promoters at an early stage in the differentiation process (PubMed:11438666). {ECO:0000269|PubMed:11438666, ECO:0000269|PubMed:33795473}. |
Q68DK7 | MSL1 | S205 | ochoa | Male-specific lethal 1 homolog (MSL-1) (Male-specific lethal 1-like 1) (MSL1-like 1) (Male-specific lethal-1 homolog 1) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16227571, PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). Within the MSL complex, acts as a scaffold to tether MSL3 and KAT8 together for enzymatic activity regulation (PubMed:22547026). Greatly enhances MSL2 E3 ubiquitin ligase activity, promoting monoubiquitination of histone H2B at 'Lys-34' (H2BK34Ub) (PubMed:21726816, PubMed:30930284). This modification in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). {ECO:0000250|UniProtKB:Q6PDM1, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q68EM7 | ARHGAP17 | S667 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q6NTE8 | MRNIP | S193 | ochoa | MRN complex-interacting protein (MRN-interacting protein) | Plays a role in the cellular response to DNA damage and the maintenance of genome stability through its association with the MRN damage-sensing complex (PubMed:27568553). Promotes chromatin loading and activity of the MRN complex to facilitate subsequent ATM-mediated DNA damage response signaling and DNA repair (PubMed:27568553). |
Q6P2E9 | EDC4 | S780 | ochoa | Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) | In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}. |
Q6P3S6 | FBXO42 | S429 | ochoa | F-box only protein 42 (Just one F-box and Kelch domain-containing protein) | Substrate-recognition component of some SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. Specifically recognizes p53/TP53, promoting its ubiquitination and degradation. {ECO:0000269|PubMed:19509332}. |
Q6PKG0 | LARP1 | S291 | ochoa | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6T4P5 | PLPPR3 | S508 | ochoa | Phospholipid phosphatase-related protein type 3 (Inactive phospholipid phosphatase PLPPR3) (Lipid phosphate phosphatase-related protein type 3) (PAP-2-like protein 2) (Plasticity-related gene 2 protein) (PRG-2) | None |
Q6UB99 | ANKRD11 | S2021 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6W2J9 | BCOR | S294 | ochoa | BCL-6 corepressor (BCoR) | Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}. |
Q6W2J9 | BCOR | S423 | ochoa | BCL-6 corepressor (BCoR) | Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}. |
Q6ZNC4 | ZNF704 | S367 | ochoa | Zinc finger protein 704 | Transcription factor which binds to RE2 sequence elements in the MYOD1 enhancer. {ECO:0000250|UniProtKB:Q9ERQ3}. |
Q6ZRI6 | C15orf39 | S322 | ochoa | Uncharacterized protein C15orf39 | None |
Q6ZRS2 | SRCAP | S2840 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q6ZRS2 | SRCAP | S2869 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q6ZUT6 | CCDC9B | S448 | ochoa | Coiled-coil domain-containing protein 9B | None |
Q6ZW31 | SYDE1 | S235 | ochoa | Rho GTPase-activating protein SYDE1 (Synapse defective protein 1 homolog 1) (Protein syd-1 homolog 1) | GTPase activator for the Rho-type GTPases. As a GCM1 downstream effector, it is involved in placental development and positively regulates trophoblast cells migration. It regulates cytoskeletal remodeling by controlling the activity of Rho GTPases including RHOA, CDC42 and RAC1 (PubMed:27917469). {ECO:0000269|PubMed:27917469}. |
Q7Z2Z1 | TICRR | S1430 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z5L9 | IRF2BP2 | S175 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q86U38 | NOP9 | S58 | ochoa | Nucleolar protein 9 | None |
Q86UU1 | PHLDB1 | S518 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86UZ6 | ZBTB46 | S234 | ochoa | Zinc finger and BTB domain-containing protein 46 (BTB-ZF protein expressed in effector lymphocytes) (BZEL) (BTB/POZ domain-containing protein 4) (Zinc finger protein 340) | Functions as a transcriptional repressor for PRDM1. {ECO:0000250}. |
Q86WB0 | ZC3HC1 | S335 | ochoa | Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) | Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}. |
Q86XN8 | MEX3D | S514 | ochoa | RNA-binding protein MEX3D (RING finger and KH domain-containing protein 1) (RING finger protein 193) (TINO) | RNA binding protein, may be involved in post-transcriptional regulatory mechanisms. {ECO:0000250}. |
Q86YN6 | PPARGC1B | S256 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) | Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}. |
Q86YP4 | GATAD2A | S114 | ochoa | Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q86YV5 | PRAG1 | S77 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q86YV5 | PRAG1 | S148 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q8IU81 | IRF2BP1 | S436 | ochoa | Interferon regulatory factor 2-binding protein 1 (IRF-2-binding protein 1) (IRF-2BP1) (Probable E3 ubiquitin-protein ligase IRF2BP1) (EC 2.3.2.27) (Probable RING-type E3 ubiquitin transferase IRF2BP1) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities. May act as an E3 ligase towards JDP2, enhancing its polyubiquitination. Represses ATF2-dependent transcriptional activation. {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:18671972}. |
Q8IUD2 | ERC1 | S41 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IWE2 | FAM114A1 | S120 | ochoa | Protein NOXP20 (Nervous system overexpressed protein 20) (Protein FAM114A1) | May play a role in neuronal cell development. {ECO:0000250}. |
Q8IWT3 | CUL9 | S947 | ochoa | Cullin-9 (CUL-9) (UbcH7-associated protein 1) (p53-associated parkin-like cytoplasmic protein) | Core component of a Cul9-RING ubiquitin-protein ligase complex composed of CUL9 and RBX1 (PubMed:38605244). The CUL9-RBX1 complex mediates ubiquitination and subsequent degradation of BIRC5 and is required to maintain microtubule dynamics and genome integrity. Acts downstream of the 3M complex, which inhibits the ubiquitination of BIRC5 (PubMed:24793696). The CUL9-RBX1 complex also mediates mono-ubiquitination of p53/TP53 (PubMed:38605244). Acts as a cytoplasmic anchor protein in p53/TP53-associated protein complex. Regulates the subcellular localization of p53/TP53 and its subsequent function (PubMed:12526791, PubMed:17332328). Ubiquitinates apurinic/apyrimidinic endodeoxyribonuclease APEX2 (PubMed:38605244). Ubiquitination by the CUL9-RBX1 complex is predominantly mediated by E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2D2 (PubMed:38605244). {ECO:0000269|PubMed:12526791, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:38605244}. |
Q8IX07 | ZFPM1 | S733 | ochoa | Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) | Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}. |
Q8IXF0 | NPAS3 | S639 | ochoa | Neuronal PAS domain-containing protein 3 (Neuronal PAS3) (Basic-helix-loop-helix-PAS protein MOP6) (Class E basic helix-loop-helix protein 12) (bHLHe12) (Member of PAS protein 6) (PAS domain-containing protein 6) | May play a broad role in neurogenesis. May control regulatory pathways relevant to schizophrenia and to psychotic illness (By similarity). {ECO:0000250}. |
Q8IXJ9 | ASXL1 | S463 | ochoa | Polycomb group protein ASXL1 (Additional sex combs-like protein 1) | Probable Polycomb group (PcG) protein involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor gamma (PPARG) (PubMed:16606617). Acts as a coactivator of RARA and RXRA through association with NCOA1 (PubMed:16606617). Acts as a corepressor for PPARG and suppresses its adipocyte differentiation-inducing activity (By similarity). Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:20436459, PubMed:30664650, PubMed:36180891). Acts as a sensor of N(6)-methyladenine methylation on DNA (6mA): recognizes and binds 6mA DNA, leading to its ubiquitination and degradation by TRIP12, thereby inactivating the PR-DUB complex and regulating Polycomb silencing (PubMed:30982744). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). Together with BAP1, negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000250|UniProtKB:P59598, ECO:0000269|PubMed:16606617, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:30982744, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:36180891}. |
Q8IY33 | MICALL2 | S249 | ochoa | MICAL-like protein 2 (Junctional Rab13-binding protein) (Molecule interacting with CasL-like 2) (MICAL-L2) | Effector of small Rab GTPases which is involved in junctional complexes assembly through the regulation of cell adhesion molecules transport to the plasma membrane and actin cytoskeleton reorganization. Regulates the endocytic recycling of occludins, claudins and E-cadherin to the plasma membrane and may thereby regulate the establishment of tight junctions and adherens junctions. In parallel, may regulate actin cytoskeleton reorganization directly through interaction with F-actin or indirectly through actinins and filamins. Most probably involved in the processes of epithelial cell differentiation, cell spreading and neurite outgrowth (By similarity). Undergoes liquid-liquid phase separation to form tubular recycling endosomes. Plays 2 sequential roles in the biogenesis of tubular recycling endosomes: first organizes phase separation and then the closed form formed by interaction with RAB8A promotes endosomal tubulation (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q3TN34}. |
Q8IY33 | MICALL2 | S726 | ochoa | MICAL-like protein 2 (Junctional Rab13-binding protein) (Molecule interacting with CasL-like 2) (MICAL-L2) | Effector of small Rab GTPases which is involved in junctional complexes assembly through the regulation of cell adhesion molecules transport to the plasma membrane and actin cytoskeleton reorganization. Regulates the endocytic recycling of occludins, claudins and E-cadherin to the plasma membrane and may thereby regulate the establishment of tight junctions and adherens junctions. In parallel, may regulate actin cytoskeleton reorganization directly through interaction with F-actin or indirectly through actinins and filamins. Most probably involved in the processes of epithelial cell differentiation, cell spreading and neurite outgrowth (By similarity). Undergoes liquid-liquid phase separation to form tubular recycling endosomes. Plays 2 sequential roles in the biogenesis of tubular recycling endosomes: first organizes phase separation and then the closed form formed by interaction with RAB8A promotes endosomal tubulation (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q3TN34}. |
Q8IZ73 | RPUSD2 | S90 | ochoa | Pseudouridylate synthase RPUSD2 (EC 5.4.99.-) (RNA pseudouridylate synthase domain-containing protein 2) | Pseudouridine synthase that catalyzes pseudouridylation of mRNAs. {ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:35051350}. |
Q8IZD4 | DCP1B | T392 | ochoa | mRNA-decapping enzyme 1B (EC 3.6.1.62) | May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}. |
Q8N137 | CNTROB | S790 | ochoa | Centrobin (Centrosomal BRCA2-interacting protein) (LYST-interacting protein 8) | Required for centriole duplication. Inhibition of centriole duplication leading to defects in cytokinesis. {ECO:0000269|PubMed:16275750}. |
Q8N1G0 | ZNF687 | S374 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N3J3 | HROB | T355 | ochoa | Homologous recombination OB-fold protein | DNA-binding protein involved in homologous recombination that acts by recruiting the MCM8-MCM9 helicase complex to sites of DNA damage to promote DNA repair synthesis. {ECO:0000269|PubMed:31467087}. |
Q8N556 | AFAP1 | S711 | ochoa | Actin filament-associated protein 1 (110 kDa actin filament-associated protein) (AFAP-110) | Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. {ECO:0000250, ECO:0000269|PubMed:15485829}. |
Q8N5S9 | CAMKK1 | S82 | ochoa | Calcium/calmodulin-dependent protein kinase kinase 1 (CaM-KK 1) (CaM-kinase kinase 1) (CaMKK 1) (EC 2.7.11.17) (CaM-kinase IV kinase) (Calcium/calmodulin-dependent protein kinase kinase alpha) (CaM-KK alpha) (CaM-kinase kinase alpha) (CaMKK alpha) | Calcium/calmodulin-dependent protein kinase that belongs to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Phosphorylates CAMK1, CAMK1D, CAMK1G and CAMK4. Involved in regulating cell apoptosis. Promotes cell survival by phosphorylating AKT1/PKB that inhibits pro-apoptotic BAD/Bcl2-antagonist of cell death. {ECO:0000269|PubMed:12935886}. |
Q8NEL9 | DDHD1 | S139 | ochoa | Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) | Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}. |
Q8NHG8 | ZNRF2 | S120 | ochoa | E3 ubiquitin-protein ligase ZNRF2 (EC 2.3.2.27) (Protein Ells2) (RING finger protein 202) (RING-type E3 ubiquitin transferase ZNRF2) (Zinc/RING finger protein 2) | E3 ubiquitin-protein ligase that plays a role in the establishment and maintenance of neuronal transmission and plasticity. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Acts also as a positive regulator of mTORC1 activation by amino acids, which functions upstream of the V-ATPase and of Rag-GTPases (PubMed:27244671). In turn, phosphorylation by mTOR leads to its inhibition via targeting to the cytosol allowing a self-regulating feedback mechanism (PubMed:27244671). {ECO:0000269|PubMed:14561866, ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:27244671}. |
Q8TAP9 | MPLKIP | S72 | ochoa | M-phase-specific PLK1-interacting protein (TTD non-photosensitive 1 protein) | May play a role in maintenance of cell cycle integrity by regulating mitosis or cytokinesis. {ECO:0000269|PubMed:17310276}. |
Q8TDC3 | BRSK1 | S508 | ochoa | Serine/threonine-protein kinase BRSK1 (EC 2.7.11.1) (Brain-selective kinase 1) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 1) (BR serine/threonine-protein kinase 1) (Serine/threonine-protein kinase SAD-B) (Synapses of Amphids Defective homolog 1) (SAD1 homolog) (hSAD1) | Serine/threonine-protein kinase that plays a key role in polarization of neurons and centrosome duplication. Phosphorylates CDC25B, CDC25C, MAPT/TAU, RIMS1, TUBG1, TUBG2 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. In neurons, localizes to synaptic vesicles and plays a role in neurotransmitter release, possibly by phosphorylating RIMS1. Also acts as a positive regulator of centrosome duplication by mediating phosphorylation of gamma-tubulin (TUBG1 and TUBG2) at 'Ser-131', leading to translocation of gamma-tubulin and its associated proteins to the centrosome. Involved in the UV-induced DNA damage checkpoint response, probably by inhibiting CDK1 activity through phosphorylation and activation of WEE1, and inhibition of CDC25B and CDC25C. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15150265, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311}. |
Q8WUU4 | ZNF296 | S69 | ochoa | Zinc finger protein 296 (ZFP296) (Zinc finger protein 342) | May be a transcriptional corepressor with KLF4. {ECO:0000250|UniProtKB:E9Q6W4}. |
Q8WVB6 | CHTF18 | S64 | ochoa | Chromosome transmission fidelity protein 18 homolog (hCTF18) (CHL12) | Chromosome cohesion factor involved in sister chromatid cohesion and fidelity of chromosome transmission. Component of one of the cell nuclear antigen loader complexes, CTF18-replication factor C (CTF18-RFC), which consists of CTF18, CTF8, DCC1, RFC2, RFC3, RFC4 and RFC5. The CTF18-RFC complex binds to single-stranded and primed DNAs and has weak ATPase activity that is stimulated by the presence of primed DNA, replication protein A (RPA) and by proliferating cell nuclear antigen (PCNA). The CTF18-RFC complex catalyzes the ATP-dependent loading of PCNA onto primed and gapped DNA. Interacts with and stimulates DNA polymerase POLH. During DNA repair synthesis, involved in loading DNA polymerase POLE at the sites of local damage (PubMed:20227374). {ECO:0000269|PubMed:12766176, ECO:0000269|PubMed:12930902, ECO:0000269|PubMed:17545166, ECO:0000269|PubMed:20227374}. |
Q8WVT3 | TRAPPC12 | S276 | ochoa | Trafficking protein particle complex subunit 12 (Tetratricopeptide repeat protein 15) (TPR repeat protein 15) (TTC-15) (Trafficking of membranes and mitosis) | Component of the TRAPP complex, which is involved in endoplasmic reticulum to Golgi apparatus trafficking at a very early stage (PubMed:21525244, PubMed:28777934). Also plays a role in chromosome congression, kinetochore assembly and stability and controls the recruitment of CENPE to the kinetochores (PubMed:25918224). {ECO:0000269|PubMed:21525244, ECO:0000269|PubMed:25918224, ECO:0000269|PubMed:28777934}. |
Q8WVT3 | TRAPPC12 | S290 | ochoa | Trafficking protein particle complex subunit 12 (Tetratricopeptide repeat protein 15) (TPR repeat protein 15) (TTC-15) (Trafficking of membranes and mitosis) | Component of the TRAPP complex, which is involved in endoplasmic reticulum to Golgi apparatus trafficking at a very early stage (PubMed:21525244, PubMed:28777934). Also plays a role in chromosome congression, kinetochore assembly and stability and controls the recruitment of CENPE to the kinetochores (PubMed:25918224). {ECO:0000269|PubMed:21525244, ECO:0000269|PubMed:25918224, ECO:0000269|PubMed:28777934}. |
Q8WWM7 | ATXN2L | S98 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q92610 | ZNF592 | S691 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92733 | PRCC | S97 | ochoa | Proline-rich protein PRCC (Papillary renal cell carcinoma translocation-associated gene protein) | May regulate cell cycle progression through interaction with MAD2L2. {ECO:0000269|PubMed:11717438}. |
Q92733 | PRCC | S114 | ochoa | Proline-rich protein PRCC (Papillary renal cell carcinoma translocation-associated gene protein) | May regulate cell cycle progression through interaction with MAD2L2. {ECO:0000269|PubMed:11717438}. |
Q92835 | INPP5D | S951 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (EC 3.1.3.86) (Inositol polyphosphate-5-phosphatase D) (EC 3.1.3.56) (Inositol polyphosphate-5-phosphatase of 145 kDa) (SIP-145) (Phosphatidylinositol 4,5-bisphosphate 5-phosphatase) (EC 3.1.3.36) (SH2 domain-containing inositol 5'-phosphatase 1) (SH2 domain-containing inositol phosphatase 1) (SHIP-1) (p150Ship) (hp51CN) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:10764818, PubMed:8723348, PubMed:8769125). Able also to hydrolyzes the 5-phosphate of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (PubMed:10764818, PubMed:8769125, PubMed:9108392). Acts as a negative regulator of B-cell antigen receptor signaling. Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Acts as a negative regulator of myeloid cell proliferation/survival and chemotaxis, mast cell degranulation, immune cells homeostasis, integrin alpha-IIb/beta-3 signaling in platelets and JNK signaling in B-cells. Regulates proliferation of osteoclast precursors, macrophage programming, phagocytosis and activation and is required for endotoxin tolerance. Involved in the control of cell-cell junctions, CD32a signaling in neutrophils and modulation of EGF-induced phospholipase C activity (PubMed:16682172). Key regulator of neutrophil migration, by governing the formation of the leading edge and polarization required for chemotaxis. Modulates FCGR3/CD16-mediated cytotoxicity in NK cells. Mediates the activin/TGF-beta-induced apoptosis through its Smad-dependent expression. {ECO:0000269|PubMed:10764818, ECO:0000269|PubMed:12421919, ECO:0000269|PubMed:16682172, ECO:0000269|PubMed:8723348, ECO:0000269|PubMed:8769125, ECO:0000269|PubMed:9108392}. |
Q92888 | ARHGEF1 | S333 | ochoa | Rho guanine nucleotide exchange factor 1 (115 kDa guanine nucleotide exchange factor) (p115-RhoGEF) (p115RhoGEF) (Sub1.5) | Seems to play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13) subunits (PubMed:9641915, PubMed:9641916). Acts as a GTPase-activating protein (GAP) for GNA12 and GNA13, and as guanine nucleotide exchange factor (GEF) for RhoA GTPase (PubMed:30521495, PubMed:8810315, PubMed:9641915, PubMed:9641916). Activated G alpha 13/GNA13 stimulates the RhoGEF activity through interaction with the RGS-like domain (PubMed:9641916). This GEF activity is inhibited by binding to activated GNA12 (PubMed:9641916). Mediates angiotensin-2-induced RhoA activation (PubMed:20098430). In lymphoid follicles, may trigger activation of GNA13 as part of S1PR2-dependent signaling pathway that leads to inhibition of germinal center (GC) B cell growth and migration outside the GC niche. {ECO:0000250|UniProtKB:Q61210, ECO:0000269|PubMed:20098430, ECO:0000269|PubMed:30521495, ECO:0000269|PubMed:8810315, ECO:0000269|PubMed:9641915, ECO:0000269|PubMed:9641916}. |
Q92925 | SMARCD2 | S203 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 2 (60 kDa BRG-1/Brm-associated factor subunit B) (BRG1-associated factor 60B) (BAF60B) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:22952240, PubMed:26601204). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (PubMed:28369036). {ECO:0000269|PubMed:28369036, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q92974 | ARHGEF2 | S696 | ochoa | Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) | Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}. |
Q96D05 | FAM241B | S62 | ochoa | Protein FAM241B | May play a role in lysosome homeostasis. {ECO:0000269|PubMed:31270356}. |
Q96FI4 | NEIL1 | S306 | ochoa|psp | Endonuclease 8-like 1 (EC 3.2.2.-) (EC 4.2.99.18) (DNA glycosylase/AP lyase Neil1) (DNA-(apurinic or apyrimidinic site) lyase Neil1) (Endonuclease VIII-like 1) (FPG1) (Nei homolog 1) (NEH1) (Nei-like protein 1) | Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as a DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized pyrimidines, such as thymine glycol, formamidopyrimidine (Fapy) and 5-hydroxyuracil. Has marginal activity towards 8-oxoguanine. Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. Has DNA glycosylase/lyase activity towards mismatched uracil and thymine, in particular in U:C and T:C mismatches. Specifically binds 5-hydroxymethylcytosine (5hmC), suggesting that it acts as a specific reader of 5hmC. {ECO:0000269|PubMed:11904416, ECO:0000269|PubMed:12200441, ECO:0000269|PubMed:12509226, ECO:0000269|PubMed:14522990}. |
Q96G42 | KLHDC7B | S164 | ochoa | Kelch domain-containing protein 7B | None |
Q96HB5 | CCDC120 | S256 | ochoa | Coiled-coil domain-containing protein 120 | Centriolar protein required for centriole subdistal appendage assembly and microtubule anchoring in interphase cells (PubMed:28422092). Together with CCDC68, cooperate with subdistal appendage components ODF2, NIN and CEP170 for hierarchical subdistal appendage assembly (PubMed:28422092). Recruits NIN and CEP170 to centrosomes (PubMed:28422092). Also required for neurite growth. Localizes CYTH2 to vesicles to allow its transport along neurites, and subsequent ARF6 activation and neurite growth. {ECO:0000269|PubMed:25326380}. |
Q96IQ9 | ZNF414 | S296 | ochoa | Zinc finger protein 414 | May be involved in transcriptional regulation. |
Q96J02 | ITCH | S240 | ochoa | E3 ubiquitin-protein ligase Itchy homolog (Itch) (EC 2.3.2.26) (Atrophin-1-interacting protein 4) (AIP4) (HECT-type E3 ubiquitin transferase Itchy homolog) (NFE2-associated polypeptide 1) (NAPP1) | Acts as an Acts as an E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:11046148, PubMed:14602072, PubMed:15051726, PubMed:16387660, PubMed:17028573, PubMed:18718448, PubMed:18718449, PubMed:19116316, PubMed:19592251, PubMed:19881509, PubMed:20068034, PubMed:20392206, PubMed:20491914, PubMed:23146885, PubMed:24790097, PubMed:25631046). Catalyzes 'Lys-29'-, 'Lys-48'- and 'Lys-63'-linked ubiquitin conjugation (PubMed:17028573, PubMed:18718448, PubMed:19131965, PubMed:19881509). Involved in the control of inflammatory signaling pathways (PubMed:19131965). Essential component of a ubiquitin-editing protein complex, comprising also TNFAIP3, TAX1BP1 and RNF11, that ensures the transient nature of inflammatory signaling pathways (PubMed:19131965). Promotes the association of the complex after TNF stimulation (PubMed:19131965). Once the complex is formed, TNFAIP3 deubiquitinates 'Lys-63' polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:19131965). This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NFKB1 (PubMed:19131965). Ubiquitinates RIPK2 by 'Lys-63'-linked conjugation and influences NOD2-dependent signal transduction pathways (PubMed:19592251). Regulates the transcriptional activity of several transcription factors, and probably plays an important role in the regulation of immune response (PubMed:18718448, PubMed:20491914). Ubiquitinates NFE2 by 'Lys-63' linkages and is implicated in the control of the development of hematopoietic lineages (PubMed:18718448). Mediates JUN ubiquitination and degradation (By similarity). Mediates JUNB ubiquitination and degradation (PubMed:16387660). Critical regulator of type 2 helper T (Th2) cell cytokine production by inducing JUNB ubiquitination and degradation (By similarity). Involved in the negative regulation of MAVS-dependent cellular antiviral responses (PubMed:19881509). Ubiquitinates MAVS through 'Lys-48'-linked conjugation resulting in MAVS proteasomal degradation (PubMed:19881509). Following ligand stimulation, regulates sorting of Wnt receptor FZD4 to the degradative endocytic pathway probably by modulating PI42KA activity (PubMed:23146885). Ubiquitinates PI4K2A and negatively regulates its catalytic activity (PubMed:23146885). Ubiquitinates chemokine receptor CXCR4 and regulates sorting of CXCR4 to the degradative endocytic pathway following ligand stimulation by ubiquitinating endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:14602072, PubMed:23146885, PubMed:34927784). Targets DTX1 for lysosomal degradation and controls NOTCH1 degradation, in the absence of ligand, through 'Lys-29'-linked polyubiquitination (PubMed:17028573, PubMed:18628966, PubMed:23886940). Ubiquitinates SNX9 (PubMed:20491914). Ubiquitinates MAP3K7 through 'Lys-48'-linked conjugation (By similarity). Together with UBR5, involved in the regulation of apoptosis and reactive oxygen species levels through the ubiquitination and proteasomal degradation of TXNIP: catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP (PubMed:20068034, PubMed:29378950). ITCH synthesizes 'Lys-63'-linked chains, while UBR5 is branching multiple 'Lys-48'-linked chains of substrate initially modified (PubMed:29378950). Mediates the antiapoptotic activity of epidermal growth factor through the ubiquitination and proteasomal degradation of p15 BID (PubMed:20392206). Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Inhibits the replication of influenza A virus (IAV) via ubiquitination of IAV matrix protein 1 (M1) through 'Lys-48'-linked conjugation resulting in M1 proteasomal degradation (PubMed:30328013). Ubiquitinates NEDD9/HEF1, resulting in proteasomal degradation of NEDD9/HEF1 (PubMed:15051726). {ECO:0000250|UniProtKB:Q8C863, ECO:0000269|PubMed:14602072, ECO:0000269|PubMed:15051726, ECO:0000269|PubMed:16387660, ECO:0000269|PubMed:17028573, ECO:0000269|PubMed:18628966, ECO:0000269|PubMed:18718448, ECO:0000269|PubMed:18718449, ECO:0000269|PubMed:19116316, ECO:0000269|PubMed:19131965, ECO:0000269|PubMed:19592251, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:20068034, ECO:0000269|PubMed:20392206, ECO:0000269|PubMed:20491914, ECO:0000269|PubMed:23146885, ECO:0000269|PubMed:23886940, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:30328013}. |
Q96JM7 | L3MBTL3 | S625 | ochoa | Lethal(3)malignant brain tumor-like protein 3 (H-l(3)mbt-like protein 3) (L(3)mbt-like protein 3) (L3mbt-like 3) (MBT-1) | Is a negative regulator of Notch target genes expression, required for RBPJ-mediated transcriptional repression (PubMed:29030483). It recruits KDM1A to Notch-responsive elements and promotes KDM1A-mediated H3K4me demethylation (PubMed:29030483). Involved in the regulation of ubiquitin-dependent degradation of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1. It acts as an adapter recruiting the CRL4-DCAF5 E3 ubiquitin ligase complex to methylated target proteins (PubMed:29691401, PubMed:30442713). Required for normal maturation of myeloid progenitor cells (By similarity). {ECO:0000250|UniProtKB:Q8BLB7, ECO:0000269|PubMed:29030483, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}. |
Q96KS0 | EGLN2 | S130 | ochoa|psp | Prolyl hydroxylase EGLN2 (EC 1.14.11.-) (Egl nine homolog 2) (EC 1.14.11.29) (Estrogen-induced tag 6) (EIT-6) (HPH-3) (Hypoxia-inducible factor prolyl hydroxylase 1) (HIF-PH1) (HIF-prolyl hydroxylase 1) (HPH-1) (Prolyl hydroxylase domain-containing protein 1) (PHD1) | Prolyl hydroxylase that mediates hydroxylation of proline residues in target proteins, such as ATF4, IKBKB, CEP192 and HIF1A (PubMed:11595184, PubMed:12039559, PubMed:15925519, PubMed:16509823, PubMed:17114296, PubMed:23932902). Target proteins are preferentially recognized via a LXXLAP motif (PubMed:11595184, PubMed:12039559, PubMed:15925519). Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins (PubMed:11595184, PubMed:12039559, PubMed:12181324, PubMed:15925519, PubMed:19339211). Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A (PubMed:11595184, PubMed:12039559, PubMed:12181324, PubMed:15925519). Also hydroxylates HIF2A (PubMed:11595184, PubMed:12039559, PubMed:15925519). Has a preference for the CODD site for both HIF1A and HIF2A (PubMed:11595184, PubMed:12039559, PubMed:15925519). Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex (PubMed:11595184, PubMed:12039559, PubMed:15925519). Under hypoxic conditions, the hydroxylation reaction is attenuated allowing HIFs to escape degradation resulting in their translocation to the nucleus, heterodimerization with HIF1B, and increased expression of hypoxy-inducible genes (PubMed:11595184, PubMed:12039559, PubMed:15925519). EGLN2 is involved in regulating hypoxia tolerance and apoptosis in cardiac and skeletal muscle (PubMed:11595184, PubMed:12039559, PubMed:15925519). Also regulates susceptibility to normoxic oxidative neuronal death (PubMed:11595184, PubMed:12039559, PubMed:15925519). Links oxygen sensing to cell cycle and primary cilia formation by hydroxylating the critical centrosome component CEP192 which promotes its ubiquitination and subsequent proteasomal degradation (PubMed:23932902). Hydroxylates IKBKB, mediating NF-kappa-B activation in hypoxic conditions (PubMed:17114296). Also mediates hydroxylation of ATF4, leading to decreased protein stability of ATF4 (By similarity). {ECO:0000250|UniProtKB:Q91YE2, ECO:0000269|PubMed:11595184, ECO:0000269|PubMed:12039559, ECO:0000269|PubMed:12181324, ECO:0000269|PubMed:15925519, ECO:0000269|PubMed:16509823, ECO:0000269|PubMed:17114296, ECO:0000269|PubMed:19339211, ECO:0000269|PubMed:23932902}. |
Q96LC9 | BMF | S74 | ochoa|psp | Bcl-2-modifying factor | May play a role in apoptosis. Isoform 1 seems to be the main initiator. |
Q96MG7 | NSMCE3 | S64 | ochoa | Non-structural maintenance of chromosomes element 3 homolog (Non-SMC element 3 homolog) (Hepatocellular carcinoma-associated protein 4) (MAGE-G1 antigen) (Melanoma-associated antigen G1) (Necdin-like protein 2) | Component of the SMC5-SMC6 complex, a complex involved in repair of DNA double-strand breaks by homologous recombination (PubMed:20864041, PubMed:27427983). The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks. The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs). In vitro enhances ubiquitin ligase activity of NSMCE1. Proposed to act through recruitment and/or stabilization of the Ubl-conjugating enzyme (E2) at the E3:substrate complex (PubMed:20864041). May be a growth suppressor that facilitates the entry of the cell into cell cycle arrest (By similarity). {ECO:0000250|UniProtKB:Q9CPR8, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:27427983}. |
Q96MM6 | HSPA12B | S46 | ochoa | Heat shock 70 kDa protein 12B (Heat shock protein family A member 12B) | None |
Q96NY7 | CLIC6 | S112 | ochoa | Chloride intracellular channel protein 6 (Glutaredoxin-like oxidoreductase CLIC6) (EC 1.8.-.-) (Parchorin) | In the soluble state, catalyzes glutaredoxin-like thiol disulfide exchange reactions with reduced glutathione as electron donor (By similarity). Can insert into membranes and form voltage-dependent chloride-selective channels. The channel opens upon membrane depolarization at positive voltages and closes at negative membrane voltages (PubMed:37838179). May play a critical role in water-secreting cells, possibly through the regulation of chloride ion transport (By similarity). {ECO:0000250|UniProtKB:Q9N2G5, ECO:0000250|UniProtKB:Q9Y696, ECO:0000269|PubMed:37838179}. |
Q96NY7 | CLIC6 | S322 | ochoa | Chloride intracellular channel protein 6 (Glutaredoxin-like oxidoreductase CLIC6) (EC 1.8.-.-) (Parchorin) | In the soluble state, catalyzes glutaredoxin-like thiol disulfide exchange reactions with reduced glutathione as electron donor (By similarity). Can insert into membranes and form voltage-dependent chloride-selective channels. The channel opens upon membrane depolarization at positive voltages and closes at negative membrane voltages (PubMed:37838179). May play a critical role in water-secreting cells, possibly through the regulation of chloride ion transport (By similarity). {ECO:0000250|UniProtKB:Q9N2G5, ECO:0000250|UniProtKB:Q9Y696, ECO:0000269|PubMed:37838179}. |
Q96RY5 | CRAMP1 | S75 | ochoa | Protein cramped-like (Cramped chromatin regulator homolog 1) (Hematological and neurological expressed 1-like protein) | None |
Q99700 | ATXN2 | S684 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99700 | ATXN2 | S709 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q9BQ15 | NABP2 | T187 | ochoa | SOSS complex subunit B1 (Nucleic acid-binding protein 2) (Oligonucleotide/oligosaccharide-binding fold-containing protein 2B) (Sensor of single-strand DNA complex subunit B1) (Sensor of ssDNA subunit B1) (SOSS-B1) (Single-stranded DNA-binding protein 1) (hSSB1) | Component of the SOSS complex, a multiprotein complex that functions downstream of the MRN complex to promote DNA repair and G2/M checkpoint (PubMed:25249620). In the SOSS complex, acts as a sensor of single-stranded DNA that binds to single-stranded DNA, in particular to polypyrimidines. The SOSS complex associates with DNA lesions and influences diverse endpoints in the cellular DNA damage response including cell-cycle checkpoint activation, recombinational repair and maintenance of genomic stability. Required for efficient homologous recombination-dependent repair of double-strand breaks (DSBs) and ATM-dependent signaling pathways. {ECO:0000269|PubMed:18449195, ECO:0000269|PubMed:19605351, ECO:0000269|PubMed:19683501, ECO:0000269|PubMed:25249620}. |
Q9BR39 | JPH2 | S508 | ochoa | Junctophilin-2 (JP-2) (Junctophilin type 2) [Cleaved into: Junctophilin-2 N-terminal fragment (JP2NT)] | [Junctophilin-2]: Membrane-binding protein that provides a structural bridge between the plasma membrane and the sarcoplasmic reticulum and is required for normal excitation-contraction coupling in cardiomyocytes (PubMed:20095964). Provides a structural foundation for functional cross-talk between the cell surface and intracellular Ca(2+) release channels by maintaining the 12-15 nm gap between the sarcolemma and the sarcoplasmic reticulum membranes in the cardiac dyads (By similarity). Necessary for proper intracellular Ca(2+) signaling in cardiac myocytes via its involvement in ryanodine receptor-mediated calcium ion release (By similarity). Contributes to the construction of skeletal muscle triad junctions (By similarity). {ECO:0000250|UniProtKB:Q9ET78, ECO:0000269|PubMed:20095964}.; FUNCTION: [Junctophilin-2 N-terminal fragment]: Transcription repressor required to safeguard against the deleterious effects of cardiac stress. Generated following cleavage of the Junctophilin-2 chain by calpain in response to cardiac stress in cardiomyocytes. Following cleavage and release from the membrane, translocates to the nucleus, binds DNA and represses expression of genes implicated in cell growth and differentiation, hypertrophy, inflammation and fibrosis. Modifies the transcription profile and thereby attenuates pathological remodeling in response to cardiac stress. Probably acts by competing with MEF2 transcription factors and TATA-binding proteins. {ECO:0000250|UniProtKB:Q9ET78}. |
Q9BRQ0 | PYGO2 | S40 | ochoa | Pygopus homolog 2 | Involved in signal transduction through the Wnt pathway. |
Q9BVV6 | KIAA0586 | S1067 | ochoa | Protein TALPID3 | Required for ciliogenesis and sonic hedgehog/SHH signaling. Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1. May play a role in early ciliogenesis in the disappearance of centriolar satellites that preceeds ciliary vesicle formation (PubMed:24421332). Involved in regulation of cell intracellular organization. Involved in regulation of cell polarity (By similarity). Required for asymmetrical localization of CEP120 to daughter centrioles (By similarity). {ECO:0000250|UniProtKB:E9PV87, ECO:0000250|UniProtKB:Q1G7G9, ECO:0000269|PubMed:24421332}. |
Q9BW72 | HIGD2A | S25 | ochoa | HIG1 domain family member 2A, mitochondrial (RCF1 homolog B) (RCF1b) | Proposed subunit of cytochrome c oxidase (COX, complex IV), which is the terminal component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. May be involved in cytochrome c oxidase activity. May play a role in the assembly of respiratory supercomplexes. {ECO:0000269|PubMed:22342701}. |
Q9BWH6 | RPAP1 | S1121 | ochoa | RNA polymerase II-associated protein 1 | Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. Required for interaction of the RNA polymerase II complex with acetylated histone H3. {ECO:0000269|PubMed:17643375}. |
Q9BWN1 | PRR14 | S29 | ochoa | Proline-rich protein 14 | Functions in tethering peripheral heterochromatin to the nuclear lamina during interphase, possibly through the interaction with heterochromatin protein CBX5/HP1 alpha (PubMed:24209742). Might play a role in reattaching heterochromatin to the nuclear lamina at mitotic exit (PubMed:24209742). Promotes myoblast differentiation during skeletal myogenesis, possibly by stimulating transcription factor MyoD activity via binding to CBX5/HP1 alpha (PubMed:25906157). Involved in the positive regulation of the PI3K-Akt-mTOR signaling pathway and in promoting cell proliferation, possibly via binding to GRB2 (PubMed:27041574). {ECO:0000269|PubMed:24209742, ECO:0000269|PubMed:25906157, ECO:0000269|PubMed:27041574}. |
Q9BXA9 | SALL3 | S1268 | ochoa | Sal-like protein 3 (Zinc finger protein 796) (Zinc finger protein SALL3) (hSALL3) | Probable transcription factor. |
Q9BXM7 | PINK1 | S228 | psp | Serine/threonine-protein kinase PINK1, mitochondrial (EC 2.7.11.1) (BRPK) (PTEN-induced putative kinase protein 1) | Serine/threonine-protein kinase which acts as a sensor of mitochondrial damage and protects against mitochondrial dysfunction during cellular stress. It phosphorylates mitochondrial proteins to coordinate mitochondrial quality control mechanisms that remove and replace dysfunctional mitochondrial components (PubMed:14607334, PubMed:15087508, PubMed:18443288, PubMed:18957282, PubMed:19229105, PubMed:19966284, PubMed:20404107, PubMed:20547144, PubMed:20798600, PubMed:22396657, PubMed:23620051, PubMed:23754282, PubMed:23933751, PubMed:24660806, PubMed:24751536, PubMed:24784582, PubMed:24896179, PubMed:24898855, PubMed:25527291, PubMed:32484300). Depending on the severity of mitochondrial damage, activity ranges from preventing apoptosis and stimulating mitochondrial biogenesis to eliminating severely damaged mitochondria via PINK1-PRKN-dependent mitophagy (PubMed:14607334, PubMed:15087508, PubMed:18443288, PubMed:19966284, PubMed:20404107, PubMed:20798600, PubMed:22396657, PubMed:23620051, PubMed:23933751, PubMed:24898855, PubMed:32047033, PubMed:32484300). When cellular stress results in irreversible mitochondrial damage, PINK1 accumulates at the outer mitochondrial membrane (OMM) where it phosphorylates pre-existing polyubiquitin chains at 'Ser-65', recruits PRKN from the cytosol to the OMM and activates PRKN by phosphorylation at 'Ser-65'; activated PRKN then ubiquinates VDAC1 and other OMM proteins to initiate mitophagy (PubMed:14607334, PubMed:15087508, PubMed:19966284, PubMed:20404107, PubMed:20798600, PubMed:23754282, PubMed:23933751, PubMed:24660806, PubMed:24751536, PubMed:24784582, PubMed:25474007, PubMed:25527291, PubMed:32047033). The PINK1-PRKN pathway also promotes fission of damaged mitochondria through phosphorylation and PRKN-dependent degradation of mitochondrial proteins involved in fission such as MFN2 (PubMed:18443288, PubMed:23620051, PubMed:24898855). This prevents the refusion of unhealthy mitochondria with the mitochondrial network or initiates mitochondrial fragmentation facilitating their later engulfment by autophagosomes (PubMed:18443288, PubMed:23620051). Also promotes mitochondrial fission independently of PRKN and ATG7-mediated mitophagy, via the phosphorylation and activation of DNM1L (PubMed:18443288, PubMed:32484300). Regulates motility of damaged mitochondria by promoting the ubiquitination and subsequent degradation of MIRO1 and MIRO2; in motor neurons, this likely inhibits mitochondrial intracellular anterograde transport along the axons which probably increases the chance of the mitochondria undergoing mitophagy in the soma (PubMed:22396657). Required for ubiquinone reduction by mitochondrial complex I by mediating phosphorylation of complex I subunit NDUFA10 (By similarity). Phosphorylates LETM1, positively regulating its mitochondrial calcium transport activity (PubMed:29123128). {ECO:0000250|UniProtKB:Q99MQ3, ECO:0000269|PubMed:14607334, ECO:0000269|PubMed:15087508, ECO:0000269|PubMed:18443288, ECO:0000269|PubMed:18957282, ECO:0000269|PubMed:19229105, ECO:0000269|PubMed:19966284, ECO:0000269|PubMed:20404107, ECO:0000269|PubMed:20547144, ECO:0000269|PubMed:20798600, ECO:0000269|PubMed:22396657, ECO:0000269|PubMed:23620051, ECO:0000269|PubMed:23754282, ECO:0000269|PubMed:23933751, ECO:0000269|PubMed:24660806, ECO:0000269|PubMed:24751536, ECO:0000269|PubMed:24784582, ECO:0000269|PubMed:24896179, ECO:0000269|PubMed:24898855, ECO:0000269|PubMed:25474007, ECO:0000269|PubMed:25527291, ECO:0000269|PubMed:29123128, ECO:0000269|PubMed:32047033, ECO:0000269|PubMed:32484300}. |
Q9BY77 | POLDIP3 | S127 | ochoa|psp | Polymerase delta-interacting protein 3 (46 kDa DNA polymerase delta interaction protein) (p46) (S6K1 Aly/REF-like target) (SKAR) | Is involved in regulation of translation. Is preferentially associated with CBC-bound spliced mRNA-protein complexes during the pioneer round of mRNA translation. Contributes to enhanced translational efficiency of spliced over nonspliced mRNAs. Recruits activated ribosomal protein S6 kinase beta-1 I/RPS6KB1 to newly synthesized mRNA. Involved in nuclear mRNA export; probably mediated by association with the TREX complex. {ECO:0000269|PubMed:18423201, ECO:0000269|PubMed:22928037}. |
Q9BZE0 | GLIS2 | S419 | ochoa | Zinc finger protein GLIS2 (GLI-similar 2) (Neuronal Krueppel-like protein) | Can act either as a transcriptional repressor or as a transcriptional activator, depending on the cell context. Acts as a repressor of the Hedgehog signaling pathway (By similarity). Represses the Hedgehog-dependent expression of Wnt4 (By similarity). Necessary to maintain the differentiated epithelial phenotype in renal cells through the inhibition of SNAI1, which itself induces the epithelial-to-mesenchymal transition (By similarity). Represses transcriptional activation mediated by CTNNB1 in the Wnt signaling pathway. May act by recruiting the corepressors CTBP1 and HDAC3. May be involved in neuron differentiation (By similarity). {ECO:0000250}. |
Q9BZL4 | PPP1R12C | S404 | ochoa | Protein phosphatase 1 regulatory subunit 12C (Protein phosphatase 1 myosin-binding subunit of 85 kDa) (Protein phosphatase 1 myosin-binding subunit p85) | Regulates myosin phosphatase activity. {ECO:0000269|PubMed:11399775}. |
Q9C0A6 | SETD5 | S1020 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0C2 | TNKS1BP1 | S691 | ochoa|psp | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S1439 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9GZV5 | WWTR1 | S90 | ochoa|psp | WW domain-containing transcription regulator protein 1 (Transcriptional coactivator with PDZ-binding motif) | Transcriptional coactivator which acts as a downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:11118213, PubMed:18227151, PubMed:23911299). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18227151). WWTR1 enhances PAX8 and NKX2-1/TTF1-dependent gene activation (PubMed:19010321). In conjunction with YAP1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (PubMed:18568018). Plays a key role in coupling SMADs to the transcriptional machinery such as the mediator complex (PubMed:18568018). Regulates embryonic stem-cell self-renewal, promotes cell proliferation and epithelial-mesenchymal transition (PubMed:18227151, PubMed:18568018). {ECO:0000269|PubMed:11118213, ECO:0000269|PubMed:18227151, ECO:0000269|PubMed:18568018, ECO:0000269|PubMed:19010321, ECO:0000269|PubMed:23911299}. |
Q9H0K1 | SIK2 | S576 | ochoa|psp | Serine/threonine-protein kinase SIK2 (EC 2.7.11.1) (Qin-induced kinase) (Salt-inducible kinase 2) (SIK-2) (Serine/threonine-protein kinase SNF1-like kinase 2) | Serine/threonine-protein kinase that plays a role in many biological processes such as fatty acid oxidation, autophagy, immune response or glucose metabolism (PubMed:23322770, PubMed:26983400). Phosphorylates 'Ser-794' of IRS1 in insulin-stimulated adipocytes, potentially modulating the efficiency of insulin signal transduction. Inhibits CREB activity by phosphorylating and repressing TORCs, the CREB-specific coactivators (PubMed:15454081). Phosphorylates EP300 and thus inhibits its histone acetyltransferase activity (PubMed:21084751, PubMed:26983400). In turn, regulates the DNA-binding ability of several transcription factors such as PPARA or MLXIPL (PubMed:21084751, PubMed:26983400). Also plays a role in thymic T-cell development (By similarity). {ECO:0000250|UniProtKB:Q8CFH6, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:21084751, ECO:0000269|PubMed:23322770, ECO:0000269|PubMed:26983400}. |
Q9H3P7 | ACBD3 | S43 | ochoa | Golgi resident protein GCP60 (Acyl-CoA-binding domain-containing protein 3) (Golgi complex-associated protein 1) (GOCAP1) (Golgi phosphoprotein 1) (GOLPH1) (PBR- and PKA-associated protein 7) (Peripheral benzodiazepine receptor-associated protein PAP7) [Cleaved into: Golgi resident protein GCP60, N-terminally processed] | Involved in the maintenance of Golgi structure by interacting with giantin, affecting protein transport between the endoplasmic reticulum and Golgi (PubMed:11590181). Involved in hormone-induced steroid biosynthesis in testicular Leydig cells (By similarity). Recruits PI4KB to the Golgi apparatus membrane; enhances the enzyme activity of PI4KB activity via its membrane recruitment thereby increasing the local concentration of the substrate in the vicinity of the kinase (PubMed:27009356). {ECO:0000250|UniProtKB:Q8BMP6, ECO:0000269|PubMed:11590181, ECO:0000269|PubMed:27009356}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication by recruiting PI4KB at the viral replication sites. {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}. |
Q9H3S7 | PTPN23 | S1123 | ochoa | Tyrosine-protein phosphatase non-receptor type 23 (EC 3.1.3.48) (His domain-containing protein tyrosine phosphatase) (HD-PTP) (Protein tyrosine phosphatase TD14) (PTP-TD14) | Plays a role in sorting of endocytic ubiquitinated cargos into multivesicular bodies (MVBs) via its interaction with the ESCRT-I complex (endosomal sorting complex required for transport I), and possibly also other ESCRT complexes (PubMed:18434552, PubMed:21757351). May act as a negative regulator of Ras-mediated mitogenic activity (PubMed:18434552). Plays a role in ciliogenesis (PubMed:20393563). {ECO:0000269|PubMed:18434552, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:21757351}. |
Q9H6F5 | CCDC86 | S188 | ochoa | Coiled-coil domain-containing protein 86 (Cytokine-induced protein with coiled-coil domain) | Required for proper chromosome segregation during mitosis and error-free mitotic progression. {ECO:0000269|PubMed:36695333}. |
Q9H6S3 | EPS8L2 | S480 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8-like protein 2) (Epidermal growth factor receptor pathway substrate 8-related protein 2) (EPS8-related protein 2) | Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. In the cochlea, is required for stereocilia maintenance in adult hair cells (By similarity). {ECO:0000250|UniProtKB:Q99K30, ECO:0000269|PubMed:14565974}. |
Q9H7N4 | SCAF1 | S239 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7P9 | PLEKHG2 | S911 | ochoa | Pleckstrin homology domain-containing family G member 2 (PH domain-containing family G member 2) | May be a transforming oncogene with exchange activity for CDC42 (By similarity). May be a guanine-nucleotide exchange factor (GEF) for RAC1 and CDC42. Activated by the binding to subunits beta and gamma of the heterotrimeric guanine nucleotide-binding protein (G protein) (PubMed:18045877). Involved in the regulation of actin polymerization (PubMed:26573021). {ECO:0000250|UniProtKB:Q6KAU7, ECO:0000269|PubMed:18045877, ECO:0000269|PubMed:26573021}. |
Q9H8N7 | ZNF395 | S248 | ochoa | Zinc finger protein 395 (HD-regulating factor 2) (HDRF-2) (Huntington disease gene regulatory region-binding protein 2) (HD gene regulatory region-binding protein 2) (HDBP-2) (Papillomavirus regulatory factor 1) (PRF-1) (Papillomavirus-binding factor) | Plays a role in papillomavirus genes transcription. |
Q9H9J4 | USP42 | S936 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9HAH7 | FBRS | S230 | ochoa | Probable fibrosin-1 | None |
Q9NRA8 | EIF4ENIF1 | S374 | ochoa|psp | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NS62 | THSD1 | S619 | ochoa | Thrombospondin type-1 domain-containing protein 1 (Transmembrane molecule with thrombospondin module) | Is a positive regulator of nascent focal adhesion assembly, involved in the modulation of endothelial cell attachment to the extracellular matrix. {ECO:0000269|PubMed:27895300, ECO:0000269|PubMed:29069646}. |
Q9NUA8 | ZBTB40 | S160 | ochoa | Zinc finger and BTB domain-containing protein 40 | May be involved in transcriptional regulation. |
Q9NUQ6 | SPATS2L | S518 | ochoa | SPATS2-like protein (DNA polymerase-transactivated protein 6) (Stress granule and nucleolar protein) (SGNP) | None |
Q9NXF7 | DCAF16 | S130 | ochoa | DDB1- and CUL4-associated factor 16 | Functions as a substrate recognition component for CUL4-DDB1 E3 ubiquitin-protein ligase complex, which mediates ubiquitination and proteasome-dependent degradation of nuclear proteins. {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:31209349}. |
Q9NXH8 | TOR4A | S63 | ochoa | Torsin-4A (Torsin family 4 member A) | None |
Q9NZT2 | OGFR | S585 | ochoa | Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) | Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation. |
Q9NZT2 | OGFR | S645 | ochoa | Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) | Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation. |
Q9P266 | JCAD | S1130 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P275 | USP36 | S646 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9UGP4 | LIMD1 | S187 | ochoa | LIM domain-containing protein 1 | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing and is essential for P-body formation and integrity. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Acts as a transcriptional corepressor for SNAI1- and SNAI2/SLUG-dependent repression of E-cadherin transcription. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. Inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. Regulates osteoblast development, function, differentiation and stress osteoclastogenesis. Enhances the ability of TRAF6 to activate adapter protein complex 1 (AP-1) and negatively regulates the canonical Wnt receptor signaling pathway in osteoblasts. May act as a tumor suppressor by inhibiting cell proliferation. {ECO:0000269|PubMed:15542589, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}. |
Q9UL51 | HCN2 | S868 | ochoa | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2 (Brain cyclic nucleotide-gated channel 2) (BCNG-2) | Hyperpolarization-activated ion channel that is permeable to sodium and potassium ions. Displays lower selectivity for K(+) over Na(+) ions (PubMed:10228147, PubMed:22006928). Contributes to the native pacemaker currents in heart (If) and in neurons (Ih) (PubMed:10228147, PubMed:10524219). Can also transport ammonium in the distal nephron (By similarity). Involved in the initiation of neuropathic pain in sensory neurons (By similarity). {ECO:0000250|UniProtKB:Q9JKA9, ECO:0000269|PubMed:10228147, ECO:0000269|PubMed:10524219, ECO:0000269|PubMed:22006928}. |
Q9UMN6 | KMT2B | S510 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UPN4 | CEP131 | S381 | ochoa | Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) | Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}. |
Q9UPT8 | ZC3H4 | S679 | ochoa | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q9UQ35 | SRRM2 | S377 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y2H5 | PLEKHA6 | S276 | ochoa | Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) | None |
Q9Y2K6 | USP20 | S408 | ochoa | Ubiquitin carboxyl-terminal hydrolase 20 (EC 3.4.19.12) (Deubiquitinating enzyme 20) (Ubiquitin thioesterase 20) (Ubiquitin-specific-processing protease 20) (VHL-interacting deubiquitinating enzyme 2) (hVDU2) | Deubiquitinating enzyme that plays a role in many cellular processes including autophagy, cellular antiviral response or membrane protein biogenesis (PubMed:27801882, PubMed:29487085). Attenuates TLR4-mediated NF-kappa-B signaling by cooperating with beta-arrestin-2/ARRB2 and inhibiting TRAF6 autoubiquitination (PubMed:26839314). Promotes cellular antiviral responses by deconjugating 'Lys-33' and 'Lys-48'-linked ubiquitination of STING1 leading to its stabilization (PubMed:27801882). Plays an essential role in autophagy induction by regulating the ULK1 stability through deubiquitination of ULK1 (PubMed:29487085). Acts as a positive regulator for NF-kappa-B activation by TNF-alpha through deubiquitinating 'Lys-48'-linked polyubiquitination of SQSTM1, leading to its increased stability (PubMed:32354117). Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination beta-2 adrenergic receptor (ADRB2) (PubMed:19424180). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, possibly leading to beta-arrestins deubiquitination and disengagement from ADRB2 (PubMed:19424180). This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Deubiquitinates HIF1A, leading to stabilize HIF1A and enhance HIF1A-mediated activity (PubMed:15776016). Deubiquitinates MCL1, a pivotal member of the anti-apoptotic Bcl-2 protein family to regulate its stability (PubMed:35063767). Within the endoplasmic reticulum, participates with USP33 in the rescue of post-translationally targeted membrane proteins that are inappropriately ubiquitinated by the cytosolic protein quality control in the cytosol (PubMed:33792613). {ECO:0000269|PubMed:12056827, ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:15776016, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:26839314, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:32354117, ECO:0000269|PubMed:33792613, ECO:0000269|PubMed:35063767}. |
Q9Y4B5 | MTCL1 | S77 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S1578 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4C1 | KDM3A | S463 | ochoa | Lysine-specific demethylase 3A (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2A) (Jumonji domain-containing protein 1A) ([histone H3]-dimethyl-L-lysine(9) demethylase 3A) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Preferentially demethylates mono- and dimethylated H3 'Lys-9' residue, with a preference for dimethylated residue, while it has weak or no activity on trimethylated H3 'Lys-9'. Demethylation of Lys residue generates formaldehyde and succinate. Involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes, resulting in H3 'Lys-9' demethylation and transcriptional activation. Involved in spermatogenesis by regulating expression of target genes such as PRM1 and TNP1 which are required for packaging and condensation of sperm chromatin. Involved in obesity resistance through regulation of metabolic genes such as PPARA and UCP1. {ECO:0000269|PubMed:16603237, ECO:0000269|PubMed:28262558}. |
Q9Y6J0 | CABIN1 | S1695 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
Q9C0C7 | AMBRA1 | S1252 | SIGNOR | Activating molecule in BECN1-regulated autophagy protein 1 (DDB1- and CUL4-associated factor 3) | Substrate-recognition component of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex involved in cell cycle control and autophagy (PubMed:20921139, PubMed:23524951, PubMed:24587252, PubMed:32333458, PubMed:33854232, PubMed:33854235, PubMed:33854239). The DCX(AMBRA1) complex specifically mediates the polyubiquitination of target proteins such as BECN1, CCND1, CCND2, CCND3, ELOC and ULK1 (PubMed:23524951, PubMed:33854232, PubMed:33854235, PubMed:33854239). Acts as an upstream master regulator of the transition from G1 to S cell phase: AMBRA1 specifically recognizes and binds phosphorylated cyclin-D (CCND1, CCND2 and CCND3), leading to cyclin-D ubiquitination by the DCX(AMBRA1) complex and subsequent degradation (PubMed:33854232, PubMed:33854235, PubMed:33854239). By controlling the transition from G1 to S phase and cyclin-D degradation, AMBRA1 acts as a tumor suppressor that promotes genomic integrity during DNA replication and counteracts developmental abnormalities and tumor growth (PubMed:33854232, PubMed:33854235, PubMed:33854239). AMBRA1 also regulates the cell cycle by promoting MYC dephosphorylation and degradation independently of the DCX(AMBRA1) complex: acts via interaction with the catalytic subunit of protein phosphatase 2A (PPP2CA), which enhances interaction between PPP2CA and MYC, leading to MYC dephosphorylation and degradation (PubMed:25438055, PubMed:25803737). Acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:25499913, PubMed:30166453). Acts as a key regulator of autophagy by modulating the BECN1-PIK3C3 complex: controls protein turnover during neuronal development, and regulates normal cell survival and proliferation (PubMed:21358617). In normal conditions, AMBRA1 is tethered to the cytoskeleton via interaction with dyneins DYNLL1 and DYNLL2 (PubMed:20921139). Upon autophagy induction, AMBRA1 is released from the cytoskeletal docking site to induce autophagosome nucleation by mediating ubiquitination of proteins involved in autophagy (PubMed:20921139). The DCX(AMBRA1) complex mediates 'Lys-63'-linked ubiquitination of BECN1, increasing the association between BECN1 and PIK3C3 to promote PIK3C3 activity (By similarity). In collaboration with TRAF6, AMBRA1 mediates 'Lys-63'-linked ubiquitination of ULK1 following autophagy induction, promoting ULK1 stability and kinase activity (PubMed:23524951). Also activates ULK1 via interaction with TRIM32: TRIM32 stimulates ULK1 through unanchored 'Lys-63'-linked polyubiquitin chains (PubMed:31123703). Also acts as an activator of mitophagy via interaction with PRKN and LC3 proteins (MAP1LC3A, MAP1LC3B or MAP1LC3C); possibly by bringing damaged mitochondria onto autophagosomes (PubMed:21753002, PubMed:25215947). Also activates mitophagy by acting as a cofactor for HUWE1; acts by promoting HUWE1-mediated ubiquitination of MFN2 (PubMed:30217973). AMBRA1 is also involved in regulatory T-cells (Treg) differentiation by promoting FOXO3 dephosphorylation independently of the DCX(AMBRA1) complex: acts via interaction with PPP2CA, which enhances interaction between PPP2CA and FOXO3, leading to FOXO3 dephosphorylation and stabilization (PubMed:30513302). May act as a regulator of intracellular trafficking, regulating the localization of active PTK2/FAK and SRC (By similarity). Also involved in transcription regulation by acting as a scaffold for protein complexes at chromatin (By similarity). {ECO:0000250|UniProtKB:A2AH22, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21358617, ECO:0000269|PubMed:21753002, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:24587252, ECO:0000269|PubMed:25215947, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:25499913, ECO:0000269|PubMed:25803737, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:30513302, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:32333458, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854235, ECO:0000269|PubMed:33854239}. |
Q5JR12 | PPM1J | S93 | SIGNOR | Protein phosphatase 1J (EC 3.1.3.16) (Protein phosphatase 2C isoform zeta) (PP2C-zeta) | None |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-4839726 | Chromatin organization | 0.000187 | 3.729 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.000260 | 3.586 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.000236 | 3.627 |
R-HSA-193648 | NRAGE signals death through JNK | 0.000251 | 3.601 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 0.000461 | 3.337 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 0.000461 | 3.337 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.000423 | 3.374 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.000763 | 3.117 |
R-HSA-69560 | Transcriptional activation of p53 responsive genes | 0.000987 | 3.006 |
R-HSA-69895 | Transcriptional activation of cell cycle inhibitor p21 | 0.000987 | 3.006 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.000923 | 3.035 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.000975 | 3.011 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.001138 | 2.944 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.001310 | 2.883 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.001578 | 2.802 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.001858 | 2.731 |
R-HSA-9707616 | Heme signaling | 0.002014 | 2.696 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.001959 | 2.708 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 0.002234 | 2.651 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.002778 | 2.556 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.003216 | 2.493 |
R-HSA-525793 | Myogenesis | 0.003823 | 2.418 |
R-HSA-73887 | Death Receptor Signaling | 0.003905 | 2.408 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.004164 | 2.380 |
R-HSA-114452 | Activation of BH3-only proteins | 0.006223 | 2.206 |
R-HSA-9843745 | Adipogenesis | 0.008148 | 2.089 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.008247 | 2.084 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.008605 | 2.065 |
R-HSA-9031628 | NGF-stimulated transcription | 0.009567 | 2.019 |
R-HSA-9614085 | FOXO-mediated transcription | 0.009350 | 2.029 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.010999 | 1.959 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.011553 | 1.937 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.011558 | 1.937 |
R-HSA-8941333 | RUNX2 regulates genes involved in differentiation of myeloid cells | 0.015899 | 1.799 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.017873 | 1.748 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.017403 | 1.759 |
R-HSA-8866911 | TFAP2 (AP-2) family regulates transcription of cell cycle factors | 0.015899 | 1.799 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.017873 | 1.748 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.017873 | 1.748 |
R-HSA-9620244 | Long-term potentiation | 0.017778 | 1.750 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.017111 | 1.767 |
R-HSA-212436 | Generic Transcription Pathway | 0.016865 | 1.773 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.017334 | 1.761 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.015616 | 1.806 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.018348 | 1.736 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 0.020189 | 1.695 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.021198 | 1.674 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.023207 | 1.634 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.023207 | 1.634 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.023207 | 1.634 |
R-HSA-418885 | DCC mediated attractive signaling | 0.023207 | 1.634 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.023120 | 1.636 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.022275 | 1.652 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.023384 | 1.631 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.023920 | 1.621 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.023935 | 1.621 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 0.026455 | 1.577 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.025432 | 1.595 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.025432 | 1.595 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.027122 | 1.567 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.027626 | 1.559 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 0.029934 | 1.524 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.029934 | 1.524 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.028629 | 1.543 |
R-HSA-1483255 | PI Metabolism | 0.029399 | 1.532 |
R-HSA-9616334 | Defective Base Excision Repair Associated with NEIL1 | 0.031176 | 1.506 |
R-HSA-5467343 | Deletions in the AMER1 gene destabilize the destruction complex | 0.031176 | 1.506 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.033627 | 1.473 |
R-HSA-2028269 | Signaling by Hippo | 0.033641 | 1.473 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.036705 | 1.435 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.036705 | 1.435 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.036705 | 1.435 |
R-HSA-74160 | Gene expression (Transcription) | 0.037674 | 1.424 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.061382 | 1.212 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.061382 | 1.212 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.061382 | 1.212 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.061382 | 1.212 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.061382 | 1.212 |
R-HSA-5624958 | ARL13B-mediated ciliary trafficking of INPP5E | 0.090647 | 1.043 |
R-HSA-139910 | Activation of BMF and translocation to mitochondria | 0.146475 | 0.834 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 0.146475 | 0.834 |
R-HSA-8941237 | Invadopodia formation | 0.146475 | 0.834 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 0.146475 | 0.834 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 0.056225 | 1.250 |
R-HSA-1296061 | HCN channels | 0.173092 | 0.762 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 0.173092 | 0.762 |
R-HSA-5083630 | Defective LFNG causes SCDO3 | 0.173092 | 0.762 |
R-HSA-8941332 | RUNX2 regulates genes involved in cell migration | 0.073483 | 1.134 |
R-HSA-74713 | IRS activation | 0.198881 | 0.701 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 0.198881 | 0.701 |
R-HSA-1250342 | PI3K events in ERBB4 signaling | 0.082667 | 1.083 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.082667 | 1.083 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.082667 | 1.083 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.092179 | 1.035 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 0.223867 | 0.650 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 0.223867 | 0.650 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.223867 | 0.650 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.046114 | 1.336 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.101991 | 0.991 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.112073 | 0.950 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.248076 | 0.605 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.271531 | 0.566 |
R-HSA-112412 | SOS-mediated signalling | 0.271531 | 0.566 |
R-HSA-1912399 | Pre-NOTCH Processing in the Endoplasmic Reticulum | 0.271531 | 0.566 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.088602 | 1.053 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.294255 | 0.531 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.063938 | 1.194 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.107602 | 0.968 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.176881 | 0.752 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.316272 | 0.500 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.072031 | 1.142 |
R-HSA-167161 | HIV Transcription Initiation | 0.072031 | 1.142 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.072031 | 1.142 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.080619 | 1.094 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.337603 | 0.472 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.337603 | 0.472 |
R-HSA-68952 | DNA replication initiation | 0.337603 | 0.472 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.089689 | 1.047 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.046094 | 1.336 |
R-HSA-1236394 | Signaling by ERBB4 | 0.048370 | 1.315 |
R-HSA-380287 | Centrosome maturation | 0.050714 | 1.295 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.222652 | 0.652 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.358271 | 0.446 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.358271 | 0.446 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.358271 | 0.446 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.358271 | 0.446 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.245887 | 0.609 |
R-HSA-429947 | Deadenylation of mRNA | 0.245887 | 0.609 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.378294 | 0.422 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.397694 | 0.400 |
R-HSA-69091 | Polymerase switching | 0.397694 | 0.400 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.397694 | 0.400 |
R-HSA-937039 | IRAK1 recruits IKK complex | 0.397694 | 0.400 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 0.397694 | 0.400 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.397694 | 0.400 |
R-HSA-69109 | Leading Strand Synthesis | 0.397694 | 0.400 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.397694 | 0.400 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.397694 | 0.400 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.397694 | 0.400 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.397694 | 0.400 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.159174 | 0.798 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.280861 | 0.552 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.280861 | 0.552 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.171262 | 0.766 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.292504 | 0.534 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.292504 | 0.534 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.292504 | 0.534 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.292504 | 0.534 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 0.416490 | 0.380 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 0.416490 | 0.380 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.189964 | 0.721 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.189964 | 0.721 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.315703 | 0.501 |
R-HSA-69166 | Removal of the Flap Intermediate | 0.434700 | 0.362 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.209276 | 0.679 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.327240 | 0.485 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.327240 | 0.485 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.180401 | 0.744 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.180401 | 0.744 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.452343 | 0.345 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.452343 | 0.345 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.452343 | 0.345 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.452343 | 0.345 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.452343 | 0.345 |
R-HSA-1989781 | PPARA activates gene expression | 0.102733 | 0.988 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.350149 | 0.456 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.350149 | 0.456 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.361505 | 0.442 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.469437 | 0.328 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.256245 | 0.591 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.383985 | 0.416 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.319200 | 0.496 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.427859 | 0.369 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.438572 | 0.358 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.438572 | 0.358 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.438572 | 0.358 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.368965 | 0.433 |
R-HSA-167172 | Transcription of the HIV genome | 0.096274 | 1.016 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.108118 | 0.966 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.372786 | 0.429 |
R-HSA-167169 | HIV Transcription Elongation | 0.438572 | 0.358 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.049281 | 1.307 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.076808 | 1.115 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.076808 | 1.115 |
R-HSA-209543 | p75NTR recruits signalling complexes | 0.092179 | 1.035 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.082614 | 1.083 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.207517 | 0.683 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.438572 | 0.358 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.159724 | 0.797 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.159724 | 0.797 |
R-HSA-69183 | Processive synthesis on the lagging strand | 0.452343 | 0.345 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.350149 | 0.456 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.277165 | 0.557 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 0.056225 | 1.250 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.257541 | 0.589 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.159724 | 0.797 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.185715 | 0.731 |
R-HSA-198203 | PI3K/AKT activation | 0.337603 | 0.472 |
R-HSA-69190 | DNA strand elongation | 0.338725 | 0.470 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.249398 | 0.603 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.427859 | 0.369 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.448853 | 0.348 |
R-HSA-191650 | Regulation of gap junction activity | 0.173092 | 0.762 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.082667 | 1.083 |
R-HSA-9839394 | TGFBR3 expression | 0.076808 | 1.115 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.143692 | 0.843 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.397694 | 0.400 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 0.452343 | 0.345 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.082614 | 1.083 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.307509 | 0.512 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.307509 | 0.512 |
R-HSA-4641265 | Repression of WNT target genes | 0.397694 | 0.400 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.397694 | 0.400 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.121651 | 0.915 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 0.198881 | 0.701 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 0.198881 | 0.701 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.082667 | 1.083 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.112073 | 0.950 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.107602 | 0.968 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.316272 | 0.500 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.434700 | 0.362 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.333395 | 0.477 |
R-HSA-1234174 | Cellular response to hypoxia | 0.407326 | 0.390 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.207848 | 0.682 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.269203 | 0.570 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.247041 | 0.607 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.059728 | 1.224 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.271531 | 0.566 |
R-HSA-3214815 | HDACs deacetylate histones | 0.141671 | 0.849 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.434700 | 0.362 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.338725 | 0.470 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.289235 | 0.539 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.378294 | 0.422 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.449175 | 0.348 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.457021 | 0.340 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.338725 | 0.470 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.101055 | 0.995 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.116751 | 0.933 |
R-HSA-9909396 | Circadian clock | 0.048765 | 1.312 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 0.119002 | 0.924 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.146475 | 0.834 |
R-HSA-8964540 | Alanine metabolism | 0.173092 | 0.762 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.173092 | 0.762 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.165679 | 0.781 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.316272 | 0.500 |
R-HSA-176974 | Unwinding of DNA | 0.316272 | 0.500 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.337603 | 0.472 |
R-HSA-4839744 | Signaling by APC mutants | 0.358271 | 0.446 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.378294 | 0.422 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.378294 | 0.422 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 0.397694 | 0.400 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.165178 | 0.782 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 0.416490 | 0.380 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.452343 | 0.345 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.452343 | 0.345 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.469437 | 0.328 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 0.469437 | 0.328 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.253362 | 0.596 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.406117 | 0.391 |
R-HSA-8875878 | MET promotes cell motility | 0.417039 | 0.380 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.373450 | 0.428 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.438572 | 0.358 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.078553 | 1.105 |
R-HSA-73886 | Chromosome Maintenance | 0.258783 | 0.587 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.071190 | 1.148 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.445953 | 0.351 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.397694 | 0.400 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.253362 | 0.596 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.459664 | 0.338 |
R-HSA-74749 | Signal attenuation | 0.337603 | 0.472 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.183658 | 0.736 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.322043 | 0.492 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.448853 | 0.348 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.131379 | 0.881 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.457021 | 0.340 |
R-HSA-157579 | Telomere Maintenance | 0.259266 | 0.586 |
R-HSA-162587 | HIV Life Cycle | 0.320248 | 0.495 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.223867 | 0.650 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 0.316272 | 0.500 |
R-HSA-9761174 | Formation of intermediate mesoderm | 0.337603 | 0.472 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.222652 | 0.652 |
R-HSA-1855191 | Synthesis of IPs in the nucleus | 0.434700 | 0.362 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.434700 | 0.362 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.361505 | 0.442 |
R-HSA-5617833 | Cilium Assembly | 0.344386 | 0.463 |
R-HSA-1227986 | Signaling by ERBB2 | 0.364917 | 0.438 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.088476 | 1.053 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.381962 | 0.418 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.060781 | 1.216 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.043886 | 1.358 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.071190 | 1.148 |
R-HSA-180786 | Extension of Telomeres | 0.356364 | 0.448 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.101102 | 0.995 |
R-HSA-8939211 | ESR-mediated signaling | 0.427068 | 0.370 |
R-HSA-69206 | G1/S Transition | 0.285410 | 0.545 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.248076 | 0.605 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.143692 | 0.843 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.143692 | 0.843 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.199609 | 0.700 |
R-HSA-113501 | Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 0.378294 | 0.422 |
R-HSA-438064 | Post NMDA receptor activation events | 0.087442 | 1.058 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.333395 | 0.477 |
R-HSA-68877 | Mitotic Prometaphase | 0.358513 | 0.445 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.135397 | 0.868 |
R-HSA-68882 | Mitotic Anaphase | 0.472119 | 0.326 |
R-HSA-9664873 | Pexophagy | 0.337603 | 0.472 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.449175 | 0.348 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.425066 | 0.372 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.381962 | 0.418 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.449175 | 0.348 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 0.294255 | 0.531 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.452343 | 0.345 |
R-HSA-4086398 | Ca2+ pathway | 0.256245 | 0.591 |
R-HSA-373752 | Netrin-1 signaling | 0.228680 | 0.641 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.253762 | 0.596 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.418222 | 0.379 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.154609 | 0.811 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.434700 | 0.362 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.222448 | 0.653 |
R-HSA-180746 | Nuclear import of Rev protein | 0.372786 | 0.429 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.453341 | 0.344 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.152295 | 0.817 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.453341 | 0.344 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.453341 | 0.344 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.142340 | 0.847 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.269203 | 0.570 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.270693 | 0.568 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.270693 | 0.568 |
R-HSA-1640170 | Cell Cycle | 0.062000 | 1.208 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.176094 | 0.754 |
R-HSA-3214847 | HATs acetylate histones | 0.271170 | 0.567 |
R-HSA-9605308 | Diseases of Base Excision Repair | 0.223867 | 0.650 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.245353 | 0.610 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.156947 | 0.804 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.269893 | 0.569 |
R-HSA-844455 | The NLRP1 inflammasome | 0.146475 | 0.834 |
R-HSA-9854907 | Regulation of MITF-M dependent genes involved in metabolism | 0.146475 | 0.834 |
R-HSA-5660668 | CLEC7A/inflammasome pathway | 0.223867 | 0.650 |
R-HSA-1475029 | Reversible hydration of carbon dioxide | 0.101991 | 0.991 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.271531 | 0.566 |
R-HSA-8948747 | Regulation of PTEN localization | 0.271531 | 0.566 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 0.316272 | 0.500 |
R-HSA-9682385 | FLT3 signaling in disease | 0.157159 | 0.804 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 0.397694 | 0.400 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.416490 | 0.380 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 0.416490 | 0.380 |
R-HSA-418457 | cGMP effects | 0.434700 | 0.362 |
R-HSA-9945266 | Differentiation of T cells | 0.469437 | 0.328 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.469437 | 0.328 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.469437 | 0.328 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.406117 | 0.391 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.427859 | 0.369 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.438572 | 0.358 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.438572 | 0.358 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.449175 | 0.348 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.448853 | 0.348 |
R-HSA-3371556 | Cellular response to heat stress | 0.425066 | 0.372 |
R-HSA-69275 | G2/M Transition | 0.120603 | 0.919 |
R-HSA-3214842 | HDMs demethylate histones | 0.257541 | 0.589 |
R-HSA-6806834 | Signaling by MET | 0.305054 | 0.516 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.126078 | 0.899 |
R-HSA-2559583 | Cellular Senescence | 0.442473 | 0.354 |
R-HSA-373753 | Nephrin family interactions | 0.188197 | 0.725 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 0.337603 | 0.472 |
R-HSA-9659379 | Sensory processing of sound | 0.298006 | 0.526 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.055523 | 1.256 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.425515 | 0.371 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.102424 | 0.990 |
R-HSA-9664420 | Killing mechanisms | 0.469437 | 0.328 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.469437 | 0.328 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.171828 | 0.765 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.330632 | 0.481 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.057722 | 1.239 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.164740 | 0.783 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.372786 | 0.429 |
R-HSA-162582 | Signal Transduction | 0.215252 | 0.667 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.198881 | 0.701 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 0.198881 | 0.701 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 0.082667 | 1.083 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.101991 | 0.991 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.112073 | 0.950 |
R-HSA-164944 | Nef and signal transduction | 0.248076 | 0.605 |
R-HSA-448706 | Interleukin-1 processing | 0.316272 | 0.500 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 0.316272 | 0.500 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.211099 | 0.676 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 0.358271 | 0.446 |
R-HSA-8851805 | MET activates RAS signaling | 0.397694 | 0.400 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.397694 | 0.400 |
R-HSA-9005895 | Pervasive developmental disorders | 0.397694 | 0.400 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.397694 | 0.400 |
R-HSA-8949664 | Processing of SMDT1 | 0.416490 | 0.380 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 0.452343 | 0.345 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 0.452343 | 0.345 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.452343 | 0.345 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.417039 | 0.380 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.338296 | 0.471 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.282500 | 0.549 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.107602 | 0.968 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.338725 | 0.470 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.390447 | 0.408 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.140126 | 0.853 |
R-HSA-1266738 | Developmental Biology | 0.430575 | 0.366 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.350149 | 0.456 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.446423 | 0.350 |
R-HSA-5578768 | Physiological factors | 0.112073 | 0.950 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 0.065767 | 1.182 |
R-HSA-5689877 | Josephin domain DUBs | 0.337603 | 0.472 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.234253 | 0.630 |
R-HSA-1247673 | Erythrocytes take up oxygen and release carbon dioxide | 0.397694 | 0.400 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.427859 | 0.369 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.470036 | 0.328 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.401181 | 0.397 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.088602 | 1.053 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.081023 | 1.091 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.361505 | 0.442 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.048218 | 1.317 |
R-HSA-447043 | Neurofascin interactions | 0.248076 | 0.605 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 0.143692 | 0.843 |
R-HSA-69205 | G1/S-Specific Transcription | 0.049281 | 1.307 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.107602 | 0.968 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.337603 | 0.472 |
R-HSA-210990 | PECAM1 interactions | 0.358271 | 0.446 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.452343 | 0.345 |
R-HSA-177929 | Signaling by EGFR | 0.330632 | 0.481 |
R-HSA-166520 | Signaling by NTRKs | 0.275749 | 0.559 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.383985 | 0.416 |
R-HSA-5693538 | Homology Directed Repair | 0.406541 | 0.391 |
R-HSA-5688426 | Deubiquitination | 0.374052 | 0.427 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.354735 | 0.450 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.199609 | 0.700 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.397694 | 0.400 |
R-HSA-9683610 | Maturation of nucleoprotein | 0.416490 | 0.380 |
R-HSA-416700 | Other semaphorin interactions | 0.452343 | 0.345 |
R-HSA-9833110 | RSV-host interactions | 0.307509 | 0.512 |
R-HSA-109581 | Apoptosis | 0.215004 | 0.668 |
R-HSA-2586552 | Signaling by Leptin | 0.337603 | 0.472 |
R-HSA-9020558 | Interleukin-2 signaling | 0.358271 | 0.446 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 0.101991 | 0.991 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.294255 | 0.531 |
R-HSA-9842663 | Signaling by LTK | 0.397694 | 0.400 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.448853 | 0.348 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.228680 | 0.641 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.452343 | 0.345 |
R-HSA-5357801 | Programmed Cell Death | 0.286658 | 0.543 |
R-HSA-8853659 | RET signaling | 0.157159 | 0.804 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 0.245887 | 0.609 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.269203 | 0.570 |
R-HSA-622312 | Inflammasomes | 0.292504 | 0.534 |
R-HSA-9008059 | Interleukin-37 signaling | 0.315703 | 0.501 |
R-HSA-5683057 | MAPK family signaling cascades | 0.380537 | 0.420 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.338725 | 0.470 |
R-HSA-451927 | Interleukin-2 family signaling | 0.188095 | 0.726 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.390447 | 0.408 |
R-HSA-8848021 | Signaling by PTK6 | 0.390447 | 0.408 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.470036 | 0.328 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.474799 | 0.323 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.476683 | 0.322 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.476797 | 0.322 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.485826 | 0.314 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 0.485998 | 0.313 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 0.485998 | 0.313 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 0.485998 | 0.313 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.485998 | 0.313 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.485998 | 0.313 |
R-HSA-196783 | Coenzyme A biosynthesis | 0.485998 | 0.313 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.485998 | 0.313 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.489157 | 0.311 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.490416 | 0.309 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.490416 | 0.309 |
R-HSA-9006936 | Signaling by TGFB family members | 0.495082 | 0.305 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.497046 | 0.304 |
R-HSA-5689603 | UCH proteinases | 0.497046 | 0.304 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.500420 | 0.301 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.500420 | 0.301 |
R-HSA-1489509 | DAG and IP3 signaling | 0.500420 | 0.301 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.500420 | 0.301 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.502043 | 0.299 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 0.502043 | 0.299 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.502043 | 0.299 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.510297 | 0.292 |
R-HSA-75153 | Apoptotic execution phase | 0.510297 | 0.292 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.512556 | 0.290 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.512639 | 0.290 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.516047 | 0.287 |
R-HSA-3928664 | Ephrin signaling | 0.517588 | 0.286 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.517588 | 0.286 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.517588 | 0.286 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.517588 | 0.286 |
R-HSA-156711 | Polo-like kinase mediated events | 0.517588 | 0.286 |
R-HSA-211000 | Gene Silencing by RNA | 0.520711 | 0.283 |
R-HSA-9609690 | HCMV Early Events | 0.522335 | 0.282 |
R-HSA-162906 | HIV Infection | 0.522945 | 0.282 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.527237 | 0.278 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.527972 | 0.277 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.529663 | 0.276 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 0.532649 | 0.274 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 0.532649 | 0.274 |
R-HSA-1237044 | Erythrocytes take up carbon dioxide and release oxygen | 0.532649 | 0.274 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 0.532649 | 0.274 |
R-HSA-1480926 | O2/CO2 exchange in erythrocytes | 0.532649 | 0.274 |
R-HSA-449836 | Other interleukin signaling | 0.532649 | 0.274 |
R-HSA-392517 | Rap1 signalling | 0.532649 | 0.274 |
R-HSA-9834899 | Specification of the neural plate border | 0.532649 | 0.274 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.532649 | 0.274 |
R-HSA-9694631 | Maturation of nucleoprotein | 0.532649 | 0.274 |
R-HSA-844456 | The NLRP3 inflammasome | 0.532649 | 0.274 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.532754 | 0.273 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.533719 | 0.273 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.535537 | 0.271 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.538486 | 0.269 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.539148 | 0.268 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.540325 | 0.267 |
R-HSA-1483257 | Phospholipid metabolism | 0.540325 | 0.267 |
R-HSA-9675108 | Nervous system development | 0.541298 | 0.267 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.544330 | 0.264 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.547240 | 0.262 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.547240 | 0.262 |
R-HSA-6807004 | Negative regulation of MET activity | 0.547240 | 0.262 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.550459 | 0.259 |
R-HSA-195721 | Signaling by WNT | 0.552301 | 0.258 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.557720 | 0.254 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.557720 | 0.254 |
R-HSA-9864848 | Complex IV assembly | 0.557720 | 0.254 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.558097 | 0.253 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.559195 | 0.252 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.561377 | 0.251 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 0.561377 | 0.251 |
R-HSA-69186 | Lagging Strand Synthesis | 0.561377 | 0.251 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.561377 | 0.251 |
R-HSA-9711123 | Cellular response to chemical stress | 0.561532 | 0.251 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.563185 | 0.249 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.565094 | 0.248 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.565094 | 0.248 |
R-HSA-72172 | mRNA Splicing | 0.565375 | 0.248 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.565446 | 0.248 |
R-HSA-72187 | mRNA 3'-end processing | 0.566804 | 0.247 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.566804 | 0.247 |
R-HSA-68949 | Orc1 removal from chromatin | 0.566804 | 0.247 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.566804 | 0.247 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.572172 | 0.242 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.575073 | 0.240 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.575073 | 0.240 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.575073 | 0.240 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.575073 | 0.240 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.575073 | 0.240 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.575753 | 0.240 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.575753 | 0.240 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.577661 | 0.238 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.577800 | 0.238 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.578281 | 0.238 |
R-HSA-157118 | Signaling by NOTCH | 0.580624 | 0.236 |
R-HSA-6803529 | FGFR2 alternative splicing | 0.588342 | 0.230 |
R-HSA-166208 | mTORC1-mediated signalling | 0.588342 | 0.230 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.588342 | 0.230 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.588342 | 0.230 |
R-HSA-373760 | L1CAM interactions | 0.589952 | 0.229 |
R-HSA-9663891 | Selective autophagy | 0.593475 | 0.227 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.601198 | 0.221 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 0.601198 | 0.221 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 0.601198 | 0.221 |
R-HSA-9830674 | Formation of the ureteric bud | 0.601198 | 0.221 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.601198 | 0.221 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.601198 | 0.221 |
R-HSA-982772 | Growth hormone receptor signaling | 0.601198 | 0.221 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.601786 | 0.221 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.601786 | 0.221 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.601897 | 0.220 |
R-HSA-69242 | S Phase | 0.604536 | 0.219 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.607790 | 0.216 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.607790 | 0.216 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.610192 | 0.215 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.613653 | 0.212 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.613653 | 0.212 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.619416 | 0.208 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.620630 | 0.207 |
R-HSA-422475 | Axon guidance | 0.621451 | 0.207 |
R-HSA-68886 | M Phase | 0.624757 | 0.204 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.625147 | 0.204 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.625147 | 0.204 |
R-HSA-446652 | Interleukin-1 family signaling | 0.625319 | 0.204 |
R-HSA-420029 | Tight junction interactions | 0.625720 | 0.204 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.625720 | 0.204 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.625720 | 0.204 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 0.625720 | 0.204 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 0.625720 | 0.204 |
R-HSA-1266695 | Interleukin-7 signaling | 0.625720 | 0.204 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.626596 | 0.203 |
R-HSA-191859 | snRNP Assembly | 0.626596 | 0.203 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.626596 | 0.203 |
R-HSA-186712 | Regulation of beta-cell development | 0.626596 | 0.203 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.627222 | 0.203 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.629393 | 0.201 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.630411 | 0.200 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.630823 | 0.200 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.630823 | 0.200 |
R-HSA-2132295 | MHC class II antigen presentation | 0.630823 | 0.200 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.634595 | 0.198 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.634595 | 0.198 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.634595 | 0.198 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.634595 | 0.198 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.634595 | 0.198 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.634595 | 0.198 |
R-HSA-199991 | Membrane Trafficking | 0.634900 | 0.197 |
R-HSA-8874081 | MET activates PTK2 signaling | 0.637411 | 0.196 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.637411 | 0.196 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.637411 | 0.196 |
R-HSA-5689901 | Metalloprotease DUBs | 0.637411 | 0.196 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 0.637411 | 0.196 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.640170 | 0.194 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.642459 | 0.192 |
R-HSA-112043 | PLC beta mediated events | 0.642459 | 0.192 |
R-HSA-450294 | MAP kinase activation | 0.642459 | 0.192 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.648737 | 0.188 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.648737 | 0.188 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 0.648737 | 0.188 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.648737 | 0.188 |
R-HSA-373755 | Semaphorin interactions | 0.657787 | 0.182 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.659710 | 0.181 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.659710 | 0.181 |
R-HSA-2262752 | Cellular responses to stress | 0.659878 | 0.181 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.668888 | 0.175 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.670341 | 0.174 |
R-HSA-72086 | mRNA Capping | 0.670341 | 0.174 |
R-HSA-210745 | Regulation of gene expression in beta cells | 0.670341 | 0.174 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.670341 | 0.174 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 0.670341 | 0.174 |
R-HSA-418360 | Platelet calcium homeostasis | 0.670341 | 0.174 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.672584 | 0.172 |
R-HSA-2424491 | DAP12 signaling | 0.680640 | 0.167 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.680640 | 0.167 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.680640 | 0.167 |
R-HSA-112311 | Neurotransmitter clearance | 0.680640 | 0.167 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.683582 | 0.165 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.686859 | 0.163 |
R-HSA-112040 | G-protein mediated events | 0.686859 | 0.163 |
R-HSA-9020702 | Interleukin-1 signaling | 0.688767 | 0.162 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.688767 | 0.162 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.689549 | 0.161 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.690618 | 0.161 |
R-HSA-182971 | EGFR downregulation | 0.690618 | 0.161 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.690618 | 0.161 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.690618 | 0.161 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.692764 | 0.159 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.693802 | 0.159 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.694482 | 0.158 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.694482 | 0.158 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.700619 | 0.155 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.705017 | 0.152 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.707308 | 0.150 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.707308 | 0.150 |
R-HSA-448424 | Interleukin-17 signaling | 0.707308 | 0.150 |
R-HSA-5083635 | Defective B3GALTL causes PpS | 0.709651 | 0.149 |
R-HSA-354192 | Integrin signaling | 0.709651 | 0.149 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.709651 | 0.149 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.709651 | 0.149 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.709651 | 0.149 |
R-HSA-9930044 | Nuclear RNA decay | 0.709651 | 0.149 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.709651 | 0.149 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.709651 | 0.149 |
R-HSA-159418 | Recycling of bile acids and salts | 0.709651 | 0.149 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.709651 | 0.149 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.713873 | 0.146 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.713873 | 0.146 |
R-HSA-72306 | tRNA processing | 0.714620 | 0.146 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.716549 | 0.145 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.716549 | 0.145 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.718725 | 0.143 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.718725 | 0.143 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.718725 | 0.143 |
R-HSA-1482788 | Acyl chain remodelling of PC | 0.718725 | 0.143 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.718725 | 0.143 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.718725 | 0.143 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.718725 | 0.143 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 0.718725 | 0.143 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.720314 | 0.142 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.720314 | 0.142 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.721870 | 0.142 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.726632 | 0.139 |
R-HSA-69239 | Synthesis of DNA | 0.727112 | 0.138 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.727112 | 0.138 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.727112 | 0.138 |
R-HSA-5689880 | Ub-specific processing proteases | 0.727246 | 0.138 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.727515 | 0.138 |
R-HSA-5205647 | Mitophagy | 0.727515 | 0.138 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.727515 | 0.138 |
R-HSA-5673000 | RAF activation | 0.727515 | 0.138 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.727515 | 0.138 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.727907 | 0.138 |
R-HSA-6807070 | PTEN Regulation | 0.727907 | 0.138 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.732830 | 0.135 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.732830 | 0.135 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.732830 | 0.135 |
R-HSA-1482839 | Acyl chain remodelling of PE | 0.736031 | 0.133 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.736031 | 0.133 |
R-HSA-1632852 | Macroautophagy | 0.736924 | 0.133 |
R-HSA-1500931 | Cell-Cell communication | 0.737339 | 0.132 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.737364 | 0.132 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.738907 | 0.131 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.738907 | 0.131 |
R-HSA-202403 | TCR signaling | 0.742375 | 0.129 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.742375 | 0.129 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.742375 | 0.129 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.743439 | 0.129 |
R-HSA-111933 | Calmodulin induced events | 0.744282 | 0.128 |
R-HSA-111997 | CaM pathway | 0.744282 | 0.128 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.744282 | 0.128 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 0.744282 | 0.128 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.744282 | 0.128 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.744866 | 0.128 |
R-HSA-9609646 | HCMV Infection | 0.751502 | 0.124 |
R-HSA-5173214 | O-glycosylation of TSR domain-containing proteins | 0.752275 | 0.124 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.752275 | 0.124 |
R-HSA-549127 | SLC-mediated transport of organic cations | 0.752275 | 0.124 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.756435 | 0.121 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.758479 | 0.120 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.760019 | 0.119 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.766405 | 0.116 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.767521 | 0.115 |
R-HSA-201556 | Signaling by ALK | 0.767521 | 0.115 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.767549 | 0.115 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.770740 | 0.113 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.774789 | 0.111 |
R-HSA-202433 | Generation of second messenger molecules | 0.774789 | 0.111 |
R-HSA-9646399 | Aggrephagy | 0.774789 | 0.111 |
R-HSA-3371568 | Attenuation phase | 0.774789 | 0.111 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.774789 | 0.111 |
R-HSA-5260271 | Diseases of Immune System | 0.774789 | 0.111 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.774789 | 0.111 |
R-HSA-8951664 | Neddylation | 0.774836 | 0.111 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.775345 | 0.111 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.775345 | 0.111 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.778219 | 0.109 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 0.781831 | 0.107 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.781831 | 0.107 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.781831 | 0.107 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.788459 | 0.103 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.788652 | 0.103 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.788652 | 0.103 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.788652 | 0.103 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.788652 | 0.103 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.788652 | 0.103 |
R-HSA-9683701 | Translation of Structural Proteins | 0.788652 | 0.103 |
R-HSA-73928 | Depyrimidination | 0.795261 | 0.099 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.795261 | 0.099 |
R-HSA-111996 | Ca-dependent events | 0.795261 | 0.099 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.795261 | 0.099 |
R-HSA-165159 | MTOR signalling | 0.795261 | 0.099 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.797202 | 0.098 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.798280 | 0.098 |
R-HSA-9612973 | Autophagy | 0.801055 | 0.096 |
R-HSA-9710421 | Defective pyroptosis | 0.801663 | 0.096 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.807866 | 0.093 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.807866 | 0.093 |
R-HSA-69236 | G1 Phase | 0.807866 | 0.093 |
R-HSA-2172127 | DAP12 interactions | 0.807866 | 0.093 |
R-HSA-9645723 | Diseases of programmed cell death | 0.812255 | 0.090 |
R-HSA-162909 | Host Interactions of HIV factors | 0.812568 | 0.090 |
R-HSA-774815 | Nucleosome assembly | 0.813875 | 0.089 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.813875 | 0.089 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.813875 | 0.089 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.813875 | 0.089 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.813875 | 0.089 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.819697 | 0.086 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.819697 | 0.086 |
R-HSA-9675135 | Diseases of DNA repair | 0.819697 | 0.086 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.819697 | 0.086 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.819697 | 0.086 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.819697 | 0.086 |
R-HSA-6802949 | Signaling by RAS mutants | 0.819697 | 0.086 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.819697 | 0.086 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.819697 | 0.086 |
R-HSA-194138 | Signaling by VEGF | 0.820094 | 0.086 |
R-HSA-202424 | Downstream TCR signaling | 0.821085 | 0.086 |
R-HSA-73884 | Base Excision Repair | 0.821085 | 0.086 |
R-HSA-112310 | Neurotransmitter release cycle | 0.821085 | 0.086 |
R-HSA-8953897 | Cellular responses to stimuli | 0.822438 | 0.085 |
R-HSA-114608 | Platelet degranulation | 0.827362 | 0.082 |
R-HSA-69481 | G2/M Checkpoints | 0.827362 | 0.082 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.830800 | 0.081 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.836093 | 0.078 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.837637 | 0.077 |
R-HSA-109704 | PI3K Cascade | 0.841221 | 0.075 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.841221 | 0.075 |
R-HSA-5576891 | Cardiac conduction | 0.844440 | 0.073 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.846189 | 0.073 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.850851 | 0.070 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.851001 | 0.070 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.851001 | 0.070 |
R-HSA-6794361 | Neurexins and neuroligins | 0.851001 | 0.070 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.851001 | 0.070 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.855663 | 0.068 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.855663 | 0.068 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.859876 | 0.066 |
R-HSA-422356 | Regulation of insulin secretion | 0.859876 | 0.066 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.860136 | 0.065 |
R-HSA-72649 | Translation initiation complex formation | 0.860180 | 0.065 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.860180 | 0.065 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.862784 | 0.064 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.864556 | 0.063 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.864556 | 0.063 |
R-HSA-5610787 | Hedgehog 'off' state | 0.866648 | 0.062 |
R-HSA-70171 | Glycolysis | 0.866648 | 0.062 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.868794 | 0.061 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.868794 | 0.061 |
R-HSA-5578775 | Ion homeostasis | 0.868794 | 0.061 |
R-HSA-75893 | TNF signaling | 0.868794 | 0.061 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.869858 | 0.061 |
R-HSA-112399 | IRS-mediated signalling | 0.872901 | 0.059 |
R-HSA-1483166 | Synthesis of PA | 0.872901 | 0.059 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.874245 | 0.058 |
R-HSA-9664417 | Leishmania phagocytosis | 0.874245 | 0.058 |
R-HSA-9664407 | Parasite infection | 0.874245 | 0.058 |
R-HSA-6782135 | Dual incision in TC-NER | 0.876879 | 0.057 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.876879 | 0.057 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.876929 | 0.057 |
R-HSA-111885 | Opioid Signalling | 0.879299 | 0.056 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.879299 | 0.056 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.879299 | 0.056 |
R-HSA-9033241 | Peroxisomal protein import | 0.880733 | 0.055 |
R-HSA-983189 | Kinesins | 0.884467 | 0.053 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.884467 | 0.053 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.888084 | 0.052 |
R-HSA-211976 | Endogenous sterols | 0.888084 | 0.052 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.888084 | 0.052 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.891587 | 0.050 |
R-HSA-1268020 | Mitochondrial protein import | 0.891587 | 0.050 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.891587 | 0.050 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.893553 | 0.049 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.894982 | 0.048 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.898270 | 0.047 |
R-HSA-2428924 | IGF1R signaling cascade | 0.898270 | 0.047 |
R-HSA-9758941 | Gastrulation | 0.898884 | 0.046 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.899636 | 0.046 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.901092 | 0.045 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.901456 | 0.045 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.901620 | 0.045 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.903814 | 0.044 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.904030 | 0.044 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 0.904542 | 0.044 |
R-HSA-112316 | Neuronal System | 0.906806 | 0.042 |
R-HSA-69306 | DNA Replication | 0.907459 | 0.042 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.907531 | 0.042 |
R-HSA-196807 | Nicotinate metabolism | 0.907531 | 0.042 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 0.907531 | 0.042 |
R-HSA-9830369 | Kidney development | 0.907531 | 0.042 |
R-HSA-8953854 | Metabolism of RNA | 0.908190 | 0.042 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.908592 | 0.042 |
R-HSA-5218859 | Regulated Necrosis | 0.910427 | 0.041 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.910896 | 0.041 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.911495 | 0.040 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.913147 | 0.039 |
R-HSA-73894 | DNA Repair | 0.914582 | 0.039 |
R-HSA-9658195 | Leishmania infection | 0.915071 | 0.039 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.915071 | 0.039 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.915951 | 0.038 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.916285 | 0.038 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.916555 | 0.038 |
R-HSA-5653656 | Vesicle-mediated transport | 0.916788 | 0.038 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.917251 | 0.038 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.918583 | 0.037 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.918583 | 0.037 |
R-HSA-5632684 | Hedgehog 'on' state | 0.918583 | 0.037 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.918583 | 0.037 |
R-HSA-9007101 | Rab regulation of trafficking | 0.919581 | 0.036 |
R-HSA-70326 | Glucose metabolism | 0.919581 | 0.036 |
R-HSA-9679506 | SARS-CoV Infections | 0.920705 | 0.036 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.921134 | 0.036 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 0.921134 | 0.036 |
R-HSA-68875 | Mitotic Prophase | 0.925566 | 0.034 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.928317 | 0.032 |
R-HSA-8852135 | Protein ubiquitination | 0.928317 | 0.032 |
R-HSA-9694635 | Translation of Structural Proteins | 0.932739 | 0.030 |
R-HSA-4086400 | PCP/CE pathway | 0.934847 | 0.029 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.936889 | 0.028 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.938450 | 0.028 |
R-HSA-5654738 | Signaling by FGFR2 | 0.938867 | 0.027 |
R-HSA-9824446 | Viral Infection Pathways | 0.940911 | 0.026 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.942571 | 0.026 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.942571 | 0.026 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.944437 | 0.025 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.947477 | 0.023 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.947867 | 0.023 |
R-HSA-449147 | Signaling by Interleukins | 0.948816 | 0.023 |
R-HSA-168255 | Influenza Infection | 0.950057 | 0.022 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.951085 | 0.022 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.952619 | 0.021 |
R-HSA-70268 | Pyruvate metabolism | 0.952619 | 0.021 |
R-HSA-163685 | Integration of energy metabolism | 0.954735 | 0.020 |
R-HSA-5358351 | Signaling by Hedgehog | 0.957074 | 0.019 |
R-HSA-597592 | Post-translational protein modification | 0.958779 | 0.018 |
R-HSA-446728 | Cell junction organization | 0.959456 | 0.018 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.959599 | 0.018 |
R-HSA-74752 | Signaling by Insulin receptor | 0.960865 | 0.017 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.960865 | 0.017 |
R-HSA-391251 | Protein folding | 0.960865 | 0.017 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.960865 | 0.017 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.962092 | 0.017 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.963282 | 0.016 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.964383 | 0.016 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.966620 | 0.015 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.966631 | 0.015 |
R-HSA-1296071 | Potassium Channels | 0.966631 | 0.015 |
R-HSA-190236 | Signaling by FGFR | 0.968692 | 0.014 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.969675 | 0.013 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.970551 | 0.013 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.971274 | 0.013 |
R-HSA-376176 | Signaling by ROBO receptors | 0.971804 | 0.012 |
R-HSA-9609507 | Protein localization | 0.972039 | 0.012 |
R-HSA-421270 | Cell-cell junction organization | 0.972495 | 0.012 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.972785 | 0.012 |
R-HSA-9610379 | HCMV Late Events | 0.974908 | 0.011 |
R-HSA-877300 | Interferon gamma signaling | 0.976234 | 0.010 |
R-HSA-418346 | Platelet homeostasis | 0.976505 | 0.010 |
R-HSA-397014 | Muscle contraction | 0.977904 | 0.010 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.977957 | 0.010 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.977957 | 0.010 |
R-HSA-9734767 | Developmental Cell Lineages | 0.979012 | 0.009 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.979320 | 0.009 |
R-HSA-6803157 | Antimicrobial peptides | 0.979970 | 0.009 |
R-HSA-5619102 | SLC transporter disorders | 0.980891 | 0.008 |
R-HSA-418990 | Adherens junctions interactions | 0.980938 | 0.008 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.983461 | 0.007 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.983981 | 0.007 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.983981 | 0.007 |
R-HSA-611105 | Respiratory electron transport | 0.986262 | 0.006 |
R-HSA-72312 | rRNA processing | 0.986548 | 0.006 |
R-HSA-3781865 | Diseases of glycosylation | 0.988364 | 0.005 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.988505 | 0.005 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.988726 | 0.005 |
R-HSA-5173105 | O-linked glycosylation | 0.992560 | 0.003 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.993156 | 0.003 |
R-HSA-1280218 | Adaptive Immune System | 0.994023 | 0.003 |
R-HSA-416476 | G alpha (q) signalling events | 0.994047 | 0.003 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.996905 | 0.001 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.997242 | 0.001 |
R-HSA-6798695 | Neutrophil degranulation | 0.997722 | 0.001 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.997796 | 0.001 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.997796 | 0.001 |
R-HSA-109582 | Hemostasis | 0.998035 | 0.001 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.998099 | 0.001 |
R-HSA-913531 | Interferon Signaling | 0.998882 | 0.000 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.998960 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 0.998971 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.999230 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 0.999515 | 0.000 |
R-HSA-5663205 | Infectious disease | 0.999557 | 0.000 |
R-HSA-15869 | Metabolism of nucleotides | 0.999718 | 0.000 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.999727 | 0.000 |
R-HSA-168249 | Innate Immune System | 0.999775 | 0.000 |
R-HSA-1474244 | Extracellular matrix organization | 0.999837 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 0.999879 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999927 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999939 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999976 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999978 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999983 | 0.000 |
R-HSA-8957322 | Metabolism of steroids | 0.999984 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999991 | 0.000 |
R-HSA-72766 | Translation | 0.999992 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999996 | 0.000 |
R-HSA-168256 | Immune System | 0.999999 | 0.000 |
R-HSA-1643685 | Disease | 0.999999 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-382551 | Transport of small molecules | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CDK18 |
0.886 | 0.862 | 1 | 0.920 |
KIS |
0.882 | 0.773 | 1 | 0.878 |
HIPK2 |
0.881 | 0.789 | 1 | 0.904 |
P38G |
0.880 | 0.876 | 1 | 0.943 |
CDK17 |
0.879 | 0.861 | 1 | 0.936 |
CDK19 |
0.878 | 0.828 | 1 | 0.913 |
CDK3 |
0.876 | 0.755 | 1 | 0.934 |
JNK2 |
0.874 | 0.877 | 1 | 0.927 |
CDK1 |
0.873 | 0.819 | 1 | 0.905 |
CDK8 |
0.873 | 0.824 | 1 | 0.889 |
CDK7 |
0.872 | 0.822 | 1 | 0.896 |
P38D |
0.871 | 0.855 | 1 | 0.951 |
ERK1 |
0.871 | 0.839 | 1 | 0.913 |
CDK16 |
0.871 | 0.822 | 1 | 0.928 |
CDK5 |
0.870 | 0.808 | 1 | 0.872 |
P38B |
0.870 | 0.848 | 1 | 0.901 |
CDK13 |
0.869 | 0.826 | 1 | 0.911 |
DYRK2 |
0.867 | 0.767 | 1 | 0.845 |
CDK12 |
0.867 | 0.826 | 1 | 0.925 |
JNK3 |
0.865 | 0.859 | 1 | 0.910 |
CLK3 |
0.861 | 0.527 | 1 | 0.643 |
DYRK4 |
0.861 | 0.769 | 1 | 0.919 |
HIPK1 |
0.860 | 0.713 | 1 | 0.828 |
HIPK4 |
0.860 | 0.544 | 1 | 0.660 |
CDK14 |
0.859 | 0.808 | 1 | 0.892 |
CDK10 |
0.859 | 0.763 | 1 | 0.904 |
P38A |
0.859 | 0.817 | 1 | 0.850 |
CDK9 |
0.858 | 0.802 | 1 | 0.906 |
DYRK1B |
0.853 | 0.731 | 1 | 0.885 |
NLK |
0.851 | 0.742 | 1 | 0.679 |
ERK2 |
0.850 | 0.807 | 1 | 0.874 |
SRPK1 |
0.847 | 0.363 | -3 | 0.729 |
CDK4 |
0.846 | 0.796 | 1 | 0.929 |
CDK6 |
0.845 | 0.774 | 1 | 0.907 |
HIPK3 |
0.845 | 0.684 | 1 | 0.809 |
JNK1 |
0.845 | 0.768 | 1 | 0.923 |
DYRK1A |
0.845 | 0.616 | 1 | 0.821 |
ERK5 |
0.842 | 0.445 | 1 | 0.598 |
MAK |
0.840 | 0.553 | -2 | 0.808 |
CLK2 |
0.837 | 0.422 | -3 | 0.718 |
CDK2 |
0.836 | 0.604 | 1 | 0.807 |
DYRK3 |
0.835 | 0.552 | 1 | 0.795 |
MTOR |
0.834 | 0.273 | 1 | 0.482 |
SRPK2 |
0.834 | 0.285 | -3 | 0.645 |
CLK1 |
0.832 | 0.415 | -3 | 0.705 |
COT |
0.832 | 0.000 | 2 | 0.868 |
ICK |
0.831 | 0.392 | -3 | 0.818 |
CDKL5 |
0.830 | 0.206 | -3 | 0.770 |
CLK4 |
0.829 | 0.379 | -3 | 0.729 |
PRP4 |
0.824 | 0.494 | -3 | 0.784 |
CDKL1 |
0.823 | 0.165 | -3 | 0.775 |
MOK |
0.822 | 0.493 | 1 | 0.725 |
MOS |
0.821 | 0.047 | 1 | 0.375 |
SRPK3 |
0.820 | 0.245 | -3 | 0.692 |
CDC7 |
0.819 | -0.061 | 1 | 0.330 |
NDR2 |
0.818 | 0.025 | -3 | 0.836 |
PIM3 |
0.816 | -0.005 | -3 | 0.821 |
PRPK |
0.814 | -0.052 | -1 | 0.863 |
PRKD1 |
0.814 | 0.040 | -3 | 0.819 |
NEK6 |
0.814 | -0.008 | -2 | 0.843 |
ERK7 |
0.814 | 0.303 | 2 | 0.601 |
TBK1 |
0.814 | -0.118 | 1 | 0.292 |
MST4 |
0.813 | -0.001 | 2 | 0.874 |
CHAK2 |
0.811 | 0.005 | -1 | 0.861 |
ATR |
0.810 | -0.034 | 1 | 0.362 |
IKKE |
0.810 | -0.130 | 1 | 0.290 |
SKMLCK |
0.809 | 0.000 | -2 | 0.881 |
PKN3 |
0.809 | -0.022 | -3 | 0.798 |
IKKB |
0.809 | -0.136 | -2 | 0.727 |
PRKD2 |
0.809 | 0.027 | -3 | 0.755 |
GCN2 |
0.809 | -0.163 | 2 | 0.796 |
WNK1 |
0.809 | -0.035 | -2 | 0.901 |
PKCD |
0.808 | 0.016 | 2 | 0.804 |
NDR1 |
0.808 | -0.031 | -3 | 0.813 |
GRK1 |
0.807 | 0.027 | -2 | 0.781 |
AURC |
0.807 | 0.043 | -2 | 0.662 |
ULK2 |
0.807 | -0.152 | 2 | 0.783 |
RAF1 |
0.807 | -0.182 | 1 | 0.323 |
DSTYK |
0.807 | -0.124 | 2 | 0.887 |
RSK2 |
0.806 | 0.002 | -3 | 0.748 |
CAMK1B |
0.806 | -0.043 | -3 | 0.821 |
NUAK2 |
0.806 | 0.010 | -3 | 0.812 |
BMPR2 |
0.805 | -0.147 | -2 | 0.855 |
PDHK4 |
0.805 | -0.161 | 1 | 0.384 |
PKN2 |
0.805 | -0.038 | -3 | 0.804 |
NIK |
0.805 | -0.038 | -3 | 0.843 |
MLK2 |
0.804 | -0.025 | 2 | 0.837 |
PIM1 |
0.804 | 0.018 | -3 | 0.759 |
NEK7 |
0.803 | -0.133 | -3 | 0.827 |
P90RSK |
0.803 | -0.001 | -3 | 0.750 |
MLK1 |
0.803 | -0.105 | 2 | 0.838 |
RSK3 |
0.802 | -0.012 | -3 | 0.736 |
PKCB |
0.802 | 0.017 | 2 | 0.777 |
MLK3 |
0.802 | -0.003 | 2 | 0.777 |
IKKA |
0.802 | -0.056 | -2 | 0.725 |
CAMLCK |
0.802 | -0.010 | -2 | 0.844 |
PDHK1 |
0.802 | -0.157 | 1 | 0.364 |
MPSK1 |
0.801 | 0.140 | 1 | 0.363 |
PKCA |
0.801 | 0.033 | 2 | 0.763 |
TGFBR2 |
0.800 | -0.093 | -2 | 0.754 |
GRK7 |
0.800 | 0.033 | 1 | 0.330 |
RIPK3 |
0.800 | -0.127 | 3 | 0.721 |
MARK4 |
0.800 | -0.046 | 4 | 0.833 |
AMPKA1 |
0.799 | -0.052 | -3 | 0.828 |
IRE1 |
0.799 | -0.061 | 1 | 0.303 |
LATS2 |
0.799 | -0.033 | -5 | 0.748 |
MNK2 |
0.799 | 0.003 | -2 | 0.797 |
PKACG |
0.799 | -0.025 | -2 | 0.744 |
DAPK2 |
0.799 | -0.037 | -3 | 0.834 |
MAPKAPK3 |
0.798 | -0.043 | -3 | 0.754 |
NEK9 |
0.798 | -0.115 | 2 | 0.852 |
PKCG |
0.798 | -0.001 | 2 | 0.769 |
BCKDK |
0.797 | -0.125 | -1 | 0.800 |
LATS1 |
0.797 | 0.036 | -3 | 0.855 |
CAMK2G |
0.797 | -0.126 | 2 | 0.765 |
PKCZ |
0.797 | -0.002 | 2 | 0.806 |
GRK5 |
0.797 | -0.140 | -3 | 0.830 |
HUNK |
0.796 | -0.137 | 2 | 0.811 |
MAPKAPK2 |
0.796 | -0.021 | -3 | 0.715 |
BMPR1B |
0.796 | -0.031 | 1 | 0.288 |
P70S6KB |
0.796 | -0.023 | -3 | 0.757 |
PHKG1 |
0.796 | -0.040 | -3 | 0.798 |
AMPKA2 |
0.795 | -0.038 | -3 | 0.796 |
ULK1 |
0.795 | -0.167 | -3 | 0.785 |
TSSK1 |
0.794 | -0.035 | -3 | 0.852 |
PKACB |
0.794 | 0.022 | -2 | 0.680 |
CAMK2D |
0.793 | -0.090 | -3 | 0.811 |
MASTL |
0.793 | -0.159 | -2 | 0.807 |
PAK1 |
0.793 | -0.038 | -2 | 0.791 |
MNK1 |
0.793 | -0.001 | -2 | 0.796 |
NIM1 |
0.793 | -0.072 | 3 | 0.763 |
SGK3 |
0.793 | 0.009 | -3 | 0.738 |
PAK6 |
0.793 | 0.017 | -2 | 0.698 |
PKR |
0.792 | -0.047 | 1 | 0.334 |
PRKD3 |
0.792 | -0.010 | -3 | 0.709 |
VRK2 |
0.792 | 0.100 | 1 | 0.417 |
RSK4 |
0.792 | 0.003 | -3 | 0.728 |
GSK3A |
0.791 | 0.199 | 4 | 0.433 |
WNK3 |
0.791 | -0.208 | 1 | 0.317 |
AKT2 |
0.791 | 0.027 | -3 | 0.656 |
PAK3 |
0.791 | -0.061 | -2 | 0.783 |
DLK |
0.791 | -0.187 | 1 | 0.325 |
DNAPK |
0.790 | -0.034 | 1 | 0.335 |
PKG2 |
0.790 | -0.000 | -2 | 0.677 |
IRE2 |
0.790 | -0.073 | 2 | 0.762 |
ANKRD3 |
0.790 | -0.161 | 1 | 0.336 |
YSK4 |
0.789 | -0.117 | 1 | 0.296 |
NEK2 |
0.789 | -0.085 | 2 | 0.837 |
TSSK2 |
0.789 | -0.083 | -5 | 0.820 |
PKCH |
0.789 | -0.039 | 2 | 0.754 |
TGFBR1 |
0.788 | -0.055 | -2 | 0.770 |
QSK |
0.788 | -0.032 | 4 | 0.815 |
ALK4 |
0.788 | -0.071 | -2 | 0.795 |
TTBK2 |
0.788 | -0.172 | 2 | 0.711 |
MST3 |
0.788 | 0.005 | 2 | 0.869 |
MLK4 |
0.787 | -0.079 | 2 | 0.750 |
SMG1 |
0.787 | -0.061 | 1 | 0.340 |
RIPK1 |
0.787 | -0.199 | 1 | 0.301 |
AURB |
0.787 | -0.013 | -2 | 0.657 |
ATM |
0.787 | -0.093 | 1 | 0.322 |
GRK6 |
0.786 | -0.153 | 1 | 0.313 |
MSK2 |
0.785 | -0.054 | -3 | 0.720 |
MELK |
0.785 | -0.083 | -3 | 0.771 |
CHAK1 |
0.785 | -0.121 | 2 | 0.787 |
NUAK1 |
0.785 | -0.058 | -3 | 0.750 |
CAMK2A |
0.785 | -0.040 | 2 | 0.752 |
PRKX |
0.784 | 0.023 | -3 | 0.663 |
PINK1 |
0.784 | 0.124 | 1 | 0.504 |
TAO3 |
0.783 | -0.001 | 1 | 0.341 |
TLK2 |
0.783 | -0.098 | 1 | 0.301 |
FAM20C |
0.783 | -0.031 | 2 | 0.574 |
MEK1 |
0.783 | -0.142 | 2 | 0.833 |
QIK |
0.783 | -0.108 | -3 | 0.797 |
GRK4 |
0.783 | -0.169 | -2 | 0.804 |
CAMK2B |
0.782 | -0.076 | 2 | 0.729 |
PIM2 |
0.782 | 0.004 | -3 | 0.710 |
PKCT |
0.782 | -0.030 | 2 | 0.759 |
MSK1 |
0.782 | -0.033 | -3 | 0.722 |
PLK4 |
0.781 | -0.097 | 2 | 0.613 |
CAMK4 |
0.781 | -0.142 | -3 | 0.782 |
NEK5 |
0.781 | -0.067 | 1 | 0.314 |
DCAMKL1 |
0.781 | -0.042 | -3 | 0.760 |
MEKK1 |
0.780 | -0.105 | 1 | 0.324 |
SIK |
0.780 | -0.059 | -3 | 0.720 |
AKT1 |
0.780 | 0.006 | -3 | 0.680 |
CK1E |
0.780 | -0.003 | -3 | 0.567 |
PAK2 |
0.779 | -0.083 | -2 | 0.770 |
ZAK |
0.779 | -0.121 | 1 | 0.299 |
WNK4 |
0.779 | -0.088 | -2 | 0.896 |
BUB1 |
0.779 | 0.099 | -5 | 0.780 |
MEKK2 |
0.778 | -0.089 | 2 | 0.814 |
ACVR2B |
0.778 | -0.111 | -2 | 0.752 |
PLK1 |
0.778 | -0.170 | -2 | 0.763 |
MARK3 |
0.778 | -0.050 | 4 | 0.763 |
IRAK4 |
0.778 | -0.103 | 1 | 0.291 |
MEK5 |
0.777 | -0.139 | 2 | 0.825 |
MYLK4 |
0.776 | -0.060 | -2 | 0.772 |
PKCI |
0.776 | -0.018 | 2 | 0.780 |
ACVR2A |
0.776 | -0.119 | -2 | 0.735 |
ALK2 |
0.776 | -0.097 | -2 | 0.778 |
AURA |
0.776 | -0.034 | -2 | 0.628 |
LKB1 |
0.775 | 0.008 | -3 | 0.822 |
DRAK1 |
0.775 | -0.142 | 1 | 0.273 |
PKCE |
0.775 | 0.011 | 2 | 0.761 |
BRSK2 |
0.775 | -0.106 | -3 | 0.777 |
BRSK1 |
0.775 | -0.084 | -3 | 0.756 |
PERK |
0.775 | -0.148 | -2 | 0.793 |
CHK1 |
0.774 | -0.080 | -3 | 0.807 |
PKACA |
0.774 | -0.005 | -2 | 0.627 |
TNIK |
0.774 | 0.014 | 3 | 0.877 |
PASK |
0.774 | -0.033 | -3 | 0.850 |
MARK2 |
0.773 | -0.072 | 4 | 0.729 |
GCK |
0.772 | -0.028 | 1 | 0.323 |
PAK5 |
0.772 | -0.028 | -2 | 0.641 |
AKT3 |
0.772 | 0.019 | -3 | 0.606 |
GSK3B |
0.772 | 0.038 | 4 | 0.427 |
MEKK3 |
0.772 | -0.175 | 1 | 0.318 |
BMPR1A |
0.772 | -0.076 | 1 | 0.276 |
MAP3K15 |
0.772 | -0.036 | 1 | 0.311 |
CK1D |
0.772 | 0.013 | -3 | 0.517 |
PHKG2 |
0.771 | -0.089 | -3 | 0.752 |
NEK11 |
0.771 | -0.106 | 1 | 0.333 |
PDK1 |
0.771 | -0.046 | 1 | 0.352 |
TAO2 |
0.771 | -0.043 | 2 | 0.857 |
GRK2 |
0.771 | -0.104 | -2 | 0.697 |
SSTK |
0.771 | -0.059 | 4 | 0.806 |
GAK |
0.771 | -0.031 | 1 | 0.365 |
HGK |
0.771 | -0.029 | 3 | 0.866 |
MEKK6 |
0.770 | -0.058 | 1 | 0.320 |
PAK4 |
0.770 | -0.013 | -2 | 0.648 |
HRI |
0.770 | -0.185 | -2 | 0.810 |
MAPKAPK5 |
0.770 | -0.113 | -3 | 0.683 |
BRAF |
0.770 | -0.155 | -4 | 0.828 |
KHS1 |
0.770 | 0.008 | 1 | 0.317 |
CAMK1G |
0.770 | -0.087 | -3 | 0.716 |
CK1G1 |
0.768 | -0.048 | -3 | 0.546 |
KHS2 |
0.768 | 0.020 | 1 | 0.327 |
DCAMKL2 |
0.768 | -0.079 | -3 | 0.772 |
HPK1 |
0.768 | -0.039 | 1 | 0.320 |
SGK1 |
0.768 | 0.026 | -3 | 0.584 |
PKN1 |
0.767 | -0.036 | -3 | 0.686 |
MINK |
0.767 | -0.073 | 1 | 0.301 |
NEK8 |
0.767 | -0.145 | 2 | 0.829 |
NEK4 |
0.767 | -0.111 | 1 | 0.299 |
TLK1 |
0.767 | -0.166 | -2 | 0.803 |
PLK3 |
0.766 | -0.168 | 2 | 0.726 |
SNRK |
0.766 | -0.195 | 2 | 0.660 |
CAMKK2 |
0.765 | -0.100 | -2 | 0.744 |
PBK |
0.765 | -0.009 | 1 | 0.343 |
P70S6K |
0.765 | -0.059 | -3 | 0.667 |
SMMLCK |
0.765 | -0.069 | -3 | 0.777 |
LOK |
0.765 | -0.046 | -2 | 0.750 |
ROCK2 |
0.765 | 0.004 | -3 | 0.760 |
MARK1 |
0.765 | -0.107 | 4 | 0.781 |
MST2 |
0.765 | -0.104 | 1 | 0.314 |
NEK1 |
0.764 | -0.079 | 1 | 0.295 |
CK1A2 |
0.764 | -0.018 | -3 | 0.515 |
LRRK2 |
0.764 | -0.012 | 2 | 0.849 |
EEF2K |
0.763 | -0.059 | 3 | 0.826 |
CAMKK1 |
0.763 | -0.166 | -2 | 0.746 |
HASPIN |
0.762 | 0.038 | -1 | 0.733 |
DAPK3 |
0.762 | -0.050 | -3 | 0.767 |
MRCKB |
0.761 | -0.011 | -3 | 0.696 |
YSK1 |
0.760 | -0.065 | 2 | 0.835 |
SBK |
0.759 | 0.086 | -3 | 0.540 |
VRK1 |
0.759 | -0.103 | 2 | 0.842 |
SLK |
0.759 | -0.058 | -2 | 0.694 |
CK2A2 |
0.758 | -0.070 | 1 | 0.260 |
TAK1 |
0.758 | -0.154 | 1 | 0.306 |
GRK3 |
0.757 | -0.102 | -2 | 0.656 |
CAMK1D |
0.756 | -0.071 | -3 | 0.645 |
TTBK1 |
0.756 | -0.188 | 2 | 0.619 |
OSR1 |
0.755 | -0.033 | 2 | 0.814 |
MST1 |
0.755 | -0.131 | 1 | 0.302 |
CHK2 |
0.754 | -0.043 | -3 | 0.600 |
MRCKA |
0.754 | -0.039 | -3 | 0.714 |
PDHK3_TYR |
0.754 | 0.211 | 4 | 0.889 |
DAPK1 |
0.753 | -0.062 | -3 | 0.749 |
NEK3 |
0.752 | -0.089 | 1 | 0.316 |
DMPK1 |
0.751 | 0.007 | -3 | 0.723 |
IRAK1 |
0.750 | -0.260 | -1 | 0.760 |
LIMK2_TYR |
0.750 | 0.186 | -3 | 0.869 |
MYO3B |
0.749 | -0.027 | 2 | 0.848 |
CAMK1A |
0.749 | -0.050 | -3 | 0.619 |
BIKE |
0.749 | -0.020 | 1 | 0.336 |
ROCK1 |
0.748 | -0.023 | -3 | 0.713 |
STK33 |
0.748 | -0.141 | 2 | 0.599 |
CK2A1 |
0.748 | -0.080 | 1 | 0.248 |
MEK2 |
0.748 | -0.191 | 2 | 0.809 |
AAK1 |
0.747 | 0.026 | 1 | 0.323 |
TAO1 |
0.746 | -0.059 | 1 | 0.303 |
CRIK |
0.746 | -0.003 | -3 | 0.687 |
TESK1_TYR |
0.746 | 0.082 | 3 | 0.875 |
ASK1 |
0.745 | -0.091 | 1 | 0.308 |
PKG1 |
0.744 | -0.050 | -2 | 0.586 |
PKMYT1_TYR |
0.744 | 0.150 | 3 | 0.842 |
PDHK4_TYR |
0.743 | 0.086 | 2 | 0.845 |
MYO3A |
0.742 | -0.068 | 1 | 0.312 |
TTK |
0.742 | -0.097 | -2 | 0.787 |
MAP2K4_TYR |
0.741 | 0.041 | -1 | 0.882 |
PLK2 |
0.741 | -0.113 | -3 | 0.752 |
RIPK2 |
0.741 | -0.249 | 1 | 0.283 |
MAP2K6_TYR |
0.738 | 0.023 | -1 | 0.887 |
MAP2K7_TYR |
0.737 | -0.062 | 2 | 0.837 |
BMPR2_TYR |
0.735 | 0.008 | -1 | 0.882 |
PDHK1_TYR |
0.734 | -0.043 | -1 | 0.890 |
LIMK1_TYR |
0.733 | 0.007 | 2 | 0.845 |
RET |
0.732 | -0.098 | 1 | 0.336 |
PINK1_TYR |
0.732 | -0.134 | 1 | 0.368 |
JAK2 |
0.730 | -0.076 | 1 | 0.345 |
MST1R |
0.730 | -0.074 | 3 | 0.806 |
CK1A |
0.729 | -0.039 | -3 | 0.429 |
YANK3 |
0.729 | -0.075 | 2 | 0.378 |
CSF1R |
0.728 | -0.062 | 3 | 0.780 |
TNNI3K_TYR |
0.728 | 0.005 | 1 | 0.355 |
EPHA6 |
0.728 | -0.074 | -1 | 0.852 |
ABL2 |
0.728 | -0.056 | -1 | 0.788 |
ALPHAK3 |
0.727 | -0.122 | -1 | 0.772 |
ROS1 |
0.727 | -0.103 | 3 | 0.756 |
TYK2 |
0.727 | -0.170 | 1 | 0.326 |
NEK10_TYR |
0.726 | -0.081 | 1 | 0.296 |
EPHB4 |
0.726 | -0.091 | -1 | 0.820 |
STLK3 |
0.726 | -0.171 | 1 | 0.283 |
JAK1 |
0.726 | -0.045 | 1 | 0.309 |
TYRO3 |
0.725 | -0.129 | 3 | 0.788 |
TXK |
0.724 | -0.057 | 1 | 0.299 |
ABL1 |
0.723 | -0.070 | -1 | 0.780 |
JAK3 |
0.723 | -0.106 | 1 | 0.325 |
TNK1 |
0.723 | -0.035 | 3 | 0.773 |
TNK2 |
0.721 | -0.075 | 3 | 0.740 |
LCK |
0.721 | -0.062 | -1 | 0.822 |
FGR |
0.720 | -0.140 | 1 | 0.314 |
YES1 |
0.719 | -0.108 | -1 | 0.831 |
BLK |
0.719 | -0.058 | -1 | 0.825 |
KDR |
0.718 | -0.074 | 3 | 0.737 |
DDR1 |
0.718 | -0.150 | 4 | 0.803 |
FGFR2 |
0.716 | -0.071 | 3 | 0.763 |
HCK |
0.716 | -0.126 | -1 | 0.819 |
FGFR1 |
0.715 | -0.063 | 3 | 0.739 |
ITK |
0.714 | -0.128 | -1 | 0.788 |
KIT |
0.713 | -0.129 | 3 | 0.773 |
MET |
0.712 | -0.099 | 3 | 0.776 |
INSRR |
0.712 | -0.165 | 3 | 0.718 |
PDGFRB |
0.711 | -0.200 | 3 | 0.787 |
TEK |
0.711 | -0.053 | 3 | 0.704 |
FER |
0.711 | -0.210 | 1 | 0.328 |
EPHA4 |
0.710 | -0.112 | 2 | 0.727 |
FLT3 |
0.710 | -0.191 | 3 | 0.785 |
MERTK |
0.710 | -0.135 | 3 | 0.760 |
EPHB1 |
0.709 | -0.174 | 1 | 0.307 |
WEE1_TYR |
0.709 | -0.086 | -1 | 0.742 |
EPHB3 |
0.708 | -0.159 | -1 | 0.800 |
SRMS |
0.708 | -0.188 | 1 | 0.301 |
AXL |
0.708 | -0.165 | 3 | 0.755 |
FYN |
0.707 | -0.079 | -1 | 0.803 |
DDR2 |
0.707 | -0.046 | 3 | 0.697 |
BMX |
0.707 | -0.115 | -1 | 0.705 |
EPHB2 |
0.707 | -0.157 | -1 | 0.795 |
PDGFRA |
0.706 | -0.207 | 3 | 0.787 |
FGFR3 |
0.705 | -0.091 | 3 | 0.733 |
CK1G3 |
0.704 | -0.056 | -3 | 0.380 |
FLT1 |
0.704 | -0.137 | -1 | 0.825 |
TEC |
0.703 | -0.160 | -1 | 0.714 |
FRK |
0.703 | -0.143 | -1 | 0.822 |
ALK |
0.701 | -0.177 | 3 | 0.689 |
EPHA1 |
0.701 | -0.152 | 3 | 0.754 |
BTK |
0.701 | -0.221 | -1 | 0.750 |
EPHA7 |
0.700 | -0.140 | 2 | 0.733 |
ERBB2 |
0.699 | -0.180 | 1 | 0.301 |
LTK |
0.698 | -0.189 | 3 | 0.713 |
EGFR |
0.698 | -0.115 | 1 | 0.262 |
INSR |
0.697 | -0.179 | 3 | 0.705 |
PTK6 |
0.697 | -0.217 | -1 | 0.709 |
LYN |
0.697 | -0.148 | 3 | 0.695 |
FLT4 |
0.697 | -0.180 | 3 | 0.721 |
NTRK3 |
0.696 | -0.161 | -1 | 0.748 |
NTRK1 |
0.696 | -0.239 | -1 | 0.798 |
PTK2B |
0.696 | -0.125 | -1 | 0.750 |
EPHA3 |
0.695 | -0.168 | 2 | 0.699 |
MATK |
0.695 | -0.120 | -1 | 0.712 |
SRC |
0.695 | -0.132 | -1 | 0.792 |
YANK2 |
0.694 | -0.096 | 2 | 0.392 |
NTRK2 |
0.694 | -0.239 | 3 | 0.728 |
PTK2 |
0.693 | -0.061 | -1 | 0.801 |
SYK |
0.693 | -0.077 | -1 | 0.775 |
EPHA8 |
0.692 | -0.136 | -1 | 0.788 |
MUSK |
0.691 | -0.138 | 1 | 0.250 |
FGFR4 |
0.691 | -0.125 | -1 | 0.748 |
EPHA5 |
0.689 | -0.169 | 2 | 0.706 |
ZAP70 |
0.688 | -0.037 | -1 | 0.700 |
CSK |
0.687 | -0.175 | 2 | 0.738 |
ERBB4 |
0.685 | -0.099 | 1 | 0.265 |
CK1G2 |
0.683 | -0.064 | -3 | 0.469 |
EPHA2 |
0.681 | -0.142 | -1 | 0.757 |
IGF1R |
0.678 | -0.179 | 3 | 0.635 |
FES |
0.664 | -0.181 | -1 | 0.678 |