Motif 219 (n=579)

Position-wise Probabilities

Download
uniprot genes site source protein function
A3KN83 SBNO1 S697 ochoa Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}.
A3KN83 SBNO1 S823 ochoa Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}.
A6NF01 POM121B S23 ochoa Putative nuclear envelope pore membrane protein POM 121B Putative component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane (By similarity). {ECO:0000250}.
A6NF01 POM121B S27 ochoa Putative nuclear envelope pore membrane protein POM 121B Putative component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane (By similarity). {ECO:0000250}.
A8CG34 POM121C S416 ochoa Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}.
A8CG34 POM121C S420 ochoa Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}.
E9PCH4 None S1291 ochoa Rap guanine nucleotide exchange factor 6 None
E9PCH4 None S1295 ochoa Rap guanine nucleotide exchange factor 6 None
F5H5P2 None S381 ochoa 2-oxoisovalerate dehydrogenase subunit alpha (EC 1.2.4.4) (Branched-chain alpha-keto acid dehydrogenase E1 component alpha chain) Together with BCKDHB forms the heterotetrameric E1 subunit of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. The BCKD complex catalyzes the multi-step oxidative decarboxylation of alpha-ketoacids derived from the branched-chain amino-acids valine, leucine and isoleucine producing CO2 and acyl-CoA which is subsequently utilized to produce energy. The E1 subunit catalyzes the first step with the decarboxylation of the alpha-ketoacid forming an enzyme-product intermediate. A reductive acylation mediated by the lipoylamide cofactor of E2 extracts the acyl group from the E1 active site for the next step of the reaction. {ECO:0000256|ARBA:ARBA00037052, ECO:0000256|RuleBase:RU365014}.
H0YC42 None S40 ochoa Tumor protein D52 None
K7ELQ4 ATF7-NPFF S125 ochoa ATF7-NPFF readthrough None
K7EQG2 None S133 ochoa Uncharacterized protein None
O14639 ABLIM1 S367 ochoa Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}.
O14964 HGS S314 ochoa Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) (Protein pp110) Involved in intracellular signal transduction mediated by cytokines and growth factors. When associated with STAM, it suppresses DNA signaling upon stimulation by IL-2 and GM-CSF. Could be a direct effector of PI3-kinase in vesicular pathway via early endosomes and may regulate trafficking to early and late endosomes by recruiting clathrin. May concentrate ubiquitinated receptors within clathrin-coated regions. Involved in down-regulation of receptor tyrosine kinase via multivesicular body (MVBs) when complexed with STAM (ESCRT-0 complex). The ESCRT-0 complex binds ubiquitin and acts as a sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes. May contribute to the efficient recruitment of SMADs to the activin receptor complex. Involved in receptor recycling via its association with the CART complex, a multiprotein complex required for efficient transferrin receptor recycling but not for EGFR degradation.
O14980 XPO1 S395 ochoa Exportin-1 (Exp1) (Chromosome region maintenance 1 protein homolog) Mediates the nuclear export of cellular proteins (cargos) bearing a leucine-rich nuclear export signal (NES) and of RNAs. In the nucleus, in association with RANBP3, binds cooperatively to the NES on its target protein and to the GTPase RAN in its active GTP-bound form (Ran-GTP). Docking of this complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, disassembling of the complex and hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause release of the cargo from the export receptor. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Involved in U3 snoRNA transport from Cajal bodies to nucleoli. Binds to late precursor U3 snoRNA bearing a TMG cap. {ECO:0000269|PubMed:15574332, ECO:0000269|PubMed:20921223, ECO:0000269|PubMed:9311922, ECO:0000269|PubMed:9323133}.; FUNCTION: (Microbial infection) Mediates the export of unspliced or incompletely spliced RNAs out of the nucleus from different viruses including HIV-1, HTLV-1 and influenza A. Interacts with, and mediates the nuclear export of HIV-1 Rev and HTLV-1 Rex proteins. Involved in HTLV-1 Rex multimerization. {ECO:0000269|PubMed:14612415, ECO:0000269|PubMed:9837918}.
O15417 TNRC18 S999 ochoa Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) None
O15439 ABCC4 S665 ochoa ATP-binding cassette sub-family C member 4 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (MRP/cMOAT-related ABC transporter) (Multi-specific organic anion transporter B) (MOAT-B) (Multidrug resistance-associated protein 4) ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds and xenobiotics from cells. Transports a range of endogenous molecules that have a key role in cellular communication and signaling, including cyclic nucleotides such as cyclic AMP (cAMP) and cyclic GMP (cGMP), bile acids, steroid conjugates, urate, and prostaglandins (PubMed:11856762, PubMed:12523936, PubMed:12835412, PubMed:12883481, PubMed:15364914, PubMed:15454390, PubMed:16282361, PubMed:17959747, PubMed:18300232, PubMed:26721430). Mediates the ATP-dependent efflux of glutathione conjugates such as leukotriene C4 (LTC4) and leukotriene B4 (LTB4) too. The presence of GSH is necessary for the ATP-dependent transport of LTB4, whereas GSH is not required for the transport of LTC4 (PubMed:17959747). Mediates the cotransport of bile acids with reduced glutathione (GSH) (PubMed:12523936, PubMed:12883481, PubMed:16282361). Transports a wide range of drugs and their metabolites, including anticancer, antiviral and antibiotics molecules (PubMed:11856762, PubMed:12105214, PubMed:15454390, PubMed:17344354, PubMed:18300232). Confers resistance to anticancer agents such as methotrexate (PubMed:11106685). {ECO:0000269|PubMed:11106685, ECO:0000269|PubMed:11856762, ECO:0000269|PubMed:12105214, ECO:0000269|PubMed:12523936, ECO:0000269|PubMed:12835412, ECO:0000269|PubMed:12883481, ECO:0000269|PubMed:15364914, ECO:0000269|PubMed:15454390, ECO:0000269|PubMed:16282361, ECO:0000269|PubMed:17344354, ECO:0000269|PubMed:17959747, ECO:0000269|PubMed:18300232, ECO:0000269|PubMed:26721430}.
O15504 NUP42 S313 ochoa Nucleoporin NUP42 (NLP-1) (NUP42 homolog) (Nucleoporin hCG1) (Nucleoporin-42) (Nucleoporin-like protein 2) Required for the export of mRNAs containing poly(A) tails from the nucleus into the cytoplasm. {ECO:0000269|PubMed:10610322, ECO:0000269|PubMed:16000379}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it may participate in the docking of viral Vpr at the nuclear envelope. {ECO:0000269|PubMed:12228227}.
O43166 SIPA1L1 S1572 ochoa Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}.
O43166 SIPA1L1 S1576 ochoa Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}.
O43399 TPD52L2 S149 ochoa Tumor protein D54 (hD54) (Tumor protein D52-like 2) None
O43426 SYNJ1 S1057 ochoa Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}.
O43474 KLF4 S244 ochoa Krueppel-like factor 4 (Epithelial zinc finger protein EZF) (Gut-enriched krueppel-like factor) Transcription factor; can act both as activator and as repressor. Binds the 5'-CACCC-3' core sequence. Binds to the promoter region of its own gene and can activate its own transcription. Regulates the expression of key transcription factors during embryonic development. Plays an important role in maintaining embryonic stem cells, and in preventing their differentiation. Required for establishing the barrier function of the skin and for postnatal maturation and maintenance of the ocular surface. Involved in the differentiation of epithelial cells and may also function in skeletal and kidney development. Contributes to the down-regulation of p53/TP53 transcription. {ECO:0000269|PubMed:17308127, ECO:0000269|PubMed:20071344}.
O43524 FOXO3 S429 ochoa Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}.
O43524 FOXO3 T433 ochoa Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}.
O60307 MAST3 S47 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O60315 ZEB2 S364 ochoa Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}.
O60346 PHLPP1 S321 ochoa|psp PH domain leucine-rich repeat-containing protein phosphatase 1 (EC 3.1.3.16) (Pleckstrin homology domain-containing family E member 1) (PH domain-containing family E member 1) (Suprachiasmatic nucleus circadian oscillatory protein) (hSCOP) Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT2 and AKT3, 'Ser-660' of PRKCB and 'Ser-657' of PRKCA (PubMed:15808505, PubMed:17386267, PubMed:18162466). Isoform 2 seems to have a major role in regulating Akt signaling in hippocampal neurons (By similarity). Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and suppression of tumor growth. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation (PubMed:18162466). Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor (PubMed:19079341). Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). May act as a negative regulator of K-Ras signaling in membrane rafts (By similarity). Involved in the hippocampus-dependent long-term memory formation (By similarity). Involved in circadian control by regulating the consolidation of circadian periodicity after resetting (By similarity). Involved in development and function of regulatory T-cells (By similarity). {ECO:0000250|UniProtKB:Q8CHE4, ECO:0000250|UniProtKB:Q9WTR8, ECO:0000269|PubMed:15808505, ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}.
O75122 CLASP2 S529 ochoa CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}.
O75376 NCOR1 S2144 ochoa Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}.
O75385 ULK1 S413 ochoa Serine/threonine-protein kinase ULK1 (EC 2.7.11.1) (Autophagy-related protein 1 homolog) (ATG1) (hATG1) (Unc-51-like kinase 1) Serine/threonine-protein kinase involved in autophagy in response to starvation (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:23524951, PubMed:25040165, PubMed:29487085, PubMed:31123703). Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:25040165). Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR (PubMed:21795849). Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity (PubMed:21460634). May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences (PubMed:18936157). Plays a role early in neuronal differentiation and is required for granule cell axon formation (PubMed:11146101). Also phosphorylates SESN2 and SQSTM1 to regulate autophagy (PubMed:25040165, PubMed:37306101). Phosphorylates FLCN, promoting autophagy (PubMed:25126726). Phosphorylates AMBRA1 in response to autophagy induction, releasing AMBRA1 from the cytoskeletal docking site to induce autophagosome nucleation (PubMed:20921139). Phosphorylates ATG4B, leading to inhibit autophagy by decreasing both proteolytic activation and delipidation activities of ATG4B (PubMed:28821708). {ECO:0000269|PubMed:11146101, ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:25040165, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:28821708, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:37306101}.
O75962 TRIO S2463 ochoa Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}.
O75962 TRIO S2467 ochoa Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}.
O76021 RSL1D1 S400 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O94868 FCHSD2 S669 ochoa F-BAR and double SH3 domains protein 2 (Carom) (Protein nervous wreck 1) (NWK1) (SH3 multiple domains protein 3) Adapter protein that plays a role in endocytosis via clathrin-coated pits. Contributes to the internalization of cell surface receptors, such as integrin ITGB1 and transferrin receptor (PubMed:29887380). Promotes endocytosis of EGFR in cancer cells, and thereby contributes to the down-regulation of EGFR signaling (PubMed:30249660). Recruited to clathrin-coated pits during a mid-to-late stage of assembly, where it is required for normal progress from U-shaped intermediate stage pits to terminal, omega-shaped pits (PubMed:29887380). Binds to membranes enriched in phosphatidylinositol 3,4-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate (PubMed:29887380). When bound to membranes, promotes actin polymerization via its interaction with WAS and/or WASL which leads to the activation of the Arp2/3 complex. Does not promote actin polymerisation in the absence of membranes (PubMed:29887380). {ECO:0000269|PubMed:29887380, ECO:0000269|PubMed:30249660}.
O94972 TRIM37 S805 ochoa E3 ubiquitin-protein ligase TRIM37 (EC 2.3.2.27) (Mulibrey nanism protein) (RING-type E3 ubiquitin transferase TRIM37) (Tripartite motif-containing protein 37) E3 ubiquitin-protein ligase required to prevent centriole reduplication (PubMed:15885686, PubMed:23769972). Probably acts by ubiquitinating positive regulators of centriole reduplication (PubMed:23769972). Mediates monoubiquitination of 'Lys-119' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression: associates with some Polycomb group (PcG) multiprotein PRC2-like complex and mediates repression of target genes (PubMed:25470042). Also acts as a positive regulator of peroxisome import by mediating monoubiquitination of PEX5 at 'Lys-472': monoubiquitination promotes PEX5 stabilitation by preventing its polyubiquitination and degradation by the proteasome (PubMed:28724525). Has anti-HIV activity (PubMed:24317724). {ECO:0000269|PubMed:15885686, ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24317724, ECO:0000269|PubMed:25470042, ECO:0000269|PubMed:28724525}.
O95049 TJP3 S327 ochoa Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}.
O95049 TJP3 S331 ochoa Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}.
O95155 UBE4B S92 ochoa Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}.
O95644 NFATC1 S241 ochoa|psp Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}.
O95644 NFATC1 S245 ochoa|psp Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}.
O95684 CEP43 S160 ochoa Centrosomal protein 43 (FGFR1 oncogene partner) Required for anchoring microtubules to the centrosomes (PubMed:16314388, PubMed:28659385). Required for ciliation (PubMed:28625565, PubMed:28659385). {ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:28625565, ECO:0000269|PubMed:28659385}.
O95810 CAVIN2 S35 ochoa Caveolae-associated protein 2 (Cavin-2) (PS-p68) (Phosphatidylserine-binding protein) (Serum deprivation-response protein) Plays an important role in caveolar biogenesis and morphology. Regulates caveolae morphology by inducing membrane curvature within caveolae (PubMed:19525939). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in the lung and fat endothelia but not in the heart endothelia. Negatively regulates the size or stability of CAVIN complexes in the lung endothelial cells. May play a role in targeting PRKCA to caveolae (By similarity). {ECO:0000250|UniProtKB:Q66H98, ECO:0000269|PubMed:19525939}.
O95817 BAG3 S283 ochoa BAG family molecular chaperone regulator 3 (BAG-3) (Bcl-2-associated athanogene 3) (Bcl-2-binding protein Bis) (Docking protein CAIR-1) Co-chaperone and adapter protein that connects different classes of molecular chaperones including heat shock proteins 70 (HSP70s), e.g. HSPA1A/HSP70 or HSPA8/HSC70, and small heat shock proteins (sHSPs), e.g. HSPB8 (PubMed:27884606, PubMed:30559338). Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from HSP70s, thereby triggering client protein release (PubMed:27884606, PubMed:30559338). Nucleotide release is mediated via BAG3 binding to the nucleotide-binding domain (NBD) of HSP70s, whereas client release is mediated via binding to the substrate-binding domain (SBD) (PubMed:27474739, PubMed:9873016). Has anti-apoptotic activity (PubMed:10597216). Plays a role in the HSF1 nucleocytoplasmic transport (PubMed:26159920). {ECO:0000269|PubMed:10597216, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:26159920, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27884606, ECO:0000269|PubMed:30559338, ECO:0000269|PubMed:9873016}.
O95863 SNAI1 S104 psp Zinc finger protein SNAI1 (Protein snail homolog 1) (Protein sna) Involved in induction of the epithelial to mesenchymal transition (EMT), formation and maintenance of embryonic mesoderm, growth arrest, survival and cell migration (PubMed:10655587, PubMed:15647282, PubMed:20389281, PubMed:20562920, PubMed:21952048, PubMed:25827072). Binds to 3 E-boxes of the E-cadherin/CDH1 gene promoter and to the promoters of CLDN7 and KRT8 and, in association with histone demethylase KDM1A which it recruits to the promoters, causes a decrease in dimethylated H3K4 levels and represses transcription (PubMed:10655587, PubMed:20389281, PubMed:20562920). The N-terminal SNAG domain competes with histone H3 for the same binding site on the histone demethylase complex formed by KDM1A and RCOR1, and thereby inhibits demethylation of histone H3 at 'Lys-4' (in vitro) (PubMed:20389281, PubMed:21300290, PubMed:23721412). During EMT, involved with LOXL2 in negatively regulating pericentromeric heterochromatin transcription (PubMed:16096638). SNAI1 recruits LOXL2 to pericentromeric regions to oxidize histone H3 and repress transcription which leads to release of heterochromatin component CBX5/HP1A, enabling chromatin reorganization and acquisition of mesenchymal traits (By similarity). Associates with EGR1 and SP1 to mediate tetradecanoyl phorbol acetate (TPA)-induced up-regulation of CDKN2B, possibly by binding to the CDKN2B promoter region 5'-TCACA-3 (PubMed:20121949). In addition, may also activate the CDKN2B promoter by itself (PubMed:20121949). {ECO:0000250|UniProtKB:Q02085, ECO:0000269|PubMed:10655587, ECO:0000269|PubMed:15647282, ECO:0000269|PubMed:16096638, ECO:0000269|PubMed:20121949, ECO:0000269|PubMed:20389281, ECO:0000269|PubMed:20562920, ECO:0000269|PubMed:21300290, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:23721412, ECO:0000269|PubMed:25827072}.
P05129 PRKCG S326 ochoa Protein kinase C gamma type (PKC-gamma) (EC 2.7.11.13) Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays diverse roles in neuronal cells and eye tissues, such as regulation of the neuronal receptors GRIA4/GLUR4 and GRIN1/NMDAR1, modulation of receptors and neuronal functions related to sensitivity to opiates, pain and alcohol, mediation of synaptic function and cell survival after ischemia, and inhibition of gap junction activity after oxidative stress. Binds and phosphorylates GRIA4/GLUR4 glutamate receptor and regulates its function by increasing plasma membrane-associated GRIA4 expression. In primary cerebellar neurons treated with the agonist 3,5-dihyidroxyphenylglycine, functions downstream of the metabotropic glutamate receptor GRM5/MGLUR5 and phosphorylates GRIN1/NMDAR1 receptor which plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. May be involved in the regulation of hippocampal long-term potentiation (LTP), but may be not necessary for the process of synaptic plasticity. May be involved in desensitization of mu-type opioid receptor-mediated G-protein activation in the spinal cord, and may be critical for the development and/or maintenance of morphine-induced reinforcing effects in the limbic forebrain. May modulate the functionality of mu-type-opioid receptors by participating in a signaling pathway which leads to the phosphorylation and degradation of opioid receptors. May also contributes to chronic morphine-induced changes in nociceptive processing. Plays a role in neuropathic pain mechanisms and contributes to the maintenance of the allodynia pain produced by peripheral inflammation. Plays an important role in initial sensitivity and tolerance to ethanol, by mediating the behavioral effects of ethanol as well as the effects of this drug on the GABA(A) receptors. During and after cerebral ischemia modulate neurotransmission and cell survival in synaptic membranes, and is involved in insulin-induced inhibition of necrosis, an important mechanism for minimizing ischemic injury. Required for the elimination of multiple climbing fibers during innervation of Purkinje cells in developing cerebellum. Is activated in lens epithelial cells upon hydrogen peroxide treatment, and phosphorylates connexin-43 (GJA1/CX43), resulting in disassembly of GJA1 gap junction plaques and inhibition of gap junction activity which could provide a protective effect against oxidative stress (By similarity). Phosphorylates p53/TP53 and promotes p53/TP53-dependent apoptosis in response to DNA damage. Involved in the phase resetting of the cerebral cortex circadian clock during temporally restricted feeding. Stabilizes the core clock component BMAL1 by interfering with its ubiquitination, thus suppressing its degradation, resulting in phase resetting of the cerebral cortex clock (By similarity). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P63318, ECO:0000250|UniProtKB:P63319, ECO:0000269|PubMed:16377624, ECO:0000269|PubMed:36040231}.
P05129 PRKCG S330 ochoa Protein kinase C gamma type (PKC-gamma) (EC 2.7.11.13) Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays diverse roles in neuronal cells and eye tissues, such as regulation of the neuronal receptors GRIA4/GLUR4 and GRIN1/NMDAR1, modulation of receptors and neuronal functions related to sensitivity to opiates, pain and alcohol, mediation of synaptic function and cell survival after ischemia, and inhibition of gap junction activity after oxidative stress. Binds and phosphorylates GRIA4/GLUR4 glutamate receptor and regulates its function by increasing plasma membrane-associated GRIA4 expression. In primary cerebellar neurons treated with the agonist 3,5-dihyidroxyphenylglycine, functions downstream of the metabotropic glutamate receptor GRM5/MGLUR5 and phosphorylates GRIN1/NMDAR1 receptor which plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. May be involved in the regulation of hippocampal long-term potentiation (LTP), but may be not necessary for the process of synaptic plasticity. May be involved in desensitization of mu-type opioid receptor-mediated G-protein activation in the spinal cord, and may be critical for the development and/or maintenance of morphine-induced reinforcing effects in the limbic forebrain. May modulate the functionality of mu-type-opioid receptors by participating in a signaling pathway which leads to the phosphorylation and degradation of opioid receptors. May also contributes to chronic morphine-induced changes in nociceptive processing. Plays a role in neuropathic pain mechanisms and contributes to the maintenance of the allodynia pain produced by peripheral inflammation. Plays an important role in initial sensitivity and tolerance to ethanol, by mediating the behavioral effects of ethanol as well as the effects of this drug on the GABA(A) receptors. During and after cerebral ischemia modulate neurotransmission and cell survival in synaptic membranes, and is involved in insulin-induced inhibition of necrosis, an important mechanism for minimizing ischemic injury. Required for the elimination of multiple climbing fibers during innervation of Purkinje cells in developing cerebellum. Is activated in lens epithelial cells upon hydrogen peroxide treatment, and phosphorylates connexin-43 (GJA1/CX43), resulting in disassembly of GJA1 gap junction plaques and inhibition of gap junction activity which could provide a protective effect against oxidative stress (By similarity). Phosphorylates p53/TP53 and promotes p53/TP53-dependent apoptosis in response to DNA damage. Involved in the phase resetting of the cerebral cortex circadian clock during temporally restricted feeding. Stabilizes the core clock component BMAL1 by interfering with its ubiquitination, thus suppressing its degradation, resulting in phase resetting of the cerebral cortex clock (By similarity). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P63318, ECO:0000250|UniProtKB:P63319, ECO:0000269|PubMed:16377624, ECO:0000269|PubMed:36040231}.
P06748 NPM1 S222 ochoa Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}.
P08172 CHRM2 S294 psp Muscarinic acetylcholine receptor M2 The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol. {ECO:0000269|PubMed:24256733, ECO:0000269|PubMed:3443095}.
P08651 NFIC T481 ochoa Nuclear factor 1 C-type (NF1-C) (Nuclear factor 1/C) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/C) (NF-I/C) (NFI-C) (TGGCA-binding protein) Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication.
P10636 MAPT S721 ochoa|psp Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}.
P11137 MAP2 S1790 ochoa Microtubule-associated protein 2 (MAP-2) The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules.
P11532 DMD S3621 ochoa Dystrophin Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission. {ECO:0000250|UniProtKB:P11531, ECO:0000269|PubMed:16710609}.
P12694 BCKDHA S347 ochoa|psp 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (EC 1.2.4.4) (Branched-chain alpha-keto acid dehydrogenase E1 component alpha chain) (BCKDE1A) (BCKDH E1-alpha) Together with BCKDHB forms the heterotetrameric E1 subunit of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. The BCKD complex catalyzes the multi-step oxidative decarboxylation of alpha-ketoacids derived from the branched-chain amino-acids valine, leucine and isoleucine producing CO2 and acyl-CoA which is subsequently utilized to produce energy. The E1 subunit catalyzes the first step with the decarboxylation of the alpha-ketoacid forming an enzyme-product intermediate. A reductive acylation mediated by the lipoylamide cofactor of E2 extracts the acyl group from the E1 active site for the next step of the reaction. {ECO:0000269|PubMed:10745006, ECO:0000269|PubMed:7883996, ECO:0000269|PubMed:9582350}.
P13807 GYS1 S653 ochoa|psp Glycogen [starch] synthase, muscle (EC 2.4.1.11) (Glycogen synthase 1) Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan. {ECO:0000269|PubMed:35835870}.
P13807 GYS1 S657 ochoa|psp Glycogen [starch] synthase, muscle (EC 2.4.1.11) (Glycogen synthase 1) Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan. {ECO:0000269|PubMed:35835870}.
P15884 TCF4 S351 ochoa Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}.
P15941 MUC1 S1227 ochoa|psp Mucin-1 (MUC-1) (Breast carcinoma-associated antigen DF3) (Cancer antigen 15-3) (CA 15-3) (Carcinoma-associated mucin) (Episialin) (H23AG) (Krebs von den Lungen-6) (KL-6) (PEMT) (Peanut-reactive urinary mucin) (PUM) (Polymorphic epithelial mucin) (PEM) (Tumor-associated epithelial membrane antigen) (EMA) (Tumor-associated mucin) (CD antigen CD227) [Cleaved into: Mucin-1 subunit alpha (MUC1-NT) (MUC1-alpha); Mucin-1 subunit beta (MUC1-beta) (MUC1-CT)] The alpha subunit has cell adhesive properties. Can act both as an adhesion and an anti-adhesion protein. May provide a protective layer on epithelial cells against bacterial and enzyme attack.; FUNCTION: The beta subunit contains a C-terminal domain which is involved in cell signaling, through phosphorylations and protein-protein interactions. Modulates signaling in ERK, SRC and NF-kappa-B pathways. In activated T-cells, influences directly or indirectly the Ras/MAPK pathway. Promotes tumor progression. Regulates TP53-mediated transcription and determines cell fate in the genotoxic stress response. Binds, together with KLF4, the PE21 promoter element of TP53 and represses TP53 activity.
P15976 GATA1 S178 psp Erythroid transcription factor (Eryf1) (GATA-binding factor 1) (GATA-1) (GF-1) (NF-E1 DNA-binding protein) Transcriptional activator or repressor which serves as a general switch factor for erythroid development (PubMed:35030251). It binds to DNA sites with the consensus sequence 5'-[AT]GATA[AG]-3' within regulatory regions of globin genes and of other genes expressed in erythroid cells. Activates the transcription of genes involved in erythroid differentiation of K562 erythroleukemia cells, including HBB, HBG1/2, ALAS2 and HMBS (PubMed:24245781). {ECO:0000269|PubMed:22235304, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:35030251}.
P16144 ITGB4 S1364 ochoa|psp Integrin beta-4 (GP150) (CD antigen CD104) Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}.
P18615 NELFE S139 ochoa Negative elongation factor E (NELF-E) (RNA-binding protein RD) Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}.
P19484 TFEB S142 ochoa|psp Transcription factor EB (Class E basic helix-loop-helix protein 35) (bHLHe35) Transcription factor that acts as a master regulator of lysosomal biogenesis, autophagy, lysosomal exocytosis, lipid catabolism, energy metabolism and immune response (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:30120233, PubMed:31672913, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823, PubMed:36749723, PubMed:37079666). Specifically recognizes and binds E-box sequences (5'-CANNTG-3'); efficient DNA-binding requires dimerization with itself or with another MiT/TFE family member such as TFE3 or MITF (PubMed:1748288, PubMed:19556463, PubMed:29146937). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, TFEB phosphorylation by MTOR promotes its cytosolic retention and subsequent inactivation (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of MTOR induces TFEB dephosphorylation, resulting in nuclear localization and transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Specifically recognizes and binds the CLEAR-box sequence (5'-GTCACGTGAC-3') present in the regulatory region of many lysosomal genes, leading to activate their expression, thereby playing a central role in expression of lysosomal genes (PubMed:19556463, PubMed:22692423). Regulates lysosomal positioning in response to nutrient deprivation by promoting the expression of PIP4P1 (PubMed:29146937). Acts as a positive regulator of autophagy by promoting expression of genes involved in autophagy (PubMed:21617040, PubMed:22576015, PubMed:23434374, PubMed:27278822). In association with TFE3, activates the expression of CD40L in T-cells, thereby playing a role in T-cell-dependent antibody responses in activated CD4(+) T-cells and thymus-dependent humoral immunity (By similarity). Specifically recognizes the gamma-E3 box, a subset of E-boxes, present in the heavy-chain immunoglobulin enhancer (PubMed:2115126). Plays a role in the signal transduction processes required for normal vascularization of the placenta (By similarity). Involved in the immune response to infection by the bacteria S.aureus, S.typhimurium or S.enterica: infection promotes itaconate production, leading to alkylation, resulting in nuclear localization and transcription factor activity (PubMed:35662396). Itaconate-mediated alkylation activates TFEB-dependent lysosomal biogenesis, facilitating the bacteria clearance during the antibacterial innate immune response (PubMed:35662396). In association with ACSS2, promotes the expression of genes involved in lysosome biogenesis and both autophagy upon glucose deprivation (PubMed:28552616). {ECO:0000250|UniProtKB:Q9R210, ECO:0000269|PubMed:1748288, ECO:0000269|PubMed:19556463, ECO:0000269|PubMed:2115126, ECO:0000269|PubMed:21617040, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23434374, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:27278822, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:29146937, ECO:0000269|PubMed:30120233, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:32753672, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:36749723, ECO:0000269|PubMed:37079666}.
P19838 NFKB1 S907 ochoa|psp Nuclear factor NF-kappa-B p105 subunit (DNA-binding factor KBF1) (EBP-1) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1) [Cleaved into: Nuclear factor NF-kappa-B p50 subunit] NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105. {ECO:0000269|PubMed:15485931, ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:2203531, ECO:0000269|PubMed:2234062, ECO:0000269|PubMed:7830764}.; FUNCTION: [Nuclear factor NF-kappa-B p105 subunit]: P105 is the precursor of the active p50 subunit (Nuclear factor NF-kappa-B p50 subunit) of the nuclear factor NF-kappa-B (PubMed:1423592). Acts as a cytoplasmic retention of attached NF-kappa-B proteins by p105 (PubMed:1423592). {ECO:0000269|PubMed:1423592}.; FUNCTION: [Nuclear factor NF-kappa-B p50 subunit]: Constitutes the active form, which associates with RELA/p65 to form the NF-kappa-B p65-p50 complex to form a transcription factor (PubMed:1740106, PubMed:7830764). Together with RELA/p65, binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions (PubMed:1740106, PubMed:7830764). {ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:7830764}.
P24394 IL4R S478 ochoa Interleukin-4 receptor subunit alpha (IL-4 receptor subunit alpha) (IL-4R subunit alpha) (IL-4R-alpha) (IL-4RA) (CD antigen CD124) [Cleaved into: Soluble interleukin-4 receptor subunit alpha (Soluble IL-4 receptor subunit alpha) (Soluble IL-4R-alpha) (sIL4Ralpha/prot) (IL-4-binding protein) (IL4-BP)] Receptor for both interleukin 4 and interleukin 13 (PubMed:17030238). Couples to the JAK1/2/3-STAT6 pathway. The IL4 response is involved in promoting Th2 differentiation. The IL4/IL13 responses are involved in regulating IgE production and, chemokine and mucus production at sites of allergic inflammation. In certain cell types, can signal through activation of insulin receptor substrates, IRS1/IRS2. {ECO:0000269|PubMed:17030238, ECO:0000269|PubMed:8124718}.; FUNCTION: Soluble IL4R (sIL4R) inhibits IL4-mediated cell proliferation and IL5 up-regulation by T-cells. {ECO:0000269|PubMed:8124718}.
P25116 F2R S400 ochoa|psp Proteinase-activated receptor 1 (PAR-1) (Coagulation factor II receptor) (Thrombin receptor) High affinity receptor that binds the activated thrombin, leading to calcium release from intracellular stores (PubMed:1672265, PubMed:8136362). The thrombin-activated receptor signaling pathway is mediated through PTX-insensitive G proteins, activation of phospholipase C resulting in the production of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) which binds to InsP3 receptors causing calcium release from the stores (By similarity). In astrocytes, the calcium released into the cytosol allows the Ca(2+)-dependent release of L-glutamate into the synaptic cleft through BEST1, that targets the neuronal postsynaptic GRIN2A/NMDAR receptor resulting in the synaptic plasticity regulation (By similarity). May play a role in platelets activation and in vascular development (PubMed:10079109). Mediates up-regulation of pro-inflammatory cytokines, such as MCP-1/CCL2 and IL6, triggered by coagulation factor Xa (F10) in cardiac fibroblasts and umbilical vein endothelial cells (PubMed:30568593, PubMed:34831181). {ECO:0000250|UniProtKB:P26824, ECO:0000250|UniProtKB:P30558, ECO:0000269|PubMed:10079109, ECO:0000269|PubMed:1672265, ECO:0000269|PubMed:30568593, ECO:0000269|PubMed:34831181, ECO:0000269|PubMed:8136362}.
P25786 PSMA1 S114 ochoa Proteasome subunit alpha type-1 (30 kDa prosomal protein) (PROS-30) (Macropain subunit C2) (Multicatalytic endopeptidase complex subunit C2) (Proteasome component C2) (Proteasome nu chain) (Proteasome subunit alpha-6) (alpha-6) Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}.
P31629 HIVEP2 S2301 ochoa Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation.
P35568 IRS1 S345 ochoa|psp Insulin receptor substrate 1 (IRS-1) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}.
P35611 ADD1 S431 ochoa Alpha-adducin (Erythrocyte adducin subunit alpha) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin.
P35612 ADD2 S604 ochoa|psp Beta-adducin (Erythrocyte adducin subunit beta) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to the erythrocyte membrane receptor SLC2A1/GLUT1 and may therefore provide a link between the spectrin cytoskeleton to the plasma membrane. Binds to calmodulin. Calmodulin binds preferentially to the beta subunit. {ECO:0000269|PubMed:18347014}.
P35612 ADD2 S701 ochoa|psp Beta-adducin (Erythrocyte adducin subunit beta) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to the erythrocyte membrane receptor SLC2A1/GLUT1 and may therefore provide a link between the spectrin cytoskeleton to the plasma membrane. Binds to calmodulin. Calmodulin binds preferentially to the beta subunit. {ECO:0000269|PubMed:18347014}.
P35713 SOX18 S61 ochoa Transcription factor SOX-18 Transcriptional activator that binds to the consensus sequence 5'-AACAAAG-3' in the promoter of target genes and plays an essential role in embryonic cardiovascular development and lymphangiogenesis. Activates transcription of PROX1 and other genes coding for lymphatic endothelial markers. Plays an essential role in triggering the differentiation of lymph vessels, but is not required for the maintenance of differentiated lymphatic endothelial cells. Plays an important role in postnatal angiogenesis, where it is functionally redundant with SOX17. Interaction with MEF2C enhances transcriptional activation. Besides, required for normal hair development. {ECO:0000250|UniProtKB:P43680}.
P37275 ZEB1 S317 ochoa Zinc finger E-box-binding homeobox 1 (NIL-2-A zinc finger protein) (Negative regulator of IL2) (Transcription factor 8) (TCF-8) Acts as a transcriptional repressor. Inhibits interleukin-2 (IL-2) gene expression. Enhances or represses the promoter activity of the ATP1A1 gene depending on the quantity of cDNA and on the cell type. Represses E-cadherin promoter and induces an epithelial-mesenchymal transition (EMT) by recruiting SMARCA4/BRG1. Represses BCL6 transcription in the presence of the corepressor CTBP1. Positively regulates neuronal differentiation. Represses RCOR1 transcription activation during neurogenesis. Represses transcription by binding to the E box (5'-CANNTG-3'). In the absence of TGFB1, acts as a repressor of COL1A2 transcription via binding to the E-box in the upstream enhancer region (By similarity). {ECO:0000250|UniProtKB:Q64318, ECO:0000269|PubMed:19935649, ECO:0000269|PubMed:20175752, ECO:0000269|PubMed:20418909}.
P38159 RBMX Y288 ochoa RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}.
P41212 ETV6 S30 ochoa Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}.
P41440 SLC19A1 S507 ochoa Reduced folate transporter (FOLT) (Cyclic dinucleotide:anion antiporter SLC19A1) (Folate:anion antiporter SLC19A1) (Intestinal folate carrier 1) (IFC-1) (Placental folate transporter) (Reduced folate carrier protein) (RFC) (hRFC) (Reduced folate transporter 1) (RFT-1) (Solute carrier family 19 member 1) (hSLC19A1) Antiporter that mediates the import of reduced folates or a subset of cyclic dinucleotides, driven by the export of organic anions (PubMed:10787414, PubMed:15337749, PubMed:16115875, PubMed:22554803, PubMed:31126740, PubMed:31511694, PubMed:32276275, PubMed:36071163, PubMed:36265513, PubMed:36575193, PubMed:7826387, PubMed:9041240). Acts as an importer of immunoreactive cyclic dinucleotides, such as cyclic GMP-AMP (2'-3'-cGAMP), an immune messenger produced in response to DNA virus in the cytosol, and its linkage isomer 3'-3'-cGAMP, thus playing a role in triggering larger immune responses (PubMed:31126740, PubMed:31511694, PubMed:36745868). Mechanistically, acts as a secondary active transporter, which exports intracellular organic anions down their concentration gradients to facilitate the uptake of its substrates (PubMed:22554803, PubMed:31126740, PubMed:31511694). Has high affinity for N5-methyltetrahydrofolate, the predominant circulating form of folate (PubMed:10787414, PubMed:14609557, PubMed:22554803, PubMed:36071163, PubMed:36265513, PubMed:36575193). Also mediates the import of antifolate drug methotrexate (PubMed:22554803, PubMed:36071163, PubMed:7615551, PubMed:7641195, PubMed:9767079). 5-amino-4-imidazolecarboxamide riboside (AICAR), when phosphorylated to AICAR monophosphate, can serve as an organic anion for antiporter activity (PubMed:22554803). {ECO:0000269|PubMed:10787414, ECO:0000269|PubMed:14609557, ECO:0000269|PubMed:15337749, ECO:0000269|PubMed:16115875, ECO:0000269|PubMed:22554803, ECO:0000269|PubMed:31126740, ECO:0000269|PubMed:31511694, ECO:0000269|PubMed:32276275, ECO:0000269|PubMed:36071163, ECO:0000269|PubMed:36265513, ECO:0000269|PubMed:36575193, ECO:0000269|PubMed:36745868, ECO:0000269|PubMed:7615551, ECO:0000269|PubMed:7641195, ECO:0000269|PubMed:7826387, ECO:0000269|PubMed:9041240, ECO:0000269|PubMed:9767079}.
P46019 PHKA2 S983 ochoa Phosphorylase b kinase regulatory subunit alpha, liver isoform (Phosphorylase kinase alpha L subunit) Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The alpha chain may bind calmodulin.
P46019 PHKA2 T1048 ochoa Phosphorylase b kinase regulatory subunit alpha, liver isoform (Phosphorylase kinase alpha L subunit) Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The alpha chain may bind calmodulin.
P46379 BAG6 S104 ochoa Large proline-rich protein BAG6 (BAG family molecular chaperone regulator 6) (BCL2-associated athanogene 6) (BAG-6) (HLA-B-associated transcript 3) (Protein G3) (Protein Scythe) ATP-independent molecular chaperone preventing the aggregation of misfolded and hydrophobic patches-containing proteins (PubMed:21636303). Functions as part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, which maintains these client proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20516149, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20516149, PubMed:20676083, PubMed:25535373, PubMed:28104892). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated by RNF126, an E3 ubiquitin-protein ligase associated with BAG6 and are sorted to the proteasome (PubMed:24981174, PubMed:27193484, PubMed:28104892). SGTA which prevents the recruitment of RNF126 to BAG6 may negatively regulate the ubiquitination and the proteasomal degradation of client proteins (PubMed:23129660, PubMed:25179605, PubMed:27193484). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these retrotranslocated proteins in an unfolded yet soluble state condition in the cytosol to ensure their proper delivery to the proteasome (PubMed:21636303). BAG6 is also required for selective ubiquitin-mediated degradation of defective nascent chain polypeptides by the proteasome. In this context, it may participate in the production of antigenic peptides and play a role in antigen presentation in immune response (By similarity). BAG6 is also involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation. BAG6 may ensure the proper degradation of these proteins and thereby protects the endoplasmic reticulum from protein overload upon stress (PubMed:26565908). By inhibiting the polyubiquitination and subsequent proteasomal degradation of HSPA2 it may also play a role in the assembly of the synaptonemal complex during spermatogenesis (By similarity). Also positively regulates apoptosis by interacting with and stabilizing the proapoptotic factor AIFM1 (By similarity). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:Q9Z1R2, ECO:0000269|PubMed:20516149, ECO:0000269|PubMed:20676083, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:21743475, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:24981174, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: Involved in DNA damage-induced apoptosis: following DNA damage, accumulates in the nucleus and forms a complex with p300/EP300, enhancing p300/EP300-mediated p53/TP53 acetylation leading to increase p53/TP53 transcriptional activity (PubMed:17403783). When nuclear, may also act as a component of some chromatin regulator complex that regulates histone 3 'Lys-4' dimethylation (H3K4me2) (PubMed:18765639). {ECO:0000269|PubMed:17403783, ECO:0000269|PubMed:18765639}.; FUNCTION: Released extracellularly via exosomes, it is a ligand of the natural killer/NK cells receptor NCR3 and stimulates NK cells cytotoxicity. It may thereby trigger NK cells cytotoxicity against neighboring tumor cells and immature myeloid dendritic cells (DC). {ECO:0000269|PubMed:18055229, ECO:0000269|PubMed:18852879}.; FUNCTION: Mediates ricin-induced apoptosis. {ECO:0000269|PubMed:14960581}.
P46821 MAP1B S1256 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B S1260 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B S1330 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B S1801 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B Y1923 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P49418 AMPH S276 psp Amphiphysin May participate in mechanisms of regulated exocytosis in synapses and certain endocrine cell types. May control the properties of the membrane associated cytoskeleton.
P49585 PCYT1A S323 ochoa Choline-phosphate cytidylyltransferase A (EC 2.7.7.15) (CCT-alpha) (CTP:phosphocholine cytidylyltransferase A) (CCT A) (CT A) (Phosphorylcholine transferase A) Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912, ECO:0000269|PubMed:30559292, ECO:0000269|PubMed:7918629}.
P49585 PCYT1A S347 ochoa Choline-phosphate cytidylyltransferase A (EC 2.7.7.15) (CCT-alpha) (CTP:phosphocholine cytidylyltransferase A) (CCT A) (CT A) (Phosphorylcholine transferase A) Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912, ECO:0000269|PubMed:30559292, ECO:0000269|PubMed:7918629}.
P49736 MCM2 T35 ochoa DNA replication licensing factor MCM2 (EC 3.6.4.12) (Minichromosome maintenance protein 2 homolog) (Nuclear protein BM28) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (PubMed:8175912). Plays a role in terminally differentiated hair cells development of the cochlea and induces cells apoptosis (PubMed:26196677). {ECO:0000269|PubMed:26196677, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:8175912}.
P49790 NUP153 S338 ochoa|psp Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}.
P50402 EMD S57 ochoa Emerin Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}.
P50402 EMD S58 ochoa Emerin Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}.
P50402 EMD Y167 ochoa|psp Emerin Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}.
P78559 MAP1A S1004 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P85037 FOXK1 S257 ochoa Forkhead box protein K1 (Myocyte nuclear factor) (MNF) Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}.
P98082 DAB2 S427 ochoa Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}.
Q00653 NFKB2 S715 psp Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}.
Q01082 SPTBN1 S2169 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q01167 FOXK2 S213 ochoa Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}.
Q01196 RUNX1 S257 ochoa Runt-related transcription factor 1 (Acute myeloid leukemia 1 protein) (Core-binding factor subunit alpha-2) (CBF-alpha-2) (Oncogene AML-1) (Polyomavirus enhancer-binding protein 2 alpha B subunit) (PEA2-alpha B) (PEBP2-alpha B) (SL3-3 enhancer factor 1 alpha B subunit) (SL3/AKV core-binding factor alpha B subunit) Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (Probable). Essential for the development of normal hematopoiesis (PubMed:17431401). Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the BLK promoter (PubMed:10207087, PubMed:14970218). Inhibits KAT6B-dependent transcriptional activation (By similarity). Involved in lineage commitment of immature T cell precursors. CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Controls the anergy and suppressive function of regulatory T-cells (Treg) by associating with FOXP3. Activates the expression of IL2 and IFNG and down-regulates the expression of TNFRSF18, IL2RA and CTLA4, in conventional T-cells (PubMed:17377532). Positively regulates the expression of RORC in T-helper 17 cells (By similarity). {ECO:0000250|UniProtKB:Q03347, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:14970218, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:17431401, ECO:0000305}.; FUNCTION: Isoform AML-1G shows higher binding activities for target genes and binds TCR-beta-E2 and RAG-1 target site with threefold higher affinity than other isoforms. It is less effective in the context of neutrophil terminal differentiation. {ECO:0000250|UniProtKB:Q03347}.; FUNCTION: Isoform AML-1L interferes with the transactivation activity of RUNX1. {ECO:0000269|PubMed:9199349}.
Q02952 AKAP12 S294 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q03164 KMT2A S750 ochoa|psp Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q04656 ATP7A S270 ochoa|psp Copper-transporting ATPase 1 (EC 7.2.2.8) (Copper pump 1) (Menkes disease-associated protein) ATP-driven copper (Cu(+)) ion pump that plays an important role in intracellular copper ion homeostasis (PubMed:10419525, PubMed:11092760, PubMed:28389643). Within a catalytic cycle, acquires Cu(+) ion from donor protein on the cytoplasmic side of the membrane and delivers it to acceptor protein on the lumenal side. The transfer of Cu(+) ion across the membrane is coupled to ATP hydrolysis and is associated with a transient phosphorylation that shifts the pump conformation from inward-facing to outward-facing state (PubMed:10419525, PubMed:19453293, PubMed:19917612, PubMed:28389643, PubMed:31283225). Under physiological conditions, at low cytosolic copper concentration, it is localized at the trans-Golgi network (TGN) where it transfers Cu(+) ions to cuproenzymes of the secretory pathway (PubMed:11092760, PubMed:28389643). Upon elevated cytosolic copper concentrations, it relocalizes to the plasma membrane where it is responsible for the export of excess Cu(+) ions (PubMed:10419525, PubMed:28389643). May play a dual role in neuron function and survival by regulating cooper efflux and neuronal transmission at the synapse as well as by supplying Cu(+) ions to enzymes such as PAM, TYR and SOD3 (By similarity) (PubMed:28389643). In the melanosomes of pigmented cells, provides copper cofactor to TYR to form an active TYR holoenzyme for melanin biosynthesis (By similarity). {ECO:0000250|UniProtKB:Q64430, ECO:0000269|PubMed:10419525, ECO:0000269|PubMed:11092760, ECO:0000269|PubMed:19453293, ECO:0000269|PubMed:19917612, ECO:0000269|PubMed:28389643, ECO:0000269|PubMed:31283225}.
Q04656 ATP7A S361 ochoa Copper-transporting ATPase 1 (EC 7.2.2.8) (Copper pump 1) (Menkes disease-associated protein) ATP-driven copper (Cu(+)) ion pump that plays an important role in intracellular copper ion homeostasis (PubMed:10419525, PubMed:11092760, PubMed:28389643). Within a catalytic cycle, acquires Cu(+) ion from donor protein on the cytoplasmic side of the membrane and delivers it to acceptor protein on the lumenal side. The transfer of Cu(+) ion across the membrane is coupled to ATP hydrolysis and is associated with a transient phosphorylation that shifts the pump conformation from inward-facing to outward-facing state (PubMed:10419525, PubMed:19453293, PubMed:19917612, PubMed:28389643, PubMed:31283225). Under physiological conditions, at low cytosolic copper concentration, it is localized at the trans-Golgi network (TGN) where it transfers Cu(+) ions to cuproenzymes of the secretory pathway (PubMed:11092760, PubMed:28389643). Upon elevated cytosolic copper concentrations, it relocalizes to the plasma membrane where it is responsible for the export of excess Cu(+) ions (PubMed:10419525, PubMed:28389643). May play a dual role in neuron function and survival by regulating cooper efflux and neuronal transmission at the synapse as well as by supplying Cu(+) ions to enzymes such as PAM, TYR and SOD3 (By similarity) (PubMed:28389643). In the melanosomes of pigmented cells, provides copper cofactor to TYR to form an active TYR holoenzyme for melanin biosynthesis (By similarity). {ECO:0000250|UniProtKB:Q64430, ECO:0000269|PubMed:10419525, ECO:0000269|PubMed:11092760, ECO:0000269|PubMed:19453293, ECO:0000269|PubMed:19917612, ECO:0000269|PubMed:28389643, ECO:0000269|PubMed:31283225}.
Q04724 TLE1 S267 ochoa Transducin-like enhancer protein 1 (E(Sp1) homolog) (Enhancer of split groucho-like protein 1) (ESG1) Transcriptional corepressor that binds to a number of transcription factors. Inhibits NF-kappa-B-regulated gene expression. Inhibits the transcriptional activation mediated by FOXA2, and by CTNNB1 and TCF family members in Wnt signaling. Enhances FOXG1/BF-1- and HES1-mediated transcriptional repression (By similarity). The effects of full-length TLE family members may be modulated by association with dominant-negative AES. Unusual function as coactivator for ESRRG. {ECO:0000250|UniProtKB:Q62440, ECO:0000269|PubMed:10660609}.
Q08495 DMTN S26 ochoa Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}.
Q09666 AHNAK S220 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12830 BPTF S1681 ochoa Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}.
Q12872 SFSWAP S897 ochoa Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}.
Q12872 SFSWAP S901 ochoa Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}.
Q12872 SFSWAP S905 ochoa Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}.
Q12873 CHD3 S1553 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q12968 NFATC3 S215 psp Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}.
Q12968 NFATC3 S269 ochoa Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}.
Q13163 MAP2K5 S137 psp Dual specificity mitogen-activated protein kinase kinase 5 (MAP kinase kinase 5) (MAPKK 5) (EC 2.7.12.2) (MAPK/ERK kinase 5) (MEK 5) Acts as a scaffold for the formation of a ternary MAP3K2/MAP3K3-MAP3K5-MAPK7 signaling complex. Activation of this pathway appears to play a critical role in protecting cells from stress-induced apoptosis, neuronal survival and cardiac development and angiogenesis. As part of the MAPK/ERK signaling pathway, acts as a negative regulator of apoptosis in cardiomyocytes via promotion of STUB1/CHIP-mediated ubiquitination and degradation of ICER-type isoforms of CREM (By similarity). {ECO:0000250|UniProtKB:Q62862, ECO:0000269|PubMed:7759517, ECO:0000269|PubMed:9384584}.
Q13191 CBLB S484 ochoa E3 ubiquitin-protein ligase CBL-B (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene b) (RING finger protein 56) (RING-type E3 ubiquitin transferase CBL-B) (SH3-binding protein CBL-B) (Signal transduction protein CBL-B) E3 ubiquitin-protein ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and transfers it to substrates, generally promoting their degradation by the proteasome. Negatively regulates TCR (T-cell receptor), BCR (B-cell receptor) and FCER1 (high affinity immunoglobulin epsilon receptor) signal transduction pathways. In naive T-cells, inhibits VAV1 activation upon TCR engagement and imposes a requirement for CD28 costimulation for proliferation and IL-2 production. Also acts by promoting PIK3R1/p85 ubiquitination, which impairs its recruitment to the TCR and subsequent activation. In activated T-cells, inhibits PLCG1 activation and calcium mobilization upon restimulation and promotes anergy. In B-cells, acts by ubiquitinating SYK and promoting its proteasomal degradation. Slightly promotes SRC ubiquitination. May be involved in EGFR ubiquitination and internalization. May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBL, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:Q3TTA7, ECO:0000269|PubMed:10022120, ECO:0000269|PubMed:10086340, ECO:0000269|PubMed:11087752, ECO:0000269|PubMed:11526404, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:20525694}.
Q13191 CBLB S529 ochoa E3 ubiquitin-protein ligase CBL-B (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene b) (RING finger protein 56) (RING-type E3 ubiquitin transferase CBL-B) (SH3-binding protein CBL-B) (Signal transduction protein CBL-B) E3 ubiquitin-protein ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and transfers it to substrates, generally promoting their degradation by the proteasome. Negatively regulates TCR (T-cell receptor), BCR (B-cell receptor) and FCER1 (high affinity immunoglobulin epsilon receptor) signal transduction pathways. In naive T-cells, inhibits VAV1 activation upon TCR engagement and imposes a requirement for CD28 costimulation for proliferation and IL-2 production. Also acts by promoting PIK3R1/p85 ubiquitination, which impairs its recruitment to the TCR and subsequent activation. In activated T-cells, inhibits PLCG1 activation and calcium mobilization upon restimulation and promotes anergy. In B-cells, acts by ubiquitinating SYK and promoting its proteasomal degradation. Slightly promotes SRC ubiquitination. May be involved in EGFR ubiquitination and internalization. May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBL, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:Q3TTA7, ECO:0000269|PubMed:10022120, ECO:0000269|PubMed:10086340, ECO:0000269|PubMed:11087752, ECO:0000269|PubMed:11526404, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:20525694}.
Q13428 TCOF1 S164 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13469 NFATC2 S225 ochoa Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}.
Q13523 PRP4K S573 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13835 PKP1 S233 ochoa Plakophilin-1 (Band 6 protein) (B6P) A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}.
Q13835 PKP1 S237 ochoa Plakophilin-1 (Band 6 protein) (B6P) A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}.
Q13905 RAPGEF1 S353 ochoa Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}.
Q14157 UBAP2L S416 ochoa Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}.
Q14157 UBAP2L S458 ochoa Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}.
Q14157 UBAP2L S475 ochoa Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}.
Q14244 MAP7 S169 ochoa Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}.
Q14432 PDE3A S528 ochoa cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}.
Q14449 GRB14 S366 psp Growth factor receptor-bound protein 14 (GRB14 adapter protein) Adapter protein which modulates coupling of cell surface receptor kinases with specific signaling pathways. Binds to, and suppresses signals from, the activated insulin receptor (INSR). Potent inhibitor of insulin-stimulated MAPK3 phosphorylation. Plays a critical role regulating PDPK1 membrane translocation in response to insulin stimulation and serves as an adapter protein to recruit PDPK1 to activated insulin receptor, thus promoting PKB/AKT1 phosphorylation and transduction of the insulin signal. {ECO:0000269|PubMed:15210700, ECO:0000269|PubMed:19648926}.
Q14449 GRB14 S370 ochoa|psp Growth factor receptor-bound protein 14 (GRB14 adapter protein) Adapter protein which modulates coupling of cell surface receptor kinases with specific signaling pathways. Binds to, and suppresses signals from, the activated insulin receptor (INSR). Potent inhibitor of insulin-stimulated MAPK3 phosphorylation. Plays a critical role regulating PDPK1 membrane translocation in response to insulin stimulation and serves as an adapter protein to recruit PDPK1 to activated insulin receptor, thus promoting PKB/AKT1 phosphorylation and transduction of the insulin signal. {ECO:0000269|PubMed:15210700, ECO:0000269|PubMed:19648926}.
Q14498 RBM39 S341 ochoa RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}.
Q14684 RRP1B S736 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q14687 GSE1 S913 ochoa Genetic suppressor element 1 None
Q14687 GSE1 S917 ochoa Genetic suppressor element 1 None
Q14980 NUMA1 Y1876 ochoa Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}.
Q15334 LLGL1 S663 ochoa|psp Lethal(2) giant larvae protein homolog 1 (LLGL) (DLG4) (Hugl-1) (Human homolog to the D-lgl gene protein) Cortical cytoskeleton protein found in a complex involved in maintaining cell polarity and epithelial integrity. Involved in the regulation of mitotic spindle orientation, proliferation, differentiation and tissue organization of neuroepithelial cells. Involved in axonogenesis through RAB10 activation thereby regulating vesicular membrane trafficking toward the axonal plasma membrane. {ECO:0000269|PubMed:15735678, ECO:0000269|PubMed:16170365}.
Q15648 MED1 S1227 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15772 SPEG S2949 ochoa Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells.
Q15776 ZKSCAN8 S201 ochoa Zinc finger protein with KRAB and SCAN domains 8 (LD5-1) (Zinc finger protein 192) May be involved in transcriptional regulation.
Q16204 CCDC6 S367 ochoa Coiled-coil domain-containing protein 6 (Papillary thyroid carcinoma-encoded protein) (Protein H4) None
Q16204 CCDC6 S371 ochoa Coiled-coil domain-containing protein 6 (Papillary thyroid carcinoma-encoded protein) (Protein H4) None
Q16513 PKN2 S310 ochoa Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}.
Q16566 CAMK4 S352 ochoa Calcium/calmodulin-dependent protein kinase type IV (CaMK IV) (EC 2.7.11.17) (CaM kinase-GR) Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK4 signaling cascade and regulates, mainly by phosphorylation, the activity of several transcription activators, such as CREB1, MEF2D, JUN and RORA, which play pivotal roles in immune response, inflammation, and memory consolidation. In the thymus, regulates the CD4(+)/CD8(+) double positive thymocytes selection threshold during T-cell ontogeny. In CD4 memory T-cells, is required to link T-cell antigen receptor (TCR) signaling to the production of IL2, IFNG and IL4 (through the regulation of CREB and MEF2). Regulates the differentiation and survival phases of osteoclasts and dendritic cells (DCs). Mediates DCs survival by linking TLR4 and the regulation of temporal expression of BCL2. Phosphorylates the transcription activator CREB1 on 'Ser-133' in hippocampal neuron nuclei and contribute to memory consolidation and long term potentiation (LTP) in the hippocampus. Can activate the MAP kinases MAPK1/ERK2, MAPK8/JNK1 and MAPK14/p38 and stimulate transcription through the phosphorylation of ELK1 and ATF2. Can also phosphorylate in vitro CREBBP, PRM2, MEF2A and STMN1/OP18. {ECO:0000269|PubMed:10617605, ECO:0000269|PubMed:17909078, ECO:0000269|PubMed:18829949, ECO:0000269|PubMed:7961813, ECO:0000269|PubMed:8065343, ECO:0000269|PubMed:8855261, ECO:0000269|PubMed:8980227, ECO:0000269|PubMed:9154845}.
Q2M3C6 TMEM266 S475 ochoa Transmembrane protein 266 (hTMEM266) (HV1-related protein 1) (HsHVRP1) Voltage-sensor protein present on the post-synaptic side of glutamatergic mossy fibers and granule cells in the cerebellum (PubMed:25165868, PubMed:30810529). Despite the presence of a voltage-sensor segment, does not form a functional ion channel and its precise role remains unclear (PubMed:25165868, PubMed:30810529). Undergoes both rapid and slow structural rearrangements in response to changes in voltage (PubMed:30810529). Contains a zinc-binding site that can regulate the slow conformational transition (PubMed:30810529). {ECO:0000269|PubMed:25165868, ECO:0000269|PubMed:30810529}.
Q3V6T2 CCDC88A S237 ochoa|psp Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}.
Q4VCS5 AMOT S313 ochoa Angiomotin Plays a central role in tight junction maintenance via the complex formed with ARHGAP17, which acts by regulating the uptake of polarity proteins at tight junctions. Appears to regulate endothelial cell migration and tube formation. May also play a role in the assembly of endothelial cell-cell junctions. Repressor of YAP1 and WWTR1/TAZ transcription of target genes, potentially via regulation of Hippo signaling-mediated phosphorylation of YAP1 which results in its recruitment to tight junctions (PubMed:21205866). {ECO:0000269|PubMed:11257124, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21205866}.
Q53ET0 CRTC2 S464 ochoa CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}.
Q5JSZ5 PRRC2B S1691 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5PRF9 SAMD4B S279 ochoa Protein Smaug homolog 2 (Smaug 2) (hSmaug2) (Sterile alpha motif domain-containing protein 4B) (SAM domain-containing protein 4B) Has transcriptional repressor activity. Overexpression inhibits the transcriptional activities of AP-1, p53/TP53 and CDKN1A. {ECO:0000269|PubMed:20510020}.
Q5SNT2 TMEM201 S505 ochoa Transmembrane protein 201 (Spindle-associated membrane protein 1) Critical regulator of angiogenesis and endothelial cell (EC) migration (PubMed:35311970). Promotes the migration of endothelial cells, which is essential for angiogenesis (PubMed:35311970). Interacts with the linker of nucleoskeleton and cytoskeleton (LINC) complex, which plays a vital role in connecting the cell's cytoskeleton to the nuclear envelope (PubMed:35311970). This interaction is essential for maintaining cellular structure and facilitating the movement of endothelial cells, which is critical for proper vascular development (PubMed:35311970). Involved in nuclear movement during fibroblast polarization and migration (By similarity). Overexpression can recruit Ran GTPase to the nuclear periphery (PubMed:27541860). {ECO:0000250|UniProtKB:A2A8U2, ECO:0000269|PubMed:35311970, ECO:0000305|PubMed:27541860}.; FUNCTION: [Isoform 2]: May define a distinct membrane domain in the vicinity of the mitotic spindle (PubMed:19494128). Involved in the organization of the nuclear envelope implicating EMD, SUN1 and A-type lamina (PubMed:21610090). {ECO:0000269|PubMed:19494128, ECO:0000269|PubMed:21610090}.
Q5SW79 CEP170 S1087 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5T0W9 FAM83B S428 ochoa Protein FAM83B Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}.
Q5T1M5 FKBP15 S311 ochoa FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}.
Q5T200 ZC3H13 S333 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T5P2 KIAA1217 S361 ochoa Sickle tail protein homolog Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}.
Q5TBA9 FRY S1944 ochoa Protein furry homolog Plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting PLK1 activity at the spindle poles in early mitosis. May function as a scaffold promoting the interaction between AURKA and PLK1, thereby enhancing AURKA-mediated PLK1 phosphorylation. {ECO:0000269|PubMed:22753416}.
Q5UIP0 RIF1 S2180 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5VT52 RPRD2 S766 ochoa Regulation of nuclear pre-mRNA domain-containing protein 2 None
Q5VV67 PPRC1 S1381 ochoa Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}.
Q641Q2 WASHC2A S708 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q659A1 ICE2 S605 ochoa Little elongation complex subunit 2 (Interactor of little elongator complex ELL subunit 2) (NMDA receptor-regulated protein 2) Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III. {ECO:0000269|PubMed:23932780}.
Q659A1 ICE2 S609 ochoa Little elongation complex subunit 2 (Interactor of little elongator complex ELL subunit 2) (NMDA receptor-regulated protein 2) Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III. {ECO:0000269|PubMed:23932780}.
Q66K74 MAP1S S767 ochoa Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}.
Q684P5 RAP1GAP2 S613 ochoa Rap1 GTPase-activating protein 2 (Rap1GAP2) (GTPase-activating Rap/Ran-GAP domain-like protein 4) GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15632203}.
Q68CZ2 TNS3 S1123 ochoa Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}.
Q68DK2 ZFYVE26 S619 ochoa Zinc finger FYVE domain-containing protein 26 (FYVE domain-containing centrosomal protein) (FYVE-CENT) (Spastizin) Phosphatidylinositol 3-phosphate-binding protein required for the abscission step in cytokinesis: recruited to the midbody during cytokinesis and acts as a regulator of abscission. May also be required for efficient homologous recombination DNA double-strand break repair. {ECO:0000269|PubMed:20208530}.
Q69YQ0 SPECC1L S981 ochoa Cytospin-A (Renal carcinoma antigen NY-REN-22) (Sperm antigen with calponin homology and coiled-coil domains 1-like) (SPECC1-like protein) Involved in cytokinesis and spindle organization. May play a role in actin cytoskeleton organization and microtubule stabilization and hence required for proper cell adhesion and migration. {ECO:0000269|PubMed:21703590}.
Q6IQ23 PLEKHA7 S612 ochoa Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}.
Q6JBY9 RCSD1 T124 ochoa CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}.
Q6PGQ7 BORA S278 psp Protein aurora borealis (HsBora) Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}.
Q6VY07 PACS1 S789 ochoa Phosphofurin acidic cluster sorting protein 1 (PACS-1) Coat protein that is involved in the localization of trans-Golgi network (TGN) membrane proteins that contain acidic cluster sorting motifs. Controls the endosome-to-Golgi trafficking of furin and mannose-6-phosphate receptor by connecting the acidic-cluster-containing cytoplasmic domain of these molecules with the adapter-protein complex-1 (AP-1) of endosomal clathrin-coated membrane pits. Involved in HIV-1 nef-mediated removal of MHC-I from the cell surface to the TGN. Required for normal ER Ca2+ handling in lymphocytes. Together with WDR37, it plays an essential role in lymphocyte development, quiescence and survival. Required for stabilizing peripheral lymphocyte populations (By similarity). {ECO:0000250|UniProtKB:Q8K212, ECO:0000269|PubMed:11331585, ECO:0000269|PubMed:15692563}.
Q6WCQ1 MPRIP S228 ochoa Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}.
Q7L1W4 LRRC8D S250 ochoa Volume-regulated anion channel subunit LRRC8D (Leucine-rich repeat-containing protein 5) (Leucine-rich repeat-containing protein 8D) (HsLRRC8D) Non-essential component of the volume-regulated anion channel (VRAC, also named VSOAC channel), an anion channel required to maintain a constant cell volume in response to extracellular or intracellular osmotic changes (PubMed:24790029, PubMed:26530471, PubMed:26824658, PubMed:28193731, PubMed:32415200). The VRAC channel conducts iodide better than chloride and can also conduct organic osmolytes like taurine (PubMed:24790029, PubMed:26824658, PubMed:28193731). Plays a redundant role in the efflux of amino acids, such as aspartate, in response to osmotic stress (PubMed:28193731). LRRC8A and LRRC8D are required for the uptake of the drug cisplatin (PubMed:26530471). Channel activity requires LRRC8A plus at least one other family member (LRRC8B, LRRC8C, LRRC8D or LRRC8E); channel characteristics depend on the precise subunit composition (PubMed:24782309, PubMed:24790029, PubMed:26824658, PubMed:28193731). Also acts as a regulator of glucose-sensing in pancreatic beta cells: VRAC currents, generated in response to hypotonicity- or glucose-induced beta cell swelling, depolarize cells, thereby causing electrical excitation, leading to increase glucose sensitivity and insulin secretion (By similarity). VRAC channels containing LRRC8D inhibit transport of immunoreactive cyclic dinucleotide GMP-AMP (2'-3'-cGAMP), an immune messenger produced in response to DNA virus in the cytosol (PubMed:33171122). Mediates the import of the antibiotic blasticidin-S into the cell (PubMed:24782309). {ECO:0000250|UniProtKB:Q8BGR2, ECO:0000269|PubMed:24782309, ECO:0000269|PubMed:24790029, ECO:0000269|PubMed:26530471, ECO:0000269|PubMed:26824658, ECO:0000269|PubMed:28193731, ECO:0000269|PubMed:32415200, ECO:0000269|PubMed:33171122}.
Q7L2J0 MEPCE S183 ochoa 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}.
Q7L9B9 EEPD1 S110 ochoa Endonuclease/exonuclease/phosphatase family domain-containing protein 1 None
Q7RTP6 MICAL3 S1160 ochoa [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}.
Q7RTP6 MICAL3 S1164 ochoa [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}.
Q7Z6Z7 HUWE1 S3381 ochoa E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}.
Q86UU0 BCL9L S942 ochoa B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}.
Q86UU1 PHLDB1 S543 ochoa Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) None
Q86V42 FAM124A S325 ochoa Protein FAM124A None
Q86VM9 ZC3H18 S609 ochoa Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) None
Q86VM9 ZC3H18 S613 ochoa Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) None
Q8IUW5 RELL1 S161 ochoa RELT-like protein 1 Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}.
Q8IVL1 NAV2 S1488 ochoa Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}.
Q8IWB9 TEX2 S170 ochoa Testis-expressed protein 2 (Transmembrane protein 96) During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}.
Q8IWB9 TEX2 S174 ochoa Testis-expressed protein 2 (Transmembrane protein 96) During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}.
Q8IWB9 TEX2 S798 ochoa Testis-expressed protein 2 (Transmembrane protein 96) During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}.
Q8IWB9 TEX2 S802 ochoa Testis-expressed protein 2 (Transmembrane protein 96) During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}.
Q8IWC1 MAP7D3 S441 ochoa MAP7 domain-containing protein 3 Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}.
Q8IWC1 MAP7D3 S461 ochoa MAP7 domain-containing protein 3 Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}.
Q8IXJ6 SIRT2 S372 ochoa|psp NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (NAD-dependent protein defatty-acylase sirtuin-2) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2) NAD-dependent protein deacetylase, which deacetylates internal lysines on histone and alpha-tubulin as well as many other proteins such as key transcription factors (PubMed:12620231, PubMed:16648462, PubMed:18249187, PubMed:18332217, PubMed:18995842, PubMed:20543840, PubMed:20587414, PubMed:21081649, PubMed:21726808, PubMed:21949390, PubMed:22014574, PubMed:22771473, PubMed:23468428, PubMed:23908241, PubMed:24177535, PubMed:24681946, PubMed:24769394, PubMed:24940000). Participates in the modulation of multiple and diverse biological processes such as cell cycle control, genomic integrity, microtubule dynamics, cell differentiation, metabolic networks, and autophagy (PubMed:12620231, PubMed:16648462, PubMed:18249187, PubMed:18332217, PubMed:18995842, PubMed:20543840, PubMed:20587414, PubMed:21081649, PubMed:21726808, PubMed:21949390, PubMed:22014574, PubMed:22771473, PubMed:23468428, PubMed:23908241, PubMed:24177535, PubMed:24681946, PubMed:24769394, PubMed:24940000). Plays a major role in the control of cell cycle progression and genomic stability (PubMed:12697818, PubMed:16909107, PubMed:17488717, PubMed:17726514, PubMed:19282667, PubMed:23468428). Functions in the antephase checkpoint preventing precocious mitotic entry in response to microtubule stress agents, and hence allowing proper inheritance of chromosomes (PubMed:12697818, PubMed:16909107, PubMed:17488717, PubMed:17726514, PubMed:19282667, PubMed:23468428). Positively regulates the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase complex activity by deacetylating CDC20 and FZR1, then allowing progression through mitosis (PubMed:22014574). Associates both with chromatin at transcriptional start sites (TSSs) and enhancers of active genes (PubMed:23468428). Plays a role in cell cycle and chromatin compaction through epigenetic modulation of the regulation of histone H4 'Lys-20' methylation (H4K20me1) during early mitosis (PubMed:23468428). Specifically deacetylates histone H4 at 'Lys-16' (H4K16ac) between the G2/M transition and metaphase enabling H4K20me1 deposition by KMT5A leading to ulterior levels of H4K20me2 and H4K20me3 deposition throughout cell cycle, and mitotic S-phase progression (PubMed:23468428). Deacetylates KMT5A modulating KMT5A chromatin localization during the mitotic stress response (PubMed:23468428). Also deacetylates histone H3 at 'Lys-57' (H3K56ac) during the mitotic G2/M transition (PubMed:20587414). Upon bacterium Listeria monocytogenes infection, deacetylates 'Lys-18' of histone H3 in a receptor tyrosine kinase MET- and PI3K/Akt-dependent manner, thereby inhibiting transcriptional activity and promoting late stages of listeria infection (PubMed:23908241). During oocyte meiosis progression, may deacetylate histone H4 at 'Lys-16' (H4K16ac) and alpha-tubulin, regulating spindle assembly and chromosome alignment by influencing microtubule dynamics and kinetochore function (PubMed:24940000). Deacetylates histone H4 at 'Lys-16' (H4K16ac) at the VEGFA promoter and thereby contributes to regulate expression of VEGFA, a key regulator of angiogenesis (PubMed:24940000). Deacetylates alpha-tubulin at 'Lys-40' and hence controls neuronal motility, oligodendroglial cell arbor projection processes and proliferation of non-neuronal cells (PubMed:18332217, PubMed:18995842). Phosphorylation at Ser-368 by a G1/S-specific cyclin E-CDK2 complex inactivates SIRT2-mediated alpha-tubulin deacetylation, negatively regulating cell adhesion, cell migration and neurite outgrowth during neuronal differentiation (PubMed:17488717). Deacetylates PARD3 and participates in the regulation of Schwann cell peripheral myelination formation during early postnatal development and during postinjury remyelination (PubMed:21949390). Involved in several cellular metabolic pathways (PubMed:20543840, PubMed:21726808, PubMed:24769394). Plays a role in the regulation of blood glucose homeostasis by deacetylating and stabilizing phosphoenolpyruvate carboxykinase PCK1 activity in response to low nutrient availability (PubMed:21726808). Acts as a key regulator in the pentose phosphate pathway (PPP) by deacetylating and activating the glucose-6-phosphate G6PD enzyme, and therefore, stimulates the production of cytosolic NADPH to counteract oxidative damage (PubMed:24769394). Maintains energy homeostasis in response to nutrient deprivation as well as energy expenditure by inhibiting adipogenesis and promoting lipolysis (PubMed:20543840). Attenuates adipocyte differentiation by deacetylating and promoting FOXO1 interaction to PPARG and subsequent repression of PPARG-dependent transcriptional activity (PubMed:20543840). Plays a role in the regulation of lysosome-mediated degradation of protein aggregates by autophagy in neuronal cells (PubMed:20543840). Deacetylates FOXO1 in response to oxidative stress or serum deprivation, thereby negatively regulating FOXO1-mediated autophagy (PubMed:20543840). Deacetylates a broad range of transcription factors and co-regulators regulating target gene expression. Deacetylates transcriptional factor FOXO3 stimulating the ubiquitin ligase SCF(SKP2)-mediated FOXO3 ubiquitination and degradation (By similarity). Deacetylates HIF1A and therefore promotes HIF1A degradation and inhibition of HIF1A transcriptional activity in tumor cells in response to hypoxia (PubMed:24681946). Deacetylates RELA in the cytoplasm inhibiting NF-kappaB-dependent transcription activation upon TNF-alpha stimulation (PubMed:21081649). Inhibits transcriptional activation by deacetylating p53/TP53 and EP300 (PubMed:18249187, PubMed:18995842). Also deacetylates EIF5A (PubMed:22771473). Functions as a negative regulator on oxidative stress-tolerance in response to anoxia-reoxygenation conditions (PubMed:24769394). Plays a role as tumor suppressor (PubMed:22014574). In addition to protein deacetylase activity, also has activity toward long-chain fatty acyl groups and mediates protein-lysine demyristoylation and depalmitoylation of target proteins, such as ARF6 and KRAS, thereby regulating their association with membranes (PubMed:25704306, PubMed:29239724, PubMed:32103017). {ECO:0000250|UniProtKB:Q8VDQ8, ECO:0000269|PubMed:12620231, ECO:0000269|PubMed:12697818, ECO:0000269|PubMed:16648462, ECO:0000269|PubMed:16909107, ECO:0000269|PubMed:17488717, ECO:0000269|PubMed:17574768, ECO:0000269|PubMed:17726514, ECO:0000269|PubMed:18249187, ECO:0000269|PubMed:18332217, ECO:0000269|PubMed:18640115, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:19282667, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:20587414, ECO:0000269|PubMed:21081649, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:21949390, ECO:0000269|PubMed:22014574, ECO:0000269|PubMed:22771473, ECO:0000269|PubMed:22819792, ECO:0000269|PubMed:23468428, ECO:0000269|PubMed:23908241, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:24177535, ECO:0000269|PubMed:24681946, ECO:0000269|PubMed:24769394, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:25704306, ECO:0000269|PubMed:29239724, ECO:0000269|PubMed:32103017}.; FUNCTION: [Isoform 1]: Deacetylates EP300, alpha-tubulin and histone H3 and H4. {ECO:0000269|PubMed:24177535}.; FUNCTION: [Isoform 2]: Deacetylates EP300, alpha-tubulin and histone H3 and H4. {ECO:0000269|PubMed:24177535}.; FUNCTION: [Isoform 5]: Lacks deacetylation activity, at least toward known SIRT2 targets. {ECO:0000269|PubMed:24177535}.
Q8IZL8 PELP1 S485 ochoa Proline-, glutamic acid- and leucine-rich protein 1 (Modulator of non-genomic activity of estrogen receptor) (Transcription factor HMX3) Coactivator of estrogen receptor-mediated transcription and a corepressor of other nuclear hormone receptors and sequence-specific transcription factors (PubMed:14963108). Plays a role in estrogen receptor (ER) genomic activity when present in the nuclear compartment by activating the ER target genes in a hormonal stimulation dependent manner. Can facilitate ER non-genomic signaling via SRC and PI3K interaction in the cytosol. Plays a role in E2-mediated cell cycle progression by interacting with RB1. May have important functional implications in ER/growth factor cross-talk. Interacts with several growth factor signaling components including EGFR and HRS. Functions as the key stabilizing component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes. Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit. Regulates pre-60S association of the critical remodeling factor MDN1 (PubMed:21326211). May promote tumorigenesis via its interaction with and modulation of several oncogenes including SRC, PI3K, STAT3 and EGFR. Plays a role in cancer cell metastasis via its ability to modulate E2-mediated cytoskeleton changes and cell migration via its interaction with SRC and PI3K. {ECO:0000269|PubMed:11481323, ECO:0000269|PubMed:12682072, ECO:0000269|PubMed:14963108, ECO:0000269|PubMed:15374949, ECO:0000269|PubMed:15456770, ECO:0000269|PubMed:15579769, ECO:0000269|PubMed:15994929, ECO:0000269|PubMed:16140940, ECO:0000269|PubMed:16352611, ECO:0000269|PubMed:16574651, ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}.
Q8N108 MIER1 S377 ochoa Mesoderm induction early response protein 1 (Early response 1) (Er1) (Mi-er1) (hMi-er1) Transcriptional repressor regulating the expression of a number of genes including SP1 target genes. Probably functions through recruitment of HDAC1 a histone deacetylase involved in chromatin silencing. {ECO:0000269|PubMed:12482978}.
Q8N3F8 MICALL1 S563 ochoa MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}.
Q8N3F8 MICALL1 S620 ochoa MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}.
Q8N556 AFAP1 S687 ochoa Actin filament-associated protein 1 (110 kDa actin filament-associated protein) (AFAP-110) Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. {ECO:0000250, ECO:0000269|PubMed:15485829}.
Q8N568 DCLK2 S55 ochoa Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}.
Q8N612 FHIP1B S590 ochoa FHF complex subunit HOOK-interacting protein 1B (FHIP1B) (FTS- and Hook-interacting protein) (FHIP) Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}.
Q8N699 MYCT1 S112 ochoa Myc target protein 1 (Myc target in myeloid cells protein 1) May regulate certain MYC target genes, MYC seems to be a direct upstream transcriptional activator. Does not seem to significantly affect growth cell capacity. Overexpression seems to mediate many of the known phenotypic features associated with MYC, including promotion of apoptosis, alteration of morphology, enhancement of anchorage-independent growth, tumorigenic conversion, promotion of genomic instability, and inhibition of hematopoietic differentiation (By similarity). {ECO:0000250}.
Q8N960 CEP120 S388 ochoa Centrosomal protein of 120 kDa (Cep120) (Coiled-coil domain-containing protein 100) Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors and for proper positioning of neurons during brain development. Also implicated in the migration and selfrenewal of neural progenitors. Required for centriole duplication and maturation during mitosis and subsequent ciliogenesis (By similarity). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000250|UniProtKB:Q7TSG1, ECO:0000269|PubMed:27185865}.
Q8ND30 PPFIBP2 S487 ochoa Liprin-beta-2 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 2) (PTPRF-interacting protein-binding protein 2) May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}.
Q8NDF8 TENT4B S60 ochoa Terminal nucleotidyltransferase 4B (Non-canonical poly(A) RNA polymerase PAPD5) (EC 2.7.7.19) (PAP-associated domain-containing protein 5) (Terminal guanylyltransferase) (EC 2.7.7.-) (Terminal uridylyltransferase 3) (TUTase 3) (Topoisomerase-related function protein 4-2) (TRF4-2) Terminal nucleotidyltransferase that catalyzes preferentially the transfer of ATP and GTP on RNA 3' poly(A) tail creating a heterogeneous 3' poly(A) tail leading to mRNAs stabilization by protecting mRNAs from active deadenylation (PubMed:21788334, PubMed:30026317). Also functions as a catalytic subunit of a TRAMP-like complex which has a poly(A) RNA polymerase activity and is involved in a post-transcriptional quality control mechanism. Polyadenylation with short oligo(A) tails is required for the degradative activity of the exosome on several of its nuclear RNA substrates. Doesn't need a cofactor for polyadenylation activity (in vitro) (PubMed:21788334, PubMed:21855801). Required for cytoplasmic polyadenylation of mRNAs involved in carbohydrate metabolism, including the glucose transporter SLC2A1/GLUT1 (PubMed:28383716). Plays a role in replication-dependent histone mRNA degradation, probably through terminal uridylation of mature histone mRNAs. May play a role in sister chromatid cohesion (PubMed:18172165). Mediates 3' adenylation of the microRNA MIR21 followed by its 3'-to-5' trimming by the exoribonuclease PARN leading to degradation (PubMed:25049417). Mediates 3' adenylation of H/ACA box snoRNAs (small nucleolar RNAs) followed by its 3'-to-5' trimming by the exoribonuclease PARN which enhances snoRNA stability and maturation (PubMed:22442037). {ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21788334, ECO:0000269|PubMed:21855801, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:28383716, ECO:0000269|PubMed:30026317}.
Q8NDI1 EHBP1 S436 ochoa EH domain-binding protein 1 May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}.
Q8NDI1 EHBP1 S664 ochoa EH domain-binding protein 1 May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}.
Q8NEL9 DDHD1 S727 ochoa|psp Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}.
Q8NEL9 DDHD1 S731 ochoa Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}.
Q8NEY8 PPHLN1 S155 ochoa Periphilin-1 (CDC7 expression repressor) (CR) (Gastric cancer antigen Ga50) Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression. The HUSH complex is recruited to genomic loci rich in H3K9me3 and is probably required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3. In the HUSH complex, contributes to the maintenance of the complex at chromatin (PubMed:26022416). Acts as a transcriptional corepressor and regulates the cell cycle, probably via the HUSH complex (PubMed:15474462, PubMed:17963697). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). May be involved in epithelial differentiation by contributing to epidermal integrity and barrier formation (PubMed:12853457). {ECO:0000269|PubMed:15474462, ECO:0000269|PubMed:17963697, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:30487602, ECO:0000305|PubMed:12853457}.
Q8NEY8 PPHLN1 S159 ochoa Periphilin-1 (CDC7 expression repressor) (CR) (Gastric cancer antigen Ga50) Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression. The HUSH complex is recruited to genomic loci rich in H3K9me3 and is probably required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3. In the HUSH complex, contributes to the maintenance of the complex at chromatin (PubMed:26022416). Acts as a transcriptional corepressor and regulates the cell cycle, probably via the HUSH complex (PubMed:15474462, PubMed:17963697). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). May be involved in epithelial differentiation by contributing to epidermal integrity and barrier formation (PubMed:12853457). {ECO:0000269|PubMed:15474462, ECO:0000269|PubMed:17963697, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:30487602, ECO:0000305|PubMed:12853457}.
Q8NEY8 PPHLN1 S163 ochoa Periphilin-1 (CDC7 expression repressor) (CR) (Gastric cancer antigen Ga50) Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression. The HUSH complex is recruited to genomic loci rich in H3K9me3 and is probably required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3. In the HUSH complex, contributes to the maintenance of the complex at chromatin (PubMed:26022416). Acts as a transcriptional corepressor and regulates the cell cycle, probably via the HUSH complex (PubMed:15474462, PubMed:17963697). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). May be involved in epithelial differentiation by contributing to epidermal integrity and barrier formation (PubMed:12853457). {ECO:0000269|PubMed:15474462, ECO:0000269|PubMed:17963697, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:30487602, ECO:0000305|PubMed:12853457}.
Q8NFA0 USP32 S1376 ochoa Ubiquitin carboxyl-terminal hydrolase 32 (EC 3.4.19.12) (Deubiquitinating enzyme 32) (Renal carcinoma antigen NY-REN-60) (Ubiquitin thioesterase 32) (Ubiquitin-specific-processing protease 32) Deubiquitinase that can remove conjugated ubiquitin from target proteins, such as RAB7A and LAMTOR1 (PubMed:36476874). Acts as a positive regulator of the mTORC1 signaling by mediating deubiquitination of LAMTOR1, thereby promoting the association between LAMTOR1 and the lysosomal V-ATPase complex and subsequent activation of the mTORC1 complex (PubMed:36476874). {ECO:0000269|PubMed:36476874}.
Q8NFA0 USP32 S1380 ochoa Ubiquitin carboxyl-terminal hydrolase 32 (EC 3.4.19.12) (Deubiquitinating enzyme 32) (Renal carcinoma antigen NY-REN-60) (Ubiquitin thioesterase 32) (Ubiquitin-specific-processing protease 32) Deubiquitinase that can remove conjugated ubiquitin from target proteins, such as RAB7A and LAMTOR1 (PubMed:36476874). Acts as a positive regulator of the mTORC1 signaling by mediating deubiquitination of LAMTOR1, thereby promoting the association between LAMTOR1 and the lysosomal V-ATPase complex and subsequent activation of the mTORC1 complex (PubMed:36476874). {ECO:0000269|PubMed:36476874}.
Q8NHM5 KDM2B S828 ochoa Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}.
Q8NHM5 KDM2B S832 ochoa Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}.
Q8TBP0 TBC1D16 S126 ochoa TBC1 domain family member 16 May act as a GTPase-activating protein for Rab family protein(s).
Q8TDJ6 DMXL2 S953 ochoa DmX-like protein 2 (Rabconnectin-3) May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}.
Q8TEJ3 SH3RF3 S400 ochoa E3 ubiquitin-protein ligase SH3RF3 (EC 2.3.2.27) (Plenty of SH3s 2) (SH3 domain-containing RING finger protein 3) (SH3 multiple domains protein 4) Has E3 ubiquitin-protein ligase activity. {ECO:0000269|PubMed:20696164}.
Q8TEU7 RAPGEF6 S1241 ochoa Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}.
Q8TEU7 RAPGEF6 S1245 ochoa Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}.
Q8TF72 SHROOM3 S978 ochoa Protein Shroom3 (Shroom-related protein) (hShrmL) Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}.
Q8WWI1 LMO7 S968 ochoa LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) None
Q8WWI1 LMO7 S1601 ochoa LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) None
Q8WWM7 ATXN2L S598 ochoa Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}.
Q8WWM7 ATXN2L S602 ochoa Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}.
Q8WX93 PALLD S763 ochoa Palladin (SIH002) (Sarcoma antigen NY-SAR-77) Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}.
Q8WXF1 PSPC1 S481 ochoa Paraspeckle component 1 (Paraspeckle protein 1) RNA-binding protein required for the formation of nuclear paraspeckles (PubMed:22416126). Binds to poly(A), poly(G) and poly(U) RNA homopolymers (PubMed:22416126). Regulates, cooperatively with NONO and SFPQ, androgen receptor-mediated gene transcription activity in Sertoli cell line (By similarity). Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000250|UniProtKB:Q8R326, ECO:0000269|PubMed:22416126, ECO:0000269|PubMed:28712728}.
Q8WYP5 AHCTF1 S1222 ochoa Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}.
Q92560 BAP1 T493 ochoa|psp Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}.
Q92560 BAP1 S513 ochoa|psp Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}.
Q92738 USP6NL S659 ochoa USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}.
Q92974 ARHGEF2 S137 ochoa Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}.
Q92974 ARHGEF2 S960 ochoa|psp Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}.
Q96AC1 FERMT2 Y185 ochoa Fermitin family homolog 2 (Kindlin-2) (Mitogen-inducible gene 2 protein) (MIG-2) (Pleckstrin homology domain-containing family C member 1) (PH domain-containing family C member 1) Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling. {ECO:0000269|PubMed:12679033, ECO:0000269|PubMed:18458155, ECO:0000269|PubMed:21325030, ECO:0000269|PubMed:22030399, ECO:0000269|PubMed:22078565, ECO:0000269|PubMed:22699938}.
Q96BD5 PHF21A S455 ochoa PHD finger protein 21A (BHC80a) (BRAF35-HDAC complex protein BHC80) Component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it may act as a scaffold. Inhibits KDM1A-mediated demethylation of 'Lys-4' of histone H3 in vitro, suggesting a role in demethylation regulation. {ECO:0000269|PubMed:16140033}.
Q96BY7 ATG2B T1587 ochoa Autophagy-related protein 2 homolog B Lipid transfer protein required for both autophagosome formation and regulation of lipid droplet morphology and dispersion (PubMed:22219374, PubMed:31721365). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:22219374, PubMed:31721365). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (By similarity). Lipid transfer activity is enhanced by WDR45/WIPI4, which promotes ATG2B-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31721365). {ECO:0000250|UniProtKB:Q2TAZ0, ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:31721365}.
Q96CP6 GRAMD1A S271 ochoa Protein Aster-A (GRAM domain-containing protein 1A) Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). May play a role in tumor progression (By similarity). Plays a role in autophagy regulation and is required for biogenesis of the autophagosome (PubMed:31222192). This function in autophagy requires its cholesterol-transfer activity (PubMed:31222192). {ECO:0000250|UniProtKB:Q8VEF1, ECO:0000269|PubMed:31222192}.
Q96D71 REPS1 S170 ochoa RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}.
Q96D71 REPS1 S174 ochoa RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}.
Q96E39 RBMXL1 Y288 ochoa RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}.
Q96EZ8 MCRS1 S20 ochoa Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}.
Q96FF9 CDCA5 S83 ochoa|psp Sororin (Cell division cycle-associated protein 5) (p35) Regulator of sister chromatid cohesion in mitosis stabilizing cohesin complex association with chromatin. May antagonize the action of WAPL which stimulates cohesin dissociation from chromatin. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Required for efficient DNA double-stranded break repair. {ECO:0000269|PubMed:15837422, ECO:0000269|PubMed:17349791, ECO:0000269|PubMed:21111234}.
Q96HA1 POM121 S439 ochoa Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}.
Q96HA1 POM121 S443 ochoa Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}.
Q96JK2 DCAF5 S636 ochoa DDB1- and CUL4-associated factor 5 (Breakpoint cluster region protein 2) (BCRP2) (WD repeat-containing protein 22) Is a substrate receptor for the CUL4-DDB1 E3 ubiquitin-protein ligase complex (CRL4) (PubMed:29691401, PubMed:30442713). The complex CRL4-DCAF5 is involved in the ubiquitination of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1 (PubMed:29691401, PubMed:30442713). {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}.
Q96JM3 CHAMP1 S386 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96JM3 CHAMP1 S476 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96LR5 UBE2E2 S19 ochoa Ubiquitin-conjugating enzyme E2 E2 (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme E2) (UbcH8) (Ubiquitin carrier protein E2) (Ubiquitin-protein ligase E2) Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes 'Lys-11'- and 'Lys-48'-, as well as 'Lys-63'-linked polyubiquitination. Catalyzes the ISGylation of influenza A virus NS1 protein. {ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20133869, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:9371400}.
Q96N67 DOCK7 S1438 ochoa Dedicator of cytokinesis protein 7 Functions as a guanine nucleotide exchange factor (GEF), which activates Rac1 and Rac3 Rho small GTPases by exchanging bound GDP for free GTP. Does not have a GEF activity for CDC42. Required for STMN1 'Ser-15' phosphorylation during axon formation and consequently for neuronal polarization (PubMed:16982419). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). Has a role in pigmentation (By similarity). Involved in the regulation of cortical neurogenesis through the control of radial glial cells (RGCs) proliferation versus differentiation; negatively regulates the basal-to-apical interkinetic nuclear migration of RGCs by antagonizing the microtubule growth-promoting function of TACC3 (By similarity). {ECO:0000250|UniProtKB:Q8R1A4, ECO:0000269|PubMed:16982419, ECO:0000269|PubMed:29467281}.
Q96P48 ARAP1 S632 ochoa Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (Centaurin-delta-2) (Cnt-d2) Phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members (PubMed:11804590, PubMed:19666464). Activated by phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding and, to a lesser extent, by phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) binding (PubMed:11804590). Has a preference for ARF1 and ARF5 (PubMed:11804590, PubMed:19666464). Positively regulates the ring size of circular dorsal ruffles and promotes macropinocytosis (PubMed:22573888). Acts as a bridging factor in osteoclasts to control actin and membrane dynamics (By similarity). Regulates the condensing of osteoclast podosomes into sealing zones which segregate the bone-facing membrane from other membrane domains and are required for osteoclast resorption activity (By similarity). Also regulates recruitment of the AP-3 complex to endosomal membranes and trafficking of lysosomal membrane proteins to the ruffled membrane border of osteoclasts to modulate bone resorption (By similarity). Regulates the endocytic trafficking of EGFR (PubMed:18764928, PubMed:18939958, PubMed:21275903). Regulates the incorporation of CD63 and CD9 into multivesicular bodies (PubMed:38682696). Required in the retinal pigment epithelium (RPE) for photoreceptor survival due to its role in promoting RPE phagocytosis (By similarity). {ECO:0000250|UniProtKB:Q4LDD4, ECO:0000269|PubMed:11804590, ECO:0000269|PubMed:18764928, ECO:0000269|PubMed:18939958, ECO:0000269|PubMed:19666464, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:22573888, ECO:0000269|PubMed:38682696}.
Q96P50 ACAP3 S391 ochoa Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 3 (Centaurin-beta-5) (Cnt-b5) GTPase-activating protein for the ADP ribosylation factor family. {ECO:0000305}.
Q96PE2 ARHGEF17 S387 ochoa Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}.
Q96PU5 NEDD4L S483 ochoa E3 ubiquitin-protein ligase NEDD4-like (EC 2.3.2.26) (EC 2.3.2.36) (HECT-type E3 ubiquitin transferase NED4L) (NEDD4.2) (Nedd4-2) E3 ubiquitin-protein ligase that mediates the polyubiquitination of lysine and cysteine residues on target proteins and is thereby implicated in the regulation of various signaling pathways including autophagy, innate immunity or DNA repair (PubMed:20064473, PubMed:31959741, PubMed:33608556). Inhibits TGF-beta signaling by triggering SMAD2 and TGFBR1 ubiquitination and proteasome-dependent degradation (PubMed:15496141). Downregulates autophagy and cell growth by ubiquitinating and reducing cellular ULK1 or ASCT2 levels (PubMed:28820317, PubMed:31959741). Promotes ubiquitination and internalization of various plasma membrane channels such as ENaC, SCN2A/Nav1.2, SCN3A/Nav1.3, SCN5A/Nav1.5, SCN9A/Nav1.7, SCN10A/Nav1.8, KCNA3/Kv1.3, KCNH2, EAAT1, KCNQ2/Kv7.2, KCNQ3/Kv7.3 or CLC5 (PubMed:26363003, PubMed:27445338). Promotes ubiquitination and degradation of SGK1 and TNK2. Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Plays a role in dendrite formation by melanocytes (PubMed:23999003). Involved in the regulation of TOR signaling (PubMed:27694961). Ubiquitinates and regulates protein levels of NTRK1 once this one is activated by NGF (PubMed:27445338). Plays a role in antiviral innate immunity by catalyzing 'Lys-29'-linked cysteine ubiquitination of TRAF3, resulting in enhanced 'Lys-48' and 'Lys-63'-linked ubiquitination of TRAF3 (PubMed:33608556). Ubiquitinates TTYH2 and TTYH3 and regulates protein levels of TTYH2 (PubMed:18577513). {ECO:0000250|UniProtKB:Q8CFI0, ECO:0000269|PubMed:12911626, ECO:0000269|PubMed:15040001, ECO:0000269|PubMed:15217910, ECO:0000269|PubMed:15489223, ECO:0000269|PubMed:15496141, ECO:0000269|PubMed:15576372, ECO:0000269|PubMed:18577513, ECO:0000269|PubMed:19144635, ECO:0000269|PubMed:23999003, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:26363003, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:27694961, ECO:0000269|PubMed:33608556}.
Q96PU5 NEDD4L S487 ochoa E3 ubiquitin-protein ligase NEDD4-like (EC 2.3.2.26) (EC 2.3.2.36) (HECT-type E3 ubiquitin transferase NED4L) (NEDD4.2) (Nedd4-2) E3 ubiquitin-protein ligase that mediates the polyubiquitination of lysine and cysteine residues on target proteins and is thereby implicated in the regulation of various signaling pathways including autophagy, innate immunity or DNA repair (PubMed:20064473, PubMed:31959741, PubMed:33608556). Inhibits TGF-beta signaling by triggering SMAD2 and TGFBR1 ubiquitination and proteasome-dependent degradation (PubMed:15496141). Downregulates autophagy and cell growth by ubiquitinating and reducing cellular ULK1 or ASCT2 levels (PubMed:28820317, PubMed:31959741). Promotes ubiquitination and internalization of various plasma membrane channels such as ENaC, SCN2A/Nav1.2, SCN3A/Nav1.3, SCN5A/Nav1.5, SCN9A/Nav1.7, SCN10A/Nav1.8, KCNA3/Kv1.3, KCNH2, EAAT1, KCNQ2/Kv7.2, KCNQ3/Kv7.3 or CLC5 (PubMed:26363003, PubMed:27445338). Promotes ubiquitination and degradation of SGK1 and TNK2. Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Plays a role in dendrite formation by melanocytes (PubMed:23999003). Involved in the regulation of TOR signaling (PubMed:27694961). Ubiquitinates and regulates protein levels of NTRK1 once this one is activated by NGF (PubMed:27445338). Plays a role in antiviral innate immunity by catalyzing 'Lys-29'-linked cysteine ubiquitination of TRAF3, resulting in enhanced 'Lys-48' and 'Lys-63'-linked ubiquitination of TRAF3 (PubMed:33608556). Ubiquitinates TTYH2 and TTYH3 and regulates protein levels of TTYH2 (PubMed:18577513). {ECO:0000250|UniProtKB:Q8CFI0, ECO:0000269|PubMed:12911626, ECO:0000269|PubMed:15040001, ECO:0000269|PubMed:15217910, ECO:0000269|PubMed:15489223, ECO:0000269|PubMed:15496141, ECO:0000269|PubMed:15576372, ECO:0000269|PubMed:18577513, ECO:0000269|PubMed:19144635, ECO:0000269|PubMed:23999003, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:26363003, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:27694961, ECO:0000269|PubMed:33608556}.
Q96RR4 CAMKK2 S133 ochoa Calcium/calmodulin-dependent protein kinase kinase 2 (CaM-KK 2) (CaM-kinase kinase 2) (CaMKK 2) (EC 2.7.11.17) (Calcium/calmodulin-dependent protein kinase kinase beta) (CaM-KK beta) (CaM-kinase kinase beta) (CaMKK beta) Calcium/calmodulin-dependent protein kinase belonging to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Isoform 1, isoform 2 and isoform 3 phosphorylate CAMK1 and CAMK4. Isoform 3 phosphorylates CAMK1D. Isoform 4, isoform 5 and isoform 6 lacking part of the calmodulin-binding domain are inactive. Efficiently phosphorylates 5'-AMP-activated protein kinase (AMPK) trimer, including that consisting of PRKAA1, PRKAB1 and PRKAG1. This phosphorylation is stimulated in response to Ca(2+) signals (By similarity). Seems to be involved in hippocampal activation of CREB1 (By similarity). May play a role in neurite growth. Isoform 3 may promote neurite elongation, while isoform 1 may promoter neurite branching. {ECO:0000250, ECO:0000269|PubMed:11395482, ECO:0000269|PubMed:12935886, ECO:0000269|PubMed:21957496, ECO:0000269|PubMed:9662074}.
Q96RR4 CAMKK2 S137 ochoa Calcium/calmodulin-dependent protein kinase kinase 2 (CaM-KK 2) (CaM-kinase kinase 2) (CaMKK 2) (EC 2.7.11.17) (Calcium/calmodulin-dependent protein kinase kinase beta) (CaM-KK beta) (CaM-kinase kinase beta) (CaMKK beta) Calcium/calmodulin-dependent protein kinase belonging to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Isoform 1, isoform 2 and isoform 3 phosphorylate CAMK1 and CAMK4. Isoform 3 phosphorylates CAMK1D. Isoform 4, isoform 5 and isoform 6 lacking part of the calmodulin-binding domain are inactive. Efficiently phosphorylates 5'-AMP-activated protein kinase (AMPK) trimer, including that consisting of PRKAA1, PRKAB1 and PRKAG1. This phosphorylation is stimulated in response to Ca(2+) signals (By similarity). Seems to be involved in hippocampal activation of CREB1 (By similarity). May play a role in neurite growth. Isoform 3 may promote neurite elongation, while isoform 1 may promoter neurite branching. {ECO:0000250, ECO:0000269|PubMed:11395482, ECO:0000269|PubMed:12935886, ECO:0000269|PubMed:21957496, ECO:0000269|PubMed:9662074}.
Q96S38 RPS6KC1 S648 ochoa Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}.
Q96S59 RANBP9 S487 ochoa Ran-binding protein 9 (RanBP9) (BPM-L) (BPM90) (Ran-binding protein M) (RanBPM) (RanBP7) May act as scaffolding protein, and as adapter protein to couple membrane receptors to intracellular signaling pathways (Probable). Acts as a mediator of cell spreading and actin cytoskeleton rearrangement (PubMed:18710924). Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1 (PubMed:29911972). May be involved in signaling of ITGB2/LFA-1 and other integrins (PubMed:14722085). Enhances HGF-MET signaling by recruiting Sos and activating the Ras pathway (PubMed:12147692). Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but not affect estrogen-induced transactivation (PubMed:12361945, PubMed:18222118). Stabilizes TP73 isoform Alpha, probably by inhibiting its ubiquitination, and increases its proapoptotic activity (PubMed:15558019). Inhibits the kinase activity of DYRK1A and DYRK1B. Inhibits FMR1 binding to RNA. {ECO:0000269|PubMed:12147692, ECO:0000269|PubMed:12361945, ECO:0000269|PubMed:14500717, ECO:0000269|PubMed:14722085, ECO:0000269|PubMed:15381419, ECO:0000269|PubMed:15558019, ECO:0000269|PubMed:18222118, ECO:0000269|PubMed:18710924, ECO:0000269|PubMed:29911972, ECO:0000305}.
Q96T37 RBM15 S678 ochoa RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}.
Q99569 PKP4 S231 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99700 ATXN2 S865 ochoa Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}.
Q9BQE9 BCL7B S122 ochoa B-cell CLL/lymphoma 7 protein family member B (allergen Hom s 3) Positive regulator of apoptosis. Plays a role in the Wnt signaling pathway, negatively regulating the expression of Wnt signaling components CTNNB1 and HMGA1 (PubMed:25569233). Involved in cell cycle progression, maintenance of the nuclear structure and stem cell differentiation (PubMed:25569233). May play a role in lung tumor development or progression (By similarity). {ECO:0000250|UniProtKB:Q921K9, ECO:0000269|PubMed:25569233}.
Q9BTC0 DIDO1 S1034 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9BTC0 DIDO1 S1038 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9BTE3 MCMBP S162 ochoa Mini-chromosome maintenance complex-binding protein (MCM-BP) (MCM-binding protein) Associated component of the MCM complex that acts as a regulator of DNA replication. Binds to the MCM complex during late S phase and promotes the disassembly of the MCM complex from chromatin, thereby acting as a key regulator of pre-replication complex (pre-RC) unloading from replicated DNA. Can dissociate the MCM complex without addition of ATP; probably acts by destabilizing interactions of each individual subunits of the MCM complex. Required for sister chromatid cohesion. {ECO:0000269|PubMed:20090939, ECO:0000269|PubMed:21196493}.
Q9BVC5 C2orf49 T197 ochoa Ashwin None
Q9BXF6 RAB11FIP5 S365 ochoa Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}.
Q9BXS6 NUSAP1 S251 ochoa Nucleolar and spindle-associated protein 1 (NuSAP) Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}.
Q9BXS6 NUSAP1 S255 ochoa Nucleolar and spindle-associated protein 1 (NuSAP) Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}.
Q9C073 FAM117A S201 ochoa Protein FAM117A (C/EBP-induced protein) None
Q9C0H2 TTYH3 S504 ochoa Protein tweety homolog 3 (hTTY3) (Volume-regulated anion channel subunit TTYH3) Calcium-independent, swelling-dependent volume-regulated anion channel (VRAC-swell) which plays a pivotal role in the process of regulatory volume decrease (RVD) in the brain through the efflux of anions like chloride and organic osmolytes like glutamate (By similarity). Probable large-conductance Ca(2+)-activated chloride channel (PubMed:15010458). {ECO:0000250|UniProtKB:Q6P5F7, ECO:0000269|PubMed:15010458}.
Q9GZV5 WWTR1 S66 ochoa|psp WW domain-containing transcription regulator protein 1 (Transcriptional coactivator with PDZ-binding motif) Transcriptional coactivator which acts as a downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:11118213, PubMed:18227151, PubMed:23911299). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18227151). WWTR1 enhances PAX8 and NKX2-1/TTF1-dependent gene activation (PubMed:19010321). In conjunction with YAP1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (PubMed:18568018). Plays a key role in coupling SMADs to the transcriptional machinery such as the mediator complex (PubMed:18568018). Regulates embryonic stem-cell self-renewal, promotes cell proliferation and epithelial-mesenchymal transition (PubMed:18227151, PubMed:18568018). {ECO:0000269|PubMed:11118213, ECO:0000269|PubMed:18227151, ECO:0000269|PubMed:18568018, ECO:0000269|PubMed:19010321, ECO:0000269|PubMed:23911299}.
Q9GZV5 WWTR1 S70 ochoa WW domain-containing transcription regulator protein 1 (Transcriptional coactivator with PDZ-binding motif) Transcriptional coactivator which acts as a downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:11118213, PubMed:18227151, PubMed:23911299). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18227151). WWTR1 enhances PAX8 and NKX2-1/TTF1-dependent gene activation (PubMed:19010321). In conjunction with YAP1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (PubMed:18568018). Plays a key role in coupling SMADs to the transcriptional machinery such as the mediator complex (PubMed:18568018). Regulates embryonic stem-cell self-renewal, promotes cell proliferation and epithelial-mesenchymal transition (PubMed:18227151, PubMed:18568018). {ECO:0000269|PubMed:11118213, ECO:0000269|PubMed:18227151, ECO:0000269|PubMed:18568018, ECO:0000269|PubMed:19010321, ECO:0000269|PubMed:23911299}.
Q9GZY6 LAT2 S59 ochoa Linker for activation of T-cells family member 2 (Linker for activation of B-cells) (Membrane-associated adapter molecule) (Non-T-cell activation linker) (Williams-Beuren syndrome chromosomal region 15 protein) (Williams-Beuren syndrome chromosomal region 5 protein) Involved in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. May also be involved in BCR (B-cell antigen receptor)-mediated signaling in B-cells and FCGR1 (high affinity immunoglobulin gamma Fc receptor I)-mediated signaling in myeloid cells. Couples activation of these receptors and their associated kinases with distal intracellular events through the recruitment of GRB2. {ECO:0000269|PubMed:12486104, ECO:0000269|PubMed:12514734, ECO:0000269|PubMed:15010370}.
Q9H0D6 XRN2 S479 ochoa 5'-3' exoribonuclease 2 (EC 3.1.13.-) (DHM1-like protein) (DHP protein) Possesses 5'->3' exoribonuclease activity (By similarity). May promote the termination of transcription by RNA polymerase II. During transcription termination, cleavage at the polyadenylation site liberates a 5' fragment which is subsequently processed to form the mature mRNA and a 3' fragment which remains attached to the elongating polymerase. The processive degradation of this 3' fragment by this protein may promote termination of transcription. Binds to RNA polymerase II (RNAp II) transcription termination R-loops formed by G-rich pause sites (PubMed:21700224). {ECO:0000250, ECO:0000269|PubMed:15565158, ECO:0000269|PubMed:16648491, ECO:0000269|PubMed:21700224}.
Q9H1A4 ANAPC1 S317 ochoa Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}.
Q9H7D0 DOCK5 S1789 ochoa Dedicator of cytokinesis protein 5 Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}.
Q9H7S9 ZNF703 S221 ochoa Zinc finger protein 703 (Zinc finger elbow-related proline domain protein 1) Transcriptional corepressor which does not bind directly to DNA and may regulate transcription through recruitment of histone deacetylases to gene promoters. Regulates cell adhesion, migration and proliferation. May be required for segmental gene expression during hindbrain development. {ECO:0000269|PubMed:21328542, ECO:0000269|PubMed:21337521}.
Q9H9J4 USP42 S619 ochoa Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}.
Q9HCD6 TANC2 S144 ochoa Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}.
Q9HCD6 TANC2 S148 ochoa Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}.
Q9HCE1 MOV10 S977 ochoa Helicase MOV-10 (EC 3.6.4.13) (Armitage homolog) (Moloney leukemia virus 10 protein) 5' to 3' RNA helicase that is involved in a number of cellular roles ranging from mRNA metabolism and translation, modulation of viral infectivity, inhibition of retrotransposition, or regulation of synaptic transmission (PubMed:23093941). Plays an important role in innate antiviral immunity by promoting type I interferon production (PubMed:27016603, PubMed:27974568, PubMed:35157734). Mechanistically, specifically uses IKKepsilon/IKBKE as the mediator kinase for IRF3 activation (PubMed:27016603, PubMed:35157734). Blocks HIV-1 virus replication at a post-entry step (PubMed:20215113). Counteracts HIV-1 Vif-mediated degradation of APOBEC3G through its helicase activity by interfering with the ubiquitin-proteasome pathway (PubMed:29258557). Also inhibits hepatitis B virus/HBV replication by interacting with HBV RNA and thereby inhibiting the early step of viral reverse transcription (PubMed:31722967). Contributes to UPF1 mRNA target degradation by translocation along 3' UTRs (PubMed:24726324). Required for microRNA (miRNA)-mediated gene silencing by the RNA-induced silencing complex (RISC). Required for both miRNA-mediated translational repression and miRNA-mediated cleavage of complementary mRNAs by RISC (PubMed:16289642, PubMed:17507929, PubMed:22791714). In cooperation with FMR1, regulates miRNA-mediated translational repression by AGO2 (PubMed:25464849). Restricts retrotransposition of long interspersed element-1 (LINE-1) in cooperation with TUT4 and TUT7 counteracting the RNA chaperonne activity of L1RE1 (PubMed:23093941, PubMed:30122351). Facilitates LINE-1 uridylation by TUT4 and TUT7 (PubMed:30122351). Required for embryonic viability and for normal central nervous system development and function. Plays two critical roles in early brain development: suppresses retroelements in the nucleus by directly inhibiting cDNA synthesis, while regulates cytoskeletal mRNAs to influence neurite outgrowth in the cytosol (By similarity). May function as a messenger ribonucleoprotein (mRNP) clearance factor (PubMed:24726324). {ECO:0000250|UniProtKB:P23249, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:17507929, ECO:0000269|PubMed:20215113, ECO:0000269|PubMed:22791714, ECO:0000269|PubMed:23093941, ECO:0000269|PubMed:24726324, ECO:0000269|PubMed:25464849, ECO:0000269|PubMed:27016603, ECO:0000269|PubMed:27974568, ECO:0000269|PubMed:29258557, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31722967, ECO:0000269|PubMed:35157734}.; FUNCTION: (Microbial infection) Required for RNA-directed transcription and replication of the human hepatitis delta virus (HDV). Interacts with small capped HDV RNAs derived from genomic hairpin structures that mark the initiation sites of RNA-dependent HDV RNA transcription. {ECO:0000269|PubMed:18552826}.
Q9HDC5 JPH1 S473 ochoa Junctophilin-1 (JP-1) (Junctophilin type 1) Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes.
Q9NR09 BIRC6 S585 ochoa Dual E2 ubiquitin-conjugating enzyme/E3 ubiquitin-protein ligase BIRC6 (EC 2.3.2.24) (BIR repeat-containing ubiquitin-conjugating enzyme) (BRUCE) (Baculoviral IAP repeat-containing protein 6) (Ubiquitin-conjugating BIR domain enzyme apollon) (APOLLON) Anti-apoptotic protein known as inhibitor of apoptosis (IAP) which can regulate cell death by controlling caspases and by acting as an E3 ubiquitin-protein ligase (PubMed:14765125, PubMed:15200957, PubMed:18329369). Unlike most IAPs, does not contain a RING domain and it is not a RING-type E3 ligase (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Instead acts as a dual E2/E3 enzyme that combines ubiquitin conjugating (E2) and ubiquitin ligase (E3) activities in a single polypeptide (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitination is mediated by a non-canonical E1 ubiquitin activating enzyme UBA6 (PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates CASP3, CASP7 and CASP9 and inhibits their caspase activity; also ubiquitinates their procaspases but to a weaker extent (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates pro-apoptotic factors DIABLO/SMAC and HTRA2 (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). DIABLO/SMAC antagonizes the caspase inhibition activity of BIRC6 by competing for the same binding sites as the caspases (PubMed:18329369, PubMed:36758106). Ubiquitinates the autophagy protein MAP1LC3B; this activity is also inhibited by DIABLO/SMAC (PubMed:36758105). Important regulator for the final stages of cytokinesis (PubMed:18329369). Crucial for normal vesicle targeting to the site of abscission, but also for the integrity of the midbody and the midbody ring, and its striking ubiquitin modification (PubMed:18329369). {ECO:0000269|PubMed:14765125, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105, ECO:0000269|PubMed:36758106}.
Q9NS91 RAD18 S107 ochoa E3 ubiquitin-protein ligase RAD18 (EC 2.3.2.27) (Postreplication repair protein RAD18) (hHR18) (hRAD18) (RING finger protein 73) (RING-type E3 ubiquitin transferase RAD18) E3 ubiquitin-protein ligase involved in postreplication repair of UV-damaged DNA. Postreplication repair functions in gap-filling of a daughter strand on replication of damaged DNA. Associates to the E2 ubiquitin conjugating enzyme UBE2B to form the UBE2B-RAD18 ubiquitin ligase complex involved in mono-ubiquitination of DNA-associated PCNA on 'Lys-164'. Has ssDNA binding activity. {ECO:0000269|PubMed:17108083, ECO:0000269|PubMed:21659603}.
Q9NTI5 PDS5B S1366 ochoa Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}.
Q9NYF8 BCLAF1 S272 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NYF8 BCLAF1 S276 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NYL2 MAP3K20 Y641 ochoa Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.
Q9NYV4 CDK12 S257 ochoa Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}.
Q9NYV4 CDK12 S261 ochoa Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}.
Q9NYV4 CDK12 S291 ochoa Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}.
Q9NZN8 CNOT2 S69 ochoa CCR4-NOT transcription complex subunit 2 (CCR4-associated factor 2) Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Required for the CCR4-NOT complex structural integrity. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may specifically involve the N-Cor repressor complex containing HDAC3, NCOR1 and NCOR2. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:16712523, ECO:0000269|PubMed:21299754, ECO:0000269|PubMed:22367759}.
Q9NZN8 CNOT2 S165 ochoa CCR4-NOT transcription complex subunit 2 (CCR4-associated factor 2) Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Required for the CCR4-NOT complex structural integrity. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may specifically involve the N-Cor repressor complex containing HDAC3, NCOR1 and NCOR2. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:16712523, ECO:0000269|PubMed:21299754, ECO:0000269|PubMed:22367759}.
Q9NZN8 CNOT2 S169 ochoa CCR4-NOT transcription complex subunit 2 (CCR4-associated factor 2) Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Required for the CCR4-NOT complex structural integrity. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may specifically involve the N-Cor repressor complex containing HDAC3, NCOR1 and NCOR2. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:16712523, ECO:0000269|PubMed:21299754, ECO:0000269|PubMed:22367759}.
Q9P0K1 ADAM22 S870 ochoa Disintegrin and metalloproteinase domain-containing protein 22 (ADAM 22) (Metalloproteinase-disintegrin ADAM22-3) (Metalloproteinase-like, disintegrin-like, and cysteine-rich protein 2) Probable ligand for integrin in the brain. This is a non catalytic metalloprotease-like protein (PubMed:19692335). Involved in regulation of cell adhesion and spreading and in inhibition of cell proliferation. Neuronal receptor for LGI1. {ECO:0000269|PubMed:12589811, ECO:0000269|PubMed:15882968, ECO:0000269|PubMed:16385342, ECO:0000269|PubMed:19692335}.
Q9P1Y5 CAMSAP3 S384 ochoa Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}.
Q9P206 NHSL3 S570 ochoa NHS-like protein 3 Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}.
Q9P270 SLAIN2 S63 ochoa SLAIN motif-containing protein 2 Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}.
Q9P270 SLAIN2 S353 ochoa SLAIN motif-containing protein 2 Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}.
Q9P270 SLAIN2 S357 ochoa SLAIN motif-containing protein 2 Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}.
Q9P2N6 KANSL3 S540 ochoa KAT8 regulatory NSL complex subunit 3 (NSL complex protein NSL3) (Non-specific lethal 3 homolog) (Serum inhibited-related protein) (Testis development protein PRTD) Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). Within the NSL complex, KANSL3 is required to promote KAT8 association with mitochondrial DNA (PubMed:27768893). Required for transcription of intraciliary transport genes in both ciliated and non-ciliated cells (By similarity). This is necessary for cilium assembly in ciliated cells and for organization of the microtubule cytoskeleton in non-ciliated cells (By similarity). Also required within the NSL complex to maintain nuclear architecture stability by promoting KAT8-mediated acetylation of lamin LMNA (By similarity). Plays an essential role in spindle assembly during mitosis (PubMed:26243146). Acts as a microtubule minus-end binding protein which stabilizes microtubules and promotes their assembly (PubMed:26243146). Indispensable during early embryonic development where it is required for proper lineage specification and maintenance during peri-implantation development and is essential for implantation (By similarity). {ECO:0000250|UniProtKB:A2RSY1, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}.
Q9P2P5 HECW2 S1175 ochoa E3 ubiquitin-protein ligase HECW2 (EC 2.3.2.26) (HECT, C2 and WW domain-containing protein 2) (HECT-type E3 ubiquitin transferase HECW2) (NEDD4-like E3 ubiquitin-protein ligase 2) E3 ubiquitin-protein ligase that mediates ubiquitination of TP73. Acts to stabilize TP73 and enhance activation of transcription by TP73 (PubMed:12890487). Involved in the regulation of mitotic metaphase/anaphase transition (PubMed:24163370). {ECO:0000269|PubMed:12890487, ECO:0000269|PubMed:24163370}.
Q9UBI9 HECA S272 ochoa Headcase protein homolog (hHDC) May play an important role in some human cancers. May be part of the regulatory mechanism in the development of epithelial tube networks such as the circulatory system and lungs. {ECO:0000303|PubMed:11696983}.
Q9UBW5 BIN2 S444 ochoa Bridging integrator 2 (Breast cancer-associated protein 1) Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}.
Q9UBW5 BIN2 S466 ochoa Bridging integrator 2 (Breast cancer-associated protein 1) Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}.
Q9UER7 DAXX S503 ochoa Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}.
Q9UEY8 ADD3 S681 ochoa Gamma-adducin (Adducin-like protein 70) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}.
Q9UHB7 AFF4 S1066 ochoa AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}.
Q9UHB7 AFF4 S1070 ochoa AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}.
Q9UHV7 MED13 S2026 ochoa Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}.
Q9UI08 EVL S345 ochoa Ena/VASP-like protein (Ena/vasodilator-stimulated phosphoprotein-like) Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. EVL enhances actin nucleation and polymerization.
Q9UJF2 RASAL2 S954 ochoa Ras GTPase-activating protein nGAP (RAS protein activator-like 2) Inhibitory regulator of the Ras-cyclic AMP pathway.
Q9UKA4 AKAP11 S456 ochoa A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) Binds to type II regulatory subunits of protein kinase A and anchors/targets them.
Q9UKI8 TLK1 S178 ochoa Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}.
Q9UKT9 IKZF3 S386 ochoa Zinc finger protein Aiolos (Ikaros family zinc finger protein 3) Transcription factor that plays an important role in the regulation of lymphocyte differentiation. Plays an essential role in regulation of B-cell differentiation, proliferation and maturation to an effector state. Involved in regulating BCL2 expression and controlling apoptosis in T-cells in an IL2-dependent manner. {ECO:0000269|PubMed:10369681, ECO:0000269|PubMed:34155405}.
Q9UKV3 ACIN1 T486 ochoa Apoptotic chromatin condensation inducer in the nucleus (Acinus) Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}.
Q9UKV3 ACIN1 S665 ochoa Apoptotic chromatin condensation inducer in the nucleus (Acinus) Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}.
Q9ULD2 MTUS1 S1249 ochoa Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}.
Q9ULG1 INO80 S1516 ochoa Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}.
Q9ULJ3 ZBTB21 S328 ochoa Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}.
Q9ULJ7 ANKRD50 T1171 ochoa Ankyrin repeat domain-containing protein 50 Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552).
Q9UPA5 BSN S252 ochoa Protein bassoon (Zinc finger protein 231) Scaffold protein of the presynaptic cytomatrix at the active zone (CAZ) which is the place in the synapse where neurotransmitter is released (PubMed:12812759). After synthesis, participates in the formation of Golgi-derived membranous organelles termed Piccolo-Bassoon transport vesicles (PTVs) that are transported along axons to sites of nascent synaptic contacts (PubMed:19380881). At the presynaptic active zone, regulates the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis (By similarity). Also functions in processes other than assembly such as the regulation of specific presynaptic protein ubiquitination by interacting with SIAH1 or the regulation of presynaptic autophagy by associating with ATG5 (By similarity). Also mediates synapse to nucleus communication leading to reconfiguration of gene expression by associating with the transcriptional corepressor CTBP1 and by subsequently reducing the size of its pool available for nuclear import (By similarity). Inhibits the activity of the proportion of DAO enzyme that localizes to the presynaptic active zone, which may modulate synaptic transmission (By similarity). {ECO:0000250|UniProtKB:O35078, ECO:0000250|UniProtKB:O88778, ECO:0000269|PubMed:12812759, ECO:0000269|PubMed:19380881}.
Q9UPA5 BSN S1492 ochoa Protein bassoon (Zinc finger protein 231) Scaffold protein of the presynaptic cytomatrix at the active zone (CAZ) which is the place in the synapse where neurotransmitter is released (PubMed:12812759). After synthesis, participates in the formation of Golgi-derived membranous organelles termed Piccolo-Bassoon transport vesicles (PTVs) that are transported along axons to sites of nascent synaptic contacts (PubMed:19380881). At the presynaptic active zone, regulates the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis (By similarity). Also functions in processes other than assembly such as the regulation of specific presynaptic protein ubiquitination by interacting with SIAH1 or the regulation of presynaptic autophagy by associating with ATG5 (By similarity). Also mediates synapse to nucleus communication leading to reconfiguration of gene expression by associating with the transcriptional corepressor CTBP1 and by subsequently reducing the size of its pool available for nuclear import (By similarity). Inhibits the activity of the proportion of DAO enzyme that localizes to the presynaptic active zone, which may modulate synaptic transmission (By similarity). {ECO:0000250|UniProtKB:O35078, ECO:0000250|UniProtKB:O88778, ECO:0000269|PubMed:12812759, ECO:0000269|PubMed:19380881}.
Q9UPN3 MACF1 S7318 psp Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPN3 MACF1 S7322 psp Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPN3 MACF1 S7326 psp Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPU5 USP24 S2077 ochoa Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}.
Q9UPU5 USP24 S2081 ochoa Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}.
Q9UPX0 IGSF9B S783 ochoa Protein turtle homolog B (Immunoglobulin superfamily member 9B) (IgSF9B) Transmembrane protein which is abundantly expressed in interneurons, where it may regulate inhibitory synapse development. May mediate homophilic cell adhesion. {ECO:0000250|UniProtKB:D3ZB51, ECO:0000250|UniProtKB:E9PZ19}.
Q9UQQ2 SH2B3 S334 ochoa SH2B adapter protein 3 (Lymphocyte adapter protein) (Lymphocyte-specific adapter protein Lnk) (Signal transduction protein Lnk) Links T-cell receptor activation signal to phospholipase C-gamma-1, GRB2 and phosphatidylinositol 3-kinase. {ECO:0000250}.
Q9Y2I9 TBC1D30 S122 ochoa TBC1 domain family member 30 May act as a GTPase-activating protein for Rab family protein(s). {ECO:0000305}.
Q9Y2J4 AMOTL2 S610 ochoa Angiomotin-like protein 2 (Leman coiled-coil protein) (LCCP) Regulates the translocation of phosphorylated SRC to peripheral cell-matrix adhesion sites. Required for proper architecture of actin filaments. Plays a role in coupling actin fibers to cell junctions in endothelial cells and is therefore required for correct endothelial cell morphology via facilitating transcellular transmission of mechanical force resulting in endothelial cell elongation (By similarity). Required for the anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane which facilitates organization of radial actin fiber structure and cellular response to contractile forces (PubMed:28842668). This contributes to maintenance of cell area, size, shape, epithelial sheet organization and trophectoderm cell properties that facilitate blastocyst zona hatching (PubMed:28842668). Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. Participates in angiogenesis. Activates the Hippo signaling pathway in response to cell contact inhibition via interaction with and ubiquitination by Crumbs complex-bound WWP1 (PubMed:34404733). Ubiquitinated AMOTL2 then interacts with LATS2 which in turn phosphorylates YAP1, excluding it from the nucleus and localizing it to the cytoplasm and tight junctions, therefore ultimately repressing YAP1-driven transcription of target genes (PubMed:17293535, PubMed:21205866, PubMed:26598551). Acts to inhibit WWTR1/TAZ transcriptional coactivator activity via sequestering WWTR1/TAZ in the cytoplasm and at tight junctions (PubMed:23911299). Regulates the size and protein composition of the podosome cortex and core at myofibril neuromuscular junctions (PubMed:23525008). Selectively promotes FGF-induced MAPK activation through SRC (PubMed:17293535). May play a role in the polarity, proliferation and migration of endothelial cells. {ECO:0000250|UniProtKB:Q8K371, ECO:0000269|PubMed:17293535, ECO:0000269|PubMed:21205866, ECO:0000269|PubMed:21937427, ECO:0000269|PubMed:22362771, ECO:0000269|PubMed:23525008, ECO:0000269|PubMed:23911299, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:28842668, ECO:0000269|PubMed:34404733}.
Q9Y2K1 ZBTB1 S305 ochoa Zinc finger and BTB domain-containing protein 1 Acts as a transcriptional repressor (PubMed:20797634). Represses cAMP-responsive element (CRE)-mediated transcriptional activation (PubMed:21706167). In addition, has a role in translesion DNA synthesis. Requires for UV-inducible RAD18 loading, PCNA monoubiquitination, POLH recruitment to replication factories and efficient translesion DNA synthesis (PubMed:24657165). Plays a key role in the transcriptional regulation of T lymphocyte development (By similarity). {ECO:0000250|UniProtKB:Q91VL9, ECO:0000269|PubMed:20797634, ECO:0000269|PubMed:21706167, ECO:0000269|PubMed:24657165}.
Q9Y3Q8 TSC22D4 Y268 ochoa TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}.
Q9Y4E8 USP15 S233 ochoa Ubiquitin carboxyl-terminal hydrolase 15 (EC 3.4.19.12) (Deubiquitinating enzyme 15) (Ubiquitin thioesterase 15) (Ubiquitin-specific-processing protease 15) (Unph-2) (Unph4) Hydrolase that removes conjugated ubiquitin from target proteins and regulates various pathways such as the TGF-beta receptor signaling, NF-kappa-B and RNF41/NRDP1-PRKN pathways (PubMed:16005295, PubMed:17318178, PubMed:19576224, PubMed:19826004, PubMed:21947082, PubMed:22344298, PubMed:24852371). Acts as a key regulator of TGF-beta receptor signaling pathway, but the precise mechanism is still unclear: according to a report, acts by promoting deubiquitination of monoubiquitinated R-SMADs (SMAD1, SMAD2 and/or SMAD3), thereby alleviating inhibition of R-SMADs and promoting activation of TGF-beta target genes (PubMed:21947082). According to another reports, regulates the TGF-beta receptor signaling pathway by mediating deubiquitination and stabilization of TGFBR1, leading to an enhanced TGF-beta signal (PubMed:22344298). Able to mediate deubiquitination of monoubiquitinated substrates, 'Lys-27'-, 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:33093067). May also regulate gene expression and/or DNA repair through the deubiquitination of histone H2B (PubMed:24526689). Acts as an inhibitor of mitophagy by counteracting the action of parkin (PRKN): hydrolyzes cleavage of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains attached by parkin on target proteins such as MFN2, thereby reducing parkin's ability to drive mitophagy (PubMed:24852371). Acts as an associated component of COP9 signalosome complex (CSN) and regulates different pathways via this association: regulates NF-kappa-B by mediating deubiquitination of NFKBIA and deubiquitinates substrates bound to VCP (PubMed:16005295, PubMed:17318178, PubMed:19576224, PubMed:19826004). Involved in endosome organization by mediating deubiquitination of SQSTM1: ubiquitinated SQSTM1 forms a molecular bridge that restrains cognate vesicles in the perinuclear region and its deubiquitination releases target vesicles for fast transport into the cell periphery (PubMed:27368102). Acts as a negative regulator of antifungal immunity by mediating 'Lys-27'-linked deubiquitination of CARD9, thereby inactivating CARD9 (PubMed:33093067). {ECO:0000269|PubMed:16005295, ECO:0000269|PubMed:17318178, ECO:0000269|PubMed:19576224, ECO:0000269|PubMed:19826004, ECO:0000269|PubMed:21947082, ECO:0000269|PubMed:22344298, ECO:0000269|PubMed:24526689, ECO:0000269|PubMed:24852371, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:33093067}.; FUNCTION: (Microbial infection) Protects APC and human papillomavirus type 16 protein E6 against degradation via the ubiquitin proteasome pathway. {ECO:0000269|PubMed:19553310}.
Q9Y4F5 CEP170B S605 ochoa Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}.
Q9Y4G8 RAPGEF2 S1120 ochoa Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}.
Q9Y4G8 RAPGEF2 S1124 ochoa Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}.
Q9Y5K6 CD2AP S550 ochoa CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}.
Q9Y5K6 CD2AP S554 ochoa CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}.
Q9Y5S2 CDC42BPB S1690 ochoa|psp Serine/threonine-protein kinase MRCK beta (EC 2.7.11.1) (CDC42-binding protein kinase beta) (CDC42BP-beta) (DMPK-like beta) (Myotonic dystrophy kinase-related CDC42-binding kinase beta) (MRCK beta) (Myotonic dystrophy protein kinase-like beta) Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration. Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715, PubMed:21949762). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates PPP1R12A (PubMed:21457715). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). {ECO:0000250|UniProtKB:Q7TT50, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:21949762}.
Q9Y6D6 ARFGEF1 S678 ochoa Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}.
O14639 ABLIM1 Y439 Sugiyama Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}.
Q99626 CDX2 S291 SIGNOR Homeobox protein CDX-2 (CDX-3) (Caudal-type homeobox protein 2) Transcription factor which regulates the transcription of multiple genes expressed in the intestinal epithelium (By similarity). Binds to the promoter of the intestinal sucrase-isomaltase SI and activates SI transcription (By similarity). Binds to the DNA sequence 5'-ATAAAAACTTAT-3' in the promoter region of VDR and activates VDR transcription (By similarity). Binds to and activates transcription of LPH (By similarity). Activates transcription of CLDN2 and intestinal mucin MUC2 (By similarity). Binds to the 5'-AATTTTTTACAACACCT-3' DNA sequence in the promoter region of CA1 and activates CA1 transcription (By similarity). Important in broad range of functions from early differentiation to maintenance of the intestinal epithelial lining of both the small and large intestine. Binds preferentially to methylated DNA (PubMed:28473536). {ECO:0000250|UniProtKB:P43241, ECO:0000250|UniProtKB:Q04649, ECO:0000269|PubMed:28473536}.
Q99626 CDX2 S295 SIGNOR Homeobox protein CDX-2 (CDX-3) (Caudal-type homeobox protein 2) Transcription factor which regulates the transcription of multiple genes expressed in the intestinal epithelium (By similarity). Binds to the promoter of the intestinal sucrase-isomaltase SI and activates SI transcription (By similarity). Binds to the DNA sequence 5'-ATAAAAACTTAT-3' in the promoter region of VDR and activates VDR transcription (By similarity). Binds to and activates transcription of LPH (By similarity). Activates transcription of CLDN2 and intestinal mucin MUC2 (By similarity). Binds to the 5'-AATTTTTTACAACACCT-3' DNA sequence in the promoter region of CA1 and activates CA1 transcription (By similarity). Important in broad range of functions from early differentiation to maintenance of the intestinal epithelial lining of both the small and large intestine. Binds preferentially to methylated DNA (PubMed:28473536). {ECO:0000250|UniProtKB:P43241, ECO:0000250|UniProtKB:Q04649, ECO:0000269|PubMed:28473536}.
Q8IZQ8 MYOCD S463 SIGNOR Myocardin Smooth muscle cells (SM) and cardiac muscle cells-specific transcriptional factor which uses the canonical single or multiple CArG boxes DNA sequence. Acts as a cofactor of serum response factor (SRF) with the potential to modulate SRF-target genes. Plays a crucial role in cardiogenesis, urinary bladder development, and differentiation of the smooth muscle cell lineage (myogenesis) (By similarity). Positively regulates the transcription of genes involved in vascular smooth muscle contraction (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q8R5I7, ECO:0000269|PubMed:12640126, ECO:0000269|PubMed:31513549}.
Q8IZQ8 MYOCD S634 SIGNOR|iPTMNet|EPSD Myocardin Smooth muscle cells (SM) and cardiac muscle cells-specific transcriptional factor which uses the canonical single or multiple CArG boxes DNA sequence. Acts as a cofactor of serum response factor (SRF) with the potential to modulate SRF-target genes. Plays a crucial role in cardiogenesis, urinary bladder development, and differentiation of the smooth muscle cell lineage (myogenesis) (By similarity). Positively regulates the transcription of genes involved in vascular smooth muscle contraction (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q8R5I7, ECO:0000269|PubMed:12640126, ECO:0000269|PubMed:31513549}.
Q8IZQ8 MYOCD S638 SIGNOR Myocardin Smooth muscle cells (SM) and cardiac muscle cells-specific transcriptional factor which uses the canonical single or multiple CArG boxes DNA sequence. Acts as a cofactor of serum response factor (SRF) with the potential to modulate SRF-target genes. Plays a crucial role in cardiogenesis, urinary bladder development, and differentiation of the smooth muscle cell lineage (myogenesis) (By similarity). Positively regulates the transcription of genes involved in vascular smooth muscle contraction (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q8R5I7, ECO:0000269|PubMed:12640126, ECO:0000269|PubMed:31513549}.
Q7Z417 NUFIP2 S596 Sugiyama FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) Binds RNA. {ECO:0000269|PubMed:12837692}.
Q9NQU5 PAK6 S332 Sugiyama Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}.
A1L390 PLEKHG3 S647 ochoa Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}.
A6NKT7 RGPD3 S1275 ochoa RanBP2-like and GRIP domain-containing protein 3 None
A6NKT7 RGPD3 S1595 ochoa RanBP2-like and GRIP domain-containing protein 3 None
A6NMY6 ANXA2P2 S26 ochoa Putative annexin A2-like protein (Annexin A2 pseudogene 2) (Lipocortin II pseudogene) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. {ECO:0000250}.
A8MT19 RHPN2P1 S505 ochoa Putative rhophilin-2-like protein RHPN2P1 (Rhophilin-2 pseudogene 1) None
H0YC42 None S159 ochoa Tumor protein D52 None
K7ELQ4 ATF7-NPFF S254 ochoa ATF7-NPFF readthrough None
O00418 EEF2K S74 ochoa Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}.
O00418 EEF2K S78 ochoa|psp Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}.
O00472 ELL2 S309 ochoa RNA polymerase II elongation factor ELL2 Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968). Plays a role in immunoglobulin secretion in plasma cells: directs efficient alternative mRNA processing, influencing both proximal poly(A) site choice and exon skipping, as well as immunoglobulin heavy chain (IgH) alternative processing. Probably acts by regulating histone modifications accompanying transition from membrane-specific to secretory IgH mRNA expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23251033}.
O00571 DDX3X S86 ochoa|psp ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}.
O14526 FCHO1 S591 ochoa F-BAR domain only protein 1 Functions in an early step of clathrin-mediated endocytosis (PubMed:30822429). Has both a membrane binding/bending activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. May regulate Bmp signaling by regulating clathrin-mediated endocytosis of Bmp receptors. Involved in the regulation of T-cell poliferation and activation (PubMed:30822429, PubMed:32098969). Affects TCR clustering upon receptor triggering and modulates its internalisation, playing a role in TCR-dependent T-cell activation (PubMed:32098969). {ECO:0000269|PubMed:20448150, ECO:0000269|PubMed:30822429, ECO:0000269|PubMed:32098969}.
O14715 RGPD8 S1274 ochoa RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) None
O14715 RGPD8 S1594 ochoa RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) None
O15013 ARHGEF10 S1291 ochoa Rho guanine nucleotide exchange factor 10 May play a role in developmental myelination of peripheral nerves. {ECO:0000269|PubMed:14508709}.
O15013 ARHGEF10 S1295 ochoa Rho guanine nucleotide exchange factor 10 May play a role in developmental myelination of peripheral nerves. {ECO:0000269|PubMed:14508709}.
O15068 MCF2L S981 ochoa Guanine nucleotide exchange factor DBS (DBL's big sister) (MCF2-transforming sequence-like protein) Guanine nucleotide exchange factor that catalyzes guanine nucleotide exchange on RHOA and CDC42, and thereby contributes to the regulation of RHOA and CDC42 signaling pathways (By similarity). Seems to lack activity with RAC1. Becomes activated and highly tumorigenic by truncation of the N-terminus (By similarity). Isoform 5 activates CDC42 (PubMed:15157669). {ECO:0000250|UniProtKB:Q63406, ECO:0000269|PubMed:15157669}.; FUNCTION: [Isoform 3]: Does not catalyze guanine nucleotide exchange on CDC42 (PubMed:15157669). {ECO:0000269|PubMed:15157669}.
O15211 RGL2 S588 ochoa Ral guanine nucleotide dissociation stimulator-like 2 (RalGDS-like 2) (RalGDS-like factor) (Ras-associated protein RAB2L) Probable guanine nucleotide exchange factor. Putative effector of Ras and/or Rap. Associates with the GTP-bound form of Rap 1A and H-Ras in vitro (By similarity). {ECO:0000250}.
O15400 STX7 S137 ochoa Syntaxin-7 May be involved in protein trafficking from the plasma membrane to the early endosome (EE) as well as in homotypic fusion of endocytic organelles. Mediates the endocytic trafficking from early endosomes to late endosomes and lysosomes.
O60307 MAST3 S109 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O60307 MAST3 S1105 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O60508 CDC40 S22 ochoa Pre-mRNA-processing factor 17 (Cell division cycle 40 homolog) (EH-binding protein 3) (Ehb3) (PRP17 homolog) (hPRP17) Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:33220177). Plays an important role in embryonic brain development; this function does not require proline isomerization (PubMed:33220177). {ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:33220177, ECO:0000269|PubMed:9830021}.
O60508 CDC40 S24 ochoa Pre-mRNA-processing factor 17 (Cell division cycle 40 homolog) (EH-binding protein 3) (Ehb3) (PRP17 homolog) (hPRP17) Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:33220177). Plays an important role in embryonic brain development; this function does not require proline isomerization (PubMed:33220177). {ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:33220177, ECO:0000269|PubMed:9830021}.
O60508 CDC40 S26 ochoa Pre-mRNA-processing factor 17 (Cell division cycle 40 homolog) (EH-binding protein 3) (Ehb3) (PRP17 homolog) (hPRP17) Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:33220177). Plays an important role in embryonic brain development; this function does not require proline isomerization (PubMed:33220177). {ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:33220177, ECO:0000269|PubMed:9830021}.
O60716 CTNND1 Y865 ochoa Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}.
O75122 CLASP2 S541 psp CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}.
O75140 DEPDC5 S505 ochoa GATOR1 complex protein DEPDC5 (DEP domain-containing protein 5) As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:31548394, PubMed:35338845). In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:35338845). In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29769719). Within the GATOR1 complex, DEPDC5 mediates direct interaction with the nucleotide-binding pocket of small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD) and coordinates their nucleotide loading states by promoting RagA/RRAGA or RagB/RRAGB into their GDP-binding state and RagC/RRAGC or RagD/RRAGD into their GTP-binding state (PubMed:29590090, PubMed:35338845). However, it does not execute the GAP activity, which is mediated by NPRL2 (PubMed:29590090). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:29590090, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:35338845}.
O75427 LRCH4 S521 ochoa Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}.
O75582 RPS6KA5 S768 ochoa Ribosomal protein S6 kinase alpha-5 (S6K-alpha-5) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 5) (Nuclear mitogen- and stress-activated protein kinase 1) (RSK-like protein kinase) (RSKL) Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factors RELA, STAT3 and ETV1/ER81, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes (PubMed:11909979, PubMed:12569367, PubMed:12763138, PubMed:18511904, PubMed:9687510, PubMed:9873047). Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin (PubMed:11909979, PubMed:9873047). Plays an essential role in the control of RELA transcriptional activity in response to TNF and upon glucocorticoid, associates in the cytoplasm with the glucocorticoid receptor NR3C1 and contributes to RELA inhibition and repression of inflammatory gene expression (PubMed:12628924, PubMed:18511904). In skeletal myoblasts is required for phosphorylation of RELA at 'Ser-276' during oxidative stress (PubMed:12628924). In erythropoietin-stimulated cells, is necessary for the 'Ser-727' phosphorylation of STAT3 and regulation of its transcriptional potential (PubMed:12763138). Phosphorylates ETV1/ER81 at 'Ser-191' and 'Ser-216', and thereby regulates its ability to stimulate transcription, which may be important during development and breast tumor formation (PubMed:12569367). Directly represses transcription via phosphorylation of 'Ser-1' of histone H2A (PubMed:15010469). Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN (PubMed:12773393). May also phosphorylate 'Ser-28' of histone H3 (PubMed:12773393). Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14) (PubMed:12773393). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines (By similarity). Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors (By similarity). Plays a role in neuronal cell death by mediating the downstream effects of excitotoxic injury (By similarity). Phosphorylates TRIM7 at 'Ser-107' in response to growth factor signaling via the MEK/ERK pathway, thereby stimulating its ubiquitin ligase activity (PubMed:25851810). {ECO:0000250|UniProtKB:Q8C050, ECO:0000269|PubMed:11909979, ECO:0000269|PubMed:12569367, ECO:0000269|PubMed:12628924, ECO:0000269|PubMed:12763138, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:15010469, ECO:0000269|PubMed:18511904, ECO:0000269|PubMed:25851810, ECO:0000269|PubMed:9687510, ECO:0000269|PubMed:9873047}.
O94804 STK10 S493 ochoa Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}.
O94880 PHF14 S302 ochoa PHD finger protein 14 Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}.
O94885 SASH1 S821 ochoa SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}.
O95049 TJP3 S346 ochoa Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}.
O95674 CDS2 S41 ochoa Phosphatidate cytidylyltransferase 2 (EC 2.7.7.41) (CDP-DAG synthase 2) (CDP-DG synthase 2) (CDP-diacylglycerol synthase 2) (CDS 2) (CDP-diglyceride pyrophosphorylase 2) (CDP-diglyceride synthase 2) (CTP:phosphatidate cytidylyltransferase 2) Catalyzes the conversion of phosphatidic acid (PA) to CDP-diacylglycerol (CDP-DAG), an essential intermediate in the synthesis of phosphatidylglycerol, cardiolipin and phosphatidylinositol (PubMed:25375833). Exhibits specificity for the nature of the acyl chains at the sn-1 and sn-2 positions in the substrate, PA and the preferred acyl chain composition is 1-stearoyl-2-arachidonoyl-sn-phosphatidic acid (PubMed:25375833). Plays an important role in regulating the growth and maturation of lipid droplets which are storage organelles at the center of lipid and energy homeostasis (PubMed:26946540, PubMed:31548309). {ECO:0000269|PubMed:25375833, ECO:0000269|PubMed:26946540, ECO:0000269|PubMed:31548309}.
O95758 PTBP3 S169 ochoa Polypyrimidine tract-binding protein 3 (Regulator of differentiation 1) (Rod1) RNA-binding protein that mediates pre-mRNA alternative splicing regulation. Plays a role in the regulation of cell proliferation, differentiation and migration. Positive regulator of EPO-dependent erythropoiesis. Participates in cell differentiation regulation by repressing tissue-specific exons. Promotes FAS exon 6 skipping. Binds RNA, preferentially to both poly(G) and poly(U). {ECO:0000269|PubMed:10207106, ECO:0000269|PubMed:18335065, ECO:0000269|PubMed:19441079, ECO:0000269|PubMed:20937273}.
O95817 BAG3 S181 ochoa BAG family molecular chaperone regulator 3 (BAG-3) (Bcl-2-associated athanogene 3) (Bcl-2-binding protein Bis) (Docking protein CAIR-1) Co-chaperone and adapter protein that connects different classes of molecular chaperones including heat shock proteins 70 (HSP70s), e.g. HSPA1A/HSP70 or HSPA8/HSC70, and small heat shock proteins (sHSPs), e.g. HSPB8 (PubMed:27884606, PubMed:30559338). Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from HSP70s, thereby triggering client protein release (PubMed:27884606, PubMed:30559338). Nucleotide release is mediated via BAG3 binding to the nucleotide-binding domain (NBD) of HSP70s, whereas client release is mediated via binding to the substrate-binding domain (SBD) (PubMed:27474739, PubMed:9873016). Has anti-apoptotic activity (PubMed:10597216). Plays a role in the HSF1 nucleocytoplasmic transport (PubMed:26159920). {ECO:0000269|PubMed:10597216, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:26159920, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27884606, ECO:0000269|PubMed:30559338, ECO:0000269|PubMed:9873016}.
O95863 SNAI1 S115 psp Zinc finger protein SNAI1 (Protein snail homolog 1) (Protein sna) Involved in induction of the epithelial to mesenchymal transition (EMT), formation and maintenance of embryonic mesoderm, growth arrest, survival and cell migration (PubMed:10655587, PubMed:15647282, PubMed:20389281, PubMed:20562920, PubMed:21952048, PubMed:25827072). Binds to 3 E-boxes of the E-cadherin/CDH1 gene promoter and to the promoters of CLDN7 and KRT8 and, in association with histone demethylase KDM1A which it recruits to the promoters, causes a decrease in dimethylated H3K4 levels and represses transcription (PubMed:10655587, PubMed:20389281, PubMed:20562920). The N-terminal SNAG domain competes with histone H3 for the same binding site on the histone demethylase complex formed by KDM1A and RCOR1, and thereby inhibits demethylation of histone H3 at 'Lys-4' (in vitro) (PubMed:20389281, PubMed:21300290, PubMed:23721412). During EMT, involved with LOXL2 in negatively regulating pericentromeric heterochromatin transcription (PubMed:16096638). SNAI1 recruits LOXL2 to pericentromeric regions to oxidize histone H3 and repress transcription which leads to release of heterochromatin component CBX5/HP1A, enabling chromatin reorganization and acquisition of mesenchymal traits (By similarity). Associates with EGR1 and SP1 to mediate tetradecanoyl phorbol acetate (TPA)-induced up-regulation of CDKN2B, possibly by binding to the CDKN2B promoter region 5'-TCACA-3 (PubMed:20121949). In addition, may also activate the CDKN2B promoter by itself (PubMed:20121949). {ECO:0000250|UniProtKB:Q02085, ECO:0000269|PubMed:10655587, ECO:0000269|PubMed:15647282, ECO:0000269|PubMed:16096638, ECO:0000269|PubMed:20121949, ECO:0000269|PubMed:20389281, ECO:0000269|PubMed:20562920, ECO:0000269|PubMed:21300290, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:23721412, ECO:0000269|PubMed:25827072}.
P02545 LMNA S636 ochoa Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}.
P04049 RAF1 S295 ochoa RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}.
P04792 HSPB1 S86 ochoa|psp Heat shock protein beta-1 (HspB1) (28 kDa heat shock protein) (Estrogen-regulated 24 kDa protein) (Heat shock 27 kDa protein) (HSP 27) (Heat shock protein family B member 1) (Stress-responsive protein 27) (SRP27) Small heat shock protein which functions as a molecular chaperone probably maintaining denatured proteins in a folding-competent state (PubMed:10383393, PubMed:20178975). Plays a role in stress resistance and actin organization (PubMed:19166925). Through its molecular chaperone activity may regulate numerous biological processes including the phosphorylation and the axonal transport of neurofilament proteins (PubMed:23728742). {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:20178975, ECO:0000269|PubMed:23728742}.
P07355 ANXA2 S26 ochoa|psp Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) (Protein I) (p36) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9 (PubMed:18799458, PubMed:22848640, PubMed:24808179). Binds to endosomes damaged by phagocytosis of particulate wear debris and participates in endosomal membrane stabilization, thereby limiting NLRP3 inflammasome activation (By similarity). Required for endothelial cell surface plasmin generation and may support fibrinolytic surveillance and neoangiogenesis (By similarity). {ECO:0000250|UniProtKB:P07356, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22848640, ECO:0000269|PubMed:24808179}.; FUNCTION: (Microbial infection) Binds M.pneumoniae CARDS toxin, probably serves as one receptor for this pathogen. When ANXA2 is down-regulated by siRNA, less toxin binds to human cells and less vacuolization (a symptom of M.pneumoniae infection) is seen. {ECO:0000269|PubMed:25139904}.
P07814 EPRS1 S825 ochoa Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}.
P08172 CHRM2 S290 psp Muscarinic acetylcholine receptor M2 The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol. {ECO:0000269|PubMed:24256733, ECO:0000269|PubMed:3443095}.
P08195 SLC3A2 S410 psp Amino acid transporter heavy chain SLC3A2 (4F2 cell-surface antigen heavy chain) (4F2hc) (4F2 heavy chain antigen) (Lymphocyte activation antigen 4F2 large subunit) (Solute carrier family 3 member 2) (CD antigen CD98) Acts as a chaperone that facilitates biogenesis and trafficking of functional transporters heterodimers to the plasma membrane. Forms heterodimer with SLC7 family transporters (SLC7A5, SLC7A6, SLC7A7, SLC7A8, SLC7A10 and SLC7A11), a group of amino-acid antiporters (PubMed:10574970, PubMed:10903140, PubMed:11557028, PubMed:30867591, PubMed:33298890, PubMed:33758168, PubMed:34880232, PubMed:9751058, PubMed:9829974, PubMed:9878049). Heterodimers function as amino acids exchangers, the specificity of the substrate depending on the SLC7A subunit. Heterodimers SLC3A2/SLC7A6 or SLC3A2/SLC7A7 mediate the uptake of dibasic amino acids (PubMed:10903140, PubMed:9829974). Heterodimer SLC3A2/SLC7A11 functions as an antiporter by mediating the exchange of extracellular anionic L-cystine and intracellular L-glutamate across the cellular plasma membrane (PubMed:34880232). SLC3A2/SLC7A10 translocates small neutral L- and D-amino acids across the plasma membrane (By similarity). SLC3A2/SLC75 or SLC3A2/SLC7A8 translocates neutral amino acids with broad specificity, thyroid hormones and L-DOPA (PubMed:10574970, PubMed:11389679, PubMed:11557028, PubMed:11564694, PubMed:11742812, PubMed:12117417, PubMed:12225859, PubMed:12716892, PubMed:15980244, PubMed:30867591, PubMed:33298890, PubMed:33758168). SLC3A2 is essential for plasma membrane localization, stability, and the transport activity of SLC7A5 and SLC7A8 (PubMed:10391915, PubMed:10574970, PubMed:11311135, PubMed:15769744, PubMed:33066406). When associated with LAPTM4B, the heterodimer SLC7A5 is recruited to lysosomes to promote leucine uptake into these organelles, and thereby mediates mTORC1 activation (PubMed:25998567). Modulates integrin-related signaling and is essential for integrin-dependent cell spreading, migration and tumor progression (PubMed:11121428, PubMed:15625115). {ECO:0000250|UniProtKB:P63115, ECO:0000269|PubMed:10391915, ECO:0000269|PubMed:10574970, ECO:0000269|PubMed:10903140, ECO:0000269|PubMed:11121428, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:11389679, ECO:0000269|PubMed:11557028, ECO:0000269|PubMed:11564694, ECO:0000269|PubMed:11742812, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12225859, ECO:0000269|PubMed:12716892, ECO:0000269|PubMed:15625115, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:15980244, ECO:0000269|PubMed:25998567, ECO:0000269|PubMed:30867591, ECO:0000269|PubMed:33066406, ECO:0000269|PubMed:33298890, ECO:0000269|PubMed:33758168, ECO:0000269|PubMed:34880232, ECO:0000269|PubMed:9751058, ECO:0000269|PubMed:9829974, ECO:0000269|PubMed:9878049}.; FUNCTION: (Microbial infection) In case of hepatitis C virus/HCV infection, the complex formed by SLC3A2 and SLC7A5/LAT1 plays a role in HCV propagation by facilitating viral entry into host cell and increasing L-leucine uptake-mediated mTORC1 signaling activation, thereby contributing to HCV-mediated pathogenesis. {ECO:0000269|PubMed:30341327}.; FUNCTION: (Microbial infection) Acts as a receptor for malaria parasite Plasmodium vivax (Thai isolate) in immature red blood cells. {ECO:0000269|PubMed:34294905}.
P08651 NFIC S279 ochoa Nuclear factor 1 C-type (NF1-C) (Nuclear factor 1/C) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/C) (NF-I/C) (NFI-C) (TGGCA-binding protein) Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication.
P08670 VIM S55 ochoa|psp Vimentin Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. Plays a role in cell directional movement, orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Protects SCRIB from proteasomal degradation and facilitates its localization to intermediate filaments in a cell contact-mediated manner (By similarity). {ECO:0000250|UniProtKB:A0A8C0N8E3, ECO:0000250|UniProtKB:P31000}.; FUNCTION: Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. {ECO:0000269|PubMed:21746880}.
P0DJD0 RGPD1 S1259 ochoa RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) None
P0DJD1 RGPD2 S1267 ochoa RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) None
P15260 IFNGR1 S391 ochoa Interferon gamma receptor 1 (IFN-gamma receptor 1) (IFN-gamma-R1) (CDw119) (Interferon gamma receptor alpha-chain) (IFN-gamma-R-alpha) (CD antigen CD119) Receptor subunit for interferon gamma/INFG that plays crucial roles in antimicrobial, antiviral, and antitumor responses by activating effector immune cells and enhancing antigen presentation (PubMed:20015550). Associates with transmembrane accessory factor IFNGR2 to form a functional receptor (PubMed:10986460, PubMed:2971451, PubMed:7615558, PubMed:7617032, PubMed:7673114). Upon ligand binding, the intracellular domain of IFNGR1 opens out to allow association of downstream signaling components JAK1 and JAK2. In turn, activated JAK1 phosphorylates IFNGR1 to form a docking site for STAT1. Subsequent phosphorylation of STAT1 leads to dimerization, translocation to the nucleus, and stimulation of target gene transcription (PubMed:28883123). STAT3 can also be activated in a similar manner although activation seems weaker. IFNGR1 intracellular domain phosphorylation also provides a docking site for SOCS1 that regulates the JAK-STAT pathway by competing with STAT1 binding to IFNGR1 (By similarity). {ECO:0000250|UniProtKB:P15261, ECO:0000269|PubMed:10986460, ECO:0000269|PubMed:20015550, ECO:0000269|PubMed:28883123, ECO:0000269|PubMed:2971451, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7617032, ECO:0000269|PubMed:7673114}.
P15923 TCF3 S354 ochoa Transcription factor E2-alpha (Class B basic helix-loop-helix protein 21) (bHLHb21) (Immunoglobulin enhancer-binding factor E12/E47) (Immunoglobulin transcription factor 1) (Kappa-E2-binding factor) (Transcription factor 3) (TCF-3) (Transcription factor ITF-1) Transcriptional regulator involved in the initiation of neuronal differentiation and mesenchymal to epithelial transition (By similarity). Heterodimers between TCF3 and tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation (By similarity). Together with TCF15, required for the mesenchymal to epithelial transition (By similarity). Dimers bind DNA on E-box motifs: 5'-CANNTG-3' (By similarity). Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer (PubMed:2493990). Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (By similarity). {ECO:0000250|UniProtKB:P15806, ECO:0000269|PubMed:2493990}.; FUNCTION: [Isoform E47]: Facilitates ATOH7 binding to DNA at the consensus sequence 5'-CAGGTG-3', and positively regulates transcriptional activity. {ECO:0000269|PubMed:31696227}.
P15924 DSP S2616 ochoa Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}.
P16066 NPR1 S542 psp Atrial natriuretic peptide receptor 1 (EC 4.6.1.2) (Atrial natriuretic peptide receptor type A) (ANP-A) (ANPR-A) (NPR-A) (Guanylate cyclase A) (GC-A) Receptor for the atrial natriuretic peptide NPPA/ANP and the brain natriuretic peptide NPPB/BNP which are potent vasoactive hormones playing a key role in cardiovascular homeostasis (PubMed:39543315). Plays an essential role in the regulation of endothelial cell senescence and vascular aging (PubMed:36016499). Upon activation by ANP or BNP, stimulates the production of cyclic guanosine monophosphate (cGMP) that promotes vascular tone and volume homeostasis by activation of protein kinase cGMP-dependent 1/PRKG1 and subsequently PRKAA1, thereby controlling blood pressure and maintaining cardiovascular homeostasis (PubMed:36016499). {ECO:0000269|PubMed:1672777, ECO:0000269|PubMed:36016499, ECO:0000269|PubMed:39543315}.
P17676 CEBPB S229 ochoa CCAAT/enhancer-binding protein beta (C/EBP beta) (Liver activator protein) (LAP) (Liver-enriched inhibitory protein) (LIP) (Nuclear factor NF-IL6) (Transcription factor 5) (TCF-5) Important transcription factor regulating the expression of genes involved in immune and inflammatory responses (PubMed:12048245, PubMed:1741402, PubMed:18647749, PubMed:9374525). Also plays a significant role in adipogenesis, as well as in the gluconeogenic pathway, liver regeneration, and hematopoiesis. The consensus recognition site is 5'-T[TG]NNGNAA[TG]-3'. Its functional capacity is governed by protein interactions and post-translational protein modifications. During early embryogenesis, plays essential and redundant roles with CEBPA. Has a promitotic effect on many cell types such as hepatocytes and adipocytes but has an antiproliferative effect on T-cells by repressing MYC expression, facilitating differentiation along the T-helper 2 lineage. Binds to regulatory regions of several acute-phase and cytokines genes and plays a role in the regulation of acute-phase reaction and inflammation. Also plays a role in intracellular bacteria killing (By similarity). During adipogenesis, is rapidly expressed and, after activation by phosphorylation, induces CEBPA and PPARG, which turn on the series of adipocyte genes that give rise to the adipocyte phenotype. The delayed transactivation of the CEBPA and PPARG genes by CEBPB appears necessary to allow mitotic clonal expansion and thereby progression of terminal differentiation (PubMed:20829347). Essential for female reproduction because of a critical role in ovarian follicle development (By similarity). Restricts osteoclastogenesis: together with NFE2L1; represses expression of DSPP during odontoblast differentiation (By similarity). {ECO:0000250|UniProtKB:P21272, ECO:0000250|UniProtKB:P28033, ECO:0000269|PubMed:12048245, ECO:0000269|PubMed:18647749, ECO:0000269|PubMed:20829347, ECO:0000269|PubMed:9374525, ECO:0000303|PubMed:25451943}.; FUNCTION: [Isoform 2]: Essential for gene expression induction in activated macrophages. Plays a major role in immune responses such as CD4(+) T-cell response, granuloma formation and endotoxin shock. Not essential for intracellular bacteria killing. {ECO:0000250|UniProtKB:P28033}.; FUNCTION: [Isoform 3]: Acts as a dominant negative through heterodimerization with isoform 2 (PubMed:11741938). Promotes osteoblast differentiation and osteoclastogenesis (By similarity). {ECO:0000250|UniProtKB:P21272, ECO:0000250|UniProtKB:P28033, ECO:0000269|PubMed:11741938}.
P17676 CEBPB S231 ochoa CCAAT/enhancer-binding protein beta (C/EBP beta) (Liver activator protein) (LAP) (Liver-enriched inhibitory protein) (LIP) (Nuclear factor NF-IL6) (Transcription factor 5) (TCF-5) Important transcription factor regulating the expression of genes involved in immune and inflammatory responses (PubMed:12048245, PubMed:1741402, PubMed:18647749, PubMed:9374525). Also plays a significant role in adipogenesis, as well as in the gluconeogenic pathway, liver regeneration, and hematopoiesis. The consensus recognition site is 5'-T[TG]NNGNAA[TG]-3'. Its functional capacity is governed by protein interactions and post-translational protein modifications. During early embryogenesis, plays essential and redundant roles with CEBPA. Has a promitotic effect on many cell types such as hepatocytes and adipocytes but has an antiproliferative effect on T-cells by repressing MYC expression, facilitating differentiation along the T-helper 2 lineage. Binds to regulatory regions of several acute-phase and cytokines genes and plays a role in the regulation of acute-phase reaction and inflammation. Also plays a role in intracellular bacteria killing (By similarity). During adipogenesis, is rapidly expressed and, after activation by phosphorylation, induces CEBPA and PPARG, which turn on the series of adipocyte genes that give rise to the adipocyte phenotype. The delayed transactivation of the CEBPA and PPARG genes by CEBPB appears necessary to allow mitotic clonal expansion and thereby progression of terminal differentiation (PubMed:20829347). Essential for female reproduction because of a critical role in ovarian follicle development (By similarity). Restricts osteoclastogenesis: together with NFE2L1; represses expression of DSPP during odontoblast differentiation (By similarity). {ECO:0000250|UniProtKB:P21272, ECO:0000250|UniProtKB:P28033, ECO:0000269|PubMed:12048245, ECO:0000269|PubMed:18647749, ECO:0000269|PubMed:20829347, ECO:0000269|PubMed:9374525, ECO:0000303|PubMed:25451943}.; FUNCTION: [Isoform 2]: Essential for gene expression induction in activated macrophages. Plays a major role in immune responses such as CD4(+) T-cell response, granuloma formation and endotoxin shock. Not essential for intracellular bacteria killing. {ECO:0000250|UniProtKB:P28033}.; FUNCTION: [Isoform 3]: Acts as a dominant negative through heterodimerization with isoform 2 (PubMed:11741938). Promotes osteoblast differentiation and osteoclastogenesis (By similarity). {ECO:0000250|UniProtKB:P21272, ECO:0000250|UniProtKB:P28033, ECO:0000269|PubMed:11741938}.
P21453 S1PR1 S359 ochoa|psp Sphingosine 1-phosphate receptor 1 (S1P receptor 1) (S1P1) (Endothelial differentiation G-protein coupled receptor 1) (Sphingosine 1-phosphate receptor Edg-1) (S1P receptor Edg-1) (CD antigen CD363) G-protein coupled receptor for the bioactive lysosphingolipid sphingosine 1-phosphate (S1P) that seems to be coupled to the G(i) subclass of heteromeric G proteins. Signaling leads to the activation of RAC1, SRC, PTK2/FAK1 and MAP kinases. Plays an important role in cell migration, probably via its role in the reorganization of the actin cytoskeleton and the formation of lamellipodia in response to stimuli that increase the activity of the sphingosine kinase SPHK1. Required for normal chemotaxis toward sphingosine 1-phosphate. Required for normal embryonic heart development and normal cardiac morphogenesis. Plays an important role in the regulation of sprouting angiogenesis and vascular maturation. Inhibits sprouting angiogenesis to prevent excessive sprouting during blood vessel development. Required for normal egress of mature T-cells from the thymus into the blood stream and into peripheral lymphoid organs. Plays a role in the migration of osteoclast precursor cells, the regulation of bone mineralization and bone homeostasis (By similarity). Plays a role in responses to oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by pulmonary endothelial cells and in the protection against ventilator-induced lung injury. {ECO:0000250, ECO:0000269|PubMed:10982820, ECO:0000269|PubMed:11230698, ECO:0000269|PubMed:11583630, ECO:0000269|PubMed:11604399, ECO:0000269|PubMed:19286607, ECO:0000269|PubMed:22344443, ECO:0000269|PubMed:8626678, ECO:0000269|PubMed:9488656}.
P25101 EDNRA S397 psp Endothelin-1 receptor (Endothelin receptor type A) (ET-A) (ETA-R) (hET-AR) Receptor for endothelin-1. Mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. The rank order of binding affinities for ET-A is: ET1 > ET2 >> ET3.
P25116 F2R S399 ochoa|psp Proteinase-activated receptor 1 (PAR-1) (Coagulation factor II receptor) (Thrombin receptor) High affinity receptor that binds the activated thrombin, leading to calcium release from intracellular stores (PubMed:1672265, PubMed:8136362). The thrombin-activated receptor signaling pathway is mediated through PTX-insensitive G proteins, activation of phospholipase C resulting in the production of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) which binds to InsP3 receptors causing calcium release from the stores (By similarity). In astrocytes, the calcium released into the cytosol allows the Ca(2+)-dependent release of L-glutamate into the synaptic cleft through BEST1, that targets the neuronal postsynaptic GRIN2A/NMDAR receptor resulting in the synaptic plasticity regulation (By similarity). May play a role in platelets activation and in vascular development (PubMed:10079109). Mediates up-regulation of pro-inflammatory cytokines, such as MCP-1/CCL2 and IL6, triggered by coagulation factor Xa (F10) in cardiac fibroblasts and umbilical vein endothelial cells (PubMed:30568593, PubMed:34831181). {ECO:0000250|UniProtKB:P26824, ECO:0000250|UniProtKB:P30558, ECO:0000269|PubMed:10079109, ECO:0000269|PubMed:1672265, ECO:0000269|PubMed:30568593, ECO:0000269|PubMed:34831181, ECO:0000269|PubMed:8136362}.
P29558 RBMS1 S52 ochoa RNA-binding motif, single-stranded-interacting protein 1 (Single-stranded DNA-binding protein MSSP-1) (Suppressor of CDC2 with RNA-binding motif 2) Single-stranded DNA binding protein that interacts with the region upstream of the MYC gene. Binds specifically to the DNA sequence motif 5'-[AT]CT[AT][AT]T-3'. Probably has a role in DNA replication.
P31629 HIVEP2 S817 ochoa Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation.
P35222 CTNNB1 S37 ochoa|psp Catenin beta-1 (Beta-catenin) Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}.
P38159 RBMX S336 ochoa RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}.
P41235 HNF4A S151 psp Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}.
P43243 MATR3 S79 ochoa Matrin-3 May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}.
P45974 USP5 S787 ochoa Ubiquitin carboxyl-terminal hydrolase 5 (EC 3.4.19.12) (Deubiquitinating enzyme 5) (Isopeptidase T) (Ubiquitin thioesterase 5) (Ubiquitin-specific-processing protease 5) Deubiquitinating enzyme that participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. Affects thereby important cellular signaling pathways such as NF-kappa-B, Wnt/beta-catenin, and cytokine production by regulating ubiquitin-dependent protein degradation. Participates in the activation of the Wnt signaling pathway by promoting FOXM1 deubiquitination and stabilization that induces the recruitment of beta-catenin to Wnt target gene promoter (PubMed:26912724). Regulates the assembly and disassembly of heat-induced stress granules by mediating the hydrolysis of unanchored ubiquitin chains (PubMed:29567855). Promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein (PubMed:37534934). Affects T-cell biology by stabilizing the inhibitory receptor on T-cells PDC1 (PubMed:37208329). Acts as a negative regulator of autophagy by regulating ULK1 at both protein and mRNA levels (PubMed:37607937). Acts also as a negative regulator of type I interferon production by simultaneously removing both 'Lys-48'-linked unanchored and 'Lys-63'-linked anchored polyubiquitin chains on the transcription factor IRF3 (PubMed:39761299). Modulates the stability of DNA mismatch repair protein MLH1 and counteracts the effect of the ubiquitin ligase UBR4 (PubMed:39032648). Upon activation by insulin, it gets phosphorylated through mTORC1-mediated phosphorylation to enhance YTHDF1 stability by removing 'Lys-11'-linked polyubiquitination (PubMed:39900921). May also deubiquitinate other substrates such as the calcium channel CACNA1H (By similarity). {ECO:0000250|UniProtKB:P56399, ECO:0000269|PubMed:19098288, ECO:0000269|PubMed:26912724, ECO:0000269|PubMed:29567855, ECO:0000269|PubMed:37208329, ECO:0000269|PubMed:37534934, ECO:0000269|PubMed:39032648, ECO:0000269|PubMed:39761299, ECO:0000269|PubMed:39900921}.
P46821 MAP1B S1805 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46934 NEDD4 Y751 ochoa E3 ubiquitin-protein ligase NEDD4 (EC 2.3.2.26) (Cell proliferation-inducing gene 53 protein) (HECT-type E3 ubiquitin transferase NEDD4) (Neural precursor cell expressed developmentally down-regulated protein 4) (NEDD-4) E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Specifically ubiquitinates 'Lys-63' in target proteins (PubMed:19920177, PubMed:21399620, PubMed:23644597). Involved in the pathway leading to the degradation of VEGFR-2/KDFR, independently of its ubiquitin-ligase activity. Monoubiquitinates IGF1R at multiple sites, thus leading to receptor internalization and degradation in lysosomes (By similarity). Ubiquitinates FGFR1, leading to receptor internalization and degradation in lysosomes (PubMed:21765395). Promotes ubiquitination of RAPGEF2 (PubMed:11598133). According to PubMed:18562292 the direct link between NEDD4 and PTEN regulation through polyubiquitination described in PubMed:17218260 is questionable. Involved in ubiquitination of ERBB4 intracellular domain E4ICD (By similarity). Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development (By similarity). Ubiquitinates TNK2 and regulates EGF-induced degradation of EGFR and TNF2 (PubMed:20086093). Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Ubiquitinates DAZAP2, leading to its proteasomal degradation (PubMed:11342538). Ubiquitinates POLR2A (PubMed:19920177). Functions as a platform to recruit USP13 to form an NEDD4-USP13 deubiquitination complex that plays a critical role in cleaving the 'Lys-48'-linked ubiquitin chains of VPS34 and then stabilizing VPS34, thus promoting the formation of autophagosomes (PubMed:32101753). {ECO:0000250|UniProtKB:P46935, ECO:0000269|PubMed:11342538, ECO:0000269|PubMed:11598133, ECO:0000269|PubMed:17218260, ECO:0000269|PubMed:18562292, ECO:0000269|PubMed:21399620, ECO:0000269|PubMed:21765395, ECO:0000269|PubMed:23644597, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:32101753}.; FUNCTION: (Microbial infection) Involved in the ubiquitination of Ebola virus protein VP40 which plays a role in viral budding. {ECO:0000269|PubMed:12559917, ECO:0000269|PubMed:18305167}.
P46939 UTRN S833 ochoa Utrophin (Dystrophin-related protein 1) (DRP-1) May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}.
P47974 ZFP36L2 S265 ochoa mRNA decay activator protein ZFP36L2 (Butyrate response factor 2) (EGF-response factor 2) (ERF-2) (TPA-induced sequence 11d) (Zinc finger protein 36, C3H1 type-like 2) (ZFP36-like 2) Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:14981510, PubMed:25106868, PubMed:34611029). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:25106868). Functions by recruiting the CCR4-NOT deadenylase complex and probably other components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:25106868). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:14981510, PubMed:20506496, PubMed:25106868). Promotes ARE-containing mRNA decay of the low-density lipoprotein (LDL) receptor (LDLR) mRNA in response to phorbol 12-myristate 13-acetate (PMA) treatment in a p38 MAPK-dependent manner (PubMed:25106868). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs). Plays a role in mature peripheral neuron integrity by promoting ARE-containing mRNA decay of the transcriptional repressor REST mRNA. Plays a role in ovulation and oocyte meiotic maturation by promoting ARE-mediated mRNA decay of the luteinizing hormone receptor LHCGR mRNA. Acts as a negative regulator of erythroid cell differentiation: promotes glucocorticoid-induced self-renewal of erythroid cells by binding mRNAs that are induced or highly expressed during terminal erythroid differentiation and promotes their degradation, preventing erythroid cell differentiation. In association with ZFP36L1 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination process and functional immune cell formation. Together with ZFP36L1 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA. {ECO:0000250|UniProtKB:P23949, ECO:0000269|PubMed:14981510, ECO:0000269|PubMed:20506496, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:34611029}.
P49792 RANBP2 S796 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 S1651 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 S1768 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 S2250 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 S2570 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49815 TSC2 S1387 ochoa|psp Tuberin (Tuberous sclerosis 2 protein) Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}.
P50402 EMD S62 ochoa Emerin Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}.
P50402 EMD S66 ochoa Emerin Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}.
P53396 ACLY S459 ochoa ATP-citrate synthase (EC 2.3.3.8) (ATP-citrate (pro-S-)-lyase) (ACL) (Citrate cleavage enzyme) Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate in multiple biochemical reactions in protein, carbohydrate and lipid metabolism. {ECO:0000269|PubMed:10653665, ECO:0000269|PubMed:1371749, ECO:0000269|PubMed:19286649, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:39881208, ECO:0000269|PubMed:9116495}.
P53671 LIMK2 S297 ochoa LIM domain kinase 2 (LIMK-2) (EC 2.7.11.1) Serine/threonine-protein kinase that plays an essential role in the regulation of actin filament dynamics (PubMed:10436159, PubMed:11018042). Acts downstream of several Rho family GTPase signal transduction pathways (PubMed:10436159, PubMed:11018042). Involved in astral microtubule organization and mitotic spindle orientation during early stages of mitosis by mediating phosphorylation of TPPP (PubMed:22328514). Displays serine/threonine-specific phosphorylation of myelin basic protein and histone (MBP) in vitro (PubMed:8537403). Suppresses ciliogenesis via multiple pathways; phosphorylation of CFL1, suppression of directional trafficking of ciliary vesicles to the ciliary base, and by facilitating YAP1 nuclear localization where it acts as a transcriptional corepressor of the TEAD4 target genes AURKA and PLK1 (PubMed:25849865). {ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:11018042, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:25849865, ECO:0000269|PubMed:8537403}.
P54132 BLM S464 ochoa RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P54198 HIRA S557 ochoa Protein HIRA (TUP1-like enhancer of split protein 1) Cooperates with ASF1A to promote replication-independent chromatin assembly. Required for the periodic repression of histone gene transcription during the cell cycle. Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit. {ECO:0000269|PubMed:12370293, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15621527}.
P55196 AFDN S1318 ochoa Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}.
P57078 RIPK4 S438 ochoa Receptor-interacting serine/threonine-protein kinase 4 (EC 2.7.11.1) (Ankyrin repeat domain-containing protein 3) (PKC-delta-interacting protein kinase) Serine/threonine protein kinase (By similarity). Required for embryonic skin development and correct skin homeostasis in adults, via phosphorylation of PKP1 and subsequent promotion of keratinocyte differentiation and cell adhesion (By similarity). It is a direct transcriptional target of TP63 (PubMed:22197488). Plays a role in NF-kappa-B activation (PubMed:12446564). {ECO:0000250|UniProtKB:Q9ERK0, ECO:0000269|PubMed:12446564, ECO:0000269|PubMed:22197488}.
P62995 TRA2B S22 ochoa Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:9546399}.
P62995 TRA2B S26 ochoa Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:9546399}.
P78310 CXADR S301 ochoa Coxsackievirus and adenovirus receptor (CAR) (hCAR) (CVB3-binding protein) (Coxsackievirus B-adenovirus receptor) (HCVADR) Component of the epithelial apical junction complex that may function as a homophilic cell adhesion molecule and is essential for tight junction integrity. Also involved in transepithelial migration of leukocytes through adhesive interactions with JAML a transmembrane protein of the plasma membrane of leukocytes. The interaction between both receptors also mediates the activation of gamma-delta T-cells, a subpopulation of T-cells residing in epithelia and involved in tissue homeostasis and repair. Upon epithelial CXADR-binding, JAML induces downstream cell signaling events in gamma-delta T-cells through PI3-kinase and MAP kinases. It results in proliferation and production of cytokines and growth factors by T-cells that in turn stimulate epithelial tissues repair. {ECO:0000269|PubMed:11734628, ECO:0000269|PubMed:12297051, ECO:0000269|PubMed:15800062, ECO:0000269|PubMed:19064666, ECO:0000269|PubMed:9096397}.; FUNCTION: (Microbial infection) Acts as a receptor for adenovirus type C. {ECO:0000269|PubMed:10567268, ECO:0000269|PubMed:10666333, ECO:0000269|PubMed:12297051, ECO:0000269|PubMed:9733828}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus B1 to B6. {ECO:0000269|PubMed:10814575, ECO:0000269|PubMed:14978041}.
P78310 CXADR S308 ochoa Coxsackievirus and adenovirus receptor (CAR) (hCAR) (CVB3-binding protein) (Coxsackievirus B-adenovirus receptor) (HCVADR) Component of the epithelial apical junction complex that may function as a homophilic cell adhesion molecule and is essential for tight junction integrity. Also involved in transepithelial migration of leukocytes through adhesive interactions with JAML a transmembrane protein of the plasma membrane of leukocytes. The interaction between both receptors also mediates the activation of gamma-delta T-cells, a subpopulation of T-cells residing in epithelia and involved in tissue homeostasis and repair. Upon epithelial CXADR-binding, JAML induces downstream cell signaling events in gamma-delta T-cells through PI3-kinase and MAP kinases. It results in proliferation and production of cytokines and growth factors by T-cells that in turn stimulate epithelial tissues repair. {ECO:0000269|PubMed:11734628, ECO:0000269|PubMed:12297051, ECO:0000269|PubMed:15800062, ECO:0000269|PubMed:19064666, ECO:0000269|PubMed:9096397}.; FUNCTION: (Microbial infection) Acts as a receptor for adenovirus type C. {ECO:0000269|PubMed:10567268, ECO:0000269|PubMed:10666333, ECO:0000269|PubMed:12297051, ECO:0000269|PubMed:9733828}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus B1 to B6. {ECO:0000269|PubMed:10814575, ECO:0000269|PubMed:14978041}.
P78347 GTF2I S839 ochoa General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}.
P82094 TMF1 S344 ochoa TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}.
P98175 RBM10 S73 ochoa RNA-binding protein 10 (G patch domain-containing protein 9) (RNA-binding motif protein 10) (RNA-binding protein S1-1) (S1-1) Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May be involved in post-transcriptional processing, most probably in mRNA splicing (PubMed:18315527). Binds to RNA homopolymers, with a preference for poly(G) and poly(U) and little for poly(A) (By similarity). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000250|UniProtKB:P70501, ECO:0000269|PubMed:18315527, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:28431233}.
Q00536 CDK16 S90 ochoa|psp Cyclin-dependent kinase 16 (EC 2.7.11.22) (Cell division protein kinase 16) (PCTAIRE-motif protein kinase 1) (Serine/threonine-protein kinase PCTAIRE-1) Protein kinase that plays a role in vesicle-mediated transport processes and exocytosis. Regulates GH1 release by brain neurons. Phosphorylates NSF, and thereby regulates NSF oligomerization. Required for normal spermatogenesis. Regulates neuron differentiation and dendrite development (By similarity). Plays a role in the regulation of insulin secretion in response to changes in blood glucose levels. Can phosphorylate CCNY at 'Ser-336' (in vitro). {ECO:0000250, ECO:0000269|PubMed:22184064, ECO:0000269|PubMed:22796189, ECO:0000269|PubMed:22798068}.
Q01974 ROR2 S870 ochoa Tyrosine-protein kinase transmembrane receptor ROR2 (EC 2.7.10.1) (Neurotrophic tyrosine kinase, receptor-related 2) Tyrosine-protein kinase receptor which may be involved in the early formation of the chondrocytes. It seems to be required for cartilage and growth plate development (By similarity). Phosphorylates YWHAB, leading to induction of osteogenesis and bone formation (PubMed:17717073). In contrast, has also been shown to have very little tyrosine kinase activity in vitro. May act as a receptor for wnt ligand WNT5A which may result in the inhibition of WNT3A-mediated signaling (PubMed:25029443). {ECO:0000250|UniProtKB:Q9Z138, ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:25029443}.
Q03164 KMT2A S3529 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q04726 TLE3 S205 ochoa Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}.
Q04726 TLE3 S211 ochoa Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}.
Q08495 DMTN S22 ochoa Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}.
Q09666 AHNAK S5739 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12797 ASPH S22 ochoa Aspartyl/asparaginyl beta-hydroxylase (EC 1.14.11.16) (Aspartate beta-hydroxylase) (ASP beta-hydroxylase) (Peptide-aspartate beta-dioxygenase) [Isoform 1]: Specifically hydroxylates an Asp or Asn residue in certain epidermal growth factor-like (EGF) domains of a number of proteins. {ECO:0000269|PubMed:11773073}.; FUNCTION: [Isoform 8]: Membrane-bound Ca(2+)-sensing protein, which is a structural component of the ER-plasma membrane junctions. Isoform 8 regulates the activity of Ca(+2) released-activated Ca(+2) (CRAC) channels in T-cells. {ECO:0000269|PubMed:22586105}.
Q12797 ASPH S24 ochoa Aspartyl/asparaginyl beta-hydroxylase (EC 1.14.11.16) (Aspartate beta-hydroxylase) (ASP beta-hydroxylase) (Peptide-aspartate beta-dioxygenase) [Isoform 1]: Specifically hydroxylates an Asp or Asn residue in certain epidermal growth factor-like (EGF) domains of a number of proteins. {ECO:0000269|PubMed:11773073}.; FUNCTION: [Isoform 8]: Membrane-bound Ca(2+)-sensing protein, which is a structural component of the ER-plasma membrane junctions. Isoform 8 regulates the activity of Ca(+2) released-activated Ca(+2) (CRAC) channels in T-cells. {ECO:0000269|PubMed:22586105}.
Q12797 ASPH S28 ochoa Aspartyl/asparaginyl beta-hydroxylase (EC 1.14.11.16) (Aspartate beta-hydroxylase) (ASP beta-hydroxylase) (Peptide-aspartate beta-dioxygenase) [Isoform 1]: Specifically hydroxylates an Asp or Asn residue in certain epidermal growth factor-like (EGF) domains of a number of proteins. {ECO:0000269|PubMed:11773073}.; FUNCTION: [Isoform 8]: Membrane-bound Ca(2+)-sensing protein, which is a structural component of the ER-plasma membrane junctions. Isoform 8 regulates the activity of Ca(+2) released-activated Ca(+2) (CRAC) channels in T-cells. {ECO:0000269|PubMed:22586105}.
Q12802 AKAP13 S403 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12872 SFSWAP S909 ochoa Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}.
Q13428 TCOF1 S119 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13469 NFATC2 Y765 ochoa Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}.
Q13501 SQSTM1 S291 ochoa Sequestosome-1 (EBI3-associated protein of 60 kDa) (EBIAP) (p60) (Phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa) (Ubiquitin-binding protein p62) (p62) Molecular adapter required for selective macroautophagy (aggrephagy) by acting as a bridge between polyubiquitinated proteins and autophagosomes (PubMed:15340068, PubMed:15953362, PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22017874, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:33509017, PubMed:34471133, PubMed:34893540, PubMed:35831301, PubMed:37306101, PubMed:37802024). Promotes the recruitment of ubiquitinated cargo proteins to autophagosomes via multiple domains that bridge proteins and organelles in different steps (PubMed:16286508, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:34893540, PubMed:37802024). SQSTM1 first mediates the assembly and removal of ubiquitinated proteins by undergoing liquid-liquid phase separation upon binding to ubiquitinated proteins via its UBA domain, leading to the formation of insoluble cytoplasmic inclusions, known as p62 bodies (PubMed:15911346, PubMed:20168092, PubMed:22017874, PubMed:24128730, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:37802024). SQSTM1 then interacts with ATG8 family proteins on autophagosomes via its LIR motif, leading to p62 body recruitment to autophagosomes, followed by autophagic clearance of ubiquitinated proteins (PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:37802024). SQSTM1 is itself degraded along with its ubiquitinated cargos (PubMed:16286508, PubMed:17580304, PubMed:37802024). Also required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Also involved in autophagy of peroxisomes (pexophagy) in response to reactive oxygen species (ROS) by acting as a bridge between ubiquitinated PEX5 receptor and autophagosomes (PubMed:26344566). Acts as an activator of the NFE2L2/NRF2 pathway via interaction with KEAP1: interaction inactivates the BCR(KEAP1) complex by sequestering the complex in inclusion bodies, promoting nuclear accumulation of NFE2L2/NRF2 and subsequent expression of cytoprotective genes (PubMed:20452972, PubMed:28380357, PubMed:33393215, PubMed:37306101). Promotes relocalization of 'Lys-63'-linked ubiquitinated STING1 to autophagosomes (PubMed:29496741). Involved in endosome organization by retaining vesicles in the perinuclear cloud: following ubiquitination by RNF26, attracts specific vesicle-associated adapters, forming a molecular bridge that restrains cognate vesicles in the perinuclear region and organizes the endosomal pathway for efficient cargo transport (PubMed:27368102, PubMed:33472082). Sequesters tensin TNS2 into cytoplasmic puncta, promoting TNS2 ubiquitination and proteasomal degradation (PubMed:25101860). May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1 (PubMed:10356400, PubMed:10747026, PubMed:11244088, PubMed:12471037, PubMed:16079148, PubMed:19931284). May play a role in titin/TTN downstream signaling in muscle cells (PubMed:15802564). Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). {ECO:0000250|UniProtKB:Q64337, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10747026, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:12471037, ECO:0000269|PubMed:15340068, ECO:0000269|PubMed:15802564, ECO:0000269|PubMed:15911346, ECO:0000269|PubMed:15953362, ECO:0000269|PubMed:16079148, ECO:0000269|PubMed:16286508, ECO:0000269|PubMed:17580304, ECO:0000269|PubMed:19931284, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:25101860, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:28404643, ECO:0000269|PubMed:29343546, ECO:0000269|PubMed:29496741, ECO:0000269|PubMed:29507397, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:33393215, ECO:0000269|PubMed:33472082, ECO:0000269|PubMed:33509017, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:37306101, ECO:0000269|PubMed:37802024}.
Q13555 CAMK2G S319 psp Calcium/calmodulin-dependent protein kinase type II subunit gamma (CaM kinase II subunit gamma) (CaMK-II subunit gamma) (EC 2.7.11.17) Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-coupling factor triadin (PubMed:16690701). In the central nervous system, it is involved in the regulation of neurite formation and arborization (PubMed:30184290). It may participate in the promotion of dendritic spine and synapse formation and maintenance of synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q923T9, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:30184290}.
Q14683 SMC1A S970 ochoa Structural maintenance of chromosomes protein 1A (SMC protein 1A) (SMC-1-alpha) (SMC-1A) (Sb1.8) Involved in chromosome cohesion during cell cycle and in DNA repair. Central component of cohesin complex. The cohesin complex is required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. Involved in DNA repair via its interaction with BRCA1 and its related phosphorylation by ATM, or via its phosphorylation by ATR. Works as a downstream effector both in the ATM/NBS1 branch and in the ATR/MSH2 branch of S-phase checkpoint. {ECO:0000269|PubMed:11877377}.
Q14699 RFTN1 S175 ochoa Raftlin (Cell migration-inducing gene 2 protein) (Raft-linking protein) Involved in protein trafficking via association with clathrin and AP2 complex (PubMed:21266579, PubMed:27022195). Upon bacterial lipopolysaccharide stimulation, mediates internalization of TLR4 to endosomes in dendritic cells and macrophages; and internalization of poly(I:C) to TLR3-positive endosomes in myeloid dendritic cells and epithelial cells; resulting in activation of TICAM1-mediated signaling and subsequent IFNB1 production (PubMed:21266579, PubMed:27022195). Involved in T-cell antigen receptor-mediated signaling by regulating tyrosine kinase LCK localization, T-cell dependent antibody production and cytokine secretion (By similarity). May regulate B-cell antigen receptor-mediated signaling (PubMed:12805216). May play a pivotal role in the formation and/or maintenance of lipid rafts (PubMed:12805216). {ECO:0000250|UniProtKB:Q6A0D4, ECO:0000269|PubMed:12805216, ECO:0000269|PubMed:21266579, ECO:0000269|PubMed:27022195}.
Q15004 PCLAF S37 ochoa PCNA-associated factor (Hepatitis C virus NS5A-transactivated protein 9) (HCV NS5A-transactivated protein 9) (Overexpressed in anaplastic thyroid carcinoma 1) (OEATC-1) (PCNA-associated factor of 15 kDa) (PAF15) (p15PAF) (PCNA-clamp-associated factor) PCNA-binding protein that acts as a regulator of DNA repair during DNA replication. Following DNA damage, the interaction with PCNA is disrupted, facilitating the interaction between monoubiquitinated PCNA and the translesion DNA synthesis DNA polymerase eta (POLH) at stalled replisomes, facilitating the bypass of replication-fork-blocking lesions. Also acts as a regulator of centrosome number. {ECO:0000269|PubMed:21673012, ECO:0000269|PubMed:23000965}.
Q15555 MAPRE2 S236 ochoa|psp Microtubule-associated protein RP/EB family member 2 (APC-binding protein EB2) (End-binding protein 2) (EB2) Adapter protein that is involved in microtubule polymerization, and spindle function by stabilizing microtubules and anchoring them at centrosomes. Therefore, ensures mitotic progression and genome stability (PubMed:27030108). Acts as a central regulator of microtubule reorganization in apico-basal epithelial differentiation (By similarity). Plays a role during oocyte meiosis by regulating microtubule dynamics (By similarity). Participates in neurite growth by interacting with plexin B3/PLXNB3 and microtubule reorganization during apico-basal epithelial differentiation (PubMed:22373814). Also plays an essential role for cell migration and focal adhesion dynamics. Mechanistically, recruits HAX1 to microtubules in order to regulate focal adhesion dynamics (PubMed:26527684). {ECO:0000250|UniProtKB:Q8R001, ECO:0000269|PubMed:22373814, ECO:0000269|PubMed:23844040, ECO:0000269|PubMed:26527684, ECO:0000269|PubMed:27030108}.
Q15648 MED1 S1149 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q16566 CAMK4 S356 ochoa Calcium/calmodulin-dependent protein kinase type IV (CaMK IV) (EC 2.7.11.17) (CaM kinase-GR) Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK4 signaling cascade and regulates, mainly by phosphorylation, the activity of several transcription activators, such as CREB1, MEF2D, JUN and RORA, which play pivotal roles in immune response, inflammation, and memory consolidation. In the thymus, regulates the CD4(+)/CD8(+) double positive thymocytes selection threshold during T-cell ontogeny. In CD4 memory T-cells, is required to link T-cell antigen receptor (TCR) signaling to the production of IL2, IFNG and IL4 (through the regulation of CREB and MEF2). Regulates the differentiation and survival phases of osteoclasts and dendritic cells (DCs). Mediates DCs survival by linking TLR4 and the regulation of temporal expression of BCL2. Phosphorylates the transcription activator CREB1 on 'Ser-133' in hippocampal neuron nuclei and contribute to memory consolidation and long term potentiation (LTP) in the hippocampus. Can activate the MAP kinases MAPK1/ERK2, MAPK8/JNK1 and MAPK14/p38 and stimulate transcription through the phosphorylation of ELK1 and ATF2. Can also phosphorylate in vitro CREBBP, PRM2, MEF2A and STMN1/OP18. {ECO:0000269|PubMed:10617605, ECO:0000269|PubMed:17909078, ECO:0000269|PubMed:18829949, ECO:0000269|PubMed:7961813, ECO:0000269|PubMed:8065343, ECO:0000269|PubMed:8855261, ECO:0000269|PubMed:8980227, ECO:0000269|PubMed:9154845}.
Q16643 DBN1 S345 ochoa Drebrin (Developmentally-regulated brain protein) Actin cytoskeleton-organizing protein that plays a role in the formation of cell projections (PubMed:20215400). Required for actin polymerization at immunological synapses (IS) and for the recruitment of the chemokine receptor CXCR4 to IS (PubMed:20215400). Plays a role in dendritic spine morphogenesis and organization, including the localization of the dopamine receptor DRD1 to the dendritic spines (By similarity). Involved in memory-related synaptic plasticity in the hippocampus (By similarity). {ECO:0000250|UniProtKB:Q9QXS6, ECO:0000269|PubMed:20215400}.
Q2NKX8 ERCC6L S988 ochoa DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}.
Q32MZ4 LRRFIP1 S124 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q5HYJ3 FAM76B S160 ochoa Protein FAM76B Negatively regulates the NF-kappa-B-mediated inflammatory pathway by preventing the translocation of HNRNPA2B1 from the nucleus to the cytoplasm (PubMed:37643469). Inhibits the PI3K/Akt/NF-kappa-B pathway-mediated polarization of M1 macrophages by binding to and stabilizing PIK3CD mRNA, resulting in increased levels of PIK3CD protein and increased levels of phosphorylated downstream target AKT which leads to decreased NF-kappa-B signaling (PubMed:38421448). {ECO:0000269|PubMed:37643469, ECO:0000269|PubMed:38421448}.
Q5T1M5 FKBP15 S964 ochoa FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}.
Q5T200 ZC3H13 S380 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5TH69 ARFGEF3 S2103 ochoa Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}.
Q5THJ4 VPS13D S1042 ochoa Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}.
Q5UIP0 RIF1 S1556 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5VT06 CEP350 S715 ochoa Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}.
Q5VT52 RPRD2 S936 ochoa Regulation of nuclear pre-mRNA domain-containing protein 2 None
Q5VT52 RPRD2 S950 ochoa Regulation of nuclear pre-mRNA domain-containing protein 2 None
Q5VWN6 TASOR2 S609 ochoa Protein TASOR 2 None
Q5VWQ8 DAB2IP S730 ochoa Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}.
Q68CZ2 TNS3 S1126 ochoa Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}.
Q69YQ0 SPECC1L S893 ochoa Cytospin-A (Renal carcinoma antigen NY-REN-22) (Sperm antigen with calponin homology and coiled-coil domains 1-like) (SPECC1-like protein) Involved in cytokinesis and spindle organization. May play a role in actin cytoskeleton organization and microtubule stabilization and hence required for proper cell adhesion and migration. {ECO:0000269|PubMed:21703590}.
Q6GQQ9 OTUD7B S475 ochoa OTU domain-containing protein 7B (EC 3.4.19.12) (Cellular zinc finger anti-NF-kappa-B protein) (Cezanne) (Zinc finger A20 domain-containing protein 1) (Zinc finger protein Cezanne) Negative regulator of the non-canonical NF-kappa-B pathway that acts by mediating deubiquitination of TRAF3, an inhibitor of the NF-kappa-B pathway, thereby acting as a negative regulator of B-cell responses (PubMed:18178551). In response to non-canonical NF-kappa-B stimuli, deubiquitinates 'Lys-48'-linked polyubiquitin chains of TRAF3, preventing TRAF3 proteolysis and over-activation of non-canonical NF-kappa-B (By similarity). Negatively regulates mucosal immunity against infections (By similarity). Deubiquitinates ZAP70, and thereby regulates T cell receptor (TCR) signaling that leads to the activation of NF-kappa-B (PubMed:26903241). Plays a role in T cell homeostasis and is required for normal T cell responses, including production of IFNG and IL2 (By similarity). Mediates deubiquitination of EGFR (PubMed:22179831). Has deubiquitinating activity toward 'Lys-11', 'Lys-48' and 'Lys-63'-linked polyubiquitin chains (PubMed:11463333, PubMed:20622874, PubMed:23827681, PubMed:27732584). Has a much higher catalytic rate with 'Lys-11'-linked polyubiquitin chains (in vitro); however the physiological significance of these data are unsure (PubMed:27732584). Hydrolyzes both linear and branched forms of polyubiquitin (PubMed:12682062). Acts as a regulator of mTORC1 and mTORC2 assembly by mediating 'Lys-63'-linked deubiquitination of MLST8, thereby promoting assembly of the mTORC2 complex, while inibiting formation of the mTORC1 complex (PubMed:28489822). {ECO:0000250|UniProtKB:B2RUR8, ECO:0000269|PubMed:11463333, ECO:0000269|PubMed:12682062, ECO:0000269|PubMed:18178551, ECO:0000269|PubMed:20622874, ECO:0000269|PubMed:22179831, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:27732584, ECO:0000269|PubMed:28489822}.
Q6P2E9 EDC4 S879 ochoa Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}.
Q6R327 RICTOR S1286 ochoa Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}.
Q6R327 RICTOR S1585 ochoa Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}.
Q6T4R5 NHS S479 ochoa Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}.
Q6XZF7 DNMBP S1369 ochoa Dynamin-binding protein (Scaffold protein Tuba) Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}.
Q76N89 HECW1 S540 ochoa E3 ubiquitin-protein ligase HECW1 (EC 2.3.2.26) (HECT, C2 and WW domain-containing protein 1) (HECT-type E3 ubiquitin transferase HECW1) (NEDD4-like E3 ubiquitin-protein ligase 1) (hNEDL1) E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent degradation of DVL1. Also targets the mutant SOD1 protein involved in familial amyotrophic lateral sclerosis (FALS). Forms cytotoxic aggregates with DVL1, SSR3 and mutant SOD1 that lead to motor neuron death in FALS. {ECO:0000269|PubMed:14684739}.
Q7KZI7 MARK2 S398 ochoa Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}.
Q7Z2W4 ZC3HAV1 S502 ochoa Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}.
Q7Z3J3 RGPD4 S1275 ochoa RanBP2-like and GRIP domain-containing protein 4 None
Q7Z3J3 RGPD4 S1595 ochoa RanBP2-like and GRIP domain-containing protein 4 None
Q7Z6E9 RBBP6 S1707 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q86SQ4 ADGRG6 Y1172 ochoa Adhesion G-protein coupled receptor G6 (Developmentally regulated G-protein-coupled receptor) (G-protein coupled receptor 126) (Vascular inducible G protein-coupled receptor) [Cleaved into: Adhesion G-protein coupled receptor G6, N-terminal fragment (ADGRG6 N-terminal fragment) (ADGRG6-NTF); Adhesion G-protein coupled receptor G6, C-terminal fragment (ADGRG6 C-terminal fragment) (ADGRG6-CTF)] Adhesion G-protein coupled receptor (aGPCR) for steroid hormones, such as progesterone and 17alpha-hydroxyprogesterone (17OHP) (PubMed:35394864, PubMed:39884271). Involved in many biological processes, such as myelination, sprouting angiogenesis, placenta, ear and cartilage development (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors, such as adenylate cyclase (PubMed:24227709, PubMed:35394864). ADGRG6 is coupled to G(i) G alpha proteins and mediates inhibition of adenylate cyclase (PubMed:24227709, PubMed:35394864). Also able to couple to G(q) G proteins (PubMed:24227709). Involved in myelination of the peripheral nervous system: required for differentiation of promyelinating Schwann cells and for normal myelination of axons (PubMed:24227709). Also acts as a regulator of body length and bone mass (PubMed:18391950). Acts as a regulator of blood-brain barrier formation in the central nervous system vie its association with LRP1 and ITGB1 (By similarity). {ECO:0000250|UniProtKB:Q6F3F9, ECO:0000269|PubMed:18391950, ECO:0000269|PubMed:24227709, ECO:0000269|PubMed:35394864, ECO:0000269|PubMed:39884271}.
Q86TV6 TTC7B S681 ochoa Tetratricopeptide repeat protein 7B (TPR repeat protein 7B) (Tetratricopeptide repeat protein 7-like-1) (TPR repeat protein 7-like-1) Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (PubMed:26571211). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:26571211}.
Q86X29 LSR S389 ochoa Lipolysis-stimulated lipoprotein receptor (Angulin-1) Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}.
Q86YD5 LDLRAD3 S313 ochoa Low-density lipoprotein receptor class A domain-containing protein 3 (LDLR class A domain-containing protein 3) May influence APP processing, resulting in a decrease in sAPP-alpha production and increased amyloidogenic P3 peptide production. May regulate ITCH and NEDD4 E3 ligase activity and degradation (PubMed:26854353). {ECO:0000250, ECO:0000269|PubMed:26854353}.; FUNCTION: (Microbial infection) Acts as a receptor for Venezuelan equine encephalitis virus. {ECO:0000269|PubMed:33208938, ECO:0000269|PubMed:34646020, ECO:0000269|PubMed:34646021}.
Q8IUC4 RHPN2 S608 ochoa Rhophilin-2 (76 kDa RhoB effector protein) (GTP-Rho-binding protein 2) (p76RBE) Binds specifically to GTP-Rho. May function in a Rho pathway to limit stress fiber formation and/or increase the turnover of F-actin structures in the absence of high levels of RhoA activity. {ECO:0000269|PubMed:12221077}.
Q8IW35 CEP97 S825 ochoa Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}.
Q8IY92 SLX4 S605 ochoa Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}.
Q8IYB3 SRRM1 S756 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IZH2 XRN1 S1653 ochoa 5'-3' exoribonuclease 1 (EC 3.1.13.-) (Strand-exchange protein 1 homolog) Major 5'-3' exoribonuclease involved in mRNA decay. Required for the 5'-3'-processing of the G4 tetraplex-containing DNA and RNA substrates. The kinetic of hydrolysis is faster for G4 RNA tetraplex than for G4 DNA tetraplex and monomeric RNA tetraplex. Binds to RNA and DNA (By similarity). Plays a role in replication-dependent histone mRNA degradation. May act as a tumor suppressor protein in osteogenic sarcoma (OGS). {ECO:0000250|UniProtKB:P97789, ECO:0000269|PubMed:18172165}.
Q8IZW8 TNS4 S368 ochoa Tensin-4 (C-terminal tensin-like protein) Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}.
Q8N108 MIER1 S385 ochoa Mesoderm induction early response protein 1 (Early response 1) (Er1) (Mi-er1) (hMi-er1) Transcriptional repressor regulating the expression of a number of genes including SP1 target genes. Probably functions through recruitment of HDAC1 a histone deacetylase involved in chromatin silencing. {ECO:0000269|PubMed:12482978}.
Q8N122 RPTOR S863 ochoa|psp Regulatory-associated protein of mTOR (Raptor) (p150 target of rapamycin (TOR)-scaffold protein) Component of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:32561715, PubMed:37541260). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:32561715, PubMed:37541260). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:37541260). Within the mTORC1 complex, RPTOR acts both as a molecular adapter, which (1) mediates recruitment of mTORC1 to lysosomal membranes via interaction with small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD), and a (2) substrate-specific adapter, which promotes substrate specificity by binding to TOS motif-containing proteins and direct them towards the active site of the MTOR kinase domain for phosphorylation (PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). mTORC1 complex regulates many cellular processes, such as odontoblast and osteoclast differentiation or neuronal transmission (By similarity). mTORC1 complex in excitatory neuronal transmission is required for the prosocial behavior induced by the psychoactive substance lysergic acid diethylamide (LSD) (By similarity). {ECO:0000250|UniProtKB:Q8K4Q0, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12747827, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:26588989, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37541260}.
Q8N3X1 FNBP4 S435 ochoa Formin-binding protein 4 (Formin-binding protein 30) None
Q8N960 CEP120 S392 ochoa Centrosomal protein of 120 kDa (Cep120) (Coiled-coil domain-containing protein 100) Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors and for proper positioning of neurons during brain development. Also implicated in the migration and selfrenewal of neural progenitors. Required for centriole duplication and maturation during mitosis and subsequent ciliogenesis (By similarity). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000250|UniProtKB:Q7TSG1, ECO:0000269|PubMed:27185865}.
Q8NCD3 HJURP S563 ochoa Holliday junction recognition protein (14-3-3-associated AKT substrate) (Fetal liver-expressing gene 1 protein) (Up-regulated in lung cancer 9) Centromeric protein that plays a central role in the incorporation and maintenance of histone H3-like variant CENPA at centromeres. Acts as a specific chaperone for CENPA and is required for the incorporation of newly synthesized CENPA molecules into nucleosomes at replicated centromeres. Prevents CENPA-H4 tetramerization and prevents premature DNA binding by the CENPA-H4 tetramer. Directly binds Holliday junctions. {ECO:0000269|PubMed:19410544, ECO:0000269|PubMed:19410545}.
Q8NEM7 SUPT20H S434 ochoa Transcription factor SPT20 homolog (p38-interacting protein) (p38IP) Required for MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) activation during gastrulation. Required for down-regulation of E-cadherin during gastrulation by regulating E-cadherin protein level downstream from NCK-interacting kinase (NIK) and independently of the regulation of transcription by FGF signaling and Snail (By similarity). Required for starvation-induced ATG9A trafficking during autophagy. {ECO:0000250, ECO:0000269|PubMed:19893488}.
Q8NF91 SYNE1 S8258 ochoa Nesprin-1 (Enaptin) (KASH domain-containing protein 1) (KASH1) (Myocyte nuclear envelope protein 1) (Myne-1) (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope protein 1) (Syne-1) Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. May be involved in nucleus-centrosome attachment and nuclear migration in neural progenitors implicating LINC complex association with SUN1/2 and probably association with cytoplasmic dynein-dynactin motor complexes; SYNE1 and SYNE2 may act redundantly. Required for centrosome migration to the apical cell surface during early ciliogenesis. May be involved in nuclear remodeling during sperm head formation in spermatogenesis; a probable SUN3:SYNE1/KASH1 LINC complex may tether spermatid nuclei to posterior cytoskeletal structures such as the manchette. {ECO:0000250|UniProtKB:Q6ZWR6, ECO:0000269|PubMed:11792814, ECO:0000269|PubMed:18396275}.
Q8NFH3 NUP43 S317 ochoa Nucleoporin Nup43 (Nup107-160 subcomplex subunit Nup43) (p42) Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC. The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation. {ECO:0000269|PubMed:17363900}.
Q8NG31 KNL1 S1849 ochoa Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}.
Q8NI27 THOC2 S1219 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8NI27 THOC2 S1223 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8WUB8 PHF10 S331 ochoa PHD finger protein 10 (BRG1-associated factor 45a) (BAF45a) (XAP135) Involved in transcription activity regulation by chromatin remodeling. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250}.
Q8WUY3 PRUNE2 S2189 ochoa Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}.
Q8WWI1 LMO7 S972 ochoa LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) None
Q8WWI1 LMO7 S1599 ochoa LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) None
Q8WXG6 MADD S711 ochoa MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}.
Q92545 TMEM131 S1345 ochoa Transmembrane protein 131 (Protein RW1) Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}.
Q92545 TMEM131 S1630 ochoa Transmembrane protein 131 (Protein RW1) Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}.
Q92619 ARHGAP45 S627 ochoa Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}.
Q92625 ANKS1A S628 ochoa Ankyrin repeat and SAM domain-containing protein 1A (Odin) Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}.
Q969T4 UBE2E3 S20 ochoa Ubiquitin-conjugating enzyme E2 E3 (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme E3) (UbcH9) (Ubiquitin carrier protein E3) (Ubiquitin-conjugating enzyme E2-23 kDa) (Ubiquitin-protein ligase E3) Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes 'Lys-11'- and 'Lys-48'-, as well as 'Lys-63'-linked polyubiquitination. Participates in the regulation of transepithelial sodium transport in renal cells. {ECO:0000269|PubMed:10343118, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:27237050}.
Q96A49 SYAP1 S277 ochoa Synapse-associated protein 1 (BSD domain-containing signal transducer and Akt interactor protein) (BSTA) Plays a role in adipocyte differentiation by promoting mTORC2-mediated phosphorylation of AKT1 at 'Ser-473' after growth factor stimulation (PubMed:23300339). {ECO:0000269|PubMed:23300339}.
Q96B97 SH3KBP1 S511 ochoa SH3 domain-containing kinase-binding protein 1 (CD2-binding protein 3) (CD2BP3) (Cbl-interacting protein of 85 kDa) (Human Src family kinase-binding protein 1) (HSB-1) Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through an association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may be inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Has an essential role in the stimulation of B cell activation (PubMed:29636373). {ECO:0000250, ECO:0000269|PubMed:11894095, ECO:0000269|PubMed:11894096, ECO:0000269|PubMed:12177062, ECO:0000269|PubMed:12734385, ECO:0000269|PubMed:12771190, ECO:0000269|PubMed:15090612, ECO:0000269|PubMed:15707590, ECO:0000269|PubMed:16177060, ECO:0000269|PubMed:16256071, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29636373}.
Q96C24 SYTL4 S217 ochoa Synaptotagmin-like protein 4 (Exophilin-2) (Granuphilin) Modulates exocytosis of dense-core granules and secretion of hormones in the pancreas and the pituitary. Interacts with vesicles containing negatively charged phospholipids in a Ca(2+)-independent manner (By similarity). {ECO:0000250}.
Q96C24 SYTL4 S221 ochoa Synaptotagmin-like protein 4 (Exophilin-2) (Granuphilin) Modulates exocytosis of dense-core granules and secretion of hormones in the pancreas and the pituitary. Interacts with vesicles containing negatively charged phospholipids in a Ca(2+)-independent manner (By similarity). {ECO:0000250}.
Q96FA3 PELI1 S82 psp E3 ubiquitin-protein ligase pellino homolog 1 (Pellino-1) (EC 2.3.2.27) (Pellino-related intracellular-signaling molecule) (RING-type E3 ubiquitin transferase pellino homolog 1) E3 ubiquitin ligase catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (PubMed:12496252, PubMed:17675297, PubMed:29883609, PubMed:30952868). Involved in the TLR and IL-1 signaling pathways via interaction with the complex containing IRAK kinases and TRAF6 (PubMed:12496252, PubMed:17675297). Acts as a positive regulator of inflammatory response in microglia through activation of NF-kappa-B and MAP kinase (By similarity). Mediates 'Lys-63'-linked polyubiquitination of IRAK1 allowing subsequent NF-kappa-B activation (PubMed:12496252, PubMed:17675297). Conjugates 'Lys-63'-linked ubiquitin chains to the adapter protein ASC/PYCARD, which in turn is crucial for NLRP3 inflammasome activation (PubMed:34706239). Mediates 'Lys-48'-linked polyubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation; preferentially recognizes and mediates the degradation of the 'Thr-182' phosphorylated form of RIPK3 (PubMed:29883609). Negatively regulates necroptosis by reducing RIPK3 expression (PubMed:29883609). Mediates 'Lys-63'-linked ubiquitination of RIPK1 (PubMed:29883609). Following phosphorylation by ATM, catalyzes 'Lys-63'-linked ubiquitination of NBN, promoting DNA repair via homologous recombination (PubMed:30952868). Negatively regulates activation of the metabolic mTORC1 signaling pathway by mediating 'Lys-63'-linked ubiquitination of mTORC1-inhibitory protein TSC1 and thereby promoting TSC1/TSC2 complex stability (PubMed:33215753). {ECO:0000250|UniProtKB:Q8C669, ECO:0000269|PubMed:12496252, ECO:0000269|PubMed:17675297, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:33215753}.
Q96HC4 PDLIM5 S385 ochoa PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}.
Q96K76 USP47 S967 ochoa Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}.
Q96M11 HYLS1 S83 ochoa Centriolar and ciliogenesis-associated protein HYLS1 (Hydrolethalus syndrome protein 1) Plays a role in ciliogenesis. {ECO:0000250|UniProtKB:A0A1L8ER70, ECO:0000250|UniProtKB:Q95X94}.
Q99504 EYA3 S264 ochoa Protein phosphatase EYA3 (EC 3.1.3.48) (Eyes absent homolog 3) Tyrosine phosphatase that specifically dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph). 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress. Promotes efficient DNA repair by dephosphorylating H2AX, promoting the recruitment of DNA repair complexes containing MDC1 (PubMed:19234442, PubMed:19351884). Its function as histone phosphatase probably explains its role in transcription regulation during organogenesis. Coactivates SIX1, and seems to coactivate SIX2, SIX4 and SIX5. The repression of precursor cell proliferation in myoblasts by SIX1 is switched to activation through recruitment of EYA3 to the SIX1-DACH1 complex and seems to be dependent on EYA3 phosphatase activity (By similarity). May be involved in development of the eye. {ECO:0000250|UniProtKB:P97480, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:19351884}.
Q99504 EYA3 T268 ochoa Protein phosphatase EYA3 (EC 3.1.3.48) (Eyes absent homolog 3) Tyrosine phosphatase that specifically dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph). 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress. Promotes efficient DNA repair by dephosphorylating H2AX, promoting the recruitment of DNA repair complexes containing MDC1 (PubMed:19234442, PubMed:19351884). Its function as histone phosphatase probably explains its role in transcription regulation during organogenesis. Coactivates SIX1, and seems to coactivate SIX2, SIX4 and SIX5. The repression of precursor cell proliferation in myoblasts by SIX1 is switched to activation through recruitment of EYA3 to the SIX1-DACH1 complex and seems to be dependent on EYA3 phosphatase activity (By similarity). May be involved in development of the eye. {ECO:0000250|UniProtKB:P97480, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:19351884}.
Q99666 RGPD5 S1274 ochoa RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) None
Q99666 RGPD5 S1594 ochoa RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) None
Q99959 PKP2 S297 ochoa Plakophilin-2 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}.
Q9BXB4 OSBPL11 S48 ochoa Oxysterol-binding protein-related protein 11 (ORP-11) (OSBP-related protein 11) Plays a role in regulating ADIPOQ and FABP4 levels in differentiating adipocytes and is also involved in regulation of adipocyte triglyceride storage (PubMed:23028956). Weakly binds 25-hydroxycholesterol (PubMed:17428193). Interacts with OSBPL9 to function as lipid transfer proteins (PubMed:39106189). Together they form a heterodimer that localizes at the ER-trans-Golgi membrane contact sites, and exchanges phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) for phosphatidylinositol-4-phosphate (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate), PI(4)P) between the two organelles, a step that is critical for sphingomyelin synthesis in the Golgi complex (PubMed:39106189). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:23028956, ECO:0000269|PubMed:39106189}.
Q9BXF6 RAB11FIP5 S286 ochoa Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}.
Q9BXK1 KLF16 S112 ochoa Krueppel-like factor 16 (Basic transcription element-binding protein 4) (BTE-binding protein 4) (Novel Sp1-like zinc finger transcription factor 2) (Transcription factor BTEB4) (Transcription factor NSLP2) Transcription factor that binds GC and GT boxes and displaces Sp1 and Sp3 from these sequences. Modulates dopaminergic transmission in the brain (By similarity). {ECO:0000250}.
Q9BZL6 PRKD2 S244 ochoa|psp Serine/threonine-protein kinase D2 (EC 2.7.11.13) (nPKC-D2) Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion (PubMed:14743217, PubMed:15604256, PubMed:16928771, PubMed:17077180, PubMed:17951978, PubMed:17962809, PubMed:18262756, PubMed:19001381, PubMed:19192391, PubMed:23503467, PubMed:28428613). May potentiate mitogenesis induced by the neuropeptide bombesin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression (By similarity). In response to oxidative stress, is phosphorylated at Tyr-438 and Tyr-717 by ABL1, which leads to the activation of PRKD2 without increasing its catalytic activity, and mediates activation of NF-kappa-B (PubMed:15604256, PubMed:28428613). In response to the activation of the gastrin receptor CCKBR, is phosphorylated at Ser-244 by CSNK1D and CSNK1E, translocates to the nucleus, phosphorylates HDAC7, leading to nuclear export of HDAC7 and inhibition of HDAC7 transcriptional repression of NR4A1/NUR77 (PubMed:17962809). Upon TCR stimulation, is activated independently of ZAP70, translocates from the cytoplasm to the nucleus and is required for interleukin-2 (IL2) promoter up-regulation (PubMed:17077180). During adaptive immune responses, is required in peripheral T-lymphocytes for the production of the effector cytokines IL2 and IFNG after TCR engagement and for optimal induction of antibody responses to antigens (By similarity). In epithelial cells stimulated with lysophosphatidic acid (LPA), is activated through a PKC-dependent pathway and mediates LPA-stimulated interleukin-8 (IL8) secretion via a NF-kappa-B-dependent pathway (PubMed:16928771). During TCR-induced T-cell activation, interacts with and is activated by the tyrosine kinase LCK, which results in the activation of the NFAT transcription factors (PubMed:19192391). In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane and in polarized cells is involved in the transport of proteins from the TGN to the basolateral membrane (PubMed:14743217). Plays an important role in endothelial cell proliferation and migration prior to angiogenesis, partly through modulation of the expression of KDR/VEGFR2 and FGFR1, two key growth factor receptors involved in angiogenesis (PubMed:19001381). In secretory pathway, is required for the release of chromogranin-A (CHGA)-containing secretory granules from the TGN (PubMed:18262756). Downstream of PRKCA, plays important roles in angiotensin-2-induced monocyte adhesion to endothelial cells (PubMed:17951978). Plays a regulatory role in angiogenesis and tumor growth by phosphorylating a downstream mediator CIB1 isoform 2, resulting in vascular endothelial growth factor A (VEGFA) secretion (PubMed:23503467). {ECO:0000250|UniProtKB:Q8BZ03, ECO:0000269|PubMed:14743217, ECO:0000269|PubMed:15604256, ECO:0000269|PubMed:16928771, ECO:0000269|PubMed:17077180, ECO:0000269|PubMed:17951978, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:18262756, ECO:0000269|PubMed:19001381, ECO:0000269|PubMed:19192391, ECO:0000269|PubMed:23503467, ECO:0000269|PubMed:28428613}.
Q9C0B5 ZDHHC5 S380 ochoa Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.
Q9C0C2 TNKS1BP1 S1182 ochoa 182 kDa tankyrase-1-binding protein None
Q9H694 BICC1 S803 ochoa Protein bicaudal C homolog 1 (Bic-C) Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}.
Q9NRA8 EIF4ENIF1 S353 ochoa Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}.
Q9NRY4 ARHGAP35 S1142 ochoa Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}.
Q9NUE0 ZDHHC18 S61 ochoa Palmitoyltransferase ZDHHC18 (EC 2.3.1.225) (DHHC domain-containing cysteine-rich protein 18) (DHHC-18) (Zinc finger DHHC domain-containing protein 18) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates, such as CGAS, HRAS and LCK (PubMed:23034182, PubMed:27481942, PubMed:35438208). Acts as a negative regulator of the cGAS-STING pathway be mediating palmitoylation and inactivation of CGAS (PubMed:35438208). May also have a palmitoyltransferase activity toward the beta-2 adrenergic receptor/ADRB2 and therefore regulate G protein-coupled receptor signaling (PubMed:27481942). {ECO:0000269|PubMed:23034182, ECO:0000269|PubMed:27481942, ECO:0000269|PubMed:35438208}.
Q9NYF8 BCLAF1 S763 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NZB2 FAM120A S1048 ochoa Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}.
Q9NZB2 FAM120A S1079 ochoa Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}.
Q9NZM3 ITSN2 S225 ochoa Intersectin-2 (SH3 domain-containing protein 1B) (SH3P18) (SH3P18-like WASP-associated protein) Adapter protein that may provide indirect link between the endocytic membrane traffic and the actin assembly machinery. May regulate the formation of clathrin-coated vesicles (CCPs). Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:23999003}.
Q9UBW7 ZMYM2 S1064 psp Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}.
Q9UFC0 LRWD1 S267 ochoa Leucine-rich repeat and WD repeat-containing protein 1 (Centromere protein 33) (CENP-33) (Origin recognition complex-associated protein) (ORC-associated protein) (ORCA) Required for G1/S transition. Recruits and stabilizes the origin recognition complex (ORC) onto chromatin during G1 to establish pre-replication complex (preRC) and to heterochromatic sites in post-replicated cells. Binds a combination of DNA and histone methylation repressive marks on heterochromatin. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3 in a cooperative manner with DNA methylation. Required for silencing of major satellite repeats. May be important ORC2, ORC3 and ORC4 stability. {ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:20932478, ECO:0000269|PubMed:21029866, ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22645314}.
Q9UGP4 LIMD1 S243 ochoa LIM domain-containing protein 1 Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing and is essential for P-body formation and integrity. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Acts as a transcriptional corepressor for SNAI1- and SNAI2/SLUG-dependent repression of E-cadherin transcription. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. Inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. Regulates osteoblast development, function, differentiation and stress osteoclastogenesis. Enhances the ability of TRAF6 to activate adapter protein complex 1 (AP-1) and negatively regulates the canonical Wnt receptor signaling pathway in osteoblasts. May act as a tumor suppressor by inhibiting cell proliferation. {ECO:0000269|PubMed:15542589, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}.
Q9UHB7 AFF4 S498 ochoa AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}.
Q9UJ14 GGT7 S83 ochoa Glutathione hydrolase 7 (EC 3.4.19.13) (Gamma-glutamyltransferase 7) (GGT 7) (EC 2.3.2.2) (Gamma-glutamyltransferase-like 3) (Gamma-glutamyltransferase-like 5) (Gamma-glutamyltranspeptidase 7) [Cleaved into: Glutathione hydrolase 7 heavy chain; Glutathione hydrolase 7 light chain] Hydrolyzes and transfers gamma-glutamyl moieties from glutathione and other gamma-glutamyl compounds to acceptors. {ECO:0000250|UniProtKB:P19440}.
Q9UJF2 RASAL2 S643 ochoa Ras GTPase-activating protein nGAP (RAS protein activator-like 2) Inhibitory regulator of the Ras-cyclic AMP pathway.
Q9UKI8 TLK1 S109 ochoa Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}.
Q9UKI8 TLK1 S182 ochoa Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}.
Q9UKK3 PARP4 S1529 ochoa Protein mono-ADP-ribosyltransferase PARP4 (EC 2.4.2.-) (193 kDa vault protein) (ADP-ribosyltransferase diphtheria toxin-like 4) (ARTD4) (PARP-related/IalphaI-related H5/proline-rich) (PH5P) (Poly [ADP-ribose] polymerase 4) (PARP-4) (Vault poly(ADP-ribose) polymerase) (VPARP) Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}.
Q9UPN3 MACF1 S7330 ochoa|psp Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPQ0 LIMCH1 S235 ochoa LIM and calponin homology domains-containing protein 1 Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}.
Q9UQ35 SRRM2 S1144 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQE7 SMC3 S1085 ochoa Structural maintenance of chromosomes protein 3 (SMC protein 3) (SMC-3) (Basement membrane-associated chondroitin proteoglycan) (Bamacan) (Chondroitin sulfate proteoglycan 6) (Chromosome-associated polypeptide) (hCAP) Central component of cohesin, a complex required for chromosome cohesion during the cell cycle. The cohesin complex may form a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. Cohesion is coupled to DNA replication and is involved in DNA repair. The cohesin complex also plays an important role in spindle pole assembly during mitosis and in chromosomes movement. {ECO:0000269|PubMed:11076961, ECO:0000269|PubMed:19907496}.
Q9UQE7 SMC3 S1089 ochoa Structural maintenance of chromosomes protein 3 (SMC protein 3) (SMC-3) (Basement membrane-associated chondroitin proteoglycan) (Bamacan) (Chondroitin sulfate proteoglycan 6) (Chromosome-associated polypeptide) (hCAP) Central component of cohesin, a complex required for chromosome cohesion during the cell cycle. The cohesin complex may form a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. Cohesion is coupled to DNA replication and is involved in DNA repair. The cohesin complex also plays an important role in spindle pole assembly during mitosis and in chromosomes movement. {ECO:0000269|PubMed:11076961, ECO:0000269|PubMed:19907496}.
Q9Y266 NUDC S285 ochoa Nuclear migration protein nudC (Nuclear distribution protein C homolog) Plays a role in neurogenesis and neuronal migration (By similarity). Necessary for correct formation of mitotic spindles and chromosome separation during mitosis (PubMed:12679384, PubMed:12852857, PubMed:25789526). Necessary for cytokinesis and cell proliferation (PubMed:12679384, PubMed:12852857). {ECO:0000250|UniProtKB:O35685, ECO:0000269|PubMed:12679384, ECO:0000269|PubMed:12852857, ECO:0000269|PubMed:25789526}.
Q9Y2H0 DLGAP4 S732 ochoa Disks large-associated protein 4 (DAP-4) (PSD-95/SAP90-binding protein 4) (SAP90/PSD-95-associated protein 4) (SAPAP-4) May play a role in the molecular organization of synapses and neuronal cell signaling. Could be an adapter protein linking ion channel to the subsynaptic cytoskeleton. May induce enrichment of PSD-95/SAP90 at the plasma membrane.
Q9Y2H2 INPP5F S913 ochoa Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}.
Q9Y2L6 FRMD4B S778 ochoa FERM domain-containing protein 4B (GRP1-binding protein GRSP1) Member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling. May function as a scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex. Plays a redundant role with FRMD4A in epithelial polarization. {ECO:0000250|UniProtKB:Q920B0}.
Q9Y2U5 MAP3K2 S315 ochoa Mitogen-activated protein kinase kinase kinase 2 (EC 2.7.11.25) (MAPK/ERK kinase kinase 2) (MEK kinase 2) (MEKK 2) Component of a protein kinase signal transduction cascade. Regulates the JNK and ERK5 pathways by phosphorylating and activating MAP2K5 and MAP2K7 (By similarity). Plays a role in caveolae kiss-and-run dynamics. {ECO:0000250, ECO:0000269|PubMed:10713157, ECO:0000269|PubMed:16001074}.
Q9Y2X7 GIT1 S370 ochoa ARF GTPase-activating protein GIT1 (ARF GAP GIT1) (Cool-associated and tyrosine-phosphorylated protein 1) (CAT-1) (CAT1) (G protein-coupled receptor kinase-interactor 1) (GRK-interacting protein 1) (p95-APP1) GTPase-activating protein for ADP ribosylation factor family members, including ARF1. Multidomain scaffold protein that interacts with numerous proteins and therefore participates in many cellular functions, including receptor internalization, focal adhesion remodeling, and signaling by both G protein-coupled receptors and tyrosine kinase receptors (By similarity). Through PAK1 activation, positively regulates microtubule nucleation during interphase (PubMed:27012601). Plays a role in the regulation of cytokinesis; for this function, may act in a pathway also involving ENTR1 and PTPN13 (PubMed:23108400). May promote cell motility both by regulating focal complex dynamics and by local activation of RAC1 (PubMed:10938112, PubMed:11896197). May act as scaffold for MAPK1/3 signal transduction in focal adhesions. Recruits MAPK1/3/ERK1/2 to focal adhesions after EGF stimulation via a Src-dependent pathway, hence stimulating cell migration (PubMed:15923189). Plays a role in brain development and function. Involved in the regulation of spine density and synaptic plasticity that is required for processes involved in learning (By similarity). Plays an important role in dendritic spine morphogenesis and synapse formation (PubMed:12695502, PubMed:15800193). In hippocampal neurons, recruits guanine nucleotide exchange factors (GEFs), such as ARHGEF7/beta-PIX, to the synaptic membrane. These in turn locally activate RAC1, which is an essential step for spine morphogenesis and synapse formation (PubMed:12695502). May contribute to the organization of presynaptic active zones through oligomerization and formation of a Piccolo/PCLO-based protein network, which includes ARHGEF7/beta-PIX and FAK1 (By similarity). In neurons, through its interaction with liprin-alpha family members, may be required for AMPA receptor (GRIA2/3) proper targeting to the cell membrane (By similarity). In complex with GABA(A) receptors and ARHGEF7, plays a crucial role in regulating GABA(A) receptor synaptic stability, maintaining GPHN/gephyrin scaffolds and hence GABAergic inhibitory synaptic transmission, by locally coordinating RAC1 and PAK1 downstream effector activity, leading to F-actin stabilization (PubMed:25284783). May also be important for RAC1 downstream signaling pathway through PAK3 and regulation of neuronal inhibitory transmission at presynaptic input (By similarity). Required for successful bone regeneration during fracture healing (By similarity). The function in intramembranous ossification may, at least partly, exerted by macrophages in which GIT1 is a key negative regulator of redox homeostasis, IL1B production, and glycolysis, acting through the ERK1/2/NRF2/NFE2L2 axis (By similarity). May play a role in angiogenesis during fracture healing (By similarity). In this process, may regulate activation of the canonical NF-kappa-B signal in bone mesenchymal stem cells by enhancing the interaction between NEMO and 'Lys-63'-ubiquitinated RIPK1/RIP1, eventually leading to enhanced production of VEGFA and others angiogenic factors (PubMed:31502302). Essential for VEGF signaling through the activation of phospholipase C-gamma and ERK1/2, hence may control endothelial cell proliferation and angiogenesis (PubMed:19273721). {ECO:0000250|UniProtKB:Q68FF6, ECO:0000250|UniProtKB:Q9Z272, ECO:0000269|PubMed:10938112, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12695502, ECO:0000269|PubMed:15800193, ECO:0000269|PubMed:15923189, ECO:0000269|PubMed:19273721, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25284783, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:31502302}.
Q9Y2X7 GIT1 S585 ochoa ARF GTPase-activating protein GIT1 (ARF GAP GIT1) (Cool-associated and tyrosine-phosphorylated protein 1) (CAT-1) (CAT1) (G protein-coupled receptor kinase-interactor 1) (GRK-interacting protein 1) (p95-APP1) GTPase-activating protein for ADP ribosylation factor family members, including ARF1. Multidomain scaffold protein that interacts with numerous proteins and therefore participates in many cellular functions, including receptor internalization, focal adhesion remodeling, and signaling by both G protein-coupled receptors and tyrosine kinase receptors (By similarity). Through PAK1 activation, positively regulates microtubule nucleation during interphase (PubMed:27012601). Plays a role in the regulation of cytokinesis; for this function, may act in a pathway also involving ENTR1 and PTPN13 (PubMed:23108400). May promote cell motility both by regulating focal complex dynamics and by local activation of RAC1 (PubMed:10938112, PubMed:11896197). May act as scaffold for MAPK1/3 signal transduction in focal adhesions. Recruits MAPK1/3/ERK1/2 to focal adhesions after EGF stimulation via a Src-dependent pathway, hence stimulating cell migration (PubMed:15923189). Plays a role in brain development and function. Involved in the regulation of spine density and synaptic plasticity that is required for processes involved in learning (By similarity). Plays an important role in dendritic spine morphogenesis and synapse formation (PubMed:12695502, PubMed:15800193). In hippocampal neurons, recruits guanine nucleotide exchange factors (GEFs), such as ARHGEF7/beta-PIX, to the synaptic membrane. These in turn locally activate RAC1, which is an essential step for spine morphogenesis and synapse formation (PubMed:12695502). May contribute to the organization of presynaptic active zones through oligomerization and formation of a Piccolo/PCLO-based protein network, which includes ARHGEF7/beta-PIX and FAK1 (By similarity). In neurons, through its interaction with liprin-alpha family members, may be required for AMPA receptor (GRIA2/3) proper targeting to the cell membrane (By similarity). In complex with GABA(A) receptors and ARHGEF7, plays a crucial role in regulating GABA(A) receptor synaptic stability, maintaining GPHN/gephyrin scaffolds and hence GABAergic inhibitory synaptic transmission, by locally coordinating RAC1 and PAK1 downstream effector activity, leading to F-actin stabilization (PubMed:25284783). May also be important for RAC1 downstream signaling pathway through PAK3 and regulation of neuronal inhibitory transmission at presynaptic input (By similarity). Required for successful bone regeneration during fracture healing (By similarity). The function in intramembranous ossification may, at least partly, exerted by macrophages in which GIT1 is a key negative regulator of redox homeostasis, IL1B production, and glycolysis, acting through the ERK1/2/NRF2/NFE2L2 axis (By similarity). May play a role in angiogenesis during fracture healing (By similarity). In this process, may regulate activation of the canonical NF-kappa-B signal in bone mesenchymal stem cells by enhancing the interaction between NEMO and 'Lys-63'-ubiquitinated RIPK1/RIP1, eventually leading to enhanced production of VEGFA and others angiogenic factors (PubMed:31502302). Essential for VEGF signaling through the activation of phospholipase C-gamma and ERK1/2, hence may control endothelial cell proliferation and angiogenesis (PubMed:19273721). {ECO:0000250|UniProtKB:Q68FF6, ECO:0000250|UniProtKB:Q9Z272, ECO:0000269|PubMed:10938112, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12695502, ECO:0000269|PubMed:15800193, ECO:0000269|PubMed:15923189, ECO:0000269|PubMed:19273721, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25284783, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:31502302}.
Q9Y2X7 GIT1 S596 ochoa ARF GTPase-activating protein GIT1 (ARF GAP GIT1) (Cool-associated and tyrosine-phosphorylated protein 1) (CAT-1) (CAT1) (G protein-coupled receptor kinase-interactor 1) (GRK-interacting protein 1) (p95-APP1) GTPase-activating protein for ADP ribosylation factor family members, including ARF1. Multidomain scaffold protein that interacts with numerous proteins and therefore participates in many cellular functions, including receptor internalization, focal adhesion remodeling, and signaling by both G protein-coupled receptors and tyrosine kinase receptors (By similarity). Through PAK1 activation, positively regulates microtubule nucleation during interphase (PubMed:27012601). Plays a role in the regulation of cytokinesis; for this function, may act in a pathway also involving ENTR1 and PTPN13 (PubMed:23108400). May promote cell motility both by regulating focal complex dynamics and by local activation of RAC1 (PubMed:10938112, PubMed:11896197). May act as scaffold for MAPK1/3 signal transduction in focal adhesions. Recruits MAPK1/3/ERK1/2 to focal adhesions after EGF stimulation via a Src-dependent pathway, hence stimulating cell migration (PubMed:15923189). Plays a role in brain development and function. Involved in the regulation of spine density and synaptic plasticity that is required for processes involved in learning (By similarity). Plays an important role in dendritic spine morphogenesis and synapse formation (PubMed:12695502, PubMed:15800193). In hippocampal neurons, recruits guanine nucleotide exchange factors (GEFs), such as ARHGEF7/beta-PIX, to the synaptic membrane. These in turn locally activate RAC1, which is an essential step for spine morphogenesis and synapse formation (PubMed:12695502). May contribute to the organization of presynaptic active zones through oligomerization and formation of a Piccolo/PCLO-based protein network, which includes ARHGEF7/beta-PIX and FAK1 (By similarity). In neurons, through its interaction with liprin-alpha family members, may be required for AMPA receptor (GRIA2/3) proper targeting to the cell membrane (By similarity). In complex with GABA(A) receptors and ARHGEF7, plays a crucial role in regulating GABA(A) receptor synaptic stability, maintaining GPHN/gephyrin scaffolds and hence GABAergic inhibitory synaptic transmission, by locally coordinating RAC1 and PAK1 downstream effector activity, leading to F-actin stabilization (PubMed:25284783). May also be important for RAC1 downstream signaling pathway through PAK3 and regulation of neuronal inhibitory transmission at presynaptic input (By similarity). Required for successful bone regeneration during fracture healing (By similarity). The function in intramembranous ossification may, at least partly, exerted by macrophages in which GIT1 is a key negative regulator of redox homeostasis, IL1B production, and glycolysis, acting through the ERK1/2/NRF2/NFE2L2 axis (By similarity). May play a role in angiogenesis during fracture healing (By similarity). In this process, may regulate activation of the canonical NF-kappa-B signal in bone mesenchymal stem cells by enhancing the interaction between NEMO and 'Lys-63'-ubiquitinated RIPK1/RIP1, eventually leading to enhanced production of VEGFA and others angiogenic factors (PubMed:31502302). Essential for VEGF signaling through the activation of phospholipase C-gamma and ERK1/2, hence may control endothelial cell proliferation and angiogenesis (PubMed:19273721). {ECO:0000250|UniProtKB:Q68FF6, ECO:0000250|UniProtKB:Q9Z272, ECO:0000269|PubMed:10938112, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12695502, ECO:0000269|PubMed:15800193, ECO:0000269|PubMed:15923189, ECO:0000269|PubMed:19273721, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25284783, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:31502302}.
Q9Y3M2 CBY1 S26 ochoa Protein chibby homolog 1 (ARPP-binding protein) (Cytosolic leucine-rich protein) (PIGEA-14) (PKD2 interactor, Golgi and endoplasmic reticulum-associated 1) Inhibits the Wnt/Wingless pathway by binding to CTNNB1/beta-catenin and inhibiting beta-catenin-mediated transcriptional activation through competition with TCF/LEF transcription factors (PubMed:12712206, PubMed:19435523). Has also been shown to play a role in regulating the intracellular trafficking of polycystin-2/PKD2 and possibly of other intracellular proteins (PubMed:15194699). Promotes adipocyte and cardiomyocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q9D1C2, ECO:0000269|PubMed:12712206, ECO:0000269|PubMed:15194699, ECO:0000269|PubMed:19435523}.
Q9Y446 PKP3 S291 ochoa Plakophilin-3 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:24124604). Required for the localization of DSG2, DSP and PKP2 to mature desmosome junctions (PubMed:20859650). May also play a role in the maintenance of DSG3 protein abundance in keratinocytes (By similarity). Required for the formation of DSP-containing desmosome precursors in the cytoplasm during desmosome assembly (PubMed:25208567). Also regulates the accumulation of CDH1 to mature desmosome junctions, via cAMP-dependent signaling and its interaction with activated RAP1A (PubMed:25208567). Positively regulates the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with FXR1, may also regulate the protein abundance of DSP via the same mechanism (PubMed:25225333). May also regulate the protein abundance of the desmosome component PKP1 (By similarity). Required for the organization of desmosome junctions at intercellular borders between basal keratinocytes of the epidermis, as a result plays a role in maintenance of the dermal barrier and regulation of the dermal inflammatory response (By similarity). Required during epidermal keratinocyte differentiation for cell adherence at tricellular cell-cell contacts, via regulation of the timely formation of adherens junctions and desmosomes in a calcium-dependent manner, and may also play a role in the organization of the intracellular actin fiber belt (By similarity). Acts as a negative regulator of the inflammatory response in hematopoietic cells of the skin and intestine, via modulation of proinflammatory cytokine production (By similarity). Important for epithelial barrier maintenance in the intestine to reduce intestinal permeability, thereby plays a role in protection from intestinal-derived endotoxemia (By similarity). Required for the development of hair follicles, via a role in the regulation of inner root sheaf length, correct alignment and anterior-posterior polarity of hair follicles (By similarity). Promotes proliferation and cell-cycle G1/S phase transition of keratinocytes (By similarity). Promotes E2F1-driven transcription of G1/S phase promoting genes by acting to release E2F1 from its inhibitory interaction with RB1, via sequestering RB1 and CDKN1A to the cytoplasm and thereby increasing CDK4- and CDK6-driven phosphorylation of RB1 (By similarity). May act as a scaffold protein to facilitate MAPK phosphorylation of RPS6KA protein family members and subsequently promote downstream EGFR signaling (By similarity). May play a role in the positive regulation of transcription of Wnt-mediated TCF-responsive target genes (PubMed:34058472). {ECO:0000250|UniProtKB:Q9QY23, ECO:0000269|PubMed:20859650, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:34058472}.
Q9Y485 DMXL1 S429 ochoa DmX-like protein 1 (X-like 1 protein) None
Q9Y4G8 RAPGEF2 S1256 ochoa Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}.
Q9Y4J8 DTNA S645 ochoa Dystrobrevin alpha (DTN-A) (Alpha-dystrobrevin) (Dystrophin-related protein 3) May be involved in the formation and stability of synapses as well as being involved in the clustering of nicotinic acetylcholine receptors.
Q9Y608 LRRFIP2 S328 ochoa Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}.
Q9Y608 LRRFIP2 S332 ochoa Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}.
Q9Y6N7 ROBO1 S1612 ochoa Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}.
P22314 UBA1 S824 Sugiyama Ubiquitin-like modifier-activating enzyme 1 (EC 6.2.1.45) (Protein A1S9) (Ubiquitin-activating enzyme E1) Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system (PubMed:1447181, PubMed:1606621, PubMed:33108101). Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:1447181). Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (PubMed:22456334). {ECO:0000269|PubMed:1447181, ECO:0000269|PubMed:1606621, ECO:0000269|PubMed:22456334, ECO:0000269|PubMed:33108101}.
Q9NP61 ARFGAP3 Y378 Sugiyama ADP-ribosylation factor GTPase-activating protein 3 (ARF GAP 3) GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:11172815}.
P10636 MAPT S610 GPS6|EPSD Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}.
Download
reactome_id name p -log10_p
R-HSA-111465 Apoptotic cleavage of cellular proteins 0.000023 4.638
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 0.000064 4.196
R-HSA-177243 Interactions of Rev with host cellular proteins 0.000100 4.000
R-HSA-68882 Mitotic Anaphase 0.000113 3.946
R-HSA-2555396 Mitotic Metaphase and Anaphase 0.000119 3.923
R-HSA-162582 Signal Transduction 0.000158 3.800
R-HSA-2980766 Nuclear Envelope Breakdown 0.000175 3.758
R-HSA-180746 Nuclear import of Rev protein 0.000265 3.577
R-HSA-75153 Apoptotic execution phase 0.000254 3.595
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 0.000460 3.337
R-HSA-2468052 Establishment of Sister Chromatid Cohesion 0.000673 3.172
R-HSA-9759475 Regulation of CDH11 Expression and Function 0.000708 3.150
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 0.000818 3.087
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 0.000941 3.027
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 0.000941 3.027
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 0.000838 3.077
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 0.000873 3.059
R-HSA-1855170 IPs transport between nucleus and cytosol 0.001228 2.911
R-HSA-159227 Transport of the SLBP independent Mature mRNA 0.001228 2.911
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 0.001183 2.927
R-HSA-9764260 Regulation of Expression and Function of Type II Classical Cadherins 0.001228 2.911
R-HSA-68886 M Phase 0.001214 2.916
R-HSA-2467813 Separation of Sister Chromatids 0.001331 2.876
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 0.001315 2.881
R-HSA-4641265 Repression of WNT target genes 0.001440 2.841
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 0.001395 2.856
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 0.001395 2.856
R-HSA-9006821 Alternative Lengthening of Telomeres (ALT) 0.001691 2.772
R-HSA-9670621 Defective Inhibition of DNA Recombination at Telomere 0.001691 2.772
R-HSA-9673013 Diseases of Telomere Maintenance 0.001691 2.772
R-HSA-9670615 Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations 0.001691 2.772
R-HSA-9670613 Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations 0.001691 2.772
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 0.001779 2.750
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 0.001718 2.765
R-HSA-180910 Vpr-mediated nuclear import of PICs 0.002239 2.650
R-HSA-73887 Death Receptor Signaling 0.002265 2.645
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 0.002784 2.555
R-HSA-168276 NS1 Mediated Effects on Host Pathways 0.002784 2.555
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 0.003091 2.510
R-HSA-176033 Interactions of Vpr with host cellular proteins 0.003091 2.510
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 0.003279 2.484
R-HSA-8951430 RUNX3 regulates WNT signaling 0.003478 2.459
R-HSA-4411364 Binding of TCF/LEF:CTNNB1 to target gene promoters 0.003478 2.459
R-HSA-2470946 Cohesin Loading onto Chromatin 0.003478 2.459
R-HSA-8853884 Transcriptional Regulation by VENTX 0.003422 2.466
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 0.003422 2.466
R-HSA-193648 NRAGE signals death through JNK 0.003365 2.473
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 0.003971 2.401
R-HSA-442729 CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde 0.004529 2.344
R-HSA-351906 Apoptotic cleavage of cell adhesion proteins 0.004529 2.344
R-HSA-68877 Mitotic Prometaphase 0.005120 2.291
R-HSA-1266738 Developmental Biology 0.005062 2.296
R-HSA-6784531 tRNA processing in the nucleus 0.005427 2.265
R-HSA-8878159 Transcriptional regulation by RUNX3 0.005600 2.252
R-HSA-2025928 Calcineurin activates NFAT 0.005754 2.240
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 0.005754 2.240
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 0.006092 2.215
R-HSA-193704 p75 NTR receptor-mediated signalling 0.006279 2.202
R-HSA-8951911 RUNX3 regulates RUNX1-mediated transcription 0.006504 2.187
R-HSA-111932 CaMK IV-mediated phosphorylation of CREB 0.007158 2.145
R-HSA-9762292 Regulation of CDH11 function 0.007158 2.145
R-HSA-69618 Mitotic Spindle Checkpoint 0.006641 2.178
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 0.007251 2.140
R-HSA-1640170 Cell Cycle 0.007071 2.151
R-HSA-68875 Mitotic Prophase 0.007573 2.121
R-HSA-5223345 Miscellaneous transport and binding events 0.007333 2.135
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 0.007777 2.109
R-HSA-141424 Amplification of signal from the kinetochores 0.007777 2.109
R-HSA-3371556 Cellular response to heat stress 0.007952 2.100
R-HSA-8876384 Listeria monocytogenes entry into host cells 0.009065 2.043
R-HSA-162909 Host Interactions of HIV factors 0.009175 2.037
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 0.009065 2.043
R-HSA-9764560 Regulation of CDH1 Gene Transcription 0.009494 2.023
R-HSA-8875513 MET interacts with TNS proteins 0.009966 2.001
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 0.010142 1.994
R-HSA-9700206 Signaling by ALK in cancer 0.010142 1.994
R-HSA-69278 Cell Cycle, Mitotic 0.010499 1.979
R-HSA-68884 Mitotic Telophase/Cytokinesis 0.010530 1.978
R-HSA-5689603 UCH proteinases 0.013754 1.862
R-HSA-1169408 ISG15 antiviral mechanism 0.012964 1.887
R-HSA-9839394 TGFBR3 expression 0.014377 1.842
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 0.015098 1.821
R-HSA-416482 G alpha (12/13) signalling events 0.015437 1.811
R-HSA-8866652 Synthesis of active ubiquitin: roles of E1 and E2 enzymes 0.017639 1.754
R-HSA-5607763 CLEC7A (Dectin-1) induces NFAT activation 0.017055 1.768
R-HSA-191859 snRNP Assembly 0.015941 1.797
R-HSA-194441 Metabolism of non-coding RNA 0.015941 1.797
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 0.017007 1.769
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 0.017262 1.763
R-HSA-6806834 Signaling by MET 0.017262 1.763
R-HSA-168325 Viral Messenger RNA Synthesis 0.018121 1.742
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 0.018704 1.728
R-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production 0.018789 1.726
R-HSA-9673768 Signaling by membrane-tethered fusions of PDGFRA or PDGFRB 0.018789 1.726
R-HSA-3134963 DEx/H-box helicases activate type I IFN and inflammatory cytokines production 0.018789 1.726
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 0.021099 1.676
R-HSA-210745 Regulation of gene expression in beta cells 0.021328 1.671
R-HSA-9758919 Epithelial-Mesenchymal Transition (EMT) during gastrulation 0.024070 1.619
R-HSA-9833576 CDH11 homotypic and heterotypic interactions 0.024070 1.619
R-HSA-5603029 IkBA variant leads to EDA-ID 0.024070 1.619
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 0.025840 1.588
R-HSA-1500931 Cell-Cell communication 0.025137 1.600
R-HSA-9764302 Regulation of CDH19 Expression and Function 0.024070 1.619
R-HSA-418990 Adherens junctions interactions 0.027740 1.557
R-HSA-2028269 Signaling by Hippo 0.028577 1.544
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 0.029213 1.534
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 0.029900 1.524
R-HSA-9022692 Regulation of MECP2 expression and activity 0.030032 1.522
R-HSA-195253 Degradation of beta-catenin by the destruction complex 0.030452 1.516
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 0.030557 1.515
R-HSA-9764265 Regulation of CDH1 Expression and Function 0.030557 1.515
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 0.036188 1.441
R-HSA-9732724 IFNG signaling activates MAPKs 0.036188 1.441
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 0.031963 1.495
R-HSA-446728 Cell junction organization 0.035267 1.453
R-HSA-4419969 Depolymerization of the Nuclear Lamina 0.031963 1.495
R-HSA-5578749 Transcriptional regulation by small RNAs 0.033789 1.471
R-HSA-1221632 Meiotic synapsis 0.036883 1.433
R-HSA-5688426 Deubiquitination 0.037907 1.421
R-HSA-111933 Calmodulin induced events 0.040555 1.392
R-HSA-111997 CaM pathway 0.040555 1.392
R-HSA-201681 TCF dependent signaling in response to WNT 0.041425 1.383
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 0.042626 1.370
R-HSA-9825895 Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... 0.042955 1.367
R-HSA-9700645 ALK mutants bind TKIs 0.050151 1.300
R-HSA-9619229 Activation of RAC1 downstream of NMDARs 0.050151 1.300
R-HSA-9617828 FOXO-mediated transcription of cell cycle genes 0.047489 1.323
R-HSA-176974 Unwinding of DNA 0.050151 1.300
R-HSA-8875878 MET promotes cell motility 0.046506 1.332
R-HSA-9762293 Regulation of CDH11 gene transcription 0.050151 1.300
R-HSA-448706 Interleukin-1 processing 0.050151 1.300
R-HSA-9825892 Regulation of MITF-M-dependent genes involved in cell cycle and proliferation 0.047489 1.323
R-HSA-9730414 MITF-M-regulated melanocyte development 0.048385 1.315
R-HSA-2173788 Downregulation of TGF-beta receptor signaling 0.051852 1.285
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 0.051852 1.285
R-HSA-162599 Late Phase of HIV Life Cycle 0.052056 1.284
R-HSA-8856828 Clathrin-mediated endocytosis 0.053707 1.270
R-HSA-195721 Signaling by WNT 0.055652 1.255
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 0.056403 1.249
R-HSA-8875555 MET activates RAP1 and RAC1 0.057744 1.238
R-HSA-9764790 Positive Regulation of CDH1 Gene Transcription 0.057744 1.238
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 0.058165 1.235
R-HSA-8876493 InlA-mediated entry of Listeria monocytogenes into host cells 0.065706 1.182
R-HSA-8934593 Regulation of RUNX1 Expression and Activity 0.071136 1.148
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 0.068529 1.164
R-HSA-525793 Myogenesis 0.071136 1.148
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 0.070188 1.154
R-HSA-9832991 Formation of the posterior neural plate 0.065706 1.182
R-HSA-9703465 Signaling by FLT3 fusion proteins 0.071136 1.148
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 0.071136 1.148
R-HSA-5621575 CD209 (DC-SIGN) signaling 0.061136 1.214
R-HSA-111996 Ca-dependent events 0.063383 1.198
R-HSA-1500620 Meiosis 0.061180 1.213
R-HSA-421270 Cell-cell junction organization 0.064307 1.192
R-HSA-9616222 Transcriptional regulation of granulopoiesis 0.059545 1.225
R-HSA-162906 HIV Infection 0.068263 1.166
R-HSA-5687128 MAPK6/MAPK4 signaling 0.061180 1.213
R-HSA-163765 ChREBP activates metabolic gene expression 0.065706 1.182
R-HSA-9856651 MITF-M-dependent gene expression 0.066219 1.179
R-HSA-428540 Activation of RAC1 0.074009 1.131
R-HSA-209560 NF-kB is activated and signals survival 0.074009 1.131
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 0.074129 1.130
R-HSA-1489509 DAG and IP3 signaling 0.074853 1.126
R-HSA-9843745 Adipogenesis 0.074854 1.126
R-HSA-69620 Cell Cycle Checkpoints 0.074934 1.125
R-HSA-9006925 Intracellular signaling by second messengers 0.077318 1.112
R-HSA-9839373 Signaling by TGFBR3 0.078894 1.103
R-HSA-5357905 Regulation of TNFR1 signaling 0.078894 1.103
R-HSA-1483249 Inositol phosphate metabolism 0.079348 1.100
R-HSA-162587 HIV Life Cycle 0.080429 1.095
R-HSA-9005895 Pervasive developmental disorders 0.082625 1.083
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 0.082625 1.083
R-HSA-9697154 Disorders of Nervous System Development 0.082625 1.083
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 0.085071 1.070
R-HSA-5339700 Signaling by TCF7L2 mutants 0.085209 1.070
R-HSA-352238 Breakdown of the nuclear lamina 0.085209 1.070
R-HSA-9635644 Inhibition of membrane repair 0.085209 1.070
R-HSA-9006936 Signaling by TGFB family members 0.087043 1.060
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 0.087293 1.059
R-HSA-8877330 RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) 0.091531 1.038
R-HSA-9675126 Diseases of mitotic cell cycle 0.105072 0.979
R-HSA-193639 p75NTR signals via NF-kB 0.110111 0.958
R-HSA-8852135 Protein ubiquitination 0.103514 0.985
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 0.110111 0.958
R-HSA-418885 DCC mediated attractive signaling 0.110111 0.958
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 0.110111 0.958
R-HSA-9913351 Formation of the dystrophin-glycoprotein complex (DGC) 0.099034 1.004
R-HSA-5578768 Physiological factors 0.100700 0.997
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 0.100700 0.997
R-HSA-5607764 CLEC7A (Dectin-1) signaling 0.102027 0.991
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 0.105072 0.979
R-HSA-4086398 Ca2+ pathway 0.095914 1.018
R-HSA-3858494 Beta-catenin independent WNT signaling 0.089066 1.050
R-HSA-8875360 InlB-mediated entry of Listeria monocytogenes into host cell 0.110111 0.958
R-HSA-9823739 Formation of the anterior neural plate 0.110111 0.958
R-HSA-4839726 Chromatin organization 0.109017 0.963
R-HSA-109581 Apoptosis 0.091628 1.038
R-HSA-9930044 Nuclear RNA decay 0.111251 0.954
R-HSA-1839124 FGFR1 mutant receptor activation 0.111251 0.954
R-HSA-9733709 Cardiogenesis 0.111251 0.954
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 0.111251 0.954
R-HSA-9609690 HCMV Early Events 0.111282 0.954
R-HSA-8985801 Regulation of cortical dendrite branching 0.111971 0.951
R-HSA-3814836 Glycogen storage disease type XV (GYG1) 0.111971 0.951
R-HSA-3828062 Glycogen storage disease type 0 (muscle GYS1) 0.111971 0.951
R-HSA-198765 Signalling to ERK5 0.111971 0.951
R-HSA-70171 Glycolysis 0.115804 0.936
R-HSA-5660862 Defective SLC7A7 causes lysinuric protein intolerance (LPI) 0.137951 0.860
R-HSA-165181 Inhibition of TSC complex formation by PKB 0.163172 0.787
R-HSA-8952158 RUNX3 regulates BCL2L11 (BIM) transcription 0.163172 0.787
R-HSA-8939247 RUNX1 regulates transcription of genes involved in interleukin signaling 0.187657 0.727
R-HSA-8939245 RUNX1 regulates transcription of genes involved in BCR signaling 0.187657 0.727
R-HSA-74713 IRS activation 0.187657 0.727
R-HSA-9022535 Loss of phosphorylation of MECP2 at T308 0.187657 0.727
R-HSA-8935964 RUNX1 regulates expression of components of tight junctions 0.211427 0.675
R-HSA-8985586 SLIT2:ROBO1 increases RHOA activity 0.211427 0.675
R-HSA-9865113 Loss-of-function mutations in DBT cause MSUD2 0.211427 0.675
R-HSA-9907570 Loss-of-function mutations in DLD cause MSUD3/DLDD 0.211427 0.675
R-HSA-9022537 Loss of MECP2 binding ability to the NCoR/SMRT complex 0.211427 0.675
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 0.234503 0.630
R-HSA-8939256 RUNX1 regulates transcription of genes involved in WNT signaling 0.234503 0.630
R-HSA-9865125 Loss-of-function mutations in BCKDHA or BCKDHB cause MSUD 0.234503 0.630
R-HSA-9912529 H139Hfs13* PPM1K causes a mild variant of MSUD 0.234503 0.630
R-HSA-9912481 Branched-chain ketoacid dehydrogenase kinase deficiency 0.234503 0.630
R-HSA-112412 SOS-mediated signalling 0.256905 0.590
R-HSA-114516 Disinhibition of SNARE formation 0.256905 0.590
R-HSA-9726840 SHOC2 M1731 mutant abolishes MRAS complex function 0.256905 0.590
R-HSA-8939246 RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... 0.278653 0.555
R-HSA-446107 Type I hemidesmosome assembly 0.278653 0.555
R-HSA-9660537 Signaling by MRAS-complex mutants 0.278653 0.555
R-HSA-9768778 Regulation of NPAS4 mRNA translation 0.278653 0.555
R-HSA-196025 Formation of annular gap junctions 0.278653 0.555
R-HSA-3785653 Myoclonic epilepsy of Lafora 0.278653 0.555
R-HSA-9726842 Gain-of-function MRAS complexes activate RAF signaling 0.278653 0.555
R-HSA-190873 Gap junction degradation 0.299765 0.523
R-HSA-428543 Inactivation of CDC42 and RAC1 0.299765 0.523
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 0.170492 0.768
R-HSA-5140745 WNT5A-dependent internalization of FZD2, FZD5 and ROR2 0.320261 0.494
R-HSA-390522 Striated Muscle Contraction 0.117565 0.930
R-HSA-9759811 Regulation of CDH11 mRNA translation by microRNAs 0.340158 0.468
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 0.359474 0.444
R-HSA-5339716 Signaling by GSK3beta mutants 0.359474 0.444
R-HSA-9865114 Maple Syrup Urine Disease 0.378226 0.422
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 0.378226 0.422
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 0.378226 0.422
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 0.378226 0.422
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 0.378226 0.422
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 0.378226 0.422
R-HSA-9619483 Activation of AMPK downstream of NMDARs 0.267648 0.572
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 0.396430 0.402
R-HSA-9927432 Developmental Lineage of Mammary Gland Myoepithelial Cells 0.278577 0.555
R-HSA-774815 Nucleosome assembly 0.209571 0.679
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 0.209571 0.679
R-HSA-9859138 BCKDH synthesizes BCAA-CoA from KIC, KMVA, KIV 0.414102 0.383
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 0.191410 0.718
R-HSA-8948700 Competing endogenous RNAs (ceRNAs) regulate PTEN translation 0.431257 0.365
R-HSA-9027284 Erythropoietin activates RAS 0.431257 0.365
R-HSA-196299 Beta-catenin phosphorylation cascade 0.431257 0.365
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 0.322093 0.492
R-HSA-72187 mRNA 3'-end processing 0.264196 0.578
R-HSA-176412 Phosphorylation of the APC/C 0.447912 0.349
R-HSA-9687136 Aberrant regulation of mitotic exit in cancer due to RB1 defects 0.447912 0.349
R-HSA-5083625 Defective GALNT3 causes HFTC 0.447912 0.349
R-HSA-5083636 Defective GALNT12 causes CRCS1 0.447912 0.349
R-HSA-9927426 Developmental Lineage of Mammary Gland Alveolar Cells 0.343622 0.464
R-HSA-9912633 Antigen processing: Ub, ATP-independent proteasomal degradation 0.464079 0.333
R-HSA-9670095 Inhibition of DNA recombination at telomere 0.406689 0.391
R-HSA-72163 mRNA Splicing - Major Pathway 0.186529 0.729
R-HSA-9656223 Signaling by RAF1 mutants 0.427071 0.369
R-HSA-9927418 Developmental Lineage of Mammary Gland Luminal Epithelial Cells 0.437124 0.359
R-HSA-8878171 Transcriptional regulation by RUNX1 0.310347 0.508
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 0.245794 0.609
R-HSA-68962 Activation of the pre-replicative complex 0.289494 0.538
R-HSA-8931987 RUNX1 regulates estrogen receptor mediated transcription 0.256905 0.590
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 0.414102 0.383
R-HSA-9924644 Developmental Lineages of the Mammary Gland 0.215684 0.666
R-HSA-9609523 Insertion of tail-anchored proteins into the endoplasmic reticulum membrane 0.170492 0.768
R-HSA-198203 PI3K/AKT activation 0.320261 0.494
R-HSA-5682910 LGI-ADAM interactions 0.340158 0.468
R-HSA-5693537 Resolution of D-Loop Structures 0.332882 0.478
R-HSA-8939242 RUNX1 regulates transcription of genes involved in differentiation of keratinocy... 0.278653 0.555
R-HSA-164940 Nef mediated downregulation of MHC class I complex cell surface expression 0.278653 0.555
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 0.191675 0.717
R-HSA-975144 IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 0.378226 0.422
R-HSA-937039 IRAK1 recruits IKK complex 0.378226 0.422
R-HSA-399719 Trafficking of AMPA receptors 0.300391 0.522
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 0.322093 0.492
R-HSA-3371571 HSF1-dependent transactivation 0.256268 0.591
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 0.464079 0.333
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 0.364928 0.438
R-HSA-6802957 Oncogenic MAPK signaling 0.145690 0.837
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 0.141177 0.850
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 0.158002 0.801
R-HSA-72172 mRNA Splicing 0.225283 0.647
R-HSA-8849473 PTK6 Expression 0.256905 0.590
R-HSA-430039 mRNA decay by 5' to 3' exoribonuclease 0.129570 0.887
R-HSA-9764562 Regulation of CDH1 mRNA translation by microRNAs 0.414102 0.383
R-HSA-5673000 RAF activation 0.343622 0.464
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 0.286011 0.544
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 0.416925 0.380
R-HSA-438064 Post NMDA receptor activation events 0.159590 0.797
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 0.279443 0.554
R-HSA-9764561 Regulation of CDH1 Function 0.304198 0.517
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 0.402666 0.395
R-HSA-9614399 Regulation of localization of FOXO transcription factors 0.340158 0.468
R-HSA-5658442 Regulation of RAS by GAPs 0.248373 0.605
R-HSA-3214815 HDACs deacetylate histones 0.288142 0.540
R-HSA-6807070 PTEN Regulation 0.185157 0.732
R-HSA-392517 Rap1 signalling 0.160056 0.796
R-HSA-4641258 Degradation of DVL 0.375482 0.425
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 0.289494 0.538
R-HSA-2032785 YAP1- and WWTR1 (TAZ)-stimulated gene expression 0.414102 0.383
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 0.354306 0.451
R-HSA-9609646 HCMV Infection 0.284153 0.546
R-HSA-8941333 RUNX2 regulates genes involved in differentiation of myeloid cells 0.163172 0.787
R-HSA-8866376 Reelin signalling pathway 0.187657 0.727
R-HSA-199920 CREB phosphorylation 0.234503 0.630
R-HSA-6803544 Ion influx/efflux at host-pathogen interface 0.320261 0.494
R-HSA-933542 TRAF6 mediated NF-kB activation 0.224012 0.650
R-HSA-877312 Regulation of IFNG signaling 0.378226 0.422
R-HSA-9933947 Formation of the non-canonical BAF (ncBAF) complex 0.396430 0.402
R-HSA-68949 Orc1 removal from chromatin 0.264196 0.578
R-HSA-69052 Switching of origins to a post-replicative state 0.221881 0.654
R-HSA-141430 Inactivation of APC/C via direct inhibition of the APC/C complex 0.464079 0.333
R-HSA-165159 MTOR signalling 0.186996 0.728
R-HSA-9707616 Heme signaling 0.156818 0.805
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 0.246937 0.607
R-HSA-9909396 Circadian clock 0.278470 0.555
R-HSA-209543 p75NTR recruits signalling complexes 0.378226 0.422
R-HSA-1257604 PIP3 activates AKT signaling 0.230546 0.637
R-HSA-112043 PLC beta mediated events 0.151297 0.820
R-HSA-74749 Signal attenuation 0.320261 0.494
R-HSA-380972 Energy dependent regulation of mTOR by LKB1-AMPK 0.289494 0.538
R-HSA-182971 EGFR downregulation 0.300391 0.522
R-HSA-390648 Muscarinic acetylcholine receptors 0.187657 0.727
R-HSA-9603381 Activated NTRK3 signals through PI3K 0.256905 0.590
R-HSA-1253288 Downregulation of ERBB4 signaling 0.278653 0.555
R-HSA-428542 Regulation of commissural axon pathfinding by SLIT and ROBO 0.299765 0.523
R-HSA-9932444 ATP-dependent chromatin remodelers 0.234889 0.629
R-HSA-9932451 SWI/SNF chromatin remodelers 0.234889 0.629
R-HSA-8943724 Regulation of PTEN gene transcription 0.145852 0.836
R-HSA-9766229 Degradation of CDH1 0.240518 0.619
R-HSA-419408 Lysosphingolipid and LPA receptors 0.431257 0.365
R-HSA-9909648 Regulation of PD-L1(CD274) expression 0.119318 0.923
R-HSA-9860931 Response of endothelial cells to shear stress 0.257965 0.588
R-HSA-68867 Assembly of the pre-replicative complex 0.365676 0.437
R-HSA-166208 mTORC1-mediated signalling 0.202393 0.694
R-HSA-4791275 Signaling by WNT in cancer 0.311260 0.507
R-HSA-5673001 RAF/MAP kinase cascade 0.435501 0.361
R-HSA-389948 Co-inhibition by PD-1 0.207294 0.683
R-HSA-112040 G-protein mediated events 0.185483 0.732
R-HSA-5684996 MAPK1/MAPK3 signaling 0.463034 0.334
R-HSA-9020702 Interleukin-1 signaling 0.241471 0.617
R-HSA-9758941 Gastrulation 0.127846 0.893
R-HSA-5674499 Negative feedback regulation of MAPK pathway 0.211427 0.675
R-HSA-8951671 RUNX3 regulates YAP1-mediated transcription 0.234503 0.630
R-HSA-8964046 VLDL clearance 0.256905 0.590
R-HSA-9675151 Disorders of Developmental Biology 0.129570 0.887
R-HSA-9834899 Specification of the neural plate border 0.160056 0.796
R-HSA-9706019 RHOBTB3 ATPase cycle 0.340158 0.468
R-HSA-416550 Sema4D mediated inhibition of cell attachment and migration 0.359474 0.444
R-HSA-9623433 NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis 0.359474 0.444
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 0.322093 0.492
R-HSA-141405 Inhibition of the proteolytic activity of APC/C required for the onset of anapha... 0.464079 0.333
R-HSA-6809371 Formation of the cornified envelope 0.390065 0.409
R-HSA-9855142 Cellular responses to mechanical stimuli 0.320350 0.494
R-HSA-8863678 Neurodegenerative Diseases 0.224012 0.650
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 0.224012 0.650
R-HSA-6794361 Neurexins and neuroligins 0.264196 0.578
R-HSA-8982491 Glycogen metabolism 0.406689 0.391
R-HSA-9610379 HCMV Late Events 0.266132 0.575
R-HSA-5655302 Signaling by FGFR1 in disease 0.179619 0.746
R-HSA-9945266 Differentiation of T cells 0.119741 0.922
R-HSA-9942503 Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) 0.119741 0.922
R-HSA-5683057 MAPK family signaling cascades 0.135820 0.867
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 0.423558 0.373
R-HSA-5621481 C-type lectin receptors (CLRs) 0.116630 0.933
R-HSA-9664873 Pexophagy 0.320261 0.494
R-HSA-9842663 Signaling by LTK 0.378226 0.422
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 0.135201 0.869
R-HSA-429914 Deadenylation-dependent mRNA decay 0.140486 0.852
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 0.256718 0.591
R-HSA-9818749 Regulation of NFE2L2 gene expression 0.234503 0.630
R-HSA-450520 HuR (ELAVL1) binds and stabilizes mRNA 0.299765 0.523
R-HSA-8934903 Receptor Mediated Mitophagy 0.320261 0.494
R-HSA-205043 NRIF signals cell death from the nucleus 0.414102 0.383
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 0.128019 0.893
R-HSA-9018519 Estrogen-dependent gene expression 0.303821 0.517
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 0.215684 0.666
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 0.130580 0.884
R-HSA-388841 Regulation of T cell activation by CD28 family 0.306670 0.513
R-HSA-5660668 CLEC7A/inflammasome pathway 0.211427 0.675
R-HSA-8948747 Regulation of PTEN localization 0.256905 0.590
R-HSA-8849469 PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 0.278653 0.555
R-HSA-198693 AKT phosphorylates targets in the nucleus 0.299765 0.523
R-HSA-9634638 Estrogen-dependent nuclear events downstream of ESR-membrane signaling 0.213176 0.671
R-HSA-429947 Deadenylation of mRNA 0.224012 0.650
R-HSA-8951936 RUNX3 regulates p14-ARF 0.378226 0.422
R-HSA-9796292 Formation of axial mesoderm 0.396430 0.402
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 0.431257 0.365
R-HSA-73856 RNA Polymerase II Transcription Termination 0.336392 0.473
R-HSA-1592230 Mitochondrial biogenesis 0.349319 0.457
R-HSA-983169 Class I MHC mediated antigen processing & presentation 0.316287 0.500
R-HSA-2559583 Cellular Senescence 0.378684 0.422
R-HSA-975871 MyD88 cascade initiated on plasma membrane 0.405561 0.392
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 0.405561 0.392
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 0.405561 0.392
R-HSA-111885 Opioid Signalling 0.444948 0.352
R-HSA-73886 Chromosome Maintenance 0.215359 0.667
R-HSA-69242 S Phase 0.124822 0.904
R-HSA-8953854 Metabolism of RNA 0.258346 0.588
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 0.247108 0.607
R-HSA-373753 Nephrin family interactions 0.170492 0.768
R-HSA-400685 Sema4D in semaphorin signaling 0.234889 0.629
R-HSA-5689880 Ub-specific processing proteases 0.214745 0.668
R-HSA-430116 GP1b-IX-V activation signalling 0.299765 0.523
R-HSA-9619665 EGR2 and SOX10-mediated initiation of Schwann cell myelination 0.117565 0.930
R-HSA-9617629 Regulation of FOXO transcriptional activity by acetylation 0.378226 0.422
R-HSA-176187 Activation of ATR in response to replication stress 0.322093 0.492
R-HSA-177929 Signaling by EGFR 0.296163 0.528
R-HSA-5205647 Mitophagy 0.343622 0.464
R-HSA-9675108 Nervous system development 0.428147 0.368
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 0.296163 0.528
R-HSA-8854214 TBC/RABGAPs 0.194450 0.711
R-HSA-6794362 Protein-protein interactions at synapses 0.299156 0.524
R-HSA-9682385 FLT3 signaling in disease 0.137269 0.862
R-HSA-8939211 ESR-mediated signaling 0.355367 0.449
R-HSA-193692 Regulated proteolysis of p75NTR 0.299765 0.523
R-HSA-8851805 MET activates RAS signaling 0.378226 0.422
R-HSA-9933937 Formation of the canonical BAF (cBAF) complex 0.414102 0.383
R-HSA-5696394 DNA Damage Recognition in GG-NER 0.332882 0.478
R-HSA-5099900 WNT5A-dependent internalization of FZD4 0.447912 0.349
R-HSA-1483148 Synthesis of PG 0.464079 0.333
R-HSA-170834 Signaling by TGF-beta Receptor Complex 0.219954 0.658
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 0.352473 0.453
R-HSA-8848021 Signaling by PTK6 0.352473 0.453
R-HSA-397014 Muscle contraction 0.384279 0.415
R-HSA-8953897 Cellular responses to stimuli 0.428056 0.368
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 0.149746 0.825
R-HSA-3214841 PKMTs methylate histone lysines 0.172324 0.764
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 0.194450 0.711
R-HSA-3000171 Non-integrin membrane-ECM interactions 0.234412 0.630
R-HSA-1474165 Reproduction 0.268470 0.571
R-HSA-2262752 Cellular responses to stress 0.440699 0.356
R-HSA-373752 Netrin-1 signaling 0.201977 0.695
R-HSA-936837 Ion transport by P-type ATPases 0.360497 0.443
R-HSA-6807004 Negative regulation of MET activity 0.170492 0.768
R-HSA-450385 Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA 0.431257 0.365
R-HSA-9706369 Negative regulation of FLT3 0.447912 0.349
R-HSA-388844 Receptor-type tyrosine-protein phosphatases 0.447912 0.349
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 0.209536 0.679
R-HSA-9823730 Formation of definitive endoderm 0.170492 0.768
R-HSA-170968 Frs2-mediated activation 0.396430 0.402
R-HSA-3928662 EPHB-mediated forward signaling 0.456938 0.340
R-HSA-9816359 Maternal to zygotic transition (MZT) 0.224743 0.648
R-HSA-2892245 POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation 0.256905 0.590
R-HSA-5260271 Diseases of Immune System 0.406689 0.391
R-HSA-5602358 Diseases associated with the TLR signaling cascade 0.406689 0.391
R-HSA-168273 Influenza Viral RNA Transcription and Replication 0.407895 0.389
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 0.203440 0.692
R-HSA-9607240 FLT3 Signaling 0.416925 0.380
R-HSA-5218920 VEGFR2 mediated vascular permeability 0.172324 0.764
R-HSA-69190 DNA strand elongation 0.311260 0.507
R-HSA-3247509 Chromatin modifying enzymes 0.226809 0.644
R-HSA-110357 Displacement of DNA glycosylase by APEX1 0.256905 0.590
R-HSA-381771 Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) 0.158002 0.801
R-HSA-1433559 Regulation of KIT signaling 0.414102 0.383
R-HSA-983712 Ion channel transport 0.421843 0.375
R-HSA-9831926 Nephron development 0.149746 0.825
R-HSA-8986944 Transcriptional Regulation by MECP2 0.345664 0.461
R-HSA-198323 AKT phosphorylates targets in the cytosol 0.378226 0.422
R-HSA-9683610 Maturation of nucleoprotein 0.396430 0.402
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 0.240518 0.619
R-HSA-1226099 Signaling by FGFR in disease 0.439457 0.357
R-HSA-2586552 Signaling by Leptin 0.320261 0.494
R-HSA-169893 Prolonged ERK activation events 0.447912 0.349
R-HSA-1280215 Cytokine Signaling in Immune system 0.350020 0.456
R-HSA-75893 TNF signaling 0.124883 0.903
R-HSA-168255 Influenza Infection 0.373891 0.427
R-HSA-210991 Basigin interactions 0.181036 0.742
R-HSA-446353 Cell-extracellular matrix interactions 0.431257 0.365
R-HSA-6804757 Regulation of TP53 Degradation 0.364928 0.438
R-HSA-449147 Signaling by Interleukins 0.285381 0.545
R-HSA-9926550 Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... 0.149746 0.825
R-HSA-452723 Transcriptional regulation of pluripotent stem cells 0.385963 0.413
R-HSA-6806003 Regulation of TP53 Expression and Degradation 0.396367 0.402
R-HSA-9671555 Signaling by PDGFR in disease 0.191675 0.717
R-HSA-9830369 Kidney development 0.384469 0.415
R-HSA-5357801 Programmed Cell Death 0.136988 0.863
R-HSA-400508 Incretin synthesis, secretion, and inactivation 0.186996 0.728
R-HSA-844456 The NLRP3 inflammasome 0.160056 0.796
R-HSA-72306 tRNA processing 0.203280 0.692
R-HSA-1980143 Signaling by NOTCH1 0.454837 0.342
R-HSA-70326 Glucose metabolism 0.197018 0.705
R-HSA-75205 Dissolution of Fibrin Clot 0.340158 0.468
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 0.304198 0.517
R-HSA-381038 XBP1(S) activates chaperone genes 0.312389 0.505
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 0.339946 0.469
R-HSA-186712 Regulation of beta-cell development 0.140486 0.852
R-HSA-381070 IRE1alpha activates chaperones 0.352335 0.453
R-HSA-622312 Inflammasomes 0.267648 0.572
R-HSA-5619102 SLC transporter disorders 0.312168 0.506
R-HSA-211000 Gene Silencing by RNA 0.145965 0.836
R-HSA-9006931 Signaling by Nuclear Receptors 0.465212 0.332
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 0.466692 0.331
R-HSA-9824272 Somitogenesis 0.466692 0.331
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 0.466692 0.331
R-HSA-383280 Nuclear Receptor transcription pathway 0.470037 0.328
R-HSA-4086400 PCP/CE pathway 0.470037 0.328
R-HSA-69239 Synthesis of DNA 0.470763 0.327
R-HSA-9649948 Signaling downstream of RAS mutants 0.476342 0.322
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 0.476342 0.322
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 0.476342 0.322
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 0.476342 0.322
R-HSA-6802949 Signaling by RAS mutants 0.476342 0.322
R-HSA-9660826 Purinergic signaling in leishmaniasis infection 0.476342 0.322
R-HSA-9664424 Cell recruitment (pro-inflammatory response) 0.476342 0.322
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 0.477149 0.321
R-HSA-2672351 Stimuli-sensing channels 0.477149 0.321
R-HSA-5083632 Defective C1GALT1C1 causes TNPS 0.479774 0.319
R-HSA-176407 Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase 0.479774 0.319
R-HSA-3229121 Glycogen storage diseases 0.479774 0.319
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to cla... 0.479774 0.319
R-HSA-9768759 Regulation of NPAS4 gene expression 0.479774 0.319
R-HSA-69002 DNA Replication Pre-Initiation 0.483505 0.316
R-HSA-975155 MyD88 dependent cascade initiated on endosome 0.483505 0.316
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 0.485045 0.314
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 0.485885 0.313
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 0.485885 0.313
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 0.485885 0.313
R-HSA-381119 Unfolded Protein Response (UPR) 0.493083 0.307
R-HSA-9614657 FOXO-mediated transcription of cell death genes 0.495011 0.305
R-HSA-416993 Trafficking of GluR2-containing AMPA receptors 0.495011 0.305
R-HSA-3928664 Ephrin signaling 0.495011 0.305
R-HSA-73980 RNA Polymerase III Transcription Termination 0.495011 0.305
R-HSA-9613829 Chaperone Mediated Autophagy 0.495011 0.305
R-HSA-210993 Tie2 Signaling 0.495011 0.305
R-HSA-1632852 Macroautophagy 0.504181 0.297
R-HSA-73893 DNA Damage Bypass 0.504643 0.297
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 0.508610 0.294
R-HSA-174048 APC/C:Cdc20 mediated degradation of Cyclin B 0.509802 0.293
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 0.509802 0.293
R-HSA-9709603 Impaired BRCA2 binding to PALB2 0.509802 0.293
R-HSA-9754189 Germ layer formation at gastrulation 0.509802 0.293
R-HSA-912631 Regulation of signaling by CBL 0.509802 0.293
R-HSA-9694631 Maturation of nucleoprotein 0.509802 0.293
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 0.522951 0.282
R-HSA-1169091 Activation of NF-kappaB in B cells 0.522951 0.282
R-HSA-9909620 Regulation of PD-L1(CD274) translation 0.524160 0.281
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 0.524160 0.281
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 0.524160 0.281
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 0.524160 0.281
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 0.524160 0.281
R-HSA-3322077 Glycogen synthesis 0.524160 0.281
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 0.524160 0.281
R-HSA-9629569 Protein hydroxylation 0.524160 0.281
R-HSA-1181150 Signaling by NODAL 0.524160 0.281
R-HSA-140875 Common Pathway of Fibrin Clot Formation 0.524160 0.281
R-HSA-74160 Gene expression (Transcription) 0.524699 0.280
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 0.527074 0.278
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 0.531934 0.274
R-HSA-112382 Formation of RNA Pol II elongation complex 0.531934 0.274
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 0.531934 0.274
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 0.531934 0.274
R-HSA-9634815 Transcriptional Regulation by NPAS4 0.531934 0.274
R-HSA-4420097 VEGFA-VEGFR2 Pathway 0.533154 0.273
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 0.535868 0.271
R-HSA-5619115 Disorders of transmembrane transporters 0.537698 0.269
R-HSA-179409 APC-Cdc20 mediated degradation of Nek2A 0.538099 0.269
R-HSA-5357786 TNFR1-induced proapoptotic signaling 0.538099 0.269
R-HSA-198753 ERK/MAPK targets 0.538099 0.269
R-HSA-9824594 Regulation of MITF-M-dependent genes involved in apoptosis 0.538099 0.269
R-HSA-422085 Synthesis, secretion, and deacylation of Ghrelin 0.538099 0.269
R-HSA-9636383 Prevention of phagosomal-lysosomal fusion 0.538099 0.269
R-HSA-913531 Interferon Signaling 0.538967 0.268
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 0.540800 0.267
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 0.540800 0.267
R-HSA-75955 RNA Polymerase II Transcription Elongation 0.540800 0.267
R-HSA-9639288 Amino acids regulate mTORC1 0.540800 0.267
R-HSA-8948751 Regulation of PTEN stability and activity 0.540800 0.267
R-HSA-9007101 Rab regulation of trafficking 0.545196 0.263
R-HSA-2980736 Peptide hormone metabolism 0.545196 0.263
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 0.549550 0.260
R-HSA-9663891 Selective autophagy 0.549860 0.260
R-HSA-2219528 PI3K/AKT Signaling in Cancer 0.551156 0.259
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 0.551631 0.258
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 0.551631 0.258
R-HSA-174403 Glutathione synthesis and recycling 0.551631 0.258
R-HSA-9034015 Signaling by NTRK3 (TRKC) 0.551631 0.258
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 0.557076 0.254
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 0.557076 0.254
R-HSA-9679191 Potential therapeutics for SARS 0.558115 0.253
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 0.558181 0.253
R-HSA-9753281 Paracetamol ADME 0.558181 0.253
R-HSA-350054 Notch-HLH transcription pathway 0.564767 0.248
R-HSA-8964038 LDL clearance 0.564767 0.248
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 0.566695 0.247
R-HSA-5578775 Ion homeostasis 0.566695 0.247
R-HSA-446652 Interleukin-1 family signaling 0.568552 0.245
R-HSA-9759194 Nuclear events mediated by NFE2L2 0.568787 0.245
R-HSA-5693532 DNA Double-Strand Break Repair 0.573723 0.241
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 0.574579 0.241
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 0.574579 0.241
R-HSA-1280218 Adaptive Immune System 0.575351 0.240
R-HSA-8943723 Regulation of PTEN mRNA translation 0.577518 0.238
R-HSA-977068 Termination of O-glycan biosynthesis 0.577518 0.238
R-HSA-9648895 Response of EIF2AK1 (HRI) to heme deficiency 0.577518 0.238
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 0.577518 0.238
R-HSA-3000170 Syndecan interactions 0.577518 0.238
R-HSA-982772 Growth hormone receptor signaling 0.577518 0.238
R-HSA-2682334 EPH-Ephrin signaling 0.583725 0.234
R-HSA-9612973 Autophagy 0.589039 0.230
R-HSA-9821993 Replacement of protamines by nucleosomes in the male pronucleus 0.589897 0.229
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 0.589897 0.229
R-HSA-352230 Amino acid transport across the plasma membrane 0.591521 0.228
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 0.591521 0.228
R-HSA-194138 Signaling by VEGF 0.597297 0.224
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 0.599558 0.222
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 0.601914 0.220
R-HSA-9620244 Long-term potentiation 0.601914 0.220
R-HSA-3214842 HDMs demethylate histones 0.601914 0.220
R-HSA-9830364 Formation of the nephric duct 0.601914 0.220
R-HSA-1660516 Synthesis of PIPs at the early endosome membrane 0.601914 0.220
R-HSA-3000157 Laminin interactions 0.601914 0.220
R-HSA-70221 Glycogen breakdown (glycogenolysis) 0.601914 0.220
R-HSA-1266695 Interleukin-7 signaling 0.601914 0.220
R-HSA-9734767 Developmental Cell Lineages 0.603057 0.220
R-HSA-9793380 Formation of paraxial mesoderm 0.607475 0.216
R-HSA-450294 MAP kinase activation 0.607475 0.216
R-HSA-69481 G2/M Checkpoints 0.608382 0.216
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 0.609148 0.215
R-HSA-422475 Axon guidance 0.613313 0.212
R-HSA-9865118 Diseases of branched-chain amino acid catabolism 0.613580 0.212
R-HSA-1855183 Synthesis of IP2, IP, and Ins in the cytosol 0.613580 0.212
R-HSA-9637687 Suppression of phagosomal maturation 0.613580 0.212
R-HSA-187037 Signaling by NTRK1 (TRKA) 0.613854 0.212
R-HSA-375165 NCAM signaling for neurite out-growth 0.615273 0.211
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 0.615273 0.211
R-HSA-157579 Telomere Maintenance 0.622163 0.206
R-HSA-373755 Semaphorin interactions 0.622951 0.206
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 0.624904 0.204
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 0.624904 0.204
R-HSA-445095 Interaction between L1 and Ankyrins 0.624904 0.204
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 0.624904 0.204
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 0.624904 0.204
R-HSA-9841251 Mitochondrial unfolded protein response (UPRmt) 0.624904 0.204
R-HSA-174414 Processive synthesis on the C-strand of the telomere 0.624904 0.204
R-HSA-389357 CD28 dependent PI3K/Akt signaling 0.624904 0.204
R-HSA-9828806 Maturation of hRSV A proteins 0.624904 0.204
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 0.630511 0.200
R-HSA-9614085 FOXO-mediated transcription 0.634426 0.198
R-HSA-3214847 HATs acetylate histones 0.634426 0.198
R-HSA-5576891 Cardiac conduction 0.635262 0.197
R-HSA-167287 HIV elongation arrest and recovery 0.635898 0.197
R-HSA-167290 Pausing and recovery of HIV elongation 0.635898 0.197
R-HSA-5576892 Phase 0 - rapid depolarisation 0.635898 0.197
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 0.635898 0.197
R-HSA-113418 Formation of the Early Elongation Complex 0.635898 0.197
R-HSA-5205685 PINK1-PRKN Mediated Mitophagy 0.635898 0.197
R-HSA-380994 ATF4 activates genes in response to endoplasmic reticulum stress 0.635898 0.197
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 0.635898 0.197
R-HSA-1234174 Cellular response to hypoxia 0.637952 0.195
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 0.637952 0.195
R-HSA-9679506 SARS-CoV Infections 0.640805 0.193
R-HSA-376176 Signaling by ROBO receptors 0.645453 0.190
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 0.645453 0.190
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 0.645674 0.190
R-HSA-9009391 Extra-nuclear estrogen signaling 0.646409 0.189
R-HSA-9615710 Late endosomal microautophagy 0.646569 0.189
R-HSA-9709570 Impaired BRCA2 binding to RAD51 0.646569 0.189
R-HSA-9006335 Signaling by Erythropoietin 0.646569 0.189
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 0.646569 0.189
R-HSA-917729 Endosomal Sorting Complex Required For Transport (ESCRT) 0.646569 0.189
R-HSA-5656169 Termination of translesion DNA synthesis 0.646569 0.189
R-HSA-9842860 Regulation of endogenous retroelements 0.652295 0.186
R-HSA-5685942 HDR through Homologous Recombination (HRR) 0.652481 0.185
R-HSA-9958863 SLC-mediated transport of amino acids 0.652481 0.185
R-HSA-5693606 DNA Double Strand Break Response 0.652481 0.185
R-HSA-456926 Thrombin signalling through proteinase activated receptors (PARs) 0.656929 0.182
R-HSA-9687139 Aberrant regulation of mitotic cell cycle due to RB1 defects 0.656929 0.182
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 0.659570 0.181
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 0.666542 0.176
R-HSA-162588 Budding and maturation of HIV virion 0.666985 0.176
R-HSA-211733 Regulation of activated PAK-2p34 by proteasome mediated degradation 0.666985 0.176
R-HSA-186763 Downstream signal transduction 0.666985 0.176
R-HSA-9833110 RSV-host interactions 0.669533 0.174
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 0.670838 0.173
R-HSA-448424 Interleukin-17 signaling 0.673399 0.172
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 0.675138 0.171
R-HSA-9937080 Developmental Lineage of Multipotent Pancreatic Progenitor Cells 0.676748 0.170
R-HSA-350562 Regulation of ornithine decarboxylase (ODC) 0.676748 0.170
R-HSA-453276 Regulation of mitotic cell cycle 0.680141 0.167
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 0.680141 0.167
R-HSA-9692914 SARS-CoV-1-host interactions 0.680673 0.167
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 0.682886 0.166
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 0.686224 0.164
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 0.686224 0.164
R-HSA-5675482 Regulation of necroptotic cell death 0.686224 0.164
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 0.686224 0.164
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 0.686224 0.164
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 0.686389 0.163
R-HSA-73857 RNA Polymerase II Transcription 0.688154 0.162
R-HSA-212165 Epigenetic regulation of gene expression 0.689801 0.161
R-HSA-73894 DNA Repair 0.691880 0.160
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 0.695424 0.158
R-HSA-9768727 Regulation of CDH1 posttranslational processing and trafficking to plasma membra... 0.695424 0.158
R-HSA-180534 Vpu mediated degradation of CD4 0.695424 0.158
R-HSA-674695 RNA Polymerase II Pre-transcription Events 0.699687 0.155
R-HSA-1236394 Signaling by ERBB4 0.699687 0.155
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 0.702112 0.154
R-HSA-166166 MyD88-independent TLR4 cascade 0.702112 0.154
R-HSA-202403 TCR signaling 0.702112 0.154
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 0.704354 0.152
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 0.704354 0.152
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 0.704354 0.152
R-HSA-349425 Autodegradation of the E3 ubiquitin ligase COP1 0.704354 0.152
R-HSA-75815 Ubiquitin-dependent degradation of Cyclin D 0.704354 0.152
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 0.704354 0.152
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 0.704354 0.152
R-HSA-9768919 NPAS4 regulates expression of target genes 0.704354 0.152
R-HSA-9020591 Interleukin-12 signaling 0.712160 0.147
R-HSA-8854050 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 0.713023 0.147
R-HSA-174113 SCF-beta-TrCP mediated degradation of Emi1 0.713023 0.147
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 0.713023 0.147
R-HSA-169911 Regulation of Apoptosis 0.713023 0.147
R-HSA-2559585 Oncogene Induced Senescence 0.713023 0.147
R-HSA-381042 PERK regulates gene expression 0.713023 0.147
R-HSA-187687 Signalling to ERKs 0.713023 0.147
R-HSA-9694635 Translation of Structural Proteins 0.718232 0.144
R-HSA-180585 Vif-mediated degradation of APOBEC3G 0.721438 0.142
R-HSA-3371511 HSF1 activation 0.721438 0.142
R-HSA-432720 Lysosome Vesicle Biogenesis 0.721438 0.142
R-HSA-8941326 RUNX2 regulates bone development 0.721438 0.142
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 0.721438 0.142
R-HSA-74158 RNA Polymerase III Transcription 0.721438 0.142
R-HSA-140877 Formation of Fibrin Clot (Clotting Cascade) 0.721438 0.142
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 0.724196 0.140
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 0.726096 0.139
R-HSA-166520 Signaling by NTRKs 0.726096 0.139
R-HSA-69275 G2/M Transition 0.727923 0.138
R-HSA-4641257 Degradation of AXIN 0.729607 0.137
R-HSA-9762114 GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 0.729607 0.137
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 0.729607 0.137
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 0.729607 0.137
R-HSA-5689896 Ovarian tumor domain proteases 0.729607 0.137
R-HSA-549127 SLC-mediated transport of organic cations 0.729607 0.137
R-HSA-196757 Metabolism of folate and pterines 0.729607 0.137
R-HSA-9659379 Sensory processing of sound 0.730054 0.137
R-HSA-5628897 TP53 Regulates Metabolic Genes 0.732189 0.135
R-HSA-453274 Mitotic G2-G2/M phases 0.735596 0.133
R-HSA-9833482 PKR-mediated signaling 0.735805 0.133
R-HSA-2871809 FCERI mediated Ca+2 mobilization 0.736962 0.133
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 0.737537 0.132
R-HSA-5213460 RIPK1-mediated regulated necrosis 0.737537 0.132
R-HSA-9755511 KEAP1-NFE2L2 pathway 0.738777 0.131
R-HSA-373760 L1CAM interactions 0.741668 0.130
R-HSA-9705683 SARS-CoV-2-host interactions 0.745174 0.128
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 0.745235 0.128
R-HSA-1236978 Cross-presentation of soluble exogenous antigens (endosomes) 0.745235 0.128
R-HSA-9725554 Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin 0.745235 0.128
R-HSA-8953750 Transcriptional Regulation by E2F6 0.745235 0.128
R-HSA-9929356 GSK3B-mediated proteasomal degradation of PD-L1(CD274) 0.745235 0.128
R-HSA-69541 Stabilization of p53 0.745235 0.128
R-HSA-8964043 Plasma lipoprotein clearance 0.745235 0.128
R-HSA-201556 Signaling by ALK 0.745235 0.128
R-HSA-9820965 Respiratory syncytial virus (RSV) genome replication, transcription and translat... 0.745235 0.128
R-HSA-69306 DNA Replication 0.746982 0.127
R-HSA-9711123 Cellular response to chemical stress 0.751419 0.124
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 0.752437 0.124
R-HSA-9707564 Cytoprotection by HMOX1 0.752437 0.124
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 0.752708 0.123
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 0.752708 0.123
R-HSA-167169 HIV Transcription Elongation 0.752708 0.123
R-HSA-3371568 Attenuation phase 0.752708 0.123
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 0.752708 0.123
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 0.752708 0.123
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 0.752708 0.123
R-HSA-1251985 Nuclear signaling by ERBB4 0.752708 0.123
R-HSA-9604323 Negative regulation of NOTCH4 signaling 0.752708 0.123
R-HSA-9646399 Aggrephagy 0.752708 0.123
R-HSA-8941858 Regulation of RUNX3 expression and activity 0.752708 0.123
R-HSA-71240 Tryptophan catabolism 0.752708 0.123
R-HSA-202433 Generation of second messenger molecules 0.752708 0.123
R-HSA-8878166 Transcriptional regulation by RUNX2 0.755386 0.122
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 0.757778 0.120
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 0.757778 0.120
R-HSA-9929491 SPOP-mediated proteasomal degradation of PD-L1(CD274) 0.759961 0.119
R-HSA-5362768 Hh mutants are degraded by ERAD 0.759961 0.119
R-HSA-9694548 Maturation of spike protein 0.759961 0.119
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 0.759961 0.119
R-HSA-5423646 Aflatoxin activation and detoxification 0.759961 0.119
R-HSA-73933 Resolution of Abasic Sites (AP sites) 0.759961 0.119
R-HSA-9711097 Cellular response to starvation 0.766631 0.115
R-HSA-5674135 MAP2K and MAPK activation 0.767003 0.115
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 0.767003 0.115
R-HSA-9932298 Degradation of CRY and PER proteins 0.767003 0.115
R-HSA-5610780 Degradation of GLI1 by the proteasome 0.767003 0.115
R-HSA-5675221 Negative regulation of MAPK pathway 0.767003 0.115
R-HSA-5610783 Degradation of GLI2 by the proteasome 0.767003 0.115
R-HSA-5610785 GLI3 is processed to GLI3R by the proteasome 0.767003 0.115
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 0.767003 0.115
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 0.767003 0.115
R-HSA-9683701 Translation of Structural Proteins 0.767003 0.115
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 0.768160 0.115
R-HSA-379716 Cytosolic tRNA aminoacylation 0.773838 0.111
R-HSA-73762 RNA Polymerase I Transcription Initiation 0.773838 0.111
R-HSA-110329 Cleavage of the damaged pyrimidine 0.773838 0.111
R-HSA-73928 Depyrimidination 0.773838 0.111
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 0.773838 0.111
R-HSA-5633007 Regulation of TP53 Activity 0.774151 0.111
R-HSA-199991 Membrane Trafficking 0.775100 0.111
R-HSA-447115 Interleukin-12 family signaling 0.778154 0.109
R-HSA-3700989 Transcriptional Regulation by TP53 0.778299 0.109
R-HSA-5387390 Hh mutants abrogate ligand secretion 0.780473 0.108
R-HSA-9637690 Response of Mtb to phagocytosis 0.780473 0.108
R-HSA-1433557 Signaling by SCF-KIT 0.780473 0.108
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 0.783008 0.106
R-HSA-9645723 Diseases of programmed cell death 0.783008 0.106
R-HSA-157118 Signaling by NOTCH 0.783770 0.106
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 0.785114 0.105
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 0.785114 0.105
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 0.785114 0.105
R-HSA-69206 G1/S Transition 0.785114 0.105
R-HSA-9907900 Proteasome assembly 0.786914 0.104
R-HSA-190828 Gap junction trafficking 0.786914 0.104
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 0.786914 0.104
R-HSA-187577 SCF(Skp2)-mediated degradation of p27/p21 0.786914 0.104
R-HSA-375280 Amine ligand-binding receptors 0.786914 0.104
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 0.792437 0.101
R-HSA-202424 Downstream TCR signaling 0.792437 0.101
R-HSA-114608 Platelet degranulation 0.793039 0.101
R-HSA-4608870 Asymmetric localization of PCP proteins 0.793167 0.101
R-HSA-6783310 Fanconi Anemia Pathway 0.793167 0.101
R-HSA-5678895 Defective CFTR causes cystic fibrosis 0.793167 0.101
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 0.793167 0.101
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 0.793167 0.101
R-HSA-1912408 Pre-NOTCH Transcription and Translation 0.797015 0.099
R-HSA-9861718 Regulation of pyruvate metabolism 0.799236 0.097
R-HSA-9675135 Diseases of DNA repair 0.799236 0.097
R-HSA-6805567 Keratinization 0.800693 0.097
R-HSA-437239 Recycling pathway of L1 0.805127 0.094
R-HSA-1483191 Synthesis of PC 0.805127 0.094
R-HSA-9772573 Late SARS-CoV-2 Infection Events 0.805903 0.094
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 0.810846 0.091
R-HSA-389356 Co-stimulation by CD28 0.810846 0.091
R-HSA-157858 Gap junction trafficking and regulation 0.816398 0.088
R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 0.816398 0.088
R-HSA-69563 p53-Dependent G1 DNA Damage Response 0.816398 0.088
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 0.818587 0.087
R-HSA-109704 PI3K Cascade 0.821787 0.085
R-HSA-9748787 Azathioprine ADME 0.821787 0.085
R-HSA-6807878 COPI-mediated anterograde transport 0.826626 0.083
R-HSA-70895 Branched-chain amino acid catabolism 0.827018 0.082
R-HSA-912446 Meiotic recombination 0.827018 0.082
R-HSA-5358346 Hedgehog ligand biogenesis 0.827018 0.082
R-HSA-9678108 SARS-CoV-1 Infection 0.827604 0.082
R-HSA-212436 Generic Transcription Pathway 0.829631 0.081
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 0.832096 0.080
R-HSA-445355 Smooth Muscle Contraction 0.837025 0.077
R-HSA-382556 ABC-family proteins mediated transport 0.841750 0.075
R-HSA-73929 Base-Excision Repair, AP Site Formation 0.841809 0.075
R-HSA-418597 G alpha (z) signalling events 0.846454 0.072
R-HSA-2559580 Oxidative Stress Induced Senescence 0.848855 0.071
R-HSA-1483255 PI Metabolism 0.848855 0.071
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 0.850962 0.070
R-HSA-3299685 Detoxification of Reactive Oxygen Species 0.850962 0.070
R-HSA-112399 IRS-mediated signalling 0.855339 0.068
R-HSA-5621480 Dectin-2 family 0.855339 0.068
R-HSA-1483166 Synthesis of PA 0.855339 0.068
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 0.855669 0.068
R-HSA-9694516 SARS-CoV-2 Infection 0.856769 0.067
R-HSA-5696398 Nucleotide Excision Repair 0.862202 0.064
R-HSA-2022090 Assembly of collagen fibrils and other multimeric structures 0.863710 0.064
R-HSA-180786 Extension of Telomeres 0.863710 0.064
R-HSA-453279 Mitotic G1 phase and G1/S transition 0.865130 0.063
R-HSA-379724 tRNA Aminoacylation 0.867713 0.062
R-HSA-156590 Glutathione conjugation 0.867713 0.062
R-HSA-351202 Metabolism of polyamines 0.867713 0.062
R-HSA-1660661 Sphingolipid de novo biosynthesis 0.867713 0.062
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 0.867713 0.062
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 0.867713 0.062
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 0.867713 0.062
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 0.867713 0.062
R-HSA-2644603 Signaling by NOTCH1 in Cancer 0.867713 0.062
R-HSA-76002 Platelet activation, signaling and aggregation 0.869042 0.061
R-HSA-168898 Toll-like Receptor Cascades 0.870134 0.060
R-HSA-2428928 IRS-related events triggered by IGF1R 0.871598 0.060
R-HSA-8939902 Regulation of RUNX2 expression and activity 0.871598 0.060
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 0.875370 0.058
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 0.875370 0.058
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 0.875370 0.058
R-HSA-186797 Signaling by PDGF 0.875370 0.058
R-HSA-1852241 Organelle biogenesis and maintenance 0.878226 0.056
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 0.879031 0.056
R-HSA-380259 Loss of Nlp from mitotic centrosomes 0.879031 0.056
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 0.879031 0.056
R-HSA-69615 G1/S DNA Damage Checkpoints 0.879031 0.056
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 0.880511 0.055
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 0.880511 0.055
R-HSA-74751 Insulin receptor signalling cascade 0.882584 0.054
R-HSA-2428924 IGF1R signaling cascade 0.882584 0.054
R-HSA-1912422 Pre-NOTCH Expression and Processing 0.885712 0.053
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 0.886034 0.053
R-HSA-1989781 PPARA activates gene expression 0.887602 0.052
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 0.888374 0.051
R-HSA-8854518 AURKA Activation by TPX2 0.889382 0.051
R-HSA-6782315 tRNA modification in the nucleus and cytosol 0.889382 0.051
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 0.892118 0.050
R-HSA-196807 Nicotinate metabolism 0.892632 0.049
R-HSA-913709 O-linked glycosylation of mucins 0.895787 0.048
R-HSA-167172 Transcription of the HIV genome 0.895787 0.048
R-HSA-5218859 Regulated Necrosis 0.895787 0.048
R-HSA-877300 Interferon gamma signaling 0.896471 0.047
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 0.901822 0.045
R-HSA-75105 Fatty acyl-CoA biosynthesis 0.901822 0.045
R-HSA-69202 Cyclin E associated events during G1/S transition 0.901822 0.045
R-HSA-6798695 Neutrophil degranulation 0.902675 0.044
R-HSA-5693538 Homology Directed Repair 0.903180 0.044
R-HSA-3906995 Diseases associated with O-glycosylation of proteins 0.904707 0.043
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 0.904707 0.043
R-HSA-5632684 Hedgehog 'on' state 0.904707 0.043
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 0.907508 0.042
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 0.907508 0.042
R-HSA-199992 trans-Golgi Network Vesicle Budding 0.907508 0.042
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 0.910226 0.041
R-HSA-5663084 Diseases of carbohydrate metabolism 0.910226 0.041
R-HSA-69473 G2/M DNA damage checkpoint 0.912865 0.040
R-HSA-9013694 Signaling by NOTCH4 0.912865 0.040
R-HSA-9824446 Viral Infection Pathways 0.914847 0.039
R-HSA-380287 Centrosome maturation 0.915427 0.038
R-HSA-112316 Neuronal System 0.916142 0.038
R-HSA-73854 RNA Polymerase I Promoter Clearance 0.917913 0.037
R-HSA-73864 RNA Polymerase I Transcription 0.922669 0.035
R-HSA-5619084 ABC transporter disorders 0.922669 0.035
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 0.924943 0.034
R-HSA-8951664 Neddylation 0.927394 0.033
R-HSA-199418 Negative regulation of the PI3K/AKT network 0.929195 0.032
R-HSA-5693607 Processing of DNA double-strand break ends 0.929292 0.032
R-HSA-168256 Immune System 0.935345 0.029
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 0.939096 0.027
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 0.940888 0.026
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 0.940888 0.026
R-HSA-112315 Transmission across Chemical Synapses 0.941386 0.026
R-HSA-163685 Integration of energy metabolism 0.941763 0.026
R-HSA-70268 Pyruvate metabolism 0.942627 0.026
R-HSA-390466 Chaperonin-mediated protein folding 0.942627 0.026
R-HSA-1236974 ER-Phagosome pathway 0.945954 0.024
R-HSA-202733 Cell surface interactions at the vascular wall 0.947001 0.024
R-HSA-73884 Base Excision Repair 0.947544 0.023
R-HSA-74752 Signaling by Insulin receptor 0.952040 0.021
R-HSA-391251 Protein folding 0.952040 0.021
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 0.952040 0.021
R-HSA-2871837 FCERI mediated NF-kB activation 0.953365 0.021
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 0.953452 0.021
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 0.954822 0.020
R-HSA-1474290 Collagen formation 0.954822 0.020
R-HSA-199977 ER to Golgi Anterograde Transport 0.956716 0.019
R-HSA-1483257 Phospholipid metabolism 0.957216 0.019
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 0.957442 0.019
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 0.957959 0.019
R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 0.958695 0.018
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 0.958695 0.018
R-HSA-597592 Post-translational protein modification 0.959406 0.018
R-HSA-5653656 Vesicle-mediated transport 0.959674 0.018
R-HSA-1483206 Glycerophospholipid biosynthesis 0.960672 0.017
R-HSA-9609507 Protein localization 0.962740 0.016
R-HSA-5610787 Hedgehog 'off' state 0.963349 0.016
R-HSA-109582 Hemostasis 0.967395 0.014
R-HSA-5619507 Activation of HOX genes during differentiation 0.968438 0.014
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 0.968438 0.014
R-HSA-416476 G alpha (q) signalling events 0.969444 0.013
R-HSA-1236975 Antigen processing-Cross presentation 0.971996 0.012
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 0.972268 0.012
R-HSA-6803157 Antimicrobial peptides 0.974399 0.011
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 0.976359 0.010
R-HSA-388396 GPCR downstream signalling 0.978709 0.009
R-HSA-9635486 Infection with Mycobacterium tuberculosis 0.982123 0.008
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 0.983162 0.007
R-HSA-375276 Peptide ligand-binding receptors 0.984318 0.007
R-HSA-8868773 rRNA processing in the nucleus and cytosol 0.985108 0.007
R-HSA-5617833 Cilium Assembly 0.985859 0.006
R-HSA-8856688 Golgi-to-ER retrograde transport 0.987888 0.005
R-HSA-372790 Signaling by GPCR 0.988108 0.005
R-HSA-948021 Transport to the Golgi and subsequent modification 0.989649 0.005
R-HSA-5173105 O-linked glycosylation 0.989881 0.004
R-HSA-9948299 Ribosome-associated quality control 0.990180 0.004
R-HSA-5358351 Signaling by Hedgehog 0.990180 0.004
R-HSA-1474244 Extracellular matrix organization 0.992859 0.003
R-HSA-382551 Transport of small molecules 0.993249 0.003
R-HSA-9748784 Drug ADME 0.993375 0.003
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 0.995178 0.002
R-HSA-72312 rRNA processing 0.995428 0.002
R-HSA-2408522 Selenoamino acid metabolism 0.995631 0.002
R-HSA-418594 G alpha (i) signalling events 0.995752 0.002
R-HSA-418555 G alpha (s) signalling events 0.996564 0.001
R-HSA-3781865 Diseases of glycosylation 0.997675 0.001
R-HSA-1643685 Disease 0.998022 0.001
R-HSA-9824439 Bacterial Infection Pathways 0.998211 0.001
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 0.998372 0.001
R-HSA-428157 Sphingolipid metabolism 0.998606 0.001
R-HSA-9824443 Parasitic Infection Pathways 0.998777 0.001
R-HSA-9658195 Leishmania infection 0.998777 0.001
R-HSA-168249 Innate Immune System 0.999083 0.000
R-HSA-5663205 Infectious disease 0.999337 0.000
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 0.999418 0.000
R-HSA-156580 Phase II - Conjugation of compounds 0.999570 0.000
R-HSA-425407 SLC-mediated transmembrane transport 0.999672 0.000
R-HSA-5668914 Diseases of metabolism 0.999850 0.000
R-HSA-196854 Metabolism of vitamins and cofactors 0.999876 0.000
R-HSA-392499 Metabolism of proteins 0.999908 0.000
R-HSA-8957322 Metabolism of steroids 0.999967 0.000
R-HSA-446203 Asparagine N-linked glycosylation 0.999977 0.000
R-HSA-1428517 Aerobic respiration and respiratory electron transport 0.999980 0.000
R-HSA-72766 Translation 0.999981 0.000
R-HSA-500792 GPCR ligand binding 0.999987 0.000
R-HSA-71291 Metabolism of amino acids and derivatives 0.999994 0.000
R-HSA-8978868 Fatty acid metabolism 0.999997 0.000
R-HSA-211859 Biological oxidations 1.000000 0.000
R-HSA-556833 Metabolism of lipids 1.000000 0.000
R-HSA-9709957 Sensory Perception 1.000000 0.000
R-HSA-1430728 Metabolism 1.000000 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
KISKIS 0.825 0.320 1 0.875
CLK3CLK3 0.815 0.244 1 0.894
COTCOT 0.808 0.168 2 0.879
GRK1GRK1 0.806 0.248 -2 0.879
CDK1CDK1 0.804 0.279 1 0.865
MOSMOS 0.799 0.196 1 0.810
MTORMTOR 0.797 0.160 1 0.775
NLKNLK 0.795 0.223 1 0.903
HIPK2HIPK2 0.794 0.247 1 0.855
GRK7GRK7 0.794 0.208 1 0.709
DYRK2DYRK2 0.793 0.223 1 0.897
SRPK1SRPK1 0.792 0.111 -3 0.688
CDK18CDK18 0.791 0.249 1 0.837
CDK8CDK8 0.791 0.223 1 0.865
CK1DCK1D 0.791 0.233 -3 0.538
CDC7CDC7 0.791 0.056 1 0.774
IKKBIKKB 0.791 0.116 -2 0.758
HIPK4HIPK4 0.790 0.153 1 0.890
JNK3JNK3 0.790 0.254 1 0.865
CDK19CDK19 0.789 0.220 1 0.845
CK1ECK1E 0.789 0.193 -3 0.580
JNK2JNK2 0.789 0.249 1 0.845
ERK5ERK5 0.788 0.147 1 0.845
P38GP38G 0.788 0.250 1 0.805
ERK1ERK1 0.787 0.249 1 0.840
BMPR1BBMPR1B 0.786 0.147 1 0.749
P38BP38B 0.786 0.254 1 0.846
PIM3PIM3 0.785 0.022 -3 0.773
CDK5CDK5 0.785 0.230 1 0.880
CLK2CLK2 0.785 0.162 -3 0.668
CDK3CDK3 0.785 0.228 1 0.821
CDK17CDK17 0.784 0.243 1 0.807
HIPK1HIPK1 0.784 0.209 1 0.902
GRK5GRK5 0.784 0.105 -3 0.769
CDKL1CDKL1 0.783 0.053 -3 0.723
NDR2NDR2 0.782 0.021 -3 0.793
PRPKPRPK 0.782 -0.036 -1 0.836
CK1A2CK1A2 0.782 0.205 -3 0.535
IKKAIKKA 0.782 0.084 -2 0.761
CDK13CDK13 0.781 0.205 1 0.861
ATRATR 0.781 0.039 1 0.737
CDK7CDK7 0.781 0.198 1 0.875
P38DP38D 0.780 0.258 1 0.802
DYRK4DYRK4 0.780 0.218 1 0.863
ICKICK 0.779 0.109 -3 0.762
RAF1RAF1 0.779 -0.007 1 0.742
SRPK3SRPK3 0.778 0.088 -3 0.658
CDKL5CDKL5 0.778 0.057 -3 0.717
DSTYKDSTYK 0.778 -0.022 2 0.894
SKMLCKSKMLCK 0.778 0.047 -2 0.842
CK1ACK1A 0.777 0.250 -3 0.465
P38AP38A 0.777 0.215 1 0.877
GRK6GRK6 0.776 0.087 1 0.759
CDK12CDK12 0.776 0.206 1 0.845
CAMK2GCAMK2G 0.776 0.001 2 0.812
PDHK4PDHK4 0.776 -0.102 1 0.780
SRPK2SRPK2 0.775 0.067 -3 0.610
MLK1MLK1 0.775 0.058 2 0.828
CDK16CDK16 0.775 0.224 1 0.815
JNK1JNK1 0.775 0.235 1 0.842
ERK2ERK2 0.775 0.222 1 0.866
BMPR2BMPR2 0.775 -0.042 -2 0.870
GRK4GRK4 0.775 0.083 -2 0.881
GSK3AGSK3A 0.774 0.189 4 0.597
CHAK2CHAK2 0.774 0.037 -1 0.798
CLK4CLK4 0.774 0.102 -3 0.672
CDK14CDK14 0.773 0.217 1 0.861
CDK10CDK10 0.773 0.209 1 0.856
CK1G1CK1G1 0.773 0.159 -3 0.568
CAMK1BCAMK1B 0.773 -0.037 -3 0.744
PRP4PRP4 0.772 0.174 -3 0.711
RSK2RSK2 0.772 0.007 -3 0.693
NEK6NEK6 0.771 -0.016 -2 0.839
PIM1PIM1 0.771 0.017 -3 0.711
TBK1TBK1 0.771 -0.063 1 0.637
DYRK1BDYRK1B 0.771 0.189 1 0.873
DLKDLK 0.770 0.054 1 0.744
GRK2GRK2 0.770 0.094 -2 0.778
IKKEIKKE 0.770 -0.042 1 0.636
MST4MST4 0.769 -0.000 2 0.874
GCN2GCN2 0.769 -0.105 2 0.813
CDK2CDK2 0.769 0.143 1 0.887
NUAK2NUAK2 0.769 -0.007 -3 0.744
RIPK3RIPK3 0.768 -0.010 3 0.721
MLK3MLK3 0.768 0.057 2 0.762
GRK3GRK3 0.767 0.124 -2 0.758
MAKMAK 0.767 0.197 -2 0.757
DYRK1ADYRK1A 0.767 0.150 1 0.891
NEK7NEK7 0.767 -0.049 -3 0.760
CDK9CDK9 0.767 0.176 1 0.862
NIKNIK 0.767 -0.062 -3 0.763
LATS1LATS1 0.767 0.049 -3 0.811
CLK1CLK1 0.767 0.091 -3 0.642
PKN2PKN2 0.767 -0.007 -3 0.733
NDR1NDR1 0.767 -0.043 -3 0.754
TGFBR2TGFBR2 0.766 -0.035 -2 0.811
TGFBR1TGFBR1 0.766 0.040 -2 0.837
WNK1WNK1 0.766 -0.047 -2 0.854
PKN3PKN3 0.765 -0.050 -3 0.736
FAM20CFAM20C 0.765 0.045 2 0.612
PRKD1PRKD1 0.765 -0.031 -3 0.755
HIPK3HIPK3 0.764 0.158 1 0.873
ACVR2BACVR2B 0.764 0.062 -2 0.816
ALK4ALK4 0.764 0.015 -2 0.854
CAMLCKCAMLCK 0.764 -0.045 -2 0.811
DYRK3DYRK3 0.763 0.137 1 0.895
P90RSKP90RSK 0.763 -0.026 -3 0.697
DAPK2DAPK2 0.763 -0.047 -3 0.758
PDHK1PDHK1 0.763 -0.165 1 0.752
ACVR2AACVR2A 0.762 0.054 -2 0.800
BMPR1ABMPR1A 0.762 0.089 1 0.724
ULK2ULK2 0.762 -0.157 2 0.793
PASKPASK 0.762 0.113 -3 0.809
AURCAURC 0.762 0.010 -2 0.607
TTBK2TTBK2 0.762 -0.010 2 0.720
PKACGPKACG 0.761 -0.016 -2 0.689
MASTLMASTL 0.761 -0.114 -2 0.802
PRKD2PRKD2 0.761 -0.023 -3 0.692
HUNKHUNK 0.761 -0.086 2 0.824
PKCDPKCD 0.760 -0.028 2 0.802
LATS2LATS2 0.760 -0.045 -5 0.690
ALK2ALK2 0.760 0.040 -2 0.848
RSK4RSK4 0.760 0.012 -3 0.692
MARK4MARK4 0.760 -0.047 4 0.847
ANKRD3ANKRD3 0.759 -0.034 1 0.754
BCKDKBCKDK 0.759 -0.092 -1 0.779
PRKXPRKX 0.759 0.032 -3 0.629
CAMK2BCAMK2B 0.759 0.003 2 0.781
CAMK2ACAMK2A 0.759 0.007 2 0.803
MLK2MLK2 0.758 -0.048 2 0.831
MAPKAPK2MAPKAPK2 0.758 -0.024 -3 0.665
AMPKA1AMPKA1 0.758 -0.061 -3 0.757
CAMK2DCAMK2D 0.758 -0.068 -3 0.731
MLK4MLK4 0.758 0.014 2 0.738
PKCBPKCB 0.758 0.002 2 0.756
MEKK3MEKK3 0.758 0.108 1 0.714
ATMATM 0.757 -0.025 1 0.666
GSK3BGSK3B 0.757 0.100 4 0.590
RSK3RSK3 0.757 -0.043 -3 0.679
PKACBPKACB 0.757 0.007 -2 0.617
PKCGPKCG 0.756 -0.006 2 0.757
IRE1IRE1 0.756 -0.036 1 0.718
PKRPKR 0.756 -0.014 1 0.763
CK2A2CK2A2 0.756 0.112 1 0.686
P70S6KBP70S6KB 0.756 -0.052 -3 0.691
MPSK1MPSK1 0.756 0.106 1 0.737
TLK2TLK2 0.755 0.012 1 0.697
PLK1PLK1 0.755 -0.034 -2 0.781
YSK4YSK4 0.755 -0.028 1 0.678
PKCAPKCA 0.754 -0.000 2 0.749
MST3MST3 0.754 0.077 2 0.861
RIPK1RIPK1 0.754 -0.090 1 0.724
VRK2VRK2 0.754 -0.020 1 0.811
NEK9NEK9 0.753 -0.124 2 0.849
MEK1MEK1 0.753 -0.048 2 0.856
ULK1ULK1 0.753 -0.150 -3 0.703
CDK6CDK6 0.753 0.190 1 0.842
MAPKAPK3MAPKAPK3 0.753 -0.082 -3 0.689
PAK1PAK1 0.751 -0.044 -2 0.748
AMPKA2AMPKA2 0.751 -0.063 -3 0.730
SMG1SMG1 0.751 -0.039 1 0.685
MSK2MSK2 0.751 -0.043 -3 0.679
TSSK2TSSK2 0.750 -0.078 -5 0.774
TAO3TAO3 0.750 0.068 1 0.716
CK2A1CK2A1 0.749 0.111 1 0.670
MOKMOK 0.749 0.130 1 0.879
PKCZPKCZ 0.749 -0.032 2 0.797
MSK1MSK1 0.749 -0.017 -3 0.673
WNK3WNK3 0.749 -0.178 1 0.713
GAKGAK 0.748 0.107 1 0.773
AKT2AKT2 0.748 -0.007 -3 0.609
PINK1PINK1 0.748 -0.026 1 0.838
CK1G3CK1G3 0.747 0.232 -3 0.426
TSSK1TSSK1 0.747 -0.074 -3 0.777
DNAPKDNAPK 0.746 -0.028 1 0.609
CHAK1CHAK1 0.746 -0.066 2 0.791
MEK5MEK5 0.746 -0.037 2 0.835
DRAK1DRAK1 0.746 -0.029 1 0.704
MEKK2MEKK2 0.746 0.006 2 0.813
NIM1NIM1 0.746 -0.089 3 0.757
CDK4CDK4 0.746 0.176 1 0.839
MYLK4MYLK4 0.745 -0.035 -2 0.735
PKCHPKCH 0.745 -0.042 2 0.738
QSKQSK 0.745 -0.045 4 0.823
MNK1MNK1 0.745 -0.049 -2 0.735
ERK7ERK7 0.745 0.076 2 0.582
AURAAURA 0.744 -0.012 -2 0.589
ZAKZAK 0.744 -0.028 1 0.686
SGK3SGK3 0.744 -0.032 -3 0.684
MNK2MNK2 0.743 -0.069 -2 0.728
PIM2PIM2 0.743 -0.028 -3 0.651
PLK3PLK3 0.743 -0.060 2 0.775
PKG2PKG2 0.743 -0.029 -2 0.612
AURBAURB 0.743 -0.036 -2 0.604
CAMK4CAMK4 0.743 -0.121 -3 0.708
PHKG1PHKG1 0.743 -0.067 -3 0.729
GCKGCK 0.743 0.069 1 0.722
QIKQIK 0.743 -0.095 -3 0.719
PAK3PAK3 0.743 -0.090 -2 0.736
IRE2IRE2 0.742 -0.080 2 0.753
BRAFBRAF 0.742 -0.103 -4 0.205
PRKD3PRKD3 0.742 -0.071 -3 0.647
PAK2PAK2 0.742 -0.058 -2 0.732
TLK1TLK1 0.741 -0.049 -2 0.860
MEKK1MEKK1 0.740 -0.080 1 0.708
NEK11NEK11 0.740 0.020 1 0.709
NEK5NEK5 0.740 -0.055 1 0.721
NEK2NEK2 0.739 -0.122 2 0.832
CAMK1GCAMK1G 0.739 -0.054 -3 0.650
MARK3MARK3 0.739 -0.044 4 0.784
NUAK1NUAK1 0.739 -0.095 -3 0.684
SIKSIK 0.738 -0.065 -3 0.656
DCAMKL1DCAMKL1 0.738 -0.061 -3 0.695
PERKPERK 0.737 -0.123 -2 0.840
PLK4PLK4 0.737 -0.063 2 0.633
LKB1LKB1 0.736 -0.048 -3 0.742
MELKMELK 0.735 -0.134 -3 0.696
BRSK1BRSK1 0.735 -0.083 -3 0.691
HPK1HPK1 0.734 0.037 1 0.711
CK1G2CK1G2 0.734 0.202 -3 0.502
MST2MST2 0.733 -0.020 1 0.709
SMMLCKSMMLCK 0.733 -0.069 -3 0.708
NEK8NEK8 0.733 -0.063 2 0.828
PDK1PDK1 0.733 -0.029 1 0.715
MARK2MARK2 0.733 -0.066 4 0.739
PKACAPKACA 0.733 -0.024 -2 0.561
EEF2KEEF2K 0.733 -0.002 3 0.838
TAK1TAK1 0.733 0.034 1 0.714
AKT1AKT1 0.732 -0.022 -3 0.629
PAK6PAK6 0.732 -0.064 -2 0.649
PLK2PLK2 0.732 0.011 -3 0.667
PKCEPKCE 0.732 -0.012 2 0.744
MAPKAPK5MAPKAPK5 0.731 -0.112 -3 0.624
WNK4WNK4 0.731 -0.123 -2 0.841
HRIHRI 0.731 -0.179 -2 0.833
MINKMINK 0.730 -0.009 1 0.694
TNIKTNIK 0.730 -0.002 3 0.866
CAMKK1CAMKK1 0.730 -0.101 -2 0.731
DAPK3DAPK3 0.729 -0.030 -3 0.707
DAPK1DAPK1 0.729 -0.007 -3 0.694
CHK1CHK1 0.729 -0.140 -3 0.730
KHS2KHS2 0.729 0.041 1 0.712
BRSK2BRSK2 0.728 -0.125 -3 0.698
IRAK4IRAK4 0.728 -0.116 1 0.703
MARK1MARK1 0.728 -0.087 4 0.802
CAMKK2CAMKK2 0.728 -0.093 -2 0.721
MAP3K15MAP3K15 0.728 -0.028 1 0.670
TTBK1TTBK1 0.728 -0.081 2 0.637
TAO2TAO2 0.728 -0.069 2 0.857
SSTKSSTK 0.728 -0.064 4 0.807
HGKHGK 0.727 -0.031 3 0.862
PKCTPKCT 0.727 -0.075 2 0.744
LRRK2LRRK2 0.727 -0.060 2 0.859
PKCIPKCI 0.726 -0.055 2 0.768
PDHK4_TYRPDHK4_TYR 0.726 0.245 2 0.883
SGK1SGK1 0.725 -0.008 -3 0.553
BUB1BUB1 0.725 0.044 -5 0.729
OSR1OSR1 0.724 0.046 2 0.822
SNRKSNRK 0.724 -0.174 2 0.682
KHS1KHS1 0.724 -0.004 1 0.693
PDHK3_TYRPDHK3_TYR 0.724 0.158 4 0.921
DCAMKL2DCAMKL2 0.723 -0.093 -3 0.695
AKT3AKT3 0.723 -0.018 -3 0.574
P70S6KP70S6K 0.723 -0.078 -3 0.610
MEKK6MEKK6 0.723 -0.089 1 0.697
BMPR2_TYRBMPR2_TYR 0.721 0.137 -1 0.878
SLKSLK 0.721 -0.028 -2 0.687
ROCK2ROCK2 0.720 -0.029 -3 0.702
VRK1VRK1 0.720 -0.089 2 0.839
MST1MST1 0.720 -0.071 1 0.693
PDHK1_TYRPDHK1_TYR 0.720 0.183 -1 0.869
STK33STK33 0.720 -0.068 2 0.633
MAP2K6_TYRMAP2K6_TYR 0.719 0.155 -1 0.865
NEK4NEK4 0.719 -0.132 1 0.687
CAMK1DCAMK1D 0.718 -0.081 -3 0.590
HASPINHASPIN 0.718 0.010 -1 0.679
MAP2K4_TYRMAP2K4_TYR 0.717 0.137 -1 0.858
PBKPBK 0.717 -0.035 1 0.690
TTKTTK 0.716 0.016 -2 0.823
YANK3YANK3 0.715 0.009 2 0.418
NEK1NEK1 0.715 -0.120 1 0.695
PAK5PAK5 0.715 -0.074 -2 0.595
PHKG2PHKG2 0.715 -0.133 -3 0.669
LOKLOK 0.715 -0.086 -2 0.713
MRCKBMRCKB 0.714 -0.052 -3 0.636
IRAK1IRAK1 0.714 -0.182 -1 0.704
MRCKAMRCKA 0.714 -0.063 -3 0.653
PAK4PAK4 0.713 -0.060 -2 0.604
SBKSBK 0.713 -0.027 -3 0.500
YSK1YSK1 0.713 -0.061 2 0.825
CHK2CHK2 0.713 -0.056 -3 0.549
ALPHAK3ALPHAK3 0.712 0.019 -1 0.753
TESK1_TYRTESK1_TYR 0.712 0.016 3 0.880
DMPK1DMPK1 0.712 -0.033 -3 0.661
PKN1PKN1 0.709 -0.081 -3 0.620
PKMYT1_TYRPKMYT1_TYR 0.709 0.001 3 0.841
MAP2K7_TYRMAP2K7_TYR 0.707 -0.038 2 0.862
CAMK1ACAMK1A 0.704 -0.081 -3 0.571
MYO3AMYO3A 0.704 -0.022 1 0.708
MYO3BMYO3B 0.704 -0.044 2 0.841
MEK2MEK2 0.703 -0.204 2 0.820
PINK1_TYRPINK1_TYR 0.703 -0.074 1 0.769
ROCK1ROCK1 0.703 -0.050 -3 0.650
RIPK2RIPK2 0.702 -0.177 1 0.635
LIMK2_TYRLIMK2_TYR 0.702 -0.039 -3 0.782
ASK1ASK1 0.702 -0.073 1 0.661
CRIKCRIK 0.701 -0.041 -3 0.645
TXKTXK 0.700 0.056 1 0.751
BIKEBIKE 0.697 -0.042 1 0.667
SYKSYK 0.697 0.149 -1 0.794
EPHA6EPHA6 0.695 -0.050 -1 0.844
FGRFGR 0.695 -0.033 1 0.742
YANK2YANK2 0.694 0.034 2 0.434
LIMK1_TYRLIMK1_TYR 0.693 -0.103 2 0.856
EPHB4EPHB4 0.693 -0.054 -1 0.801
NEK3NEK3 0.693 -0.191 1 0.658
ABL2ABL2 0.692 -0.027 -1 0.773
RETRET 0.692 -0.117 1 0.709
FLT1FLT1 0.692 0.056 -1 0.819
LCKLCK 0.691 0.017 -1 0.816
PKG1PKG1 0.691 -0.083 -2 0.518
TAO1TAO1 0.691 -0.102 1 0.635
STLK3STLK3 0.690 -0.088 1 0.648
BLKBLK 0.690 0.033 -1 0.819
CSF1RCSF1R 0.690 -0.051 3 0.762
PTK2PTK2 0.690 0.097 -1 0.817
FYNFYN 0.690 0.058 -1 0.810
FERFER 0.689 -0.062 1 0.757
YES1YES1 0.689 -0.042 -1 0.805
METMET 0.688 0.013 3 0.755
JAK2JAK2 0.688 -0.092 1 0.698
INSRRINSRR 0.688 -0.036 3 0.719
EPHA4EPHA4 0.688 -0.029 2 0.780
TYK2TYK2 0.688 -0.160 1 0.696
JAK3JAK3 0.687 -0.066 1 0.691
KITKIT 0.687 -0.024 3 0.765
HCKHCK 0.687 -0.040 -1 0.806
MST1RMST1R 0.687 -0.150 3 0.785
ABL1ABL1 0.687 -0.042 -1 0.762
ROS1ROS1 0.686 -0.123 3 0.742
KDRKDR 0.685 -0.045 3 0.720
TYRO3TYRO3 0.685 -0.140 3 0.773
SRMSSRMS 0.684 -0.066 1 0.742
ITKITK 0.684 -0.036 -1 0.765
AAK1AAK1 0.683 -0.011 1 0.584
DDR1DDR1 0.682 -0.180 4 0.826
TNK2TNK2 0.682 -0.089 3 0.725
EPHB1EPHB1 0.681 -0.075 1 0.730
BMXBMX 0.681 -0.023 -1 0.698
FGFR2FGFR2 0.680 -0.107 3 0.773
WEE1_TYRWEE1_TYR 0.679 -0.058 -1 0.709
ZAP70ZAP70 0.678 0.101 -1 0.721
EPHB2EPHB2 0.678 -0.078 -1 0.777
EPHB3EPHB3 0.678 -0.092 -1 0.783
JAK1JAK1 0.677 -0.073 1 0.643
TNNI3K_TYRTNNI3K_TYR 0.676 -0.105 1 0.724
ERBB2ERBB2 0.676 -0.063 1 0.674
FGFR3FGFR3 0.676 -0.050 3 0.741
SRCSRC 0.675 -0.013 -1 0.788
FLT3FLT3 0.675 -0.152 3 0.764
EGFREGFR 0.675 -0.018 1 0.590
TECTEC 0.674 -0.070 -1 0.689
PDGFRBPDGFRB 0.674 -0.164 3 0.774
LYNLYN 0.674 -0.041 3 0.679
NEK10_TYRNEK10_TYR 0.673 -0.141 1 0.602
MATKMATK 0.672 -0.056 -1 0.698
MERTKMERTK 0.671 -0.105 3 0.743
EPHA7EPHA7 0.671 -0.073 2 0.781
FGFR4FGFR4 0.671 -0.004 -1 0.733
EPHA3EPHA3 0.670 -0.097 2 0.749
FRKFRK 0.670 -0.085 -1 0.808
TNK1TNK1 0.669 -0.151 3 0.751
BTKBTK 0.669 -0.153 -1 0.718
TEKTEK 0.669 -0.152 3 0.703
FGFR1FGFR1 0.669 -0.156 3 0.732
NTRK1NTRK1 0.668 -0.150 -1 0.785
EPHA8EPHA8 0.668 -0.050 -1 0.790
ERBB4ERBB4 0.668 0.011 1 0.622
DDR2DDR2 0.667 -0.086 3 0.705
NTRK3NTRK3 0.666 -0.102 -1 0.743
PTK6PTK6 0.666 -0.165 -1 0.681
EPHA5EPHA5 0.666 -0.069 2 0.759
FLT4FLT4 0.666 -0.123 3 0.720
AXLAXL 0.666 -0.173 3 0.745
PTK2BPTK2B 0.665 -0.080 -1 0.721
INSRINSR 0.665 -0.115 3 0.696
PDGFRAPDGFRA 0.665 -0.212 3 0.772
ALKALK 0.665 -0.144 3 0.681
LTKLTK 0.662 -0.155 3 0.704
EPHA2EPHA2 0.661 -0.030 -1 0.760
NTRK2NTRK2 0.660 -0.179 3 0.722
CSKCSK 0.660 -0.111 2 0.782
EPHA1EPHA1 0.656 -0.180 3 0.728
IGF1RIGF1R 0.654 -0.084 3 0.633
MUSKMUSK 0.646 -0.147 1 0.577
FESFES 0.640 -0.102 -1 0.667