Motif 19 (n=350)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0B4J203 | None | S259 | ochoa | receptor protein-tyrosine kinase (EC 2.7.10.1) | None |
A1L390 | PLEKHG3 | S827 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A2RRD8 | ZNF320 | S452 | ochoa | Zinc finger protein 320 | May be involved in transcriptional regulation. |
A2RU30 | TESPA1 | S356 | ochoa | Protein TESPA1 (Thymocyte-expressed positive selection-associated protein 1) | Required for the development and maturation of T-cells, its function being essential for the late stages of thymocyte development (By similarity). Plays a role in T-cell antigen receptor (TCR)-mediated activation of the ERK and NFAT signaling pathways, possibly by serving as a scaffolding protein that promotes the assembly of the LAT signalosome in thymocytes. May play a role in the regulation of inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release and mitochondrial Ca(2+) uptake via the mitochondria-associated endoplasmic reticulum membrane (MAM) compartment. {ECO:0000250, ECO:0000269|PubMed:22561606}. |
A6H8Y1 | BDP1 | S938 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6H8Y1 | BDP1 | S1317 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6NJZ7 | RIMBP3C | S1294 | ochoa | RIMS-binding protein 3C (RIM-BP3.C) (RIMS-binding protein 3.3) (RIM-BP3.3) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
A6NNM3 | RIMBP3B | S1294 | ochoa | RIMS-binding protein 3B (RIM-BP3.B) (RIMS-binding protein 3.2) (RIM-BP3.2) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
O00429 | DNM1L | S126 | ochoa | Dynamin-1-like protein (EC 3.6.5.5) (Dnm1p/Vps1p-like protein) (DVLP) (Dynamin family member proline-rich carboxyl-terminal domain less) (Dymple) (Dynamin-like protein) (Dynamin-like protein 4) (Dynamin-like protein IV) (HdynIV) (Dynamin-related protein 1) | Functions in mitochondrial and peroxisomal division (PubMed:11514614, PubMed:12499366, PubMed:17301055, PubMed:17460227, PubMed:17553808, PubMed:18695047, PubMed:18838687, PubMed:19342591, PubMed:19411255, PubMed:19638400, PubMed:23283981, PubMed:23530241, PubMed:23921378, PubMed:26992161, PubMed:27145208, PubMed:27145933, PubMed:27301544, PubMed:27328748, PubMed:29478834, PubMed:32439975, PubMed:32484300, PubMed:9570752, PubMed:9786947). Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism (PubMed:23530241, PubMed:23584531, PubMed:33850055). The specific recruitment at scission sites is mediated by membrane receptors like MFF, MIEF1 and MIEF2 for mitochondrial membranes (PubMed:23283981, PubMed:23921378, PubMed:29899447). While the recruitment by the membrane receptors is GTP-dependent, the following hydrolysis of GTP induces the dissociation from the receptors and allows DNM1L filaments to curl into closed rings that are probably sufficient to sever a double membrane (PubMed:29899447). Acts downstream of PINK1 to promote mitochondrial fission in a PRKN-dependent manner (PubMed:32484300). Plays an important role in mitochondrial fission during mitosis (PubMed:19411255, PubMed:26992161, PubMed:27301544, PubMed:27328748). Through its function in mitochondrial division, ensures the survival of at least some types of postmitotic neurons, including Purkinje cells, by suppressing oxidative damage (By similarity). Required for normal brain development, including that of cerebellum (PubMed:17460227, PubMed:26992161, PubMed:27145208, PubMed:27301544, PubMed:27328748). Facilitates developmentally regulated apoptosis during neural tube formation (By similarity). Required for a normal rate of cytochrome c release and caspase activation during apoptosis; this requirement may depend upon the cell type and the physiological apoptotic cues (By similarity). Required for formation of endocytic vesicles (PubMed:20688057, PubMed:23792689, PubMed:9570752). Proposed to regulate synaptic vesicle membrane dynamics through association with BCL2L1 isoform Bcl-X(L) which stimulates its GTPase activity in synaptic vesicles; the function may require its recruitment by MFF to clathrin-containing vesicles (PubMed:17015472, PubMed:23792689). Required for programmed necrosis execution (PubMed:22265414). Rhythmic control of its activity following phosphorylation at Ser-637 is essential for the circadian control of mitochondrial ATP production (PubMed:29478834). {ECO:0000250|UniProtKB:Q8K1M6, ECO:0000269|PubMed:11514614, ECO:0000269|PubMed:12499366, ECO:0000269|PubMed:17015472, ECO:0000269|PubMed:17301055, ECO:0000269|PubMed:17460227, ECO:0000269|PubMed:17553808, ECO:0000269|PubMed:18695047, ECO:0000269|PubMed:18838687, ECO:0000269|PubMed:19342591, ECO:0000269|PubMed:19411255, ECO:0000269|PubMed:19638400, ECO:0000269|PubMed:20688057, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:23283981, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:23584531, ECO:0000269|PubMed:23792689, ECO:0000269|PubMed:23921378, ECO:0000269|PubMed:26992161, ECO:0000269|PubMed:27145208, ECO:0000269|PubMed:27145933, ECO:0000269|PubMed:27301544, ECO:0000269|PubMed:27328748, ECO:0000269|PubMed:29478834, ECO:0000269|PubMed:29899447, ECO:0000269|PubMed:32439975, ECO:0000269|PubMed:32484300, ECO:0000269|PubMed:33850055, ECO:0000269|PubMed:9570752, ECO:0000269|PubMed:9786947}.; FUNCTION: [Isoform 1]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}.; FUNCTION: [Isoform 4]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}. |
O00515 | LAD1 | S272 | ochoa | Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) | Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}. |
O14524 | NEMP1 | S368 | ochoa | Nuclear envelope integral membrane protein 1 | Together with EMD, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). Required for female fertility (By similarity). Essential for normal erythropoiesis (By similarity). Required for efficient nuclear envelope opening and enucleation during the late stages of erythroblast maturation (By similarity). {ECO:0000250|UniProtKB:Q6ZQE4, ECO:0000269|PubMed:32923640}. |
O15027 | SEC16A | S1841 | psp | Protein transport protein Sec16A (SEC16 homolog A) (p250) | Acts as a molecular scaffold that plays a key role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). SAR1A-GTP-dependent assembly of SEC16A on the ER membrane forms an organized scaffold defining an ERES. Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17005010, PubMed:17192411, PubMed:17428803, PubMed:21768384, PubMed:22355596). Mediates the recruitment of MIA3/TANGO to ERES (PubMed:28442536). Regulates both conventional (ER/Golgi-dependent) and GORASP2-mediated unconventional (ER/Golgi-independent) trafficking of CFTR to cell membrane (PubMed:28067262). Positively regulates the protein stability of E3 ubiquitin-protein ligases RNF152 and RNF183 and the ER localization of RNF183 (PubMed:29300766). Acts as a RAB10 effector in the regulation of insulin-induced SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the cell membrane in adipocytes (By similarity). {ECO:0000250|UniProtKB:E9QAT4, ECO:0000269|PubMed:17005010, ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:17428803, ECO:0000269|PubMed:21768384, ECO:0000269|PubMed:22355596, ECO:0000269|PubMed:28067262, ECO:0000269|PubMed:28442536, ECO:0000269|PubMed:29300766}. |
O15417 | TNRC18 | S2471 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15498 | YKT6 | S114 | ochoa | Synaptobrevin homolog YKT6 (EC 2.3.1.-) | Vesicular soluble NSF attachment protein receptor (v-SNARE) mediating vesicle docking and fusion to a specific acceptor cellular compartment. Functions in endoplasmic reticulum to Golgi transport; as part of a SNARE complex composed of GOSR1, GOSR2 and STX5. Functions in early/recycling endosome to TGN transport; as part of a SNARE complex composed of BET1L, GOSR1 and STX5. Has a S-palmitoyl transferase activity. {ECO:0000269|PubMed:15215310, ECO:0000269|PubMed:9211930}. |
O43439 | CBFA2T2 | S551 | ochoa | Protein CBFA2T2 (ETO homologous on chromosome 20) (MTG8-like protein) (MTG8-related protein 1) (Myeloid translocation-related protein 1) (p85) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:12559562, PubMed:15203199). Via association with PRDM14 is involved in regulation of embryonic stem cell (ESC) pluripotency (PubMed:27281218). Involved in primordial germ cell (PCG) formation. Stabilizes PRDM14 and OCT4 on chromatin in a homooligomerization-dependent manner (By similarity). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). May function as a complex with the chimeric protein RUNX1/AML1-CBFA2T1/MTG8 (AML1-MTG8/ETO fusion protein) which is produced in acute myeloid leukemia with the chromosomal translocation t(8;21). May thus be involved in the repression of AML1-dependent transcription and the induction of G-CSF/CSF3-dependent cell growth. May be a tumor suppressor gene candidate involved in myeloid tumors with the deletion of the 20q11 region. Through heteromerization with CBFA2T3/MTG16 may be involved in regulation of the proliferation and the differentiation of erythroid progenitors by repressing the expression of TAL1 target genes (By similarity). Required for the maintenance of the secretory cell lineage in the small intestine. Can inhibit Notch signaling probably by association with RBPJ and may be involved in GFI1-mediated Paneth cell differentiation (By similarity). {ECO:0000250|UniProtKB:O70374, ECO:0000269|PubMed:23251453, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}. |
O43566 | RGS14 | S203 | ochoa | Regulator of G-protein signaling 14 (RGS14) | Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Besides, modulates signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor (GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o)-alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pathways. Inhibits platelet-derived growth factor (PDGF)-stimulated ERK1/ERK2 phosphorylation; a process depending on its interaction with HRAS and that is reversed by G(i) alpha subunit GNAI1. Acts as a positive modulator of microtubule polymerisation and spindle organization through a G(i)-alpha-dependent mechanism. Plays a role in cell division. Required for the nerve growth factor (NGF)-mediated neurite outgrowth. Involved in stress resistance. May be involved in visual memory processing capacity and hippocampal-based learning and memory. {ECO:0000269|PubMed:15917656, ECO:0000269|PubMed:17635935}. |
O60292 | SIPA1L3 | S451 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60308 | CEP104 | S853 | ochoa | Centrosomal protein of 104 kDa (Cep104) | Required for ciliogenesis and for structural integrity at the ciliary tip. {ECO:0000269|PubMed:23970417}. |
O60333 | KIF1B | S1162 | ochoa | Kinesin-like protein KIF1B (Klp) (EC 5.6.1.3) | Has a plus-end-directed microtubule motor activity and functions as a motor for transport of vesicles and organelles along microtubules. {ECO:0000269|PubMed:16225668}.; FUNCTION: [Isoform 2]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde synaptic vesicle transport along axonal microtubules from the cell body to the presynapse in neuronal cells (By similarity). Functions as a downstream effector in a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells (PubMed:18334619). {ECO:0000250|UniProtKB:Q60575, ECO:0000269|PubMed:18334619}.; FUNCTION: [Isoform 3]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde transport of mitochondria. {ECO:0000269|PubMed:16225668}. |
O60488 | ACSL4 | S344 | ochoa | Long-chain-fatty-acid--CoA ligase 4 (EC 6.2.1.3) (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 4) (LACS 4) | Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:21242590, PubMed:22633490, PubMed:24269233). Preferentially activates arachidonate and eicosapentaenoate as substrates (PubMed:21242590). Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose-stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion (PubMed:21242590). {ECO:0000250|UniProtKB:O35547, ECO:0000269|PubMed:21242590, ECO:0000269|PubMed:22633490, ECO:0000269|PubMed:24269233}. |
O60716 | CTNND1 | S47 | ochoa | Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) | Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}. |
O75146 | HIP1R | S1017 | ochoa | Huntingtin-interacting protein 1-related protein (HIP1-related protein) (Huntingtin-interacting protein 12) (HIP-12) | Component of clathrin-coated pits and vesicles, that may link the endocytic machinery to the actin cytoskeleton. Binds 3-phosphoinositides (via ENTH domain). May act through the ENTH domain to promote cell survival by stabilizing receptor tyrosine kinases following ligand-induced endocytosis. {ECO:0000269|PubMed:11889126, ECO:0000269|PubMed:14732715}. |
O75376 | NCOR1 | S224 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75410 | TACC1 | S287 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75449 | KATNA1 | S170 | ochoa | Katanin p60 ATPase-containing subunit A1 (Katanin p60 subunit A1) (EC 5.6.1.1) (p60 katanin) | Catalytic subunit of a complex which severs microtubules in an ATP-dependent manner. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth. {ECO:0000255|HAMAP-Rule:MF_03023, ECO:0000269|PubMed:10751153, ECO:0000269|PubMed:11870226, ECO:0000269|PubMed:19287380}. |
O75683 | SURF6 | S74 | ochoa | Surfeit locus protein 6 | Binds to both DNA and RNA in vitro, with a stronger binding capacity for RNA. May represent a nucleolar constitutive protein involved in ribosomal biosynthesis or assembly (By similarity). {ECO:0000250}. |
O75925 | PIAS1 | S50 | ochoa | E3 SUMO-protein ligase PIAS1 (EC 2.3.2.-) (DEAD/H box-binding protein 1) (E3 SUMO-protein transferase PIAS1) (Gu-binding protein) (GBP) (Protein inhibitor of activated STAT protein 1) (RNA helicase II-binding protein) | Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Catalyzes sumoylation of various proteins, such as CEBPB, MRE11, MTA1, PTK2 and PML (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Plays a crucial role as a transcriptional coregulation in various cellular pathways, including the STAT pathway, the p53 pathway and the steroid hormone signaling pathway (PubMed:11583632, PubMed:11867732). In vitro, binds A/T-rich DNA (PubMed:15133049). The effects of this transcriptional coregulation, transactivation or silencing, may vary depending upon the biological context (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Mediates sumoylation of MRE11, stabilizing MRE11 on chromatin during end resection (PubMed:36050397). Sumoylates PML (at 'Lys-65' and 'Lys-160') and PML-RAR and promotes their ubiquitin-mediated degradation (By similarity). PIAS1-mediated sumoylation of PML promotes its interaction with CSNK2A1/CK2 which in turn promotes PML phosphorylation and degradation (By similarity). Enhances the sumoylation of MTA1 and may participate in its paralog-selective sumoylation (PubMed:21965678). Plays a dynamic role in adipogenesis by promoting the SUMOylation and degradation of CEBPB (By similarity). Mediates the nuclear mobility and localization of MSX1 to the nuclear periphery, whereby MSX1 is brought into the proximity of target myoblast differentiation factor genes (By similarity). Also required for the binding of MSX1 to the core enhancer region in target gene promoter regions, independent of its sumoylation activity (By similarity). Capable of binding to the core enhancer region TAAT box in the MYOD1 gene promoter (By similarity). {ECO:0000250|UniProtKB:O88907, ECO:0000269|PubMed:11583632, ECO:0000269|PubMed:11867732, ECO:0000269|PubMed:14500712, ECO:0000269|PubMed:15133049, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:36050397}.; FUNCTION: (Microbial infection) Restricts Epstein-Barr virus (EBV) lytic replication by acting as an inhibitor for transcription factors involved in lytic gene expression (PubMed:29262325). The virus can use apoptotic caspases to antagonize PIAS1-mediated restriction and express its lytic genes (PubMed:29262325). {ECO:0000269|PubMed:29262325}. |
O75995 | SASH3 | S113 | ochoa | SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) | May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}. |
O94769 | ECM2 | S304 | ochoa | Extracellular matrix protein 2 (Matrix glycoprotein SC1/ECM2) | Promotes matrix assembly and cell adhesiveness. {ECO:0000250|UniProtKB:Q5FW85}. |
O94880 | PHF14 | S156 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O94929 | ABLIM3 | S282 | ochoa | Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
O95180 | CACNA1H | S53 | ochoa | Voltage-dependent T-type calcium channel subunit alpha-1H (Low-voltage-activated calcium channel alpha1 3.2 subunit) (Voltage-gated calcium channel subunit alpha Cav3.2) | Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation (PubMed:27149520, PubMed:9670923, PubMed:9930755). T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons (PubMed:15048902). In the adrenal zona glomerulosa, participates in the signaling pathway leading to aldosterone production in response to either AGT/angiotensin II, or hyperkalemia (PubMed:25907736, PubMed:27729216). {ECO:0000269|PubMed:24277868, ECO:0000269|PubMed:25907736, ECO:0000269|PubMed:27149520, ECO:0000269|PubMed:27729216, ECO:0000269|PubMed:9670923, ECO:0000269|PubMed:9930755, ECO:0000305, ECO:0000305|PubMed:15048902}. |
O95292 | VAPB | S206 | ochoa | Vesicle-associated membrane protein-associated protein B/C (VAMP-B/VAMP-C) (VAMP-associated protein B/C) (VAP-B/VAP-C) | Endoplasmic reticulum (ER)-anchored protein that mediates the formation of contact sites between the ER and endosomes via interaction with FFAT motif-containing proteins such as STARD3 or WDR44 (PubMed:32344433, PubMed:33124732). Interacts with STARD3 in a FFAT motif phosphorylation dependent manner (PubMed:33124732). Via interaction with WDR44 participates in neosynthesized protein export (PubMed:32344433). Participates in the endoplasmic reticulum unfolded protein response (UPR) by inducing ERN1/IRE1 activity (PubMed:16891305, PubMed:20940299). Involved in cellular calcium homeostasis regulation (PubMed:22131369). {ECO:0000269|PubMed:16891305, ECO:0000269|PubMed:20940299, ECO:0000269|PubMed:22131369, ECO:0000269|PubMed:32344433, ECO:0000269|PubMed:33124732}. |
O95573 | ACSL3 | S353 | ochoa | Fatty acid CoA ligase Acsl3 (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 3) (LACS 3) (Long-chain-fatty-acid--CoA ligase 3) (EC 6.2.1.3) (Medium-chain acyl-CoA ligase Acsl3) (EC 6.2.1.2) | Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:22633490). Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins) (PubMed:18003621). Has mainly an anabolic role in energy metabolism. Mediates hepatic lipogenesis. Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates. Both isoforms exhibit the same level of activity (By similarity). {ECO:0000250|UniProtKB:Q63151, ECO:0000269|PubMed:18003621, ECO:0000269|PubMed:22633490}. |
O96020 | CCNE2 | S67 | ochoa | G1/S-specific cyclin-E2 | Essential for the control of the cell cycle at the late G1 and early S phase. {ECO:0000269|PubMed:9840927, ECO:0000269|PubMed:9840943, ECO:0000269|PubMed:9858585}. |
O96020 | CCNE2 | S383 | ochoa | G1/S-specific cyclin-E2 | Essential for the control of the cell cycle at the late G1 and early S phase. {ECO:0000269|PubMed:9840927, ECO:0000269|PubMed:9840943, ECO:0000269|PubMed:9858585}. |
P02549 | SPTA1 | S1363 | ochoa | Spectrin alpha chain, erythrocytic 1 (Erythroid alpha-spectrin) | Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane. It associates with band 4.1 and actin to form the cytoskeletal superstructure of the erythrocyte plasma membrane. |
P10071 | GLI3 | S45 | ochoa | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P11387 | TOP1 | S394 | ochoa|psp | DNA topoisomerase 1 (EC 5.6.2.1) (DNA topoisomerase I) | Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then rotates around the intact phosphodiester bond on the opposing strand, thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Involved in the circadian transcription of the core circadian clock component BMAL1 by altering the chromatin structure around the ROR response elements (ROREs) on the BMAL1 promoter. {ECO:0000250|UniProtKB:Q13472, ECO:0000269|PubMed:14594810, ECO:0000269|PubMed:16033260, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:22904072, ECO:0000269|PubMed:2833744}. |
P14859 | POU2F1 | S448 | ochoa | POU domain, class 2, transcription factor 1 (NF-A1) (Octamer-binding protein 1) (Oct-1) (Octamer-binding transcription factor 1) (OTF-1) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3') and activates the promoters of the genes for some small nuclear RNAs (snRNA) and of genes such as those for histone H2B and immunoglobulins. Modulates transcription transactivation by NR3C1, AR and PGR. {ECO:0000269|PubMed:10480874, ECO:0000269|PubMed:1684878, ECO:0000269|PubMed:7859290}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, POU2F1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and HCFC1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000305|PubMed:12826401}. |
P15056 | BRAF | S317 | psp | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P16157 | ANK1 | S856 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P17096 | HMGA1 | S36 | ochoa|psp | High mobility group protein HMG-I/HMG-Y (HMG-I(Y)) (High mobility group AT-hook protein 1) (High mobility group protein A1) (High mobility group protein R) | HMG-I/Y bind preferentially to the minor groove of A+T rich regions in double-stranded DNA. It is suggested that these proteins could function in nucleosome phasing and in the 3'-end processing of mRNA transcripts. They are also involved in the transcription regulation of genes containing, or in close proximity to A+T-rich regions. |
P18206 | VCL | S795 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18583 | SON | S283 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P19338 | NCL | S563 | ochoa | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
P19474 | TRIM21 | S266 | ochoa | E3 ubiquitin-protein ligase TRIM21 (EC 2.3.2.27) (52 kDa Ro protein) (52 kDa ribonucleoprotein autoantigen Ro/SS-A) (RING finger protein 81) (Ro(SS-A)) (Sjoegren syndrome type A antigen) (SS-A) (Tripartite motif-containing protein 21) | E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2 (PubMed:16297862, PubMed:16316627, PubMed:16472766, PubMed:16880511, PubMed:18022694, PubMed:18361920, PubMed:18641315, PubMed:18845142, PubMed:19675099, PubMed:26347139). Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination (PubMed:16880511, PubMed:19675099). Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes (PubMed:16880511). A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B ('Thr-187' phosphorylated-form), thereby promoting its degradation by the proteasome (PubMed:16880511). Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling (PubMed:19675099). Negatively regulates IFN-beta production post-pathogen recognition by catalyzing polyubiquitin-mediated degradation of IRF3 (PubMed:18641315). Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway (PubMed:18022694). Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages (By similarity). Plays a role in the regulation of the cell cycle progression (PubMed:16880511). Enhances the decapping activity of DCP2 (PubMed:18361920). Exists as a ribonucleoprotein particle present in all mammalian cells studied and composed of a single polypeptide and one of four small RNA molecules (PubMed:1985094, PubMed:8666824). At least two isoforms are present in nucleated and red blood cells, and tissue specific differences in RO/SSA proteins have been identified (PubMed:8666824). The common feature of these proteins is their ability to bind HY RNAs.2 (PubMed:8666824). Involved in the regulation of innate immunity and the inflammatory response in response to IFNG/IFN-gamma (PubMed:26347139). Organizes autophagic machinery by serving as a platform for the assembly of ULK1, Beclin 1/BECN1 and ATG8 family members and recognizes specific autophagy targets, thus coordinating target recognition with assembly of the autophagic apparatus and initiation of autophagy (PubMed:26347139). Also regulates autophagy through FIP200/RB1CC1 ubiquitination and subsequent decreased protein stability (PubMed:36359729). Represses the innate antiviral response by facilitating the formation of the NMI-IFI35 complex through 'Lys-63'-linked ubiquitination of NMI (PubMed:26342464). During viral infection, promotes cell pyroptosis by mediating 'Lys-6'-linked ubiquitination of ISG12a/IFI27, facilitating its translocation into the mitochondria and subsequent CASP3 activation (PubMed:36426955). When up-regulated through the IFN/JAK/STAT signaling pathway, promotes 'Lys-27'-linked ubiquitination of MAVS, leading to the recruitment of TBK1 and up-regulation of innate immunity (PubMed:29743353). Mediates 'Lys-63'-linked polyubiquitination of G3BP1 in response to heat shock, leading to stress granule disassembly (PubMed:36692217). {ECO:0000250|UniProtKB:Q62191, ECO:0000269|PubMed:16297862, ECO:0000269|PubMed:16316627, ECO:0000269|PubMed:16472766, ECO:0000269|PubMed:16880511, ECO:0000269|PubMed:18022694, ECO:0000269|PubMed:18361920, ECO:0000269|PubMed:18641315, ECO:0000269|PubMed:18845142, ECO:0000269|PubMed:19675099, ECO:0000269|PubMed:1985094, ECO:0000269|PubMed:26342464, ECO:0000269|PubMed:26347139, ECO:0000269|PubMed:29743353, ECO:0000269|PubMed:36359729, ECO:0000269|PubMed:36426955, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:8666824}. |
P20929 | NEB | S2359 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P24278 | ZBTB25 | S220 | ochoa | Zinc finger and BTB domain-containing protein 25 (Zinc finger protein 46) (Zinc finger protein KUP) | May be involved in transcriptional regulation. |
P28290 | ITPRID2 | S803 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28715 | ERCC5 | S341 | ochoa | DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) | Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}. |
P30048 | PRDX3 | S237 | ochoa | Thioredoxin-dependent peroxide reductase, mitochondrial (EC 1.11.1.24) (Antioxidant protein 1) (AOP-1) (HBC189) (Peroxiredoxin III) (Prx-III) (Peroxiredoxin-3) (Protein MER5 homolog) (Thioredoxin-dependent peroxiredoxin 3) | Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides (PubMed:17707404, PubMed:29438714, PubMed:33889951, PubMed:7733872). Acts synergistically with MAP3K13 to regulate the activation of NF-kappa-B in the cytosol (PubMed:12492477). Required for the maintenance of physical strength (By similarity). {ECO:0000250|UniProtKB:P20108, ECO:0000269|PubMed:12492477, ECO:0000269|PubMed:17707404, ECO:0000269|PubMed:29438714, ECO:0000269|PubMed:33889951, ECO:0000269|PubMed:7733872}. |
P31939 | ATIC | S269 | ochoa | Bifunctional purine biosynthesis protein ATIC (AICAR transformylase/inosine monophosphate cyclohydrolase) (ATIC) [Cleaved into: Bifunctional purine biosynthesis protein ATIC, N-terminally processed] [Includes: Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) (AICAR formyltransferase) (AICAR transformylase); Inosine 5'-monophosphate cyclohydrolase (IMP cyclohydrolase) (EC 3.5.4.10) (IMP synthase) (Inosinicase)] | Bifunctional enzyme that catalyzes the last two steps of purine biosynthesis (PubMed:11948179, PubMed:14756554). Acts as a transformylase that incorporates a formyl group to the AMP analog AICAR (5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide) to produce the intermediate formyl-AICAR (FAICAR) (PubMed:10985775, PubMed:11948179, PubMed:9378707). Can use both 10-formyldihydrofolate and 10-formyltetrahydrofolate as the formyl donor in this reaction (PubMed:10985775). Also catalyzes the cyclization of FAICAR to inosine monophosphate (IMP) (PubMed:11948179, PubMed:14756554). Is able to convert thio-AICAR to 6-mercaptopurine ribonucleotide, an inhibitor of purine biosynthesis used in the treatment of human leukemias (PubMed:10985775). Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571). {ECO:0000269|PubMed:10985775, ECO:0000269|PubMed:11948179, ECO:0000269|PubMed:14756554, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:9378707}. |
P33981 | TTK | S821 | ochoa|psp | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P38398 | BRCA1 | S114 | ochoa|psp | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P38432 | COIL | S489 | ochoa|psp | Coilin (p80-coilin) | Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}. |
P40818 | USP8 | S434 | ochoa | Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) | Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}. |
P46013 | MKI67 | S1071 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1131 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1679 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1983 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2105 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2466 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2528 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2588 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2708 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46821 | MAP1B | S1965 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P49795 | RGS19 | S151 | psp | Regulator of G-protein signaling 19 (RGS19) (G-alpha-interacting protein) (GAIP) | Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to G-alpha subfamily 1 members, with the order G(i)a3 > G(i)a1 > G(o)a >> G(z)a/G(i)a2. Activity on G(z)-alpha is inhibited by phosphorylation and palmitoylation of the G-protein. |
P49810 | PSEN2 | S25 | ochoa | Presenilin-2 (PS-2) (EC 3.4.23.-) (AD3LP) (AD5) (E5-1) (STM-2) [Cleaved into: Presenilin-2 NTF subunit; Presenilin-2 CTF subunit] | Probable catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein). Requires the other members of the gamma-secretase complex to have a protease activity. May play a role in intracellular signaling and gene expression or in linking chromatin to the nuclear membrane. May function in the cytoplasmic partitioning of proteins. The holoprotein functions as a calcium-leak channel that allows the passive movement of calcium from endoplasmic reticulum to cytosol and is involved in calcium homeostasis (PubMed:16959576). Is a regulator of mitochondrion-endoplasmic reticulum membrane tethering and modulates calcium ions shuttling between ER and mitochondria (PubMed:21285369). {ECO:0000269|PubMed:10497236, ECO:0000269|PubMed:10652302, ECO:0000269|PubMed:16959576, ECO:0000269|PubMed:21285369}. |
P50570 | DNM2 | S116 | ochoa | Dynamin-2 (EC 3.6.5.5) (Dynamin 2) (Dynamin II) | Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission at plasma membrane during endocytosis and filament remodeling at many actin structures during organization of the actin cytoskeleton (PubMed:15731758, PubMed:19605363, PubMed:19623537, PubMed:33713620, PubMed:34744632). Plays an important role in vesicular trafficking processes, namely clathrin-mediated endocytosis (CME), exocytic and clathrin-coated vesicle from the trans-Golgi network, and PDGF stimulated macropinocytosis (PubMed:15731758, PubMed:19623537, PubMed:33713620). During vesicular trafficking process, associates to the membrane, through lipid binding, and self-assembles into ring-like structure through oligomerization to form a helical polymer around the vesicle membrane and leading to vesicle scission (PubMed:17636067, PubMed:34744632, PubMed:36445308). Plays a role in organization of the actin cytoskeleton by mediating arrangement of stress fibers and actin bundles in podocytes (By similarity). During organization of the actin cytoskeleton, self-assembles into ring-like structure that directly bundles actin filaments to form typical membrane tubules decorated with dynamin spiral polymers (By similarity). Self-assembly increases GTPase activity and the GTP hydrolysis causes the rapid depolymerization of dynamin spiral polymers, and results in dispersion of actin bundles (By similarity). Remodels, through its interaction with CTTN, bundled actin filaments in a GTPase-dependent manner and plays a role in orchestrating the global actomyosin cytoskeleton (PubMed:19605363). The interaction with CTTN stabilizes the interaction of DNM2 and actin filaments and stimulates the intrinsic GTPase activity that results in actin filament-barbed ends and increases the sensitivity of filaments in bundles to the actin depolymerizing factor, CFL1 (By similarity). Plays a role in the autophagy process, by participating in the formation of ATG9A vesicles destined for the autophagosomes through its interaction with SNX18 (PubMed:29437695), by mediating recycling endosome scission leading to autophagosome release through MAP1LC3B interaction (PubMed:29437695, PubMed:32315611). Also regulates maturation of apoptotic cell corpse-containing phagosomes by recruiting PIK3C3 to the phagosome membrane (By similarity). Also plays a role in cytokinesis (By similarity). May participate in centrosome cohesion through its interaction with TUBG1 (By similarity). Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Involved in membrane tubulation (PubMed:24135484). {ECO:0000250|UniProtKB:P39052, ECO:0000250|UniProtKB:P39054, ECO:0000269|PubMed:15731758, ECO:0000269|PubMed:17636067, ECO:0000269|PubMed:19605363, ECO:0000269|PubMed:19623537, ECO:0000269|PubMed:24135484, ECO:0000269|PubMed:29437695, ECO:0000269|PubMed:32315611, ECO:0000269|PubMed:33713620, ECO:0000269|PubMed:34744632, ECO:0000269|PubMed:36445308}. |
P50750 | CDK9 | S90 | psp | Cyclin-dependent kinase 9 (EC 2.7.11.22) (EC 2.7.11.23) (C-2K) (Cell division cycle 2-like protein kinase 4) (Cell division protein kinase 9) (Serine/threonine-protein kinase PITALRE) (Tat-associated kinase complex catalytic subunit) | Protein kinase involved in the regulation of transcription (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:20930849, PubMed:28426094, PubMed:29335245). Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:16427012, PubMed:20930849, PubMed:28426094, PubMed:30134174). This complex is inactive when in the 7SK snRNP complex form (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:20930849, PubMed:28426094). Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR and the negative elongation factors DSIF and NELFE (PubMed:10912001, PubMed:11112772, PubMed:12037670, PubMed:16427012, PubMed:20081228, PubMed:20980437, PubMed:21127351, PubMed:9857195). Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling) (PubMed:17956865, PubMed:18362169). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis (PubMed:10393184, PubMed:11112772). P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export (PubMed:15564463, PubMed:19575011, PubMed:19844166). Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing (PubMed:15564463, PubMed:19575011, PubMed:19844166). The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro (PubMed:21127351). Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage (PubMed:20493174). In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6 (PubMed:20493174). Promotes cardiac myocyte enlargement (PubMed:20081228). RPB1/POLR2A phosphorylation on 'Ser-2' in CTD activates transcription (PubMed:21127351). AR phosphorylation modulates AR transcription factor promoter selectivity and cell growth. DSIF and NELF phosphorylation promotes transcription by inhibiting their negative effect (PubMed:10912001, PubMed:11112772, PubMed:9857195). The phosphorylation of MYOD1 enhances its transcriptional activity and thus promotes muscle differentiation (PubMed:12037670). Catalyzes phosphorylation of KAT5, promoting KAT5 recruitment to chromatin and histone acetyltransferase activity (PubMed:29335245). {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10574912, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11145967, ECO:0000269|PubMed:11575923, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:11884399, ECO:0000269|PubMed:12037670, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15564463, ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:17956865, ECO:0000269|PubMed:18362169, ECO:0000269|PubMed:19575011, ECO:0000269|PubMed:19844166, ECO:0000269|PubMed:20081228, ECO:0000269|PubMed:20493174, ECO:0000269|PubMed:20930849, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:28426094, ECO:0000269|PubMed:29335245, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:9857195}. |
P51398 | DAP3 | S220 | psp | Small ribosomal subunit protein mS29 (EC 3.6.5.-) (28S ribosomal protein S29, mitochondrial) (MRP-S29) (S29mt) (Death-associated protein 3) (DAP-3) (Ionizing radiation resistance conferring protein) | As a component of the mitochondrial small ribosomal subunit, it plays a role in the translation of mitochondrial mRNAs (PubMed:39701103). Involved in mediating interferon-gamma-induced cell death (PubMed:7499268). Displays GTPase activity in vitro (PubMed:39701103). {ECO:0000269|PubMed:39701103, ECO:0000269|PubMed:7499268}. |
P51587 | BRCA2 | S2095 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51957 | NEK4 | S563 | ochoa | Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) | Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}. |
P53804 | TTC3 | S429 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P53804 | TTC3 | S1927 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P55072 | VCP | S664 | psp | Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) | Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}. |
P56192 | MARS1 | S825 | ochoa|psp | Methionine--tRNA ligase, cytoplasmic (EC 6.1.1.10) (Methionyl-tRNA synthetase) (MetRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:11714285). Plays a role in the synthesis of ribosomal RNA in the nucleolus (PubMed:10791971). {ECO:0000269|PubMed:10791971, ECO:0000269|PubMed:11714285, ECO:0000269|PubMed:33909043}. |
P57081 | WDR4 | S391 | ochoa | tRNA (guanine-N(7)-)-methyltransferase non-catalytic subunit WDR4 (Protein Wuho homolog) (hWH) (WD repeat-containing protein 4) | Non-catalytic component of the METTL1-WDR4 methyltransferase complex required for the formation of N(7)-methylguanine in a subset of RNA species, such as tRNAs, mRNAs and microRNAs (miRNAs) (PubMed:12403464, PubMed:31031083, PubMed:31031084, PubMed:36599982, PubMed:36599985, PubMed:37369656). In the METTL1-WDR4 methyltransferase complex, WDR4 acts as a scaffold for tRNA-binding (PubMed:36599982, PubMed:36599985, PubMed:37369656). Required for the formation of N(7)-methylguanine at position 46 (m7G46) in a large subset of tRNAs that contain the 5'-RAGGU-3' motif within the variable loop (PubMed:12403464, PubMed:34352206, PubMed:34352207, PubMed:36599982, PubMed:36599985, PubMed:37369656). M7G46 interacts with C13-G22 in the D-loop to stabilize tRNA tertiary structure and protect tRNAs from decay (PubMed:36599982, PubMed:36599985). Also required for the formation of N(7)-methylguanine at internal sites in a subset of mRNAs (PubMed:31031084, PubMed:37379838). Also required for methylation of a specific subset of miRNAs, such as let-7 (PubMed:31031083). Independently of METTL1, also plays a role in genome stability: localizes at the DNA replication site and regulates endonucleolytic activities of FEN1 (PubMed:26751069). {ECO:0000269|PubMed:12403464, ECO:0000269|PubMed:26751069, ECO:0000269|PubMed:31031083, ECO:0000269|PubMed:31031084, ECO:0000269|PubMed:34352206, ECO:0000269|PubMed:34352207, ECO:0000269|PubMed:36599982, ECO:0000269|PubMed:36599985, ECO:0000269|PubMed:37369656, ECO:0000269|PubMed:37379838}. |
P78527 | PRKDC | S1203 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
P78559 | MAP1A | S1069 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P98170 | XIAP | S40 | ochoa|psp | E3 ubiquitin-protein ligase XIAP (EC 2.3.2.27) (Baculoviral IAP repeat-containing protein 4) (IAP-like protein) (ILP) (hILP) (Inhibitor of apoptosis protein 3) (IAP-3) (hIAP-3) (hIAP3) (RING-type E3 ubiquitin transferase XIAP) (X-linked inhibitor of apoptosis protein) (X-linked IAP) | Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, copper homeostasis, mitogenic kinase signaling, cell proliferation, as well as cell invasion and metastasis (PubMed:11257230, PubMed:11257231, PubMed:11447297, PubMed:12121969, PubMed:12620238, PubMed:17560374, PubMed:17967870, PubMed:19473982, PubMed:20154138, PubMed:22103349, PubMed:9230442). Acts as a direct caspase inhibitor (PubMed:11257230, PubMed:11257231, PubMed:12620238). Directly bind to the active site pocket of CASP3 and CASP7 and obstructs substrate entry (PubMed:11257230, PubMed:11257231, PubMed:16352606, PubMed:16916640). Inactivates CASP9 by keeping it in a monomeric, inactive state (PubMed:12620238). Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and the target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, RIPK2, MAP3K2/MEKK2, DIABLO/SMAC, AIFM1, CCS, PTEN and BIRC5/survivin (PubMed:17560374, PubMed:17967870, PubMed:19473982, PubMed:20154138, PubMed:22103349, PubMed:22607974, PubMed:29452636, PubMed:30026309). Acts as an important regulator of innate immunity by mediating 'Lys-63'-linked polyubiquitination of RIPK2 downstream of NOD1 and NOD2, thereby transforming RIPK2 into a scaffolding protein for downstream effectors, ultimately leading to activation of the NF-kappa-B and MAP kinases signaling (PubMed:19667203, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitination of RIPK2 also promotes recruitment of the LUBAC complex to RIPK2 (PubMed:22607974, PubMed:29452636). Regulates the BMP signaling pathway and the SMAD and MAP3K7/TAK1 dependent pathways leading to NF-kappa-B and JNK activation (PubMed:17560374). Ubiquitination of CCS leads to enhancement of its chaperone activity toward its physiologic target, SOD1, rather than proteasomal degradation (PubMed:20154138). Ubiquitination of MAP3K2/MEKK2 and AIFM1 does not lead to proteasomal degradation (PubMed:17967870, PubMed:22103349). Plays a role in copper homeostasis by ubiquitinating COMMD1 and promoting its proteasomal degradation (PubMed:14685266). Can also function as E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation (PubMed:21145488). Ubiquitinates and therefore mediates the proteasomal degradation of BCL2 in response to apoptosis (PubMed:29020630). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner (PubMed:22095281). Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8 (PubMed:22095281). Acts as a positive regulator of Wnt signaling and ubiquitinates TLE1, TLE2, TLE3, TLE4 and AES (PubMed:22304967). Ubiquitination of TLE3 results in inhibition of its interaction with TCF7L2/TCF4 thereby allowing efficient recruitment and binding of the transcriptional coactivator beta-catenin to TCF7L2/TCF4 that is required to initiate a Wnt-specific transcriptional program (PubMed:22304967). {ECO:0000269|PubMed:11257230, ECO:0000269|PubMed:11257231, ECO:0000269|PubMed:11447297, ECO:0000269|PubMed:12121969, ECO:0000269|PubMed:12620238, ECO:0000269|PubMed:14685266, ECO:0000269|PubMed:16352606, ECO:0000269|PubMed:16916640, ECO:0000269|PubMed:17560374, ECO:0000269|PubMed:17967870, ECO:0000269|PubMed:19473982, ECO:0000269|PubMed:19667203, ECO:0000269|PubMed:20154138, ECO:0000269|PubMed:21145488, ECO:0000269|PubMed:22103349, ECO:0000269|PubMed:22304967, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:29020630, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:9230442, ECO:0000303|PubMed:22095281}. |
Q01196 | RUNX1 | S67 | ochoa | Runt-related transcription factor 1 (Acute myeloid leukemia 1 protein) (Core-binding factor subunit alpha-2) (CBF-alpha-2) (Oncogene AML-1) (Polyomavirus enhancer-binding protein 2 alpha B subunit) (PEA2-alpha B) (PEBP2-alpha B) (SL3-3 enhancer factor 1 alpha B subunit) (SL3/AKV core-binding factor alpha B subunit) | Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (Probable). Essential for the development of normal hematopoiesis (PubMed:17431401). Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the BLK promoter (PubMed:10207087, PubMed:14970218). Inhibits KAT6B-dependent transcriptional activation (By similarity). Involved in lineage commitment of immature T cell precursors. CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Controls the anergy and suppressive function of regulatory T-cells (Treg) by associating with FOXP3. Activates the expression of IL2 and IFNG and down-regulates the expression of TNFRSF18, IL2RA and CTLA4, in conventional T-cells (PubMed:17377532). Positively regulates the expression of RORC in T-helper 17 cells (By similarity). {ECO:0000250|UniProtKB:Q03347, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:14970218, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:17431401, ECO:0000305}.; FUNCTION: Isoform AML-1G shows higher binding activities for target genes and binds TCR-beta-E2 and RAG-1 target site with threefold higher affinity than other isoforms. It is less effective in the context of neutrophil terminal differentiation. {ECO:0000250|UniProtKB:Q03347}.; FUNCTION: Isoform AML-1L interferes with the transactivation activity of RUNX1. {ECO:0000269|PubMed:9199349}. |
Q01484 | ANK2 | S2172 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S2243 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01658 | DR1 | S67 | ochoa | Protein Dr1 (Down-regulator of transcription 1) (Negative cofactor 2-beta) (NC2-beta) (TATA-binding protein-associated phosphoprotein) | The association of the DR1/DRAP1 heterodimer with TBP results in a functional repression of both activated and basal transcription of class II genes. This interaction precludes the formation of a transcription-competent complex by inhibiting the association of TFIIA and/or TFIIB with TBP. Can bind to DNA on its own. Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:8670811}. |
Q05209 | PTPN12 | S19 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q05519 | SRSF11 | S449 | ochoa | Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) | May function in pre-mRNA splicing. |
Q05655 | PRKCD | S626 | ochoa | Protein kinase C delta type (EC 2.7.11.13) (Tyrosine-protein kinase PRKCD) (EC 2.7.10.2) (nPKC-delta) [Cleaved into: Protein kinase C delta type regulatory subunit; Protein kinase C delta type catalytic subunit (Sphingosine-dependent protein kinase-1) (SDK1)] | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays contrasting roles in cell death and cell survival by functioning as a pro-apoptotic protein during DNA damage-induced apoptosis, but acting as an anti-apoptotic protein during cytokine receptor-initiated cell death, is involved in tumor suppression as well as survival of several cancers, is required for oxygen radical production by NADPH oxidase and acts as positive or negative regulator in platelet functional responses (PubMed:21406692, PubMed:21810427). Negatively regulates B cell proliferation and also has an important function in self-antigen induced B cell tolerance induction (By similarity). Upon DNA damage, activates the promoter of the death-promoting transcription factor BCLAF1/Btf to trigger BCLAF1-mediated p53/TP53 gene transcription and apoptosis (PubMed:21406692, PubMed:21810427). In response to oxidative stress, interact with and activate CHUK/IKKA in the nucleus, causing the phosphorylation of p53/TP53 (PubMed:21406692, PubMed:21810427). In the case of ER stress or DNA damage-induced apoptosis, can form a complex with the tyrosine-protein kinase ABL1 which trigger apoptosis independently of p53/TP53 (PubMed:21406692, PubMed:21810427). In cytosol can trigger apoptosis by activating MAPK11 or MAPK14, inhibiting AKT1 and decreasing the level of X-linked inhibitor of apoptosis protein (XIAP), whereas in nucleus induces apoptosis via the activation of MAPK8 or MAPK9. Upon ionizing radiation treatment, is required for the activation of the apoptosis regulators BAX and BAK, which trigger the mitochondrial cell death pathway. Can phosphorylate MCL1 and target it for degradation which is sufficient to trigger for BAX activation and apoptosis. Is required for the control of cell cycle progression both at G1/S and G2/M phases. Mediates phorbol 12-myristate 13-acetate (PMA)-induced inhibition of cell cycle progression at G1/S phase by up-regulating the CDK inhibitor CDKN1A/p21 and inhibiting the cyclin CCNA2 promoter activity. In response to UV irradiation can phosphorylate CDK1, which is important for the G2/M DNA damage checkpoint activation (By similarity). Can protect glioma cells from the apoptosis induced by TNFSF10/TRAIL, probably by inducing increased phosphorylation and subsequent activation of AKT1 (PubMed:15774464). Is highly expressed in a number of cancer cells and promotes cell survival and resistance against chemotherapeutic drugs by inducing cyclin D1 (CCND1) and hyperphosphorylation of RB1, and via several pro-survival pathways, including NF-kappa-B, AKT1 and MAPK1/3 (ERK1/2). Involved in antifungal immunity by mediating phosphorylation and activation of CARD9 downstream of C-type lectin receptors activation, promoting interaction between CARD9 and BCL10, followed by activation of NF-kappa-B and MAP kinase p38 pathways (By similarity). Can also act as tumor suppressor upon mitogenic stimulation with PMA or TPA. In N-formyl-methionyl-leucyl-phenylalanine (fMLP)-treated cells, is required for NCF1 (p47-phox) phosphorylation and activation of NADPH oxidase activity, and regulates TNF-elicited superoxide anion production in neutrophils, by direct phosphorylation and activation of NCF1 or indirectly through MAPK1/3 (ERK1/2) signaling pathways (PubMed:19801500). May also play a role in the regulation of NADPH oxidase activity in eosinophil after stimulation with IL5, leukotriene B4 or PMA (PubMed:11748588). In collagen-induced platelet aggregation, acts a negative regulator of filopodia formation and actin polymerization by interacting with and negatively regulating VASP phosphorylation (PubMed:16940418). Downstream of PAR1, PAR4 and CD36/GP4 receptors, regulates differentially platelet dense granule secretion; acts as a positive regulator in PAR-mediated granule secretion, whereas it negatively regulates CD36/GP4-mediated granule release (PubMed:19587372). Phosphorylates MUC1 in the C-terminal and regulates the interaction between MUC1 and beta-catenin (PubMed:11877440). The catalytic subunit phosphorylates 14-3-3 proteins (YWHAB, YWHAZ and YWHAH) in a sphingosine-dependent fashion (By similarity). Phosphorylates ELAVL1 in response to angiotensin-2 treatment (PubMed:18285462). Phosphorylates mitochondrial phospholipid scramblase 3 (PLSCR3), resulting in increased cardiolipin expression on the mitochondrial outer membrane which facilitates apoptosis (PubMed:12649167). Phosphorylates SMPD1 which induces SMPD1 secretion (PubMed:17303575). {ECO:0000250|UniProtKB:P28867, ECO:0000269|PubMed:11748588, ECO:0000269|PubMed:11877440, ECO:0000269|PubMed:12649167, ECO:0000269|PubMed:15774464, ECO:0000269|PubMed:16940418, ECO:0000269|PubMed:17303575, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19587372, ECO:0000269|PubMed:19801500, ECO:0000303|PubMed:21406692, ECO:0000303|PubMed:21810427}. |
Q07864 | POLE | S1204 | ochoa | DNA polymerase epsilon catalytic subunit A (EC 2.7.7.7) (3'-5' exodeoxyribonuclease) (EC 3.1.11.-) (DNA polymerase II subunit A) | Catalytic component of the DNA polymerase epsilon complex (PubMed:10801849). Participates in chromosomal DNA replication (By similarity). Required during synthesis of the leading DNA strands at the replication fork, binds at/or near replication origins and moves along DNA with the replication fork (By similarity). Has 3'-5' proofreading exonuclease activity that corrects errors arising during DNA replication (By similarity). Involved in DNA synthesis during DNA repair (PubMed:20227374, PubMed:27573199). Along with DNA polymerase POLD1 and DNA polymerase POLK, has a role in excision repair (NER) synthesis following UV irradiation (PubMed:20227374). {ECO:0000250|UniProtKB:P21951, ECO:0000269|PubMed:10801849, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:27573199}. |
Q07912 | TNK2 | S102 | ochoa | Activated CDC42 kinase 1 (ACK-1) (EC 2.7.10.2) (EC 2.7.11.1) (Tyrosine kinase non-receptor protein 2) | Non-receptor tyrosine-protein and serine/threonine-protein kinase that is implicated in cell spreading and migration, cell survival, cell growth and proliferation. Transduces extracellular signals to cytosolic and nuclear effectors. Phosphorylates AKT1, AR, MCF2, WASL and WWOX. Implicated in trafficking and clathrin-mediated endocytosis through binding to epidermal growth factor receptor (EGFR) and clathrin. Binds to both poly- and mono-ubiquitin and regulates ligand-induced degradation of EGFR, thereby contributing to the accumulation of EGFR at the limiting membrane of early endosomes. Downstream effector of CDC42 which mediates CDC42-dependent cell migration via phosphorylation of BCAR1. May be involved both in adult synaptic function and plasticity and in brain development. Activates AKT1 by phosphorylating it on 'Tyr-176'. Phosphorylates AR on 'Tyr-267' and 'Tyr-363' thereby promoting its recruitment to androgen-responsive enhancers (AREs). Phosphorylates WWOX on 'Tyr-287'. Phosphorylates MCF2, thereby enhancing its activity as a guanine nucleotide exchange factor (GEF) toward Rho family proteins. Contributes to the control of AXL receptor levels. Confers metastatic properties on cancer cells and promotes tumor growth by negatively regulating tumor suppressor such as WWOX and positively regulating pro-survival factors such as AKT1 and AR. Phosphorylates WASP (PubMed:20110370). {ECO:0000269|PubMed:10652228, ECO:0000269|PubMed:11278436, ECO:0000269|PubMed:16247015, ECO:0000269|PubMed:16257963, ECO:0000269|PubMed:16472662, ECO:0000269|PubMed:17038317, ECO:0000269|PubMed:18262180, ECO:0000269|PubMed:18435854, ECO:0000269|PubMed:19815557, ECO:0000269|PubMed:20110370, ECO:0000269|PubMed:20333297, ECO:0000269|PubMed:20383201}. |
Q09019 | DMWD | S652 | ochoa | Dystrophia myotonica WD repeat-containing protein (Dystrophia myotonica-containing WD repeat motif protein) (Protein 59) (Protein DMR-N9) | Regulator of the deubiquitinating USP12/DMWD/WDR48 complex (PubMed:33844468). Functions as a cofactor that promotes USP12 enzymatic activity (PubMed:33844468). {ECO:0000269|PubMed:33844468}. |
Q0VD86 | INCA1 | S191 | psp | Protein INCA1 (Inhibitor of CDK interacting with cyclin A1) | Binds to CDK2-bound cyclins and inhibits the kinase activity of CDK2; binding to cyclins is critical for its function as CDK inhibitor (PubMed:21540187). Inhibits cell growth and cell proliferation and may play a role in cell cycle control (By similarity). Required for ING5-mediated regulation of S-phase progression, enhancement of Fas-induced apoptosis and inhibition of cell growth (By similarity). {ECO:0000250|UniProtKB:Q6PKN7, ECO:0000269|PubMed:21540187}. |
Q0VDF9 | HSPA14 | S186 | ochoa | Heat shock 70 kDa protein 14 (HSP70-like protein 1) (Heat shock protein HSP60) (Heat shock protein family A member 14) | Component of the ribosome-associated complex (RAC), a complex involved in folding or maintaining nascent polypeptides in a folding-competent state. In the RAC complex, binds to the nascent polypeptide chain, while DNAJC2 stimulates its ATPase activity. {ECO:0000269|PubMed:16002468}. |
Q0VF96 | CGNL1 | S261 | ochoa | Cingulin-like protein 1 (Junction-associated coiled-coil protein) (Paracingulin) | May be involved in anchoring the apical junctional complex, especially tight junctions, to actin-based cytoskeletons. {ECO:0000269|PubMed:22891260}. |
Q12770 | SCAP | S937 | ochoa|psp | Sterol regulatory element-binding protein cleavage-activating protein (SCAP) (SREBP cleavage-activating protein) | Escort protein required for cholesterol as well as lipid homeostasis (By similarity). Regulates export of the SCAP-SREBP complex from the endoplasmic reticulum to the Golgi upon low cholesterol, thereby regulating the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:26311497). At high sterol concentrations, formation of a ternary complex with INSIG (INSIG1 or INSIG2) leads to mask the ER export signal in SCAP, promoting retention of the complex in the endoplasmic reticulum (By similarity). Low sterol concentrations trigger release of INSIG, a conformational change in the SSD domain of SCAP, unmasking of the ER export signal, promoting recruitment into COPII-coated vesicles and transport of the SCAP-SREBP to the Golgi: in the Golgi, SREBPs are then processed, releasing the transcription factor fragment of SREBPs from the membrane, its import into the nucleus and up-regulation of LDLR, INSIG1 and the mevalonate pathway (PubMed:26311497). Binds cholesterol via its SSD domain (By similarity). {ECO:0000250|UniProtKB:P97260, ECO:0000269|PubMed:26311497}. |
Q12802 | AKAP13 | S1411 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12849 | GRSF1 | S244 | ochoa | G-rich sequence factor 1 (GRSF-1) | Regulator of post-transcriptional mitochondrial gene expression, required for assembly of the mitochondrial ribosome and for recruitment of mRNA and lncRNA. Binds RNAs containing the 14 base G-rich element. Preferentially binds RNAs transcribed from three contiguous genes on the light strand of mtDNA, the ND6 mRNA, and the long non-coding RNAs for MT-CYB and MT-ND5, each of which contains multiple consensus binding sequences (PubMed:23473033, PubMed:23473034, PubMed:29967381). Involved in the degradosome-mediated decay of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules (PubMed:29967381). Acts by unwinding G-quadruplex RNA structures in MT-ncRNA, thus facilitating their degradation by the degradosome (PubMed:29967381). G-quadruplexes (G4) are non-canonical 4 stranded structures formed by transcripts from the light strand of mtDNA (PubMed:29967381). {ECO:0000269|PubMed:23473033, ECO:0000269|PubMed:23473034, ECO:0000269|PubMed:29967381}. |
Q12888 | TP53BP1 | S552 | ochoa|psp | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S1028 | ochoa|psp | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12955 | ANK3 | S2009 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q13127 | REST | S971 | ochoa | RE1-silencing transcription factor (Neural-restrictive silencer factor) (X2 box repressor) | Transcriptional repressor which binds neuron-restrictive silencer element (NRSE) and represses neuronal gene transcription in non-neuronal cells (PubMed:11741002, PubMed:11779185, PubMed:12399542, PubMed:26551668, PubMed:7697725, PubMed:7871435, PubMed:8568247). Restricts the expression of neuronal genes by associating with two distinct corepressors, SIN3A and RCOR1, which in turn recruit histone deacetylase to the promoters of REST-regulated genes (PubMed:10449787, PubMed:10734093). Mediates repression by recruiting the BHC complex at RE1/NRSE sites which acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier (By similarity). Transcriptional repression by REST-CDYL via the recruitment of histone methyltransferase EHMT2 may be important in transformation suppression (PubMed:19061646). Represses the expression of SRRM4 in non-neural cells to prevent the activation of neural-specific splicing events and to prevent production of REST isoform 3 (By similarity). Repressor activity may be inhibited by forming heterodimers with isoform 3, thereby preventing binding to NRSE or binding to corepressors and leading to derepression of target genes (PubMed:11779185). Also maintains repression of neuronal genes in neural stem cells, and allows transcription and differentiation into neurons by dissociation from RE1/NRSE sites of target genes (By similarity). Thereby is involved in maintaining the quiescent state of adult neural stem cells and preventing premature differentiation into mature neurons (PubMed:21258371). Plays a role in the developmental switch in synaptic NMDA receptor composition during postnatal development, by repressing GRIN2B expression and thereby altering NMDA receptor properties from containing primarily GRIN2B to primarily GRIN2A subunits (By similarity). Acts as a regulator of osteoblast differentiation (By similarity). Key repressor of gene expression in hypoxia; represses genes in hypoxia by direct binding to an RE1/NRSE site on their promoter regions (PubMed:27531581). May also function in stress resistance in the brain during aging; possibly by regulating expression of genes involved in cell death and in the stress response (PubMed:24670762). Repressor of gene expression in the hippocampus after ischemia by directly binding to RE1/NRSE sites and recruiting SIN3A and RCOR1 to promoters of target genes, thereby promoting changes in chromatin modifications and ischemia-induced cell death (By similarity). After ischemia, might play a role in repression of miR-132 expression in hippocampal neurons, thereby leading to neuronal cell death (By similarity). Negatively regulates the expression of SRRM3 in breast cancer cell lines (PubMed:26053433). {ECO:0000250|UniProtKB:O54963, ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:10449787, ECO:0000269|PubMed:10734093, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:24670762, ECO:0000269|PubMed:26053433, ECO:0000269|PubMed:26551668, ECO:0000269|PubMed:27531581, ECO:0000269|PubMed:7697725, ECO:0000269|PubMed:7871435, ECO:0000269|PubMed:8568247}.; FUNCTION: [Isoform 3]: Binds to the 3' region of the neuron-restrictive silencer element (NRSE), with lower affinity than full-length REST isoform 1 (By similarity). Exhibits weaker repressor activity compared to isoform 1 (PubMed:11779185). May negatively regulate the repressor activity of isoform 1 by binding to isoform 1, thereby preventing its binding to NRSE and leading to derepression of target genes (PubMed:11779185). However, in another study, does not appear to be implicated in repressor activity of a NRSE motif-containing reporter construct nor in inhibitory activity on the isoform 1 transcriptional repressor activity (PubMed:11741002). Post-transcriptional inactivation of REST by SRRM4-dependent alternative splicing into isoform 3 is required in mechanosensory hair cells in the inner ear for derepression of neuronal genes and hearing (By similarity). {ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185}. |
Q13129 | RLF | S1628 | ochoa | Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) | May be involved in transcriptional regulation. |
Q13133 | NR1H3 | S198 | ochoa|psp | Oxysterols receptor LXR-alpha (Liver X receptor alpha) (Nuclear receptor subfamily 1 group H member 3) | Nuclear receptor that exhibits a ligand-dependent transcriptional activation activity (PubMed:19481530, PubMed:25661920, PubMed:37478846). Interaction with retinoic acid receptor (RXR) shifts RXR from its role as a silent DNA-binding partner to an active ligand-binding subunit in mediating retinoid responses through target genes defined by LXRES (PubMed:37478846). LXRES are DR4-type response elements characterized by direct repeats of two similar hexanuclotide half-sites spaced by four nucleotides (By similarity). Plays an important role in the regulation of cholesterol homeostasis, regulating cholesterol uptake through MYLIP-dependent ubiquitination of LDLR, VLDLR and LRP8 (PubMed:19481530). Interplays functionally with RORA for the regulation of genes involved in liver metabolism (By similarity). Induces LPCAT3-dependent phospholipid remodeling in endoplasmic reticulum (ER) membranes of hepatocytes, driving SREBF1 processing and lipogenesis (By similarity). Via LPCAT3, triggers the incorporation of arachidonate into phosphatidylcholines of ER membranes, increasing membrane dynamics and enabling triacylglycerols transfer to nascent very low-density lipoprotein (VLDL) particles. Via LPCAT3 also counteracts lipid-induced ER stress response and inflammation, likely by modulating SRC kinase membrane compartmentalization and limiting the synthesis of lipid inflammatory mediators (By similarity). {ECO:0000250|UniProtKB:Q9Z0Y9, ECO:0000269|PubMed:19481530, ECO:0000269|PubMed:25661920, ECO:0000269|PubMed:37478846}. |
Q13177 | PAK2 | S75 | ochoa | Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}. |
Q13228 | SELENBP1 | S53 | ochoa | Methanethiol oxidase (MTO) (EC 1.8.3.4) (56 kDa selenium-binding protein) (SBP56) (SP56) (Selenium-binding protein 1) | Catalyzes the oxidation of methanethiol, an organosulfur compound known to be produced in substantial amounts by gut bacteria (PubMed:29255262). Selenium-binding protein which may be involved in the sensing of reactive xenobiotics in the cytoplasm. May be involved in intra-Golgi protein transport (By similarity). {ECO:0000250|UniProtKB:Q8VIF7, ECO:0000269|PubMed:29255262}. |
Q13368 | MPP3 | S307 | ochoa | MAGUK p55 subfamily member 3 (Discs large homolog 3) (Protein MPP3) | Participates in cell spreading through the phosphoinositide-3-kinase (PI3K) pathway by connecting CADM1 to DLG1 and the regulatory subunit of phosphoinositide-3-kinase (PI3K) (PubMed:24503895). Stabilizes HTR2C at the plasma membrane and prevents its desensitization. May participates in the maintenance of adherens junctions (By similarity). {ECO:0000250|UniProtKB:O88910, ECO:0000269|PubMed:24503895}. |
Q13568 | IRF5 | S301 | psp | Interferon regulatory factor 5 (IRF-5) | Transcription factor that plays a critical role in innate immunity by activating expression of type I interferon (IFN) IFNA and INFB and inflammatory cytokines downstream of endolysosomal toll-like receptors TLR7, TLR8 and TLR9 (PubMed:11303025, PubMed:15695821, PubMed:22412986, PubMed:25326418, PubMed:32433612). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (By similarity). Can efficiently activate both the IFN-beta (IFNB) and the IFN-alpha (IFNA) genes and mediate their induction downstream of the TLR-activated, MyD88-dependent pathway (By similarity). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000250|UniProtKB:P56477, ECO:0000269|PubMed:11303025, ECO:0000269|PubMed:15695821, ECO:0000269|PubMed:22412986, ECO:0000269|PubMed:25326418, ECO:0000269|PubMed:32433612, ECO:0000269|PubMed:33440148}. |
Q13572 | ITPK1 | S358 | ochoa | Inositol-tetrakisphosphate 1-kinase (EC 2.7.1.134) (Inositol 1,3,4-trisphosphate 5/6-kinase) (Inositol-triphosphate 5/6-kinase) (Ins(1,3,4)P(3) 5/6-kinase) (EC 2.7.1.159) | Kinase that can phosphorylate various inositol polyphosphate such as Ins(3,4,5,6)P4 or Ins(1,3,4)P3 (PubMed:11042108, PubMed:8662638). Phosphorylates Ins(3,4,5,6)P4 at position 1 to form Ins(1,3,4,5,6)P5 (PubMed:11042108). This reaction is thought to have regulatory importance, since Ins(3,4,5,6)P4 is an inhibitor of plasma membrane Ca(2+)-activated Cl(-) channels, while Ins(1,3,4,5,6)P5 is not. Also phosphorylates Ins(1,3,4)P3 on O-5 and O-6 to form Ins(1,3,4,6)P4, an essential molecule in the hexakisphosphate (InsP6) pathway (PubMed:11042108, PubMed:8662638). Also acts as an inositol polyphosphate phosphatase that dephosphorylates Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 to Ins(1,3,4)P3, and Ins(1,3,4,5,6)P5 to Ins(3,4,5,6)P4 (PubMed:11909533, PubMed:17616525). May also act as an isomerase that interconverts the inositol tetrakisphosphate isomers Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 in the presence of ADP and magnesium (PubMed:11909533). Probably acts as the rate-limiting enzyme of the InsP6 pathway. Modifies TNF-alpha-induced apoptosis by interfering with the activation of TNFRSF1A-associated death domain (PubMed:11909533, PubMed:12925536, PubMed:17616525). Plays an important role in MLKL-mediated necroptosis. Produces highly phosphorylated inositol phosphates such as inositolhexakisphosphate (InsP6) which bind to MLKL mediating the release of an N-terminal auto-inhibitory region leading to its activation. Essential for activated phospho-MLKL to oligomerize and localize to the cell membrane during necroptosis (PubMed:17616525). {ECO:0000269|PubMed:11042108, ECO:0000269|PubMed:11909533, ECO:0000269|PubMed:12925536, ECO:0000269|PubMed:17616525, ECO:0000269|PubMed:8662638}. |
Q13671 | RIN1 | S744 | ochoa | Ras and Rab interactor 1 (Ras inhibitor JC99) (Ras interaction/interference protein 1) | Ras effector protein, which may serve as an inhibitory modulator of neuronal plasticity in aversive memory formation. Can affect Ras signaling at different levels. First, by competing with RAF1 protein for binding to activated Ras. Second, by enhancing signaling from ABL1 and ABL2, which regulate cytoskeletal remodeling. Third, by activating RAB5A, possibly by functioning as a guanine nucleotide exchange factor (GEF) for RAB5A, by exchanging bound GDP for free GTP, and facilitating Ras-activated receptor endocytosis. {ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9208849}. |
Q13796 | SHROOM2 | S779 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q13950 | RUNX2 | S118 | ochoa|psp | Runt-related transcription factor 2 (Acute myeloid leukemia 3 protein) (Core-binding factor subunit alpha-1) (CBF-alpha-1) (Oncogene AML-3) (Osteoblast-specific transcription factor 2) (OSF-2) (Polyomavirus enhancer-binding protein 2 alpha A subunit) (PEA2-alpha A) (PEBP2-alpha A) (SL3-3 enhancer factor 1 alpha A subunit) (SL3/AKV core-binding factor alpha A subunit) | Transcription factor involved in osteoblastic differentiation and skeletal morphogenesis (PubMed:28505335, PubMed:28703881, PubMed:28738062). Essential for the maturation of osteoblasts and both intramembranous and endochondral ossification. CBF binds to the core site, 5'-PYGPYGGT-3', of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, osteocalcin, osteopontin, bone sialoprotein, alpha 1(I) collagen, LCK, IL-3 and GM-CSF promoters. In osteoblasts, supports transcription activation: synergizes with SPEN/MINT to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Inhibits KAT6B-dependent transcriptional activation. {ECO:0000250, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:28505335, ECO:0000269|PubMed:28703881, ECO:0000269|PubMed:28738062}. |
Q14008 | CKAP5 | S1904 | ochoa | Cytoskeleton-associated protein 5 (Colonic and hepatic tumor overexpressed gene protein) (Ch-TOG) | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Acts as a processive microtubule polymerase. Promotes cytoplasmic microtubule nucleation and elongation. Plays a major role in organizing spindle poles. In spindle formation protects kinetochore microtubules from depolymerization by KIF2C and has an essential role in centrosomal microtubule assembly independently of KIF2C activity. Contributes to centrosome integrity. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Enhances the strength of NDC80 complex-mediated kinetochore-tip microtubule attachments (PubMed:27156448). {ECO:0000269|PubMed:12569123, ECO:0000269|PubMed:18809577, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:21646404, ECO:0000269|PubMed:23532825, ECO:0000269|PubMed:27156448, ECO:0000269|PubMed:9570755}. |
Q14160 | SCRIB | S939 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14191 | WRN | S426 | ochoa|psp | Bifunctional 3'-5' exonuclease/ATP-dependent helicase WRN (DNA helicase, RecQ-like type 3) (RecQ protein-like 2) (Werner syndrome protein) [Includes: 3'-5' exonuclease (EC 3.1.-.-); ATP-dependent helicase (EC 5.6.2.4) (DNA 3'-5' helicase WRN)] | Multifunctional enzyme that has magnesium and ATP-dependent 3'-5' DNA-helicase activity on partially duplex substrates (PubMed:9224595, PubMed:9288107, PubMed:9611231). Also has 3'->5' exonuclease activity towards double-stranded (ds)DNA with a 5'-overhang (PubMed:11863428). Has no nuclease activity towards single-stranded (ss)DNA or blunt-ended dsDNA (PubMed:11863428). Helicase activity is most efficient with (d)ATP, but (d)CTP will substitute with reduced efficiency; strand displacement is enhanced by single-strand binding-protein (heterotrimeric replication protein A complex, RPA1, RPA2, RPA3) (PubMed:9611231). Binds preferentially to DNA substrates containing alternate secondary structures, such as replication forks and Holliday junctions. May play an important role in the dissociation of joint DNA molecules that can arise as products of homologous recombination, at stalled replication forks or during DNA repair. Alleviates stalling of DNA polymerases at the site of DNA lesions. Plays a role in the formation of DNA replication focal centers; stably associates with foci elements generating binding sites for RP-A (By similarity). Plays a role in double-strand break repair after gamma-irradiation (PubMed:9224595, PubMed:9288107, PubMed:9611231). Unwinds some G-quadruplex DNA (d(CGG)n tracts); unwinding seems to occur in both 5'-3' and 3'-5' direction and requires a short single-stranded tail (PubMed:10212265). d(CGG)n tracts have a propensity to assemble into tetraplex structures; other G-rich substrates from a telomeric or IgG switch sequence are not unwound (PubMed:10212265). Depletion leads to chromosomal breaks and genome instability (PubMed:33199508). {ECO:0000250|UniProtKB:O09053, ECO:0000269|PubMed:10212265, ECO:0000269|PubMed:11863428, ECO:0000269|PubMed:17563354, ECO:0000269|PubMed:18596042, ECO:0000269|PubMed:19283071, ECO:0000269|PubMed:19652551, ECO:0000269|PubMed:21639834, ECO:0000269|PubMed:27063109, ECO:0000269|PubMed:33199508, ECO:0000269|PubMed:9224595, ECO:0000269|PubMed:9288107, ECO:0000269|PubMed:9611231}. |
Q14244 | MAP7 | S315 | ochoa | Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) | Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}. |
Q14258 | TRIM25 | S187 | ochoa | E3 ubiquitin/ISG15 ligase TRIM25 (EC 6.3.2.n3) (Estrogen-responsive finger protein) (RING finger protein 147) (RING-type E3 ubiquitin transferase) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase TRIM25) (Tripartite motif-containing protein 25) (Ubiquitin/ISG15-conjugating enzyme TRIM25) (Zinc finger protein 147) | Functions as a ubiquitin E3 ligase and as an ISG15 E3 ligase (PubMed:16352599). Involved in innate immune defense against viruses by mediating ubiquitination of RIGI and IFIH1 (PubMed:17392790, PubMed:29357390, PubMed:30193849, PubMed:31710640, PubMed:33849980, PubMed:36045682). Mediates 'Lys-63'-linked polyubiquitination of the RIGI N-terminal CARD-like region and may play a role in signal transduction that leads to the production of interferons in response to viral infection (PubMed:17392790, PubMed:23950712). Mediates 'Lys-63'-linked polyubiquitination of IFIH1 (PubMed:30193849). Promotes ISGylation of 14-3-3 sigma (SFN), an adapter protein implicated in the regulation of a large spectrum signaling pathway (PubMed:16352599, PubMed:17069755). Mediates estrogen action in various target organs (PubMed:22452784). Mediates the ubiquitination and subsequent proteasomal degradation of ZFHX3 (PubMed:22452784). Plays a role in promoting the restart of stalled replication forks via interaction with the KHDC3L-OOEP scaffold and subsequent ubiquitination of BLM, resulting in the recruitment and retainment of BLM at DNA replication forks (By similarity). Plays an essential role in the antiviral activity of ZAP/ZC3HAV1; an antiviral protein which inhibits the replication of certain viruses. Mechanistically, mediates 'Lys-63'-linked polyubiquitination of ZAP/ZC3HAV1 that is required for its optimal binding to target mRNA (PubMed:28060952, PubMed:28202764). Also mediates the ubiquitination of various substrates implicated in stress granule formation, nonsense-mediated mRNA decay, nucleoside synthesis and mRNA translation and stability (PubMed:36067236). {ECO:0000250|UniProtKB:Q61510, ECO:0000269|PubMed:16352599, ECO:0000269|PubMed:17069755, ECO:0000269|PubMed:17392790, ECO:0000269|PubMed:22452784, ECO:0000269|PubMed:23950712, ECO:0000269|PubMed:29357390, ECO:0000269|PubMed:30193849, ECO:0000269|PubMed:31710640, ECO:0000269|PubMed:33849980, ECO:0000269|PubMed:36045682, ECO:0000269|PubMed:36067236}. |
Q14289 | PTK2B | S839 | ochoa | Protein-tyrosine kinase 2-beta (EC 2.7.10.2) (Calcium-dependent tyrosine kinase) (CADTK) (Calcium-regulated non-receptor proline-rich tyrosine kinase) (Cell adhesion kinase beta) (CAK-beta) (CAKB) (Focal adhesion kinase 2) (FADK 2) (Proline-rich tyrosine kinase 2) (Related adhesion focal tyrosine kinase) (RAFTK) | Non-receptor protein-tyrosine kinase that regulates reorganization of the actin cytoskeleton, cell polarization, cell migration, adhesion, spreading and bone remodeling. Plays a role in the regulation of the humoral immune response, and is required for normal levels of marginal B-cells in the spleen and normal migration of splenic B-cells. Required for normal macrophage polarization and migration towards sites of inflammation. Regulates cytoskeleton rearrangement and cell spreading in T-cells, and contributes to the regulation of T-cell responses. Promotes osteoclastic bone resorption; this requires both PTK2B/PYK2 and SRC. May inhibit differentiation and activity of osteoprogenitor cells. Functions in signaling downstream of integrin and collagen receptors, immune receptors, G-protein coupled receptors (GPCR), cytokine, chemokine and growth factor receptors, and mediates responses to cellular stress. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and of the AKT1 signaling cascade. Promotes activation of NOS3. Regulates production of the cellular messenger cGMP. Promotes activation of the MAP kinase signaling cascade, including activation of MAPK1/ERK2, MAPK3/ERK1 and MAPK8/JNK1. Promotes activation of Rho family GTPases, such as RHOA and RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Acts as a scaffold, binding to both PDPK1 and SRC, thereby allowing SRC to phosphorylate PDPK1 at 'Tyr-9, 'Tyr-373', and 'Tyr-376'. Promotes phosphorylation of NMDA receptors by SRC family members, and thereby contributes to the regulation of NMDA receptor ion channel activity and intracellular Ca(2+) levels. May also regulate potassium ion transport by phosphorylation of potassium channel subunits. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ASAP1, NPHP1, KCNA2 and SHC1. Promotes phosphorylation of ASAP2, RHOU and PXN; this requires both SRC and PTK2/PYK2. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:12771146, ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:15050747, ECO:0000269|PubMed:15166227, ECO:0000269|PubMed:17634955, ECO:0000269|PubMed:18086875, ECO:0000269|PubMed:18339875, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18765415, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:19207108, ECO:0000269|PubMed:19244237, ECO:0000269|PubMed:19428251, ECO:0000269|PubMed:19648005, ECO:0000269|PubMed:19880522, ECO:0000269|PubMed:20001213, ECO:0000269|PubMed:20381867, ECO:0000269|PubMed:20521079, ECO:0000269|PubMed:21357692, ECO:0000269|PubMed:21533080, ECO:0000269|PubMed:7544443, ECO:0000269|PubMed:8670418, ECO:0000269|PubMed:8849729}. |
Q14315 | FLNC | S2256 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14558 | PRPSAP1 | S177 | ochoa | Phosphoribosyl pyrophosphate synthase-associated protein 1 (PRPP synthase-associated protein 1) (39 kDa phosphoribosypyrophosphate synthase-associated protein) (PAP39) | Seems to play a negative regulatory role in 5-phosphoribose 1-diphosphate synthesis. |
Q14566 | MCM6 | S689 | ochoa | DNA replication licensing factor MCM6 (EC 3.6.4.12) (p105MCM) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
Q14999 | CUL7 | S616 | ochoa | Cullin-7 (CUL-7) | Core component of the 3M and Cul7-RING(FBXW8) complexes, which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:12481031, PubMed:12904573, PubMed:21572988, PubMed:21737058, PubMed:24793695, PubMed:35982156). Core component of the 3M complex, a complex required to regulate microtubule dynamics and genome integrity (PubMed:21572988, PubMed:21737058, PubMed:24793695). It is unclear how the 3M complex regulates microtubules, it could act by controlling the level of a microtubule stabilizer (PubMed:24793695). The Cul7-RING(FBXW8) complex alone lacks ubiquitination activity and does not promote polyubiquitination and proteasomal degradation of p53/TP53 (PubMed:16547496, PubMed:17332328, PubMed:35982156). However it mediates recruitment of p53/TP53 for ubiquitination by neddylated CUL1-RBX1 (PubMed:35982156). Interaction with CUL9 is required to inhibit CUL9 activity and ubiquitination of BIRC5 (PubMed:24793696). The Cul7-RING(FBXW8) complex also mediates ubiquitination and consequent degradation of target proteins such as GORASP1, IRS1 and MAP4K1/HPK1 (PubMed:21572988, PubMed:24362026). Ubiquitination of GORASP1 regulates Golgi morphogenesis and dendrite patterning in brain (PubMed:21572988). Mediates ubiquitination and degradation of IRS1 in a mTOR-dependent manner: the Cul7-RING(FBXW8) complex recognizes and binds IRS1 previously phosphorylated by S6 kinase (RPS6KB1 or RPS6KB2) (PubMed:18498745). The Cul7-RING(FBXW8) complex also mediates ubiquitination of MAP4K1/HPK1: recognizes and binds autophosphorylated MAP4K1/HPK1, leading to its degradation, thereby affecting cell proliferation and differentiation (PubMed:24362026). Acts as a regulator in trophoblast cell epithelial-mesenchymal transition and placental development (PubMed:20139075). While the Cul7-RING(FBXW8) and the 3M complexes are associated and involved in common processes, CUL7 and the Cul7-RING(FBXW8) complex may have additional functions. Probably plays a role in the degradation of proteins involved in endothelial proliferation and/or differentiation. {ECO:0000269|PubMed:12481031, ECO:0000269|PubMed:12904573, ECO:0000269|PubMed:16547496, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:18498745, ECO:0000269|PubMed:20139075, ECO:0000269|PubMed:21572988, ECO:0000269|PubMed:21737058, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:24793695, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:35982156}. |
Q15116 | PDCD1 | S261 | psp | Programmed cell death protein 1 (Protein PD-1) (hPD-1) (CD antigen CD279) | Inhibitory receptor on antigen activated T-cells that plays a critical role in induction and maintenance of immune tolerance to self (PubMed:21276005, PubMed:37208329). Delivers inhibitory signals upon binding to ligands CD274/PDCD1L1 and CD273/PDCD1LG2 (PubMed:21276005). Following T-cell receptor (TCR) engagement, PDCD1 associates with CD3-TCR in the immunological synapse and directly inhibits T-cell activation (By similarity). Suppresses T-cell activation through the recruitment of PTPN11/SHP-2: following ligand-binding, PDCD1 is phosphorylated within the ITSM motif, leading to the recruitment of the protein tyrosine phosphatase PTPN11/SHP-2 that mediates dephosphorylation of key TCR proximal signaling molecules, such as ZAP70, PRKCQ/PKCtheta and CD247/CD3zeta (By similarity). {ECO:0000250|UniProtKB:Q02242, ECO:0000269|PubMed:21276005, ECO:0000269|PubMed:37208329}.; FUNCTION: The PDCD1-mediated inhibitory pathway is exploited by tumors to attenuate anti-tumor immunity and escape destruction by the immune system, thereby facilitating tumor survival (PubMed:28951311). The interaction with CD274/PDCD1L1 inhibits cytotoxic T lymphocytes (CTLs) effector function (PubMed:28951311). The blockage of the PDCD1-mediated pathway results in the reversal of the exhausted T-cell phenotype and the normalization of the anti-tumor response, providing a rationale for cancer immunotherapy (PubMed:22658127, PubMed:25034862, PubMed:25399552). {ECO:0000269|PubMed:22658127, ECO:0000269|PubMed:25034862, ECO:0000269|PubMed:25399552, ECO:0000303|PubMed:28951311}. |
Q15181 | PPA1 | S30 | ochoa | Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase) | None |
Q15596 | NCOA2 | S699 | ochoa | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q15650 | TRIP4 | S387 | ochoa | Activating signal cointegrator 1 (ASC-1) (Thyroid receptor-interacting protein 4) (TR-interacting protein 4) (TRIP-4) | Transcription coactivator which associates with nuclear receptors, transcriptional coactivators including EP300, CREBBP and NCOA1, and basal transcription factors like TBP and TFIIA to facilitate nuclear receptors-mediated transcription (PubMed:10454579, PubMed:25219498). May thereby play an important role in establishing distinct coactivator complexes under different cellular conditions (PubMed:10454579, PubMed:25219498). Plays a role in thyroid hormone receptor and estrogen receptor transactivation (PubMed:10454579, PubMed:25219498). Also involved in androgen receptor transactivation (By similarity). Plays a pivotal role in the transactivation of NF-kappa-B, SRF and AP1 (PubMed:12077347). Acts as a mediator of transrepression between nuclear receptor and either AP1 or NF-kappa-B (PubMed:12077347). May play a role in the development of neuromuscular junction (PubMed:26924529). May play a role in late myogenic differentiation (By similarity). Also functions as part of the RQC trigger (RQT) complex that activates the ribosome quality control (RQC) pathway, a pathway that degrades nascent peptide chains during problematic translation (PubMed:32099016, PubMed:32579943, PubMed:36302773). {ECO:0000250|UniProtKB:Q9QXN3, ECO:0000269|PubMed:10454579, ECO:0000269|PubMed:12077347, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:26924529, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:36302773}. |
Q15652 | JMJD1C | S2047 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15911 | ZFHX3 | S3677 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q16531 | DDB1 | S720 | ochoa | DNA damage-binding protein 1 (DDB p127 subunit) (DNA damage-binding protein a) (DDBa) (Damage-specific DNA-binding protein 1) (HBV X-associated protein 1) (XAP-1) (UV-damaged DNA-binding factor) (UV-damaged DNA-binding protein 1) (UV-DDB 1) (XPE-binding factor) (XPE-BF) (Xeroderma pigmentosum group E-complementing protein) (XPCe) | Protein, which is both involved in DNA repair and protein ubiquitination, as part of the UV-DDB complex and DCX (DDB1-CUL4-X-box) complexes, respectively (PubMed:14739464, PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16407252, PubMed:16482215, PubMed:16940174, PubMed:17079684). Core component of the UV-DDB complex (UV-damaged DNA-binding protein complex), a complex that recognizes UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). Also functions as a component of numerous distinct DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355, PubMed:28886238). The functional specificity of the DCX E3 ubiquitin-protein ligase complex is determined by the variable substrate recognition component recruited by DDB1 (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355). DCX(DDB2) (also known as DDB1-CUL4-ROC1, CUL4-DDB-ROC1 and CUL4-DDB-RBX1) may ubiquitinate histone H2A, histone H3 and histone H4 at sites of UV-induced DNA damage (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). The ubiquitination of histones may facilitate their removal from the nucleosome and promote subsequent DNA repair (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). DCX(DDB2) also ubiquitinates XPC, which may enhance DNA-binding by XPC and promote NER (PubMed:15882621). DCX(DTL) plays a role in PCNA-dependent polyubiquitination of CDT1 and MDM2-dependent ubiquitination of TP53 in response to radiation-induced DNA damage and during DNA replication (PubMed:17041588). DCX(ERCC8) (the CSA complex) plays a role in transcription-coupled repair (TCR) (PubMed:12732143, PubMed:32355176, PubMed:38316879). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). DDB1-mediated CRY1 degradation promotes FOXO1 protein stability and FOXO1-mediated gluconeogenesis in the liver (By similarity). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). Maternal factor required for proper zygotic genome activation and genome reprogramming (By similarity). {ECO:0000250|UniProtKB:Q3U1J4, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:14739464, ECO:0000269|PubMed:15448697, ECO:0000269|PubMed:15882621, ECO:0000269|PubMed:16260596, ECO:0000269|PubMed:16407242, ECO:0000269|PubMed:16407252, ECO:0000269|PubMed:16473935, ECO:0000269|PubMed:16482215, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:16940174, ECO:0000269|PubMed:17041588, ECO:0000269|PubMed:17079684, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18381890, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19966799, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:25043012, ECO:0000269|PubMed:25108355, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:28886238, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:38316879}. |
Q16643 | DBN1 | S312 | ochoa | Drebrin (Developmentally-regulated brain protein) | Actin cytoskeleton-organizing protein that plays a role in the formation of cell projections (PubMed:20215400). Required for actin polymerization at immunological synapses (IS) and for the recruitment of the chemokine receptor CXCR4 to IS (PubMed:20215400). Plays a role in dendritic spine morphogenesis and organization, including the localization of the dopamine receptor DRD1 to the dendritic spines (By similarity). Involved in memory-related synaptic plasticity in the hippocampus (By similarity). {ECO:0000250|UniProtKB:Q9QXS6, ECO:0000269|PubMed:20215400}. |
Q17R98 | ZNF827 | S689 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q1MSJ5 | CSPP1 | S459 | ochoa | Centrosome and spindle pole-associated protein 1 | May play a role in cell-cycle-dependent microtubule organization. {ECO:0000269|PubMed:16826565}. |
Q2TB10 | ZNF800 | S419 | ochoa | Zinc finger protein 800 | May be involved in transcriptional regulation. |
Q3T8J9 | GON4L | S1902 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q495A1 | TIGIT | S190 | ochoa | T-cell immunoreceptor with Ig and ITIM domains (V-set and immunoglobulin domain-containing protein 9) (V-set and transmembrane domain-containing protein 3) | Inhibitory receptor that plays a role in the modulation of immune responses. Suppresses T-cell activation by promoting the generation of mature immunoregulatory dendritic cells (PubMed:19011627). Upon binding to its ligands PVR/CD155 or NECTIN2/CD112, which are expressed on antigen-presenting cells, sends inhibitory signals to the T-cell or NK cell. Mechanistically, interaction with ligand leads to phosphorylation of the cytoplasmic tail by Src family tyrosine kinases such as FYN or LCK, allowing subsequent binding to adapter GRB2 and SHIP1/INPP5D. In turn, inhibits PI3K and MAPK signaling cascades (PubMed:23154388). In addition, associates with beta-arrestin-2/ARRB2 to recruit SHIP1/INPP5D that suppresses autoubiquitination of TRAF6 and subsequently inhibits NF-kappa-B signaling pathway (PubMed:24817116). Also acts as a receptor for NECTIN4 to inhibit NK cell cytotoxicity (PubMed:32503945). {ECO:0000269|PubMed:19011627, ECO:0000269|PubMed:23154388, ECO:0000269|PubMed:24817116, ECO:0000269|PubMed:32503945}. |
Q4G0A6 | MINDY4 | S524 | ochoa | Probable ubiquitin carboxyl-terminal hydrolase MINDY-4 (EC 3.4.19.12) (Probable deubiquitinating enzyme MINDY-4) | Probable hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins. {ECO:0000250|UniProtKB:Q8NBR6}. |
Q4V328 | GRIPAP1 | S692 | ochoa | GRIP1-associated protein 1 (GRASP-1) [Cleaved into: GRASP-1 C-terminal chain (30kDa C-terminus form)] | Regulates the endosomal recycling back to the neuronal plasma membrane, possibly by connecting early and late recycling endosomal domains and promoting segregation of recycling endosomes from early endosomal membranes. Involved in the localization of recycling endosomes to dendritic spines, thereby playing a role in the maintenance of dendritic spine morphology. Required for the activity-induced AMPA receptor recycling to dendrite membranes and for long-term potentiation and synaptic plasticity (By similarity). {ECO:0000250|UniProtKB:Q9JHZ4}.; FUNCTION: [GRASP-1 C-terminal chain]: Functions as a scaffold protein to facilitate MAP3K1/MEKK1-mediated activation of the JNK1 kinase by phosphorylation, possibly by bringing MAP3K1/MEKK1 and JNK1 in close proximity. {ECO:0000269|PubMed:17761173}. |
Q53GI3 | ZNF394 | S258 | ochoa | Zinc finger protein 394 (Zinc finger protein with KRAB and SCAN domains 14) | May be involved in transcriptional regulation. |
Q5D1E8 | ZC3H12A | S386 | ochoa | Endoribonuclease ZC3H12A (EC 3.1.-.-) (Monocyte chemotactic protein-induced protein 1) (MCP-induced protein 1) (MCPIP-1) (Regnase-1) (Reg1) (Zinc finger CCCH domain-containing protein 12A) | Endoribonuclease involved in various biological functions such as cellular inflammatory response and immune homeostasis, glial differentiation of neuroprogenitor cells, cell death of cardiomyocytes, adipogenesis and angiogenesis. Functions as an endoribonuclease involved in mRNA decay (PubMed:19909337). Modulates the inflammatory response by promoting the degradation of a set of translationally active cytokine-induced inflammation-related mRNAs, such as IL6 and IL12B, during the early phase of inflammation (PubMed:26320658). Prevents aberrant T-cell-mediated immune reaction by degradation of multiple mRNAs controlling T-cell activation, such as those encoding cytokines (IL6 and IL2), cell surface receptors (ICOS, TNFRSF4 and TNFR2) and transcription factor (REL) (By similarity). Inhibits cooperatively with ZC3H12A the differentiation of helper T cells Th17 in lungs. They repress target mRNA encoding the Th17 cell-promoting factors IL6, ICOS, REL, IRF4, NFKBID and NFKBIZ. The cooperation requires RNA-binding by RC3H1 and the nuclease activity of ZC3H12A (By similarity). Together with RC3H1, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Self regulates by destabilizing its own mRNA (By similarity). Cleaves mRNA harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-dependent manner (PubMed:19909337, PubMed:22561375, PubMed:26134560, PubMed:26320658). Plays a role in the inhibition of microRNAs (miRNAs) biogenesis (PubMed:22055188). Cleaves the terminal loop of a set of precursor miRNAs (pre-miRNAs) important for the regulation of the inflammatory response leading to their degradation, and thus preventing the biosynthesis of mature miRNAs (PubMed:22055188). Also plays a role in promoting angiogenesis in response to inflammatory cytokines by inhibiting the production of antiangiogenic microRNAs via its anti-dicer RNase activity (PubMed:24048733). Affects the overall ubiquitination of cellular proteins (By similarity). Positively regulates deubiquitinase activity promoting the cleavage at 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains on TNF receptor-associated factors (TRAFs), preventing JNK and NF-kappa-B signaling pathway activation, and hence negatively regulating macrophage-mediated inflammatory response and immune homeostasis (By similarity). Also induces deubiquitination of the transcription factor HIF1A, probably leading to its stabilization and nuclear import, thereby positively regulating the expression of proangiogenic HIF1A-targeted genes (PubMed:24048733). Involved in a TANK-dependent negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Prevents stress granule (SGs) formation and promotes macrophage apoptosis under stress conditions, including arsenite-induced oxidative stress, heat shock and energy deprivation (By similarity). Plays a role in the regulation of macrophage polarization; promotes IL4-induced polarization of macrophages M1 into anti-inflammatory M2 state (By similarity). May also act as a transcription factor that regulates the expression of multiple genes involved in inflammatory response, angiogenesis, adipogenesis and apoptosis (PubMed:16574901, PubMed:18364357). Functions as a positive regulator of glial differentiation of neuroprogenitor cells through an amyloid precursor protein (APP)-dependent signaling pathway (PubMed:19185603). Attenuates septic myocardial contractile dysfunction in response to lipopolysaccharide (LPS) by reducing I-kappa-B-kinase (IKK)-mediated NF-kappa-B activation, and hence myocardial pro-inflammatory cytokine production (By similarity). {ECO:0000250|UniProtKB:Q5D1E7, ECO:0000269|PubMed:16574901, ECO:0000269|PubMed:18364357, ECO:0000269|PubMed:19185603, ECO:0000269|PubMed:19909337, ECO:0000269|PubMed:22055188, ECO:0000269|PubMed:22561375, ECO:0000269|PubMed:24048733, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:26134560, ECO:0000269|PubMed:26320658}.; FUNCTION: (Microbial infection) Binds to Japanese encephalitis virus (JEV) and Dengue virus (DEN) RNAs. {ECO:0000269|PubMed:23355615}.; FUNCTION: (Microbial infection) Exhibits antiviral activity against HIV-1 in lymphocytes by decreasing the abundance of HIV-1 viral RNA species. {ECO:0000269|PubMed:24191027}. |
Q5JSZ5 | PRRC2B | S907 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTV8 | TOR1AIP1 | S79 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5JVL4 | EFHC1 | S524 | ochoa | EF-hand domain-containing protein 1 (Myoclonin-1) | Microtubule inner protein (MIP) part of the dynein-decorated doublet microtubules (DMTs) in cilia axoneme, which is required for motile cilia beating (PubMed:36191189). Microtubule-associated protein which regulates cell division and neuronal migration during cortical development (PubMed:19734894, PubMed:28370826). Necessary for radial and tangential cell migration during brain development, possibly acting as a regulator of cell morphology and process formation during migration (PubMed:22926142). May enhance calcium influx through CACNA1E and stimulate programmed cell death (PubMed:15258581, PubMed:19734894, PubMed:22926142, PubMed:28370826). {ECO:0000269|PubMed:15258581, ECO:0000269|PubMed:19734894, ECO:0000269|PubMed:22926142, ECO:0000269|PubMed:28370826, ECO:0000269|PubMed:36191189}. |
Q5SYE7 | NHSL1 | S1233 | ochoa | NHS-like protein 1 | None |
Q5T1R4 | HIVEP3 | S682 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T481 | RBM20 | S1120 | ochoa | RNA-binding protein 20 (RNA-binding motif protein 20) | RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}. |
Q5T5P2 | KIAA1217 | S1551 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5THJ4 | VPS13D | S2692 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5THK1 | PRR14L | S1994 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5VT06 | CEP350 | S1653 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S2341 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VWQ0 | RSBN1 | S81 | ochoa | Lysine-specific demethylase 9 (KDM9) (EC 1.14.11.-) (Round spermatid basic protein 1) | Histone demethylase that specifically demethylates dimethylated 'Lys-20' of histone H4 (H4K20me2), thereby modulating chromosome architecture. {ECO:0000250|UniProtKB:Q80T69}. |
Q5VWQ8 | DAB2IP | S702 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q676U5 | ATG16L1 | S255 | ochoa | Autophagy-related protein 16-1 (APG16-like 1) | Plays an essential role in both canonical and non-canonical autophagy: interacts with ATG12-ATG5 to mediate the lipidation to ATG8 family proteins (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAPL1, GABARAPL2 and GABARAP) (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576, PubMed:29317426, PubMed:30778222, PubMed:33909989). Acts as a molecular hub, coordinating autophagy pathways via distinct domains that support either canonical or non-canonical signaling (PubMed:29317426, PubMed:30778222). During canonical autophagy, interacts with ATG12-ATG5 to mediate the conjugation of phosphatidylethanolamine (PE) to ATG8 proteins, to produce a membrane-bound activated form of ATG8 (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). Thereby, controls the elongation of the nascent autophagosomal membrane (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). As part of the ATG8 conjugation system with ATG5 and ATG12, required for recruitment of LRRK2 to stressed lysosomes and induction of LRRK2 kinase activity in response to lysosomal stress (By similarity). Also involved in non-canonical autophagy, a parallel pathway involving conjugation of ATG8 proteins to single membranes at endolysosomal compartments, probably by catalyzing conjugation of phosphatidylserine (PS) to ATG8 (PubMed:33909989). Non-canonical autophagy plays a key role in epithelial cells to limit lethal infection by influenza A (IAV) virus (By similarity). Regulates mitochondrial antiviral signaling (MAVS)-dependent type I interferon (IFN-I) production (PubMed:22749352, PubMed:25645662). Negatively regulates NOD1- and NOD2-driven inflammatory cytokine response (PubMed:24238340). Instead, promotes an autophagy-dependent antibacterial pathway together with NOD1 or NOD2 (PubMed:20637199). Plays a role in regulating morphology and function of Paneth cell (PubMed:18849966). {ECO:0000250|UniProtKB:Q8C0J2, ECO:0000269|PubMed:18849966, ECO:0000269|PubMed:20637199, ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:23376921, ECO:0000269|PubMed:23392225, ECO:0000269|PubMed:24238340, ECO:0000269|PubMed:24553140, ECO:0000269|PubMed:24954904, ECO:0000269|PubMed:25645662, ECO:0000269|PubMed:27273576, ECO:0000269|PubMed:29317426, ECO:0000269|PubMed:30778222, ECO:0000269|PubMed:33909989}. |
Q68DQ2 | CRYBG3 | S2104 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q6IN85 | PPP4R3A | S741 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 3A (SMEK homolog 1) | Regulatory subunit of serine/threonine-protein phosphatase 4. May regulate the activity of PPP4C at centrosomal microtubule organizing centers. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA DSB repair. {ECO:0000269|PubMed:18614045}. |
Q6JBY9 | RCSD1 | S284 | ochoa | CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) | Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}. |
Q6N021 | TET2 | S334 | ochoa | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6NVY1 | HIBCH | S234 | ochoa | 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial (EC 3.1.2.4) (3-hydroxyisobutyryl-coenzyme A hydrolase) (HIB-CoA hydrolase) (HIBYL-CoA-H) | Hydrolyzes 3-hydroxyisobutyryl-CoA (HIBYL-CoA), a saline catabolite. Has high activity toward isobutyryl-CoA. Could be an isobutyryl-CoA dehydrogenase that functions in valine catabolism. Also hydrolyzes 3-hydroxypropanoyl-CoA. {ECO:0000269|PubMed:8824301}. |
Q6P4F7 | ARHGAP11A | S559 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6PIY7 | TENT2 | S95 | ochoa | Poly(A) RNA polymerase GLD2 (hGLD-2) (EC 2.7.7.19) (PAP-associated domain-containing protein 4) (Terminal nucleotidyltransferase 2) (Terminal uridylyltransferase 2) (TUTase 2) | Cytoplasmic poly(A) RNA polymerase that adds successive AMP monomers to the 3'-end of specific RNAs, forming a poly(A) tail (PubMed:15070731, PubMed:31792053). In contrast to the canonical nuclear poly(A) RNA polymerase, it only adds poly(A) to selected cytoplasmic mRNAs (PubMed:15070731). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Adds a single nucleotide to the 3' end of specific miRNAs, monoadenylation stabilizes and prolongs the activity of some but not all miRNAs (PubMed:23200856, PubMed:31792053). {ECO:0000269|PubMed:15070731, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:23200856, ECO:0000269|PubMed:31792053}. |
Q6T4R5 | NHS | S1410 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UB98 | ANKRD12 | S1343 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UN15 | FIP1L1 | S259 | ochoa | Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}. |
Q6WKZ4 | RAB11FIP1 | S1154 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6ZSS7 | MFSD6 | S644 | ochoa | Major facilitator superfamily domain-containing protein 6 (Macrophage MHC class I receptor 2 homolog) | None |
Q6ZUT6 | CCDC9B | S448 | ochoa | Coiled-coil domain-containing protein 9B | None |
Q6ZUT9 | DENND5B | S1068 | ochoa | DENN domain-containing protein 5B (Rab6IP1-like protein) | Guanine nucleotide exchange factor (GEF) which may activate RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}. |
Q6ZVD8 | PHLPP2 | S1182 | ochoa | PH domain leucine-rich repeat-containing protein phosphatase 2 (EC 3.1.3.16) (PH domain leucine-rich repeat-containing protein phosphatase-like) (PHLPP-like) | Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT1, 'Ser-660' of PRKCB isoform beta-II and 'Ser-657' of PRKCA. Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and decreases cell proliferation. Also controls the phosphorylation of AKT3. Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation. Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). {ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:20513427, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}. |
Q76FK4 | NOL8 | S723 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q76NI1 | KNDC1 | S1013 | ochoa | Kinase non-catalytic C-lobe domain-containing protein 1 (KIND domain-containing protein 1) (Cerebral protein 9) (Protein very KIND) (v-KIND) (Ras-GEF domain-containing family member 2) | RAS-Guanine nucleotide exchange factor (GEF) that controls the negative regulation of neuronal dendrite growth by mediating a signaling pathway linking RAS and MAP2 (By similarity). May be involved in cellular senescence (PubMed:24788352). {ECO:0000250|UniProtKB:Q0KK55, ECO:0000269|PubMed:24788352}. |
Q7L2J0 | MEPCE | S217 | ochoa | 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) | S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}. |
Q7LBC6 | KDM3B | S1253 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q7Z2Z1 | TICRR | S1750 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z3F1 | GPR155 | S841 | ochoa | Lysosomal cholesterol signaling protein (LYCHOS) (G-protein coupled receptor PGR22) | Cholesterol-binding protein that acts as a regulator of mTORC1 signaling pathway (PubMed:36007018). Acts as a sensor of cholesterol to signal cholesterol sufficiency to mTORC1: in presence of cholesterol, binds cholesterol, leading to disruption of the interaction between the GATOR1 and KICSTOR complexes and promotion of mTORC1 signaling (PubMed:36007018, PubMed:39358511). Upon cholesterol starvation, GPR155/LYCHOS is unable to perturb the association between GATOR1 and KICSTOR, leading to mTORC1 signaling inhibition (PubMed:36007018). Binds indole-3-acetic acid and may play a role in tryptophan metabolism (PubMed:39358511). {ECO:0000269|PubMed:36007018, ECO:0000269|PubMed:39358511}. |
Q7Z478 | DHX29 | S192 | ochoa | ATP-dependent RNA helicase DHX29 (EC 3.6.4.13) (DEAH box protein 29) (Nucleic acid helicase DDXx) | ATP-binding RNA helicase involved in translation initiation. Part of the 43S pre-initiation complex that is required for efficient initiation on mRNAs of higher eukaryotes with structured 5'-UTRs by promoting efficient NTPase-dependent 48S complex formation. Specifically binds to the 40S ribosome near the mRNA entrance. Does not possess a processive helicase activity. {ECO:0000255|HAMAP-Rule:MF_03068, ECO:0000269|PubMed:19109895, ECO:0000269|PubMed:23706745}. |
Q7Z569 | BRAP | S97 | ochoa | BRCA1-associated protein (EC 2.3.2.27) (BRAP2) (Impedes mitogenic signal propagation) (IMP) (RING finger protein 52) (RING-type E3 ubiquitin transferase BRAP2) (Renal carcinoma antigen NY-REN-63) | Negatively regulates MAP kinase activation by limiting the formation of Raf/MEK complexes probably by inactivation of the KSR1 scaffold protein. Also acts as a Ras responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination resulting in the release of inhibition of Raf/MEK complex formation. May also act as a cytoplasmic retention protein with a role in regulating nuclear transport. {ECO:0000269|PubMed:14724641, ECO:0000303|PubMed:10777491}. |
Q7Z5J4 | RAI1 | S916 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z6K3 | PTAR1 | S45 | ochoa | Protein prenyltransferase alpha subunit repeat-containing protein 1 | None |
Q86TU7 | SETD3 | S38 | ochoa | Actin-histidine N-methyltransferase (EC 2.1.1.85) (Protein-L-histidine N-tele-methyltransferase) (SET domain-containing protein 3) (hSETD3) | Protein-histidine N-methyltransferase that specifically mediates 3-methylhistidine (tele-methylhistidine) methylation of actin at 'His-73' (PubMed:30526847, PubMed:30626964, PubMed:30785395, PubMed:31388018, PubMed:31993215). Histidine methylation of actin is required for smooth muscle contraction of the laboring uterus during delivery (PubMed:30626964). Does not have protein-lysine N-methyltransferase activity and probably only catalyzes histidine methylation of actin (PubMed:30626964, PubMed:30785395, PubMed:31388018). {ECO:0000269|PubMed:30526847, ECO:0000269|PubMed:30626964, ECO:0000269|PubMed:30785395, ECO:0000269|PubMed:31388018, ECO:0000269|PubMed:31993215}. |
Q86U86 | PBRM1 | S178 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86VG3 | IFTAP | S193 | ochoa | Intraflagellar transport-associated protein (Protein HEPIS) | Seems to play a role in ciliary BBSome localization, maybe through interaction with IFT-A complex. {ECO:0000269|PubMed:30476139}. |
Q86VM9 | ZC3H18 | S487 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q86VP1 | TAX1BP1 | S124 | ochoa | Tax1-binding protein 1 (TRAF6-binding protein) | Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}. |
Q86VP1 | TAX1BP1 | S609 | ochoa | Tax1-binding protein 1 (TRAF6-binding protein) | Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}. |
Q86W11 | ZSCAN30 | S162 | ochoa | Zinc finger and SCAN domain-containing protein 30 (ZNF-WYM) (Zinc finger protein 397 opposite strand) (Zinc finger protein 397OS) | May be involved in transcriptional regulation. |
Q86W56 | PARG | S22 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86WG5 | SBF2 | S1687 | ochoa | Myotubularin-related protein 13 (Inactive phosphatidylinositol 3-phosphatase 13) (SET-binding factor 2) | Guanine nucleotide exchange factor (GEF) which activates RAB21 and possibly RAB28 (PubMed:20937701, PubMed:25648148). Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form (PubMed:20937701, PubMed:25648148). In response to starvation-induced autophagy, activates RAB21 which in turn binds to and regulates SNARE protein VAMP8 endolysosomal transport required for SNARE-mediated autophagosome-lysosome fusion (PubMed:25648148). Acts as an adapter for the phosphatase MTMR2 (By similarity). Increases MTMR2 catalytic activity towards phosphatidylinositol 3,5-bisphosphate and to a lesser extent towards phosphatidylinositol 3-phosphate (By similarity). {ECO:0000250|UniProtKB:E9PXF8, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:25648148}. |
Q86WH2 | RASSF3 | S137 | ochoa | Ras association domain-containing protein 3 | None |
Q86YS6 | RAB43 | S193 | ochoa | Ras-related protein Rab-43 (Ras-related protein Rab-41) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. The low intrinsic GTPase activity of RAB43 is activated by USP6NL. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for the structural integrity of the Golgi complex. Plays a role in the maturation of phagosomes that engulf pathogens, such as S.aureus and M.tuberculosis. {ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057, ECO:0000269|PubMed:18664496, ECO:0000269|PubMed:21255211}. |
Q8IVL0 | NAV3 | S654 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IW50 | FAM219A | S72 | ochoa | Protein FAM219A | None |
Q8IWT3 | CUL9 | S976 | ochoa | Cullin-9 (CUL-9) (UbcH7-associated protein 1) (p53-associated parkin-like cytoplasmic protein) | Core component of a Cul9-RING ubiquitin-protein ligase complex composed of CUL9 and RBX1 (PubMed:38605244). The CUL9-RBX1 complex mediates ubiquitination and subsequent degradation of BIRC5 and is required to maintain microtubule dynamics and genome integrity. Acts downstream of the 3M complex, which inhibits the ubiquitination of BIRC5 (PubMed:24793696). The CUL9-RBX1 complex also mediates mono-ubiquitination of p53/TP53 (PubMed:38605244). Acts as a cytoplasmic anchor protein in p53/TP53-associated protein complex. Regulates the subcellular localization of p53/TP53 and its subsequent function (PubMed:12526791, PubMed:17332328). Ubiquitinates apurinic/apyrimidinic endodeoxyribonuclease APEX2 (PubMed:38605244). Ubiquitination by the CUL9-RBX1 complex is predominantly mediated by E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2D2 (PubMed:38605244). {ECO:0000269|PubMed:12526791, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:38605244}. |
Q8IWZ8 | SUGP1 | S61 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8IY92 | SLX4 | S169 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IZN3 | ZDHHC14 | S446 | ochoa | Palmitoyltransferase ZDHHC14 (EC 2.3.1.225) (DHHC domain-containing cysteine-rich protein 14) (DHHC-14) (NEW1 domain-containing protein) (NEW1CP) (Zinc finger DHHC domain-containing protein 14) | Palmitoyltransferase that could catalyze the addition of palmitate onto various protein substrates. May have a palmitoyltransferase activity toward the beta-2 adrenergic receptor/ADRB2 and thereby regulate G protein-coupled receptor signaling (PubMed:27481942). May play a role in cell differentiation and apoptosis (PubMed:21151021, PubMed:24407904). {ECO:0000269|PubMed:21151021, ECO:0000269|PubMed:24407904, ECO:0000269|PubMed:27481942}. |
Q8N0Y2 | ZNF444 | S104 | ochoa | Zinc finger protein 444 (Endothelial zinc finger protein 2) (EZF-2) (Zinc finger and SCAN domain-containing protein 17) | Transcriptional regulator. Binds to the 5'-flanking critical region of the SCARF1 promoter. |
Q8N3Z6 | ZCCHC7 | S482 | ochoa | Zinc finger CCHC domain-containing protein 7 (TRAMP-like complex RNA-binding factor ZCCHC7) | None |
Q8N8K9 | KIAA1958 | S84 | ochoa | Uncharacterized protein KIAA1958 | None |
Q8NAP3 | ZBTB38 | S309 | ochoa | Zinc finger and BTB domain-containing protein 38 | Transcriptional regulator with bimodal DNA-binding specificity. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to E-box elements (5'-CACGTG-3'). Can also bind specifically to a single methyl-CpG pair. Represses transcription in a methyl-CpG-dependent manner (PubMed:16354688). Plays an important role in regulating DNA replication and common fragile sites (CFS) stability in a RBBP6- and MCM10-dependent manner; represses expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). Acts as a transcriptional activator. May be involved in the differentiation and/or survival of late postmitotic neurons (By similarity). {ECO:0000250|UniProtKB:Q5EXX3, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:24726359}. |
Q8NB15 | ZNF511 | S214 | ochoa | Zinc finger protein 511 | May be involved in transcriptional regulation. {ECO:0000305}. |
Q8NB16 | MLKL | S125 | ochoa | Mixed lineage kinase domain-like protein (hMLKL) | Pseudokinase that plays a key role in TNF-induced necroptosis, a programmed cell death process (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). Does not have protein kinase activity (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). Activated following phosphorylation by RIPK3, leading to homotrimerization, localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). In addition to TNF-induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: following activation by ZBP1, MLKL is phosphorylated by RIPK3 in the nucleus, triggering disruption of the nuclear envelope and leakage of cellular DNA into the cytosol.following ZBP1 activation, which senses double-stranded Z-RNA structures, nuclear RIPK3 catalyzes phosphorylation and activation of MLKL, promoting disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (By similarity). Binds to highly phosphorylated inositol phosphates such as inositolhexakisphosphate (InsP6) which is essential for its necroptotic function (PubMed:29883610). {ECO:0000250|UniProtKB:Q9D2Y4, ECO:0000269|PubMed:22265413, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:22421439, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:29883610}. |
Q8NC44 | RETREG2 | S403 | ochoa | Reticulophagy regulator 2 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Required for collagen quality control in a LIR motif-independent manner (By similarity). {ECO:0000250|UniProtKB:Q6NS82, ECO:0000269|PubMed:34338405}. |
Q8NC74 | RBBP8NL | S196 | ochoa | RBBP8 N-terminal-like protein | None |
Q8NCF5 | NFATC2IP | S168 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NFC6 | BOD1L1 | S2475 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8TAQ2 | SMARCC2 | S347 | ochoa | SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q8TC90 | CCER1 | S226 | ochoa | Coiled-coil domain-containing glutamate-rich protein 1 | Regulator of histone epigenetic modifications and chromatin compaction into the sperm head, required for histone-to-protamine (HTP) transition. HTP is a key event in which somatic histones are first replaced by testis-specific histone variants, then transition proteins (TNPs) are incorporated into the spermatid nucleus, and finally protamines (PRMs) replace the TNPs to promote chromatin condensation. {ECO:0000250|UniProtKB:Q9CQL2}. |
Q8TCD5 | NT5C | S100 | ochoa | 5'(3')-deoxyribonucleotidase, cytosolic type (EC 3.1.3.-) (Cytosolic 5',3'-pyrimidine nucleotidase) (Deoxy-5'-nucleotidase 1) (dNT-1) | Dephosphorylates the 5' and 2'(3')-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP. |
Q8TCP9 | FAM200A | S46 | ochoa | Protein FAM200A | None |
Q8TDB6 | DTX3L | S539 | ochoa | E3 ubiquitin-protein ligase DTX3L (EC 2.3.2.27) (B-lymphoma- and BAL-associated protein) (Protein deltex-3-like) (RING-type E3 ubiquitin transferase DTX3L) (Rhysin-2) (Rhysin2) | E3 ubiquitin-protein ligase which, in association with ADP-ribosyltransferase PARP9, plays a role in DNA damage repair and in interferon-mediated antiviral responses (PubMed:12670957, PubMed:19818714, PubMed:23230272, PubMed:26479788). Monoubiquitinates several histones, including histone H2A, H2B, H3 and H4 (PubMed:28525742). In response to DNA damage, mediates monoubiquitination of 'Lys-91' of histone H4 (H4K91ub1) (PubMed:19818714). The exact role of H4K91ub1 in DNA damage response is still unclear but it may function as a licensing signal for additional histone H4 post-translational modifications such as H4 'Lys-20' methylation (H4K20me) (PubMed:19818714). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). By monoubiquitinating histone H2B H2BC9/H2BJ and thereby promoting chromatin remodeling, positively regulates STAT1-dependent interferon-stimulated gene transcription and thus STAT1-mediated control of viral replication (PubMed:26479788). Independently of its catalytic activity, promotes the sorting of chemokine receptor CXCR4 from early endosome to lysosome following CXCL12 stimulation by reducing E3 ligase ITCH activity and thus ITCH-mediated ubiquitination of endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:24790097). In addition, required for the recruitment of HGS and STAM to early endosomes (PubMed:24790097). In association with PARP9, plays a role in antiviral responses by mediating 'Lys-48'-linked ubiquitination of encephalomyocarditis virus (EMCV) and human rhinovirus (HRV) C3 proteases and thus promoting their proteasomal-mediated degradation (PubMed:26479788). {ECO:0000269|PubMed:12670957, ECO:0000269|PubMed:19818714, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28525742}. |
Q8TDN4 | CABLES1 | S313 | ochoa|psp | CDK5 and ABL1 enzyme substrate 1 (Interactor with CDK3 1) (Ik3-1) | Cyclin-dependent kinase binding protein. Enhances cyclin-dependent kinase tyrosine phosphorylation by nonreceptor tyrosine kinases, such as that of CDK5 by activated ABL1, which leads to increased CDK5 activity and is critical for neuronal development, and that of CDK2 by WEE1, which leads to decreased CDK2 activity and growth inhibition. Positively affects neuronal outgrowth. Plays a role as a regulator for p53/p73-induced cell death (By similarity). {ECO:0000250}. |
Q8TDY2 | RB1CC1 | S266 | ochoa | RB1-inducible coiled-coil protein 1 (FAK family kinase-interacting protein of 200 kDa) (FIP200) | Involved in autophagy (PubMed:21775823). Regulates early events but also late events of autophagosome formation through direct interaction with Atg16L1 (PubMed:23392225). Required for the formation of the autophagosome-like double-membrane structure that surrounds the Salmonella-containing vacuole (SCV) during S.typhimurium infection and subsequent xenophagy (By similarity). Involved in repair of DNA damage caused by ionizing radiation, which subsequently improves cell survival by decreasing apoptosis (By similarity). Inhibits PTK2/FAK1 and PTK2B/PYK2 kinase activity, affecting their downstream signaling pathways (PubMed:10769033, PubMed:12221124). Plays a role as a modulator of TGF-beta-signaling by restricting substrate specificity of RNF111 (By similarity). Functions as a DNA-binding transcription factor (PubMed:12095676). Is a potent regulator of the RB1 pathway through induction of RB1 expression (PubMed:14533007). Plays a crucial role in muscular differentiation (PubMed:12163359). Plays an indispensable role in fetal hematopoiesis and in the regulation of neuronal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9ESK9, ECO:0000269|PubMed:10769033, ECO:0000269|PubMed:12095676, ECO:0000269|PubMed:12163359, ECO:0000269|PubMed:12221124, ECO:0000269|PubMed:14533007, ECO:0000269|PubMed:21775823, ECO:0000269|PubMed:23392225}. |
Q8TE77 | SSH3 | S87 | ochoa | Protein phosphatase Slingshot homolog 3 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 3) (SSH-3L) (hSSH-3L) | Protein phosphatase which may play a role in the regulation of actin filament dynamics. Can dephosphorylate and activate the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly (By similarity). {ECO:0000250}. |
Q8TEK3 | DOT1L | S1153 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TER5 | ARHGEF40 | S255 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8WUU5 | GATAD1 | S194 | ochoa | GATA zinc finger domain-containing protein 1 (Ocular development-associated gene protein) | Component of some chromatin complex recruited to chromatin sites methylated 'Lys-4' of histone H3 (H3K4me), with a preference for trimethylated form (H3K4me3). {ECO:0000269|PubMed:20850016}. |
Q8WUX9 | CHMP7 | S232 | ochoa | Charged multivesicular body protein 7 (Chromatin-modifying protein 7) | ESCRT-III-like protein required to recruit the ESCRT-III complex to the nuclear envelope (NE) during late anaphase (PubMed:26040712). Together with SPAST, the ESCRT-III complex promotes NE sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712, PubMed:28242692). Recruited to the reforming NE during anaphase by LEMD2 (PubMed:28242692). Plays a role in the endosomal sorting pathway (PubMed:16856878). {ECO:0000269|PubMed:16856878, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692}. |
Q8WVB6 | CHTF18 | S865 | ochoa | Chromosome transmission fidelity protein 18 homolog (hCTF18) (CHL12) | Chromosome cohesion factor involved in sister chromatid cohesion and fidelity of chromosome transmission. Component of one of the cell nuclear antigen loader complexes, CTF18-replication factor C (CTF18-RFC), which consists of CTF18, CTF8, DCC1, RFC2, RFC3, RFC4 and RFC5. The CTF18-RFC complex binds to single-stranded and primed DNAs and has weak ATPase activity that is stimulated by the presence of primed DNA, replication protein A (RPA) and by proliferating cell nuclear antigen (PCNA). The CTF18-RFC complex catalyzes the ATP-dependent loading of PCNA onto primed and gapped DNA. Interacts with and stimulates DNA polymerase POLH. During DNA repair synthesis, involved in loading DNA polymerase POLE at the sites of local damage (PubMed:20227374). {ECO:0000269|PubMed:12766176, ECO:0000269|PubMed:12930902, ECO:0000269|PubMed:17545166, ECO:0000269|PubMed:20227374}. |
Q8WVB6 | CHTF18 | S871 | ochoa | Chromosome transmission fidelity protein 18 homolog (hCTF18) (CHL12) | Chromosome cohesion factor involved in sister chromatid cohesion and fidelity of chromosome transmission. Component of one of the cell nuclear antigen loader complexes, CTF18-replication factor C (CTF18-RFC), which consists of CTF18, CTF8, DCC1, RFC2, RFC3, RFC4 and RFC5. The CTF18-RFC complex binds to single-stranded and primed DNAs and has weak ATPase activity that is stimulated by the presence of primed DNA, replication protein A (RPA) and by proliferating cell nuclear antigen (PCNA). The CTF18-RFC complex catalyzes the ATP-dependent loading of PCNA onto primed and gapped DNA. Interacts with and stimulates DNA polymerase POLH. During DNA repair synthesis, involved in loading DNA polymerase POLE at the sites of local damage (PubMed:20227374). {ECO:0000269|PubMed:12766176, ECO:0000269|PubMed:12930902, ECO:0000269|PubMed:17545166, ECO:0000269|PubMed:20227374}. |
Q8WWM7 | ATXN2L | S594 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q8WWN9 | IPCEF1 | S326 | ochoa | Interactor protein for cytohesin exchange factors 1 (Phosphoinositide-binding protein PIP3-E) | Enhances the promotion of guanine-nucleotide exchange by PSCD2 on ARF6 in a concentration-dependent manner. {ECO:0000250}. |
Q8WWQ0 | PHIP | S1560 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q8WX93 | PALLD | S979 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WYB5 | KAT6B | S1581 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q8WYL5 | SSH1 | S971 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q8WYP5 | AHCTF1 | S1513 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYQ5 | DGCR8 | S377 | ochoa|psp | Microprocessor complex subunit DGCR8 (DiGeorge syndrome critical region 8) | Component of the microprocessor complex that acts as a RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DGCR8 function as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11 bp away form the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs (PubMed:26027739, PubMed:26748718). The heme-bound DGCR8 dimer binds pri-miRNAs as a cooperative trimer (of dimers) and is active in triggering pri-miRNA cleavage, whereas the heme-free DGCR8 monomer binds pri-miRNAs as a dimer and is much less active. Both double-stranded and single-stranded regions of a pri-miRNA are required for its binding (PubMed:15531877, PubMed:15574589, PubMed:15589161, PubMed:16751099, PubMed:16906129, PubMed:16963499, PubMed:17159994). Specifically recognizes and binds N6-methyladenosine (m6A)-containing pri-miRNAs, a modification required for pri-miRNAs processing (PubMed:25799998). Involved in the silencing of embryonic stem cell self-renewal (By similarity). Also plays a role in DNA repair by promoting the recruitment of RNF168 to RNF8 and MDC1 at DNA double-strand breaks and subsequently the clearance of DNA breaks (PubMed:34188037). {ECO:0000250|UniProtKB:Q9EQM6, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:16963499, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}. |
Q92560 | BAP1 | S292 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92620 | DHX38 | S1194 | ochoa | Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 (EC 3.6.4.13) (ATP-dependent RNA helicase DHX38) (DEAH box protein 38) | Probable ATP-binding RNA helicase (Probable). Involved in pre-mRNA splicing as component of the spliceosome (PubMed:29301961, PubMed:9524131). {ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:9524131, ECO:0000305}. |
Q92628 | KIAA0232 | S712 | ochoa | Uncharacterized protein KIAA0232 | None |
Q92793 | CREBBP | S1076 | ochoa | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q92817 | EVPL | S906 | ochoa | Envoplakin (210 kDa cornified envelope precursor protein) (210 kDa paraneoplastic pemphigus antigen) (p210) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. |
Q92974 | ARHGEF2 | S696 | ochoa | Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) | Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}. |
Q969G3 | SMARCE1 | S136 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 (BRG1-associated factor 57) (BAF57) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Required for the coactivation of estrogen responsive promoters by SWI/SNF complexes and the SRC/p160 family of histone acetyltransferases (HATs). Also specifically interacts with the CoREST corepressor resulting in repression of neuronal specific gene promoters in non-neuronal cells. {ECO:0000250|UniProtKB:O54941, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q969V6 | MRTFA | S482 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q96AB6 | NTAN1 | S280 | ochoa | Protein N-terminal asparagine amidohydrolase (EC 3.5.1.121) (Protein NH2-terminal asparagine amidohydrolase) (PNAA) (Protein NH2-terminal asparagine deamidase) (PNAD) (Protein N-terminal Asn amidase) (Protein N-terminal asparagine amidase) (Protein NTN-amidase) | N-terminal asparagine deamidase that mediates deamidation of N-terminal asparagine residues to aspartate. Required for the ubiquitin-dependent turnover of intracellular proteins that initiate with Met-Asn. These proteins are acetylated on the retained initiator methionine and can subsequently be modified by the removal of N-acetyl methionine by acylaminoacid hydrolase (AAH). Conversion of the resulting N-terminal asparagine to aspartate by NTAN1/PNAD renders the protein susceptible to arginylation, polyubiquitination and degradation as specified by the N-end rule. This enzyme does not act on substrates with internal or C-terminal asparagines and does not act on glutamine residues in any position, nor on acetylated N-terminal peptidyl Asn. {ECO:0000269|PubMed:21375249}. |
Q96BY7 | ATG2B | S1743 | ochoa | Autophagy-related protein 2 homolog B | Lipid transfer protein required for both autophagosome formation and regulation of lipid droplet morphology and dispersion (PubMed:22219374, PubMed:31721365). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:22219374, PubMed:31721365). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (By similarity). Lipid transfer activity is enhanced by WDR45/WIPI4, which promotes ATG2B-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31721365). {ECO:0000250|UniProtKB:Q2TAZ0, ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:31721365}. |
Q96CS3 | FAF2 | S355 | ochoa | FAS-associated factor 2 (UBX domain-containing protein 3B) (UBX domain-containing protein 8) | Plays an important role in endoplasmic reticulum-associated degradation (ERAD) that mediates ubiquitin-dependent degradation of misfolded endoplasmic reticulum proteins (PubMed:18711132, PubMed:24215460). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Involved in inhibition of lipid droplet degradation by binding to phospholipase PNPL2 and inhibiting its activity by promoting dissociation of PNPL2 from its endogenous activator, ABHD5 which inhibits the rate of triacylglycerol hydrolysis (PubMed:23297223). Involved in stress granule disassembly: associates with ubiquitinated G3BP1 in response to heat shock, thereby promoting interaction between ubiquitinated G3BP1 and VCP, followed by G3BP1 extraction from stress granules and stress granule disassembly (PubMed:34739333). {ECO:0000269|PubMed:18711132, ECO:0000269|PubMed:23297223, ECO:0000269|PubMed:24215460, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:34739333}. |
Q96FV9 | THOC1 | S560 | ochoa | THO complex subunit 1 (Nuclear matrix protein p84) (p84N5) (hTREX84) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B/UAP56 (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Regulates transcriptional elongation of a subset of genes (PubMed:22144908). Involved in genome stability by preventing co-transcriptional R-loop formation (By similarity). May play a role in hair cell formation, hence may be involved in hearing (By similarity). {ECO:0000250|UniProtKB:Q7SYB2, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22144908, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: Participates in an apoptotic pathway which is characterized by activation of caspase-6, increases in the expression of BAK1 and BCL2L1 and activation of NF-kappa-B. This pathway does not require p53/TP53, nor does the presence of p53/TP53 affect the efficiency of cell killing. Activates a G2/M cell cycle checkpoint prior to the onset of apoptosis. Apoptosis is inhibited by association with RB1.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q96FZ2 | HMCES | S322 | ochoa | Abasic site processing protein HMCES (EC 4.-.-.-) (Embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein) (ES cell-specific 5hmC-binding protein) (Peptidase HMCES) (EC 3.4.-.-) (SRAP domain-containing protein 1) | Sensor of abasic sites in single-stranded DNA (ssDNA) required to preserve genome integrity by promoting error-free repair of abasic sites (PubMed:30554877, PubMed:31235913, PubMed:31235915, PubMed:32307824, PubMed:32492421). Acts as an enzyme that recognizes and binds abasic sites in ssDNA at replication forks and chemically modifies the lesion by forming a covalent cross-link with DNA: forms a stable thiazolidine linkage between a ring-opened abasic site and the alpha-amino and sulfhydryl substituents of its N-terminal catalytic cysteine residue (PubMed:30554877, PubMed:31235913). Promotes error-free repair by protecting abasic sites from translesion synthesis (TLS) polymerases and endonucleases that are error-prone and would generate mutations and double-strand breaks (PubMed:30554877). The HMCES DNA-protein cross-link is then either reversed or degraded (PubMed:30554877, PubMed:36608669, PubMed:37519246, PubMed:37950866). HMCES is able to catalyze the reversal of its thiazolidine cross-link and cycle between a cross-link and a non-cross-linked state depending on DNA context: mediates self-reversal of the thiazolidine cross-link in double stranded DNA, allowing APEX1 to initiate downstream repair of abasic sites (PubMed:37519246, PubMed:37950866). The HMCES DNA-protein cross-link can also be degraded by the SPRTN metalloprotease following unfolding by the BRIP1/FANCJ helicase (PubMed:36608669). Has preference for ssDNA, but can also accommodate double-stranded DNA with 3' or 5' overhang (dsDNA), and dsDNA-ssDNA 3' junction (PubMed:31235915, PubMed:31806351). Plays a protective role during somatic hypermutation of immunoglobulin genes in B-cells: acts via its ability to form covalent cross-links with abasic sites, thereby limiting the accumulation of deletions in somatic hypermutation target regions (PubMed:35450882). Also involved in class switch recombination (CSR) in B-cells independently of the formation of a DNA-protein cross-link: acts by binding and protecting ssDNA overhangs to promote DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway (By similarity). Acts as a protease: mediates autocatalytic processing of its N-terminal methionine in order to expose the catalytic cysteine (By similarity). {ECO:0000250|UniProtKB:Q8R1M0, ECO:0000269|PubMed:30554877, ECO:0000269|PubMed:31235913, ECO:0000269|PubMed:31235915, ECO:0000269|PubMed:31806351, ECO:0000269|PubMed:32307824, ECO:0000269|PubMed:32492421, ECO:0000269|PubMed:35450882, ECO:0000269|PubMed:36608669, ECO:0000269|PubMed:37519246, ECO:0000269|PubMed:37950866}. |
Q96GX5 | MASTL | S370 | ochoa | Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) | Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}. |
Q96GX5 | MASTL | S619 | ochoa | Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) | Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}. |
Q96J01 | THOC3 | S308 | ochoa | THO complex subunit 3 (Tho3) (TEX1 homolog) (hTREX45) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). {ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q96JE7 | SEC16B | S167 | ochoa | Protein transport protein Sec16B (Leucine zipper transcription regulator 2) (Regucalcin gene promoter region-related protein p117) (RGPR-p117) (SEC16 homolog B) | Plays a role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17192411, PubMed:21768384, PubMed:22355596). Involved in peroxisome biogenesis. Regulates the transport of peroxisomal biogenesis factors PEX3 and PEX16 from the ER to peroxisomes (PubMed:21768384). {ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:21768384, ECO:0000303|PubMed:22355596}. |
Q96JM2 | ZNF462 | S1611 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96K21 | ZFYVE19 | S144 | ochoa | Abscission/NoCut checkpoint regulator (ANCHR) (MLL partner containing FYVE domain) (Zinc finger FYVE domain-containing protein 19) | Key regulator of abscission step in cytokinesis: part of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage. Together with CHMP4C, required to retain abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis. Deactivation of AURKB results in dephosphorylation of CHMP4C followed by its dissociation from ZFYVE19/ANCHR and VPS4 and subsequent abscission. {ECO:0000269|PubMed:24814515}. |
Q96K83 | ZNF521 | S273 | ochoa | Zinc finger protein 521 (Early hematopoietic zinc finger protein) (LYST-interacting protein 3) | Transcription factor that can both act as an activator or a repressor depending on the context. Involved in BMP signaling and in the regulation of the immature compartment of the hematopoietic system. Associates with SMADs in response to BMP2 leading to activate transcription of BMP target genes. Acts as a transcriptional repressor via its interaction with EBF1, a transcription factor involved specification of B-cell lineage; this interaction preventing EBF1 to bind DNA and activate target genes. {ECO:0000269|PubMed:14630787}. |
Q96P20 | NLRP3 | S198 | psp | NACHT, LRR and PYD domains-containing protein 3 (EC 3.6.4.-) (Angiotensin/vasopressin receptor AII/AVP-like) (Caterpiller protein 1.1) (CLR1.1) (Cold-induced autoinflammatory syndrome 1 protein) (Cryopyrin) (PYRIN-containing APAF1-like protein 1) | Sensor component of the NLRP3 inflammasome, which mediates inflammasome activation in response to defects in membrane integrity, leading to secretion of inflammatory cytokines IL1B and IL18 and pyroptosis (PubMed:16407889, PubMed:18403674, PubMed:18604214, PubMed:23582325, PubMed:25686105, PubMed:27929086, PubMed:28656979, PubMed:28847925, PubMed:30487600, PubMed:30612879, PubMed:31086327, PubMed:31086329, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353, PubMed:34512673, PubMed:36442502). In response to pathogens and other damage-associated signals that affect the integrity of membranes, initiates the formation of the inflammasome polymeric complex composed of NLRP3, CASP1 and PYCARD/ASC (PubMed:16407889, PubMed:18403674, PubMed:27432880, PubMed:28847925, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353, PubMed:36142182, PubMed:36442502). Recruitment of pro-caspase-1 (proCASP1) to the NLRP3 inflammasome promotes caspase-1 (CASP1) activation, which subsequently cleaves and activates inflammatory cytokines IL1B and IL18 and gasdermin-D (GSDMD), promoting cytokine secretion and pyroptosis (PubMed:23582325, PubMed:28847925, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353). Activation of NLRP3 inflammasome is also required for HMGB1 secretion; stimulating inflammatory responses (PubMed:22801494). Under resting conditions, ADP-bound NLRP3 is autoinhibited (PubMed:35114687). NLRP3 activation stimuli include extracellular ATP, nigericin, reactive oxygen species, crystals of monosodium urate or cholesterol, amyloid-beta fibers, environmental or industrial particles and nanoparticles, such as asbestos, silica, aluminum salts, cytosolic dsRNA, etc (PubMed:16407889, PubMed:18403674, PubMed:18604214, PubMed:19414800, PubMed:23871209). Almost all stimuli trigger intracellular K(+) efflux (By similarity). These stimuli lead to membrane perturbation and activation of NLRP3 (By similarity). Upon activation, NLRP3 is transported to microtubule organizing center (MTOC), where it is unlocked by NEK7, leading to its relocalization to dispersed trans-Golgi network (dTGN) vesicle membranes and formation of an active inflammasome complex (PubMed:36442502, PubMed:39173637). Associates with dTGN vesicle membranes by binding to phosphatidylinositol 4-phosphate (PtdIns4P) (PubMed:30487600, PubMed:34554188). Shows ATPase activity (PubMed:17483456). {ECO:0000250|UniProtKB:Q8R4B8, ECO:0000269|PubMed:16407889, ECO:0000269|PubMed:17483456, ECO:0000269|PubMed:18403674, ECO:0000269|PubMed:18604214, ECO:0000269|PubMed:19414800, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:23871209, ECO:0000269|PubMed:25686105, ECO:0000269|PubMed:27432880, ECO:0000269|PubMed:27929086, ECO:0000269|PubMed:28656979, ECO:0000269|PubMed:28847925, ECO:0000269|PubMed:30487600, ECO:0000269|PubMed:30612879, ECO:0000269|PubMed:31086327, ECO:0000269|PubMed:31086329, ECO:0000269|PubMed:31189953, ECO:0000269|PubMed:33231615, ECO:0000269|PubMed:34133077, ECO:0000269|PubMed:34341353, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:35114687, ECO:0000269|PubMed:36142182, ECO:0000269|PubMed:36442502, ECO:0000269|PubMed:39173637}.; FUNCTION: Independently of inflammasome activation, regulates the differentiation of T helper 2 (Th2) cells and has a role in Th2 cell-dependent asthma and tumor growth (By similarity). During Th2 differentiation, required for optimal IRF4 binding to IL4 promoter and for IRF4-dependent IL4 transcription (By similarity). Binds to the consensus DNA sequence 5'-GRRGGNRGAG-3' (By similarity). May also participate in the transcription of IL5, IL13, GATA3, CCR3, CCR4 and MAF (By similarity). {ECO:0000250|UniProtKB:Q8R4B8}. |
Q96PD2 | DCBLD2 | S657 | psp | Discoidin, CUB and LCCL domain-containing protein 2 (CUB, LCCL and coagulation factor V/VIII-homology domains protein 1) (Endothelial and smooth muscle cell-derived neuropilin-like protein) | None |
Q96PE5 | OPALIN | S88 | ochoa | Opalin (Oligodendrocytic myelin paranodal and inner loop protein) (Transmembrane protein 10) | Central nervous system-specific myelin protein that increase myelin genes expression during oligodendrocyte differentiation. Promotes oligodendrocyte terminal differentiation. {ECO:0000250|UniProtKB:Q7M750}. |
Q96QC0 | PPP1R10 | S471 | ochoa | Serine/threonine-protein phosphatase 1 regulatory subunit 10 (MHC class I region proline-rich protein CAT53) (PP1-binding protein of 114 kDa) (Phosphatase 1 nuclear targeting subunit) (p99) | Substrate-recognition component of the PNUTS-PP1 protein phosphatase complex, a protein phosphatase 1 (PP1) complex that promotes RNA polymerase II transcription pause-release, allowing transcription elongation (PubMed:39603239, PubMed:39603240). Promoter-proximal pausing by RNA polymerase II is a transcription halt following transcription initiation but prior to elongation, which acts as a checkpoint to control that transcripts are favorably configured for transcriptional elongation (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex mediates the release of RNA polymerase II from promoter-proximal region of genes by catalyzing dephosphorylation of proteins involved in transcription, such as AFF4, CDK9, MEPCE, INTS12, NCBP1, POLR2M/GDOWN1 and SUPT6H (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex also regulates RNA polymerase II transcription termination by mediating dephosphorylation of SUPT5H in termination zones downstream of poly(A) sites, thereby promoting deceleration of RNA polymerase II transcription (PubMed:31677974). PNUTS-PP1 complex is also involved in the response to replication stress by mediating dephosphorylation of POLR2A at 'Ser-5' of the CTD, promoting RNA polymerase II degradation (PubMed:33264625). The PNUTS-PP1 complex also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (By similarity). PNUTS-PP1 complex mediates dephosphorylation of MYC, promoting MYC stability by preventing MYC ubiquitination by the SCF(FBXW7) complex (PubMed:30158517). In addition to acts as a substrate-recognition component, PPP1R10/PNUTS also acts as a nuclear targeting subunit for the PNUTS-PP1 complex (PubMed:9450550). In some context, PPP1R10/PNUTS also acts as an inhibitor of protein phosphatase 1 (PP1) activity by preventing access to substrates, such as RB (PubMed:18360108). {ECO:0000250|UniProtKB:Q80W00, ECO:0000269|PubMed:18360108, ECO:0000269|PubMed:30158517, ECO:0000269|PubMed:31677974, ECO:0000269|PubMed:33264625, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240, ECO:0000269|PubMed:9450550}. |
Q96RT7 | TUBGCP6 | S831 | ochoa | Gamma-tubulin complex component 6 (GCP-6) | Component of the gamma-tubulin ring complex (gTuRC) which mediates microtubule nucleation (PubMed:11694571, PubMed:38305685, PubMed:38609661, PubMed:39321809). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:38305685, PubMed:38609661, PubMed:39321809). {ECO:0000269|PubMed:11694571, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
Q96T58 | SPEN | S1287 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99460 | PSMD1 | S315 | ochoa | 26S proteasome non-ATPase regulatory subunit 1 (26S proteasome regulatory subunit RPN2) (26S proteasome regulatory subunit S1) (26S proteasome subunit p112) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
Q99590 | SCAF11 | S629 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99759 | MAP3K3 | S355 | ochoa | Mitogen-activated protein kinase kinase kinase 3 (EC 2.7.11.25) (MAPK/ERK kinase kinase 3) (MEK kinase 3) (MEKK 3) | Component of a protein kinase signal transduction cascade. Mediates activation of the NF-kappa-B, AP1 and DDIT3 transcriptional regulators. {ECO:0000269|PubMed:12912994, ECO:0000269|PubMed:14661019, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:33729480, ECO:0000269|PubMed:33891857, ECO:0000269|PubMed:9006902}. |
Q99856 | ARID3A | S362 | ochoa | AT-rich interactive domain-containing protein 3A (ARID domain-containing protein 3A) (B-cell regulator of IgH transcription) (Bright) (Dead ringer-like protein 1) (E2F-binding protein 1) | Transcription factor which may be involved in the control of cell cycle progression by the RB1/E2F1 pathway and in B-cell differentiation. {ECO:0000269|PubMed:11812999, ECO:0000269|PubMed:12692263}. |
Q9BSF0 | C2orf88 | S40 | ochoa | Small membrane A-kinase anchor protein (Small membrane AKAP) (smAKAP) | Binds to type I regulatory subunits of protein kinase A (PKA-RI) and may anchor/target them to the plasma membrane. {ECO:0000269|PubMed:23115245}. |
Q9BUA3 | SPINDOC | S148 | ochoa | Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) | Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}. |
Q9BV36 | MLPH | S444 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BV73 | CEP250 | S2424 | ochoa | Centrosome-associated protein CEP250 (250 kDa centrosomal protein) (Cep250) (Centrosomal Nek2-associated protein 1) (C-Nap1) (Centrosomal protein 2) | Plays an important role in centrosome cohesion during interphase (PubMed:30404835, PubMed:36282799). Recruits CCDC102B to the proximal ends of centrioles (PubMed:30404835). Maintains centrosome cohesion by forming intercentriolar linkages (PubMed:36282799). Accumulates at the proximal end of each centriole, forming supramolecular assemblies with viscous material properties that promote organelle cohesion (PubMed:36282799). May be involved in ciliogenesis (PubMed:28005958). {ECO:0000269|PubMed:28005958, ECO:0000269|PubMed:30404835, ECO:0000269|PubMed:36282799}. |
Q9BXC9 | BBS2 | S365 | ochoa | BBSome complex member BBS2 (Bardet-Biedl syndrome 2 protein) | The BBSome complex is thought to function as a coat complex required for sorting of specific membrane proteins to the primary cilia. The BBSome complex is required for ciliogenesis but is dispensable for centriolar satellite function. This ciliogenic function is mediated in part by the Rab8 GDP/GTP exchange factor, which localizes to the basal body and contacts the BBSome. Rab8(GTP) enters the primary cilium and promotes extension of the ciliary membrane. Firstly the BBSome associates with the ciliary membrane and binds to RAB3IP/Rabin8, the guanosyl exchange factor (GEF) for Rab8 and then the Rab8-GTP localizes to the cilium and promotes docking and fusion of carrier vesicles to the base of the ciliary membrane. The BBSome complex, together with the LTZL1, controls SMO ciliary trafficking and contributes to the sonic hedgehog (SHH) pathway regulation. Required for proper BBSome complex assembly and its ciliary localization. {ECO:0000269|PubMed:17574030, ECO:0000269|PubMed:22072986}. |
Q9BXL5 | HEMGN | S123 | ochoa | Hemogen (Erythroid differentiation-associated gene protein) (EDAG-1) (Hemopoietic gene protein) (Negative differentiation regulator protein) | Regulates the proliferation and differentiation of hematopoietic cells. Overexpression block the TPA-induced megakaryocytic differentiation in the K562 cell model. May also prevent cell apoptosis through the activation of the nuclear factor-kappa B (NF-kB). {ECO:0000269|PubMed:14730214, ECO:0000269|PubMed:15332117, ECO:0000269|PubMed:15920494}. |
Q9BY89 | KIAA1671 | S402 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BY89 | KIAA1671 | S1224 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYM8 | RBCK1 | S50 | ochoa | RanBP-type and C3HC4-type zinc finger-containing protein 1 (EC 2.3.2.31) (HBV-associated factor 4) (Heme-oxidized IRP2 ubiquitin ligase 1) (HOIL-1) (Hepatitis B virus X-associated protein 4) (RING finger protein 54) (RING-type E3 ubiquitin transferase HOIL-1) (Ubiquitin-conjugating enzyme 7-interacting protein 3) | E3 ubiquitin-protein ligase, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, such as UBE2L3/UBCM4, and then transfers it to substrates (PubMed:12629548, PubMed:17449468, PubMed:18711448). Functions as an E3 ligase for oxidized IREB2 and both heme and oxygen are necessary for IREB2 ubiquitination (PubMed:12629548). Promotes ubiquitination of TAB2 and IRF3 and their degradation by the proteasome (PubMed:17449468, PubMed:18711448). Component of the LUBAC complex which conjugates linear ('Met-1'-linked) polyubiquitin chains to substrates and plays a key role in NF-kappa-B activation and regulation of inflammation (PubMed:17006537, PubMed:19136968, PubMed:21455173, PubMed:21455180, PubMed:21455181). LUBAC conjugates linear polyubiquitin to IKBKG and RIPK1 and is involved in activation of the canonical NF-kappa-B and the JNK signaling pathways (PubMed:17006537, PubMed:19136968, PubMed:21455173, PubMed:21455180, PubMed:21455181). Linear ubiquitination mediated by the LUBAC complex interferes with TNF-induced cell death and thereby prevents inflammation (PubMed:17006537, PubMed:21455173, PubMed:21455180, PubMed:21455181). LUBAC is recruited to the TNF-R1 signaling complex (TNF-RSC) following polyubiquitination of TNF-RSC components by BIRC2 and/or BIRC3 and to conjugate linear polyubiquitin to IKBKG and possibly other components contributing to the stability of the complex (PubMed:17006537, PubMed:19136968, PubMed:21455173, PubMed:21455180, PubMed:21455181). The LUBAC complex is also involved in innate immunity by conjugating linear polyubiquitin chains at the surface of bacteria invading the cytosol to form the ubiquitin coat surrounding bacteria (PubMed:28481331). LUBAC is not able to initiate formation of the bacterial ubiquitin coat, and can only promote formation of linear polyubiquitins on pre-existing ubiquitin (PubMed:28481331). The bacterial ubiquitin coat acts as an 'eat-me' signal for xenophagy and promotes NF-kappa-B activation (PubMed:28481331). Together with OTULIN, the LUBAC complex regulates the canonical Wnt signaling during angiogenesis (PubMed:23708998). Binds polyubiquitin of different linkage types (PubMed:20005846, PubMed:21455181). {ECO:0000269|PubMed:12629548, ECO:0000269|PubMed:17006537, ECO:0000269|PubMed:17449468, ECO:0000269|PubMed:18711448, ECO:0000269|PubMed:19136968, ECO:0000269|PubMed:20005846, ECO:0000269|PubMed:21455173, ECO:0000269|PubMed:21455180, ECO:0000269|PubMed:21455181, ECO:0000269|PubMed:23708998, ECO:0000269|PubMed:28481331}. |
Q9BZH6 | WDR11 | S619 | ochoa | WD repeat-containing protein 11 (Bromodomain and WD repeat-containing protein 2) (WD repeat-containing protein 15) | Involved in the Hedgehog (Hh) signaling pathway, is essential for normal ciliogenesis (PubMed:29263200). Regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotropin-releasing hormone production (PubMed:29263200). WDR11 complex facilitates the tethering of Adaptor protein-1 complex (AP-1)-derived vesicles. WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). {ECO:0000269|PubMed:29263200, ECO:0000269|PubMed:29426865}. |
Q9BZZ5 | API5 | S464 | ochoa | Apoptosis inhibitor 5 (API-5) (Antiapoptosis clone 11 protein) (AAC-11) (Cell migration-inducing gene 8 protein) (Fibroblast growth factor 2-interacting factor) (FIF) (Protein XAGL) | Antiapoptotic factor that may have a role in protein assembly. Negatively regulates ACIN1. By binding to ACIN1, it suppresses ACIN1 cleavage from CASP3 and ACIN1-mediated DNA fragmentation. Also known to efficiently suppress E2F1-induced apoptosis. Its depletion enhances the cytotoxic action of the chemotherapeutic drugs. {ECO:0000269|PubMed:10780674, ECO:0000269|PubMed:17112319, ECO:0000269|PubMed:19387494}. |
Q9C0A6 | SETD5 | S191 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0A6 | SETD5 | S1233 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0C2 | TNKS1BP1 | S1103 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0D2 | CEP295 | S1388 | ochoa | Centrosomal protein of 295 kDa | Centriole-enriched microtubule-binding protein involved in centriole biogenesis (PubMed:20844083, PubMed:25131205, PubMed:27185865, PubMed:38154379). Essential for the generation of the distal portion of new-born centrioles in a CPAP- and CEP120-mediated elongation dependent manner during the cell cycle S/G2 phase after formation of the initiating cartwheel structure (PubMed:27185865). Required for the recruitment of centriolar proteins, such as POC1B, POC5 and CEP135, into the distal portion of centrioles (PubMed:27185865). Also required for centriole-to-centrosome conversion during mitotic progression, but is dispensable for cartwheel removal or centriole disengagement (PubMed:25131205). Binds to and stabilizes centriolar microtubule (PubMed:27185865). May be involved in ciliogenesis (PubMed:38154379). {ECO:0000269|PubMed:20844083, ECO:0000269|PubMed:25131205, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:38154379}. |
Q9H0A8 | COMMD4 | S115 | ochoa | COMM domain-containing protein 4 | Scaffold protein in the commander complex that is essential for endosomal recycling of transmembrane cargos; the commander complex is composed of the CCC subcomplex and the retriever subcomplex (PubMed:37172566, PubMed:38459129). May modulate activity of cullin-RING E3 ubiquitin ligase (CRL) complexes (PubMed:21778237). Down-regulates activation of NF-kappa-B (PubMed:23637203). {ECO:0000269|PubMed:15799966, ECO:0000269|PubMed:37172566, ECO:0000269|PubMed:38459129, ECO:0000305|PubMed:21778237}. |
Q9H1R3 | MYLK2 | S184 | ochoa | Myosin light chain kinase 2, skeletal/cardiac muscle (MLCK2) (EC 2.7.11.18) | Implicated in the level of global muscle contraction and cardiac function. Phosphorylates a specific serine in the N-terminus of a myosin light chain. {ECO:0000269|PubMed:11733062}. |
Q9H270 | VPS11 | S813 | ochoa | Vacuolar protein sorting-associated protein 11 homolog (hVPS11) (RING finger protein 108) | Plays a role in vesicle-mediated protein trafficking to lysosomal compartments including the endocytic membrane transport and autophagic pathways. Believed to act as a core component of the putative HOPS and CORVET endosomal tethering complexes which are proposed to be involved in the Rab5-to-Rab7 endosome conversion probably implicating MON1A/B, and via binding SNAREs and SNARE complexes to mediate tethering and docking events during SNARE-mediated membrane fusion. The HOPS complex is proposed to be recruited to Rab7 on the late endosomal membrane and to regulate late endocytic, phagocytic and autophagic traffic towards lysosomes. The CORVET complex is proposed to function as a Rab5 effector to mediate early endosome fusion probably in specific endosome subpopulations (PubMed:11382755, PubMed:23351085, PubMed:24554770, PubMed:25266290, PubMed:25783203). Required for fusion of endosomes and autophagosomes with lysosomes (PubMed:25783203). Involved in cargo transport from early to late endosomes and required for the transition from early to late endosomes (PubMed:21148287). Involved in the retrograde Shiga toxin transport (PubMed:23593995). {ECO:0000269|PubMed:21148287, ECO:0000269|PubMed:23593995, ECO:0000269|PubMed:25783203, ECO:0000305|PubMed:11382755, ECO:0000305|PubMed:23351085, ECO:0000305|PubMed:24554770, ECO:0000305|PubMed:25266290, ECO:0000305|PubMed:25783203}. |
Q9H2G9 | BLZF1 | S284 | ochoa | Golgin-45 (Basic leucine zipper nuclear factor 1) (JEM-1) (p45 basic leucine-zipper nuclear factor) | Required for normal Golgi structure and for protein transport from the endoplasmic reticulum (ER) through the Golgi apparatus to the cell surface. {ECO:0000269|PubMed:11739401}. |
Q9H2Y7 | ZNF106 | S641 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H329 | EPB41L4B | S254 | ochoa | Band 4.1-like protein 4B (Erythrocyte membrane protein band 4.1-like 4B) (FERM-containing protein CG1) (Protein EHM2) | Up-regulates the activity of the Rho guanine nucleotide exchange factor ARHGEF18 (By similarity). Involved in the regulation of the circumferential actomyosin belt in epithelial cells (PubMed:22006950). Promotes cellular adhesion, migration and motility in vitro and may play a role in wound healing (PubMed:23664528). May have a role in mediating cytoskeletal changes associated with steroid-induced cell differentiation (PubMed:14521927). {ECO:0000250|UniProtKB:Q9JMC8, ECO:0000269|PubMed:14521927, ECO:0000269|PubMed:22006950, ECO:0000269|PubMed:23664528}. |
Q9H3Q1 | CDC42EP4 | S174 | ochoa | Cdc42 effector protein 4 (Binder of Rho GTPases 4) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation, when overexpressed in fibroblasts. |
Q9H6U6 | BCAS3 | S869 | ochoa | BCAS3 microtubule associated cell migration factor (Breast carcinoma-amplified sequence 3) (GAOB1) | Plays a role in angiogenesis. Participates in the regulation of cell polarity and directional endothelial cell migration by mediating both the activation and recruitment of CDC42 and the reorganization of the actin cytoskeleton at the cell leading edge. Promotes filipodia formation (By similarity). Functions synergistically with PELP1 as a transcriptional coactivator of estrogen receptor-responsive genes. Stimulates histone acetyltransferase activity. Binds to chromatin. Plays a regulatory role in autophagic activity. In complex with PHAF1, associates with the preautophagosomal structure during both non-selective and selective autophagy (PubMed:33499712). Probably binds phosphatidylinositol 3-phosphate (PtdIns3P) which would mediate the recruitment preautophagosomal structures (PubMed:33499712). {ECO:0000250|UniProtKB:Q8CCN5, ECO:0000269|PubMed:17505058, ECO:0000269|PubMed:33499712}. |
Q9H6W3 | RIOX1 | S109 | ochoa | Ribosomal oxygenase 1 (60S ribosomal protein L8 histidine hydroxylase) (Bifunctional lysine-specific demethylase and histidyl-hydroxylase NO66) (EC 1.14.11.27, EC 1.14.11.79) (Myc-associated protein with JmjC domain) (Nucleolar protein 66) (hsNO66) (Ribosomal oxygenase NO66) (ROX) | Oxygenase that can act as both a histone lysine demethylase and a ribosomal histidine hydroxylase (PubMed:23103944). Specifically demethylates 'Lys-4' (H3K4me) and 'Lys-36' (H3K36me) of histone H3, thereby playing a central role in histone code (By similarity). Preferentially demethylates trimethylated H3 'Lys-4' (H3K4me3) and monomethylated H3 'Lys-4' (H3K4me1) residues, while it has weaker activity for dimethylated H3 'Lys-36' (H3K36me2) (By similarity). Acts as a regulator of osteoblast differentiation via its interaction with SP7/OSX by demethylating H3K4me and H3K36me, thereby inhibiting SP7/OSX-mediated promoter activation (By similarity). Also catalyzes demethylation of non-histone proteins, such as CGAS: demethylation of monomethylated CGAS promotes interaction between CGAS and PARP1, followed by PARP1 inactivation (By similarity). Also catalyzes the hydroxylation of 60S ribosomal protein L8 on 'His-216', thereby playing a role in ribosome biogenesis (PubMed:23103944). Participates in MYC-induced transcriptional activation (PubMed:17308053). {ECO:0000250|UniProtKB:Q9JJF3, ECO:0000269|PubMed:17308053, ECO:0000269|PubMed:23103944}. |
Q9H892 | TTC12 | S67 | ochoa | Tetratricopeptide repeat protein 12 (TPR repeat protein 12) | Cytoplasmic protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. {ECO:0000269|PubMed:31978331}. |
Q9H8V3 | ECT2 | S716 | ochoa | Protein ECT2 (Epithelial cell-transforming sequence 2 oncogene) | Guanine nucleotide exchange factor (GEF) that catalyzes the exchange of GDP for GTP. Promotes guanine nucleotide exchange on the Rho family members of small GTPases, like RHOA, RHOC, RAC1 and CDC42. Required for signal transduction pathways involved in the regulation of cytokinesis. Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Regulates the translocation of RHOA from the central spindle to the equatorial region. Plays a role in the control of mitotic spindle assembly; regulates the activation of CDC42 in metaphase for the process of spindle fibers attachment to kinetochores before chromosome congression. Involved in the regulation of epithelial cell polarity; participates in the formation of epithelial tight junctions in a polarity complex PARD3-PARD6-protein kinase PRKCQ-dependent manner. Plays a role in the regulation of neurite outgrowth. Inhibits phenobarbital (PB)-induced NR1I3 nuclear translocation. Stimulates the activity of RAC1 through its association with the oncogenic PARD6A-PRKCI complex in cancer cells, thereby acting to coordinately drive tumor cell proliferation and invasion. Also stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:10579713, ECO:0000269|PubMed:14645260, ECO:0000269|PubMed:15254234, ECO:0000269|PubMed:15545273, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16170345, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16495035, ECO:0000269|PubMed:19129481, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19617897, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21373644, ECO:0000269|PubMed:25068414, ECO:0000269|PubMed:31888991}. |
Q9HB65 | ELL3 | S239 | ochoa | RNA polymerase II elongation factor ELL3 | Enhancer-binding elongation factor that specifically binds enhancers in embryonic stem cells (ES cells), marks them, and is required for their future activation during stem cell specification. Does not only bind to enhancer regions of active genes, but also marks the enhancers that are in a poised or inactive state in ES cells and is required for establishing proper RNA polymerase II occupancy at developmentally regulated genes in a cohesin-dependent manner. Probably required for priming developmentally regulated genes for later recruitment of the super elongation complex (SEC), for transcriptional activation during differentiation. Required for recruitment of P-TEFb within SEC during differentiation. Probably preloaded on germ cell chromatin, suggesting that it may prime gene activation by marking enhancers as early as in the germ cells. Promoting epithelial-mesenchymal transition (EMT) (By similarity). Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968). {ECO:0000250, ECO:0000269|PubMed:10882741, ECO:0000269|PubMed:22195968}. |
Q9HB96 | FANCE | S249 | ochoa | Fanconi anemia group E protein (Protein FACE) | As part of the Fanconi anemia (FA) complex functions in DNA cross-links repair. Required for the nuclear accumulation of FANCC and provides a critical bridge between the FA complex and FANCD2. {ECO:0000269|PubMed:12093742, ECO:0000269|PubMed:17296736}. |
Q9HBI1 | PARVB | S51 | ochoa | Beta-parvin (Affixin) | Adapter protein that plays a role in integrin signaling via ILK and in activation of the GTPases CDC42 and RAC1 by guanine exchange factors, such as ARHGEF6. Is involved in the reorganization of the actin cytoskeleton and formation of lamellipodia. Plays a role in cell adhesion, cell spreading, establishment or maintenance of cell polarity, and cell migration. {ECO:0000269|PubMed:11402068, ECO:0000269|PubMed:15005707, ECO:0000269|PubMed:15159419, ECO:0000269|PubMed:15284246, ECO:0000269|PubMed:18325335}. |
Q9HC52 | CBX8 | S191 | ochoa | Chromobox protein homolog 8 (Polycomb 3 homolog) (Pc3) (hPc3) (Rectachrome 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:21282530}. |
Q9HCG7 | GBA2 | S47 | ochoa | Non-lysosomal glucosylceramidase (NLGase) (EC 3.2.1.45) (Beta-glucocerebrosidase 2) (Beta-glucosidase 2) (Bile acid beta-glucosidase GBA2) (Bile acid glucosyl transferase GBA2) (Cholesterol glucosyltransferase GBA2) (EC 2.4.1.-) (Cholesteryl-beta-glucosidase GBA2) (EC 3.2.1.-) (Glucosylceramidase 2) (Non-lysosomal cholesterol glycosyltransferase) (Non-lysosomal galactosylceramidase) (EC 3.2.1.46) (Non-lysosomal glycosylceramidase) | Non-lysosomal glucosylceramidase that catalyzes the hydrolysis of glucosylceramides/GlcCers (such as beta-D-glucosyl-(1<->1')-N-acylsphing-4-enine) to free glucose and ceramides (such as N-acylsphing-4-enine) (PubMed:17105727, PubMed:30308956, PubMed:32144204). GlcCers are membrane glycosphingolipids that have a wide intracellular distribution (By similarity). They are the main precursors of more complex glycosphingolipids that play a role in cellular growth, differentiation, adhesion, signaling, cytoskeletal dynamics and membrane properties (By similarity). Involved in the transglucosylation of cholesterol, transfers glucose from GlcCer to cholesterol, thereby modifying its water solubility and biological properties (PubMed:32144204). Under specific conditions, may catalyze the reverse reaction, transferring glucose from cholesteryl-3-beta-D-glucoside to ceramide (such as N-acylsphing-4-enine) (Probable). May play a role in the metabolism of bile acids (PubMed:11489889, PubMed:17080196, PubMed:9111029). Able to hydrolyze bile acid 3-O-glucosides as well as to produce bile acid-glucose conjugates thanks to a bile acid glucosyl transferase activity (PubMed:11489889, PubMed:17080196, PubMed:9111029). Catalyzes the hydrolysis of galactosylceramides/GalCers (such as beta-D-galactosyl-(1<->1')-N-acylsphing-4-enine), as well as the galactosyl transfer between GalCers and cholesterol in vitro with lower activity compared with their activity against GlcCers (PubMed:32144204). {ECO:0000250|UniProtKB:Q69ZF3, ECO:0000269|PubMed:11489889, ECO:0000269|PubMed:17080196, ECO:0000269|PubMed:17105727, ECO:0000269|PubMed:30308956, ECO:0000269|PubMed:32144204, ECO:0000269|PubMed:9111029, ECO:0000305|PubMed:32144204}. |
Q9HCM4 | EPB41L5 | S521 | ochoa | Band 4.1-like protein 5 (Erythrocyte membrane protein band 4.1-like 5) | Plays a role in the formation and organization of tight junctions during the establishment of polarity in epithelial cells. {ECO:0000269|PubMed:17920587}. |
Q9HCM7 | FBRSL1 | S790 | ochoa | Fibrosin-1-like protein (AUTS2-like protein) (HBV X-transactivated gene 9 protein) (HBV XAg-transactivated protein 9) | None |
Q9NPI6 | DCP1A | S142 | ochoa | mRNA-decapping enzyme 1A (EC 3.6.1.62) (Smad4-interacting transcriptional co-activator) (Transcription factor SMIF) | Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:12417715). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12417715). Contributes to the transactivation of target genes after stimulation by TGFB1 (PubMed:11836524). Essential for embryonic development (PubMed:33813271). {ECO:0000269|PubMed:11836524, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:33813271}. |
Q9NQG5 | RPRD1B | S134 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 1B (Cell cycle-related and expression-elevated protein in tumor) | Interacts with phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and participates in dephosphorylation of the CTD by RPAP2. Transcriptional regulator which enhances expression of CCND1. Promotes binding of RNA polymerase II to the CCDN1 promoter and to the termination region before the poly-A site but decreases its binding after the poly-A site. Prevents RNA polymerase II from reading through the 3' end termination site and may allow it to be recruited back to the promoter through promotion of the formation of a chromatin loop. Also enhances the transcription of a number of other cell cycle-related genes including CDK2, CDK4, CDK6 and cyclin-E but not CDKN1A, CDKN1B or cyclin-A. Promotes cell proliferation. {ECO:0000269|PubMed:22231121, ECO:0000269|PubMed:22264791, ECO:0000269|PubMed:24399136, ECO:0000269|PubMed:24997600}. |
Q9NQR1 | KMT5A | S100 | ochoa|psp | N-lysine methyltransferase KMT5A (EC 2.1.1.-) (H4-K20-HMTase KMT5A) (Histone-lysine N-methyltransferase KMT5A) (EC 2.1.1.361) (Lysine N-methyltransferase 5A) (Lysine-specific methylase 5A) (PR/SET domain-containing protein 07) (PR-Set7) (PR/SET07) (SET domain-containing protein 8) | Protein-lysine N-methyltransferase that monomethylates both histones and non-histone proteins (PubMed:12086618, PubMed:12121615, PubMed:15964846, PubMed:17707234, PubMed:27338793). Specifically monomethylates 'Lys-20' of histone H4 (H4K20me1) (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599, PubMed:27338793). H4K20me1 is enriched during mitosis and represents a specific tag for epigenetic transcriptional repression (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Required for cell proliferation, probably by contributing to the maintenance of proper higher-order structure of DNA during mitosis (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Involved in chromosome condensation and proper cytokinesis (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Nucleosomes are preferred as substrate compared to free histones (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Mediates monomethylation of p53/TP53 at 'Lys-382', leading to repress p53/TP53-target genes (PubMed:17707234). Plays a negative role in TGF-beta response regulation and a positive role in cell migration (PubMed:23478445). {ECO:0000269|PubMed:12086618, ECO:0000269|PubMed:12121615, ECO:0000269|PubMed:15200950, ECO:0000269|PubMed:15933069, ECO:0000269|PubMed:15933070, ECO:0000269|PubMed:15964846, ECO:0000269|PubMed:16517599, ECO:0000269|PubMed:17707234, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:27338793}. |
Q9NQT8 | KIF13B | S661 | ochoa | Kinesin-like protein KIF13B (Kinesin-like protein GAKIN) | Involved in reorganization of the cortical cytoskeleton. Regulates axon formation by promoting the formation of extra axons. May be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes. {ECO:0000269|PubMed:20194617}. |
Q9NRE2 | TSHZ2 | S69 | ochoa | Teashirt homolog 2 (Ovarian cancer-related protein 10-2) (OVC10-2) (Zinc finger protein 218) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q9NRH2 | SNRK | S275 | ochoa | SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) | May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}. |
Q9NUL3 | STAU2 | S492 | ochoa | Double-stranded RNA-binding protein Staufen homolog 2 | RNA-binding protein required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite. As protein synthesis occurs within the dendrite, the localization of specific mRNAs to dendrites may be a prerequisite for neurite outgrowth and plasticity at sites distant from the cell body (By similarity). {ECO:0000250|UniProtKB:Q68SB1}. |
Q9NVR2 | INTS10 | S231 | ochoa | Integrator complex subunit 10 (Int10) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683, PubMed:38823386). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:32647223). Within the integrator complex, INTS10 is part of the integrator tail module that acts as a platform for the recruitment of transcription factors at promoters (PubMed:38823386). May be not involved in the recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:32647223, ECO:0000269|PubMed:38570683, ECO:0000269|PubMed:38823386}. |
Q9NVT9 | ARMC1 | S246 | ochoa | Armadillo repeat-containing protein 1 | In association with mitochondrial contact site and cristae organizing system (MICOS) complex components and mitochondrial outer membrane sorting assembly machinery (SAM) complex components may regulate mitochondrial dynamics playing a role in determining mitochondrial length, distribution and motility. {ECO:0000269|PubMed:31644573}. |
Q9NWQ4 | GPATCH2L | S31 | ochoa | G patch domain-containing protein 2-like | None |
Q9NWS9 | ZNF446 | S137 | ochoa | Zinc finger protein 446 (Zinc finger protein with KRAB and SCAN domains 20) | May be involved in transcriptional regulation. |
Q9NXH9 | TRMT1 | S517 | ochoa | tRNA (guanine(26)-N(2))-dimethyltransferase (EC 2.1.1.216) (tRNA 2,2-dimethylguanosine-26 methyltransferase) (tRNA methyltransferase 1) (hTRM1) (tRNA(guanine-26,N(2)-N(2)) methyltransferase) (tRNA(m(2,2)G26)dimethyltransferase) | Dimethylates a single guanine residue at position 26 of most nuclear- and mitochondrial-encoded tRNAs using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:10982862, PubMed:28784718, PubMed:37204604, PubMed:39786990). tRNA guanine(26)-dimethylation is required for redox homeostasis and ensure proper cellular proliferation and oxidative stress survival (PubMed:28784718). {ECO:0000269|PubMed:10982862, ECO:0000269|PubMed:28784718, ECO:0000269|PubMed:37204604, ECO:0000269|PubMed:39786990}. |
Q9NYD6 | HOXC10 | S189 | ochoa | Homeobox protein Hox-C10 (Homeobox protein Hox-3I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
Q9NYF8 | BCLAF1 | S177 | ochoa | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NYF8 | BCLAF1 | S512 | ochoa | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NZ52 | GGA3 | S538 | ochoa|psp | ADP-ribosylation factor-binding protein GGA3 (Golgi-localized, gamma ear-containing, ARF-binding protein 3) | Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif (PubMed:11301005). Mediates export of the GPCR receptor ADRA2B to the cell surface (PubMed:26811329). nvolved in BACE1 transport and sorting as well as regulation of BACE1 protein levels (PubMed:15615712, PubMed:17553422, PubMed:20484053). Regulates retrograde transport of BACE1 from endosomes to the trans-Golgi network via interaction through the VHS motif and dependent of BACE1 phosphorylation (PubMed:15615712). Modulates BACE1 protein levels independently of the interaction between VHS domain and DXXLL motif through recognition of ubiquitination (PubMed:20484053). Key player in a novel DXXLL-mediated endosomal sorting machinery to the recycling pathway that targets NTRK1 to the plasma membrane (By similarity). {ECO:0000250|UniProtKB:A0A0G2JV04, ECO:0000269|PubMed:11301005, ECO:0000269|PubMed:15615712, ECO:0000269|PubMed:17553422, ECO:0000269|PubMed:20484053, ECO:0000269|PubMed:26811329}. |
Q9NZB2 | FAM120A | S638 | ochoa | Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) | Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}. |
Q9NZH5 | PTTG2 | S165 | psp | Securin-2 (Pituitary tumor-transforming gene 2 protein) | None |
Q9NZJ5 | EIF2AK3 | S686 | ochoa | Eukaryotic translation initiation factor 2-alpha kinase 3 (EC 2.7.11.1) (PRKR-like endoplasmic reticulum kinase) (Pancreatic eIF2-alpha kinase) (HsPEK) (Protein tyrosine kinase EIF2AK3) (EC 2.7.10.2) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress, such as unfolded protein response (UPR) (PubMed:10026192, PubMed:10677345, PubMed:11907036, PubMed:12086964, PubMed:25925385, PubMed:31023583). Key effector of the integrated stress response (ISR) to unfolded proteins: EIF2AK3/PERK specifically recognizes and binds misfolded proteins, leading to its activation and EIF2S1/eIF-2-alpha phosphorylation (PubMed:10677345, PubMed:27917829, PubMed:31023583). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:10026192, PubMed:10677345, PubMed:31023583, PubMed:33384352). The EIF2AK3/PERK-mediated unfolded protein response increases mitochondrial oxidative phosphorylation by promoting ATF4-mediated expression of COX7A2L/SCAF1, thereby increasing formation of respiratory chain supercomplexes (PubMed:31023583). In contrast to most subcellular compartments, mitochondria are protected from the EIF2AK3/PERK-mediated unfolded protein response due to EIF2AK3/PERK inhibition by ATAD3A at mitochondria-endoplasmic reticulum contact sites (PubMed:39116259). In addition to EIF2S1/eIF-2-alpha, also phosphorylates NFE2L2/NRF2 in response to stress, promoting release of NFE2L2/NRF2 from the BCR(KEAP1) complex, leading to nuclear accumulation and activation of NFE2L2/NRF2 (By similarity). Serves as a critical effector of unfolded protein response (UPR)-induced G1 growth arrest due to the loss of cyclin-D1 (CCND1) (By similarity). Involved in control of mitochondrial morphology and function (By similarity). {ECO:0000250|UniProtKB:Q9Z2B5, ECO:0000269|PubMed:10026192, ECO:0000269|PubMed:10677345, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:12086964, ECO:0000269|PubMed:25925385, ECO:0000269|PubMed:27917829, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:39116259}. |
Q9NZU5 | LMCD1 | S254 | ochoa | LIM and cysteine-rich domains protein 1 (Dyxin) | Transcriptional cofactor that restricts GATA6 function by inhibiting DNA-binding, resulting in repression of GATA6 transcriptional activation of downstream target genes. Represses GATA6-mediated trans activation of lung- and cardiac tissue-specific promoters. Inhibits DNA-binding by GATA4 and GATA1 to the cTNC promoter (By similarity). Plays a critical role in the development of cardiac hypertrophy via activation of calcineurin/nuclear factor of activated T-cells signaling pathway. {ECO:0000250, ECO:0000269|PubMed:20026769}. |
Q9P0L2 | MARK1 | S588 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P0V3 | SH3BP4 | S42 | ochoa | SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) | May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}. |
Q9P209 | CEP72 | S404 | ochoa | Centrosomal protein of 72 kDa (Cep72) | Involved in the recruitment of key centrosomal proteins to the centrosome. Provides centrosomal microtubule-nucleation activity on the gamma-tubulin ring complexes (gamma-TuRCs) and has critical roles in forming a focused bipolar spindle, which is needed for proper tension generation between sister chromatids. Required for localization of KIZ, AKAP9 and gamma-tubulin ring complexes (gamma-TuRCs) (PubMed:19536135). Involved in centriole duplication. Required for CDK5RAP22, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). {ECO:0000269|PubMed:19536135, ECO:0000269|PubMed:26297806}. |
Q9P260 | RELCH | S244 | ochoa | RAB11-binding protein RELCH (LisH domain and HEAT repeat-containing protein KIAA1468) (RAB11 binding and LisH domain, coiled-coil and HEAT repeat-containing) (RAB11-binding protein containing LisH, coiled-coil, and HEAT repeats) | Regulates intracellular cholesterol distribution from recycling endosomes to the trans-Golgi network through interactions with RAB11 and OSBP (PubMed:29514919). Functions in membrane tethering and promotes OSBP-mediated cholesterol transfer between RAB11-bound recycling endosomes and OSBP-bound Golgi-like membranes (PubMed:29514919). {ECO:0000269|PubMed:29514919}. |
Q9P2D1 | CHD7 | S734 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2G1 | ANKIB1 | S737 | ochoa | Ankyrin repeat and IBR domain-containing protein 1 (EC 2.3.2.31) | Might act as an E3 ubiquitin-protein ligase, or as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. {ECO:0000250}. |
Q9P2P5 | HECW2 | S407 | ochoa | E3 ubiquitin-protein ligase HECW2 (EC 2.3.2.26) (HECT, C2 and WW domain-containing protein 2) (HECT-type E3 ubiquitin transferase HECW2) (NEDD4-like E3 ubiquitin-protein ligase 2) | E3 ubiquitin-protein ligase that mediates ubiquitination of TP73. Acts to stabilize TP73 and enhance activation of transcription by TP73 (PubMed:12890487). Involved in the regulation of mitotic metaphase/anaphase transition (PubMed:24163370). {ECO:0000269|PubMed:12890487, ECO:0000269|PubMed:24163370}. |
Q9UER7 | DAXX | S671 | ochoa | Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) | Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}. |
Q9UFC0 | LRWD1 | S212 | ochoa | Leucine-rich repeat and WD repeat-containing protein 1 (Centromere protein 33) (CENP-33) (Origin recognition complex-associated protein) (ORC-associated protein) (ORCA) | Required for G1/S transition. Recruits and stabilizes the origin recognition complex (ORC) onto chromatin during G1 to establish pre-replication complex (preRC) and to heterochromatic sites in post-replicated cells. Binds a combination of DNA and histone methylation repressive marks on heterochromatin. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3 in a cooperative manner with DNA methylation. Required for silencing of major satellite repeats. May be important ORC2, ORC3 and ORC4 stability. {ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:20932478, ECO:0000269|PubMed:21029866, ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22645314}. |
Q9UFD9 | RIMBP3 | S1294 | ochoa | RIMS-binding protein 3A (RIM-BP3.A) (RIMS-binding protein 3.1) (RIM-BP3.1) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
Q9UHB9 | SRP68 | S241 | ochoa | Signal recognition particle subunit SRP68 (SRP68) (Signal recognition particle 68 kDa protein) | Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA), SRP72 binds to this complex subsequently (PubMed:16672232, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38687, ECO:0000269|PubMed:16672232, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}. |
Q9UKA9 | PTBP2 | S434 | ochoa | Polypyrimidine tract-binding protein 2 (Neural polypyrimidine tract-binding protein) (Neurally-enriched homolog of PTB) (PTB-like protein) | RNA-binding protein which binds to intronic polypyrimidine tracts and mediates negative regulation of exons splicing. May antagonize in a tissue-specific manner the ability of NOVA1 to activate exon selection. In addition to its function in pre-mRNA splicing, plays also a role in the regulation of translation. {ECO:0000250|UniProtKB:Q91Z31, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:12667457}.; FUNCTION: [Isoform 5]: Reduced affinity for RNA. {ECO:0000269|PubMed:12213192}. |
Q9UKY1 | ZHX1 | S648 | ochoa | Zinc fingers and homeoboxes protein 1 | Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}. |
Q9ULW0 | TPX2 | S186 | ochoa | Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) | Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}. |
Q9UNE7 | STUB1 | S273 | ochoa | E3 ubiquitin-protein ligase CHIP (EC 2.3.2.27) (Antigen NY-CO-7) (CLL-associated antigen KW-8) (Carboxy terminus of Hsp70-interacting protein) (RING-type E3 ubiquitin transferase CHIP) (STIP1 homology and U box-containing protein 1) | E3 ubiquitin-protein ligase which targets misfolded chaperone substrates towards proteasomal degradation (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462, PubMed:26265139). Plays a role in the maintenance of mitochondrial morphology and promotes mitophagic removal of dysfunctional mitochondria; thereby acts as a protector against apoptosis in response to cellular stress (By similarity). Negatively regulates vascular smooth muscle contraction, via degradation of the transcriptional activator MYOCD and subsequent loss of transcription of genes involved in vascular smooth muscle contraction (By similarity). Promotes survival and proliferation of cardiac smooth muscle cells via ubiquitination and degradation of FOXO1, resulting in subsequent repression of FOXO1-mediated transcription of pro-apoptotic genes (PubMed:19483080). Ubiquitinates ICER-type isoforms of CREM and targets them for proteasomal degradation, thereby acts as a positive effector of MAPK/ERK-mediated inhibition of apoptosis in cardiomyocytes (PubMed:20724525). Inhibits lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes, via ubiquitination and subsequent proteasomal degradation of NFATC3 (PubMed:30980393). Collaborates with ATXN3 in the degradation of misfolded chaperone substrates: ATXN3 restricting the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462). Ubiquitinates NOS1 in concert with Hsp70 and Hsp40 (PubMed:15466472). Modulates the activity of several chaperone complexes, including Hsp70, Hsc70 and Hsp90 (PubMed:10330192, PubMed:11146632, PubMed:15466472). Ubiquitinates CHRNA3 targeting it for endoplasmic reticulum-associated degradation in cortical neurons, as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Ubiquitinates and promotes ESR1 proteasomal degradation in response to age-related circulating estradiol (17-beta-estradiol/E2) decline, thereby promotes neuronal apoptosis in response to ischemic reperfusion injury (By similarity). Mediates transfer of non-canonical short ubiquitin chains to HSPA8 that have no effect on HSPA8 degradation (PubMed:11557750, PubMed:23990462). Mediates polyubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair: catalyzes polyubiquitination by amplifying the HUWE1/ARF-BP1-dependent monoubiquitination and leading to POLB-degradation by the proteasome (PubMed:19713937). Mediates polyubiquitination of CYP3A4 (PubMed:19103148). Ubiquitinates EPHA2 and may regulate the receptor stability and activity through proteasomal degradation (PubMed:19567782). Acts as a co-chaperone for HSPA1A and HSPA1B chaperone proteins and promotes ubiquitin-mediated protein degradation (PubMed:27708256). Negatively regulates the suppressive function of regulatory T-cells (Treg) during inflammation by mediating the ubiquitination and degradation of FOXP3 in a HSPA1A/B-dependent manner (PubMed:23973223). Catalyzes monoubiquitination of SIRT6, preventing its degradation by the proteasome (PubMed:24043303). Likely mediates polyubiquitination and down-regulates plasma membrane expression of PD-L1/CD274, an immune inhibitory ligand critical for immune tolerance to self and antitumor immunity (PubMed:28813410). Negatively regulates TGF-beta signaling by modulating the basal level of SMAD3 via ubiquitin-mediated degradation (PubMed:24613385). Plays a role in the degradation of TP53 (PubMed:26634371). Mediates ubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation (PubMed:29883609). May regulate myosin assembly in striated muscles together with UBE4B and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). Ubiquitinates PPARG in macrophages playing a role in M2 macrophages polarization and angiogenesis (By similarity). {ECO:0000250|UniProtKB:A6HD62, ECO:0000250|UniProtKB:Q9WUD1, ECO:0000269|PubMed:10330192, ECO:0000269|PubMed:11146632, ECO:0000269|PubMed:11557750, ECO:0000269|PubMed:15466472, ECO:0000269|PubMed:17369820, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:19567782, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20724525, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24043303, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28813410, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30980393}. |
Q9UPN9 | TRIM33 | S809 | ochoa | E3 ubiquitin-protein ligase TRIM33 (EC 2.3.2.27) (Ectodermin homolog) (RET-fused gene 7 protein) (Protein Rfg7) (RING-type E3 ubiquitin transferase TRIM33) (Transcription intermediary factor 1-gamma) (TIF1-gamma) (Tripartite motif-containing protein 33) | Acts as an E3 ubiquitin-protein ligase. Promotes SMAD4 ubiquitination, nuclear exclusion and degradation via the ubiquitin proteasome pathway. According to PubMed:16751102, does not promote a decrease in the level of endogenous SMAD4. May act as a transcriptional repressor. Inhibits the transcriptional response to TGF-beta/BMP signaling cascade. Plays a role in the control of cell proliferation. Its association with SMAD2 and SMAD3 stimulates erythroid differentiation of hematopoietic stem/progenitor (By similarity). Monoubiquitinates SMAD4 and acts as an inhibitor of SMAD4-dependent TGF-beta/BMP signaling cascade (Monoubiquitination of SMAD4 hampers its ability to form a stable complex with activated SMAD2/3 resulting in inhibition of TGF-beta/BMP signaling cascade). {ECO:0000250, ECO:0000269|PubMed:10022127, ECO:0000269|PubMed:15820681, ECO:0000269|PubMed:16751102, ECO:0000269|PubMed:19135894}. |
Q9UPV9 | TRAK1 | S393 | ochoa | Trafficking kinesin-binding protein 1 (106 kDa O-GlcNAc transferase-interacting protein) (Protein Milton) | Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity). {ECO:0000250|UniProtKB:Q960V3, ECO:0000269|PubMed:18675823, ECO:0000269|PubMed:24995978}. |
Q9Y219 | JAG2 | S1208 | ochoa | Protein jagged-2 (Jagged2) (hJ2) | Putative Notch ligand involved in the mediation of Notch signaling. Involved in limb development (By similarity). {ECO:0000250}. |
Q9Y283 | INVS | S614 | ochoa | Inversin (Inversion of embryo turning homolog) (Nephrocystin-2) | Required for normal renal development and establishment of left-right axis. Probably acts as a molecular switch between different Wnt signaling pathways. Inhibits the canonical Wnt pathway by targeting cytoplasmic disheveled (DVL1) for degradation by the ubiquitin-proteasome. This suggests that it is required in renal development to oppose the repression of terminal differentiation of tubular epithelial cells by Wnt signaling. Involved in the organization of apical junctions in kidney cells together with NPHP1, NPHP4 and RPGRIP1L/NPHP8 (By similarity). Does not seem to be strictly required for ciliogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:15852005, ECO:0000269|PubMed:18371931}. |
Q9Y2F5 | ICE1 | S1470 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2I7 | PIKFYVE | S1549 | ochoa | 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) | Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}. |
Q9Y2L9 | LRCH1 | S370 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 1 (Calponin homology domain-containing protein 1) (Neuronal protein 81) (NP81) | Acts as a negative regulator of GTPase CDC42 by sequestering CDC42-guanine exchange factor DOCK8. Probably by preventing CDC42 activation, negatively regulates CD4(+) T-cell migration. {ECO:0000269|PubMed:28028151}. |
Q9Y4A5 | TRRAP | S3791 | ochoa | Transformation/transcription domain-associated protein (350/400 kDa PCAF-associated factor) (PAF350/400) (STAF40) (Tra1 homolog) | Adapter protein, which is found in various multiprotein chromatin complexes with histone acetyltransferase activity (HAT), which gives a specific tag for epigenetic transcription activation. Component of the NuA4 histone acetyltransferase complex which is responsible for acetylation of nucleosomal histones H4 and H2A. Plays a central role in MYC transcription activation, and also participates in cell transformation by MYC. Required for p53/TP53-, E2F1- and E2F4-mediated transcription activation. Also involved in transcription activation mediated by the adenovirus E1A, a viral oncoprotein that deregulates transcription of key genes. Probably acts by linking transcription factors such as E1A, MYC or E2F1 to HAT complexes such as STAGA thereby allowing transcription activation. Probably not required in the steps following histone acetylation in processes of transcription activation. May be required for the mitotic checkpoint and normal cell cycle progression. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. May play a role in the formation and maintenance of the auditory system (By similarity). {ECO:0000250|UniProtKB:A0A0R4ITC5, ECO:0000269|PubMed:11418595, ECO:0000269|PubMed:12138177, ECO:0000269|PubMed:12660246, ECO:0000269|PubMed:12743606, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:9708738}. |
Q9Y4F5 | CEP170B | S597 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4W2 | LAS1L | S617 | ochoa | Ribosomal biogenesis protein LAS1L (Endoribonuclease LAS1L) (EC 3.1.-.-) (Protein LAS1 homolog) | Required for the synthesis of the 60S ribosomal subunit and maturation of the 28S rRNA (PubMed:20647540). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Required for the efficient pre-rRNA processing at both ends of internal transcribed spacer 2 (ITS2) (PubMed:22083961). {ECO:0000269|PubMed:20647540, ECO:0000269|PubMed:22083961, ECO:0000269|PubMed:22872859}. |
Q9Y5T5 | USP16 | S189 | ochoa | Ubiquitin carboxyl-terminal hydrolase 16 (EC 3.4.19.12) (Deubiquitinating enzyme 16) (Ubiquitin thioesterase 16) (Ubiquitin-processing protease UBP-M) (Ubiquitin-specific-processing protease 16) | Specifically deubiquitinates 'Lys-120' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (PubMed:17914355). Deubiquitination of histone H2A is a prerequisite for subsequent phosphorylation at 'Ser-11' of histone H3 (H3S10ph), and is required for chromosome segregation when cells enter into mitosis (PubMed:17914355). In resting B- and T-lymphocytes, phosphorylation by AURKB leads to enhance its activity, thereby maintaining transcription in resting lymphocytes. Regulates Hox gene expression via histone H2A deubiquitination (PubMed:17914355). Prefers nucleosomal substrates (PubMed:17914355). Does not deubiquitinate histone H2B (PubMed:17914355). Also deubiquitinates non-histone proteins, such as ribosomal protein RPS27A: deubiquitination of monoubiquitinated RPS27A promotes maturation of the 40S ribosomal subunit (PubMed:32129764). Also mediates deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5), promoting their stability. {ECO:0000255|HAMAP-Rule:MF_03062, ECO:0000269|PubMed:17914355, ECO:0000269|PubMed:32129764}. |
Q9Y6D5 | ARFGEF2 | S218 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) | Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}. |
Q9Y6D6 | ARFGEF1 | S52 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) | Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}. |
Q9Y6K1 | DNMT3A | S243 | ochoa | DNA (cytosine-5)-methyltransferase 3A (Dnmt3a) (EC 2.1.1.37) (Cysteine methyltransferase DNMT3A) (EC 2.1.1.-) (DNA methyltransferase HsaIIIA) (DNA MTase HsaIIIA) (M.HsaIIIA) | Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development (PubMed:12138111, PubMed:16357870, PubMed:30478443). DNA methylation is coordinated with methylation of histones (PubMed:12138111, PubMed:16357870, PubMed:30478443). It modifies DNA in a non-processive manner and also methylates non-CpG sites (PubMed:12138111, PubMed:16357870, PubMed:30478443). May preferentially methylate DNA linker between 2 nucleosomal cores and is inhibited by histone H1 (By similarity). Plays a role in paternal and maternal imprinting (By similarity). Required for methylation of most imprinted loci in germ cells (By similarity). Acts as a transcriptional corepressor for ZBTB18 (By similarity). Recruited to trimethylated 'Lys-36' of histone H3 (H3K36me3) sites (By similarity). Can actively repress transcription through the recruitment of HDAC activity (By similarity). Also has weak auto-methylation activity on Cys-710 in absence of DNA (By similarity). {ECO:0000250|UniProtKB:O88508, ECO:0000269|PubMed:12138111, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:30478443}. |
Q9Y6Q9 | NCOA3 | S694 | ochoa | Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. |
Q9Y6Y8 | SEC23IP | S926 | ochoa | SEC23-interacting protein (p125) | Plays a role in the organization of endoplasmic reticulum exit sites. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 5-phosphate (PI(5)P). {ECO:0000269|PubMed:10400679, ECO:0000269|PubMed:15623529, ECO:0000269|PubMed:22922100}. |
R4GMW8 | BIVM-ERCC5 | S795 | ochoa | DNA excision repair protein ERCC-5 | None |
O00115 | DNASE2 | S70 | Sugiyama | Deoxyribonuclease-2-alpha (EC 3.1.22.1) (Acid DNase) (Deoxyribonuclease II alpha) (DNase II alpha) (Lysosomal DNase II) (R31240_2) | Hydrolyzes DNA under acidic conditions with a preference for double-stranded DNA. Plays a major role in the clearance of nucleic acids generated through apoptosis, hence preventing autoinflammation (PubMed:29259162, PubMed:31775019). Necessary for proper fetal development and for definitive erythropoiesis in fetal liver and bone marrow, where it degrades nuclear DNA expelled from erythroid precursor cells (PubMed:29259162). {ECO:0000269|PubMed:29259162, ECO:0000269|PubMed:31775019}. |
O14910 | LIN7A | S130 | Sugiyama | Protein lin-7 homolog A (Lin-7A) (hLin-7) (Mammalian lin-seven protein 1) (MALS-1) (Tax interaction protein 33) (TIP-33) (Vertebrate lin-7 homolog 1) (Veli-1) | Plays a role in establishing and maintaining the asymmetric distribution of channels and receptors at the plasma membrane of polarized cells. Forms membrane-associated multiprotein complexes that may regulate delivery and recycling of proteins to the correct membrane domains. The tripartite complex composed of LIN7 (LIN7A, LIN7B or LIN7C), CASK and APBA1 associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). This complex may have the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Ensures the proper localization of GRIN2B (subunit 2B of the NMDA receptor) to neuronal postsynaptic density and may function in localizing synaptic vesicles at synapses where it is recruited by beta-catenin and cadherin. Required to localize Kir2 channels, GABA transporter (SLC6A12) and EGFR/ERBB1, ERBB2, ERBB3 and ERBB4 to the basolateral membrane of epithelial cells. {ECO:0000250|UniProtKB:Q8JZS0, ECO:0000269|PubMed:12967566}. |
Q9HAP6 | LIN7B | S115 | Sugiyama | Protein lin-7 homolog B (Lin-7B) (hLin7B) (Mammalian lin-seven protein 2) (MALS-2) (Vertebrate lin-7 homolog 2) (Veli-2) (hVeli2) | Plays a role in establishing and maintaining the asymmetric distribution of channels and receptors at the plasma membrane of polarized cells. Forms membrane-associated multiprotein complexes that may regulate delivery and recycling of proteins to the correct membrane domains. The tripartite complex composed of LIN7 (LIN7A, LIN7B or LIN7C), CASK and APBA1 associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). This complex may have the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Ensures the proper localization of GRIN2B (subunit 2B of the NMDA receptor) to neuronal postsynaptic density and may function in localizing synaptic vesicles at synapses where it is recruited by beta-catenin and cadherin. Required to localize Kir2 channels, GABA transporter (SLC6A12) and EGFR/ERBB1, ERBB2, ERBB3 and ERBB4 to the basolateral membrane of epithelial cells. May increase the amplitude of ASIC3 acid-evoked currents by stabilizing the channel at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:O88951, ECO:0000269|PubMed:11742811}. |
Q9NUP9 | LIN7C | S115 | Sugiyama | Protein lin-7 homolog C (Lin-7C) (Mammalian lin-seven protein 3) (MALS-3) (Vertebrate lin-7 homolog 3) (Veli-3) | Plays a role in establishing and maintaining the asymmetric distribution of channels and receptors at the plasma membrane of polarized cells. Forms membrane-associated multiprotein complexes that may regulate delivery and recycling of proteins to the correct membrane domains. The tripartite complex composed of LIN7 (LIN7A, LIN7B or LIN7C), CASK and APBA1 associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). This complex may have the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Ensures the proper localization of GRIN2B (subunit 2B of the NMDA receptor) to neuronal postsynaptic density and may function in localizing synaptic vesicles at synapses where it is recruited by beta-catenin and cadherin. Required to localize Kir2 channels, GABA transporter (SLC6A12) and EGFR/ERBB1, ERBB2, ERBB3 and ERBB4 to the basolateral membrane of epithelial cells. {ECO:0000250|UniProtKB:O88952}. |
Q9NZV1 | CRIM1 | S184 | Sugiyama | Cysteine-rich motor neuron 1 protein (CRIM-1) (Cysteine-rich repeat-containing protein S52) [Cleaved into: Processed cysteine-rich motor neuron 1 protein] | May play a role in CNS development by interacting with growth factors implicated in motor neuron differentiation and survival. May play a role in capillary formation and maintenance during angiogenesis. Modulates BMP activity by affecting its processing and delivery to the cell surface. {ECO:0000269|PubMed:12464430, ECO:0000269|PubMed:12805376}. |
Q15154 | PCM1 | S69 | Sugiyama | Pericentriolar material 1 protein (PCM-1) (hPCM-1) | Required for centrosome assembly and function (PubMed:12403812, PubMed:15659651, PubMed:16943179). Essential for the correct localization of several centrosomal proteins including CEP250, CETN3, PCNT and NEK2 (PubMed:12403812, PubMed:15659651). Required to anchor microtubules to the centrosome (PubMed:12403812, PubMed:15659651). Also involved in cilium biogenesis by recruiting the BBSome, a ciliary protein complex involved in cilium biogenesis, to the centriolar satellites (PubMed:20551181, PubMed:24121310, PubMed:27979967). Recruits the tubulin polyglutamylase complex (TPGC) to centriolar satellites (PubMed:34782749). {ECO:0000269|PubMed:12403812, ECO:0000269|PubMed:15659651, ECO:0000269|PubMed:16943179, ECO:0000269|PubMed:20551181, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:27979967, ECO:0000269|PubMed:34782749}. |
Q01433 | AMPD2 | S97 | Sugiyama | AMP deaminase 2 (EC 3.5.4.6) (AMP deaminase isoform L) | AMP deaminase plays a critical role in energy metabolism. Catalyzes the deamination of AMP to IMP and plays an important role in the purine nucleotide cycle. {ECO:0000269|PubMed:23911318}. |
Q03112 | MECOM | S1039 | SIGNOR | Histone-lysine N-methyltransferase MECOM (EC 2.1.1.367) (Ecotropic virus integration site 1 protein homolog) (EVI-1) (MDS1 and EVI1 complex locus protein) (Myelodysplasia syndrome 1 protein) (Myelodysplasia syndrome-associated protein 1) | [Isoform 1]: Functions as a transcriptional regulator binding to DNA sequences in the promoter region of target genes and regulating positively or negatively their expression. Oncogene which plays a role in development, cell proliferation and differentiation. May also play a role in apoptosis through regulation of the JNK and TGF-beta signaling. Involved in hematopoiesis. {ECO:0000269|PubMed:10856240, ECO:0000269|PubMed:11568182, ECO:0000269|PubMed:15897867, ECO:0000269|PubMed:16462766, ECO:0000269|PubMed:19767769, ECO:0000269|PubMed:9665135}.; FUNCTION: [Isoform 7]: Displays histone methyltransferase activity and monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. Probably catalyzes the monomethylation of free histone H3 in the cytoplasm which is then transported to the nucleus and incorporated into nucleosomes where SUV39H methyltransferases use it as a substrate to catalyze histone H3 'Lys-9' trimethylation. Likely to be one of the primary histone methyltransferases along with PRDM16 that direct cytoplasmic H3K9me1 methylation. {ECO:0000250|UniProtKB:P14404}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.000129 | 3.890 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.000299 | 3.524 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.000277 | 3.557 |
R-HSA-8941333 | RUNX2 regulates genes involved in differentiation of myeloid cells | 0.000373 | 3.428 |
R-HSA-4839726 | Chromatin organization | 0.000514 | 3.289 |
R-HSA-9827857 | Specification of primordial germ cells | 0.001696 | 2.770 |
R-HSA-8951911 | RUNX3 regulates RUNX1-mediated transcription | 0.003840 | 2.416 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.003688 | 2.433 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.005241 | 2.281 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.044205 | 1.355 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.044205 | 1.355 |
R-HSA-211728 | Regulation of PAK-2p34 activity by PS-GAP/RHG10 | 0.044205 | 1.355 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.044205 | 1.355 |
R-HSA-9763198 | Impaired BRCA2 binding to SEM1 (DSS1) | 0.044205 | 1.355 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 0.044205 | 1.355 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.044205 | 1.355 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.044205 | 1.355 |
R-HSA-9709275 | Impaired BRCA2 translocation to the nucleus | 0.044205 | 1.355 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 0.044205 | 1.355 |
R-HSA-176034 | Interactions of Tat with host cellular proteins | 0.065571 | 1.183 |
R-HSA-9916722 | 3-hydroxyisobutyryl-CoA hydrolase deficiency | 0.065571 | 1.183 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.011248 | 1.949 |
R-HSA-211736 | Stimulation of the cell death response by PAK-2p34 | 0.086461 | 1.063 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 0.106885 | 0.971 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.008251 | 2.083 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 0.126854 | 0.897 |
R-HSA-69200 | Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 ... | 0.126854 | 0.897 |
R-HSA-8941332 | RUNX2 regulates genes involved in cell migration | 0.040596 | 1.392 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.146377 | 0.835 |
R-HSA-111463 | SMAC (DIABLO) binds to IAPs | 0.146377 | 0.835 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.146377 | 0.835 |
R-HSA-111464 | SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes | 0.146377 | 0.835 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 0.146377 | 0.835 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.045928 | 1.338 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.017724 | 1.751 |
R-HSA-111469 | SMAC, XIAP-regulated apoptotic response | 0.165465 | 0.781 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.165465 | 0.781 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 0.165465 | 0.781 |
R-HSA-111459 | Activation of caspases through apoptosome-mediated cleavage | 0.165465 | 0.781 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.165465 | 0.781 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.007083 | 2.150 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.019708 | 1.705 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.019708 | 1.705 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.019708 | 1.705 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.019708 | 1.705 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 0.184128 | 0.735 |
R-HSA-177539 | Autointegration results in viral DNA circles | 0.184128 | 0.735 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.069534 | 1.158 |
R-HSA-9031528 | NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipo... | 0.202374 | 0.694 |
R-HSA-9031525 | NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake | 0.202374 | 0.694 |
R-HSA-9632974 | NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis | 0.202374 | 0.694 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.202374 | 0.694 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.034079 | 1.468 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.220213 | 0.657 |
R-HSA-8875656 | MET receptor recycling | 0.220213 | 0.657 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.220213 | 0.657 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.045973 | 1.337 |
R-HSA-72187 | mRNA 3'-end processing | 0.012418 | 1.906 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.237654 | 0.624 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.237654 | 0.624 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.110444 | 0.957 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.110444 | 0.957 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.067106 | 1.173 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.067106 | 1.173 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.067106 | 1.173 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.132750 | 0.877 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.132750 | 0.877 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.271378 | 0.566 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.027585 | 1.559 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.287678 | 0.541 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.022117 | 1.655 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.038278 | 1.417 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.171832 | 0.765 |
R-HSA-380287 | Centrosome maturation | 0.041738 | 1.379 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 0.319195 | 0.496 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 0.319195 | 0.496 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 0.319195 | 0.496 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 0.319195 | 0.496 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.079066 | 1.102 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.079066 | 1.102 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.124732 | 0.904 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.124732 | 0.904 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.124732 | 0.904 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.204267 | 0.690 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.134808 | 0.870 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.071115 | 1.148 |
R-HSA-390522 | Striated Muscle Contraction | 0.229003 | 0.640 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.378117 | 0.422 |
R-HSA-6782135 | Dual incision in TC-NER | 0.188860 | 0.724 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.262251 | 0.581 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.200274 | 0.698 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 0.405643 | 0.392 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.229465 | 0.639 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.303820 | 0.517 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.308125 | 0.511 |
R-HSA-1989781 | PPARA activates gene expression | 0.353602 | 0.451 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.362476 | 0.441 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.034079 | 1.468 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.034079 | 1.468 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.163862 | 0.786 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.026010 | 1.585 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.319195 | 0.496 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.017162 | 1.765 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.196087 | 0.708 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.187670 | 0.727 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.128481 | 0.891 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.007843 | 2.106 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 0.202374 | 0.694 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.161283 | 0.792 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.389757 | 0.409 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.389757 | 0.409 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.303820 | 0.517 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.157025 | 0.804 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.262251 | 0.581 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.273476 | 0.563 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.303820 | 0.517 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.064244 | 1.192 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.289764 | 0.538 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.082528 | 1.083 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.389757 | 0.409 |
R-HSA-9762292 | Regulation of CDH11 function | 0.254706 | 0.594 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.271378 | 0.566 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.091864 | 1.037 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.334428 | 0.476 |
R-HSA-169911 | Regulation of Apoptosis | 0.245606 | 0.610 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.393210 | 0.405 |
R-HSA-6802949 | Signaling by RAS mutants | 0.124732 | 0.904 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.196087 | 0.708 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.069982 | 1.155 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.069982 | 1.155 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.069982 | 1.155 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.069982 | 1.155 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.165465 | 0.781 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 0.202374 | 0.694 |
R-HSA-8939242 | RUNX1 regulates transcription of genes involved in differentiation of keratinocy... | 0.220213 | 0.657 |
R-HSA-164940 | Nef mediated downregulation of MHC class I complex cell surface expression | 0.220213 | 0.657 |
R-HSA-190873 | Gap junction degradation | 0.237654 | 0.624 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 0.237654 | 0.624 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.378117 | 0.422 |
R-HSA-8951664 | Neddylation | 0.182672 | 0.738 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.070992 | 1.149 |
R-HSA-162592 | Integration of provirus | 0.287678 | 0.541 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.303614 | 0.518 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.028980 | 1.538 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.326525 | 0.486 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.068625 | 1.164 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.021341 | 1.671 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.083235 | 1.080 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.013536 | 1.868 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.253925 | 0.595 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.224782 | 0.648 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 0.165465 | 0.781 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.012447 | 1.905 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.220730 | 0.656 |
R-HSA-5673000 | RAF activation | 0.237297 | 0.625 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.097555 | 1.011 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.295527 | 0.529 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.336781 | 0.473 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.369263 | 0.433 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.253925 | 0.595 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.074977 | 1.125 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.102390 | 0.990 |
R-HSA-5693538 | Homology Directed Repair | 0.081464 | 1.089 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.014476 | 1.839 |
R-HSA-5221030 | TET1,2,3 and TDG demethylate DNA | 0.254706 | 0.594 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.212483 | 0.673 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.259378 | 0.586 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.377288 | 0.423 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.069982 | 1.155 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.287678 | 0.541 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.161137 | 0.793 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.295527 | 0.529 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.320349 | 0.494 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.328579 | 0.483 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.061471 | 1.211 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.049227 | 1.308 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.375211 | 0.426 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 0.117764 | 0.929 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.204267 | 0.690 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.253753 | 0.596 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.196705 | 0.706 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.042624 | 1.370 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.091700 | 1.038 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.083235 | 1.080 |
R-HSA-434313 | Intracellular metabolism of fatty acids regulates insulin secretion | 0.018053 | 1.743 |
R-HSA-9017802 | Noncanonical activation of NOTCH3 | 0.165465 | 0.781 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.009520 | 2.021 |
R-HSA-196025 | Formation of annular gap junctions | 0.220213 | 0.657 |
R-HSA-176974 | Unwinding of DNA | 0.237654 | 0.624 |
R-HSA-68952 | DNA replication initiation | 0.254706 | 0.594 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.021257 | 1.673 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.148138 | 0.829 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.287678 | 0.541 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 0.303614 | 0.518 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 0.303614 | 0.518 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 0.319195 | 0.496 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.319195 | 0.496 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.196087 | 0.708 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 0.349321 | 0.457 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.229003 | 0.640 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.113250 | 0.946 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.336781 | 0.473 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.277569 | 0.557 |
R-HSA-68949 | Orc1 removal from chromatin | 0.393210 | 0.405 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.035320 | 1.452 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.124596 | 0.904 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.059639 | 1.224 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.312095 | 0.506 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.109575 | 0.960 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.303820 | 0.517 |
R-HSA-111471 | Apoptotic factor-mediated response | 0.405643 | 0.392 |
R-HSA-170968 | Frs2-mediated activation | 0.319195 | 0.496 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.035841 | 1.446 |
R-HSA-9909396 | Circadian clock | 0.245176 | 0.611 |
R-HSA-75893 | TNF signaling | 0.058763 | 1.231 |
R-HSA-844456 | The NLRP3 inflammasome | 0.103250 | 0.986 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.303614 | 0.518 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 0.187951 | 0.726 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.158151 | 0.801 |
R-HSA-447043 | Neurofascin interactions | 0.184128 | 0.735 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 0.392035 | 0.407 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.336781 | 0.473 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.163862 | 0.786 |
R-HSA-169893 | Prolonged ERK activation events | 0.363882 | 0.439 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.165465 | 0.781 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.026366 | 1.579 |
R-HSA-9823739 | Formation of the anterior neural plate | 0.069534 | 1.158 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.069534 | 1.158 |
R-HSA-9707616 | Heme signaling | 0.075975 | 1.119 |
R-HSA-9766229 | Degradation of CDH1 | 0.139948 | 0.854 |
R-HSA-912446 | Meiotic recombination | 0.385271 | 0.414 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.367018 | 0.435 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.303820 | 0.517 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 0.303614 | 0.518 |
R-HSA-445355 | Smooth Muscle Contraction | 0.161137 | 0.793 |
R-HSA-9711123 | Cellular response to chemical stress | 0.065640 | 1.183 |
R-HSA-6794361 | Neurexins and neuroligins | 0.012418 | 1.906 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.194546 | 0.711 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.135991 | 0.866 |
R-HSA-73894 | DNA Repair | 0.028019 | 1.553 |
R-HSA-71737 | Pyrophosphate hydrolysis | 0.146377 | 0.835 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 0.165465 | 0.781 |
R-HSA-187706 | Signalling to p38 via RIT and RIN | 0.165465 | 0.781 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 0.165465 | 0.781 |
R-HSA-175567 | Integration of viral DNA into host genomic DNA | 0.184128 | 0.735 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 0.089282 | 1.049 |
R-HSA-9839383 | TGFBR3 PTM regulation | 0.220213 | 0.657 |
R-HSA-170984 | ARMS-mediated activation | 0.237654 | 0.624 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.117764 | 0.929 |
R-HSA-164843 | 2-LTR circle formation | 0.254706 | 0.594 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.132750 | 0.877 |
R-HSA-9832991 | Formation of the posterior neural plate | 0.271378 | 0.566 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 0.287678 | 0.541 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.163862 | 0.786 |
R-HSA-5689901 | Metalloprotease DUBs | 0.163862 | 0.786 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.319195 | 0.496 |
R-HSA-177504 | Retrograde neurotrophin signalling | 0.334428 | 0.476 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.204267 | 0.690 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.220730 | 0.656 |
R-HSA-9930044 | Nuclear RNA decay | 0.220730 | 0.656 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.378117 | 0.422 |
R-HSA-3214847 | HATs acetylate histones | 0.106336 | 0.973 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.157025 | 0.804 |
R-HSA-69206 | G1/S Transition | 0.212470 | 0.673 |
R-HSA-68877 | Mitotic Prometaphase | 0.347378 | 0.459 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.024444 | 1.612 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.237297 | 0.625 |
R-HSA-74160 | Gene expression (Transcription) | 0.050179 | 1.299 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.052621 | 1.279 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.087504 | 1.058 |
R-HSA-5218859 | Regulated Necrosis | 0.095431 | 1.020 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.131464 | 0.881 |
R-HSA-212436 | Generic Transcription Pathway | 0.295708 | 0.529 |
R-HSA-69239 | Synthesis of DNA | 0.283435 | 0.548 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.241358 | 0.617 |
R-HSA-68886 | M Phase | 0.305717 | 0.515 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.170108 | 0.769 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.184128 | 0.735 |
R-HSA-622312 | Inflammasomes | 0.179864 | 0.745 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.357165 | 0.447 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.148138 | 0.829 |
R-HSA-3928664 | Ephrin signaling | 0.405643 | 0.392 |
R-HSA-194138 | Signaling by VEGF | 0.212470 | 0.673 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.069982 | 1.155 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.295527 | 0.529 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.385271 | 0.414 |
R-HSA-73893 | DNA Damage Bypass | 0.041654 | 1.380 |
R-HSA-9675135 | Diseases of DNA repair | 0.124732 | 0.904 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.271490 | 0.566 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.344954 | 0.462 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.344954 | 0.462 |
R-HSA-5617833 | Cilium Assembly | 0.335478 | 0.474 |
R-HSA-199991 | Membrane Trafficking | 0.126966 | 0.896 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.037673 | 1.424 |
R-HSA-69242 | S Phase | 0.322655 | 0.491 |
R-HSA-447038 | NrCAM interactions | 0.146377 | 0.835 |
R-HSA-444821 | Relaxin receptors | 0.165465 | 0.781 |
R-HSA-8948747 | Regulation of PTEN localization | 0.202374 | 0.694 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 0.237654 | 0.624 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 0.287678 | 0.541 |
R-HSA-428540 | Activation of RAC1 | 0.287678 | 0.541 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.303614 | 0.518 |
R-HSA-8866427 | VLDLR internalisation and degradation | 0.303614 | 0.518 |
R-HSA-877312 | Regulation of IFNG signaling | 0.303614 | 0.518 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.349321 | 0.457 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.363882 | 0.439 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 0.392035 | 0.407 |
R-HSA-1474165 | Reproduction | 0.116221 | 0.935 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.283661 | 0.547 |
R-HSA-69481 | G2/M Checkpoints | 0.220514 | 0.657 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.393210 | 0.405 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.313866 | 0.503 |
R-HSA-73887 | Death Receptor Signaling | 0.017630 | 1.754 |
R-HSA-1640170 | Cell Cycle | 0.069769 | 1.156 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.055296 | 1.257 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.180527 | 0.743 |
R-HSA-9686347 | Microbial modulation of RIPK1-mediated regulated necrosis | 0.202374 | 0.694 |
R-HSA-9768777 | Regulation of NPAS4 gene transcription | 0.237654 | 0.624 |
R-HSA-5688426 | Deubiquitination | 0.174171 | 0.759 |
R-HSA-1227986 | Signaling by ERBB2 | 0.020117 | 1.696 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.119801 | 0.922 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.172075 | 0.764 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.096313 | 1.016 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.061800 | 1.209 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.216548 | 0.664 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.295063 | 0.530 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.287220 | 0.542 |
R-HSA-162909 | Host Interactions of HIV factors | 0.204523 | 0.689 |
R-HSA-5357801 | Programmed Cell Death | 0.141049 | 0.851 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 0.026187 | 1.582 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.146377 | 0.835 |
R-HSA-2660826 | Constitutive Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 0.165465 | 0.781 |
R-HSA-2660825 | Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 0.165465 | 0.781 |
R-HSA-164944 | Nef and signal transduction | 0.184128 | 0.735 |
R-HSA-447041 | CHL1 interactions | 0.202374 | 0.694 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 0.237654 | 0.624 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 0.237654 | 0.624 |
R-HSA-9693928 | Defective RIPK1-mediated regulated necrosis | 0.254706 | 0.594 |
R-HSA-9754560 | SARS-CoV-2 modulates autophagy | 0.271378 | 0.566 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.140398 | 0.853 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 0.287678 | 0.541 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.303614 | 0.518 |
R-HSA-9005895 | Pervasive developmental disorders | 0.303614 | 0.518 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.303614 | 0.518 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.349321 | 0.457 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 0.392035 | 0.407 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.405643 | 0.392 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.253753 | 0.596 |
R-HSA-418990 | Adherens junctions interactions | 0.294479 | 0.531 |
R-HSA-446728 | Cell junction organization | 0.235728 | 0.628 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.295527 | 0.529 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.212483 | 0.673 |
R-HSA-373760 | L1CAM interactions | 0.173815 | 0.760 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.031431 | 1.503 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.349321 | 0.457 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.392035 | 0.407 |
R-HSA-69275 | G2/M Transition | 0.096683 | 1.015 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.100710 | 0.997 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 0.010952 | 1.960 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.132417 | 0.878 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.351047 | 0.455 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.363175 | 0.440 |
R-HSA-877300 | Interferon gamma signaling | 0.050207 | 1.299 |
R-HSA-1500931 | Cell-Cell communication | 0.232839 | 0.633 |
R-HSA-9627069 | Regulation of the apoptosome activity | 0.254706 | 0.594 |
R-HSA-5689877 | Josephin domain DUBs | 0.254706 | 0.594 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.319195 | 0.496 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.349321 | 0.457 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.378117 | 0.422 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 0.392035 | 0.407 |
R-HSA-75876 | Synthesis of very long-chain fatty acyl-CoAs | 0.320349 | 0.494 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.269352 | 0.570 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.269352 | 0.570 |
R-HSA-109581 | Apoptosis | 0.384677 | 0.415 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.161137 | 0.793 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.271490 | 0.566 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.314256 | 0.503 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.329150 | 0.483 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.283661 | 0.547 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 0.237654 | 0.624 |
R-HSA-193648 | NRAGE signals death through JNK | 0.058763 | 1.231 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 0.334428 | 0.476 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.262251 | 0.581 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.357165 | 0.447 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.155751 | 0.808 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.026093 | 1.583 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 0.140398 | 0.853 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.303614 | 0.518 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.319195 | 0.496 |
R-HSA-6807070 | PTEN Regulation | 0.066389 | 1.178 |
R-HSA-9758941 | Gastrulation | 0.327061 | 0.485 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.038278 | 1.417 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.177622 | 0.751 |
R-HSA-9007101 | Rab regulation of trafficking | 0.344036 | 0.463 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.063316 | 1.198 |
R-HSA-8876725 | Protein methylation | 0.349321 | 0.457 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.378117 | 0.422 |
R-HSA-6787450 | tRNA modification in the mitochondrion | 0.378117 | 0.422 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.103250 | 0.986 |
R-HSA-9020558 | Interleukin-2 signaling | 0.271378 | 0.566 |
R-HSA-75153 | Apoptotic execution phase | 0.124732 | 0.904 |
R-HSA-111458 | Formation of apoptosome | 0.254706 | 0.594 |
R-HSA-9842663 | Signaling by LTK | 0.303614 | 0.518 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.334428 | 0.476 |
R-HSA-9678110 | Attachment and Entry | 0.363882 | 0.439 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.245606 | 0.610 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.259378 | 0.586 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.061471 | 1.211 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.152811 | 0.816 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.369263 | 0.433 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.369263 | 0.433 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.245606 | 0.610 |
R-HSA-418885 | DCC mediated attractive signaling | 0.349321 | 0.457 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.405643 | 0.392 |
R-HSA-9031628 | NGF-stimulated transcription | 0.361197 | 0.442 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.362370 | 0.441 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.229551 | 0.639 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.276960 | 0.558 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.363275 | 0.440 |
R-HSA-9008059 | Interleukin-37 signaling | 0.009520 | 2.021 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.132417 | 0.878 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.393210 | 0.405 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.363882 | 0.439 |
R-HSA-9945266 | Differentiation of T cells | 0.363882 | 0.439 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.326525 | 0.486 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.331472 | 0.480 |
R-HSA-9006936 | Signaling by TGFB family members | 0.375797 | 0.425 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.106336 | 0.973 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.237297 | 0.625 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.308028 | 0.511 |
R-HSA-112310 | Neurotransmitter release cycle | 0.387611 | 0.412 |
R-HSA-9830364 | Formation of the nephric duct | 0.155961 | 0.807 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.375797 | 0.425 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.405643 | 0.392 |
R-HSA-446652 | Interleukin-1 family signaling | 0.189880 | 0.722 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.408945 | 0.388 |
R-HSA-421270 | Cell-cell junction organization | 0.414065 | 0.383 |
R-HSA-5653656 | Vesicle-mediated transport | 0.414977 | 0.382 |
R-HSA-3214815 | HDACs deacetylate histones | 0.416737 | 0.380 |
R-HSA-418597 | G alpha (z) signalling events | 0.416737 | 0.380 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.418946 | 0.378 |
R-HSA-110320 | Translesion Synthesis by POLH | 0.418946 | 0.378 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.418946 | 0.378 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.419395 | 0.377 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.423665 | 0.373 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.424478 | 0.372 |
R-HSA-9843745 | Adipogenesis | 0.425032 | 0.372 |
R-HSA-913531 | Interferon Signaling | 0.430221 | 0.366 |
R-HSA-9629569 | Protein hydroxylation | 0.431953 | 0.365 |
R-HSA-6807004 | Negative regulation of MET activity | 0.431953 | 0.365 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.433240 | 0.363 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.439797 | 0.357 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.439797 | 0.357 |
R-HSA-157579 | Telomere Maintenance | 0.441424 | 0.355 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.444669 | 0.352 |
R-HSA-9931295 | PD-L1(CD274) glycosylation and translocation to plasma membrane | 0.444669 | 0.352 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.444669 | 0.352 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.444669 | 0.352 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.446437 | 0.350 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.446437 | 0.350 |
R-HSA-180786 | Extension of Telomeres | 0.447373 | 0.349 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.447373 | 0.349 |
R-HSA-5683057 | MAPK family signaling cascades | 0.449145 | 0.348 |
R-HSA-379724 | tRNA Aminoacylation | 0.454891 | 0.342 |
R-HSA-983189 | Kinesins | 0.454891 | 0.342 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.457102 | 0.340 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.457102 | 0.340 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.457102 | 0.340 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.457102 | 0.340 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.457102 | 0.340 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.457102 | 0.340 |
R-HSA-9694614 | Attachment and Entry | 0.457102 | 0.340 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.457102 | 0.340 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.459781 | 0.337 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.462350 | 0.335 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.469257 | 0.329 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.469257 | 0.329 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.469257 | 0.329 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.469257 | 0.329 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.469749 | 0.328 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.469749 | 0.328 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.477087 | 0.321 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.477087 | 0.321 |
R-HSA-1632852 | Macroautophagy | 0.479317 | 0.319 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.481069 | 0.318 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 0.481140 | 0.318 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.484363 | 0.315 |
R-HSA-162906 | HIV Infection | 0.486070 | 0.313 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.487671 | 0.312 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.487671 | 0.312 |
R-HSA-9833110 | RSV-host interactions | 0.487671 | 0.312 |
R-HSA-1234174 | Cellular response to hypoxia | 0.491576 | 0.308 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.491576 | 0.308 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.492758 | 0.307 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.492758 | 0.307 |
R-HSA-429947 | Deadenylation of mRNA | 0.492758 | 0.307 |
R-HSA-9836573 | Mitochondrial RNA degradation | 0.492758 | 0.307 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 0.498725 | 0.302 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.498945 | 0.302 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.504117 | 0.297 |
R-HSA-9620244 | Long-term potentiation | 0.504117 | 0.297 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.504117 | 0.297 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.504117 | 0.297 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 0.504117 | 0.297 |
R-HSA-3214842 | HDMs demethylate histones | 0.504117 | 0.297 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.504535 | 0.297 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.504535 | 0.297 |
R-HSA-9830369 | Kidney development | 0.505810 | 0.296 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.514852 | 0.288 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.515221 | 0.288 |
R-HSA-3295583 | TRP channels | 0.515221 | 0.288 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.515221 | 0.288 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.515221 | 0.288 |
R-HSA-9865118 | Diseases of branched-chain amino acid catabolism | 0.515221 | 0.288 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.515618 | 0.288 |
R-HSA-597592 | Post-translational protein modification | 0.523498 | 0.281 |
R-HSA-8939211 | ESR-mediated signaling | 0.524310 | 0.280 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.526078 | 0.279 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.526078 | 0.279 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.526078 | 0.279 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 0.526078 | 0.279 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.526078 | 0.279 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.526670 | 0.278 |
R-HSA-5632684 | Hedgehog 'on' state | 0.533490 | 0.273 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.533490 | 0.273 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.533490 | 0.273 |
R-HSA-157118 | Signaling by NOTCH | 0.535564 | 0.271 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.536693 | 0.270 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.536693 | 0.270 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.536693 | 0.270 |
R-HSA-5620971 | Pyroptosis | 0.536693 | 0.270 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.540242 | 0.267 |
R-HSA-69306 | DNA Replication | 0.540727 | 0.267 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.542731 | 0.265 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.547070 | 0.262 |
R-HSA-9615710 | Late endosomal microautophagy | 0.547070 | 0.262 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.547070 | 0.262 |
R-HSA-5334118 | DNA methylation | 0.547070 | 0.262 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.547070 | 0.262 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.549446 | 0.260 |
R-HSA-1236394 | Signaling by ERBB4 | 0.553544 | 0.257 |
R-HSA-9612973 | Autophagy | 0.554375 | 0.256 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.557216 | 0.254 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.557216 | 0.254 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.557216 | 0.254 |
R-HSA-8852135 | Protein ubiquitination | 0.560092 | 0.252 |
R-HSA-8953854 | Metabolism of RNA | 0.565342 | 0.248 |
R-HSA-5689603 | UCH proteinases | 0.566572 | 0.247 |
R-HSA-9020591 | Interleukin-12 signaling | 0.566572 | 0.247 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 0.567135 | 0.246 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.567135 | 0.246 |
R-HSA-182971 | EGFR downregulation | 0.567135 | 0.246 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.568949 | 0.245 |
R-HSA-162582 | Signal Transduction | 0.570112 | 0.244 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.573028 | 0.242 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.576832 | 0.239 |
R-HSA-1538133 | G0 and Early G1 | 0.576832 | 0.239 |
R-HSA-69190 | DNA strand elongation | 0.576832 | 0.239 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.576832 | 0.239 |
R-HSA-5619084 | ABC transporter disorders | 0.579324 | 0.237 |
R-HSA-4086400 | PCP/CE pathway | 0.579324 | 0.237 |
R-HSA-68875 | Mitotic Prophase | 0.584230 | 0.233 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.586312 | 0.232 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.586312 | 0.232 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.586312 | 0.232 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.586312 | 0.232 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.586312 | 0.232 |
R-HSA-159418 | Recycling of bile acids and salts | 0.586312 | 0.232 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.586312 | 0.232 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.586312 | 0.232 |
R-HSA-73886 | Chromosome Maintenance | 0.589246 | 0.230 |
R-HSA-3371556 | Cellular response to heat stress | 0.589246 | 0.230 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.591799 | 0.228 |
R-HSA-9833482 | PKR-mediated signaling | 0.591799 | 0.228 |
R-HSA-6806834 | Signaling by MET | 0.591799 | 0.228 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.595581 | 0.225 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.595581 | 0.225 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.595581 | 0.225 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.595581 | 0.225 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.595581 | 0.225 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.599163 | 0.222 |
R-HSA-397014 | Muscle contraction | 0.602772 | 0.220 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.604643 | 0.219 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.604643 | 0.219 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.604643 | 0.219 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.604643 | 0.219 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.613502 | 0.212 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.613502 | 0.212 |
R-HSA-187687 | Signalling to ERKs | 0.613502 | 0.212 |
R-HSA-381042 | PERK regulates gene expression | 0.613502 | 0.212 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.615918 | 0.210 |
R-HSA-1500620 | Meiosis | 0.621775 | 0.206 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.622163 | 0.206 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.622163 | 0.206 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.622163 | 0.206 |
R-HSA-3371511 | HSF1 activation | 0.622163 | 0.206 |
R-HSA-111933 | Calmodulin induced events | 0.622163 | 0.206 |
R-HSA-111997 | CaM pathway | 0.622163 | 0.206 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.622163 | 0.206 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.623304 | 0.205 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.627383 | 0.202 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.627562 | 0.202 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.627562 | 0.202 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.627959 | 0.202 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.630631 | 0.200 |
R-HSA-4641258 | Degradation of DVL | 0.630631 | 0.200 |
R-HSA-4641257 | Degradation of AXIN | 0.630631 | 0.200 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.630631 | 0.200 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.630631 | 0.200 |
R-HSA-419037 | NCAM1 interactions | 0.630631 | 0.200 |
R-HSA-549127 | SLC-mediated transport of organic cations | 0.630631 | 0.200 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.630631 | 0.200 |
R-HSA-5689880 | Ub-specific processing proteases | 0.631433 | 0.200 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.633281 | 0.198 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.638909 | 0.195 |
R-HSA-74217 | Purine salvage | 0.638909 | 0.195 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.638931 | 0.195 |
R-HSA-447115 | Interleukin-12 family signaling | 0.638931 | 0.195 |
R-HSA-9645723 | Diseases of programmed cell death | 0.644513 | 0.191 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.647002 | 0.189 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.647002 | 0.189 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.647002 | 0.189 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.647002 | 0.189 |
R-HSA-69541 | Stabilization of p53 | 0.647002 | 0.189 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.647002 | 0.189 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.647002 | 0.189 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.654915 | 0.184 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.654915 | 0.184 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.654915 | 0.184 |
R-HSA-167169 | HIV Transcription Elongation | 0.654915 | 0.184 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.654915 | 0.184 |
R-HSA-3371568 | Attenuation phase | 0.654915 | 0.184 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.654915 | 0.184 |
R-HSA-9646399 | Aggrephagy | 0.654915 | 0.184 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.654915 | 0.184 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.654915 | 0.184 |
R-HSA-202433 | Generation of second messenger molecules | 0.654915 | 0.184 |
R-HSA-451927 | Interleukin-2 family signaling | 0.654915 | 0.184 |
R-HSA-73884 | Base Excision Repair | 0.655471 | 0.183 |
R-HSA-2559583 | Cellular Senescence | 0.658989 | 0.181 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.660849 | 0.180 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.660849 | 0.180 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.662650 | 0.179 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 0.662650 | 0.179 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.662650 | 0.179 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 0.662650 | 0.179 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.666159 | 0.176 |
R-HSA-6811438 | Intra-Golgi traffic | 0.670213 | 0.174 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.670213 | 0.174 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.670213 | 0.174 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.670213 | 0.174 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.671402 | 0.173 |
R-HSA-391251 | Protein folding | 0.671402 | 0.173 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.671890 | 0.173 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.676578 | 0.170 |
R-HSA-111996 | Ca-dependent events | 0.677607 | 0.169 |
R-HSA-5358351 | Signaling by Hedgehog | 0.681178 | 0.167 |
R-HSA-9948299 | Ribosome-associated quality control | 0.681178 | 0.167 |
R-HSA-9710421 | Defective pyroptosis | 0.684835 | 0.164 |
R-HSA-8854214 | TBC/RABGAPs | 0.684835 | 0.164 |
R-HSA-73621 | Pyrimidine catabolism | 0.684835 | 0.164 |
R-HSA-5654743 | Signaling by FGFR4 | 0.684835 | 0.164 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.684835 | 0.164 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.685348 | 0.164 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.691709 | 0.160 |
R-HSA-190828 | Gap junction trafficking | 0.691901 | 0.160 |
R-HSA-9907900 | Proteasome assembly | 0.691901 | 0.160 |
R-HSA-69236 | G1 Phase | 0.691901 | 0.160 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.691901 | 0.160 |
R-HSA-5683826 | Surfactant metabolism | 0.691901 | 0.160 |
R-HSA-373752 | Netrin-1 signaling | 0.691901 | 0.160 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.691901 | 0.160 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.694440 | 0.158 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.696622 | 0.157 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.696622 | 0.157 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.698810 | 0.156 |
R-HSA-1489509 | DAG and IP3 signaling | 0.698810 | 0.156 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.698810 | 0.156 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.698810 | 0.156 |
R-HSA-9824272 | Somitogenesis | 0.698810 | 0.156 |
R-HSA-5654741 | Signaling by FGFR3 | 0.698810 | 0.156 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.701620 | 0.154 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.705564 | 0.151 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.705564 | 0.151 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.705564 | 0.151 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.705564 | 0.151 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.705564 | 0.151 |
R-HSA-422356 | Regulation of insulin secretion | 0.706253 | 0.151 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.712167 | 0.147 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.712167 | 0.147 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.712167 | 0.147 |
R-HSA-437239 | Recycling pathway of L1 | 0.712167 | 0.147 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.715629 | 0.145 |
R-HSA-5610787 | Hedgehog 'off' state | 0.715629 | 0.145 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.715629 | 0.145 |
R-HSA-389356 | Co-stimulation by CD28 | 0.718622 | 0.143 |
R-HSA-9020702 | Interleukin-1 signaling | 0.720222 | 0.143 |
R-HSA-1483255 | PI Metabolism | 0.724753 | 0.140 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.724753 | 0.140 |
R-HSA-166520 | Signaling by NTRKs | 0.724818 | 0.140 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.724933 | 0.140 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.724933 | 0.140 |
R-HSA-195721 | Signaling by WNT | 0.725319 | 0.139 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.729851 | 0.137 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.729851 | 0.137 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.733628 | 0.135 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.737135 | 0.132 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.737135 | 0.132 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.737135 | 0.132 |
R-HSA-70895 | Branched-chain amino acid catabolism | 0.737135 | 0.132 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.743032 | 0.129 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.743032 | 0.129 |
R-HSA-72172 | mRNA Splicing | 0.745738 | 0.127 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.748026 | 0.126 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.748796 | 0.126 |
R-HSA-1221632 | Meiotic synapsis | 0.748796 | 0.126 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.748796 | 0.126 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.748796 | 0.126 |
R-HSA-8956320 | Nucleotide biosynthesis | 0.748796 | 0.126 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.748796 | 0.126 |
R-HSA-162587 | HIV Life Cycle | 0.756945 | 0.121 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.758806 | 0.120 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.759942 | 0.119 |
R-HSA-202403 | TCR signaling | 0.762797 | 0.118 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.765329 | 0.116 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.765329 | 0.116 |
R-HSA-5654736 | Signaling by FGFR1 | 0.765329 | 0.116 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 0.765329 | 0.116 |
R-HSA-177929 | Signaling by EGFR | 0.765329 | 0.116 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.769664 | 0.114 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.774428 | 0.111 |
R-HSA-8953897 | Cellular responses to stimuli | 0.779016 | 0.108 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.779791 | 0.108 |
R-HSA-186712 | Regulation of beta-cell development | 0.780776 | 0.107 |
R-HSA-68882 | Mitotic Anaphase | 0.780951 | 0.107 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.783703 | 0.106 |
R-HSA-8873719 | RAB geranylgeranylation | 0.785696 | 0.105 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.785696 | 0.105 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.785696 | 0.105 |
R-HSA-351202 | Metabolism of polyamines | 0.785696 | 0.105 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.789161 | 0.103 |
R-HSA-211976 | Endogenous sterols | 0.790506 | 0.102 |
R-HSA-112043 | PLC beta mediated events | 0.790506 | 0.102 |
R-HSA-8956321 | Nucleotide salvage | 0.790506 | 0.102 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.795209 | 0.100 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.795209 | 0.100 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.795209 | 0.100 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.795209 | 0.100 |
R-HSA-186797 | Signaling by PDGF | 0.795209 | 0.100 |
R-HSA-373755 | Semaphorin interactions | 0.799806 | 0.097 |
R-HSA-2262752 | Cellular responses to stress | 0.800193 | 0.097 |
R-HSA-72306 | tRNA processing | 0.800843 | 0.096 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.809672 | 0.092 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.809672 | 0.092 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.810410 | 0.091 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.812195 | 0.090 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.812989 | 0.090 |
R-HSA-2132295 | MHC class II antigen presentation | 0.816105 | 0.088 |
R-HSA-112040 | G-protein mediated events | 0.817188 | 0.088 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 0.817188 | 0.088 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.821293 | 0.086 |
R-HSA-167172 | Transcription of the HIV genome | 0.821293 | 0.086 |
R-HSA-422475 | Axon guidance | 0.824912 | 0.084 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.829229 | 0.081 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.829229 | 0.081 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.829229 | 0.081 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.829229 | 0.081 |
R-HSA-9840310 | Glycosphingolipid catabolism | 0.829229 | 0.081 |
R-HSA-114608 | Platelet degranulation | 0.831343 | 0.080 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.833065 | 0.079 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.833065 | 0.079 |
R-HSA-74259 | Purine catabolism | 0.836814 | 0.077 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.841145 | 0.075 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.844063 | 0.074 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.847566 | 0.072 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.847566 | 0.072 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.848123 | 0.072 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.850768 | 0.070 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.860610 | 0.065 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.860933 | 0.065 |
R-HSA-163685 | Integration of energy metabolism | 0.860933 | 0.065 |
R-HSA-5654738 | Signaling by FGFR2 | 0.863939 | 0.064 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.863939 | 0.064 |
R-HSA-449147 | Signaling by Interleukins | 0.866074 | 0.062 |
R-HSA-977225 | Amyloid fiber formation | 0.866996 | 0.062 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.872908 | 0.059 |
R-HSA-9675108 | Nervous system development | 0.876643 | 0.057 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.877211 | 0.057 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.879388 | 0.056 |
R-HSA-72766 | Translation | 0.883791 | 0.054 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.883956 | 0.054 |
R-HSA-438064 | Post NMDA receptor activation events | 0.886565 | 0.052 |
R-HSA-9663891 | Selective autophagy | 0.889115 | 0.051 |
R-HSA-1236974 | ER-Phagosome pathway | 0.891609 | 0.050 |
R-HSA-392499 | Metabolism of proteins | 0.893317 | 0.049 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.893657 | 0.049 |
R-HSA-202424 | Downstream TCR signaling | 0.894046 | 0.049 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.901035 | 0.045 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.901091 | 0.045 |
R-HSA-9679506 | SARS-CoV Infections | 0.905267 | 0.043 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.907564 | 0.042 |
R-HSA-5389840 | Mitochondrial translation elongation | 0.911677 | 0.040 |
R-HSA-5368286 | Mitochondrial translation initiation | 0.915607 | 0.038 |
R-HSA-190236 | Signaling by FGFR | 0.915607 | 0.038 |
R-HSA-9614085 | FOXO-mediated transcription | 0.917506 | 0.037 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.917506 | 0.037 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.922951 | 0.035 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 0.924685 | 0.034 |
R-HSA-192823 | Viral mRNA Translation | 0.924685 | 0.034 |
R-HSA-111885 | Opioid Signalling | 0.926380 | 0.033 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.927595 | 0.033 |
R-HSA-15869 | Metabolism of nucleotides | 0.929359 | 0.032 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.932789 | 0.030 |
R-HSA-211000 | Gene Silencing by RNA | 0.932789 | 0.030 |
R-HSA-2672351 | Stimuli-sensing channels | 0.934303 | 0.030 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.934303 | 0.030 |
R-HSA-5419276 | Mitochondrial translation termination | 0.935782 | 0.029 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.937228 | 0.028 |
R-HSA-6803157 | Antimicrobial peptides | 0.938642 | 0.028 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.940024 | 0.027 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.940024 | 0.027 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.940024 | 0.027 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.940024 | 0.027 |
R-HSA-9824446 | Viral Infection Pathways | 0.940998 | 0.026 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.941374 | 0.026 |
R-HSA-9609646 | HCMV Infection | 0.943913 | 0.025 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.945248 | 0.024 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.946481 | 0.024 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.948284 | 0.023 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.951133 | 0.022 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.951676 | 0.022 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.952048 | 0.021 |
R-HSA-1660662 | Glycosphingolipid metabolism | 0.955402 | 0.020 |
R-HSA-9609690 | HCMV Early Events | 0.955550 | 0.020 |
R-HSA-6809371 | Formation of the cornified envelope | 0.956407 | 0.019 |
R-HSA-428157 | Sphingolipid metabolism | 0.959585 | 0.018 |
R-HSA-6798695 | Neutrophil degranulation | 0.960008 | 0.018 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.961099 | 0.017 |
R-HSA-376176 | Signaling by ROBO receptors | 0.961099 | 0.017 |
R-HSA-8956319 | Nucleotide catabolism | 0.961982 | 0.017 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.962580 | 0.017 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.962839 | 0.016 |
R-HSA-112316 | Neuronal System | 0.965656 | 0.015 |
R-HSA-5368287 | Mitochondrial translation | 0.970420 | 0.013 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.974789 | 0.011 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.976990 | 0.010 |
R-HSA-72312 | rRNA processing | 0.978212 | 0.010 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.978999 | 0.009 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.980390 | 0.009 |
R-HSA-9610379 | HCMV Late Events | 0.981266 | 0.008 |
R-HSA-9711097 | Cellular response to starvation | 0.981690 | 0.008 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.981690 | 0.008 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.983767 | 0.007 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.984036 | 0.007 |
R-HSA-8957322 | Metabolism of steroids | 0.984404 | 0.007 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.985095 | 0.007 |
R-HSA-418555 | G alpha (s) signalling events | 0.986705 | 0.006 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.987587 | 0.005 |
R-HSA-416476 | G alpha (q) signalling events | 0.988408 | 0.005 |
R-HSA-168255 | Influenza Infection | 0.988929 | 0.005 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.990568 | 0.004 |
R-HSA-983712 | Ion channel transport | 0.991194 | 0.004 |
R-HSA-1280218 | Adaptive Immune System | 0.991679 | 0.004 |
R-HSA-9658195 | Leishmania infection | 0.991748 | 0.004 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.991748 | 0.004 |
R-HSA-1483257 | Phospholipid metabolism | 0.993775 | 0.003 |
R-HSA-6805567 | Keratinization | 0.994170 | 0.003 |
R-HSA-1266738 | Developmental Biology | 0.996471 | 0.002 |
R-HSA-418594 | G alpha (i) signalling events | 0.996681 | 0.001 |
R-HSA-388396 | GPCR downstream signalling | 0.997537 | 0.001 |
R-HSA-168249 | Innate Immune System | 0.997849 | 0.001 |
R-HSA-109582 | Hemostasis | 0.997885 | 0.001 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.998885 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 0.999324 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999397 | 0.000 |
R-HSA-5663205 | Infectious disease | 0.999586 | 0.000 |
R-HSA-168256 | Immune System | 0.999721 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.999918 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999925 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999930 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.999949 | 0.000 |
R-HSA-1643685 | Disease | 0.999960 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999965 | 0.000 |
R-HSA-211859 | Biological oxidations | 0.999996 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 0.999998 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999999 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 0.999999 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
KIS |
0.882 | 0.808 | 1 | 0.712 |
CDK18 |
0.880 | 0.874 | 1 | 0.796 |
CDK17 |
0.879 | 0.892 | 1 | 0.832 |
P38G |
0.877 | 0.908 | 1 | 0.841 |
CDK19 |
0.876 | 0.853 | 1 | 0.779 |
HIPK2 |
0.875 | 0.805 | 1 | 0.776 |
CDK3 |
0.874 | 0.785 | 1 | 0.823 |
CDK8 |
0.872 | 0.857 | 1 | 0.739 |
CDK1 |
0.872 | 0.853 | 1 | 0.772 |
JNK2 |
0.871 | 0.907 | 1 | 0.792 |
P38D |
0.869 | 0.885 | 1 | 0.838 |
CDK16 |
0.869 | 0.849 | 1 | 0.817 |
CDK7 |
0.869 | 0.850 | 1 | 0.742 |
ERK1 |
0.866 | 0.860 | 1 | 0.775 |
P38B |
0.863 | 0.864 | 1 | 0.758 |
CDK13 |
0.863 | 0.848 | 1 | 0.766 |
CDK5 |
0.863 | 0.822 | 1 | 0.711 |
CDK12 |
0.861 | 0.848 | 1 | 0.790 |
DYRK2 |
0.861 | 0.784 | 1 | 0.679 |
JNK3 |
0.860 | 0.890 | 1 | 0.761 |
DYRK4 |
0.857 | 0.795 | 1 | 0.785 |
CDK9 |
0.856 | 0.840 | 1 | 0.758 |
CLK3 |
0.854 | 0.532 | 1 | 0.416 |
CDK10 |
0.853 | 0.785 | 1 | 0.768 |
DYRK1B |
0.853 | 0.769 | 1 | 0.737 |
CDK14 |
0.852 | 0.830 | 1 | 0.750 |
HIPK1 |
0.852 | 0.728 | 1 | 0.657 |
P38A |
0.851 | 0.832 | 1 | 0.679 |
ERK2 |
0.850 | 0.853 | 1 | 0.719 |
HIPK4 |
0.848 | 0.519 | 1 | 0.449 |
NLK |
0.843 | 0.753 | 1 | 0.452 |
CDK4 |
0.842 | 0.824 | 1 | 0.799 |
CDK6 |
0.842 | 0.797 | 1 | 0.771 |
JNK1 |
0.842 | 0.803 | 1 | 0.794 |
CDK2 |
0.839 | 0.661 | 1 | 0.637 |
DYRK1A |
0.839 | 0.640 | 1 | 0.636 |
HIPK3 |
0.839 | 0.703 | 1 | 0.628 |
SRPK1 |
0.836 | 0.354 | -3 | 0.756 |
ERK5 |
0.832 | 0.419 | 1 | 0.367 |
DYRK3 |
0.829 | 0.570 | 1 | 0.619 |
CLK1 |
0.829 | 0.440 | -3 | 0.749 |
CLK2 |
0.829 | 0.427 | -3 | 0.758 |
SRPK2 |
0.826 | 0.289 | -3 | 0.681 |
CLK4 |
0.826 | 0.406 | -3 | 0.772 |
MTOR |
0.823 | 0.223 | 1 | 0.242 |
ICK |
0.823 | 0.386 | -3 | 0.844 |
MAK |
0.822 | 0.523 | -2 | 0.783 |
COT |
0.818 | -0.066 | 2 | 0.881 |
CDKL5 |
0.816 | 0.176 | -3 | 0.801 |
PRP4 |
0.814 | 0.488 | -3 | 0.771 |
CDKL1 |
0.813 | 0.156 | -3 | 0.806 |
PRKD1 |
0.813 | 0.047 | -3 | 0.840 |
CDC7 |
0.811 | -0.089 | 1 | 0.068 |
MOK |
0.810 | 0.482 | 1 | 0.541 |
SRPK3 |
0.810 | 0.240 | -3 | 0.724 |
TBK1 |
0.809 | -0.143 | 1 | 0.037 |
MOS |
0.808 | -0.015 | 1 | 0.107 |
PRKD2 |
0.808 | 0.046 | -3 | 0.788 |
NDR2 |
0.808 | -0.008 | -3 | 0.855 |
PIM3 |
0.807 | -0.024 | -3 | 0.847 |
PRPK |
0.806 | -0.092 | -1 | 0.874 |
IKKE |
0.804 | -0.160 | 1 | 0.037 |
CAMK1B |
0.803 | -0.012 | -3 | 0.859 |
ATR |
0.803 | -0.053 | 1 | 0.104 |
IKKB |
0.803 | -0.151 | -2 | 0.797 |
NUAK2 |
0.802 | 0.027 | -3 | 0.851 |
PKN3 |
0.802 | -0.035 | -3 | 0.836 |
MST4 |
0.801 | -0.037 | 2 | 0.854 |
GCN2 |
0.801 | -0.183 | 2 | 0.797 |
CHAK2 |
0.801 | -0.020 | -1 | 0.908 |
RAF1 |
0.800 | -0.192 | 1 | 0.049 |
PIM1 |
0.800 | 0.035 | -3 | 0.792 |
NEK6 |
0.800 | -0.072 | -2 | 0.890 |
BMPR2 |
0.799 | -0.136 | -2 | 0.928 |
NDR1 |
0.799 | -0.043 | -3 | 0.840 |
ULK2 |
0.798 | -0.191 | 2 | 0.793 |
PDHK4 |
0.798 | -0.171 | 1 | 0.115 |
TGFBR2 |
0.798 | -0.050 | -2 | 0.868 |
DSTYK |
0.798 | -0.144 | 2 | 0.882 |
IKKA |
0.798 | -0.069 | -2 | 0.789 |
AMPKA1 |
0.798 | -0.033 | -3 | 0.862 |
WNK1 |
0.797 | -0.080 | -2 | 0.899 |
ERK7 |
0.797 | 0.266 | 2 | 0.538 |
RSK2 |
0.797 | -0.003 | -3 | 0.782 |
NIK |
0.797 | -0.054 | -3 | 0.875 |
MARK4 |
0.796 | -0.048 | 4 | 0.895 |
NEK7 |
0.795 | -0.161 | -3 | 0.841 |
PKCD |
0.795 | -0.031 | 2 | 0.784 |
GRK1 |
0.795 | -0.023 | -2 | 0.823 |
P90RSK |
0.795 | -0.005 | -3 | 0.784 |
SKMLCK |
0.794 | -0.059 | -2 | 0.880 |
LATS2 |
0.794 | -0.035 | -5 | 0.752 |
AMPKA2 |
0.794 | -0.017 | -3 | 0.830 |
MAPKAPK2 |
0.794 | -0.014 | -3 | 0.744 |
CAMK2G |
0.794 | -0.105 | 2 | 0.800 |
MAPKAPK3 |
0.794 | -0.043 | -3 | 0.788 |
PKN2 |
0.793 | -0.070 | -3 | 0.835 |
TSSK1 |
0.793 | -0.015 | -3 | 0.885 |
PDHK1 |
0.793 | -0.191 | 1 | 0.094 |
BMPR1B |
0.793 | -0.005 | 1 | 0.042 |
RSK3 |
0.792 | -0.022 | -3 | 0.776 |
PRKD3 |
0.792 | 0.021 | -3 | 0.750 |
CAMLCK |
0.792 | -0.030 | -2 | 0.876 |
AURC |
0.792 | 0.010 | -2 | 0.676 |
P70S6KB |
0.792 | -0.008 | -3 | 0.798 |
PKACG |
0.791 | -0.028 | -2 | 0.775 |
ULK1 |
0.791 | -0.163 | -3 | 0.808 |
DAPK2 |
0.790 | -0.054 | -3 | 0.868 |
HUNK |
0.789 | -0.148 | 2 | 0.813 |
TGFBR1 |
0.789 | 0.004 | -2 | 0.896 |
NUAK1 |
0.789 | -0.013 | -3 | 0.796 |
ALK4 |
0.788 | -0.003 | -2 | 0.913 |
MLK1 |
0.788 | -0.171 | 2 | 0.806 |
MLK2 |
0.788 | -0.126 | 2 | 0.828 |
TSSK2 |
0.788 | -0.059 | -5 | 0.850 |
CAMK2D |
0.787 | -0.095 | -3 | 0.846 |
LATS1 |
0.787 | 0.014 | -3 | 0.867 |
GRK5 |
0.787 | -0.161 | -3 | 0.850 |
PHKG1 |
0.787 | -0.059 | -3 | 0.832 |
GRK7 |
0.787 | -0.001 | 1 | 0.086 |
IRE1 |
0.787 | -0.110 | 1 | 0.048 |
MNK2 |
0.787 | -0.031 | -2 | 0.816 |
BCKDK |
0.787 | -0.155 | -1 | 0.832 |
RIPK3 |
0.787 | -0.176 | 3 | 0.735 |
DNAPK |
0.785 | -0.046 | 1 | 0.107 |
WNK3 |
0.785 | -0.213 | 1 | 0.049 |
QSK |
0.785 | -0.023 | 4 | 0.878 |
PKCB |
0.784 | -0.043 | 2 | 0.731 |
NIM1 |
0.784 | -0.092 | 3 | 0.783 |
NEK9 |
0.784 | -0.196 | 2 | 0.844 |
MELK |
0.784 | -0.063 | -3 | 0.811 |
ATM |
0.784 | -0.082 | 1 | 0.077 |
DLK |
0.783 | -0.201 | 1 | 0.062 |
PKR |
0.783 | -0.084 | 1 | 0.066 |
MASTL |
0.783 | -0.194 | -2 | 0.854 |
PKACB |
0.783 | 0.010 | -2 | 0.698 |
MLK3 |
0.782 | -0.087 | 2 | 0.729 |
SIK |
0.782 | -0.030 | -3 | 0.767 |
RSK4 |
0.782 | -0.002 | -3 | 0.758 |
PINK1 |
0.782 | 0.161 | 1 | 0.269 |
PAK6 |
0.781 | -0.019 | -2 | 0.720 |
PAK1 |
0.781 | -0.064 | -2 | 0.804 |
MPSK1 |
0.781 | 0.041 | 1 | 0.123 |
PKCZ |
0.781 | -0.057 | 2 | 0.783 |
PAK3 |
0.781 | -0.086 | -2 | 0.806 |
QIK |
0.781 | -0.087 | -3 | 0.839 |
IRE2 |
0.781 | -0.102 | 2 | 0.753 |
CAMK4 |
0.781 | -0.112 | -3 | 0.824 |
ANKRD3 |
0.781 | -0.185 | 1 | 0.063 |
PKCA |
0.780 | -0.048 | 2 | 0.722 |
MNK1 |
0.780 | -0.026 | -2 | 0.827 |
GRK6 |
0.780 | -0.150 | 1 | 0.048 |
CAMK2B |
0.780 | -0.057 | 2 | 0.775 |
AKT2 |
0.780 | 0.021 | -3 | 0.699 |
VRK2 |
0.780 | 0.010 | 1 | 0.151 |
PRKX |
0.780 | 0.035 | -3 | 0.698 |
PKCG |
0.780 | -0.065 | 2 | 0.720 |
CHK1 |
0.779 | -0.026 | -3 | 0.845 |
PKG2 |
0.779 | -0.015 | -2 | 0.704 |
SGK3 |
0.779 | -0.016 | -3 | 0.773 |
GSK3A |
0.779 | 0.194 | 4 | 0.437 |
ACVR2A |
0.779 | -0.059 | -2 | 0.862 |
ACVR2B |
0.779 | -0.061 | -2 | 0.874 |
MSK2 |
0.779 | -0.053 | -3 | 0.751 |
CAMK2A |
0.779 | -0.031 | 2 | 0.777 |
RIPK1 |
0.778 | -0.218 | 1 | 0.038 |
FAM20C |
0.778 | -0.020 | 2 | 0.619 |
MARK3 |
0.777 | -0.033 | 4 | 0.839 |
CHAK1 |
0.777 | -0.139 | 2 | 0.787 |
PIM2 |
0.777 | 0.015 | -3 | 0.754 |
YSK4 |
0.777 | -0.173 | 1 | 0.039 |
AURB |
0.776 | -0.030 | -2 | 0.672 |
BRSK2 |
0.776 | -0.083 | -3 | 0.820 |
PLK1 |
0.776 | -0.143 | -2 | 0.849 |
BMPR1A |
0.776 | -0.016 | 1 | 0.035 |
NEK2 |
0.776 | -0.152 | 2 | 0.818 |
BRSK1 |
0.776 | -0.062 | -3 | 0.799 |
TLK2 |
0.776 | -0.109 | 1 | 0.042 |
MARK2 |
0.776 | -0.041 | 4 | 0.809 |
ALK2 |
0.776 | -0.036 | -2 | 0.892 |
TTBK2 |
0.775 | -0.207 | 2 | 0.703 |
PKCH |
0.775 | -0.079 | 2 | 0.712 |
DCAMKL1 |
0.775 | -0.037 | -3 | 0.799 |
GRK4 |
0.775 | -0.172 | -2 | 0.854 |
SMG1 |
0.775 | -0.099 | 1 | 0.094 |
MEK1 |
0.775 | -0.153 | 2 | 0.838 |
MLK4 |
0.772 | -0.131 | 2 | 0.716 |
PLK4 |
0.772 | -0.130 | 2 | 0.625 |
MSK1 |
0.771 | -0.041 | -3 | 0.754 |
CAMK1G |
0.771 | -0.053 | -3 | 0.763 |
SSTK |
0.771 | -0.035 | 4 | 0.868 |
PAK2 |
0.771 | -0.098 | -2 | 0.790 |
TAO3 |
0.770 | -0.051 | 1 | 0.084 |
MAPKAPK5 |
0.770 | -0.088 | -3 | 0.727 |
MYLK4 |
0.769 | -0.057 | -2 | 0.793 |
MST3 |
0.769 | -0.073 | 2 | 0.831 |
MARK1 |
0.769 | -0.072 | 4 | 0.858 |
GRK2 |
0.768 | -0.087 | -2 | 0.754 |
AKT1 |
0.768 | -0.008 | -3 | 0.719 |
PERK |
0.768 | -0.144 | -2 | 0.891 |
IRAK4 |
0.768 | -0.137 | 1 | 0.029 |
PKCT |
0.767 | -0.075 | 2 | 0.728 |
DCAMKL2 |
0.767 | -0.049 | -3 | 0.815 |
PLK3 |
0.767 | -0.132 | 2 | 0.755 |
ZAK |
0.767 | -0.172 | 1 | 0.047 |
DRAK1 |
0.767 | -0.164 | 1 | 0.032 |
PHKG2 |
0.767 | -0.090 | -3 | 0.797 |
NEK5 |
0.766 | -0.154 | 1 | 0.044 |
WNK4 |
0.766 | -0.140 | -2 | 0.885 |
BUB1 |
0.766 | 0.065 | -5 | 0.828 |
MEK5 |
0.766 | -0.180 | 2 | 0.826 |
MEKK1 |
0.766 | -0.177 | 1 | 0.060 |
PASK |
0.766 | -0.041 | -3 | 0.867 |
PKCI |
0.765 | -0.048 | 2 | 0.741 |
MEKK2 |
0.765 | -0.143 | 2 | 0.808 |
AURA |
0.765 | -0.053 | -2 | 0.634 |
BRAF |
0.764 | -0.146 | -4 | 0.859 |
PKACA |
0.764 | -0.008 | -2 | 0.649 |
HRI |
0.764 | -0.174 | -2 | 0.900 |
CK1E |
0.764 | -0.028 | -3 | 0.562 |
GAK |
0.764 | -0.032 | 1 | 0.106 |
P70S6K |
0.764 | -0.037 | -3 | 0.711 |
PAK5 |
0.764 | -0.051 | -2 | 0.663 |
TLK1 |
0.763 | -0.134 | -2 | 0.882 |
LKB1 |
0.763 | -0.051 | -3 | 0.843 |
MEKK3 |
0.762 | -0.190 | 1 | 0.057 |
SNRK |
0.762 | -0.182 | 2 | 0.676 |
GSK3B |
0.761 | 0.033 | 4 | 0.429 |
CAMK1D |
0.760 | -0.031 | -3 | 0.700 |
SMMLCK |
0.760 | -0.058 | -3 | 0.815 |
PDK1 |
0.760 | -0.081 | 1 | 0.091 |
SBK |
0.759 | 0.116 | -3 | 0.584 |
TAO2 |
0.759 | -0.087 | 2 | 0.849 |
PAK4 |
0.759 | -0.045 | -2 | 0.665 |
PKCE |
0.759 | -0.025 | 2 | 0.707 |
PBK |
0.759 | -0.027 | 1 | 0.095 |
AKT3 |
0.758 | 0.007 | -3 | 0.641 |
NEK11 |
0.758 | -0.161 | 1 | 0.077 |
CK1D |
0.758 | -0.003 | -3 | 0.508 |
SGK1 |
0.757 | 0.028 | -3 | 0.621 |
PKN1 |
0.757 | -0.048 | -3 | 0.732 |
GCK |
0.757 | -0.097 | 1 | 0.063 |
MAP3K15 |
0.757 | -0.116 | 1 | 0.062 |
CK2A2 |
0.755 | -0.075 | 1 | 0.038 |
LOK |
0.755 | -0.078 | -2 | 0.819 |
TNIK |
0.755 | -0.074 | 3 | 0.884 |
MEKK6 |
0.754 | -0.132 | 1 | 0.060 |
DAPK3 |
0.754 | -0.051 | -3 | 0.804 |
NEK8 |
0.754 | -0.189 | 2 | 0.815 |
HGK |
0.754 | -0.106 | 3 | 0.876 |
CAMKK2 |
0.754 | -0.145 | -2 | 0.803 |
MST2 |
0.753 | -0.143 | 1 | 0.046 |
SLK |
0.753 | -0.061 | -2 | 0.770 |
MINK |
0.753 | -0.139 | 1 | 0.038 |
LRRK2 |
0.752 | -0.049 | 2 | 0.844 |
ROCK2 |
0.752 | -0.013 | -3 | 0.795 |
NEK4 |
0.752 | -0.182 | 1 | 0.035 |
CAMKK1 |
0.752 | -0.207 | -2 | 0.799 |
CHK2 |
0.752 | -0.021 | -3 | 0.645 |
MRCKB |
0.752 | -0.013 | -3 | 0.739 |
GRK3 |
0.751 | -0.092 | -2 | 0.708 |
CK1G1 |
0.751 | -0.074 | -3 | 0.537 |
CK1A2 |
0.751 | -0.030 | -3 | 0.509 |
MRCKA |
0.751 | -0.018 | -3 | 0.757 |
HPK1 |
0.751 | -0.107 | 1 | 0.065 |
KHS1 |
0.751 | -0.079 | 1 | 0.058 |
CAMK1A |
0.750 | -0.019 | -3 | 0.657 |
KHS2 |
0.750 | -0.051 | 1 | 0.069 |
HASPIN |
0.749 | 0.002 | -1 | 0.742 |
BIKE |
0.749 | -0.016 | 1 | 0.110 |
TTBK1 |
0.749 | -0.189 | 2 | 0.617 |
NEK1 |
0.748 | -0.169 | 1 | 0.029 |
AAK1 |
0.748 | 0.021 | 1 | 0.128 |
EEF2K |
0.748 | -0.112 | 3 | 0.837 |
MST1 |
0.746 | -0.150 | 1 | 0.037 |
IRAK1 |
0.746 | -0.241 | -1 | 0.787 |
DAPK1 |
0.746 | -0.061 | -3 | 0.786 |
DMPK1 |
0.745 | 0.017 | -3 | 0.762 |
VRK1 |
0.745 | -0.187 | 2 | 0.852 |
CK2A1 |
0.745 | -0.087 | 1 | 0.032 |
CRIK |
0.744 | 0.017 | -3 | 0.721 |
TAK1 |
0.744 | -0.209 | 1 | 0.038 |
YSK1 |
0.744 | -0.139 | 2 | 0.813 |
PDHK3_TYR |
0.743 | 0.136 | 4 | 0.917 |
NEK3 |
0.742 | -0.129 | 1 | 0.063 |
PKG1 |
0.741 | -0.041 | -2 | 0.624 |
STK33 |
0.740 | -0.148 | 2 | 0.600 |
PLK2 |
0.740 | -0.079 | -3 | 0.801 |
ROCK1 |
0.738 | -0.029 | -3 | 0.755 |
MEK2 |
0.737 | -0.217 | 2 | 0.818 |
OSR1 |
0.737 | -0.094 | 2 | 0.807 |
LIMK2_TYR |
0.737 | 0.117 | -3 | 0.888 |
TESK1_TYR |
0.736 | 0.038 | 3 | 0.898 |
PDHK4_TYR |
0.734 | 0.054 | 2 | 0.875 |
TTK |
0.734 | -0.088 | -2 | 0.866 |
RIPK2 |
0.733 | -0.246 | 1 | 0.034 |
TAO1 |
0.733 | -0.106 | 1 | 0.059 |
PKMYT1_TYR |
0.733 | 0.098 | 3 | 0.864 |
ASK1 |
0.731 | -0.153 | 1 | 0.063 |
MAP2K4_TYR |
0.730 | -0.020 | -1 | 0.886 |
MAP2K6_TYR |
0.729 | 0.005 | -1 | 0.899 |
MYO3B |
0.729 | -0.114 | 2 | 0.826 |
MAP2K7_TYR |
0.728 | -0.100 | 2 | 0.856 |
BMPR2_TYR |
0.727 | 0.003 | -1 | 0.891 |
MYO3A |
0.727 | -0.123 | 1 | 0.056 |
PDHK1_TYR |
0.726 | -0.052 | -1 | 0.913 |
PINK1_TYR |
0.726 | -0.128 | 1 | 0.106 |
RET |
0.725 | -0.126 | 1 | 0.076 |
LIMK1_TYR |
0.723 | -0.022 | 2 | 0.858 |
ALPHAK3 |
0.722 | -0.114 | -1 | 0.792 |
JAK2 |
0.722 | -0.113 | 1 | 0.086 |
NEK10_TYR |
0.721 | -0.096 | 1 | 0.068 |
MST1R |
0.720 | -0.111 | 3 | 0.834 |
TYK2 |
0.720 | -0.197 | 1 | 0.063 |
CSF1R |
0.718 | -0.104 | 3 | 0.807 |
EPHA6 |
0.718 | -0.104 | -1 | 0.878 |
ROS1 |
0.716 | -0.146 | 3 | 0.792 |
YANK3 |
0.716 | -0.079 | 2 | 0.386 |
STLK3 |
0.716 | -0.192 | 1 | 0.034 |
JAK3 |
0.715 | -0.127 | 1 | 0.071 |
ABL2 |
0.715 | -0.103 | -1 | 0.813 |
TYRO3 |
0.714 | -0.173 | 3 | 0.822 |
CK1A |
0.714 | -0.053 | -3 | 0.415 |
EPHB4 |
0.714 | -0.138 | -1 | 0.843 |
TNNI3K_TYR |
0.713 | -0.061 | 1 | 0.091 |
JAK1 |
0.713 | -0.104 | 1 | 0.061 |
TXK |
0.713 | -0.090 | 1 | 0.036 |
DDR1 |
0.713 | -0.138 | 4 | 0.843 |
FGFR2 |
0.713 | -0.052 | 3 | 0.796 |
FGFR1 |
0.712 | -0.043 | 3 | 0.778 |
YES1 |
0.711 | -0.110 | -1 | 0.853 |
TNK1 |
0.711 | -0.081 | 3 | 0.796 |
ABL1 |
0.711 | -0.113 | -1 | 0.805 |
LCK |
0.709 | -0.097 | -1 | 0.844 |
FGR |
0.708 | -0.179 | 1 | 0.038 |
TEK |
0.708 | -0.031 | 3 | 0.749 |
INSRR |
0.707 | -0.144 | 3 | 0.753 |
TNK2 |
0.707 | -0.131 | 3 | 0.775 |
KDR |
0.707 | -0.102 | 3 | 0.760 |
KIT |
0.707 | -0.132 | 3 | 0.809 |
FER |
0.707 | -0.190 | 1 | 0.051 |
FLT3 |
0.707 | -0.169 | 3 | 0.809 |
PDGFRB |
0.706 | -0.199 | 3 | 0.823 |
BLK |
0.705 | -0.089 | -1 | 0.851 |
HCK |
0.705 | -0.153 | -1 | 0.836 |
EPHA4 |
0.705 | -0.108 | 2 | 0.753 |
EPHB1 |
0.704 | -0.176 | 1 | 0.033 |
ITK |
0.704 | -0.157 | -1 | 0.809 |
MET |
0.703 | -0.115 | 3 | 0.809 |
SRMS |
0.702 | -0.191 | 1 | 0.027 |
EPHB3 |
0.701 | -0.172 | -1 | 0.830 |
EPHB2 |
0.701 | -0.158 | -1 | 0.821 |
FGFR3 |
0.701 | -0.071 | 3 | 0.765 |
PDGFRA |
0.701 | -0.211 | 3 | 0.823 |
DDR2 |
0.701 | -0.050 | 3 | 0.742 |
AXL |
0.699 | -0.189 | 3 | 0.790 |
FYN |
0.698 | -0.088 | -1 | 0.827 |
MERTK |
0.697 | -0.181 | 3 | 0.786 |
WEE1_TYR |
0.697 | -0.117 | -1 | 0.761 |
ERBB2 |
0.696 | -0.163 | 1 | 0.051 |
BMX |
0.696 | -0.135 | -1 | 0.713 |
FLT1 |
0.696 | -0.144 | -1 | 0.851 |
EGFR |
0.696 | -0.106 | 1 | 0.037 |
ALK |
0.695 | -0.171 | 3 | 0.738 |
TEC |
0.695 | -0.158 | -1 | 0.734 |
FRK |
0.694 | -0.155 | -1 | 0.845 |
BTK |
0.693 | -0.228 | -1 | 0.764 |
EPHA7 |
0.693 | -0.150 | 2 | 0.759 |
FLT4 |
0.692 | -0.165 | 3 | 0.745 |
LTK |
0.691 | -0.187 | 3 | 0.759 |
INSR |
0.691 | -0.176 | 3 | 0.734 |
NTRK1 |
0.691 | -0.227 | -1 | 0.818 |
PTK2B |
0.690 | -0.120 | -1 | 0.778 |
EPHA1 |
0.690 | -0.185 | 3 | 0.787 |
CK1G3 |
0.690 | -0.061 | -3 | 0.365 |
NTRK3 |
0.689 | -0.166 | -1 | 0.768 |
NTRK2 |
0.689 | -0.223 | 3 | 0.760 |
MATK |
0.689 | -0.112 | -1 | 0.751 |
PTK6 |
0.689 | -0.220 | -1 | 0.736 |
LYN |
0.689 | -0.146 | 3 | 0.720 |
EPHA3 |
0.689 | -0.166 | 2 | 0.729 |
EPHA8 |
0.688 | -0.121 | -1 | 0.826 |
FGFR4 |
0.688 | -0.109 | -1 | 0.771 |
SRC |
0.687 | -0.127 | -1 | 0.820 |
MUSK |
0.687 | -0.139 | 1 | 0.020 |
PTK2 |
0.686 | -0.065 | -1 | 0.808 |
SYK |
0.685 | -0.081 | -1 | 0.790 |
EPHA5 |
0.685 | -0.158 | 2 | 0.739 |
CSK |
0.683 | -0.160 | 2 | 0.763 |
ERBB4 |
0.683 | -0.091 | 1 | 0.036 |
YANK2 |
0.682 | -0.095 | 2 | 0.399 |
EPHA2 |
0.676 | -0.139 | -1 | 0.775 |
IGF1R |
0.675 | -0.160 | 3 | 0.671 |
ZAP70 |
0.674 | -0.060 | -1 | 0.712 |
CK1G2 |
0.672 | -0.057 | -3 | 0.457 |
FES |
0.661 | -0.162 | -1 | 0.697 |