Motif 180 (n=122)

Position-wise Probabilities

Download
uniprot genes site source protein function
A6NHQ4 EPOP S22 ochoa Elongin BC and Polycomb repressive complex 2-associated protein (Proline-rich protein 28) Scaffold protein that serves as a bridging partner between the PRC2/EZH2 complex and the elongin BC complex: required to fine-tune the transcriptional status of Polycomb group (PcG) target genes in embryonic stem cells (ESCs). Plays a key role in genomic regions that display both active and repressive chromatin properties in pluripotent stem cells by sustaining low level expression at PcG target genes: acts by recruiting the elongin BC complex, thereby restricting excessive activity of the PRC2/EZH2 complex. Interaction with USP7 promotes deubiquitination of H2B at promoter sites. Acts as a regulator of neuronal differentiation. {ECO:0000250|UniProtKB:Q7TNS8}.
A7MCY6 TBKBP1 S351 ochoa TANK-binding kinase 1-binding protein 1 (TBK1-binding protein 1) Adapter protein which constitutively binds TBK1 and IKBKE playing a role in antiviral innate immunity. {ECO:0000269|PubMed:21931631}.
A7MCY6 TBKBP1 S388 ochoa TANK-binding kinase 1-binding protein 1 (TBK1-binding protein 1) Adapter protein which constitutively binds TBK1 and IKBKE playing a role in antiviral innate immunity. {ECO:0000269|PubMed:21931631}.
E9PAV3 NACA S935 ochoa Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}.
E9PAV3 NACA S1404 ochoa Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}.
E9PAV3 NACA S1411 ochoa Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}.
E9PAV3 NACA S1639 ochoa Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}.
H0Y626 None S24 ochoa RING-type E3 ubiquitin transferase (EC 2.3.2.27) None
O00330 PDHX S162 ochoa Pyruvate dehydrogenase protein X component, mitochondrial (Dihydrolipoamide dehydrogenase-binding protein of pyruvate dehydrogenase complex) (E3-binding protein) (E3BP) (Lipoyl-containing pyruvate dehydrogenase complex component X) (proX) Required for anchoring dihydrolipoamide dehydrogenase (E3) to the dihydrolipoamide transacetylase (E2) core of the pyruvate dehydrogenase complexes of eukaryotes. This specific binding is essential for a functional PDH complex.
O60307 MAST3 S921 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O60307 MAST3 S935 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O60307 MAST3 S1201 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O75381 PEX14 S268 ochoa Peroxisomal membrane protein PEX14 (PTS1 receptor-docking protein) (Peroxin-14) (Peroxisomal membrane anchor protein PEX14) Component of the PEX13-PEX14 docking complex, a translocon channel that specifically mediates the import of peroxisomal cargo proteins bound to PEX5 receptor (PubMed:24235149, PubMed:28765278, PubMed:9653144). The PEX13-PEX14 docking complex forms a large import pore which can be opened to a diameter of about 9 nm (By similarity). Mechanistically, PEX5 receptor along with cargo proteins associates with the PEX14 subunit of the PEX13-PEX14 docking complex in the cytosol, leading to the insertion of the receptor into the organelle membrane with the concomitant translocation of the cargo into the peroxisome matrix (PubMed:24235149, PubMed:28765278). Plays a key role for peroxisome movement through a direct interaction with tubulin (PubMed:21525035). {ECO:0000250|UniProtKB:P53112, ECO:0000269|PubMed:21525035, ECO:0000269|PubMed:24235149, ECO:0000269|PubMed:28765278, ECO:0000269|PubMed:9653144}.
O94868 FCHSD2 Y667 ochoa F-BAR and double SH3 domains protein 2 (Carom) (Protein nervous wreck 1) (NWK1) (SH3 multiple domains protein 3) Adapter protein that plays a role in endocytosis via clathrin-coated pits. Contributes to the internalization of cell surface receptors, such as integrin ITGB1 and transferrin receptor (PubMed:29887380). Promotes endocytosis of EGFR in cancer cells, and thereby contributes to the down-regulation of EGFR signaling (PubMed:30249660). Recruited to clathrin-coated pits during a mid-to-late stage of assembly, where it is required for normal progress from U-shaped intermediate stage pits to terminal, omega-shaped pits (PubMed:29887380). Binds to membranes enriched in phosphatidylinositol 3,4-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate (PubMed:29887380). When bound to membranes, promotes actin polymerization via its interaction with WAS and/or WASL which leads to the activation of the Arp2/3 complex. Does not promote actin polymerisation in the absence of membranes (PubMed:29887380). {ECO:0000269|PubMed:29887380, ECO:0000269|PubMed:30249660}.
O95361 TRIM16 S24 ochoa Tripartite motif-containing protein 16 (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM16) (Estrogen-responsive B box protein) E3 ubiquitin ligase that plays an essential role in the organization of autophagic response and ubiquitination upon lysosomal and phagosomal damages. Plays a role in the stress-induced biogenesis and degradation of protein aggresomes by regulating the p62-KEAP1-NRF2 signaling and particularly by modulating the ubiquitination levels and thus stability of NRF2. Acts as a scaffold protein and facilitates autophagic degradation of protein aggregates by interacting with p62/SQSTM, ATG16L1 and LC3B/MAP1LC3B. In turn, protects the cell against oxidative stress-induced cell death as a consequence of endomembrane damage. {ECO:0000269|PubMed:22629402, ECO:0000269|PubMed:27693506, ECO:0000269|PubMed:30143514}.
P10636 MAPT S428 ochoa Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}.
P24928 POLR2A S1843 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1850 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1857 ochoa|psp DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1864 ochoa|psp DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1871 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1878 ochoa|psp DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A T1885 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1892 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1899 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1906 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1913 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1920 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1927 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1934 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P24928 POLR2A S1944 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P26651 ZFP36 S214 psp mRNA decay activator protein ZFP36 (G0/G1 switch regulatory protein 24) (Growth factor-inducible nuclear protein NUP475) (Tristetraprolin) (Zinc finger protein 36) (Zfp-36) Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:10330172, PubMed:10751406, PubMed:11279239, PubMed:12115244, PubMed:12748283, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:23644599, PubMed:25815583, PubMed:27193233, PubMed:31439631, PubMed:9703499). Acts as an 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258, PubMed:23644599). Recruits deadenylase CNOT7 (and probably the CCR4-NOT complex) via association with CNOT1, and hence promotes ARE-mediated mRNA deadenylation (PubMed:23644599). Functions also by recruiting components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs (PubMed:11719186, PubMed:12748283, PubMed:15687258, PubMed:16364915). Self regulates by destabilizing its own mRNA (PubMed:15187101). Binds to 3'-UTR ARE of numerous mRNAs and of its own mRNA (PubMed:10330172, PubMed:10751406, PubMed:12115244, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:19188452, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:25815583). Plays a role in anti-inflammatory responses; suppresses tumor necrosis factor (TNF)-alpha production by stimulating ARE-mediated TNF-alpha mRNA decay and several other inflammatory ARE-containing mRNAs in interferon (IFN)- and/or lipopolysaccharide (LPS)-induced macrophages (By similarity). Also plays a role in the regulation of dendritic cell maturation at the post-transcriptional level, and hence operates as part of a negative feedback loop to limit the inflammatory response (PubMed:18367721). Promotes ARE-mediated mRNA decay of hypoxia-inducible factor HIF1A mRNA during the response of endothelial cells to hypoxia (PubMed:21775632). Positively regulates early adipogenesis of preadipocytes by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Plays a role in maintaining skeletal muscle satellite cell quiescence by promoting ARE-mediated mRNA decay of the myogenic determination factor MYOD1 mRNA (By similarity). Associates also with and regulates the expression of non-ARE-containing target mRNAs at the post-transcriptional level, such as MHC class I mRNAs (PubMed:18367721). Participates in association with argonaute RISC catalytic components in the ARE-mediated mRNA decay mechanism; assists microRNA (miRNA) targeting ARE-containing mRNAs (PubMed:15766526). May also play a role in the regulation of cytoplasmic mRNA decapping; enhances decapping of ARE-containing RNAs, in vitro (PubMed:16364915). Involved in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, affects nuclear pre-mRNA processing (By similarity). Negatively regulates nuclear poly(A)-binding protein PABPN1-stimulated polyadenylation activity on ARE-containing pre-mRNA during LPS-stimulated macrophages (By similarity). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role as a tumor suppressor by inhibiting cell proliferation in breast cancer cells (PubMed:26926077). {ECO:0000250|UniProtKB:P22893, ECO:0000269|PubMed:10330172, ECO:0000269|PubMed:10751406, ECO:0000269|PubMed:11279239, ECO:0000269|PubMed:11719186, ECO:0000269|PubMed:12115244, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15187101, ECO:0000269|PubMed:15634918, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15766526, ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:16702957, ECO:0000269|PubMed:17030620, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18367721, ECO:0000269|PubMed:19188452, ECO:0000269|PubMed:20221403, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21775632, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:26926077, ECO:0000269|PubMed:27182009, ECO:0000269|PubMed:27193233, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:9703499}.; FUNCTION: (Microbial infection) Negatively regulates HTLV-1 TAX-dependent transactivation of viral long terminal repeat (LTR) promoter. {ECO:0000269|PubMed:14679154}.
P29692 EEF1D S133 ochoa|psp Elongation factor 1-delta (EF-1-delta) (Antigen NY-CO-4) [Isoform 1]: EF-1-beta and EF-1-delta stimulate the exchange of GDP bound to EF-1-alpha to GTP, regenerating EF-1-alpha for another round of transfer of aminoacyl-tRNAs to the ribosome.; FUNCTION: [Isoform 2]: Regulates induction of heat-shock-responsive genes through association with heat shock transcription factors and direct DNA-binding at heat shock promoter elements (HSE).
P47974 ZFP36L2 S426 ochoa mRNA decay activator protein ZFP36L2 (Butyrate response factor 2) (EGF-response factor 2) (ERF-2) (TPA-induced sequence 11d) (Zinc finger protein 36, C3H1 type-like 2) (ZFP36-like 2) Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:14981510, PubMed:25106868, PubMed:34611029). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:25106868). Functions by recruiting the CCR4-NOT deadenylase complex and probably other components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:25106868). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:14981510, PubMed:20506496, PubMed:25106868). Promotes ARE-containing mRNA decay of the low-density lipoprotein (LDL) receptor (LDLR) mRNA in response to phorbol 12-myristate 13-acetate (PMA) treatment in a p38 MAPK-dependent manner (PubMed:25106868). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs). Plays a role in mature peripheral neuron integrity by promoting ARE-containing mRNA decay of the transcriptional repressor REST mRNA. Plays a role in ovulation and oocyte meiotic maturation by promoting ARE-mediated mRNA decay of the luteinizing hormone receptor LHCGR mRNA. Acts as a negative regulator of erythroid cell differentiation: promotes glucocorticoid-induced self-renewal of erythroid cells by binding mRNAs that are induced or highly expressed during terminal erythroid differentiation and promotes their degradation, preventing erythroid cell differentiation. In association with ZFP36L1 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination process and functional immune cell formation. Together with ZFP36L1 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA. {ECO:0000250|UniProtKB:P23949, ECO:0000269|PubMed:14981510, ECO:0000269|PubMed:20506496, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:34611029}.
P49585 PCYT1A S329 ochoa Choline-phosphate cytidylyltransferase A (EC 2.7.7.15) (CCT-alpha) (CTP:phosphocholine cytidylyltransferase A) (CCT A) (CT A) (Phosphorylcholine transferase A) Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912, ECO:0000269|PubMed:30559292, ECO:0000269|PubMed:7918629}.
P50548 ERF S147 ochoa ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}.
P50548 ERF S154 ochoa ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}.
P54259 ATN1 S168 ochoa Atrophin-1 (Dentatorubral-pallidoluysian atrophy protein) Transcriptional corepressor. Recruits NR2E1 to repress transcription. Promotes vascular smooth cell (VSMC) migration and orientation (By similarity). Corepressor of MTG8 transcriptional repression. Has some intrinsic repression activity which is independent of the number of poly-Gln (polyQ) repeats. {ECO:0000250|UniProtKB:O35126, ECO:0000269|PubMed:10085113, ECO:0000269|PubMed:10973986}.
P55055 NR1H2 S27 ochoa Oxysterols receptor LXR-beta (Liver X receptor beta) (Nuclear receptor NER) (Nuclear receptor subfamily 1 group H member 2) (Ubiquitously-expressed nuclear receptor) Nuclear receptor that exhibits a ligand-dependent transcriptional activation activity (PubMed:25661920). Binds preferentially to double-stranded oligonucleotide direct repeats having the consensus half-site sequence 5'-AGGTCA-3' and 4-nt spacing (DR-4). Regulates cholesterol uptake through MYLIP-dependent ubiquitination of LDLR, VLDLR and LRP8; DLDLR and LRP8. Interplays functionally with RORA for the regulation of genes involved in liver metabolism (By similarity). Induces LPCAT3-dependent phospholipid remodeling in endoplasmic reticulum (ER) membranes of hepatocytes, driving SREBF1 processing and lipogenesis (By similarity). Via LPCAT3, triggers the incorporation of arachidonate into phosphatidylcholines of ER membranes, increasing membrane dynamics and enabling triacylglycerols transfer to nascent very low-density lipoprotein (VLDL) particles (By similarity). Via LPCAT3 also counteracts lipid-induced ER stress response and inflammation, likely by modulating SRC kinase membrane compartmentalization and limiting the synthesis of lipid inflammatory mediators (By similarity). Plays an anti-inflammatory role during the hepatic acute phase response by acting as a corepressor: inhibits the hepatic acute phase response by preventing dissociation of the N-Cor corepressor complex (PubMed:20159957). {ECO:0000250|UniProtKB:Q60644, ECO:0000269|PubMed:20159957, ECO:0000269|PubMed:25661920}.
P85037 FOXK1 S243 ochoa Forkhead box protein K1 (Myocyte nuclear factor) (MNF) Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}.
Q03164 KMT2A S3053 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03164 KMT2A S3511 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q07157 TJP1 S919 ochoa Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}.
Q08050 FOXM1 S508 ochoa|psp Forkhead box protein M1 (Forkhead-related protein FKHL16) (Hepatocyte nuclear factor 3 forkhead homolog 11) (HFH-11) (HNF-3/fork-head homolog 11) (M-phase phosphoprotein 2) (MPM-2 reactive phosphoprotein 2) (Transcription factor Trident) (Winged-helix factor from INS-1 cells) Transcription factor regulating the expression of cell cycle genes essential for DNA replication and mitosis (PubMed:19160488, PubMed:20360045). Plays a role in the control of cell proliferation (PubMed:19160488). Also plays a role in DNA break repair, participating in the DNA damage checkpoint response (PubMed:17101782). Promotes transcription of PHB2 (PubMed:33754036). {ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:20360045, ECO:0000269|PubMed:33754036}.
Q0JRZ9 FCHO2 S380 ochoa F-BAR domain only protein 2 Functions in an early step of clathrin-mediated endocytosis. Has both a membrane binding/bending activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a lipid-binding activity with a preference for membranes enriched in phosphatidylserine and phosphoinositides (Pi(4,5) biphosphate) like the plasma membrane. Its membrane-bending activity might be important for the subsequent action of clathrin and adaptors in the formation of clathrin-coated vesicles. Involved in adaptor protein complex AP-2-dependent endocytosis of the transferrin receptor, it also functions in the AP-2-independent endocytosis of the LDL receptor. {ECO:0000269|PubMed:17540576, ECO:0000269|PubMed:20448150, ECO:0000269|PubMed:21762413, ECO:0000269|PubMed:22323290}.
Q12888 TP53BP1 S366 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q13586 STIM1 S614 ochoa Stromal interaction molecule 1 Acts as a Ca(2+) sensor that gates two major inward rectifying Ca(2+) channels at the plasma membrane: Ca(2+) release-activated Ca(2+) (CRAC) channels and arachidonate-regulated Ca(2+)-selective (ARC) channels (PubMed:15866891, PubMed:16005298, PubMed:16208375, PubMed:16537481, PubMed:16733527, PubMed:16766533, PubMed:16807233, PubMed:18854159, PubMed:19182790, PubMed:19249086, PubMed:19622606, PubMed:19706554, PubMed:22464749, PubMed:24069340, PubMed:24351972, PubMed:24591628, PubMed:25326555, PubMed:26322679, PubMed:28219928, PubMed:32415068). Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates CRAC channel pore-forming subunits ORA1, ORA2 and ORAI3 to generate sustained and oscillatory Ca(2+) entry (PubMed:16208375, PubMed:16537481, PubMed:32415068). Involved in enamel formation (PubMed:24621671). {ECO:0000269|PubMed:15866891, ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16208375, ECO:0000269|PubMed:16537481, ECO:0000269|PubMed:16733527, ECO:0000269|PubMed:16766533, ECO:0000269|PubMed:16807233, ECO:0000269|PubMed:18854159, ECO:0000269|PubMed:19182790, ECO:0000269|PubMed:19249086, ECO:0000269|PubMed:19622606, ECO:0000269|PubMed:19706554, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:24069340, ECO:0000269|PubMed:24351972, ECO:0000269|PubMed:24591628, ECO:0000269|PubMed:24621671, ECO:0000269|PubMed:25326555, ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:28219928, ECO:0000269|PubMed:32415068}.
Q14157 UBAP2L S470 ochoa Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}.
Q14980 NUMA1 S1750 ochoa Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}.
Q15561 TEAD4 S198 ochoa Transcriptional enhancer factor TEF-3 (TEA domain family member 4) (TEAD-4) (Transcription factor 13-like 1) (Transcription factor RTEF-1) Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and non-cooperatively to the Sph and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}.
Q15772 SPEG S320 ochoa Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells.
Q15772 SPEG S334 ochoa Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells.
Q3KQU3 MAP7D1 S469 ochoa MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}.
Q5PRF9 SAMD4B S236 ochoa Protein Smaug homolog 2 (Smaug 2) (hSmaug2) (Sterile alpha motif domain-containing protein 4B) (SAM domain-containing protein 4B) Has transcriptional repressor activity. Overexpression inhibits the transcriptional activities of AP-1, p53/TP53 and CDKN1A. {ECO:0000269|PubMed:20510020}.
Q5SW79 CEP170 S1515 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5T6C5 ATXN7L2 S468 ochoa Ataxin-7-like protein 2 None
Q5VWG9 TAF3 S243 ochoa Transcription initiation factor TFIID subunit 3 (140 kDa TATA box-binding protein-associated factor) (TBP-associated factor 3) (Transcription initiation factor TFIID 140 kDa subunit) (TAF(II)140) (TAF140) (TAFII-140) (TAFII140) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF3 forms the TFIID-A module together with TAF5 and TBP (PubMed:33795473). Required in complex with TBPL2 for the differentiation of myoblasts into myocytes (PubMed:11438666). The TAF3-TBPL2 complex replaces TFIID at specific promoters at an early stage in the differentiation process (PubMed:11438666). {ECO:0000269|PubMed:11438666, ECO:0000269|PubMed:33795473}.
Q6P0Q8 MAST2 S1344 ochoa Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}.
Q6UB99 ANKRD11 S1990 ochoa Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}.
Q7Z5L9 IRF2BP2 S399 ochoa Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}.
Q7Z5L9 IRF2BP2 S409 ochoa Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}.
Q86YN6 PPARGC1B S256 ochoa Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}.
Q86YN6 PPARGC1B S263 ochoa Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}.
Q8IV63 VRK3 S115 psp Serine/threonine-protein kinase VRK3 (EC 2.7.11.22) (Vaccinia-related kinase 3) Plays a role in the regulation of the cell cycle by phosphorylating the nuclear envelope protein barrier-to-autointegration factor/BAF that is required for disassembly and reassembly, respectively, of the nuclear envelope during mitosis (PubMed:25899223). Under normal physiological conditions, negatively regulates ERK activity along with VHR/DUSP3 phosphatase in the nucleus, causing timely and transient action of ERK. Stress conditions activate CDK5 which phosphorylates VRK3 to increase VHR phosphatase activity and suppress prolonged ERK activation that causes cell death (PubMed:27346674). For example, upon glutamate induction, promotes nuclear localization of HSP70/HSPA1A to inhibit ERK activation via VHR/DUSP3 phosphatase (PubMed:27941812). {ECO:0000250|UniProtKB:Q8K3G5, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:19141289, ECO:0000269|PubMed:25899223, ECO:0000269|PubMed:27346674, ECO:0000269|PubMed:27941812}.
Q8IV63 VRK3 S122 ochoa|psp Serine/threonine-protein kinase VRK3 (EC 2.7.11.22) (Vaccinia-related kinase 3) Plays a role in the regulation of the cell cycle by phosphorylating the nuclear envelope protein barrier-to-autointegration factor/BAF that is required for disassembly and reassembly, respectively, of the nuclear envelope during mitosis (PubMed:25899223). Under normal physiological conditions, negatively regulates ERK activity along with VHR/DUSP3 phosphatase in the nucleus, causing timely and transient action of ERK. Stress conditions activate CDK5 which phosphorylates VRK3 to increase VHR phosphatase activity and suppress prolonged ERK activation that causes cell death (PubMed:27346674). For example, upon glutamate induction, promotes nuclear localization of HSP70/HSPA1A to inhibit ERK activation via VHR/DUSP3 phosphatase (PubMed:27941812). {ECO:0000250|UniProtKB:Q8K3G5, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:19141289, ECO:0000269|PubMed:25899223, ECO:0000269|PubMed:27346674, ECO:0000269|PubMed:27941812}.
Q8IX07 ZFPM1 S494 ochoa Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}.
Q8IY33 MICALL2 S712 ochoa MICAL-like protein 2 (Junctional Rab13-binding protein) (Molecule interacting with CasL-like 2) (MICAL-L2) Effector of small Rab GTPases which is involved in junctional complexes assembly through the regulation of cell adhesion molecules transport to the plasma membrane and actin cytoskeleton reorganization. Regulates the endocytic recycling of occludins, claudins and E-cadherin to the plasma membrane and may thereby regulate the establishment of tight junctions and adherens junctions. In parallel, may regulate actin cytoskeleton reorganization directly through interaction with F-actin or indirectly through actinins and filamins. Most probably involved in the processes of epithelial cell differentiation, cell spreading and neurite outgrowth (By similarity). Undergoes liquid-liquid phase separation to form tubular recycling endosomes. Plays 2 sequential roles in the biogenesis of tubular recycling endosomes: first organizes phase separation and then the closed form formed by interaction with RAB8A promotes endosomal tubulation (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q3TN34}.
Q8IYB3 SRRM1 S777 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8N3F8 MICALL1 S309 ochoa MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}.
Q8N4L2 PIP4P2 S33 ochoa Type 2 phosphatidylinositol 4,5-bisphosphate 4-phosphatase (Type 2 PtdIns-4,5-P2 4-Ptase) (EC 3.1.3.78) (PtdIns-4,5-P2 4-Ptase II) (Transmembrane protein 55A) Catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) to phosphatidylinositol-4-phosphate (PtdIns-4-P) (PubMed:16365287). Does not hydrolyze phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3,4-bisphosphate, inositol 3,5-bisphosphate, inositol 3,4-bisphosphate, phosphatidylinositol 5-monophosphate, phosphatidylinositol 4-monophosphate and phosphatidylinositol 3-monophosphate (PubMed:16365287). Negatively regulates the phagocytosis of large particles by reducing phagosomal phosphatidylinositol 4,5-bisphosphate accumulation during cup formation (By similarity). {ECO:0000250|UniProtKB:Q9CZX7, ECO:0000269|PubMed:16365287}.
Q8TAP9 MPLKIP S66 ochoa M-phase-specific PLK1-interacting protein (TTD non-photosensitive 1 protein) May play a role in maintenance of cell cycle integrity by regulating mitosis or cytokinesis. {ECO:0000269|PubMed:17310276}.
Q8TDY2 RB1CC1 S667 ochoa RB1-inducible coiled-coil protein 1 (FAK family kinase-interacting protein of 200 kDa) (FIP200) Involved in autophagy (PubMed:21775823). Regulates early events but also late events of autophagosome formation through direct interaction with Atg16L1 (PubMed:23392225). Required for the formation of the autophagosome-like double-membrane structure that surrounds the Salmonella-containing vacuole (SCV) during S.typhimurium infection and subsequent xenophagy (By similarity). Involved in repair of DNA damage caused by ionizing radiation, which subsequently improves cell survival by decreasing apoptosis (By similarity). Inhibits PTK2/FAK1 and PTK2B/PYK2 kinase activity, affecting their downstream signaling pathways (PubMed:10769033, PubMed:12221124). Plays a role as a modulator of TGF-beta-signaling by restricting substrate specificity of RNF111 (By similarity). Functions as a DNA-binding transcription factor (PubMed:12095676). Is a potent regulator of the RB1 pathway through induction of RB1 expression (PubMed:14533007). Plays a crucial role in muscular differentiation (PubMed:12163359). Plays an indispensable role in fetal hematopoiesis and in the regulation of neuronal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9ESK9, ECO:0000269|PubMed:10769033, ECO:0000269|PubMed:12095676, ECO:0000269|PubMed:12163359, ECO:0000269|PubMed:12221124, ECO:0000269|PubMed:14533007, ECO:0000269|PubMed:21775823, ECO:0000269|PubMed:23392225}.
Q8WXD9 CASKIN1 S819 ochoa Caskin-1 (CASK-interacting protein 1) May link the scaffolding protein CASK to downstream intracellular effectors. {ECO:0000250}.
Q92738 USP6NL S784 ochoa USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}.
Q92738 USP6NL S791 ochoa USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}.
Q92738 USP6NL S798 ochoa USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}.
Q969H4 CNKSR1 S300 ochoa Connector enhancer of kinase suppressor of ras 1 (Connector enhancer of KSR 1) (CNK homolog protein 1) (CNK1) (hCNK1) (Connector enhancer of KSR-like) May function as an adapter protein or regulator of Ras signaling pathways.
Q969H4 CNKSR1 S307 ochoa Connector enhancer of kinase suppressor of ras 1 (Connector enhancer of KSR 1) (CNK homolog protein 1) (CNK1) (hCNK1) (Connector enhancer of KSR-like) May function as an adapter protein or regulator of Ras signaling pathways.
Q96JM3 CHAMP1 S253 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96JM3 CHAMP1 S372 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96JM3 CHAMP1 S379 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96JM3 CHAMP1 S462 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96L14 CEP170P1 S224 ochoa Cep170-like protein (CEP170 pseudogene 1) None
Q96L34 MARK4 S543 ochoa MAP/microtubule affinity-regulating kinase 4 (EC 2.7.11.1) (MAP/microtubule affinity-regulating kinase-like 1) Serine/threonine-protein kinase (PubMed:14594945, PubMed:15009667, PubMed:23184942, PubMed:23666762). Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:14594945, PubMed:23666762). Also phosphorylates the microtubule-associated proteins MAP2 and MAP4 (PubMed:14594945). Involved in regulation of the microtubule network, causing reorganization of microtubules into bundles (PubMed:14594945, PubMed:25123532). Required for the initiation of axoneme extension during cilium assembly (PubMed:23400999). Regulates the centrosomal location of ODF2 and phosphorylates ODF2 in vitro (PubMed:23400999). Plays a role in cell cycle progression, specifically in the G1/S checkpoint (PubMed:25123532). Reduces neuronal cell survival (PubMed:15009667). Plays a role in energy homeostasis by regulating satiety and metabolic rate (By similarity). Promotes adipogenesis by activating JNK1 and inhibiting the p38MAPK pathway, and triggers apoptosis by activating the JNK1 pathway (By similarity). Phosphorylates mTORC1 complex member RPTOR and acts as a negative regulator of the mTORC1 complex, probably due to disruption of the interaction between phosphorylated RPTOR and the RRAGA/RRAGC heterodimer which is required for mTORC1 activation (PubMed:23184942). Involved in NLRP3 positioning along microtubules by mediating NLRP3 recruitment to microtubule organizing center (MTOC) upon inflammasome activation (PubMed:28656979). {ECO:0000250|UniProtKB:Q8CIP4, ECO:0000269|PubMed:14594945, ECO:0000269|PubMed:15009667, ECO:0000269|PubMed:23184942, ECO:0000269|PubMed:23400999, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:25123532, ECO:0000269|PubMed:28656979}.
Q96ST3 SIN3A S263 ochoa Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}.
Q96ST3 SIN3A S277 ochoa Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}.
Q99501 GAS2L1 S606 ochoa GAS2-like protein 1 (GAS2-related protein on chromosome 22) (Growth arrest-specific protein 2-like 1) Involved in the cross-linking of microtubules and microfilaments (PubMed:12584248, PubMed:24706950). Regulates microtubule dynamics and stability by interacting with microtubule plus-end tracking proteins, such as MAPRE1, to regulate microtubule growth along actin stress fibers (PubMed:24706950). {ECO:0000269|PubMed:12584248, ECO:0000269|PubMed:24706950}.
Q99569 PKP4 S259 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q9BST9 RTKN S529 ochoa Rhotekin Mediates Rho signaling to activate NF-kappa-B and may confer increased resistance to apoptosis to cells in gastric tumorigenesis. May play a novel role in the organization of septin structures. {ECO:0000269|PubMed:10940294, ECO:0000269|PubMed:15480428, ECO:0000269|PubMed:16007136}.
Q9BTA9 WAC S511 ochoa WW domain-containing adapter protein with coiled-coil Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}.
Q9BZ72 PITPNM2 S880 ochoa Membrane-associated phosphatidylinositol transfer protein 2 (Phosphatidylinositol transfer protein, membrane-associated 2) (PITPnm 2) (Pyk2 N-terminal domain-interacting receptor 3) (NIR-3) Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro). Binds calcium ions. {ECO:0000269|PubMed:10022914}.
Q9H3P7 ACBD3 S43 ochoa Golgi resident protein GCP60 (Acyl-CoA-binding domain-containing protein 3) (Golgi complex-associated protein 1) (GOCAP1) (Golgi phosphoprotein 1) (GOLPH1) (PBR- and PKA-associated protein 7) (Peripheral benzodiazepine receptor-associated protein PAP7) [Cleaved into: Golgi resident protein GCP60, N-terminally processed] Involved in the maintenance of Golgi structure by interacting with giantin, affecting protein transport between the endoplasmic reticulum and Golgi (PubMed:11590181). Involved in hormone-induced steroid biosynthesis in testicular Leydig cells (By similarity). Recruits PI4KB to the Golgi apparatus membrane; enhances the enzyme activity of PI4KB activity via its membrane recruitment thereby increasing the local concentration of the substrate in the vicinity of the kinase (PubMed:27009356). {ECO:0000250|UniProtKB:Q8BMP6, ECO:0000269|PubMed:11590181, ECO:0000269|PubMed:27009356}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication by recruiting PI4KB at the viral replication sites. {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}.
Q9H5H4 ZNF768 S83 ochoa Zinc finger protein 768 Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}.
Q9H5H4 ZNF768 S90 ochoa Zinc finger protein 768 Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}.
Q9H5H4 ZNF768 S97 ochoa Zinc finger protein 768 Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}.
Q9H5H4 ZNF768 S104 ochoa Zinc finger protein 768 Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}.
Q9H5H4 ZNF768 S125 ochoa Zinc finger protein 768 Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}.
Q9H5H4 ZNF768 S132 ochoa Zinc finger protein 768 Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}.
Q9H5H4 ZNF768 S139 ochoa Zinc finger protein 768 Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}.
Q9H5H4 ZNF768 S146 ochoa Zinc finger protein 768 Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}.
Q9H6S3 EPS8L2 S466 ochoa Epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8-like protein 2) (Epidermal growth factor receptor pathway substrate 8-related protein 2) (EPS8-related protein 2) Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. In the cochlea, is required for stereocilia maintenance in adult hair cells (By similarity). {ECO:0000250|UniProtKB:Q99K30, ECO:0000269|PubMed:14565974}.
Q9H792 PEAK1 S854 ochoa Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}.
Q9H792 PEAK1 S864 ochoa Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}.
Q9H7D0 DOCK5 S1789 ochoa Dedicator of cytokinesis protein 5 Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}.
Q9H7E9 C8orf33 S33 ochoa UPF0488 protein C8orf33 None
Q9H987 SYNPO2L S931 ochoa Synaptopodin 2-like protein Actin-associated protein that may play a role in modulating actin-based shape. {ECO:0000250}.
Q9NQC3 RTN4 S115 ochoa Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}.
Q9NQU5 PAK6 S165 ochoa|psp Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}.
Q9UGJ0 PRKAG2 S87 ochoa 5'-AMP-activated protein kinase subunit gamma-2 (AMPK gamma2) (AMPK subunit gamma-2) (H91620p) AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:14722619, PubMed:24563466). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:14722619, PubMed:24563466). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:14722619, PubMed:24563466). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:14722619, PubMed:24563466). Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits (PubMed:14722619, PubMed:24563466). ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit (PubMed:14722619, PubMed:24563466). ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive (PubMed:14722619, PubMed:24563466). {ECO:0000269|PubMed:14722619, ECO:0000269|PubMed:24563466}.
Q9UGP4 LIMD1 S211 ochoa LIM domain-containing protein 1 Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing and is essential for P-body formation and integrity. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Acts as a transcriptional corepressor for SNAI1- and SNAI2/SLUG-dependent repression of E-cadherin transcription. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. Inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. Regulates osteoblast development, function, differentiation and stress osteoclastogenesis. Enhances the ability of TRAF6 to activate adapter protein complex 1 (AP-1) and negatively regulates the canonical Wnt receptor signaling pathway in osteoblasts. May act as a tumor suppressor by inhibiting cell proliferation. {ECO:0000269|PubMed:15542589, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}.
Q9UIS9 MBD1 S297 ochoa Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}.
Q9ULD2 MTUS1 S1248 ochoa Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}.
Q9UMS6 SYNPO2 S767 ochoa Synaptopodin-2 (Genethonin-2) (Myopodin) Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}.
Q9UMS6 SYNPO2 T774 ochoa Synaptopodin-2 (Genethonin-2) (Myopodin) Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}.
Q9UPN3 MACF1 S7244 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UQ35 SRRM2 S398 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9Y314 NOSIP S152 ochoa Nitric oxide synthase-interacting protein (E3 ubiquitin-protein ligase NOSIP) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase NOSIP) (eNOS-interacting protein) E3 ubiquitin-protein ligase that is essential for proper development of the forebrain, the eye, and the face. Catalyzes monoubiquitination of serine/threonine-protein phosphatase 2A (PP2A) catalytic subunit PPP2CA/PPP2CB (By similarity). Negatively regulates nitric oxide production by inducing NOS1 and NOS3 translocation to actin cytoskeleton and inhibiting their enzymatic activity (PubMed:11149895, PubMed:15548660, PubMed:16135813). {ECO:0000250|UniProtKB:Q9D6T0, ECO:0000269|PubMed:11149895, ECO:0000269|PubMed:15548660, ECO:0000269|PubMed:16135813}.
Q9Y3X0 CCDC9 S376 ochoa Coiled-coil domain-containing protein 9 Probable component of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. {ECO:0000305|PubMed:33973408}.
Q9Y4F5 CEP170B S718 ochoa Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}.
Q9Y6J9 TAF6L S481 ochoa TAF6-like RNA polymerase II p300/CBP-associated factor-associated factor 65 kDa subunit 6L (TAF6L) (PCAF-associated factor 65-alpha) (PAF65-alpha) Functions as a component of the PCAF complex. The PCAF complex is capable of efficiently acetylating histones in a nucleosomal context. The PCAF complex could be considered as the human version of the yeast SAGA complex (Probable). With TAF5L, acts as an epigenetic regulator essential for somatic reprogramming. Regulates target genes through H3K9ac deposition and MYC recruitment which trigger MYC regulatory network to orchestrate gene expression programs to control embryonic stem cell state. Functions with MYC to activate target gene expression through RNA polymerase II pause release (By similarity). {ECO:0000250|UniProtKB:Q8R2K4, ECO:0000305|PubMed:9674419}.
P24928 POLR2A S1951 SIGNOR DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
Q9H5H4 ZNF768 S111 Sugiyama Zinc finger protein 768 Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}.
Download
reactome_id name p -log10_p
R-HSA-8951671 RUNX3 regulates YAP1-mediated transcription 0.000983 3.008
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 0.000618 3.209
R-HSA-8935964 RUNX1 regulates expression of components of tight junctions 0.000779 3.108
R-HSA-8878171 Transcriptional regulation by RUNX1 0.001552 2.809
R-HSA-9796292 Formation of axial mesoderm 0.003416 2.466
R-HSA-2032785 YAP1- and WWTR1 (TAZ)-stimulated gene expression 0.003818 2.418
R-HSA-203754 NOSIP mediated eNOS trafficking 0.034606 1.461
R-HSA-9031525 NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake 0.049072 1.309
R-HSA-9031528 NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipo... 0.049072 1.309
R-HSA-9623433 NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis 0.072708 1.138
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 0.072708 1.138
R-HSA-9619483 Activation of AMPK downstream of NMDARs 0.012933 1.888
R-HSA-9029558 NR1H2 & NR1H3 regulate gene expression linked to lipogenesis 0.081999 1.086
R-HSA-9861559 PDH complex synthesizes acetyl-CoA from PYR 0.081999 1.086
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 0.091199 1.040
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 0.023700 1.625
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 0.113800 0.944
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 0.025595 1.592
R-HSA-167161 HIV Transcription Initiation 0.025595 1.592
R-HSA-75953 RNA Polymerase II Transcription Initiation 0.025595 1.592
R-HSA-73776 RNA Polymerase II Promoter Escape 0.027549 1.560
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 0.029562 1.529
R-HSA-6803529 FGFR2 alternative splicing 0.131481 0.881
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 0.135847 0.867
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE during HIV infection 0.135847 0.867
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 0.153093 0.815
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 0.153093 0.815
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 0.157351 0.803
R-HSA-167287 HIV elongation arrest and recovery 0.157351 0.803
R-HSA-113418 Formation of the Early Elongation Complex 0.157351 0.803
R-HSA-167290 Pausing and recovery of HIV elongation 0.157351 0.803
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 0.210820 0.676
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 0.238209 0.623
R-HSA-72165 mRNA Splicing - Minor Pathway 0.238209 0.623
R-HSA-72187 mRNA 3'-end processing 0.260936 0.583
R-HSA-112382 Formation of RNA Pol II elongation complex 0.260936 0.583
R-HSA-167172 Transcription of the HIV genome 0.056485 1.248
R-HSA-72172 mRNA Splicing 0.103762 0.984
R-HSA-167169 HIV Transcription Elongation 0.210820 0.676
R-HSA-72086 mRNA Capping 0.161588 0.792
R-HSA-72163 mRNA Splicing - Major Pathway 0.092672 1.033
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 0.148813 0.827
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 0.210820 0.676
R-HSA-156711 Polo-like kinase mediated events 0.109325 0.961
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 0.206829 0.684
R-HSA-191650 Regulation of gap junction activity 0.029735 1.527
R-HSA-163680 AMPK inhibits chREBP transcriptional activation activity 0.058597 1.232
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 0.100307 0.999
R-HSA-380972 Energy dependent regulation of mTOR by LKB1-AMPK 0.165804 0.780
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 0.190976 0.719
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 0.198787 0.702
R-HSA-5674135 MAP2K and MAPK activation 0.218743 0.660
R-HSA-674695 RNA Polymerase II Pre-transcription Events 0.064515 1.190
R-HSA-162599 Late Phase of HIV Life Cycle 0.192586 0.715
R-HSA-9656223 Signaling by RAF1 mutants 0.218743 0.660
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 0.238209 0.623
R-HSA-9649948 Signaling downstream of RAS mutants 0.238209 0.623
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 0.238209 0.623
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 0.214536 0.668
R-HSA-9022538 Loss of MECP2 binding ability to 5mC-DNA 0.024841 1.605
R-HSA-9705677 SARS-CoV-2 targets PDZ proteins in cell-cell junction 0.029735 1.527
R-HSA-193634 Axonal growth inhibition (RHOA activation) 0.053846 1.269
R-HSA-2151209 Activation of PPARGC1A (PGC-1alpha) by phosphorylation 0.063324 1.198
R-HSA-202670 ERKs are inactivated 0.072708 1.138
R-HSA-9603798 Class I peroxisomal membrane protein import 0.095764 1.019
R-HSA-8851708 Signaling by FGFR2 IIIa TM 0.113800 0.944
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 0.257195 0.590
R-HSA-6802949 Signaling by RAS mutants 0.238209 0.623
R-HSA-427413 NoRC negatively regulates rRNA expression 0.060453 1.219
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 0.210820 0.676
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 0.210820 0.676
R-HSA-139853 Elevation of cytosolic Ca2+ levels 0.104827 0.980
R-HSA-162587 HIV Life Cycle 0.220063 0.657
R-HSA-193697 p75NTR regulates axonogenesis 0.058597 1.232
R-HSA-9701898 STAT3 nuclear events downstream of ALK signaling 0.091199 1.040
R-HSA-1483226 Synthesis of PI 0.068028 1.167
R-HSA-204174 Regulation of pyruvate dehydrogenase (PDH) complex 0.161588 0.792
R-HSA-212165 Epigenetic regulation of gene expression 0.094909 1.023
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 0.245860 0.609
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 0.214792 0.668
R-HSA-9022702 MECP2 regulates transcription of neuronal ligands 0.063324 1.198
R-HSA-428540 Activation of RAC1 0.072708 1.138
R-HSA-8866427 VLDLR internalisation and degradation 0.077365 1.111
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 0.037047 1.431
R-HSA-418360 Platelet calcium homeostasis 0.161588 0.792
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 0.072904 1.137
R-HSA-9670095 Inhibition of DNA recombination at telomere 0.210820 0.676
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 0.190664 0.720
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 0.006341 2.198
R-HSA-2559585 Oncogene Induced Senescence 0.190664 0.720
R-HSA-9613354 Lipophagy 0.058597 1.232
R-HSA-9697154 Disorders of Nervous System Development 0.077365 1.111
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 0.077365 1.111
R-HSA-9005895 Pervasive developmental disorders 0.077365 1.111
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 0.260936 0.583
R-HSA-1592230 Mitochondrial biogenesis 0.141188 0.850
R-HSA-9861718 Regulation of pyruvate metabolism 0.238209 0.623
R-HSA-165159 MTOR signalling 0.222675 0.652
R-HSA-9675151 Disorders of Developmental Biology 0.100307 0.999
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 0.148813 0.827
R-HSA-198753 ERK/MAPK targets 0.122685 0.911
R-HSA-1852241 Organelle biogenesis and maintenance 0.244649 0.611
R-HSA-3214841 PKMTs methylate histone lysines 0.214792 0.668
R-HSA-1632852 Macroautophagy 0.188957 0.724
R-HSA-9824594 Regulation of MITF-M-dependent genes involved in apoptosis 0.122685 0.911
R-HSA-74160 Gene expression (Transcription) 0.121628 0.915
R-HSA-203927 MicroRNA (miRNA) biogenesis 0.144513 0.840
R-HSA-8852135 Protein ubiquitination 0.065889 1.181
R-HSA-157858 Gap junction trafficking and regulation 0.249657 0.603
R-HSA-9819196 Zygotic genome activation (ZGA) 0.122685 0.911
R-HSA-9612973 Autophagy 0.218219 0.661
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 0.058661 1.232
R-HSA-73857 RNA Polymerase II Transcription 0.046463 1.333
R-HSA-351906 Apoptotic cleavage of cell adhesion proteins 0.053846 1.269
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 0.058597 1.232
R-HSA-9825892 Regulation of MITF-M-dependent genes involved in cell cycle and proliferation 0.127094 0.896
R-HSA-200425 Carnitine shuttle 0.135847 0.867
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 0.242044 0.616
R-HSA-201556 Signaling by ALK 0.206829 0.684
R-HSA-9909648 Regulation of PD-L1(CD274) expression 0.015991 1.796
R-HSA-9816359 Maternal to zygotic transition (MZT) 0.151571 0.819
R-HSA-389948 Co-inhibition by PD-1 0.024900 1.604
R-HSA-202131 Metabolism of nitric oxide: NOS3 activation and regulation 0.202818 0.693
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 0.083106 1.080
R-HSA-438064 Post NMDA receptor activation events 0.084598 1.073
R-HSA-9022692 Regulation of MECP2 expression and activity 0.178327 0.749
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 0.074793 1.126
R-HSA-199991 Membrane Trafficking 0.246817 0.608
R-HSA-5601884 PIWI-interacting RNA (piRNA) biogenesis 0.144513 0.840
R-HSA-8878159 Transcriptional regulation by RUNX3 0.103105 0.987
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 0.161588 0.792
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 0.245860 0.609
R-HSA-212436 Generic Transcription Pathway 0.050196 1.299
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 0.218743 0.660
R-HSA-1483191 Synthesis of PC 0.242044 0.616
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 0.178327 0.749
R-HSA-1839126 FGFR2 mutant receptor activation 0.194735 0.711
R-HSA-388841 Regulation of T cell activation by CD28 family 0.050863 1.294
R-HSA-111465 Apoptotic cleavage of cellular proteins 0.015948 1.797
R-HSA-1989781 PPARA activates gene expression 0.216377 0.665
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 0.111118 0.954
R-HSA-5655253 Signaling by FGFR2 in disease 0.253436 0.596
R-HSA-75153 Apoptotic execution phase 0.030590 1.514
R-HSA-2028269 Signaling by Hippo 0.104827 0.980
R-HSA-9758941 Gastrulation 0.205356 0.687
R-HSA-8964043 Plasma lipoprotein clearance 0.206829 0.684
R-HSA-5633007 Regulation of TP53 Activity 0.225603 0.647
R-HSA-109581 Apoptosis 0.229303 0.640
R-HSA-75955 RNA Polymerase II Transcription Elongation 0.264658 0.577
R-HSA-432722 Golgi Associated Vesicle Biogenesis 0.264658 0.577
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 0.275714 0.560
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 0.275714 0.560
R-HSA-5578775 Ion homeostasis 0.275714 0.560
R-HSA-6782135 Dual incision in TC-NER 0.282993 0.548
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 0.282993 0.548
R-HSA-9033241 Peroxisomal protein import 0.286606 0.543
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 0.286606 0.543
R-HSA-8943724 Regulation of PTEN gene transcription 0.290200 0.537
R-HSA-5362517 Signaling by Retinoic Acid 0.290200 0.537
R-HSA-73856 RNA Polymerase II Transcription Termination 0.293777 0.532
R-HSA-168325 Viral Messenger RNA Synthesis 0.293777 0.532
R-HSA-8939902 Regulation of RUNX2 expression and activity 0.293777 0.532
R-HSA-450294 MAP kinase activation 0.293777 0.532
R-HSA-9616222 Transcriptional regulation of granulopoiesis 0.297336 0.527
R-HSA-9006931 Signaling by Nuclear Receptors 0.303194 0.518
R-HSA-1483206 Glycerophospholipid biosynthesis 0.307368 0.512
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 0.307906 0.512
R-HSA-1234174 Cellular response to hypoxia 0.307906 0.512
R-HSA-5357801 Programmed Cell Death 0.312922 0.505
R-HSA-5693606 DNA Double Strand Break Response 0.314866 0.502
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 0.318319 0.497
R-HSA-448424 Interleukin-17 signaling 0.325175 0.488
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 0.325846 0.487
R-HSA-5578749 Transcriptional regulation by small RNAs 0.331963 0.479
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 0.331963 0.479
R-HSA-199992 trans-Golgi Network Vesicle Budding 0.331963 0.479
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 0.331963 0.479
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 0.335332 0.475
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 0.335332 0.475
R-HSA-69473 G2/M DNA damage checkpoint 0.338684 0.470
R-HSA-1226099 Signaling by FGFR in disease 0.338684 0.470
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 0.342019 0.466
R-HSA-5689603 UCH proteinases 0.345338 0.462
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 0.348640 0.458
R-HSA-383280 Nuclear Receptor transcription pathway 0.351925 0.454
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 0.351925 0.454
R-HSA-162906 HIV Infection 0.353323 0.452
R-HSA-9659379 Sensory processing of sound 0.355195 0.450
R-HSA-5654738 Signaling by FGFR2 0.358448 0.446
R-HSA-9833482 PKR-mediated signaling 0.358448 0.446
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 0.361684 0.442
R-HSA-5693607 Processing of DNA double-strand break ends 0.361684 0.442
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 0.364905 0.438
R-HSA-3247509 Chromatin modifying enzymes 0.366021 0.436
R-HSA-9707564 Cytoprotection by HMOX1 0.368109 0.434
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 0.371298 0.430
R-HSA-6802957 Oncogenic MAPK signaling 0.374471 0.427
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 0.377628 0.423
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 0.380769 0.419
R-HSA-70268 Pyruvate metabolism 0.383894 0.416
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 0.387004 0.412
R-HSA-9663891 Selective autophagy 0.387004 0.412
R-HSA-4839726 Chromatin organization 0.392908 0.406
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 0.393177 0.405
R-HSA-8986944 Transcriptional Regulation by MECP2 0.396241 0.402
R-HSA-156842 Eukaryotic Translation Elongation 0.402322 0.395
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 0.402322 0.395
R-HSA-5653656 Vesicle-mediated transport 0.405173 0.392
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 0.405340 0.392
R-HSA-157579 Telomere Maintenance 0.420206 0.377
R-HSA-190236 Signaling by FGFR 0.423135 0.374
R-HSA-975871 MyD88 cascade initiated on plasma membrane 0.423135 0.374
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 0.423135 0.374
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 0.423135 0.374
R-HSA-3214847 HATs acetylate histones 0.426049 0.371
R-HSA-193704 p75 NTR receptor-mediated signalling 0.426049 0.371
R-HSA-9614085 FOXO-mediated transcription 0.426049 0.371
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 0.440403 0.356
R-HSA-5619507 Activation of HOX genes during differentiation 0.443231 0.353
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 0.443231 0.353
R-HSA-3700989 Transcriptional Regulation by TP53 0.443670 0.353
R-HSA-5696398 Nucleotide Excision Repair 0.446045 0.351
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 0.446045 0.351
R-HSA-418346 Platelet homeostasis 0.448845 0.348
R-HSA-211000 Gene Silencing by RNA 0.451631 0.345
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 0.451631 0.345
R-HSA-9700206 Signaling by ALK in cancer 0.451631 0.345
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 0.454403 0.343
R-HSA-975155 MyD88 dependent cascade initiated on endosome 0.457161 0.340
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 0.459905 0.337
R-HSA-166166 MyD88-independent TLR4 cascade 0.459905 0.337
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 0.468056 0.330
R-HSA-162582 Signal Transduction 0.469806 0.328
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 0.470746 0.327
R-HSA-1483257 Phospholipid metabolism 0.471919 0.326
R-HSA-5628897 TP53 Regulates Metabolic Genes 0.476086 0.322
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 0.476086 0.322
R-HSA-5693538 Homology Directed Repair 0.486606 0.313
R-HSA-8878166 Transcriptional regulation by RUNX2 0.489203 0.311
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 0.489203 0.311
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 0.489203 0.311
R-HSA-68875 Mitotic Prophase 0.491788 0.308
R-HSA-73886 Chromosome Maintenance 0.494359 0.306
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 0.496918 0.304
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 0.496918 0.304
R-HSA-6809371 Formation of the cornified envelope 0.501996 0.299
R-HSA-1640170 Cell Cycle 0.502173 0.299
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 0.507024 0.295
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 0.507024 0.295
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 0.507024 0.295
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 0.508320 0.294
R-HSA-69481 G2/M Checkpoints 0.512002 0.291
R-HSA-187037 Signaling by NTRK1 (TRKA) 0.514473 0.289
R-HSA-112315 Transmission across Chemical Synapses 0.516980 0.287
R-HSA-9843745 Adipogenesis 0.524231 0.280
R-HSA-5576891 Cardiac conduction 0.524231 0.280
R-HSA-9909396 Circadian clock 0.526640 0.278
R-HSA-9018519 Estrogen-dependent gene expression 0.538507 0.269
R-HSA-163685 Integration of energy metabolism 0.538507 0.269
R-HSA-6807070 PTEN Regulation 0.545485 0.263
R-HSA-8856828 Clathrin-mediated endocytosis 0.556884 0.254
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 0.568002 0.246
R-HSA-166520 Signaling by NTRKs 0.568002 0.246
R-HSA-9856651 MITF-M-dependent gene expression 0.572371 0.242
R-HSA-73894 DNA Repair 0.572571 0.242
R-HSA-9609507 Protein localization 0.578843 0.237
R-HSA-5693532 DNA Double-Strand Break Repair 0.578843 0.237
R-HSA-73887 Death Receptor Signaling 0.580979 0.236
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 0.580979 0.236
R-HSA-109582 Hemostasis 0.581293 0.236
R-HSA-168273 Influenza Viral RNA Transcription and Replication 0.583104 0.234
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 0.589416 0.230
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 0.622824 0.206
R-HSA-1280218 Adaptive Immune System 0.628997 0.201
R-HSA-8953854 Metabolism of RNA 0.630298 0.200
R-HSA-168255 Influenza Infection 0.632906 0.199
R-HSA-2559583 Cellular Senescence 0.634771 0.197
R-HSA-69275 G2/M Transition 0.645765 0.190
R-HSA-453274 Mitotic G2-G2/M phases 0.649356 0.188
R-HSA-5617833 Cilium Assembly 0.652912 0.185
R-HSA-168898 Toll-like Receptor Cascades 0.654676 0.184
R-HSA-68877 Mitotic Prometaphase 0.658179 0.182
R-HSA-1266738 Developmental Biology 0.670074 0.174
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 0.670163 0.174
R-HSA-376176 Signaling by ROBO receptors 0.675171 0.171
R-HSA-6805567 Keratinization 0.681731 0.166
R-HSA-397014 Muscle contraction 0.691328 0.160
R-HSA-9730414 MITF-M-regulated melanocyte development 0.692899 0.159
R-HSA-112316 Neuronal System 0.709060 0.149
R-HSA-9705683 SARS-CoV-2-host interactions 0.715544 0.145
R-HSA-8939211 ESR-mediated signaling 0.728330 0.138
R-HSA-5688426 Deubiquitination 0.752224 0.124
R-HSA-597592 Post-translational protein modification 0.753110 0.123
R-HSA-69620 Cell Cycle Checkpoints 0.755999 0.121
R-HSA-9711123 Cellular response to chemical stress 0.768178 0.115
R-HSA-556833 Metabolism of lipids 0.781766 0.107
R-HSA-5673001 RAF/MAP kinase cascade 0.791833 0.101
R-HSA-1257604 PIP3 activates AKT signaling 0.798142 0.098
R-HSA-5684996 MAPK1/MAPK3 signaling 0.799175 0.097
R-HSA-69278 Cell Cycle, Mitotic 0.799227 0.097
R-HSA-1428517 Aerobic respiration and respiratory electron transport 0.840632 0.075
R-HSA-9006925 Intracellular signaling by second messengers 0.841450 0.075
R-HSA-5683057 MAPK family signaling cascades 0.845477 0.073
R-HSA-9694516 SARS-CoV-2 Infection 0.847060 0.072
R-HSA-68886 M Phase 0.871642 0.060
R-HSA-913531 Interferon Signaling 0.872303 0.059
R-HSA-8978868 Fatty acid metabolism 0.887186 0.052
R-HSA-72766 Translation 0.899317 0.046
R-HSA-2262752 Cellular responses to stress 0.900885 0.045
R-HSA-9824446 Viral Infection Pathways 0.934178 0.030
R-HSA-392499 Metabolism of proteins 0.935762 0.029
R-HSA-8953897 Cellular responses to stimuli 0.938580 0.028
R-HSA-422475 Axon guidance 0.944882 0.025
R-HSA-9679506 SARS-CoV Infections 0.947683 0.023
R-HSA-9675108 Nervous system development 0.954562 0.020
R-HSA-449147 Signaling by Interleukins 0.963718 0.016
R-HSA-1280215 Cytokine Signaling in Immune system 0.976977 0.010
R-HSA-168256 Immune System 0.991578 0.004
R-HSA-5663205 Infectious disease 0.993721 0.003
R-HSA-382551 Transport of small molecules 0.994504 0.002
R-HSA-1643685 Disease 0.997738 0.001
R-HSA-9709957 Sensory Perception 0.998624 0.001
R-HSA-168249 Innate Immune System 0.999169 0.000
R-HSA-1430728 Metabolism 0.999483 0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
KISKIS 0.833 0.663 1 0.881
HIPK2HIPK2 0.832 0.718 1 0.913
CDK19CDK19 0.830 0.781 1 0.917
CDK1CDK1 0.829 0.734 1 0.922
CDK8CDK8 0.823 0.769 1 0.900
CLK3CLK3 0.822 0.522 1 0.702
ERK1ERK1 0.822 0.789 1 0.898
CDK18CDK18 0.821 0.747 1 0.916
P38GP38G 0.821 0.755 1 0.936
P38BP38B 0.821 0.810 1 0.888
CDK3CDK3 0.819 0.649 1 0.929
P38DP38D 0.817 0.760 1 0.928
JNK2JNK2 0.816 0.748 1 0.925
CDK17CDK17 0.815 0.732 1 0.931
DYRK4DYRK4 0.814 0.681 1 0.926
CDK7CDK7 0.813 0.722 1 0.905
DYRK2DYRK2 0.812 0.678 1 0.871
JNK3JNK3 0.812 0.734 1 0.908
HIPK4HIPK4 0.811 0.563 1 0.717
P38AP38A 0.808 0.787 1 0.854
JNK1JNK1 0.807 0.699 1 0.919
CDK13CDK13 0.806 0.670 1 0.910
CDK16CDK16 0.805 0.709 1 0.921
CDK5CDK5 0.804 0.678 1 0.888
CDK12CDK12 0.804 0.671 1 0.921
CDK10CDK10 0.804 0.651 1 0.907
CLK2CLK2 0.802 0.382 -3 0.654
MAKMAK 0.802 0.657 -2 0.867
HIPK1HIPK1 0.801 0.610 1 0.853
SRPK1SRPK1 0.797 0.313 -3 0.674
CDK9CDK9 0.796 0.644 1 0.905
ERK2ERK2 0.794 0.709 1 0.876
CDK14CDK14 0.794 0.675 1 0.897
DYRK1ADYRK1A 0.792 0.592 1 0.843
DYRK1BDYRK1B 0.790 0.609 1 0.898
NLKNLK 0.788 0.595 1 0.725
ICKICK 0.787 0.518 -3 0.750
HIPK3HIPK3 0.786 0.584 1 0.822
CDKL5CDKL5 0.784 0.335 -3 0.706
ERK5ERK5 0.784 0.393 1 0.624
GRK1GRK1 0.783 0.142 -2 0.601
SRPK2SRPK2 0.782 0.239 -3 0.602
COTCOT 0.781 0.034 2 0.825
MTORMTOR 0.781 0.255 1 0.531
CDK2CDK2 0.781 0.500 1 0.842
CDK6CDK6 0.781 0.640 1 0.900
CLK4CLK4 0.780 0.308 -3 0.666
CDK4CDK4 0.780 0.661 1 0.923
MOSMOS 0.778 0.150 1 0.452
DYRK3DYRK3 0.777 0.460 1 0.825
CDKL1CDKL1 0.776 0.267 -3 0.719
CLK1CLK1 0.775 0.322 -3 0.626
SRPK3SRPK3 0.775 0.212 -3 0.661
CK1ECK1E 0.772 0.188 -3 0.733
GSK3AGSK3A 0.771 0.317 4 0.666
CDC7CDC7 0.771 0.024 1 0.423
MOKMOK 0.771 0.534 1 0.752
PIM3PIM3 0.768 0.039 -3 0.746
NDR2NDR2 0.766 0.052 -3 0.735
ATRATR 0.765 0.049 1 0.437
GRK7GRK7 0.763 0.104 1 0.412
CK1DCK1D 0.762 0.182 -3 0.694
CHAK2CHAK2 0.762 0.047 -1 0.752
GRK5GRK5 0.761 0.002 -3 0.811
PRPKPRPK 0.761 -0.017 -1 0.744
IKKBIKKB 0.761 -0.106 -2 0.491
PRP4PRP4 0.761 0.366 -3 0.667
BMPR1BBMPR1B 0.758 0.021 1 0.400
CK1A2CK1A2 0.758 0.167 -3 0.693
RSK2RSK2 0.758 0.017 -3 0.670
ERK7ERK7 0.758 0.285 2 0.615
TBK1TBK1 0.757 -0.054 1 0.334
MLK3MLK3 0.757 0.080 2 0.759
MLK1MLK1 0.755 -0.005 2 0.799
RAF1RAF1 0.755 -0.125 1 0.401
PDHK4PDHK4 0.755 -0.099 1 0.451
IKKEIKKE 0.755 -0.097 1 0.334
CAMK2GCAMK2G 0.755 -0.049 2 0.745
SKMLCKSKMLCK 0.754 -0.011 -2 0.609
PIM1PIM1 0.754 0.038 -3 0.690
DSTYKDSTYK 0.754 -0.149 2 0.875
MST4MST4 0.753 -0.029 2 0.863
CK1G1CK1G1 0.753 0.121 -3 0.710
GCN2GCN2 0.752 -0.177 2 0.733
BMPR2BMPR2 0.752 -0.145 -2 0.615
GSK3BGSK3B 0.752 0.179 4 0.659
GRK6GRK6 0.751 -0.025 1 0.410
AURCAURC 0.751 0.002 -2 0.451
CAMK1BCAMK1B 0.750 -0.062 -3 0.749
RSK4RSK4 0.750 0.039 -3 0.651
P90RSKP90RSK 0.749 0.005 -3 0.678
WNK1WNK1 0.749 -0.054 -2 0.621
RIPK3RIPK3 0.749 -0.059 3 0.728
GRK4GRK4 0.748 -0.059 -2 0.593
IKKAIKKA 0.748 -0.065 -2 0.502
DLKDLK 0.748 -0.042 1 0.415
PASKPASK 0.747 0.119 -3 0.781
NDR1NDR1 0.747 -0.052 -3 0.713
PRKD1PRKD1 0.747 -0.026 -3 0.711
TGFBR2TGFBR2 0.747 -0.110 -2 0.560
CAMLCKCAMLCK 0.746 -0.034 -2 0.589
PKN3PKN3 0.746 -0.051 -3 0.715
GRK2GRK2 0.746 -0.003 -2 0.519
NIKNIK 0.746 -0.077 -3 0.760
MLK2MLK2 0.745 0.008 2 0.784
CAMK2ACAMK2A 0.745 0.011 2 0.767
PKACGPKACG 0.745 -0.042 -2 0.512
NEK6NEK6 0.744 -0.120 -2 0.571
NUAK2NUAK2 0.744 -0.036 -3 0.730
RSK3RSK3 0.744 -0.031 -3 0.661
LATS1LATS1 0.744 0.047 -3 0.748
TGFBR1TGFBR1 0.744 -0.032 -2 0.567
PKACBPKACB 0.743 0.003 -2 0.450
PKN2PKN2 0.743 -0.074 -3 0.711
ALK4ALK4 0.743 -0.038 -2 0.589
PRKD2PRKD2 0.743 -0.027 -3 0.645
ACVR2BACVR2B 0.743 -0.042 -2 0.560
MPSK1MPSK1 0.743 0.212 1 0.414
DAPK2DAPK2 0.743 -0.061 -3 0.757
MLK4MLK4 0.742 0.013 2 0.710
PRKXPRKX 0.742 0.025 -3 0.569
P70S6KBP70S6KB 0.741 -0.032 -3 0.677
FAM20CFAM20C 0.741 0.009 2 0.597
PKCDPKCD 0.741 -0.030 2 0.774
PKCGPKCG 0.741 -0.001 2 0.749
DNAPKDNAPK 0.741 -0.014 1 0.385
PDHK1PDHK1 0.741 -0.210 1 0.423
PKCBPKCB 0.740 -0.006 2 0.754
GRK3GRK3 0.740 0.011 -2 0.494
ACVR2AACVR2A 0.740 -0.055 -2 0.548
ATMATM 0.740 -0.065 1 0.401
MASTLMASTL 0.739 -0.144 -2 0.568
TTBK2TTBK2 0.739 -0.113 2 0.638
CK1ACK1A 0.739 0.152 -3 0.628
PKCAPKCA 0.739 0.009 2 0.739
NEK7NEK7 0.738 -0.226 -3 0.765
CAMK2DCAMK2D 0.738 -0.100 -3 0.719
SMG1SMG1 0.738 -0.050 1 0.406
ULK2ULK2 0.738 -0.250 2 0.700
PAK1PAK1 0.738 -0.039 -2 0.572
LATS2LATS2 0.738 -0.056 -5 0.693
BMPR1ABMPR1A 0.738 -0.019 1 0.389
ALK2ALK2 0.737 -0.047 -2 0.568
YSK4YSK4 0.737 -0.092 1 0.365
CAMK2BCAMK2B 0.737 -0.045 2 0.730
IRE1IRE1 0.737 -0.067 1 0.376
MSK1MSK1 0.736 -0.021 -3 0.651
MST3MST3 0.736 0.011 2 0.853
MAPKAPK2MAPKAPK2 0.735 -0.039 -3 0.619
TLK2TLK2 0.735 -0.080 1 0.392
MSK2MSK2 0.735 -0.051 -3 0.667
PKRPKR 0.734 -0.062 1 0.409
VRK2VRK2 0.734 0.031 1 0.486
HUNKHUNK 0.733 -0.205 2 0.722
MARK4MARK4 0.733 -0.124 4 0.777
PKCZPKCZ 0.733 -0.030 2 0.758
DRAK1DRAK1 0.733 -0.072 1 0.369
MNK1MNK1 0.732 -0.048 -2 0.542
ANKRD3ANKRD3 0.732 -0.198 1 0.406
MEK1MEK1 0.732 -0.121 2 0.769
BCKDKBCKDK 0.732 -0.179 -1 0.639
AKT2AKT2 0.732 -0.003 -3 0.594
RIPK1RIPK1 0.732 -0.176 1 0.377
MAPKAPK3MAPKAPK3 0.731 -0.094 -3 0.650
NEK9NEK9 0.731 -0.199 2 0.789
PKG2PKG2 0.731 -0.041 -2 0.464
AURBAURB 0.731 -0.049 -2 0.443
MYLK4MYLK4 0.730 -0.057 -2 0.516
PAK3PAK3 0.730 -0.089 -2 0.548
PIM2PIM2 0.729 0.007 -3 0.634
ULK1ULK1 0.729 -0.225 -3 0.719
CHAK1CHAK1 0.729 -0.108 2 0.727
MNK2MNK2 0.729 -0.083 -2 0.528
AURAAURA 0.729 -0.052 -2 0.423
PLK1PLK1 0.728 -0.151 -2 0.537
PKCHPKCH 0.728 -0.057 2 0.709
MEKK3MEKK3 0.728 -0.097 1 0.397
WNK3WNK3 0.728 -0.222 1 0.382
PHKG1PHKG1 0.728 -0.080 -3 0.708
PINK1PINK1 0.728 0.037 1 0.562
AMPKA1AMPKA1 0.726 -0.130 -3 0.727
CK2A2CK2A2 0.726 -0.014 1 0.341
TAO3TAO3 0.726 -0.014 1 0.413
PLK3PLK3 0.725 -0.110 2 0.690
PRKD3PRKD3 0.725 -0.064 -3 0.629
SGK3SGK3 0.724 -0.044 -3 0.637
GCKGCK 0.724 0.002 1 0.405
TLK1TLK1 0.723 -0.131 -2 0.572
CK2A1CK2A1 0.723 0.002 1 0.330
MEK5MEK5 0.723 -0.134 2 0.760
IRE2IRE2 0.723 -0.084 2 0.679
AMPKA2AMPKA2 0.723 -0.100 -3 0.690
PAK2PAK2 0.722 -0.092 -2 0.552
PAK6PAK6 0.722 -0.060 -2 0.469
MEKK2MEKK2 0.721 -0.101 2 0.746
PKACAPKACA 0.721 -0.030 -2 0.415
NEK2NEK2 0.720 -0.174 2 0.781
CAMK4CAMK4 0.720 -0.176 -3 0.696
GAKGAK 0.720 -0.008 1 0.420
PKCEPKCE 0.720 -0.004 2 0.740
PERKPERK 0.719 -0.172 -2 0.581
MEKK1MEKK1 0.718 -0.154 1 0.390
TSSK2TSSK2 0.718 -0.174 -5 0.758
ZAKZAK 0.718 -0.160 1 0.376
MAPKAPK5MAPKAPK5 0.717 -0.120 -3 0.626
HPK1HPK1 0.717 -0.040 1 0.397
NEK11NEK11 0.717 -0.097 1 0.402
QSKQSK 0.717 -0.107 4 0.742
NIM1NIM1 0.716 -0.180 3 0.727
SLKSLK 0.716 -0.034 -2 0.507
CAMK1GCAMK1G 0.715 -0.094 -3 0.654
TSSK1TSSK1 0.714 -0.136 -3 0.745
PKCIPKCI 0.714 -0.056 2 0.742
PLK2PLK2 0.714 -0.028 -3 0.744
NEK5NEK5 0.714 -0.171 1 0.379
PDK1PDK1 0.714 -0.062 1 0.399
NUAK1NUAK1 0.713 -0.114 -3 0.657
QIKQIK 0.713 -0.189 -3 0.715
EEF2KEEF2K 0.713 -0.013 3 0.809
SMMLCKSMMLCK 0.712 -0.085 -3 0.703
BRSK1BRSK1 0.712 -0.115 -3 0.667
MARK3MARK3 0.712 -0.110 4 0.699
MST2MST2 0.712 -0.108 1 0.390
DCAMKL1DCAMKL1 0.712 -0.106 -3 0.659
TTBK1TTBK1 0.712 -0.141 2 0.550
HASPINHASPIN 0.712 0.054 -1 0.653
YANK3YANK3 0.711 0.018 2 0.363
TNIKTNIK 0.711 -0.046 3 0.854
AKT1AKT1 0.711 -0.046 -3 0.598
MAP3K15MAP3K15 0.711 -0.044 1 0.376
KHS1KHS1 0.711 -0.018 1 0.381
HRIHRI 0.711 -0.216 -2 0.584
LKB1LKB1 0.711 -0.078 -3 0.724
SIKSIK 0.711 -0.122 -3 0.645
WNK4WNK4 0.711 -0.140 -2 0.621
CK1G2CK1G2 0.710 0.137 -3 0.653
PAK4PAK4 0.710 -0.056 -2 0.450
TAO2TAO2 0.710 -0.078 2 0.816
KHS2KHS2 0.710 -0.010 1 0.400
BUB1BUB1 0.710 0.023 -5 0.709
CAMKK2CAMKK2 0.710 -0.153 -2 0.488
PKCTPKCT 0.709 -0.091 2 0.711
BRAFBRAF 0.709 -0.210 -4 0.773
DAPK1DAPK1 0.708 -0.051 -3 0.687
TAK1TAK1 0.708 -0.123 1 0.392
P70S6KP70S6K 0.708 -0.069 -3 0.595
BRSK2BRSK2 0.708 -0.144 -3 0.677
AKT3AKT3 0.708 -0.016 -3 0.542
SGK1SGK1 0.708 0.005 -3 0.522
HGKHGK 0.708 -0.081 3 0.844
PAK5PAK5 0.708 -0.080 -2 0.443
NEK8NEK8 0.708 -0.177 2 0.773
LRRK2LRRK2 0.707 -0.036 2 0.794
MELKMELK 0.707 -0.170 -3 0.664
DAPK3DAPK3 0.707 -0.070 -3 0.692
IRAK4IRAK4 0.706 -0.161 1 0.356
MINKMINK 0.706 -0.117 1 0.371
LOKLOK 0.706 -0.081 -2 0.519
PLK4PLK4 0.705 -0.192 2 0.483
CAMKK1CAMKK1 0.705 -0.230 -2 0.476
MEKK6MEKK6 0.704 -0.113 1 0.388
MST1MST1 0.704 -0.110 1 0.373
SNRKSNRK 0.704 -0.224 2 0.555
STK33STK33 0.703 -0.120 2 0.543
MARK2MARK2 0.702 -0.150 4 0.668
ROCK2ROCK2 0.702 -0.031 -3 0.660
CHK1CHK1 0.702 -0.165 -3 0.681
PHKG2PHKG2 0.702 -0.130 -3 0.655
CK1G3CK1G3 0.701 0.110 -3 0.587
DCAMKL2DCAMKL2 0.701 -0.124 -3 0.674
MRCKBMRCKB 0.701 -0.042 -3 0.609
PDHK3_TYRPDHK3_TYR 0.701 0.263 4 0.886
NEK4NEK4 0.700 -0.191 1 0.363
VRK1VRK1 0.700 -0.136 2 0.753
PBKPBK 0.699 -0.050 1 0.369
SBKSBK 0.699 0.049 -3 0.480
MRCKAMRCKA 0.698 -0.047 -3 0.625
MARK1MARK1 0.698 -0.170 4 0.716
PKN1PKN1 0.698 -0.076 -3 0.608
SSTKSSTK 0.697 -0.137 4 0.720
PDHK4_TYRPDHK4_TYR 0.696 0.179 2 0.822
DMPK1DMPK1 0.696 -0.011 -3 0.637
OSR1OSR1 0.695 -0.073 2 0.758
ALPHAK3ALPHAK3 0.694 -0.001 -1 0.662
NEK1NEK1 0.694 -0.191 1 0.357
MAP2K6_TYRMAP2K6_TYR 0.694 0.141 -1 0.767
YSK1YSK1 0.693 -0.121 2 0.793
CAMK1DCAMK1D 0.693 -0.102 -3 0.566
BMPR2_TYRBMPR2_TYR 0.693 0.099 -1 0.789
PDHK1_TYRPDHK1_TYR 0.691 0.133 -1 0.783
MAP2K4_TYRMAP2K4_TYR 0.691 0.093 -1 0.749
CHK2CHK2 0.689 -0.077 -3 0.530
TESK1_TYRTESK1_TYR 0.688 0.064 3 0.848
CRIKCRIK 0.687 -0.023 -3 0.602
TTKTTK 0.687 -0.106 -2 0.569
ROCK1ROCK1 0.686 -0.057 -3 0.620
PKMYT1_TYRPKMYT1_TYR 0.686 0.091 3 0.839
ASK1ASK1 0.685 -0.109 1 0.370
YANK2YANK2 0.684 0.009 2 0.383
MEK2MEK2 0.684 -0.260 2 0.718
MYO3BMYO3B 0.683 -0.095 2 0.807
MAP2K7_TYRMAP2K7_TYR 0.682 -0.032 2 0.783
MYO3AMYO3A 0.682 -0.103 1 0.387
LIMK2_TYRLIMK2_TYR 0.682 0.097 -3 0.754
IRAK1IRAK1 0.682 -0.319 -1 0.631
RIPK2RIPK2 0.680 -0.268 1 0.347
PKG1PKG1 0.680 -0.097 -2 0.400
CAMK1ACAMK1A 0.680 -0.095 -3 0.538
BIKEBIKE 0.679 -0.076 1 0.361
PINK1_TYRPINK1_TYR 0.678 -0.098 1 0.438
TAO1TAO1 0.678 -0.108 1 0.360
TXKTXK 0.676 0.020 1 0.387
EPHA6EPHA6 0.675 -0.035 -1 0.759
EPHB4EPHB4 0.674 -0.024 -1 0.700
FYNFYN 0.673 0.037 -1 0.768
FGRFGR 0.672 -0.077 1 0.380
CSF1RCSF1R 0.671 -0.023 3 0.775
EPHA4EPHA4 0.671 -0.013 2 0.711
SYKSYK 0.671 0.050 -1 0.728
RETRET 0.671 -0.099 1 0.397
YES1YES1 0.670 -0.041 -1 0.743
AAK1AAK1 0.670 -0.038 1 0.327
MST1RMST1R 0.670 -0.080 3 0.796
NEK3NEK3 0.670 -0.235 1 0.361
ABL2ABL2 0.670 -0.044 -1 0.678
JAK2JAK2 0.669 -0.093 1 0.396
BLKBLK 0.669 -0.017 -1 0.761
LIMK1_TYRLIMK1_TYR 0.669 -0.062 2 0.779
LCKLCK 0.668 -0.021 -1 0.763
METMET 0.668 -0.013 3 0.768
FLT1FLT1 0.667 -0.020 -1 0.729
PTK2PTK2 0.667 0.049 -1 0.761
ABL1ABL1 0.667 -0.054 -1 0.666
KITKIT 0.666 -0.058 3 0.779
SRMSSRMS 0.666 -0.087 1 0.389
HCKHCK 0.665 -0.084 -1 0.745
KDRKDR 0.665 -0.046 3 0.735
TNK2TNK2 0.665 -0.051 3 0.735
JAK3JAK3 0.664 -0.103 1 0.388
TYK2TYK2 0.663 -0.211 1 0.380
ROS1ROS1 0.663 -0.122 3 0.748
STLK3STLK3 0.663 -0.210 1 0.360
DDR1DDR1 0.663 -0.121 4 0.788
ITKITK 0.662 -0.076 -1 0.688
FGFR2FGFR2 0.662 -0.053 3 0.753
FERFER 0.662 -0.144 1 0.406
BMXBMX 0.662 -0.055 -1 0.624
TYRO3TYRO3 0.662 -0.159 3 0.775
INSRRINSRR 0.661 -0.098 3 0.710
EPHB1EPHB1 0.661 -0.103 1 0.392
JAK1JAK1 0.659 -0.080 1 0.357
EPHB2EPHB2 0.659 -0.086 -1 0.682
NEK10_TYRNEK10_TYR 0.659 -0.113 1 0.336
SRCSRC 0.658 -0.038 -1 0.731
FGFR3FGFR3 0.656 -0.051 3 0.724
ZAP70ZAP70 0.656 0.028 -1 0.653
ERBB2ERBB2 0.656 -0.108 1 0.369
EPHA7EPHA7 0.656 -0.066 2 0.700
TNNI3K_TYRTNNI3K_TYR 0.656 -0.071 1 0.408
FRKFRK 0.655 -0.084 -1 0.736
EPHB3EPHB3 0.655 -0.113 -1 0.681
TNK1TNK1 0.655 -0.072 3 0.771
DDR2DDR2 0.655 -0.007 3 0.692
FLT3FLT3 0.655 -0.151 3 0.784
ERBB4ERBB4 0.654 -0.012 1 0.336
CSKCSK 0.654 -0.035 2 0.693
WEE1_TYRWEE1_TYR 0.654 -0.090 -1 0.617
EPHA8EPHA8 0.653 -0.047 -1 0.697
LYNLYN 0.653 -0.079 3 0.727
MATKMATK 0.653 -0.063 -1 0.606
TEKTEK 0.653 -0.075 3 0.720
EPHA3EPHA3 0.652 -0.097 2 0.667
EGFREGFR 0.652 -0.066 1 0.323
PDGFRBPDGFRB 0.650 -0.202 3 0.779
MERTKMERTK 0.650 -0.136 3 0.755
FGFR4FGFR4 0.650 -0.055 -1 0.635
FGFR1FGFR1 0.650 -0.106 3 0.719
TECTEC 0.650 -0.137 -1 0.599
PTK2BPTK2B 0.649 -0.077 -1 0.639
BTKBTK 0.648 -0.184 -1 0.639
EPHA5EPHA5 0.648 -0.085 2 0.681
NTRK1NTRK1 0.646 -0.188 -1 0.677
FLT4FLT4 0.646 -0.137 3 0.746
NTRK3NTRK3 0.646 -0.127 -1 0.636
PDGFRAPDGFRA 0.645 -0.196 3 0.788
ALKALK 0.644 -0.165 3 0.695
AXLAXL 0.643 -0.193 3 0.734
EPHA2EPHA2 0.642 -0.064 -1 0.667
INSRINSR 0.642 -0.146 3 0.705
PTK6PTK6 0.642 -0.202 -1 0.590
EPHA1EPHA1 0.642 -0.146 3 0.749
LTKLTK 0.641 -0.177 3 0.729
NTRK2NTRK2 0.638 -0.224 3 0.736
IGF1RIGF1R 0.633 -0.122 3 0.655
MUSKMUSK 0.629 -0.154 1 0.302
FESFES 0.622 -0.121 -1 0.586