Motif 161 (n=513)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A2A3K4 | PTPDC1 | S534 | ochoa | Protein tyrosine phosphatase domain-containing protein 1 (EC 3.1.3.-) | May play roles in cilia formation and/or maintenance. {ECO:0000250}. |
A6NEL2 | SOWAHB | S258 | ochoa | Ankyrin repeat domain-containing protein SOWAHB (Ankyrin repeat domain-containing protein 56) (Protein sosondowah homolog B) | None |
A6NJZ7 | RIMBP3C | S1322 | ochoa | RIMS-binding protein 3C (RIM-BP3.C) (RIMS-binding protein 3.3) (RIM-BP3.3) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
A6NNM3 | RIMBP3B | S1322 | ochoa | RIMS-binding protein 3B (RIM-BP3.B) (RIMS-binding protein 3.2) (RIM-BP3.2) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
A7KAX9 | ARHGAP32 | S902 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7MD48 | SRRM4 | S350 | ochoa | Serine/arginine repetitive matrix protein 4 (Medulloblastoma antigen MU-MB-2.76) (Neural-specific serine/arginine repetitive splicing factor of 100 kDa) (Neural-specific SR-related protein of 100 kDa) (nSR100) | Splicing factor specifically required for neural cell differentiation. Acts in conjunction with nPTB/PTBP2 by binding directly to its regulated target transcripts and promotes neural-specific exon inclusion in many genes that function in neural cell differentiation. Required to promote the inclusion of neural-specific exon 10 in nPTB/PTBP2, leading to increased expression of neural-specific nPTB/PTBP2. Also promotes the inclusion of exon 16 in DAAM1 in neuron extracts (By similarity). Promotes alternative splicing of REST transcripts to produce REST isoform 3 (REST4) with greatly reduced repressive activity, thereby activating expression of REST targets in neural cells (PubMed:30684677). Plays an important role during embryonic development as well as in the proper functioning of the adult nervous system. Regulates alternative splicing events in genes with important neuronal functions (By similarity). {ECO:0000250|UniProtKB:Q8BKA3, ECO:0000269|PubMed:30684677}. |
A8K979 | ERI2 | S478 | ochoa | ERI1 exoribonuclease 2 (EC 3.1.-.-) (Exonuclease domain-containing protein 1) | None |
B8ZZF3 | None | S309 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Cofactor required for Sp1 transcriptional activation subunit 7) (Mediator complex subunit 26) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. {ECO:0000256|ARBA:ARBA00057523}. |
E9PCH4 | None | S1544 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
M0R1B8 | None | S23 | ochoa | Uncharacterized protein | None |
O00512 | BCL9 | S865 | ochoa | B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) | Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}. |
O14686 | KMT2D | S2296 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14939 | PLD2 | S134 | psp | Phospholipase D2 (PLD 2) (hPLD2) (EC 3.1.4.4) (Choline phosphatase 2) (PLD1C) (Phosphatidylcholine-hydrolyzing phospholipase D2) | Function as phospholipase selective for phosphatidylcholine (PubMed:9582313). May have a role in signal-induced cytoskeletal regulation and/or endocytosis (By similarity). {ECO:0000250|UniProtKB:P97813, ECO:0000269|PubMed:9582313}. |
O14974 | PPP1R12A | S409 | ochoa | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O14978 | ZNF263 | S153 | ochoa | Zinc finger protein 263 (Zinc finger protein FPM315) (Zinc finger protein with KRAB and SCAN domains 12) | Transcription factor that binds to the consensus sequence 5'-TCCTCCC-3' and acts as a transcriptional repressor (PubMed:32051553). Binds to the promoter region of SIX3 and recruits other proteins involved in chromatin modification and transcriptional corepression, resulting in methylation of the promoter and transcriptional repression (PubMed:32051553). Acts as a transcriptional repressor of HS3ST1 and HS3ST3A1 via binding to gene promoter regions (PubMed:32277030). {ECO:0000269|PubMed:32051553, ECO:0000269|PubMed:32277030}. |
O15014 | ZNF609 | S804 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15015 | ZNF646 | S33 | ochoa | Zinc finger protein 646 | May be involved in transcriptional regulation. |
O15069 | NACAD | S1121 | ochoa | NAC-alpha domain-containing protein 1 | May prevent inappropriate targeting of non-secretory polypeptides to the endoplasmic reticulum (ER). May bind to nascent polypeptide chains as they emerge from the ribosome and block their interaction with the signal recognition particle (SRP), which normally targets nascent secretory peptides to the ER. May also reduce the inherent affinity of ribosomes for protein translocation sites in the ER membrane (M sites) (By similarity). {ECO:0000250}. |
O15211 | RGL2 | S589 | ochoa | Ral guanine nucleotide dissociation stimulator-like 2 (RalGDS-like 2) (RalGDS-like factor) (Ras-associated protein RAB2L) | Probable guanine nucleotide exchange factor. Putative effector of Ras and/or Rap. Associates with the GTP-bound form of Rap 1A and H-Ras in vitro (By similarity). {ECO:0000250}. |
O43314 | PPIP5K2 | S1172 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43395 | PRPF3 | S164 | ochoa | U4/U6 small nuclear ribonucleoprotein Prp3 (Pre-mRNA-splicing factor 3) (hPrp3) (U4/U6 snRNP 90 kDa protein) | Plays a role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex). {ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28781166, ECO:0000305|PubMed:20595234}. |
O43524 | FOXO3 | S30 | ochoa|psp | Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) | Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}. |
O43683 | BUB1 | S596 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O43903 | GAS2 | S282 | ochoa | Growth arrest-specific protein 2 (GAS-2) | Required to maintain microtubule bundles in inner ear supporting cells, affording them with mechanical stiffness to transmit sound energy through the cochlea. {ECO:0000250|UniProtKB:P11862}. |
O60307 | MAST3 | S348 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60313 | OPA1 | S478 | ochoa | Dynamin-like GTPase OPA1, mitochondrial (EC 3.6.5.5) (Optic atrophy protein 1) [Cleaved into: Dynamin-like GTPase OPA1, long form (L-OPA1); Dynamin-like GTPase OPA1, short form (S-OPA1)] | Dynamin-related GTPase that is essential for normal mitochondrial morphology by mediating fusion of the mitochondrial inner membranes, regulating cristae morphology and maintaining respiratory chain function (PubMed:16778770, PubMed:17709429, PubMed:20185555, PubMed:24616225, PubMed:28628083, PubMed:28746876, PubMed:31922487, PubMed:32228866, PubMed:32567732, PubMed:33130824, PubMed:33237841, PubMed:37612504, PubMed:37612506). Exists in two forms: the transmembrane, long form (Dynamin-like GTPase OPA1, long form; L-OPA1), which is tethered to the inner mitochondrial membrane, and the short soluble form (Dynamin-like GTPase OPA1, short form; S-OPA1), which results from proteolytic cleavage and localizes in the intermembrane space (PubMed:31922487, PubMed:32228866, PubMed:33237841, PubMed:37612504, PubMed:37612506). Both forms (L-OPA1 and S-OPA1) cooperate to catalyze the fusion of the mitochondrial inner membrane (PubMed:31922487, PubMed:37612504, PubMed:37612506). The equilibrium between L-OPA1 and S-OPA1 is essential: excess levels of S-OPA1, produced by cleavage by OMA1 following loss of mitochondrial membrane potential, lead to an impaired equilibrium between L-OPA1 and S-OPA1, inhibiting mitochondrial fusion (PubMed:20038677, PubMed:31922487). The balance between L-OPA1 and S-OPA1 also influences cristae shape and morphology (By similarity). Involved in remodeling cristae and the release of cytochrome c during apoptosis (By similarity). Proteolytic processing by PARL in response to intrinsic apoptotic signals may lead to disassembly of OPA1 oligomers and release of the caspase activator cytochrome C (CYCS) into the mitochondrial intermembrane space (By similarity). Acts as a regulator of T-helper Th17 cells, which are characterized by cells with fused mitochondria with tight cristae, by mediating mitochondrial membrane remodeling: OPA1 is required for interleukin-17 (IL-17) production (By similarity). Its role in mitochondrial morphology is required for mitochondrial genome maintenance (PubMed:18158317, PubMed:20974897). {ECO:0000250|UniProtKB:P58281, ECO:0000269|PubMed:16778770, ECO:0000269|PubMed:17709429, ECO:0000269|PubMed:18158317, ECO:0000269|PubMed:20038677, ECO:0000269|PubMed:20185555, ECO:0000269|PubMed:20974897, ECO:0000269|PubMed:24616225, ECO:0000269|PubMed:28628083, ECO:0000269|PubMed:28746876, ECO:0000269|PubMed:31922487, ECO:0000269|PubMed:32228866, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824, ECO:0000269|PubMed:33237841, ECO:0000269|PubMed:37612504, ECO:0000269|PubMed:37612506}.; FUNCTION: [Dynamin-like GTPase OPA1, long form]: Constitutes the transmembrane long form (L-OPA1) that plays a central role in mitochondrial inner membrane fusion and cristae morphology (PubMed:31922487, PubMed:32228866, PubMed:37612504, PubMed:37612506). L-OPA1 and the soluble short form (S-OPA1) form higher-order helical assemblies that coordinate the fusion of mitochondrial inner membranes (PubMed:31922487, PubMed:37612504, PubMed:37612506). Inner membrane-anchored L-OPA1 molecules initiate membrane remodeling by recruiting soluble S-OPA1 to rapidly polymerize into a flexible cylindrical scaffold encaging the mitochondrial inner membrane (PubMed:37612504, PubMed:37612506). Once at the membrane surface, the formation of S-OPA1 helices induce bilayer curvature (PubMed:37612504, PubMed:37612506). OPA1 dimerization through the paddle region, which inserts into cardiolipin-containing membrane, promotes GTP hydrolysis and the helical assembly of a flexible OPA1 lattice on the membrane, which drives membrane curvature and mitochondrial fusion (PubMed:28628083, PubMed:37612504, PubMed:37612506). Plays a role in the maintenance and remodeling of mitochondrial cristae, some invaginations of the mitochondrial inner membrane that provide an increase in the surface area (PubMed:32567732, PubMed:33130824). Probably acts by forming helical filaments at the inside of inner membrane tubes with the shape and dimensions of crista junctions (By similarity). The equilibrium between L-OPA1 and S-OPA1 influences cristae shape and morphology: increased L-OPA1 levels promote cristae stacking and elongated mitochondria, while increased S-OPA1 levels correlated with irregular cristae packing and round mitochondria shape (By similarity). {ECO:0000250|UniProtKB:G0SGC7, ECO:0000250|UniProtKB:P58281, ECO:0000269|PubMed:28628083, ECO:0000269|PubMed:31922487, ECO:0000269|PubMed:32228866, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824, ECO:0000269|PubMed:37612504, ECO:0000269|PubMed:37612506}.; FUNCTION: [Dynamin-like GTPase OPA1, short form]: Constitutes the soluble short form (S-OPA1) generated by cleavage by OMA1, which plays a central role in mitochondrial inner membrane fusion and cristae morphology (PubMed:31922487, PubMed:32228866, PubMed:32245890, PubMed:37612504, PubMed:37612506). The transmembrane long form (L-OPA1) and the S-OPA1 form higher-order helical assemblies that coordinate the fusion of mitochondrial inner membranes (PubMed:31922487, PubMed:32228866, PubMed:37612504, PubMed:37612506). Inner membrane-anchored L-OPA1 molecules initiate membrane remodeling by recruiting soluble S-OPA1 to rapidly polymerize into a flexible cylindrical scaffold encaging the mitochondrial inner membrane (PubMed:32228866, PubMed:37612504, PubMed:37612506). Once at the membrane surface, the formation of S-OPA1 helices induce bilayer curvature (PubMed:37612504, PubMed:37612506). OPA1 dimerization through the paddle region, which inserts into cardiolipin-containing membrane, promotes GTP hydrolysis and the helical assembly of a flexible OPA1 lattice on the membrane, which drives membrane curvature and mitochondrial fusion (PubMed:28628083, PubMed:37612504, PubMed:37612506). Excess levels of S-OPA1 produced by cleavage by OMA1 following stress conditions that induce loss of mitochondrial membrane potential, lead to an impaired equilibrium between L-OPA1 and S-OPA1, thereby inhibiting mitochondrial fusion (PubMed:20038677). Involved in mitochondrial safeguard in response to transient mitochondrial membrane depolarization by mediating flickering: cleavage by OMA1 leads to excess production of S-OPA1, preventing mitochondrial hyperfusion (By similarity). Plays a role in the maintenance and remodeling of mitochondrial cristae, some invaginations of the mitochondrial inner membrane that provide an increase in the surface area (PubMed:32245890). Probably acts by forming helical filaments at the inside of inner membrane tubes with the shape and dimensions of crista junctions (By similarity). The equilibrium between L-OPA1 and S-OPA1 influences cristae shape and morphology: increased L-OPA1 levels promote cristae stacking and elongated mitochondria, while increased S-OPA1 levels correlated with irregular cristae packing and round mitochondria shape (By similarity). {ECO:0000250|UniProtKB:G0SGC7, ECO:0000250|UniProtKB:P58281, ECO:0000269|PubMed:20038677, ECO:0000269|PubMed:28628083, ECO:0000269|PubMed:31922487, ECO:0000269|PubMed:32228866, ECO:0000269|PubMed:32245890, ECO:0000269|PubMed:37612504, ECO:0000269|PubMed:37612506}.; FUNCTION: [Isoform 1]: Coexpression of isoform 1 with shorter alternative products is required for optimal activity in promoting mitochondrial fusion. {ECO:0000269|PubMed:17709429}.; FUNCTION: [Isoform 4]: Isoforms that contain the alternative exon 4b are required for mitochondrial genome maintenance, possibly by anchoring the mitochondrial nucleoids to the inner mitochondrial membrane. {ECO:0000269|PubMed:20974897}.; FUNCTION: [Isoform 5]: Isoforms that contain the alternative exon 4b are required for mitochondrial genome maintenance, possibly by anchoring the mitochondrial nucleoids to the inner mitochondrial membrane. {ECO:0000269|PubMed:20974897}. |
O60566 | BUB1B | S543 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) | Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}. |
O60885 | BRD4 | S1070 | ochoa | Bromodomain-containing protein 4 (Protein HUNK1) | Chromatin reader protein that recognizes and binds acetylated histones and plays a key role in transmission of epigenetic memory across cell divisions and transcription regulation (PubMed:20871596, PubMed:23086925, PubMed:23317504, PubMed:29176719, PubMed:29379197). Remains associated with acetylated chromatin throughout the entire cell cycle and provides epigenetic memory for postmitotic G1 gene transcription by preserving acetylated chromatin status and maintaining high-order chromatin structure (PubMed:22334664, PubMed:23317504, PubMed:23589332). During interphase, plays a key role in regulating the transcription of signal-inducible genes by associating with the P-TEFb complex and recruiting it to promoters (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). Also recruits P-TEFb complex to distal enhancers, so called anti-pause enhancers in collaboration with JMJD6 (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). BRD4 and JMJD6 are required to form the transcriptionally active P-TEFb complex by displacing negative regulators such as HEXIM1 and 7SKsnRNA complex from P-TEFb, thereby transforming it into an active form that can then phosphorylate the C-terminal domain (CTD) of RNA polymerase II (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). Regulates differentiation of naive CD4(+) T-cells into T-helper Th17 by promoting recruitment of P-TEFb to promoters (By similarity). Promotes phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II (PubMed:23086925). According to a report, directly acts as an atypical protein kinase and mediates phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II; these data however need additional evidences in vivo (PubMed:22509028). In addition to acetylated histones, also recognizes and binds acetylated RELA, leading to further recruitment of the P-TEFb complex and subsequent activation of NF-kappa-B (PubMed:19103749). Also acts as a regulator of p53/TP53-mediated transcription: following phosphorylation by CK2, recruited to p53/TP53 specific target promoters (PubMed:23317504). {ECO:0000250|UniProtKB:Q9ESU6, ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:19103749, ECO:0000269|PubMed:19596240, ECO:0000269|PubMed:22334664, ECO:0000269|PubMed:22509028, ECO:0000269|PubMed:23086925, ECO:0000269|PubMed:23317504, ECO:0000269|PubMed:23589332, ECO:0000269|PubMed:24360279, ECO:0000269|PubMed:29176719}.; FUNCTION: [Isoform B]: Acts as a chromatin insulator in the DNA damage response pathway. Inhibits DNA damage response signaling by recruiting the condensin-2 complex to acetylated histones, leading to chromatin structure remodeling, insulating the region from DNA damage response by limiting spreading of histone H2AX/H2A.x phosphorylation. {ECO:0000269|PubMed:23728299}. |
O75030 | MITF | S491 | ochoa | Microphthalmia-associated transcription factor (Class E basic helix-loop-helix protein 32) (bHLHe32) | Transcription factor that acts as a master regulator of melanocyte survival and differentiation as well as melanosome biogenesis (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Binds to M-boxes (5'-TCATGTG-3') and symmetrical DNA sequences (E-boxes) (5'-CACGTG-3') found in the promoter of pigmentation genes, such as tyrosinase (TYR) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, MITF phosphorylation by MTOR promotes its inactivation (PubMed:36608670). Upon starvation or lysosomal stress, inhibition of MTOR induces MITF dephosphorylation, resulting in transcription factor activity (PubMed:36608670). Plays an important role in melanocyte development by regulating the expression of tyrosinase (TYR) and tyrosinase-related protein 1 (TYRP1) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Plays a critical role in the differentiation of various cell types, such as neural crest-derived melanocytes, mast cells, osteoclasts and optic cup-derived retinal pigment epithelium (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). {ECO:0000269|PubMed:10587587, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:27889061, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:9647758}. |
O75369 | FLNB | S2465 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75955 | FLOT1 | S19 | ochoa | Flotillin-1 | May act as a scaffolding protein within caveolar membranes, functionally participating in formation of caveolae or caveolae-like vesicles. |
O94761 | RECQL4 | S89 | ochoa|psp | ATP-dependent DNA helicase Q4 (EC 5.6.2.4) (DNA 3'-5' helicase RecQ4) (DNA helicase, RecQ-like type 4) (RecQ4) (RTS) (RecQ protein-like 4) | An ATP-dependent DNA helicase which unwinds dsDNA with a 3'-overhang in a 3'-5' direction (PubMed:28653661). Does not unwind more than 18 bp of dsDNA (PubMed:28653661). May modulate chromosome segregation. The N-terminal domain (residues 1-54) binds DNA Y-shaped DNA better than ss- or dsDNA (PubMed:22730300). The core helicase domain binds ssDNA (PubMed:22730300, PubMed:28653661). {ECO:0000269|PubMed:15317757, ECO:0000269|PubMed:22730300, ECO:0000269|PubMed:28653661}. |
O94806 | PRKD3 | S731 | ochoa|psp | Serine/threonine-protein kinase D3 (EC 2.7.11.13) (Protein kinase C nu type) (Protein kinase EPK2) (nPKC-nu) | Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity). {ECO:0000250}. |
O94966 | USP19 | S461 | ochoa | Ubiquitin carboxyl-terminal hydrolase 19 (EC 3.4.19.12) (Deubiquitinating enzyme 19) (Ubiquitin thioesterase 19) (Ubiquitin-specific-processing protease 19) (Zinc finger MYND domain-containing protein 9) | Deubiquitinating enzyme that regulates the degradation of various proteins by removing ubiquitin moieties, thereby preventing their proteasomal degradation. Stabilizes RNF123, which promotes CDKN1B degradation and contributes to cell proliferation (By similarity). Decreases the levels of ubiquitinated proteins during skeletal muscle formation and acts to repress myogenesis. Modulates transcription of major myofibrillar proteins. Also involved in turnover of endoplasmic-reticulum-associated degradation (ERAD) substrates (PubMed:19465887, PubMed:24356957). Mechanistically, deubiquitinates and thereby stabilizes several E3 ligases involved in the ERAD pathway including SYVN1 or MARCHF6 (PubMed:24356957). Regulates the stability of other E3 ligases including BIRC2/c-IAP1 and BIRC3/c-IAP2 by preventing their ubiquitination (PubMed:21849505). Required for cells to mount an appropriate response to hypoxia by rescuing HIF1A from degradation in a non-catalytic manner and by mediating the deubiquitination of FUNDC1 (PubMed:22128162, PubMed:33978709). Attenuates mitochondrial damage and ferroptosis by targeting and stabilizing NADPH oxidase 4/NOX4 (PubMed:38943386). Negatively regulates TNF-alpha- and IL-1beta-triggered NF-kappa-B activation by hydrolyzing 'Lys-27'- and 'Lys-63'-linked polyubiquitin chains from MAP3K7 (PubMed:31127032). Modulates also the protein level and aggregation of polyQ-expanded huntingtin/HTT through HSP90AA1 (PubMed:33094816). {ECO:0000250|UniProtKB:Q3UJD6, ECO:0000250|UniProtKB:Q6J1Y9, ECO:0000269|PubMed:19465887, ECO:0000269|PubMed:21849505, ECO:0000269|PubMed:22128162, ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:24356957, ECO:0000269|PubMed:31127032, ECO:0000269|PubMed:33094816, ECO:0000269|PubMed:33978709, ECO:0000269|PubMed:38943386}. |
O95125 | ZNF202 | S466 | ochoa | Zinc finger protein 202 (Zinc finger protein with KRAB and SCAN domains 10) | Transcriptional repressor that binds to elements found predominantly in genes that participate in lipid metabolism. Among its targets are structural components of lipoprotein particles (apolipoproteins AIV, CIII, and E), enzymes involved in lipid processing (lipoprotein lipase, lecithin cholesteryl ester transferase), transporters involved in lipid homeostasis (ABCA1, ABCG1), and several genes involved in processes related to energy metabolism and vascular disease. |
O95402 | MED26 | S301 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95747 | OXSR1 | S359 | ochoa | Serine/threonine-protein kinase OSR1 (EC 2.7.11.1) (Oxidative stress-responsive 1 protein) | Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:17721439, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:17721439). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Also acts as a regulator of angiogenesis in endothelial cells downstream of WNK1 (PubMed:23386621, PubMed:25362046). Acts as an activator of inward rectifier potassium channels KCNJ2/Kir2.1 and KCNJ4/Kir2.3 downstream of WNK1: recognizes and binds the RXFXV/I variant motif on KCNJ2/Kir2.1 and KCNJ4/Kir2.3 and regulates their localization to the cell membrane without mediating their phosphorylation (PubMed:29581290). Phosphorylates RELL1, RELL2 and RELT (PubMed:16389068, PubMed:28688764). Phosphorylates PAK1 (PubMed:14707132). Phosphorylates PLSCR1 in the presence of RELT (PubMed:22052202). {ECO:0000269|PubMed:14707132, ECO:0000269|PubMed:16389068, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:17721439, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22052202, ECO:0000269|PubMed:23386621, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:28688764, ECO:0000269|PubMed:29581290, ECO:0000269|PubMed:34289367}. |
P04637 | TP53 | S33 | psp | Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) | Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}. |
P04637 | TP53 | S46 | psp | Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) | Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}. |
P07197 | NEFM | S615 | ochoa | Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}. |
P07197 | NEFM | S667 | ochoa | Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}. |
P10070 | GLI2 | S136 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P11274 | BCR | S369 | ochoa | Breakpoint cluster region protein (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-26) | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein (GAP) domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:1903516, PubMed:7479768). The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:23940119, PubMed:7479768). The amino terminus contains an intrinsic kinase activity (PubMed:1657398). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF1-directed motility and phagocytosis through the modulation of RAC1 activity (PubMed:17116687). Plays a major role as a RHOA GEF in keratinocytes being involved in focal adhesion formation and keratinocyte differentiation (PubMed:23940119). {ECO:0000250|UniProtKB:Q6PAJ1, ECO:0000269|PubMed:1657398, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:1903516, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:7479768}. |
P11274 | BCR | S382 | ochoa | Breakpoint cluster region protein (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-26) | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein (GAP) domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:1903516, PubMed:7479768). The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:23940119, PubMed:7479768). The amino terminus contains an intrinsic kinase activity (PubMed:1657398). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF1-directed motility and phagocytosis through the modulation of RAC1 activity (PubMed:17116687). Plays a major role as a RHOA GEF in keratinocytes being involved in focal adhesion formation and keratinocyte differentiation (PubMed:23940119). {ECO:0000250|UniProtKB:Q6PAJ1, ECO:0000269|PubMed:1657398, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:1903516, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:7479768}. |
P15884 | TCF4 | S484 | ochoa | Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) | Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}. |
P16949 | STMN1 | S25 | ochoa|psp | Stathmin (Leukemia-associated phosphoprotein p18) (Metablastin) (Oncoprotein 18) (Op18) (Phosphoprotein p19) (pp19) (Prosolin) (Protein Pr22) (pp17) | Involved in the regulation of the microtubule (MT) filament system by destabilizing microtubules. Prevents assembly and promotes disassembly of microtubules. Phosphorylation at Ser-16 may be required for axon formation during neurogenesis. Involved in the control of the learned and innate fear (By similarity). {ECO:0000250}. |
P17812 | CTPS1 | S562 | ochoa | CTP synthase 1 (EC 6.3.4.2) (CTP synthetase 1) (UTP--ammonia ligase 1) | This enzyme is involved in the de novo synthesis of CTP, a precursor of DNA, RNA and phospholipids. Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as a source of nitrogen. This enzyme and its product, CTP, play a crucial role in the proliferation of activated lymphocytes and therefore in immunity. {ECO:0000269|PubMed:16179339, ECO:0000269|PubMed:24870241}. |
P21359 | NF1 | S2515 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P21580 | TNFAIP3 | S573 | ochoa | Tumor necrosis factor alpha-induced protein 3 (TNF alpha-induced protein 3) (EC 2.3.2.-) (EC 3.4.19.12) (OTU domain-containing protein 7C) (Putative DNA-binding protein A20) (Zinc finger protein A20) [Cleaved into: A20p50; A20p37] | Ubiquitin-editing enzyme that contains both ubiquitin ligase and deubiquitinase activities. Involved in immune and inflammatory responses signaled by cytokines, such as TNF-alpha and IL-1 beta, or pathogens via Toll-like receptors (TLRs) through terminating NF-kappa-B activity. Essential component of a ubiquitin-editing protein complex, comprising also RNF11, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. In cooperation with TAX1BP1 promotes disassembly of E2-E3 ubiquitin protein ligase complexes in IL-1R and TNFR-1 pathways; affected are at least E3 ligases TRAF6, TRAF2 and BIRC2, and E2 ubiquitin-conjugating enzymes UBE2N and UBE2D3. In cooperation with TAX1BP1 promotes ubiquitination of UBE2N and proteasomal degradation of UBE2N and UBE2D3. Upon TNF stimulation, deubiquitinates 'Lys-63'-polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Deubiquitinates TRAF6 probably acting on 'Lys-63'-linked polyubiquitin. Upon T-cell receptor (TCR)-mediated T-cell activation, deubiquitinates 'Lys-63'-polyubiquitin chains on MALT1 thereby mediating disassociation of the CBM (CARD11:BCL10:MALT1) and IKK complexes and preventing sustained IKK activation. Deubiquitinates NEMO/IKBKG; the function is facilitated by TNIP1 and leads to inhibition of NF-kappa-B activation. Upon stimulation by bacterial peptidoglycans, probably deubiquitinates RIPK2. Can also inhibit I-kappa-B-kinase (IKK) through a non-catalytic mechanism which involves polyubiquitin; polyubiquitin promotes association with IKBKG and prevents IKK MAP3K7-mediated phosphorylation. Targets TRAF2 for lysosomal degradation. In vitro able to deubiquitinate 'Lys-11'-, 'Lys-48'- and 'Lys-63' polyubiquitin chains. Inhibitor of programmed cell death. Has a role in the function of the lymphoid system. Required for LPS-induced production of pro-inflammatory cytokines and IFN beta in LPS-tolerized macrophages. {ECO:0000269|PubMed:14748687, ECO:0000269|PubMed:15258597, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17961127, ECO:0000269|PubMed:18164316, ECO:0000269|PubMed:18952128, ECO:0000269|PubMed:19494296, ECO:0000269|PubMed:22099304, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:8692885, ECO:0000269|PubMed:9299557, ECO:0000269|PubMed:9882303}. |
P23443 | RPS6KB1 | S434 | psp | Ribosomal protein S6 kinase beta-1 (S6K-beta-1) (S6K1) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 1) (P70S6K1) (p70-S6K 1) (Ribosomal protein S6 kinase I) (Serine/threonine-protein kinase 14A) (p70 ribosomal S6 kinase alpha) (p70 S6 kinase alpha) (p70 S6K-alpha) (p70 S6KA) | Serine/threonine-protein kinase that acts downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression (PubMed:11500364, PubMed:12801526, PubMed:14673156, PubMed:15071500, PubMed:15341740, PubMed:16286006, PubMed:17052453, PubMed:17053147, PubMed:17936702, PubMed:18952604, PubMed:19085255, PubMed:19720745, PubMed:19935711, PubMed:19995915, PubMed:22017876, PubMed:23429703, PubMed:28178239). Regulates protein synthesis through phosphorylation of EIF4B, RPS6 and EEF2K, and contributes to cell survival by repressing the pro-apoptotic function of BAD (PubMed:11500364, PubMed:12801526, PubMed:14673156, PubMed:15071500, PubMed:15341740, PubMed:16286006, PubMed:17052453, PubMed:17053147, PubMed:17936702, PubMed:18952604, PubMed:19085255, PubMed:19720745, PubMed:19935711, PubMed:19995915, PubMed:22017876, PubMed:23429703, PubMed:28178239). Under conditions of nutrient depletion, the inactive form associates with the EIF3 translation initiation complex (PubMed:16286006). Upon mitogenic stimulation, phosphorylation by the mechanistic target of rapamycin complex 1 (mTORC1) leads to dissociation from the EIF3 complex and activation (PubMed:16286006). The active form then phosphorylates and activates several substrates in the pre-initiation complex, including the EIF2B complex and the cap-binding complex component EIF4B (PubMed:16286006). Also controls translation initiation by phosphorylating a negative regulator of EIF4A, PDCD4, targeting it for ubiquitination and subsequent proteolysis (PubMed:17053147). Promotes initiation of the pioneer round of protein synthesis by phosphorylating POLDIP3/SKAR (PubMed:15341740). In response to IGF1, activates translation elongation by phosphorylating EEF2 kinase (EEF2K), which leads to its inhibition and thus activation of EEF2 (PubMed:11500364). Also plays a role in feedback regulation of mTORC2 by mTORC1 by phosphorylating MAPKAP1/SIN1, MTOR and RICTOR, resulting in the inhibition of mTORC2 and AKT1 signaling (PubMed:15899889, PubMed:19720745, PubMed:19935711, PubMed:19995915). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic protein BAD and suppressing its pro-apoptotic function (By similarity). Phosphorylates mitochondrial URI1 leading to dissociation of a URI1-PPP1CC complex (PubMed:17936702). The free mitochondrial PPP1CC can then dephosphorylate RPS6KB1 at Thr-412, which is proposed to be a negative feedback mechanism for the RPS6KB1 anti-apoptotic function (PubMed:17936702). Mediates TNF-alpha-induced insulin resistance by phosphorylating IRS1 at multiple serine residues, resulting in accelerated degradation of IRS1 (PubMed:18952604). In cells lacking functional TSC1-2 complex, constitutively phosphorylates and inhibits GSK3B (PubMed:17052453). May be involved in cytoskeletal rearrangement through binding to neurabin (By similarity). Phosphorylates and activates the pyrimidine biosynthesis enzyme CAD, downstream of MTOR (PubMed:23429703). Following activation by mTORC1, phosphorylates EPRS and thereby plays a key role in fatty acid uptake by adipocytes and also most probably in interferon-gamma-induced translation inhibition (PubMed:28178239). {ECO:0000250|UniProtKB:P67999, ECO:0000250|UniProtKB:Q8BSK8, ECO:0000269|PubMed:11500364, ECO:0000269|PubMed:12801526, ECO:0000269|PubMed:14673156, ECO:0000269|PubMed:15071500, ECO:0000269|PubMed:15341740, ECO:0000269|PubMed:15899889, ECO:0000269|PubMed:16286006, ECO:0000269|PubMed:17052453, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:17936702, ECO:0000269|PubMed:18952604, ECO:0000269|PubMed:19085255, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:28178239}. |
P24864 | CCNE1 | S90 | psp | G1/S-specific cyclin-E1 | Essential for the control of the cell cycle at the G1/S (start) transition. {ECO:0000269|PubMed:7739542}. |
P25054 | APC | S2270 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P27815 | PDE4A | S302 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4A (EC 3.1.4.53) (DPDE2) (PDE46) (cAMP-specific phosphodiesterase 4A) | Hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:11566027, ECO:0000269|PubMed:2160582}.; FUNCTION: [Isoform 1]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 2]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 3]: Efficiently hydrolyzes cAMP. The phosphodiesterase activity is not affected by calcium, calmodulin or cyclic GMP (cGMP) levels. Does not hydrolyze cGMP. {ECO:0000269|PubMed:7888306}.; FUNCTION: [Isoform 4]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:9677330}.; FUNCTION: [Isoform 6]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310, ECO:0000269|PubMed:17727341}.; FUNCTION: [Isoform 7]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:18095939}. |
P27816 | MAP4 | S358 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P27816 | MAP4 | S384 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P27987 | ITPKB | S355 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P28290 | ITPRID2 | S746 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28749 | RBL1 | S749 | ochoa | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P28749 | RBL1 | S975 | psp | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P29317 | EPHA2 | S570 | ochoa | Ephrin type-A receptor 2 (EC 2.7.10.1) (Epithelial cell kinase) (Tyrosine-protein kinase receptor ECK) | Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:16236711, ECO:0000269|PubMed:18339848, ECO:0000269|PubMed:19573808, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:20861311, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:27385333}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.; FUNCTION: Acts as a receptor for human cytomegalovirus (HCMV) to mediate viral entry and fusion in glioblastoma cells. {ECO:0000269|PubMed:37146061}. |
P29590 | PML | S505 | ochoa|psp | Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) | Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}. |
P30281 | CCND3 | S264 | ochoa|psp | G1/S-specific cyclin-D3 | Regulatory component of the cyclin D3-CDK4 (DC) complex that phosphorylates and inhibits members of the retinoblastoma (RB) protein family including RB1 and regulates the cell-cycle during G(1)/S transition (PubMed:8114739). Phosphorylation of RB1 allows dissociation of the transcription factor E2F from the RB/E2F complex and the subsequent transcription of E2F target genes which are responsible for the progression through the G(1) phase (PubMed:8114739). Hypophosphorylates RB1 in early G(1) phase (PubMed:8114739). Cyclin D-CDK4 complexes are major integrators of various mitogenenic and antimitogenic signals (PubMed:8114739). Component of the ternary complex, cyclin D3/CDK4/CDKN1B, required for nuclear translocation and activity of the cyclin D-CDK4 complex (PubMed:16782892). Shows transcriptional coactivator activity with ATF5 independently of CDK4 (PubMed:15358120). {ECO:0000269|PubMed:15358120, ECO:0000269|PubMed:16782892, ECO:0000269|PubMed:8114739}. |
P35568 | IRS1 | S1078 | ochoa|psp | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35711 | SOX5 | S370 | ochoa | Transcription factor SOX-5 | Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}. |
P40818 | USP8 | S671 | ochoa | Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) | Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}. |
P41182 | BCL6 | S330 | ochoa | B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) | Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}. |
P42702 | LIFR | S927 | ochoa | Leukemia inhibitory factor receptor (LIF receptor) (LIF-R) (CD antigen CD118) | Signal-transducing molecule. May have a common pathway with IL6ST. The soluble form inhibits the biological activity of LIF by blocking its binding to receptors on target cells. |
P46821 | MAP1B | S1653 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S1690 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P49116 | NR2C2 | S55 | ochoa | Nuclear receptor subfamily 2 group C member 2 (Orphan nuclear receptor TAK1) (Orphan nuclear receptor TR4) (Testicular receptor 4) | Orphan nuclear receptor that can act as a repressor or activator of transcription. An important repressor of nuclear receptor signaling pathways such as retinoic acid receptor, retinoid X, vitamin D3 receptor, thyroid hormone receptor and estrogen receptor pathways. May regulate gene expression during the late phase of spermatogenesis. Together with NR2C1, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription including that of GATA1. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Plays a fundamental role in early embryonic development and embryonic stem cells. Required for normal spermatogenesis and cerebellum development. Appears to be important for neurodevelopmentally regulated behavior (By similarity). Activates transcriptional activity of LHCG. Antagonist of PPARA-mediated transactivation. {ECO:0000250, ECO:0000269|PubMed:10347174, ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:17974920, ECO:0000269|PubMed:7779113, ECO:0000269|PubMed:9556573}. |
P50479 | PDLIM4 | S112 | ochoa | PDZ and LIM domain protein 4 (LIM protein RIL) (Reversion-induced LIM protein) | [Isoform 1]: Suppresses SRC activation by recognizing and binding to active SRC and facilitating PTPN13-mediated dephosphorylation of SRC 'Tyr-419' leading to its inactivation. Inactivated SRC dissociates from this protein allowing the initiation of a new SRC inactivation cycle (PubMed:19307596). Involved in reorganization of the actin cytoskeleton (PubMed:21636573). In nonmuscle cells, binds to ACTN1 (alpha-actinin-1), increases the affinity of ACTN1 to F-actin (filamentous actin), and promotes formation of actin stress fibers. Involved in regulation of the synaptic AMPA receptor transport in dendritic spines of hippocampal pyramidal neurons directing the receptors toward an insertion at the postsynaptic membrane. Links endosomal surface-internalized GRIA1-containing AMPA receptors to the alpha-actinin/actin cytoskeleton. Increases AMPA receptor-mediated excitatory postsynaptic currents in neurons (By similarity). {ECO:0000250|UniProtKB:P36202, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:21636573}.; FUNCTION: [Isoform 2]: Involved in reorganization of the actin cytoskeleton and in regulation of cell migration. In response to oxidative stress, binds to NQO1, which stabilizes it and protects it from ubiquitin-independent degradation by the core 20S proteasome. Stabilized protein is able to heterodimerize with isoform 1 changing the subcellular location of it from cytoskeleton and nuclei to cytosol, leading to loss of isoforms 1 ability to induce formation of actin stress fibers. Counteracts the effects produced by isoform 1 on organization of actin cytoskeleton and cell motility to fine-tune actin cytoskeleton rearrangement and to attenuate cell migration. {ECO:0000269|PubMed:21636573}. |
P50549 | ETV1 | S94 | ochoa|psp | ETS translocation variant 1 (Ets-related protein 81) | Transcriptional activator that binds to DNA sequences containing the consensus pentanucleotide 5'-CGGA[AT]-3' (PubMed:7651741). Required for olfactory dopaminergic neuron differentiation; may directly activate expression of tyrosine hydroxylase (TH) (By similarity). {ECO:0000250|UniProtKB:P41164, ECO:0000269|PubMed:7651741}. |
P50851 | LRBA | S1754 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P50851 | LRBA | S1767 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P51003 | PAPOLA | S545 | ochoa | Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) | Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}. |
P51608 | MECP2 | S216 | ochoa|psp | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P51811 | XK | S416 | ochoa | Endoplasmic reticulum membrane adapter protein XK (Kell complex 37 kDa component) (Kx antigen) (Membrane transport protein XK) (XK-related protein 1) | Recruits the lipid transfer protein VPS13A from lipid droplets to the endoplasmic reticulum (ER) membrane. {ECO:0000269|PubMed:32845802}. |
P51825 | AFF1 | S199 | ochoa | AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) | None |
P53804 | TTC3 | S2006 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P54296 | MYOM2 | S601 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P55265 | ADAR | T601 | ochoa | Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:12618436, PubMed:7565688, PubMed:7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}. |
P56192 | MARS1 | S825 | ochoa|psp | Methionine--tRNA ligase, cytoplasmic (EC 6.1.1.10) (Methionyl-tRNA synthetase) (MetRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:11714285). Plays a role in the synthesis of ribosomal RNA in the nucleolus (PubMed:10791971). {ECO:0000269|PubMed:10791971, ECO:0000269|PubMed:11714285, ECO:0000269|PubMed:33909043}. |
P78559 | MAP1A | S896 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S1749 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
Q02156 | PRKCE | S337 | ochoa | Protein kinase C epsilon type (EC 2.7.11.13) (nPKC-epsilon) | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells (PubMed:19542546). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11884385, ECO:0000269|PubMed:1374067, ECO:0000269|PubMed:15355962, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:17603037, ECO:0000269|PubMed:17875639, ECO:0000269|PubMed:17875724, ECO:0000269|PubMed:19542546, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:36040231}. |
Q02241 | KIF23 | S902 | ochoa | Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}. |
Q02779 | MAP3K10 | S489 | ochoa | Mitogen-activated protein kinase kinase kinase 10 (EC 2.7.11.25) (Mixed lineage kinase 2) (Protein kinase MST) | Activates the JUN N-terminal pathway. {ECO:0000250}. |
Q03164 | KMT2A | S161 | ochoa|psp | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q07157 | TJP1 | S1570 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08174 | PCDH1 | S949 | ochoa | Protocadherin-1 (Cadherin-like protein 1) (Protocadherin-42) (PC42) | May be involved in cell-cell interaction processes and in cell adhesion. |
Q09472 | EP300 | S2366 | psp | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q09666 | AHNAK | S5077 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q0VD86 | INCA1 | S23 | psp | Protein INCA1 (Inhibitor of CDK interacting with cyclin A1) | Binds to CDK2-bound cyclins and inhibits the kinase activity of CDK2; binding to cyclins is critical for its function as CDK inhibitor (PubMed:21540187). Inhibits cell growth and cell proliferation and may play a role in cell cycle control (By similarity). Required for ING5-mediated regulation of S-phase progression, enhancement of Fas-induced apoptosis and inhibition of cell growth (By similarity). {ECO:0000250|UniProtKB:Q6PKN7, ECO:0000269|PubMed:21540187}. |
Q12802 | AKAP13 | S1683 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12849 | GRSF1 | S244 | ochoa | G-rich sequence factor 1 (GRSF-1) | Regulator of post-transcriptional mitochondrial gene expression, required for assembly of the mitochondrial ribosome and for recruitment of mRNA and lncRNA. Binds RNAs containing the 14 base G-rich element. Preferentially binds RNAs transcribed from three contiguous genes on the light strand of mtDNA, the ND6 mRNA, and the long non-coding RNAs for MT-CYB and MT-ND5, each of which contains multiple consensus binding sequences (PubMed:23473033, PubMed:23473034, PubMed:29967381). Involved in the degradosome-mediated decay of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules (PubMed:29967381). Acts by unwinding G-quadruplex RNA structures in MT-ncRNA, thus facilitating their degradation by the degradosome (PubMed:29967381). G-quadruplexes (G4) are non-canonical 4 stranded structures formed by transcripts from the light strand of mtDNA (PubMed:29967381). {ECO:0000269|PubMed:23473033, ECO:0000269|PubMed:23473034, ECO:0000269|PubMed:29967381}. |
Q12888 | TP53BP1 | S1101 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12948 | FOXC1 | S259 | ochoa | Forkhead box protein C1 (Forkhead-related protein FKHL7) (Forkhead-related transcription factor 3) (FREAC-3) | DNA-binding transcriptional factor that plays a role in a broad range of cellular and developmental processes such as eye, bones, cardiovascular, kidney and skin development (PubMed:11782474, PubMed:14506133, PubMed:14578375, PubMed:15277473, PubMed:15299087, PubMed:15684392, PubMed:16449236, PubMed:16492674, PubMed:17210863, PubMed:19279310, PubMed:19793056, PubMed:25786029, PubMed:27804176, PubMed:27907090). Acts either as a transcriptional activator or repressor (PubMed:11782474). Binds to the consensus binding site 5'-[G/C][A/T]AAA[T/C]AA[A/C]-3' in promoter of target genes (PubMed:11782474, PubMed:12533514, PubMed:14506133, PubMed:19793056, PubMed:27804176, PubMed:7957066). Upon DNA-binding, promotes DNA bending (PubMed:14506133, PubMed:7957066). Acts as a transcriptional coactivator (PubMed:26565916). Stimulates Indian hedgehog (Ihh)-induced target gene expression mediated by the transcription factor GLI2, and hence regulates endochondral ossification (By similarity). Also acts as a transcriptional coregulator by increasing DNA-binding capacity of GLI2 in breast cancer cells (PubMed:26565916). Regulates FOXO1 through binding to a conserved element, 5'-GTAAACAAA-3' in its promoter region, implicating FOXC1 as an important regulator of cell viability and resistance to oxidative stress in the eye (PubMed:17993506). Cooperates with transcription factor FOXC2 in regulating expression of genes that maintain podocyte integrity (By similarity). Promotes cell growth inhibition by stopping the cell cycle in the G1 phase through TGFB1-mediated signals (PubMed:12408963). Involved in epithelial-mesenchymal transition (EMT) induction by increasing cell proliferation, migration and invasion (PubMed:20406990, PubMed:22991501). Involved in chemokine CXCL12-induced endothelial cell migration through the control of CXCR4 expression (By similarity). Plays a role in the gene regulatory network essential for epidermal keratinocyte terminal differentiation (PubMed:27907090). Essential developmental transcriptional factor required for mesoderm-derived tissues, such as the somites, skin, bone and cartilage. Positively regulates CXCL12 and stem cell factor expression in bone marrow mesenchymal progenitor cells, and hence plays a role in the development and maintenance of mesenchymal niches for haematopoietic stem and progenitor cells (HSPC). Plays a role in corneal transparency by preventing both blood vessel and lymphatic vessel growth during embryonic development in a VEGF-dependent manner. Involved in chemokine CXCL12-induced endothelial cell migration through the control of CXCR4 expression (By similarity). May function as a tumor suppressor (PubMed:12408963). {ECO:0000250|UniProtKB:Q61572, ECO:0000269|PubMed:11782474, ECO:0000269|PubMed:12408963, ECO:0000269|PubMed:12533514, ECO:0000269|PubMed:14506133, ECO:0000269|PubMed:14578375, ECO:0000269|PubMed:15277473, ECO:0000269|PubMed:15299087, ECO:0000269|PubMed:15684392, ECO:0000269|PubMed:16449236, ECO:0000269|PubMed:16492674, ECO:0000269|PubMed:17210863, ECO:0000269|PubMed:17993506, ECO:0000269|PubMed:19279310, ECO:0000269|PubMed:19793056, ECO:0000269|PubMed:20406990, ECO:0000269|PubMed:22991501, ECO:0000269|PubMed:25786029, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:27804176, ECO:0000269|PubMed:27907090, ECO:0000269|PubMed:7957066}. |
Q12986 | NFX1 | S392 | ochoa | Transcriptional repressor NF-X1 (EC 2.3.2.-) (Nuclear transcription factor, X box-binding protein 1) | Binds to the X-box motif of MHC class II genes and represses their expression. May play an important role in regulating the duration of an inflammatory response by limiting the period in which MHC class II molecules are induced by interferon-gamma. Isoform 3 binds to the X-box motif of TERT promoter and represses its expression. Together with PABPC1 or PABPC4, isoform 1 acts as a coactivator for TERT expression. Mediates E2-dependent ubiquitination. {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:15371341, ECO:0000269|PubMed:17267499}. |
Q13131 | PRKAA1 | S356 | ochoa | 5'-AMP-activated protein kinase catalytic subunit alpha-1 (AMPK subunit alpha-1) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) (Tau-protein kinase PRKAA1) (EC 2.7.11.26) | Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357, PubMed:24563466, PubMed:37821951). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (By similarity). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:18439900, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). In response to nutrient limitation, phosphorylates transcription factor FOXO3 promoting FOXO3 mitochondrial import (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU; however the relevance of such data remains unclear in vivo (By similarity). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Regulates hepatic lipogenesis. Activated via SIRT3, represses sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance. Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:P54645, ECO:0000250|UniProtKB:Q5EG47, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:18439900, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:24563466, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:37821951, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}. |
Q13247 | SRSF6 | S303 | ochoa | Serine/arginine-rich splicing factor 6 (Pre-mRNA-splicing factor SRP55) (Splicing factor, arginine/serine-rich 6) | Plays a role in constitutive splicing and modulates the selection of alternative splice sites. Plays a role in the alternative splicing of MAPT/Tau exon 10. Binds to alternative exons of TNC pre-mRNA and promotes the expression of alternatively spliced TNC. Plays a role in wound healing and in the regulation of keratinocyte differentiation and proliferation via its role in alternative splicing. {ECO:0000269|PubMed:12549914, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:22767602, ECO:0000269|PubMed:24440982}. |
Q13352 | ITGB3BP | S33 | ochoa|psp | Centromere protein R (CENP-R) (Beta-3-endonexin) (Integrin beta-3-binding protein) (Nuclear receptor-interacting factor 3) | Transcription coregulator that can have both coactivator and corepressor functions. Isoform 1, but not other isoforms, is involved in the coactivation of nuclear receptors for retinoid X (RXRs) and thyroid hormone (TRs) in a ligand-dependent fashion. In contrast, it does not coactivate nuclear receptors for retinoic acid, vitamin D, progesterone receptor, nor glucocorticoid. Acts as a coactivator for estrogen receptor alpha. Acts as a transcriptional corepressor via its interaction with the NFKB1 NF-kappa-B subunit, possibly by interfering with the transactivation domain of NFKB1. Induces apoptosis in breast cancer cells, but not in other cancer cells, via a caspase-2 mediated pathway that involves mitochondrial membrane permeabilization but does not require other caspases. May also act as an inhibitor of cyclin A-associated kinase. Also acts a component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. {ECO:0000269|PubMed:11713274, ECO:0000269|PubMed:12244126, ECO:0000269|PubMed:15082778, ECO:0000269|PubMed:15254226, ECO:0000269|PubMed:16622420}. |
Q13469 | NFATC2 | S801 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}. |
Q13625 | TP53BP2 | S556 | ochoa | Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) | Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}. |
Q14653 | IRF3 | S339 | psp | Interferon regulatory factor 3 (IRF-3) | Key transcriptional regulator of type I interferon (IFN)-dependent immune responses which plays a critical role in the innate immune response against DNA and RNA viruses (PubMed:22394562, PubMed:24049179, PubMed:25636800, PubMed:27302953, PubMed:31340999, PubMed:36603579, PubMed:8524823). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:11846977, PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:32972995, PubMed:36603579, PubMed:8524823). Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction (PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:36603579). Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, is phosphorylated by IKBKE and TBK1 kinases (PubMed:22394562, PubMed:25636800, PubMed:27302953, PubMed:36603579). This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes (PubMed:16154084, PubMed:27302953, PubMed:33440148, PubMed:36603579). Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages (PubMed:16846591). In response to Sendai virus infection, is recruited by TOMM70:HSP90AA1 to mitochondrion and forms an apoptosis complex TOMM70:HSP90AA1:IRF3:BAX inducing apoptosis (PubMed:25609812). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:16154084, ECO:0000269|PubMed:22394562, ECO:0000269|PubMed:24049179, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27302953, ECO:0000269|PubMed:31340999, ECO:0000269|PubMed:31413131, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:36603579, ECO:0000269|PubMed:8524823, ECO:0000303|PubMed:11846977, ECO:0000303|PubMed:16846591, ECO:0000303|PubMed:16979567, ECO:0000303|PubMed:20049431}. |
Q14676 | MDC1 | S780 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14938 | NFIX | S288 | ochoa | Nuclear factor 1 X-type (NF1-X) (Nuclear factor 1/X) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/X) (NF-I/X) (NFI-X) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
Q14966 | ZNF638 | S1106 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14980 | NUMA1 | S2074 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q15139 | PRKD1 | S738 | ochoa|psp | Serine/threonine-protein kinase D1 (EC 2.7.11.13) (Protein kinase C mu type) (Protein kinase D) (nPKC-D1) (nPKC-mu) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response (PubMed:10764790, PubMed:12505989, PubMed:12637538, PubMed:17442957, PubMed:18509061, PubMed:19135240, PubMed:19211839). Phosphorylates the epidermal growth factor receptor (EGFR) on dual threonine residues, which leads to the suppression of epidermal growth factor (EGF)-induced MAPK8/JNK1 activation and subsequent JUN phosphorylation (PubMed:10523301). Phosphorylates RIN1, inducing RIN1 binding to 14-3-3 proteins YWHAB, YWHAE and YWHAZ and increased competition with RAF1 for binding to GTP-bound form of Ras proteins (NRAS, HRAS and KRAS). Acts downstream of the heterotrimeric G-protein beta/gamma-subunit complex to maintain the structural integrity of the Golgi membranes, and is required for protein transport along the secretory pathway. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane. May act by activating the lipid kinase phosphatidylinositol 4-kinase beta (PI4KB) at the TGN for the local synthesis of phosphorylated inositol lipids, which induces a sequential production of DAG, phosphatidic acid (PA) and lyso-PA (LPA) that are necessary for membrane fission and generation of specific transport carriers to the cell surface. Under oxidative stress, is phosphorylated at Tyr-463 via SRC-ABL1 and contributes to cell survival by activating IKK complex and subsequent nuclear translocation and activation of NFKB1 (PubMed:12505989). Involved in cell migration by regulating integrin alpha-5/beta-3 recycling and promoting its recruitment in newly forming focal adhesion. In osteoblast differentiation, mediates the bone morphogenetic protein 2 (BMP2)-induced nuclear export of HDAC7, which results in the inhibition of HDAC7 transcriptional repression of RUNX2 (PubMed:18509061). In neurons, plays an important role in neuronal polarity by regulating the biogenesis of TGN-derived dendritic vesicles, and is involved in the maintenance of dendritic arborization and Golgi structure in hippocampal cells. May potentiate mitogenesis induced by the neuropeptide bombesin or vasopressin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression. Plays an important role in the proliferative response induced by low calcium in keratinocytes, through sustained activation of MAPK1/3 (ERK1/2) pathway. Downstream of novel PKC signaling, plays a role in cardiac hypertrophy by phosphorylating HDAC5, which in turn triggers XPO1/CRM1-dependent nuclear export of HDAC5, MEF2A transcriptional activation and induction of downstream target genes that promote myocyte hypertrophy and pathological cardiac remodeling (PubMed:18332134). Mediates cardiac troponin I (TNNI3) phosphorylation at the PKA sites, which results in reduced myofilament calcium sensitivity, and accelerated crossbridge cycling kinetics. The PRKD1-HDAC5 pathway is also involved in angiogenesis by mediating VEGFA-induced specific subset of gene expression, cell migration, and tube formation (PubMed:19211839). In response to VEGFA, is necessary and required for HDAC7 phosphorylation which induces HDAC7 nuclear export and endothelial cell proliferation and migration. During apoptosis induced by cytarabine and other genotoxic agents, PRKD1 is cleaved by caspase-3 at Asp-378, resulting in activation of its kinase function and increased sensitivity of cells to the cytotoxic effects of genotoxic agents (PubMed:10764790). In epithelial cells, is required for transducing flagellin-stimulated inflammatory responses by binding and phosphorylating TLR5, which contributes to MAPK14/p38 activation and production of inflammatory cytokines (PubMed:17442957). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). May play a role in inflammatory response by mediating activation of NF-kappa-B. May be involved in pain transmission by directly modulating TRPV1 receptor (PubMed:15471852). Plays a role in activated KRAS-mediated stabilization of ZNF304 in colorectal cancer (CRC) cells (PubMed:24623306). Regulates nuclear translocation of transcription factor TFEB in macrophages upon live S.enterica infection (By similarity). {ECO:0000250|UniProtKB:Q62101, ECO:0000269|PubMed:10523301, ECO:0000269|PubMed:10764790, ECO:0000269|PubMed:12505989, ECO:0000269|PubMed:12637538, ECO:0000269|PubMed:15471852, ECO:0000269|PubMed:17442957, ECO:0000269|PubMed:18332134, ECO:0000269|PubMed:18509061, ECO:0000269|PubMed:19135240, ECO:0000269|PubMed:19211839, ECO:0000269|PubMed:24623306}. |
Q15652 | JMJD1C | S639 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15652 | JMJD1C | S1989 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15751 | HERC1 | S2710 | ochoa | Probable E3 ubiquitin-protein ligase HERC1 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 1) (HECT-type E3 ubiquitin transferase HERC1) (p532) (p619) | Involved in membrane trafficking via some guanine nucleotide exchange factor (GEF) activity and its ability to bind clathrin. Acts as a GEF for Arf and Rab, by exchanging bound GDP for free GTP. Binds phosphatidylinositol 4,5-bisphosphate, which is required for GEF activity. May also act as a E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:15642342, ECO:0000269|PubMed:8861955, ECO:0000269|PubMed:9233772}. |
Q15811 | ITSN1 | S986 | ochoa | Intersectin-1 (SH3 domain-containing protein 1A) (SH3P17) | Adapter protein that provides a link between the endocytic membrane traffic and the actin assembly machinery (PubMed:11584276, PubMed:29887380). Acts as a guanine nucleotide exchange factor (GEF) for CDC42, and thereby stimulates actin nucleation mediated by WASL and the ARP2/3 complex (PubMed:11584276). Plays a role in the assembly and maturation of clathrin-coated vesicles (By similarity). Recruits FCHSD2 to clathrin-coated pits (PubMed:29887380). Involved in endocytosis of activated EGFR, and probably also other growth factor receptors (By similarity). Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR may involve association with DAB2 (PubMed:22648170). Promotes ubiquitination and subsequent degradation of EGFR, and thereby contributes to the down-regulation of EGFR-dependent signaling pathways. In chromaffin cells, required for normal exocytosis of catecholamines. Required for rapid replenishment of release-ready synaptic vesicles at presynaptic active zones (By similarity). Inhibits ARHGAP31 activity toward RAC1 (PubMed:11744688). {ECO:0000250|UniProtKB:Q9WVE9, ECO:0000250|UniProtKB:Q9Z0R4, ECO:0000269|PubMed:11584276, ECO:0000269|PubMed:11744688, ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:29887380}.; FUNCTION: [Isoform 1]: Plays a role in synaptic vesicle endocytosis in brain neurons. {ECO:0000250|UniProtKB:Q9Z0R4}. |
Q16584 | MAP3K11 | S727 | psp | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q16666 | IFI16 | S153 | ochoa|psp | Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) | Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}. |
Q16821 | PPP1R3A | S584 | ochoa | Protein phosphatase 1 regulatory subunit 3A (Protein phosphatase 1 glycogen-associated regulatory subunit) (Protein phosphatase type-1 glycogen targeting subunit) (RG1) | Seems to act as a glycogen-targeting subunit for PP1. PP1 is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Plays an important role in glycogen synthesis but is not essential for insulin activation of glycogen synthase (By similarity). {ECO:0000250}. |
Q1ED39 | KNOP1 | S119 | ochoa | Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) | None |
Q3T8J9 | GON4L | S1255 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3T8J9 | GON4L | S2097 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3ZCW2 | LGALSL | S25 | ochoa | Galectin-related protein (Galectin-like protein) (Lectin galactoside-binding-like protein) | Does not bind lactose, and may not bind carbohydrates. {ECO:0000269|PubMed:18320588, ECO:0000269|PubMed:18433051}. |
Q4AC94 | C2CD3 | S2099 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4L180 | FILIP1L | S1000 | ochoa | Filamin A-interacting protein 1-like (130 kDa GPBP-interacting protein) (90 kDa GPBP-interacting protein) (Protein down-regulated in ovarian cancer 1) (DOC-1) | Acts as a regulator of the antiangiogenic activity on endothelial cells. When overexpressed in endothelial cells, leads to inhibition of cell proliferation and migration and an increase in apoptosis. Inhibits melanoma growth When expressed in tumor-associated vasculature. {ECO:0000269|PubMed:18794120}. |
Q5T200 | ZC3H13 | S64 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T8P6 | RBM26 | S616 | ochoa | RNA-binding protein 26 (CTCL tumor antigen se70-2) (RNA-binding motif protein 26) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}. |
Q5U623 | ATF7IP2 | S416 | ochoa | Activating transcription factor 7-interacting protein 2 (ATF7-interacting protein 2) (MBD1-containing chromatin-associated factor 2) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1. The complex formed with MBD1 and SETDB1 represses transcription and probably couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) activity (Probable). {ECO:0000305}. |
Q5UIP0 | RIF1 | S782 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VUA4 | ZNF318 | S2050 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q66K74 | MAP1S | S741 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q674X7 | KAZN | S339 | ochoa | Kazrin | Component of the cornified envelope of keratinocytes. May be involved in the interplay between adherens junctions and desmosomes. The function in the nucleus is not known. {ECO:0000269|PubMed:15337775}. |
Q68DQ2 | CRYBG3 | S994 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q6DCA0 | AMMECR1L | S74 | ochoa | AMMECR1-like protein | None |
Q6EKJ0 | GTF2IRD2B | S205 | ochoa | General transcription factor II-I repeat domain-containing protein 2B (GTF2I repeat domain-containing protein 2B) (Transcription factor GTF2IRD2-beta) | None |
Q6NZY4 | ZCCHC8 | S658 | ochoa | Zinc finger CCHC domain-containing protein 8 (TRAMP-like complex RNA-binding factor ZCCHC8) | Scaffolding subunit of the trimeric nuclear exosome targeting (NEXT) complex that is involved in the surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:27871484). NEXT functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation. May be involved in pre-mRNA splicing (Probable). It is required for 3'-end maturation of telomerase RNA component (TERC), TERC 3'-end targeting to the nuclear RNA exosome, and for telomerase function (PubMed:31488579). {ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:31488579, ECO:0000305|PubMed:16263084}. |
Q6P1L5 | FAM117B | S457 | ochoa | Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) | None |
Q6P4R8 | NFRKB | S1022 | ochoa | Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) | Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}. |
Q6PFW1 | PPIP5K1 | S964 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 1) (Histidine acid phosphatase domain-containing protein 2A) (IP6 kinase) (Inositol pyrophosphate synthase 1) (InsP6 and PP-IP5 kinase 1) (VIP1 homolog) (hsVIP1) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4. Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4. Activated when cells are exposed to hyperosmotic stress. {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752}. |
Q6PGQ7 | BORA | S239 | ochoa | Protein aurora borealis (HsBora) | Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}. |
Q6PJ61 | FBXO46 | S240 | ochoa | F-box only protein 46 (F-box only protein 34-like) | Substrate-recognition component of the SCF(FBXO46) protein ligase complex, which mediates the ubiquitination and degradation of target proteins (PubMed:30171069). In absence of stress, the SCF(FBXO46) complex catalyzes ubiquitination and degradation of MTOR-phosphorylated FBXO31 (PubMed:30171069). {ECO:0000269|PubMed:30171069}. |
Q6PKG0 | LARP1 | S761 | ochoa | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6SZW1 | SARM1 | S548 | ochoa|psp | NAD(+) hydrolase SARM1 (NADase SARM1) (hSARM1) (EC 3.2.2.6) (NADP(+) hydrolase SARM1) (EC 3.2.2.-) (Sterile alpha and Armadillo repeat protein) (Sterile alpha and TIR motif-containing protein 1) (Sterile alpha motif domain-containing protein 2) (MyD88-5) (SAM domain-containing protein 2) (Tir-1 homolog) (HsTIR) | NAD(+) hydrolase, which plays a key role in axonal degeneration following injury by regulating NAD(+) metabolism (PubMed:25908823, PubMed:27671644, PubMed:28334607). Acts as a negative regulator of MYD88- and TRIF-dependent toll-like receptor signaling pathway by promoting Wallerian degeneration, an injury-induced form of programmed subcellular death which involves degeneration of an axon distal to the injury site (PubMed:15123841, PubMed:16964262, PubMed:20306472, PubMed:25908823). Wallerian degeneration is triggered by NAD(+) depletion: in response to injury, SARM1 is activated and catalyzes cleavage of NAD(+) into ADP-D-ribose (ADPR), cyclic ADPR (cADPR) and nicotinamide; NAD(+) cleavage promoting cytoskeletal degradation and axon destruction (PubMed:25908823, PubMed:28334607, PubMed:30333228, PubMed:31128467, PubMed:31439792, PubMed:31439793, PubMed:32049506, PubMed:32828421, PubMed:33053563). Also able to hydrolyze NADP(+), but not other NAD(+)-related molecules (PubMed:29395922). Can activate neuronal cell death in response to stress (PubMed:20306472). Regulates dendritic arborization through the MAPK4-JNK pathway (By similarity). Involved in innate immune response: inhibits both TICAM1/TRIF- and MYD88-dependent activation of JUN/AP-1, TRIF-dependent activation of NF-kappa-B and IRF3, and the phosphorylation of MAPK14/p38 (PubMed:16964262). {ECO:0000250|UniProtKB:Q6PDS3, ECO:0000269|PubMed:15123841, ECO:0000269|PubMed:16964262, ECO:0000269|PubMed:20306472, ECO:0000269|PubMed:25908823, ECO:0000269|PubMed:27671644, ECO:0000269|PubMed:28334607, ECO:0000269|PubMed:29395922, ECO:0000269|PubMed:30333228, ECO:0000269|PubMed:31128467, ECO:0000269|PubMed:31439792, ECO:0000269|PubMed:31439793, ECO:0000269|PubMed:32049506, ECO:0000269|PubMed:32828421, ECO:0000269|PubMed:33053563}. |
Q6T4R5 | NHS | S1486 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UB35 | MTHFD1L | S357 | ochoa|psp | Monofunctional C1-tetrahydrofolate synthase, mitochondrial (EC 6.3.4.3) (Formyltetrahydrofolate synthetase) | May provide the missing metabolic reaction required to link the mitochondria and the cytoplasm in the mammalian model of one-carbon folate metabolism complementing thus the enzymatic activities of MTHFD2. {ECO:0000250, ECO:0000269|PubMed:16171773}. |
Q6UB99 | ANKRD11 | S1692 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6UB99 | ANKRD11 | S1878 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6UUV7 | CRTC3 | S536 | ochoa | CREB-regulated transcription coactivator 3 (Transducer of regulated cAMP response element-binding protein 3) (TORC-3) (Transducer of CREB protein 3) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:15466468, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223, ECO:0000269|PubMed:17644518}. |
Q6XR72 | SLC30A10 | S402 | ochoa | Calcium/manganese antiporter SLC30A10 (Solute carrier family 30 member 10) (Zinc transporter 10) (ZnT-10) | Calcium:manganese antiporter of the plasma membrane mediating the efflux of intracellular manganese coupled to an active extracellular calcium exchange (PubMed:30755481). Required for intracellular manganese homeostasis, an essential cation for the function of several enzymes, including some crucially important for the metabolism of neurotransmitters and other neuronal metabolic pathways. Manganese can also be cytotoxic and induce oxidative stress, mitochondrial dysfunction and apoptosis (PubMed:22341972, PubMed:25319704, PubMed:26728129, PubMed:27226609, PubMed:27307044). Could also have an intracellular zinc ion transporter activity, directly regulating intracellular zinc ion homeostasis and more indirectly various signaling pathway and biological processes (PubMed:22427991, PubMed:26728129). {ECO:0000269|PubMed:22341972, ECO:0000269|PubMed:22427991, ECO:0000269|PubMed:25319704, ECO:0000269|PubMed:26728129, ECO:0000269|PubMed:27226609, ECO:0000269|PubMed:27307044, ECO:0000269|PubMed:30755481}. |
Q6ZMB5 | TMEM184A | S355 | ochoa | Transmembrane protein 184A | Acts as a heparin receptor in vascular cells (By similarity). May be involved in vesicle transport in exocrine cells and Sertoli cells (By similarity). {ECO:0000250|UniProtKB:Q3UFJ6, ECO:0000250|UniProtKB:Q4QQS1}. |
Q6ZNB6 | NFXL1 | S356 | ochoa | NF-X1-type zinc finger protein NFXL1 (Ovarian zinc finger protein) (hOZFP) | None |
Q6ZNC4 | ZNF704 | S257 | ochoa | Zinc finger protein 704 | Transcription factor which binds to RE2 sequence elements in the MYOD1 enhancer. {ECO:0000250|UniProtKB:Q9ERQ3}. |
Q6ZVF9 | GPRIN3 | S336 | ochoa | G protein-regulated inducer of neurite outgrowth 3 (GRIN3) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q765P7 | MTSS2 | S634 | ochoa | Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) | Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}. |
Q7L4S7 | ARMCX6 | S167 | ochoa | Protein ARMCX6 | May regulate the dynamics and distribution of mitochondria in neural cells. {ECO:0000250|UniProtKB:Q8K3A6}. |
Q7L591 | DOK3 | S429 | ochoa | Docking protein 3 (Downstream of tyrosine kinase 3) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK3 is a negative regulator of JNK signaling in B-cells through interaction with INPP5D/SHIP1. May modulate ABL1 function (By similarity). {ECO:0000250}. |
Q7L7X3 | TAOK1 | S177 | ochoa | Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) | Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}. |
Q7RTP6 | MICAL3 | S1143 | ochoa | [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}. |
Q7Z2W4 | ZC3HAV1 | S275 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z434 | MAVS | S152 | ochoa | Mitochondrial antiviral-signaling protein (MAVS) (CARD adapter inducing interferon beta) (Cardif) (Interferon beta promoter stimulator protein 1) (IPS-1) (Putative NF-kappa-B-activating protein 031N) (Virus-induced-signaling adapter) (VISA) | Adapter required for innate immune defense against viruses (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:21170385, PubMed:23087404, PubMed:27992402, PubMed:33139700, PubMed:37582970). Acts downstream of DHX33, RIGI and IFIH1/MDA5, which detect intracellular dsRNA produced during viral replication, to coordinate pathways leading to the activation of NF-kappa-B, IRF3 and IRF7, and to the subsequent induction of antiviral cytokines such as IFNB and RANTES (CCL5) (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:20628368, PubMed:21170385, PubMed:23087404, PubMed:25636800, PubMed:27736772, PubMed:33110251). Peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state (PubMed:20451243). Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response (PubMed:20451243). May activate the same pathways following detection of extracellular dsRNA by TLR3 (PubMed:16153868). May protect cells from apoptosis (PubMed:16125763). Involved in NLRP3 inflammasome activation by mediating NLRP3 recruitment to mitochondria (PubMed:23582325). {ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:16177806, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20451243, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:27992402, ECO:0000269|PubMed:33110251, ECO:0000269|PubMed:33139700, ECO:0000269|PubMed:37582970}. |
Q7Z591 | AKNA | S1228 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z5J4 | RAI1 | S916 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z7B0 | FILIP1 | S929 | ochoa | Filamin-A-interacting protein 1 (FILIP) | By acting through a filamin-A/F-actin axis, it controls the start of neocortical cell migration from the ventricular zone. May be able to induce the degradation of filamin-A. {ECO:0000250|UniProtKB:Q8K4T4}. |
Q86SQ0 | PHLDB2 | S501 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86SQ0 | PHLDB2 | S909 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86TC9 | MYPN | S960 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86UP3 | ZFHX4 | S1533 | ochoa | Zinc finger homeobox protein 4 (Zinc finger homeodomain protein 4) (ZFH-4) | May play a role in neural and muscle differentiation (By similarity). May be involved in transcriptional regulation. {ECO:0000250}. |
Q86UP8 | GTF2IRD2 | S205 | ochoa | General transcription factor II-I repeat domain-containing protein 2A (GTF2I repeat domain-containing protein 2A) (Transcription factor GTF2IRD2-alpha) | None |
Q86UU0 | BCL9L | S934 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86UU0 | BCL9L | S997 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86XL3 | ANKLE2 | S896 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86YA3 | ZGRF1 | S864 | ochoa | 5'-3' DNA helicase ZGRF1 (EC 5.6.2.3) (GRF-type zinc finger domain-containing protein 1) | 5'-3' DNA helicase which is recruited to sites of DNA damage and promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination (HR) (PubMed:32640219, PubMed:34552057). Promotes HR by directly stimulating RAD51-mediated strand exchange activity (PubMed:32640219). Not required to load RAD51 at sites of DNA damage but promotes recombinational repair after RAD51 recruitment (PubMed:32640219). Also promotes HR by positively regulating EXO1-mediated DNA end resection of double-strand breaks (PubMed:34552057). Required for recruitment of replication protein RPA2 to DNA damage sites (PubMed:34552057). Promotes the initiation of the G2/M checkpoint but not its maintenance (PubMed:34552057). Catalyzes Holliday junction branch migration and dissociation of D-loops and DNA flaps (PubMed:32640219). {ECO:0000269|PubMed:32640219, ECO:0000269|PubMed:34552057}. |
Q8IV48 | ERI1 | S21 | ochoa | 3'-5' exoribonuclease 1 (EC 3.1.13.1) (3'-5' exonuclease ERI1) (Eri-1 homolog) (Histone mRNA 3'-end-specific exoribonuclease) (Histone mRNA 3'-exonuclease 1) (Protein 3'hExo) (HEXO) | RNA exonuclease that binds to the 3'-end of histone mRNAs and degrades them, suggesting that it plays an essential role in histone mRNA decay after replication (PubMed:14536070, PubMed:16912046, PubMed:17135487, PubMed:37352860). A 2' and 3'-hydroxyl groups at the last nucleotide of the histone 3'-end is required for efficient 3'-end histone mRNA exonuclease activity and degradation of RNA substrates (PubMed:14536070, PubMed:16912046, PubMed:17135487). Also able to degrade the 3'-overhangs of short interfering RNAs (siRNAs) in vitro, suggesting a possible role as regulator of RNA interference (RNAi) (PubMed:14961122). Required for binding the 5'-ACCCA-3' sequence present in stem-loop structure (PubMed:14536070, PubMed:16912046). Able to bind other mRNAs (PubMed:14536070, PubMed:16912046). Required for 5.8S rRNA 3'-end processing (PubMed:37352860). Also binds to 5.8s ribosomal RNA (By similarity). Binds with high affinity to the stem-loop structure of replication-dependent histone pre-mRNAs (PubMed:14536070, PubMed:16912046, PubMed:17135487). In vitro, does not have sequence specificity (PubMed:17135487). In vitro, has weak DNA exonuclease activity (PubMed:17135487). In vitro, shows biphasic kinetics such that there is rapid hydrolysis of the last three unpaired RNA nucleotides in the 39 flanking sequence followed by a much slower cleavage through the stem that occurs over a longer incubation period in the order of hours (PubMed:17135487). ERI1-mediated RNA metabolism plays a key role in chondrogenesis (PubMed:37352860). {ECO:0000250|UniProtKB:Q7TMF2, ECO:0000269|PubMed:14536070, ECO:0000269|PubMed:14961122, ECO:0000269|PubMed:16912046, ECO:0000269|PubMed:17135487, ECO:0000269|PubMed:37352860}. |
Q8IXS8 | HYCC2 | S398 | ochoa | Hyccin 2 | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. {ECO:0000305|PubMed:26571211}. |
Q8IYJ3 | SYTL1 | S470 | ochoa | Synaptotagmin-like protein 1 (Exophilin-7) (Protein JFC1) | May play a role in vesicle trafficking (By similarity). Binds phosphatidylinositol 3,4,5-trisphosphate. Acts as a RAB27A effector protein and may play a role in cytotoxic granule exocytosis in lymphocytes (By similarity). {ECO:0000250, ECO:0000269|PubMed:11278853, ECO:0000269|PubMed:18266782}. |
Q8IZT6 | ASPM | S425 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8N1G0 | ZNF687 | S253 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1I0 | DOCK4 | S1607 | ochoa | Dedicator of cytokinesis protein 4 | Functions as a guanine nucleotide exchange factor (GEF) that promotes the exchange of GDP to GTP, converting inactive GDP-bound small GTPases into their active GTP-bound form (PubMed:12628187, PubMed:16464467). Involved in regulation of adherens junction between cells (PubMed:12628187). Plays a role in cell migration (PubMed:20679435). {ECO:0000269|PubMed:12628187, ECO:0000269|PubMed:16464467, ECO:0000269|PubMed:20679435}.; FUNCTION: [Isoform 2]: Has a higher guanine nucleotide exchange factor activity compared to other isoforms. {ECO:0000269|PubMed:16464467}. |
Q8N264 | ARHGAP24 | S402 | psp | Rho GTPase-activating protein 24 (Filamin-A-associated RhoGAP) (FilGAP) (RAC1- and CDC42-specific GTPase-activating protein of 72 kDa) (RC-GAP72) (Rho-type GTPase-activating protein 24) (RhoGAP of 73 kDa) (Sarcoma antigen NY-SAR-88) (p73RhoGAP) | Rho GTPase-activating protein involved in cell polarity, cell morphology and cytoskeletal organization. Acts as a GTPase activator for the Rac-type GTPase by converting it to an inactive GDP-bound state. Controls actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity. Able to suppress RAC1 and CDC42 activity in vitro. Overexpression induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Isoform 2 is a vascular cell-specific GAP involved in modulation of angiogenesis. {ECO:0000269|PubMed:15302923, ECO:0000269|PubMed:15611138, ECO:0000269|PubMed:16862148}. |
Q8N2G8 | GHDC | S467 | ochoa | GH3 domain-containing protein | None |
Q8N5C8 | TAB3 | S672 | ochoa | TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 3) (NF-kappa-B-activating protein 1) (TAK1-binding protein 3) (TAB-3) (TGF-beta-activated kinase 1-binding protein 3) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122, PubMed:36593296). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). {ECO:0000269|PubMed:14633987, ECO:0000269|PubMed:14766965, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:36593296}.; FUNCTION: [Isoform 2]: May be an oncogenic factor. {ECO:0000269|PubMed:14766965}. |
Q8N8K9 | KIAA1958 | S84 | ochoa | Uncharacterized protein KIAA1958 | None |
Q8N9V3 | WDSUB1 | S445 | ochoa | WD repeat, SAM and U-box domain-containing protein 1 | None |
Q8NB14 | USP38 | S680 | ochoa | Ubiquitin carboxyl-terminal hydrolase 38 (EC 3.4.19.12) (Deubiquitinating enzyme 38) (HP43.8KD) (Ubiquitin thioesterase 38) (Ubiquitin-specific-processing protease 38) | Deubiquitinating enzyme that plays a role in various cellular processes, including DNA repair, cell cycle regulation, and immune response (PubMed:22689415, PubMed:30497519, PubMed:31874856, PubMed:35238669). Plays a role in the inhibition of type I interferon signaling by mediating the 'Lys-33' to 'Lys-48' ubiquitination transition of TBK1 leading to its degradation (PubMed:27692986). Cleaves the ubiquitin chain from the histone demethylase LSD1/KDM1A and prevents it from degradation by the 26S proteasome, thus maintaining LSD1 protein level in cells (PubMed:30497519). Plays a role in the DNA damage response by regulating the deacetylase activity of HDAC1 (PubMed:31874856). Mechanistically, removes the 'Lys-63'-linked ubiquitin chain promoting the deacetylase activity of HDAC1 in response to DNA damage (PubMed:31874856). Also acts as a specific deubiquitinase of histone deacetylase 3/HDAC3 and cleaves its 'Lys-63'-linked ubiquitin chains to lower its histone deacetylase activity (PubMed:32404892). Regulates MYC levels and cell proliferation via antagonizing ubiquitin E3 ligase FBXW7 thereby preventing MYC 'Lys-48'-linked ubiquitination and degradation (PubMed:34102342). Participates in antiviral response by removing both 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of Zika virus envelope protein E (PubMed:34696459). Constitutively associated with IL-33R/IL1RL1, deconjugates its 'Lys-27'-linked polyubiquitination resulting in its autophagic degradation (PubMed:35238669). {ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:27692986, ECO:0000269|PubMed:30497519, ECO:0000269|PubMed:31874856, ECO:0000269|PubMed:32404892, ECO:0000269|PubMed:34102342, ECO:0000269|PubMed:34696459, ECO:0000269|PubMed:35238669}. |
Q8NCP5 | ZBTB44 | S161 | ochoa | Zinc finger and BTB domain-containing protein 44 (BTB/POZ domain-containing protein 15) (Zinc finger protein 851) | May be involved in transcriptional regulation. {ECO:0000250}. |
Q8NCP5 | ZBTB44 | S191 | ochoa | Zinc finger and BTB domain-containing protein 44 (BTB/POZ domain-containing protein 15) (Zinc finger protein 851) | May be involved in transcriptional regulation. {ECO:0000250}. |
Q8NEV8 | EXPH5 | S630 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NHM5 | KDM2B | S1018 | ochoa | Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) | Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}. |
Q8TB72 | PUM2 | S182 | ochoa | Pumilio homolog 2 (Pumilio-2) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (, PubMed:21397187). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:22345517). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). May regulate DCUN1D3 mRNA levels (PubMed:25349211). May support proliferation and self-renewal of stem cells. Binds specifically to miRNA MIR199A precursor, with PUM1, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25349211, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233}. |
Q8TBB5 | KLHDC4 | S114 | ochoa | Kelch domain-containing protein 4 | None |
Q8TE76 | MORC4 | S532 | ochoa | MORC family CW-type zinc finger protein 4 (Zinc finger CW-type coiled-coil domain protein 2) (Zinc finger CW-type domain protein 4) | Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:26933034}. |
Q8TEJ3 | SH3RF3 | S804 | ochoa | E3 ubiquitin-protein ligase SH3RF3 (EC 2.3.2.27) (Plenty of SH3s 2) (SH3 domain-containing RING finger protein 3) (SH3 multiple domains protein 4) | Has E3 ubiquitin-protein ligase activity. {ECO:0000269|PubMed:20696164}. |
Q8TEK3 | DOT1L | S458 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEK3 | DOT1L | S1246 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEU7 | RAPGEF6 | S1494 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8TF72 | SHROOM3 | S540 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WXH0 | SYNE2 | S6775 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WXI9 | GATAD2B | S122 | ochoa | Transcriptional repressor p66-beta (GATA zinc finger domain-containing protein 2B) (p66/p68) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2A (PubMed:16415179). Targets MBD3 to discrete loci in the nucleus (PubMed:11756549). May play a role in synapse development (PubMed:23644463). {ECO:0000269|PubMed:11756549, ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:23644463, ECO:0000269|PubMed:28977666}. |
Q92570 | NR4A3 | S380 | ochoa | Nuclear receptor subfamily 4 group A member 3 (Mitogen-induced nuclear orphan receptor) (Neuron-derived orphan receptor 1) (Nuclear hormone receptor NOR-1) (Translocated in extraskeletal chondrosarcoma) | Transcriptional activator that binds to regulatory elements in promoter regions in a cell- and response element (target)-specific manner. Induces gene expression by binding as monomers to the NR4A1 response element (NBRE) 5'-AAAAGGTCA-3' site and as homodimers to the Nur response element (NurRE) site in the promoter of their regulated target genes (By similarity). Plays a role in the regulation of proliferation, survival and differentiation of many different cell types and also in metabolism and inflammation. Mediates proliferation of vascular smooth muscle, myeloid progenitor cell and type B pancreatic cells; promotes mitogen-induced vascular smooth muscle cell proliferation through transactivation of SKP2 promoter by binding a NBRE site (By similarity). Upon PDGF stimulation, stimulates vascular smooth muscle cell proliferation by regulating CCND1 and CCND2 expression. In islets, induces type B pancreatic cell proliferation through up-regulation of genes that activate cell cycle, as well as genes that cause degradation of the CDKN1A (By similarity). Negatively regulates myeloid progenitor cell proliferation by repressing RUNX1 in a NBRE site-independent manner. During inner ear, plays a role as a key mediator of the proliferative growth phase of semicircular canal development (By similarity). Also mediates survival of neuron and smooth muscle cells; mediates CREB-induced neuronal survival, and during hippocampus development, plays a critical role in pyramidal cell survival and axonal guidance. Is required for S phase entry of the cell cycle and survival of smooth muscle cells by inducing CCND1, resulting in RB1 phosphorylation. Binds to NBRE motif in CCND1 promoter, resulting in the activation of the promoter and CCND1 transcription (By similarity). Also plays a role in inflammation; upon TNF stimulation, mediates monocyte adhesion by inducing the expression of VCAM1 and ICAM1 by binding to the NBRE consensus site (By similarity) (PubMed:20558821). In mast cells activated by Fc-epsilon receptor cross-linking, promotes the synthesis and release of cytokines but impairs events leading to degranulation (By similarity). Also plays a role in metabolism; by modulating feeding behavior; and by playing a role in energy balance by inhibiting the glucocorticoid-induced orexigenic neuropeptides AGRP expression, at least in part by forming a complex with activated NR3C1 on the AGRP- glucocorticoid response element (GRE), and thus weakening the DNA binding activity of NR3C1. Upon catecholamines stimulation, regulates gene expression that controls oxidative metabolism in skeletal muscle (By similarity). Plays a role in glucose transport by regulating translocation of the SLC2A4 glucose transporter to the cell surface (PubMed:24022864). Finally, during gastrulation plays a crucial role in the formation of anterior mesoderm by controlling cell migration. Inhibits adipogenesis (By similarity). Also participates in cardiac hypertrophy by activating PARP1 (By similarity). {ECO:0000250|UniProtKB:P51179, ECO:0000250|UniProtKB:Q9QZB6, ECO:0000269|PubMed:20558821, ECO:0000269|PubMed:24022864}. |
Q92574 | TSC1 | S282 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92574 | TSC1 | S348 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92667 | AKAP1 | S169 | ochoa | A-kinase anchor protein 1, mitochondrial (A-kinase anchor protein 149 kDa) (AKAP 149) (Dual specificity A-kinase-anchoring protein 1) (D-AKAP-1) (Protein kinase A-anchoring protein 1) (PRKA1) (Spermatid A-kinase anchor protein 84) (S-AKAP84) | Binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane (By similarity). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Promotes translocation of NDUFS1 into mitochondria to regulate mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) activity (By similarity). {ECO:0000250|UniProtKB:O08715, ECO:0000269|PubMed:31522117}. |
Q92729 | PTPRU | S840 | ochoa | Receptor-type tyrosine-protein phosphatase U (R-PTP-U) (EC 3.1.3.48) (Pancreatic carcinoma phosphatase 2) (PCP-2) (Protein-tyrosine phosphatase J) (PTP-J) (hPTP-J) (Protein-tyrosine phosphatase pi) (PTP pi) (Protein-tyrosine phosphatase receptor omicron) (PTP-RO) (Receptor-type protein-tyrosine phosphatase psi) (R-PTP-psi) | Tyrosine-protein phosphatase which dephosphorylates CTNNB1. Regulates CTNNB1 function both in cell adhesion and signaling. May function in cell proliferation and migration and play a role in the maintenance of epithelial integrity. May play a role in megakaryocytopoiesis. {ECO:0000269|PubMed:10397721, ECO:0000269|PubMed:12501215, ECO:0000269|PubMed:16574648}. |
Q92738 | USP6NL | S642 | ochoa | USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) | Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}. |
Q92766 | RREB1 | S1122 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q96DF8 | ESS2 | S292 | ochoa | Splicing factor ESS-2 homolog (DiGeorge syndrome critical region 13) (DiGeorge syndrome critical region 14) (DiGeorge syndrome protein H) (DGS-H) (Protein ES2) | May be involved in pre-mRNA splicing. {ECO:0000250|UniProtKB:P34420}. |
Q96DY7 | MTBP | S539 | ochoa | Mdm2-binding protein (hMTBP) | Inhibits cell migration in vitro and suppresses the invasive behavior of tumor cells (By similarity). May play a role in MDM2-dependent p53/TP53 homeostasis in unstressed cells. Inhibits autoubiquitination of MDM2, thereby enhancing MDM2 stability. This promotes MDM2-mediated ubiquitination of p53/TP53 and its subsequent degradation. {ECO:0000250, ECO:0000269|PubMed:15632057}. |
Q96HA1 | POM121 | S108 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96HH9 | GRAMD2B | S212 | ochoa | GRAM domain-containing protein 2B (HCV NS3-transactivated protein 2) | None |
Q96JY6 | PDLIM2 | S74 | ochoa | PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) | Probable adapter protein located at the actin cytoskeleton that promotes cell attachment. Necessary for the migratory capacity of epithelial cells. Overexpression enhances cell adhesion to collagen and fibronectin and suppresses anchorage independent growth. May contribute to tumor cell migratory capacity. {ECO:0000269|PubMed:15659642}. |
Q96JY6 | PDLIM2 | S266 | ochoa | PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) | Probable adapter protein located at the actin cytoskeleton that promotes cell attachment. Necessary for the migratory capacity of epithelial cells. Overexpression enhances cell adhesion to collagen and fibronectin and suppresses anchorage independent growth. May contribute to tumor cell migratory capacity. {ECO:0000269|PubMed:15659642}. |
Q96L73 | NSD1 | S935 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96NU1 | SAMD11 | S646 | ochoa | Sterile alpha motif domain-containing protein 11 (SAM domain-containing protein 11) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, essential for establishing rod photoreceptor cell identity and function by silencing nonrod gene expression in developing rod photoreceptor cells. {ECO:0000250|UniProtKB:Q1RNF8}. |
Q96PY6 | NEK1 | S868 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96RE7 | NACC1 | S145 | ochoa | Nucleus accumbens-associated protein 1 (NAC-1) (BTB/POZ domain-containing protein 14B) | Functions as a transcriptional repressor. Seems to function as a transcriptional corepressor in neuronal cells through recruitment of HDAC3 and HDAC4. Contributes to tumor progression, and tumor cell proliferation and survival. This may be mediated at least in part through repressing transcriptional activity of GADD45GIP1. Required for recruiting the proteasome from the nucleus to the cytoplasm and dendritic spines. {ECO:0000269|PubMed:17130457, ECO:0000269|PubMed:17804717}. |
Q96S38 | RPS6KC1 | S583 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96T58 | SPEN | S727 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99550 | MPHOSPH9 | S994 | ochoa | M-phase phosphoprotein 9 | Negatively regulates cilia formation by recruiting the CP110-CEP97 complex (a negative regulator of ciliogenesis) at the distal end of the mother centriole in ciliary cells (PubMed:30375385). At the beginning of cilia formation, MPHOSPH9 undergoes TTBK2-mediated phosphorylation and degradation via the ubiquitin-proteasome system and removes itself and the CP110-CEP97 complex from the distal end of the mother centriole, which subsequently promotes cilia formation (PubMed:30375385). {ECO:0000269|PubMed:30375385}. |
Q99569 | PKP4 | S75 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99569 | PKP4 | S314 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99618 | CDCA3 | S209 | ochoa | Cell division cycle-associated protein 3 (Gene-rich cluster protein C8) (Trigger of mitotic entry protein 1) (TOME-1) | F-box-like protein which is required for entry into mitosis. Acts by participating in E3 ligase complexes that mediate the ubiquitination and degradation of WEE1 kinase at G2/M phase (By similarity). {ECO:0000250}. |
Q99856 | ARID3A | S362 | ochoa | AT-rich interactive domain-containing protein 3A (ARID domain-containing protein 3A) (B-cell regulator of IgH transcription) (Bright) (Dead ringer-like protein 1) (E2F-binding protein 1) | Transcription factor which may be involved in the control of cell cycle progression by the RB1/E2F1 pathway and in B-cell differentiation. {ECO:0000269|PubMed:11812999, ECO:0000269|PubMed:12692263}. |
Q99958 | FOXC2 | S219 | ochoa|psp | Forkhead box protein C2 (Forkhead-related protein FKHL14) (Mesenchyme fork head protein 1) (MFH-1 protein) (Transcription factor FKH-14) | Transcriptional activator. {ECO:0000269|PubMed:9169153}. |
Q9BRD0 | BUD13 | S188 | ochoa | BUD13 homolog | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9BRD0 | BUD13 | S201 | ochoa | BUD13 homolog | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9BRD0 | BUD13 | S299 | ochoa | BUD13 homolog | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9BRS8 | LARP6 | S396 | ochoa|psp | La-related protein 6 (Acheron) (Achn) (La ribonucleoprotein domain family member 6) | Regulates the coordinated translation of type I collagen alpha-1 and alpha-2 mRNAs, CO1A1 and CO1A2. Stabilizes mRNAs through high-affinity binding of a stem-loop structure in their 5' UTR. This regulation requires VIM and MYH10 filaments, and the helicase DHX9. {ECO:0000269|PubMed:20603131, ECO:0000269|PubMed:21746880, ECO:0000269|PubMed:22190748}. |
Q9BSI4 | TINF2 | S330 | ochoa|psp | TERF1-interacting nuclear factor 2 (TRF1-interacting nuclear protein 2) | Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded TTAGGG repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. Plays a role in shelterin complex assembly. Isoform 1 may have additional role in tethering telomeres to the nuclear matrix. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:16880378}. |
Q9BWH6 | RPAP1 | S72 | ochoa | RNA polymerase II-associated protein 1 | Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. Required for interaction of the RNA polymerase II complex with acetylated histone H3. {ECO:0000269|PubMed:17643375}. |
Q9BWN1 | PRR14 | S488 | ochoa | Proline-rich protein 14 | Functions in tethering peripheral heterochromatin to the nuclear lamina during interphase, possibly through the interaction with heterochromatin protein CBX5/HP1 alpha (PubMed:24209742). Might play a role in reattaching heterochromatin to the nuclear lamina at mitotic exit (PubMed:24209742). Promotes myoblast differentiation during skeletal myogenesis, possibly by stimulating transcription factor MyoD activity via binding to CBX5/HP1 alpha (PubMed:25906157). Involved in the positive regulation of the PI3K-Akt-mTOR signaling pathway and in promoting cell proliferation, possibly via binding to GRB2 (PubMed:27041574). {ECO:0000269|PubMed:24209742, ECO:0000269|PubMed:25906157, ECO:0000269|PubMed:27041574}. |
Q9BX63 | BRIP1 | S197 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BXL5 | HEMGN | S201 | ochoa | Hemogen (Erythroid differentiation-associated gene protein) (EDAG-1) (Hemopoietic gene protein) (Negative differentiation regulator protein) | Regulates the proliferation and differentiation of hematopoietic cells. Overexpression block the TPA-induced megakaryocytic differentiation in the K562 cell model. May also prevent cell apoptosis through the activation of the nuclear factor-kappa B (NF-kB). {ECO:0000269|PubMed:14730214, ECO:0000269|PubMed:15332117, ECO:0000269|PubMed:15920494}. |
Q9BY77 | POLDIP3 | S127 | ochoa|psp | Polymerase delta-interacting protein 3 (46 kDa DNA polymerase delta interaction protein) (p46) (S6K1 Aly/REF-like target) (SKAR) | Is involved in regulation of translation. Is preferentially associated with CBC-bound spliced mRNA-protein complexes during the pioneer round of mRNA translation. Contributes to enhanced translational efficiency of spliced over nonspliced mRNAs. Recruits activated ribosomal protein S6 kinase beta-1 I/RPS6KB1 to newly synthesized mRNA. Involved in nuclear mRNA export; probably mediated by association with the TREX complex. {ECO:0000269|PubMed:18423201, ECO:0000269|PubMed:22928037}. |
Q9BY89 | KIAA1671 | S79 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BZL6 | PRKD2 | S706 | ochoa|psp | Serine/threonine-protein kinase D2 (EC 2.7.11.13) (nPKC-D2) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion (PubMed:14743217, PubMed:15604256, PubMed:16928771, PubMed:17077180, PubMed:17951978, PubMed:17962809, PubMed:18262756, PubMed:19001381, PubMed:19192391, PubMed:23503467, PubMed:28428613). May potentiate mitogenesis induced by the neuropeptide bombesin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression (By similarity). In response to oxidative stress, is phosphorylated at Tyr-438 and Tyr-717 by ABL1, which leads to the activation of PRKD2 without increasing its catalytic activity, and mediates activation of NF-kappa-B (PubMed:15604256, PubMed:28428613). In response to the activation of the gastrin receptor CCKBR, is phosphorylated at Ser-244 by CSNK1D and CSNK1E, translocates to the nucleus, phosphorylates HDAC7, leading to nuclear export of HDAC7 and inhibition of HDAC7 transcriptional repression of NR4A1/NUR77 (PubMed:17962809). Upon TCR stimulation, is activated independently of ZAP70, translocates from the cytoplasm to the nucleus and is required for interleukin-2 (IL2) promoter up-regulation (PubMed:17077180). During adaptive immune responses, is required in peripheral T-lymphocytes for the production of the effector cytokines IL2 and IFNG after TCR engagement and for optimal induction of antibody responses to antigens (By similarity). In epithelial cells stimulated with lysophosphatidic acid (LPA), is activated through a PKC-dependent pathway and mediates LPA-stimulated interleukin-8 (IL8) secretion via a NF-kappa-B-dependent pathway (PubMed:16928771). During TCR-induced T-cell activation, interacts with and is activated by the tyrosine kinase LCK, which results in the activation of the NFAT transcription factors (PubMed:19192391). In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane and in polarized cells is involved in the transport of proteins from the TGN to the basolateral membrane (PubMed:14743217). Plays an important role in endothelial cell proliferation and migration prior to angiogenesis, partly through modulation of the expression of KDR/VEGFR2 and FGFR1, two key growth factor receptors involved in angiogenesis (PubMed:19001381). In secretory pathway, is required for the release of chromogranin-A (CHGA)-containing secretory granules from the TGN (PubMed:18262756). Downstream of PRKCA, plays important roles in angiotensin-2-induced monocyte adhesion to endothelial cells (PubMed:17951978). Plays a regulatory role in angiogenesis and tumor growth by phosphorylating a downstream mediator CIB1 isoform 2, resulting in vascular endothelial growth factor A (VEGFA) secretion (PubMed:23503467). {ECO:0000250|UniProtKB:Q8BZ03, ECO:0000269|PubMed:14743217, ECO:0000269|PubMed:15604256, ECO:0000269|PubMed:16928771, ECO:0000269|PubMed:17077180, ECO:0000269|PubMed:17951978, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:18262756, ECO:0000269|PubMed:19001381, ECO:0000269|PubMed:19192391, ECO:0000269|PubMed:23503467, ECO:0000269|PubMed:28428613}. |
Q9C0A6 | SETD5 | S1131 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0B0 | UNK | S255 | psp | RING finger protein unkempt homolog (Zinc finger CCCH domain-containing protein 5) | Sequence-specific RNA-binding protein which plays an important role in the establishment and maintenance of the early morphology of cortical neurons during embryonic development. Acts as a translation repressor and controls a translationally regulated cell morphology program to ensure proper structuring of the nervous system. Translational control depends on recognition of its binding element within target mRNAs which consists of a mandatory UAG trimer upstream of a U/A-rich motif. Associated with polysomes (PubMed:25737280). {ECO:0000269|PubMed:25737280}. |
Q9C0C9 | UBE2O | S401 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9GZP1 | NRSN2 | S171 | ochoa | Neurensin-2 | May play a role in maintenance and/or transport of vesicles. |
Q9H2K8 | TAOK3 | S173 | ochoa | Serine/threonine-protein kinase TAO3 (EC 2.7.11.1) (Cutaneous T-cell lymphoma-associated antigen HD-CL-09) (CTCL-associated antigen HD-CL-09) (Dendritic cell-derived protein kinase) (JNK/SAPK-inhibitory kinase) (Jun kinase-inhibitory kinase) (Kinase from chicken homolog A) (hKFC-A) (Thousand and one amino acid protein 3) | Serine/threonine-protein kinase that acts as a regulator of the p38/MAPK14 stress-activated MAPK cascade and of the MAPK8/JNK cascade. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Inhibits basal activity of the MAPK8/JNK cascade and diminishes its activation in response to epidermal growth factor (EGF). Positively regulates canonical T cell receptor (TCR) signaling by preventing early PTPN6/SHP1-mediated inactivation of LCK, ensuring sustained TCR signaling that is required for optimal activation and differentiation of T cells (PubMed:30373850). Phosphorylates PTPN6/SHP1 on 'Thr-394', leading to its polyubiquitination and subsequent proteasomal degradation (PubMed:38166031). Required for cell surface expression of metalloprotease ADAM10 on type 1 transitional B cells which is necessary for their NOTCH-mediated development into marginal zone B cells (By similarity). Also required for the NOTCH-mediated terminal differentiation of splenic conventional type 2 dendritic cells (By similarity). Positively regulates osteoblast differentiation by acting as an upstream activator of the JNK pathway (PubMed:32807497). Promotes JNK signaling in hepatocytes and positively regulates hepatocyte lipid storage by inhibiting beta-oxidation and triacylglycerol secretion while enhancing lipid synthesis (PubMed:34634521). Restricts age-associated inflammation by negatively regulating differentiation of macrophages and their production of pro-inflammatory cytokines (By similarity). Plays a role in negatively regulating the abundance of regulatory T cells in white adipose tissue (By similarity). {ECO:0000250|UniProtKB:Q8BYC6, ECO:0000269|PubMed:10559204, ECO:0000269|PubMed:10924369, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:30373850, ECO:0000269|PubMed:32807497, ECO:0000269|PubMed:34634521, ECO:0000269|PubMed:38166031}. |
Q9H2Y7 | ZNF106 | S1315 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H410 | DSN1 | S331 | ochoa|psp | Kinetochore-associated protein DSN1 homolog | Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:16585270}. |
Q9H792 | PEAK1 | S281 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H869 | YY1AP1 | S711 | ochoa | YY1-associated protein 1 (Hepatocellular carcinoma susceptibility protein) (Hepatocellular carcinoma-associated protein 2) | Associates with the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication (PubMed:27939641). Enhances transcription activation by YY1 (PubMed:14744866). Plays a role in cell cycle regulation (PubMed:17541814, PubMed:27939641). {ECO:0000269|PubMed:14744866, ECO:0000269|PubMed:17541814, ECO:0000269|PubMed:27939641}. |
Q9H8T0 | AKTIP | S30 | ochoa | AKT-interacting protein (Ft1) (Fused toes protein homolog) | Component of the FTS/Hook/FHIP complex (FHF complex) (PubMed:32073997). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). Regulates apoptosis by enhancing phosphorylation and activation of AKT1. Increases release of TNFSF6 via the AKT1/GSK3B/NFATC1 signaling cascade. FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000269|PubMed:14749367, ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}. |
Q9HAU0 | PLEKHA5 | S544 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HCK8 | CHD8 | S1995 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9HDC5 | JPH1 | S452 | ochoa | Junctophilin-1 (JP-1) (Junctophilin type 1) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. |
Q9NQW6 | ANLN | S172 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NR48 | ASH1L | S557 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NRA8 | EIF4ENIF1 | S670 | ochoa | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NRD1 | FBXO6 | S258 | ochoa | F-box only protein 6 (F-box protein that recognizes sugar chains 2) (F-box/G-domain protein 2) | Substrate-recognition component of some SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complexes. Involved in endoplasmic reticulum-associated degradation pathway (ERAD) for misfolded lumenal proteins by recognizing and binding sugar chains on unfolded glycoproteins that are retrotranslocated into the cytosol and promoting their ubiquitination and subsequent degradation. Able to recognize and bind denatured glycoproteins, which are modified with not only high-mannose but also complex-type oligosaccharides. Also recognizes sulfated glycans. Also involved in DNA damage response by specifically recognizing activated CHEK1 (phosphorylated on 'Ser-345'), promoting its ubiquitination and degradation. Ubiquitination of CHEK1 is required to ensure that activated CHEK1 does not accumulate as cells progress through S phase, or when replication forks encounter transient impediments during normal DNA replication. {ECO:0000269|PubMed:18203720, ECO:0000269|PubMed:19716789}. |
Q9NSC2 | SALL1 | S1106 | ochoa | Sal-like protein 1 (Spalt-like transcription factor 1) (Zinc finger protein 794) (Zinc finger protein SALL1) (Zinc finger protein Spalt-1) (HSal1) (Sal-1) | Transcriptional repressor involved in organogenesis. Plays an essential role in ureteric bud invasion during kidney development. {ECO:0000250|UniProtKB:Q9ER74}. |
Q9NSC5 | HOMER3 | S128 | ochoa | Homer protein homolog 3 (Homer-3) | Postsynaptic density scaffolding protein. Binds and cross-links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER-associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses. Negatively regulates T cell activation by inhibiting the calcineurin-NFAT pathway. Acts by competing with calcineurin/PPP3CA for NFAT protein binding, hence preventing NFAT activation by PPP3CA (PubMed:18218901). {ECO:0000269|PubMed:18218901}. |
Q9NTI5 | PDS5B | S1087 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NWH9 | SLTM | S1002 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NYA4 | MTMR4 | S961 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR4 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 2) (FYVE-DSP2) (Myotubularin-related protein 4) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Zinc finger FYVE domain-containing protein 11) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:11302699, PubMed:16787938, PubMed:20736309, PubMed:27625994, PubMed:29962048, PubMed:30944173). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic, in a subset of endosomal membranes to negatively regulate both endocytic recycling and trafficking and/or maturation of endosomes toward lysosomes (PubMed:16787938, PubMed:20736309, PubMed:29962048). Through phosphatidylinositol 3-phosphate turnover in phagosome membranes regulates phagocytosis and phagosome maturation (PubMed:31543504). By decreasing phosphatidylinositol 3-monophosphate (PI3P) levels in immune cells it can also regulate the innate immune response (PubMed:30944173). Beside its lipid phosphatase activity, can also function as a molecular adapter to regulate midbody abscission during mitotic cytokinesis (PubMed:25659891). Can also negatively regulate TGF-beta and BMP signaling through Smad proteins dephosphorylation and retention in endosomes (PubMed:20061380, PubMed:23150675). {ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:16787938, ECO:0000269|PubMed:20061380, ECO:0000269|PubMed:20736309, ECO:0000269|PubMed:23150675, ECO:0000269|PubMed:25659891, ECO:0000269|PubMed:27625994, ECO:0000269|PubMed:29962048, ECO:0000269|PubMed:30944173, ECO:0000269|PubMed:31543504}. |
Q9NYB9 | ABI2 | S183 | ochoa|psp | Abl interactor 2 (Abelson interactor 2) (Abi-2) (Abl-binding protein 3) (AblBP3) (Arg-binding protein 1) (ArgBP1) | Regulator of actin cytoskeleton dynamics underlying cell motility and adhesion. Functions as a component of the WAVE complex, which activates actin nucleating machinery Arp2/3 to drive lamellipodia formation (PubMed:21107423). Acts as a regulator and substrate of nonreceptor tyrosine kinases ABL1 and ABL2 involved in processes linked to cell growth and differentiation. Positively regulates ABL1-mediated phosphorylation of ENAH, which is required for proper polymerization of nucleated actin filaments at the leading edge (PubMed:10498863, PubMed:7590236, PubMed:8649853). Contributes to the regulation of actin assembly at the tips of neuron projections. In particular, controls dendritic spine morphogenesis and may promote dendritic spine specification toward large mushroom-type spines known as repositories of memory in the brain (By similarity). In hippocampal neurons, may mediate actin-dependent BDNF-NTRK2 early endocytic trafficking that triggers dendrite outgrowth (By similarity). Participates in ocular lens morphogenesis, likely by regulating lamellipodia-driven adherens junction formation at the epithelial cell-secondary lens fiber interface (By similarity). Also required for nascent adherens junction assembly in epithelial cells (PubMed:15572692). {ECO:0000250|UniProtKB:P62484, ECO:0000269|PubMed:10498863, ECO:0000269|PubMed:15572692, ECO:0000269|PubMed:21107423, ECO:0000269|PubMed:7590236, ECO:0000269|PubMed:8649853}. |
Q9NYF8 | BCLAF1 | S531 | ochoa|psp | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NYQ3 | HAO2 | S184 | ochoa | 2-Hydroxyacid oxidase 2 (HAOX2) (EC 1.1.3.15) ((S)-2-hydroxy-acid oxidase, peroxisomal) (Cell growth-inhibiting gene 16 protein) (Long chain alpha-hydroxy acid oxidase) (Long-chain L-2-hydroxy acid oxidase) | Oxidase that catalyzes the oxidation of medium and long chain hydroxyacids such as 2-hydroxyhexadecanoate and 2-hydroxyoctanoate, to the correspondong 2-oxoacids (PubMed:10777549). Its role in the oxidation of 2-hydroxy fatty acids may contribute to the general pathway of fatty acid alpha-oxidation (Probable). Active in vitro with the artificial electron acceptor 2,6-dichlorophenolindophenol (DCIP), but O2 is believed to be the physiological electron acceptor, leading to the production of H2O2. Is not active on glycolate, glyoxylate, L-lactate and 2-hydroxybutanoate (PubMed:10777549). {ECO:0000269|PubMed:10777549, ECO:0000305|PubMed:10777549}. |
Q9NZ72 | STMN3 | S60 | ochoa|psp | Stathmin-3 (SCG10-like protein) | Exhibits microtubule-destabilizing activity, which is antagonized by STAT3. {ECO:0000250}. |
Q9P0K8 | FOXJ2 | S172 | ochoa | Forkhead box protein J2 (Fork head homologous X) | [Isoform FOXJ2.L]: Transcriptional activator. Able to bind to two different type of DNA binding sites. More effective than isoform FOXJ2.S in transcriptional activation (PubMed:10777590, PubMed:10966786). Plays an important role in spermatogenesis, especially in spermatocyte meiosis (By similarity). {ECO:0000250|UniProtKB:Q9ES18, ECO:0000269|PubMed:10777590, ECO:0000269|PubMed:10966786}.; FUNCTION: [Isoform FOXJ2.S]: Transcriptional activator. {ECO:0000269|PubMed:10966786}. |
Q9P266 | JCAD | S1156 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P270 | SLAIN2 | S147 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P270 | SLAIN2 | Y336 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P275 | USP36 | S939 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P2Q2 | FRMD4A | S681 | ochoa | FERM domain-containing protein 4A | Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}. |
Q9UBS0 | RPS6KB2 | S410 | psp | Ribosomal protein S6 kinase beta-2 (S6K-beta-2) (S6K2) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 2) (P70S6K2) (p70-S6K 2) (S6 kinase-related kinase) (SRK) (Serine/threonine-protein kinase 14B) (p70 ribosomal S6 kinase beta) (S6K-beta) (p70 S6 kinase beta) (p70 S6K-beta) (p70 S6KB) (p70-beta) | Phosphorylates specifically ribosomal protein S6 (PubMed:29750193). Seems to act downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression in an alternative pathway regulated by MEAK7 (PubMed:29750193). {ECO:0000269|PubMed:29750193}. |
Q9UEY8 | ADD3 | S664 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UFD9 | RIMBP3 | S1322 | ochoa | RIMS-binding protein 3A (RIM-BP3.A) (RIMS-binding protein 3.1) (RIM-BP3.1) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
Q9UGU0 | TCF20 | S1322 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHK6 | AMACR | S324 | ochoa | Alpha-methylacyl-CoA racemase (EC 5.1.99.4) (2-methylacyl-CoA racemase) | Catalyzes the interconversion of (R)- and (S)-stereoisomers of alpha-methyl-branched-chain fatty acyl-CoA esters (PubMed:10655068, PubMed:11060359, PubMed:7649182). Acts only on coenzyme A thioesters, not on free fatty acids, and accepts as substrates a wide range of alpha-methylacyl-CoAs, including pristanoyl-CoA, trihydroxycoprostanoyl-CoA (an intermediate in bile acid synthesis), and arylpropionic acids like the anti-inflammatory drug ibuprofen (2-(4-isobutylphenyl)propionic acid) but neither 3-methyl-branched nor linear-chain acyl-CoAs (PubMed:10655068, PubMed:11060359, PubMed:7649182). {ECO:0000269|PubMed:10655068, ECO:0000269|PubMed:11060359, ECO:0000269|PubMed:7649182}. |
Q9UIF9 | BAZ2A | S496 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UIF9 | BAZ2A | S1770 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UJQ4 | SALL4 | S776 | ochoa | Sal-like protein 4 (Zinc finger protein 797) (Zinc finger protein SALL4) | Transcription factor with a key role in the maintenance and self-renewal of embryonic and hematopoietic stem cells. {ECO:0000269|PubMed:23012367}. |
Q9UK61 | TASOR | S1193 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UKE5 | TNIK | S972 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9ULH1 | ASAP1 | S733 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 (130 kDa phosphatidylinositol 4,5-bisphosphate-dependent ARF1 GTPase-activating protein) (ADP-ribosylation factor-directed GTPase-activating protein 1) (ARF GTPase-activating protein 1) (Development and differentiation-enhancing factor 1) (DEF-1) (Differentiation-enhancing factor 1) (PIP2-dependent ARF1 GAP) | Possesses phosphatidylinositol 4,5-bisphosphate-dependent GTPase-activating protein activity for ARF1 (ADP ribosylation factor 1) and ARF5 and a lesser activity towards ARF6. May coordinate membrane trafficking with cell growth or actin cytoskeleton remodeling by binding to both SRC and PIP2. May function as a signal transduction protein involved in the differentiation of fibroblasts into adipocytes and possibly other cell types. Part of the ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which direct preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879). {ECO:0000250, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:25673879}. |
Q9ULJ3 | ZBTB21 | S422 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULV4 | CORO1C | S299 | ochoa | Coronin-1C (Coronin-3) (hCRNN4) | Plays a role in directed cell migration by regulating the activation and subcellular location of RAC1 (PubMed:25074804, PubMed:25925950). Increases the presence of activated RAC1 at the leading edge of migrating cells (PubMed:25074804, PubMed:25925950). Required for normal organization of the cytoskeleton, including the actin cytoskeleton, microtubules and the vimentin intermediate filaments (By similarity). Plays a role in endoplasmic reticulum-associated endosome fission: localizes to endosome membrane tubules and promotes recruitment of TMCC1, leading to recruitment of the endoplasmic reticulum to endosome tubules for fission (PubMed:30220460). Endosome membrane fission of early and late endosomes is essential to separate regions destined for lysosomal degradation from carriers to be recycled to the plasma membrane (PubMed:30220460). Required for normal cell proliferation, cell migration, and normal formation of lamellipodia (By similarity). Required for normal distribution of mitochondria within cells (By similarity). {ECO:0000250|UniProtKB:Q9WUM4, ECO:0000269|PubMed:25074804, ECO:0000269|PubMed:25925950, ECO:0000269|PubMed:30220460, ECO:0000269|PubMed:34106209}.; FUNCTION: [Isoform 3]: Involved in myogenic differentiation. {ECO:0000269|PubMed:19651142}. |
Q9UM11 | FZR1 | S138 | ochoa | Fizzy-related protein homolog (Fzr) (CDC20-like protein 1) (Cdh1/Hct1 homolog) (hCDH1) | Substrate-specific adapter for the anaphase promoting complex/cyclosome (APC/C) E3 ubiquitin-protein ligase complex. Associates with the APC/C in late mitosis, in replacement of CDC20, and activates the APC/C during anaphase and telophase. The APC/C remains active in degrading substrates to ensure that positive regulators of the cell cycle do not accumulate prematurely. At the G1/S transition FZR1 is phosphorylated, leading to its dissociation from the APC/C. Following DNA damage, it is required for the G2 DNA damage checkpoint: its dephosphorylation and reassociation with the APC/C leads to the ubiquitination of PLK1, preventing entry into mitosis. Acts as an adapter for APC/C to target the DNA-end resection factor RBBP8/CtIP for ubiquitination and subsequent proteasomal degradation. Through the regulation of RBBP8/CtIP protein turnover, may play a role in DNA damage response, favoring DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:25349192). {ECO:0000269|PubMed:14701726, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:25349192, ECO:0000269|PubMed:9734353}. |
Q9UM63 | PLAGL1 | S229 | ochoa | Zinc finger protein PLAGL1 (Lost on transformation 1) (LOT-1) (Pleiomorphic adenoma-like protein 1) (Tumor suppressor ZAC) | Acts as a transcriptional activator (PubMed:9722527). Involved in the transcriptional regulation of type 1 receptor for pituitary adenylate cyclase-activating polypeptide. {ECO:0000269|PubMed:18299245, ECO:0000269|PubMed:9722527}. |
Q9UNK9 | ANGEL1 | S38 | ochoa | Protein angel homolog 1 | None |
Q9UNY4 | TTF2 | S396 | ochoa | Transcription termination factor 2 (EC 3.6.4.-) (Lodestar homolog) (RNA polymerase II termination factor) (Transcription release factor 2) (F2) (HuF2) | DsDNA-dependent ATPase which acts as a transcription termination factor by coupling ATP hydrolysis with removal of RNA polymerase II from the DNA template. May contribute to mitotic transcription repression. May also be involved in pre-mRNA splicing. {ECO:0000269|PubMed:10455150, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:15125840, ECO:0000269|PubMed:9748214}. |
Q9UPY3 | DICER1 | S1280 | ochoa | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UPY3 | DICER1 | S1470 | ochoa | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UQ26 | RIMS2 | S1072 | ochoa | Regulating synaptic membrane exocytosis protein 2 (Rab-3-interacting molecule 2) (RIM 2) (Rab-3-interacting protein 3) | Rab effector involved in exocytosis. May act as scaffold protein. Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:23999003}. |
Q9UQ35 | SRRM2 | S924 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQQ2 | SH2B3 | S330 | ochoa | SH2B adapter protein 3 (Lymphocyte adapter protein) (Lymphocyte-specific adapter protein Lnk) (Signal transduction protein Lnk) | Links T-cell receptor activation signal to phospholipase C-gamma-1, GRB2 and phosphatidylinositol 3-kinase. {ECO:0000250}. |
Q9Y2U8 | LEMD3 | S352 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y4B6 | DCAF1 | S987 | ochoa | DDB1- and CUL4-associated factor 1 (HIV-1 Vpr-binding protein) (VprBP) (Serine/threonine-protein kinase VPRBP) (EC 2.7.11.1) (Vpr-interacting protein) | Acts both as a substrate recognition component of E3 ubiquitin-protein ligase complexes and as an atypical serine/threonine-protein kinase, playing key roles in various processes such as cell cycle, telomerase regulation and histone modification. Probable substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex, named CUL4A-RBX1-DDB1-DCAF1/VPRBP complex, which mediates ubiquitination and proteasome-dependent degradation of proteins such as NF2 (PubMed:23063525). Involved in the turnover of methylated proteins: recognizes and binds methylated proteins via its chromo domain, leading to ubiquitination of target proteins by the RBX1-DDB1-DCAF1/VPRBP complex (PubMed:23063525). The CUL4A-RBX1-DDB1-DCAF1/VPRBP complex is also involved in B-cell development: DCAF1 is recruited by RAG1 to ubiquitinate proteins, leading to limit error-prone repair during V(D)J recombination (By similarity). Also part of the EDVP complex, an E3 ligase complex that mediates ubiquitination of proteins such as TERT, leading to TERT degradation and telomerase inhibition (PubMed:19287380, PubMed:23362280). The EDVP complex also mediates ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Also acts as an atypical serine/threonine-protein kinase that specifically mediates phosphorylation of 'Thr-120' of histone H2A (H2AT120ph) in a nucleosomal context, thereby repressing transcription (PubMed:24140421). H2AT120ph is present in the regulatory region of many tumor suppresor genes, down-regulates their transcription and is present at high level in a number of tumors (PubMed:24140421). Involved in JNK-mediated apoptosis during cell competition process via its interaction with LLGL1 and LLGL2 (PubMed:20644714). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). {ECO:0000250|UniProtKB:Q80TR8, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:18606781, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:20644714, ECO:0000269|PubMed:22184063, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:24140421, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, it is recruited by HIV-1 Vpr in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to arrest the cell cycle in G2 phase, and also to protect the viral protein from proteasomal degradation by another E3 ubiquitin ligase. The HIV-1 Vpr protein hijacks the CUL4A-RBX1-DDB1-DCAF1/VPRBP complex to promote ubiquitination and degradation of proteins such as TERT and ZIP/ZGPAT. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:17559673, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17620334, ECO:0000269|PubMed:17626091, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:24116224}.; FUNCTION: (Microbial infection) In case of infection by HIV-2 virus, it is recruited by HIV-2 Vpx in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to enhanced efficiency of macrophage infection and promotion of the replication of cognate primate lentiviruses in cells of monocyte/macrophage lineage. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:18464893, ECO:0000269|PubMed:19264781, ECO:0000269|PubMed:19923175, ECO:0000269|PubMed:24336198}. |
Q9Y4E8 | USP15 | S229 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 15 (EC 3.4.19.12) (Deubiquitinating enzyme 15) (Ubiquitin thioesterase 15) (Ubiquitin-specific-processing protease 15) (Unph-2) (Unph4) | Hydrolase that removes conjugated ubiquitin from target proteins and regulates various pathways such as the TGF-beta receptor signaling, NF-kappa-B and RNF41/NRDP1-PRKN pathways (PubMed:16005295, PubMed:17318178, PubMed:19576224, PubMed:19826004, PubMed:21947082, PubMed:22344298, PubMed:24852371). Acts as a key regulator of TGF-beta receptor signaling pathway, but the precise mechanism is still unclear: according to a report, acts by promoting deubiquitination of monoubiquitinated R-SMADs (SMAD1, SMAD2 and/or SMAD3), thereby alleviating inhibition of R-SMADs and promoting activation of TGF-beta target genes (PubMed:21947082). According to another reports, regulates the TGF-beta receptor signaling pathway by mediating deubiquitination and stabilization of TGFBR1, leading to an enhanced TGF-beta signal (PubMed:22344298). Able to mediate deubiquitination of monoubiquitinated substrates, 'Lys-27'-, 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:33093067). May also regulate gene expression and/or DNA repair through the deubiquitination of histone H2B (PubMed:24526689). Acts as an inhibitor of mitophagy by counteracting the action of parkin (PRKN): hydrolyzes cleavage of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains attached by parkin on target proteins such as MFN2, thereby reducing parkin's ability to drive mitophagy (PubMed:24852371). Acts as an associated component of COP9 signalosome complex (CSN) and regulates different pathways via this association: regulates NF-kappa-B by mediating deubiquitination of NFKBIA and deubiquitinates substrates bound to VCP (PubMed:16005295, PubMed:17318178, PubMed:19576224, PubMed:19826004). Involved in endosome organization by mediating deubiquitination of SQSTM1: ubiquitinated SQSTM1 forms a molecular bridge that restrains cognate vesicles in the perinuclear region and its deubiquitination releases target vesicles for fast transport into the cell periphery (PubMed:27368102). Acts as a negative regulator of antifungal immunity by mediating 'Lys-27'-linked deubiquitination of CARD9, thereby inactivating CARD9 (PubMed:33093067). {ECO:0000269|PubMed:16005295, ECO:0000269|PubMed:17318178, ECO:0000269|PubMed:19576224, ECO:0000269|PubMed:19826004, ECO:0000269|PubMed:21947082, ECO:0000269|PubMed:22344298, ECO:0000269|PubMed:24526689, ECO:0000269|PubMed:24852371, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:33093067}.; FUNCTION: (Microbial infection) Protects APC and human papillomavirus type 16 protein E6 against degradation via the ubiquitin proteasome pathway. {ECO:0000269|PubMed:19553310}. |
Q9Y519 | TMEM184B | S358 | ochoa | Transmembrane protein 184B (Putative MAPK-activating protein FM08) | May activate the MAP kinase signaling pathway. {ECO:0000269|PubMed:12761501}. |
Q9Y5K3 | PCYT1B | S333 | ochoa | Choline-phosphate cytidylyltransferase B (EC 2.7.7.15) (CCT-beta) (CTP:phosphocholine cytidylyltransferase B) (CCT B) (CT B) (Phosphorylcholine transferase B) | [Isoform 1]: Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912, ECO:0000269|PubMed:9593753}.; FUNCTION: [Isoform 2]: Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912}. |
P56192 | MARS1 | S812 | Sugiyama | Methionine--tRNA ligase, cytoplasmic (EC 6.1.1.10) (Methionyl-tRNA synthetase) (MetRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:11714285). Plays a role in the synthesis of ribosomal RNA in the nucleolus (PubMed:10791971). {ECO:0000269|PubMed:10791971, ECO:0000269|PubMed:11714285, ECO:0000269|PubMed:33909043}. |
P30101 | PDIA3 | S443 | Sugiyama | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
Q9UPT8 | ZC3H4 | S146 | Sugiyama | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q96KP4 | CNDP2 | S370 | Sugiyama | Cytosolic non-specific dipeptidase (EC 3.4.13.18) (CNDP dipeptidase 2) (Glutamate carboxypeptidase-like protein 1) (Peptidase A) (Threonyl dipeptidase) | Catalyzes the peptide bond hydrolysis in dipeptides, displaying a non-redundant activity toward threonyl dipeptides (By similarity). Mediates threonyl dipeptide catabolism in a tissue-specific way (By similarity). Has high dipeptidase activity toward cysteinylglycine, an intermediate metabolite in glutathione metabolism (PubMed:12473676, PubMed:19346245). Metabolizes N-lactoyl-amino acids, both through hydrolysis to form lactic acid and amino acids, as well as through their formation by reverse proteolysis (PubMed:25964343). Plays a role in the regulation of cell cycle arrest and apoptosis (PubMed:17121880, PubMed:24395568). {ECO:0000250|UniProtKB:Q9D1A2, ECO:0000269|PubMed:12473676, ECO:0000269|PubMed:17121880, ECO:0000269|PubMed:19346245, ECO:0000269|PubMed:24395568, ECO:0000269|PubMed:25964343}. |
Q14697 | GANAB | S45 | Sugiyama | Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) | Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}. |
A0A0G2JLL6 | None | S90 | ochoa | Proline-rich transmembrane protein 2 | None |
A0A1C7CYW4 | ATP6AP2 | S24 | ochoa | Renin receptor (ATPase H(+)-transporting lysosomal accessory protein 2) (ATPase H(+)-transporting lysosomal-interacting protein 2) (Renin/prorenin receptor) | Multifunctional protein which functions as a renin, prorenin cellular receptor and is involved in the assembly of the lysosomal proton-transporting V-type ATPase (V-ATPase) and the acidification of the endo-lysosomal system. May mediate renin-dependent cellular responses by activating ERK1 and ERK2. By increasing the catalytic efficiency of renin in AGT/angiotensinogen conversion to angiotensin I, may also play a role in the renin-angiotensin system (RAS). Through its function in V-type ATPase (v-ATPase) assembly and acidification of the lysosome it regulates protein degradation and may control different signaling pathways important for proper brain development, synapse morphology and synaptic transmission. {ECO:0000256|ARBA:ARBA00045569}. |
A2AJT9 | BCLAF3 | S100 | ochoa | BCLAF1 and THRAP3 family member 3 | None |
A6H8Y1 | BDP1 | S33 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A7KAX9 | ARHGAP32 | S1234 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
O00192 | ARVCF | S198 | ochoa | Splicing regulator ARVCF (Armadillo repeat protein deleted in velo-cardio-facial syndrome) | Contributes to the regulation of alternative splicing of pre-mRNAs. {ECO:0000269|PubMed:24644279}. |
O00257 | CBX4 | S291 | ochoa | E3 SUMO-protein ligase CBX4 (EC 2.3.2.-) (Chromobox protein homolog 4) (Polycomb 2 homolog) (Pc2) (hPc2) | E3 SUMO-protein ligase that catalyzes sumoylation of target proteins by promoting the transfer of SUMO from the E2 enzyme to the substrate (PubMed:12679040, PubMed:22825850). Involved in the sumoylation of HNRNPK, a p53/TP53 transcriptional coactivator, hence indirectly regulates p53/TP53 transcriptional activation resulting in p21/CDKN1A expression. Monosumoylates ZNF131 (PubMed:22825850). {ECO:0000269|PubMed:12679040, ECO:0000269|PubMed:22825850}.; FUNCTION: Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:12167701, PubMed:19636380, PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167701, PubMed:19636380, PubMed:21282530). Binds to histone H3 trimethylated at 'Lys-9' (H3K9me3) (By similarity). Plays a role in the lineage differentiation of the germ layers in embryonic development (By similarity). {ECO:0000250|UniProtKB:O55187, ECO:0000269|PubMed:12167701, ECO:0000269|PubMed:19636380, ECO:0000269|PubMed:21282530}. |
O00515 | LAD1 | S177 | ochoa | Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) | Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}. |
O00716 | E2F3 | S359 | ochoa | Transcription factor E2F3 (E2F-3) | Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase. E2F3 binds specifically to RB1 in a cell-cycle dependent manner. Inhibits adipogenesis, probably through the repression of CEBPA binding to its target gene promoters (By similarity). {ECO:0000250|UniProtKB:O35261}. |
O14901 | KLF11 | S111 | psp | Krueppel-like factor 11 (Transforming growth factor-beta-inducible early growth response protein 2) (TGFB-inducible early growth response protein 2) (TIEG-2) | Transcription factor (PubMed:10207080, PubMed:9748269). Activates the epsilon- and gamma-globin gene promoters and, to a much lower degree, the beta-globin gene and represses promoters containing SP1-like binding inhibiting cell growth (PubMed:10207080, PubMed:16131492, PubMed:9748269). Represses transcription of SMAD7 which enhances TGF-beta signaling (By similarity). Induces apoptosis (By similarity). {ECO:0000250|UniProtKB:Q8K1S5, ECO:0000269|PubMed:10207080, ECO:0000269|PubMed:16131492}. |
O14964 | HGS | Y289 | ochoa | Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) (Protein pp110) | Involved in intracellular signal transduction mediated by cytokines and growth factors. When associated with STAM, it suppresses DNA signaling upon stimulation by IL-2 and GM-CSF. Could be a direct effector of PI3-kinase in vesicular pathway via early endosomes and may regulate trafficking to early and late endosomes by recruiting clathrin. May concentrate ubiquitinated receptors within clathrin-coated regions. Involved in down-regulation of receptor tyrosine kinase via multivesicular body (MVBs) when complexed with STAM (ESCRT-0 complex). The ESCRT-0 complex binds ubiquitin and acts as a sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes. May contribute to the efficient recruitment of SMADs to the activin receptor complex. Involved in receptor recycling via its association with the CART complex, a multiprotein complex required for efficient transferrin receptor recycling but not for EGFR degradation. |
O15403 | SLC16A6 | S247 | ochoa | Monocarboxylate transporter 7 (MCT 7) (Monocarboxylate transporter 6) (MCT 6) (Solute carrier family 16 member 6) | Monocarboxylate transporter selective for taurine. May associate with BSG/CD147 or EMB/GP70 ancillary proteins to mediate facilitative efflux or influx of taurine across the plasma membrane. The transport is pH- and sodium-independent. Rather low-affinity, is likely effective for taurine transport in tissues where taurine is present at high concentrations. {ECO:0000250|UniProtKB:Q7TMR7}. |
O15405 | TOX3 | S529 | ochoa | TOX high mobility group box family member 3 (CAG trinucleotide repeat-containing gene F9 protein) (Trinucleotide repeat-containing gene 9 protein) | Transcriptional coactivator of the p300/CBP-mediated transcription complex. Activates transactivation through cAMP response element (CRE) sites. Protects against cell death by inducing antiapoptotic and repressing pro-apoptotic transcripts. Stimulates transcription from the estrogen-responsive or BCL-2 promoters. Required for depolarization-induced transcription activation of the C-FOS promoter in neurons. Associates with chromatin to the estrogen-responsive C3 promoter region. {ECO:0000269|PubMed:21172805}. |
O15417 | TNRC18 | S611 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15504 | NUP42 | S313 | ochoa | Nucleoporin NUP42 (NLP-1) (NUP42 homolog) (Nucleoporin hCG1) (Nucleoporin-42) (Nucleoporin-like protein 2) | Required for the export of mRNAs containing poly(A) tails from the nucleus into the cytoplasm. {ECO:0000269|PubMed:10610322, ECO:0000269|PubMed:16000379}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it may participate in the docking of viral Vpr at the nuclear envelope. {ECO:0000269|PubMed:12228227}. |
O43149 | ZZEF1 | S1475 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43365 | HOXA3 | S143 | ochoa | Homeobox protein Hox-A3 (Homeobox protein Hox-1E) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
O60307 | MAST3 | S935 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60641 | SNAP91 | S300 | ochoa | Clathrin coat assembly protein AP180 (91 kDa synaptosomal-associated protein) (Clathrin coat-associated protein AP180) (Phosphoprotein F1-20) | Adaptins are components of the adapter complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. Binding of AP180 to clathrin triskelia induces their assembly into 60-70 nm coats (By similarity). {ECO:0000250}. |
O75112 | LDB3 | S505 | ochoa | LIM domain-binding protein 3 (Protein cypher) (Z-band alternatively spliced PDZ-motif protein) | May function as an adapter in striated muscle to couple protein kinase C-mediated signaling via its LIM domains to the cytoskeleton. {ECO:0000305}. |
O75208 | COQ9 | S57 | ochoa | Ubiquinone biosynthesis protein COQ9, mitochondrial | Membrane-associated protein that warps the membrane surface to access and bind aromatic isoprenes with high specificity, including ubiquinone (CoQ) isoprene intermediates and presents them directly to COQ7, therefore facilitating the COQ7-mediated hydroxylase step (PubMed:25339443, PubMed:30661980, PubMed:38425362). Participates in the biosynthesis of coenzyme Q, also named ubiquinone, an essential lipid-soluble electron transporter for aerobic cellular respiration (PubMed:25339443, PubMed:30661980). {ECO:0000269|PubMed:25339443, ECO:0000269|PubMed:30661980, ECO:0000269|PubMed:38425362}. |
O75475 | PSIP1 | S177 | ochoa | PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) | Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}. |
O75581 | LRP6 | S1590 | ochoa | Low-density lipoprotein receptor-related protein 6 (LRP-6) | Component of the Wnt-Fzd-LRP5-LRP6 complex that triggers beta-catenin signaling through inducing aggregation of receptor-ligand complexes into ribosome-sized signalosomes (PubMed:11357136, PubMed:11448771, PubMed:15778503, PubMed:16341017, PubMed:16513652, PubMed:17326769, PubMed:17400545, PubMed:19107203, PubMed:19293931, PubMed:19801552, PubMed:28341812). Cell-surface coreceptor of Wnt/beta-catenin signaling, which plays a pivotal role in bone formation (PubMed:11357136, PubMed:11448771, PubMed:15778503, PubMed:16341017, PubMed:16513652, PubMed:17326769, PubMed:17400545, PubMed:19107203, PubMed:19293931, PubMed:19801552, PubMed:28341812). The Wnt-induced Fzd/LRP6 coreceptor complex recruits DVL1 polymers to the plasma membrane which, in turn, recruits the AXIN1/GSK3B-complex to the cell surface promoting the formation of signalosomes and inhibiting AXIN1/GSK3-mediated phosphorylation and destruction of beta-catenin (PubMed:16513652). Required for posterior patterning of the epiblast during gastrulation (By similarity). {ECO:0000250|UniProtKB:O88572, ECO:0000269|PubMed:11357136, ECO:0000269|PubMed:11448771, ECO:0000269|PubMed:15778503, ECO:0000269|PubMed:16341017, ECO:0000269|PubMed:16513652, ECO:0000269|PubMed:17326769, ECO:0000269|PubMed:17400545, ECO:0000269|PubMed:19107203, ECO:0000269|PubMed:19293931, ECO:0000269|PubMed:19801552, ECO:0000269|PubMed:28341812}. |
O75626 | PRDM1 | S342 | ochoa | PR domain zinc finger protein 1 (EC 2.1.1.-) (BLIMP-1) (Beta-interferon gene positive regulatory domain I-binding factor) (PR domain-containing protein 1) (Positive regulatory domain I-binding factor 1) (PRDI-BF1) (PRDI-binding factor 1) | Transcription factor that mediates a transcriptional program in various innate and adaptive immune tissue-resident lymphocyte T cell types such as tissue-resident memory T (Trm), natural killer (trNK) and natural killer T (NKT) cells and negatively regulates gene expression of proteins that promote the egress of tissue-resident T-cell populations from non-lymphoid organs. Plays a role in the development, retention and long-term establishment of adaptive and innate tissue-resident lymphocyte T cell types in non-lymphoid organs, such as the skin and gut, but also in other nonbarrier tissues like liver and kidney, and therefore may provide immediate immunological protection against reactivating infections or viral reinfection (By similarity). Binds specifically to the PRDI element in the promoter of the beta-interferon gene (PubMed:1851123). Drives the maturation of B-lymphocytes into Ig secreting cells (PubMed:12626569). Associates with the transcriptional repressor ZNF683 to chromatin at gene promoter regions (By similarity). Binds to the promoter and acts as a transcriptional repressor of IRF8, thereby promotes transcription of osteoclast differentiation factors such as NFATC1 and EEIG1 (By similarity). {ECO:0000250|UniProtKB:Q60636, ECO:0000269|PubMed:12626569, ECO:0000269|PubMed:1851123}. |
O75676 | RPS6KA4 | S682 | ochoa | Ribosomal protein S6 kinase alpha-4 (S6K-alpha-4) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 4) (Nuclear mitogen- and stress-activated protein kinase 2) (Ribosomal protein kinase B) (RSKB) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factor RELA, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes. Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin. Plays an essential role in the control of RELA transcriptional activity in response to TNF. Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN. May also phosphorylate 'Ser-28' of histone H3. Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines. Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors. {ECO:0000269|PubMed:11035004, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:9792677}. |
O75787 | ATP6AP2 | S24 | ochoa | Renin receptor (ATPase H(+)-transporting lysosomal accessory protein 2) (ATPase H(+)-transporting lysosomal-interacting protein 2) (ER-localized type I transmembrane adapter) (Embryonic liver differentiation factor 10) (N14F) (Renin/prorenin receptor) (Vacuolar ATP synthase membrane sector-associated protein M8-9) (ATP6M8-9) (V-ATPase M8.9 subunit) [Cleaved into: Renin receptor N-terminal fragment; Renin receptor C-terminal fragment] | Multifunctional protein which functions as a renin, prorenin cellular receptor and is involved in the assembly of the lysosomal proton-transporting V-type ATPase (V-ATPase) and the acidification of the endo-lysosomal system (PubMed:12045255, PubMed:29127204, PubMed:30374053, PubMed:32276428). May mediate renin-dependent cellular responses by activating ERK1 and ERK2 (PubMed:12045255). By increasing the catalytic efficiency of renin in AGT/angiotensinogen conversion to angiotensin I, may also play a role in the renin-angiotensin system (RAS) (PubMed:12045255). Through its function in V-type ATPase (v-ATPase) assembly and acidification of the lysosome it regulates protein degradation and may control different signaling pathways important for proper brain development, synapse morphology and synaptic transmission (By similarity). {ECO:0000250|UniProtKB:Q9CYN9, ECO:0000269|PubMed:12045255, ECO:0000269|PubMed:29127204, ECO:0000269|PubMed:30374053, ECO:0000269|PubMed:32276428}. |
O75815 | BCAR3 | S269 | ochoa | Breast cancer anti-estrogen resistance protein 3 (Novel SH2-containing protein 2) (SH2 domain-containing protein 3B) | Acts as an adapter protein downstream of several growth factor receptors to promote cell proliferation, migration, and redistribution of actin fibers (PubMed:24216110). Specifically involved in INS/insulin signaling pathway by mediating MAPK1/ERK2-MAPK3/ERK1 activation and DNA synthesis (PubMed:24216110). Promotes insulin-mediated membrane ruffling (By similarity). In response to vasoconstrictor peptide EDN1, involved in the activation of RAP1 downstream of PTK2B via interaction with phosphorylated BCAR1 (PubMed:19086031). Inhibits cell migration and invasion via regulation of TGFB-mediated matrix digestion, actin filament rearrangement, and inhibition of invadopodia activity (By similarity). May inhibit TGFB-SMAD signaling, via facilitating BCAR1 and SMAD2 and/or SMAD3 interaction (By similarity). Regulates EGF-induced DNA synthesis (PubMed:18722344). Required for the maintenance of ocular lens morphology and structural integrity, potentially via regulation of focal adhesion complex signaling (By similarity). Acts upstream of PTPRA to regulate the localization of BCAR1 and PTPRA to focal adhesions, via regulation of SRC-mediated phosphorylation of PTPRA (By similarity). Positively regulates integrin-induced tyrosine phosphorylation of BCAR1 (By similarity). Acts as a guanine nucleotide exchange factor (GEF) for small GTPases RALA, RAP1A and RRAS (By similarity). However, in a contrasting study, lacks GEF activity towards RAP1 (PubMed:22081014). {ECO:0000250|UniProtKB:D3ZAZ5, ECO:0000250|UniProtKB:Q9QZK2, ECO:0000269|PubMed:18722344, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:22081014, ECO:0000269|PubMed:24216110}. |
O94913 | PCF11 | S169 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O94929 | ABLIM3 | S459 | ochoa | Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
O94956 | SLCO2B1 | S320 | ochoa | Solute carrier organic anion transporter family member 2B1 (Organic anion transporter B) (OATP-B) (Organic anion transporter polypeptide-related protein 2) (OATP-RP2) (OATPRP2) (Organic anion transporting polypeptide 2B1) (OATP2B1) (Solute carrier family 21 member 9) | Mediates the Na(+)-independent transport of steroid sulfate conjugates and other specific organic anions (PubMed:10873595, PubMed:11159893, PubMed:11932330, PubMed:12724351, PubMed:14610227, PubMed:16908597, PubMed:18501590, PubMed:20507927, PubMed:22201122, PubMed:23531488, PubMed:25132355, PubMed:26383540, PubMed:27576593, PubMed:28408210, PubMed:29871943, PubMed:34628357). Responsible for the transport of estrone 3-sulfate (E1S) through the basal membrane of syncytiotrophoblast, highlighting a potential role in the placental absorption of fetal-derived sulfated steroids including the steroid hormone precursor dehydroepiandrosterone sulfate (DHEA-S) (PubMed:11932330, PubMed:12409283). Also facilitates the uptake of sulfated steroids at the basal/sinusoidal membrane of hepatocytes, therefore accounting for the major part of organic anions clearance of liver (PubMed:11159893). Mediates the intestinal uptake of sulfated steroids (PubMed:12724351, PubMed:28408210). Mediates the uptake of the neurosteroids DHEA-S and pregnenolone sulfate (PregS) into the endothelial cells of the blood-brain barrier as the first step to enter the brain (PubMed:16908597, PubMed:25132355). Also plays a role in the reuptake of neuropeptides such as substance P/TAC1 and vasoactive intestinal peptide/VIP released from retinal neurons (PubMed:25132355). May act as a heme transporter that promotes cellular iron availability via heme oxygenase/HMOX2 and independently of TFRC (PubMed:35714613). Also transports heme by-product coproporphyrin III (CPIII), and may be involved in their hepatic disposition (PubMed:26383540). Mediates the uptake of other substrates such as prostaglandins D2 (PGD2), E1 (PGE1) and E2 (PGE2), taurocholate, L-thyroxine, leukotriene C4 and thromboxane B2 (PubMed:10873595, PubMed:14610227, PubMed:19129463, PubMed:29871943, Ref.25). May contribute to regulate the transport of organic compounds in testis across the blood-testis-barrier (Probable). Shows a pH-sensitive substrate specificity which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:14610227, PubMed:19129463, PubMed:22201122). The exact transport mechanism has not been yet deciphered but most likely involves an anion exchange, coupling the cellular uptake of organic substrate with the efflux of an anionic compound (PubMed:19129463, PubMed:20507927, PubMed:26277985). Hydrogencarbonate/HCO3(-) acts as a probable counteranion that exchanges for organic anions (PubMed:19129463). Cytoplasmic glutamate may also act as counteranion in the placenta (PubMed:26277985). An inwardly directed proton gradient has also been proposed as the driving force of E1S uptake with a (H(+):E1S) stoichiometry of (1:1) (PubMed:20507927). {ECO:0000269|PubMed:10873595, ECO:0000269|PubMed:11159893, ECO:0000269|PubMed:11932330, ECO:0000269|PubMed:12409283, ECO:0000269|PubMed:12724351, ECO:0000269|PubMed:14610227, ECO:0000269|PubMed:16908597, ECO:0000269|PubMed:18501590, ECO:0000269|PubMed:19129463, ECO:0000269|PubMed:20507927, ECO:0000269|PubMed:22201122, ECO:0000269|PubMed:23531488, ECO:0000269|PubMed:25132355, ECO:0000269|PubMed:26277985, ECO:0000269|PubMed:26383540, ECO:0000269|PubMed:27576593, ECO:0000269|PubMed:29871943, ECO:0000269|PubMed:34628357, ECO:0000269|PubMed:35714613, ECO:0000269|Ref.25, ECO:0000305|PubMed:35307651}.; FUNCTION: [Isoform 3]: Has estrone 3-sulfate (E1S) transport activity comparable with the full-length isoform 1. {ECO:0000269|PubMed:23531488}. |
O95259 | KCNH1 | S904 | ochoa | Voltage-gated delayed rectifier potassium channel KCNH1 (Ether-a-go-go potassium channel 1) (EAG channel 1) (h-eag) (hEAG1) (Potassium voltage-gated channel subfamily H member 1) (Voltage-gated potassium channel subunit Kv10.1) | Pore-forming (alpha) subunit of a voltage-gated delayed rectifier potassium channel that mediates outward-rectifying potassium currents which, on depolarization, reaches a steady-state level and do not inactivate (PubMed:10880439, PubMed:11943152, PubMed:22732247, PubMed:25420144, PubMed:25556795, PubMed:25915598, PubMed:27005320, PubMed:27325704, PubMed:27618660, PubMed:30149017, PubMed:9738473). The activation kinetics depend on the prepulse potential and external divalent cation concentration (PubMed:11943152). With negative prepulses, the current activation is delayed and slowed down several fold, whereas more positive prepulses speed up activation (PubMed:11943152). The time course of activation is biphasic with a fast and a slowly activating current component (PubMed:11943152). Activates at more positive membrane potentials and exhibit a steeper activation curve (PubMed:11943152). Channel properties are modulated by subunit assembly (PubMed:11943152). Mediates IK(NI) current in myoblasts (PubMed:9738473). Involved in the regulation of cell proliferation and differentiation, in particular adipogenic and osteogenic differentiation in bone marrow-derived mesenchymal stem cells (MSCs) (PubMed:23881642). {ECO:0000269|PubMed:10880439, ECO:0000269|PubMed:11943152, ECO:0000269|PubMed:22732247, ECO:0000269|PubMed:23881642, ECO:0000269|PubMed:25420144, ECO:0000269|PubMed:25556795, ECO:0000269|PubMed:25915598, ECO:0000269|PubMed:27005320, ECO:0000269|PubMed:27325704, ECO:0000269|PubMed:27618660, ECO:0000269|PubMed:30149017, ECO:0000269|PubMed:9738473}. |
O95359 | TACC2 | S124 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95425 | SVIL | S1425 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95644 | NFATC1 | S261 | psp | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
O95785 | WIZ | S983 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O95789 | ZMYM6 | S397 | ochoa | Zinc finger MYM-type protein 6 (Transposon-derived Buster2 transposase-like protein) (Zinc finger protein 258) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
P07197 | NEFM | S672 | ochoa | Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}. |
P08697 | SERPINF2 | S450 | ochoa | Alpha-2-antiplasmin (Alpha-2-AP) (Alpha-2-plasmin inhibitor) (Alpha-2-PI) (Serpin F2) | Serine protease inhibitor. The major targets of this inhibitor are plasmin and trypsin, but it also inactivates matriptase-3/TMPRSS7 and chymotrypsin. {ECO:0000269|PubMed:15853774}. |
P10244 | MYBL2 | S393 | ochoa|psp | Myb-related protein B (B-Myb) (Myb-like protein 2) | Transcription factor involved in the regulation of cell survival, proliferation, and differentiation. Transactivates the expression of the CLU gene. {ECO:0000269|PubMed:10770937}. |
P10275 | AR | S83 | psp | Androgen receptor (Dihydrotestosterone receptor) (Nuclear receptor subfamily 3 group C member 4) | Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues (PubMed:19022849). Transcription factor activity is modulated by bound coactivator and corepressor proteins like ZBTB7A that recruits NCOR1 and NCOR2 to the androgen response elements/ARE on target genes, negatively regulating androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Transcription activation is also down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3. {ECO:0000269|PubMed:14664718, ECO:0000269|PubMed:15563469, ECO:0000269|PubMed:17591767, ECO:0000269|PubMed:17911242, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:19022849, ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:25091737}.; FUNCTION: [Isoform 3]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}.; FUNCTION: [Isoform 4]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}. |
P11274 | BCR | S356 | ochoa | Breakpoint cluster region protein (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-26) | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein (GAP) domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:1903516, PubMed:7479768). The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:23940119, PubMed:7479768). The amino terminus contains an intrinsic kinase activity (PubMed:1657398). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF1-directed motility and phagocytosis through the modulation of RAC1 activity (PubMed:17116687). Plays a major role as a RHOA GEF in keratinocytes being involved in focal adhesion formation and keratinocyte differentiation (PubMed:23940119). {ECO:0000250|UniProtKB:Q6PAJ1, ECO:0000269|PubMed:1657398, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:1903516, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:7479768}. |
P13378 | HOXD8 | S181 | ochoa | Homeobox protein Hox-D8 (Homeobox protein Hox-4E) (Homeobox protein Hox-5.4) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P17677 | GAP43 | S151 | ochoa | Neuromodulin (Axonal membrane protein GAP-43) (Growth-associated protein 43) (Neural phosphoprotein B-50) (pp46) | This protein is associated with nerve growth. It is a major component of the motile 'growth cones' that form the tips of elongating axons. Plays a role in axonal and dendritic filopodia induction. {ECO:0000269|PubMed:14978216, ECO:0000269|PubMed:21152083}. |
P17844 | DDX5 | Y595 | psp | Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) | Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}. |
P19484 | TFEB | S109 | ochoa|psp | Transcription factor EB (Class E basic helix-loop-helix protein 35) (bHLHe35) | Transcription factor that acts as a master regulator of lysosomal biogenesis, autophagy, lysosomal exocytosis, lipid catabolism, energy metabolism and immune response (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:30120233, PubMed:31672913, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823, PubMed:36749723, PubMed:37079666). Specifically recognizes and binds E-box sequences (5'-CANNTG-3'); efficient DNA-binding requires dimerization with itself or with another MiT/TFE family member such as TFE3 or MITF (PubMed:1748288, PubMed:19556463, PubMed:29146937). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, TFEB phosphorylation by MTOR promotes its cytosolic retention and subsequent inactivation (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of MTOR induces TFEB dephosphorylation, resulting in nuclear localization and transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Specifically recognizes and binds the CLEAR-box sequence (5'-GTCACGTGAC-3') present in the regulatory region of many lysosomal genes, leading to activate their expression, thereby playing a central role in expression of lysosomal genes (PubMed:19556463, PubMed:22692423). Regulates lysosomal positioning in response to nutrient deprivation by promoting the expression of PIP4P1 (PubMed:29146937). Acts as a positive regulator of autophagy by promoting expression of genes involved in autophagy (PubMed:21617040, PubMed:22576015, PubMed:23434374, PubMed:27278822). In association with TFE3, activates the expression of CD40L in T-cells, thereby playing a role in T-cell-dependent antibody responses in activated CD4(+) T-cells and thymus-dependent humoral immunity (By similarity). Specifically recognizes the gamma-E3 box, a subset of E-boxes, present in the heavy-chain immunoglobulin enhancer (PubMed:2115126). Plays a role in the signal transduction processes required for normal vascularization of the placenta (By similarity). Involved in the immune response to infection by the bacteria S.aureus, S.typhimurium or S.enterica: infection promotes itaconate production, leading to alkylation, resulting in nuclear localization and transcription factor activity (PubMed:35662396). Itaconate-mediated alkylation activates TFEB-dependent lysosomal biogenesis, facilitating the bacteria clearance during the antibacterial innate immune response (PubMed:35662396). In association with ACSS2, promotes the expression of genes involved in lysosome biogenesis and both autophagy upon glucose deprivation (PubMed:28552616). {ECO:0000250|UniProtKB:Q9R210, ECO:0000269|PubMed:1748288, ECO:0000269|PubMed:19556463, ECO:0000269|PubMed:2115126, ECO:0000269|PubMed:21617040, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23434374, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:27278822, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:29146937, ECO:0000269|PubMed:30120233, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:32753672, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:36749723, ECO:0000269|PubMed:37079666}. |
P19793 | RXRA | S21 | ochoa|psp | Retinoic acid receptor RXR-alpha (Nuclear receptor subfamily 2 group B member 1) (Retinoid X receptor alpha) | Receptor for retinoic acid that acts as a transcription factor (PubMed:10874028, PubMed:11162439, PubMed:11915042, PubMed:37478846). Forms homo- or heterodimers with retinoic acid receptors (RARs) and binds to target response elements in response to their ligands, all-trans or 9-cis retinoic acid, to regulate gene expression in various biological processes (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:16107141, PubMed:17761950, PubMed:18800767, PubMed:19167885, PubMed:28167758, PubMed:37478846). The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 to regulate transcription (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:17761950, PubMed:28167758). The high affinity ligand for retinoid X receptors (RXRs) is 9-cis retinoic acid (PubMed:1310260). In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone deacetylation, chromatin condensation and transcriptional suppression (PubMed:20215566). On ligand binding, the corepressors dissociate from the receptors and coactivators are recruited leading to transcriptional activation (PubMed:20215566, PubMed:37478846, PubMed:9267036). Serves as a common heterodimeric partner for a number of nuclear receptors, such as RARA, RARB and PPARA (PubMed:10195690, PubMed:11915042, PubMed:28167758, PubMed:29021580). The RXRA/RARB heterodimer can act as a transcriptional repressor or transcriptional activator, depending on the RARE DNA element context (PubMed:29021580). The RXRA/PPARA heterodimer is required for PPARA transcriptional activity on fatty acid oxidation genes such as ACOX1 and the P450 system genes (PubMed:10195690). Together with RARA, positively regulates microRNA-10a expression, thereby inhibiting the GATA6/VCAM1 signaling response to pulsatile shear stress in vascular endothelial cells (PubMed:28167758). Acts as an enhancer of RARA binding to RARE DNA element (PubMed:28167758). May facilitate the nuclear import of heterodimerization partners such as VDR and NR4A1 (PubMed:12145331, PubMed:15509776). Promotes myelin debris phagocytosis and remyelination by macrophages (PubMed:26463675). Plays a role in the attenuation of the innate immune system in response to viral infections, possibly by negatively regulating the transcription of antiviral genes such as type I IFN genes (PubMed:25417649). Involved in the regulation of calcium signaling by repressing ITPR2 gene expression, thereby controlling cellular senescence (PubMed:30216632). {ECO:0000269|PubMed:10195690, ECO:0000269|PubMed:10874028, ECO:0000269|PubMed:11162439, ECO:0000269|PubMed:11915042, ECO:0000269|PubMed:12145331, ECO:0000269|PubMed:1310260, ECO:0000269|PubMed:15509776, ECO:0000269|PubMed:16107141, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18800767, ECO:0000269|PubMed:19167885, ECO:0000269|PubMed:20215566, ECO:0000269|PubMed:25417649, ECO:0000269|PubMed:26463675, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:29021580, ECO:0000269|PubMed:30216632, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9267036}. |
P25054 | APC | S2337 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P31629 | HIVEP2 | S71 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P40818 | USP8 | S434 | ochoa | Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) | Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}. |
P42566 | EPS15 | S796 | ochoa|psp | Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}. |
P43363 | MAGEA10 | S116 | ochoa | Melanoma-associated antigen 10 (Cancer/testis antigen 1.10) (CT1.10) (MAGE-10 antigen) | Not known, though may play a role in embryonal development and tumor transformation or aspects of tumor progression. |
P46013 | MKI67 | S2828 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46821 | MAP1B | S1620 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46937 | YAP1 | S217 | psp | Transcriptional coactivator YAP1 (Yes-associated protein 1) (Protein yorkie homolog) (Yes-associated protein YAP65 homolog) | Transcriptional regulator with dual roles as a coactivator and corepressor. Critical downstream regulatory target in the Hippo signaling pathway, crucial for organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:17974916, PubMed:18280240, PubMed:18579750, PubMed:21364637, PubMed:30447097). The Hippo signaling pathway core involves a kinase cascade featuring STK3/MST2 and STK4/MST1, along with its regulatory partner SAV1, which phosphorylates and activates LATS1/2 in complex with their regulatory protein, MOB1. This activation leads to the phosphorylation and inactivation of the YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288). Phosphorylation of YAP1 by LATS1/2 prevents its nuclear translocation, thereby regulating the expression of its target genes (PubMed:18158288, PubMed:26598551, PubMed:34404733). The transcriptional regulation of gene expression requires TEAD transcription factors and modulates cell growth, anchorage-independent growth, and induction of epithelial-mesenchymal transition (EMT) (PubMed:18579750). Plays a key role in tissue tension and 3D tissue shape by regulating the cortical actomyosin network, acting via ARHGAP18, a Rho GTPase activating protein that suppresses F-actin polymerization (PubMed:25778702). It also suppresses ciliogenesis by acting as a transcriptional corepressor of TEAD4 target genes AURKA and PLK1 (PubMed:25849865). In conjunction with WWTR1, regulates TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). Synergizes with WBP2 to enhance PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:P46938, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:17974916, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:18280240, ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:25778702, ECO:0000269|PubMed:25849865, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:30447097, ECO:0000269|PubMed:34404733}.; FUNCTION: [Isoform 2]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.; FUNCTION: [Isoform 3]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}. |
P49790 | NUP153 | S143 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49790 | NUP153 | S516 | ochoa|psp | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P51617 | IRAK1 | S131 | ochoa|psp | Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}. |
P51825 | AFF1 | S245 | ochoa | AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) | None |
P85037 | FOXK1 | S644 | ochoa | Forkhead box protein K1 (Myocyte nuclear factor) (MNF) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}. |
Q01484 | ANK2 | S3277 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q02224 | CENPE | S2639 | ochoa|psp | Centromere-associated protein E (Centromere protein E) (CENP-E) (Kinesin-7) (Kinesin-related protein CENPE) | Microtubule plus-end-directed kinetochore motor which plays an important role in chromosome congression, microtubule-kinetochore conjugation and spindle assembly checkpoint activation. Drives chromosome congression (alignment of chromosomes at the spindle equator resulting in the formation of the metaphase plate) by mediating the lateral sliding of polar chromosomes along spindle microtubules towards the spindle equator and by aiding the establishment and maintenance of connections between kinetochores and spindle microtubules (PubMed:23891108, PubMed:25395579, PubMed:7889940). The transport of pole-proximal chromosomes towards the spindle equator is favored by microtubule tracks that are detyrosinated (PubMed:25908662). Acts as a processive bi-directional tracker of dynamic microtubule tips; after chromosomes have congressed, continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends (PubMed:23955301). Suppresses chromosome congression in NDC80-depleted cells and contributes positively to congression only when microtubules are stabilized (PubMed:25743205). Plays an important role in the formation of stable attachments between kinetochores and spindle microtubules (PubMed:17535814) The stabilization of kinetochore-microtubule attachment also requires CENPE-dependent localization of other proteins to the kinetochore including BUB1B, MAD1 and MAD2. Plays a role in spindle assembly checkpoint activation (SAC) via its interaction with BUB1B resulting in the activation of its kinase activity, which is important for activating SAC. Necessary for the mitotic checkpoint signal at individual kinetochores to prevent aneuploidy due to single chromosome loss (By similarity). {ECO:0000250|UniProtKB:Q6RT24, ECO:0000269|PubMed:17535814, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:23955301, ECO:0000269|PubMed:25395579, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:25908662, ECO:0000269|PubMed:7889940}. |
Q02297 | NRG1 | S435 | ochoa | Pro-neuregulin-1, membrane-bound isoform (Pro-NRG1) [Cleaved into: Neuregulin-1 (Acetylcholine receptor-inducing activity) (ARIA) (Breast cancer cell differentiation factor p45) (Glial growth factor) (Heregulin) (HRG) (Neu differentiation factor) (Sensory and motor neuron-derived factor)] | Direct ligand for ERBB3 and ERBB4 tyrosine kinase receptors. Concomitantly recruits ERBB1 and ERBB2 coreceptors, resulting in ligand-stimulated tyrosine phosphorylation and activation of the ERBB receptors. The multiple isoforms perform diverse functions such as inducing growth and differentiation of epithelial, glial, neuronal, and skeletal muscle cells; inducing expression of acetylcholine receptor in synaptic vesicles during the formation of the neuromuscular junction; stimulating lobuloalveolar budding and milk production in the mammary gland and inducing differentiation of mammary tumor cells; stimulating Schwann cell proliferation; implication in the development of the myocardium such as trabeculation of the developing heart. Isoform 10 may play a role in motor and sensory neuron development. Binds to ERBB4 (PubMed:10867024, PubMed:7902537). Binds to ERBB3 (PubMed:20682778). Acts as a ligand for integrins and binds (via EGF domain) to integrins ITGAV:ITGB3 or ITGA6:ITGB4. Its binding to integrins and subsequent ternary complex formation with integrins and ERRB3 are essential for NRG1-ERBB signaling. Induces the phosphorylation and activation of MAPK3/ERK1, MAPK1/ERK2 and AKT1 (PubMed:20682778). Ligand-dependent ERBB4 endocytosis is essential for the NRG1-mediated activation of these kinases in neurons (By similarity). {ECO:0000250|UniProtKB:P43322, ECO:0000269|PubMed:10867024, ECO:0000269|PubMed:1348215, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:7902537}. |
Q03001 | DST | S2671 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03111 | MLLT1 | S315 | ochoa | Protein ENL (YEATS domain-containing protein 1) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948). Specifically recognizes and binds acetylated and crotonylated histones, with a preference for histones that are crotonylated (PubMed:27105114). Has a slightly higher affinity for binding histone H3 crotonylated at 'Lys-27' (H3K27cr) than 'Lys-20' (H3K9cr20) (PubMed:27105114). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:27105114}.; FUNCTION: Acts as a key chromatin reader in acute myeloid leukemia by recognizing and binding to acetylated histones via its YEATS domain, thereby regulating oncogenic gene transcription. {ECO:0000269|PubMed:28241139, ECO:0000269|PubMed:28241141}. |
Q03188 | CENPC | S73 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q06413 | MEF2C | S228 | ochoa | Myocyte-specific enhancer factor 2C (Myocyte enhancer factor 2C) | Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle-specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Enhances transcriptional activation mediated by SOX18. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes and platelets and for bone marrow B-lymphopoiesis. Required for B-cell survival and proliferation in response to BCR stimulation, efficient IgG1 antibody responses to T-cell-dependent antigens and for normal induction of germinal center B-cells. May also be involved in neurogenesis and in the development of cortical architecture (By similarity). Isoforms that lack the repressor domain are more active than isoform 1. {ECO:0000250|UniProtKB:Q8CFN5, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:15340086, ECO:0000269|PubMed:15831463, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:9069290, ECO:0000269|PubMed:9384584}. |
Q07157 | TJP1 | S899 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q09472 | EP300 | S499 | ochoa | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q09472 | EP300 | S2315 | ochoa|psp | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q12769 | NUP160 | S349 | ochoa | Nuclear pore complex protein Nup160 (160 kDa nucleoporin) (Nucleoporin Nup160) | Functions as a component of the nuclear pore complex (NPC) (PubMed:11564755, PubMed:11684705). Involved in poly(A)+ RNA transport. {ECO:0000269|PubMed:11564755, ECO:0000269|PubMed:11684705}. |
Q12816 | TRO | S155 | ochoa | Trophinin (MAGE-D3 antigen) | Could be involved with bystin and tastin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation. Directly responsible for homophilic cell adhesion. |
Q12830 | BPTF | S216 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q13342 | SP140 | S291 | ochoa | Nuclear body protein SP140 (Lymphoid-restricted homolog of Sp100) (LYSp100) (Nuclear autoantigen Sp-140) (Speckled 140 kDa) | Component of the nuclear body, also known as nuclear domain 10, PML oncogenic domain, and KR body (PubMed:8910577). May be involved in the pathogenesis of acute promyelocytic leukemia and viral infection (PubMed:8910577). May play a role in chromatin-mediated regulation of gene expression although it does not bind to histone H3 tails (PubMed:24267382). {ECO:0000269|PubMed:24267382, ECO:0000269|PubMed:8910577, ECO:0000303|PubMed:8910577}. |
Q13523 | PRP4K | S328 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13523 | PRP4K | S368 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13796 | SHROOM2 | S1036 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q14134 | TRIM29 | S104 | ochoa | Tripartite motif-containing protein 29 (Ataxia telangiectasia group D-associated protein) | Plays a crucial role in the regulation of macrophage activation in response to viral or bacterial infections within the respiratory tract. Mechanistically, TRIM29 interacts with IKBKG/NEMO in the lysosome where it induces its 'Lys-48' ubiquitination and subsequent degradation. In turn, the expression of type I interferons and the production of pro-inflammatory cytokines are inhibited. Additionally, induces the 'Lys-48' ubiquitination of STING1 in a similar way, leading to its degradation. {ECO:0000269|PubMed:27695001, ECO:0000269|PubMed:29038422}. |
Q14207 | NPAT | S762 | ochoa | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14677 | CLINT1 | S299 | ochoa | Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) | Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}. |
Q15365 | PCBP1 | S173 | ochoa | Poly(rC)-binding protein 1 (Alpha-CP1) (Heterogeneous nuclear ribonucleoprotein E1) (hnRNP E1) (Nucleic acid-binding protein SUB2.3) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:15731341, PubMed:7556077, PubMed:7607214, PubMed:8152927). Together with PCBP2, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:P60335, ECO:0000269|PubMed:15731341, ECO:0000269|PubMed:7556077, ECO:0000269|PubMed:7607214, ECO:0000269|PubMed:8152927}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. {ECO:0000269|PubMed:12414943}. |
Q15527 | SURF2 | S59 | ochoa | Surfeit locus protein 2 (Surf-2) | None |
Q155Q3 | DIXDC1 | S211 | ochoa | Dixin (Coiled-coil protein DIX1) (Coiled-coil-DIX1) (DIX domain-containing protein 1) | Positive effector of the Wnt signaling pathway; activates WNT3A signaling via DVL2. Regulates JNK activation by AXIN1 and DVL2. {ECO:0000269|PubMed:15262978, ECO:0000269|PubMed:21189423}. |
Q15772 | SPEG | S2164 | ochoa | Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) | Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells. |
Q15788 | NCOA1 | S1033 | psp | Nuclear receptor coactivator 1 (NCoA-1) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 74) (bHLHe74) (Protein Hin-2) (RIP160) (Renal carcinoma antigen NY-REN-52) (Steroid receptor coactivator 1) (SRC-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:10449719, ECO:0000269|PubMed:12954634, ECO:0000269|PubMed:7481822, ECO:0000269|PubMed:9223281, ECO:0000269|PubMed:9223431, ECO:0000269|PubMed:9296499, ECO:0000269|PubMed:9427757}. |
Q16584 | MAP3K11 | S507 | ochoa | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q3KP31 | ZNF791 | S85 | ochoa | Zinc finger protein 791 | May be involved in transcriptional regulation. |
Q562E7 | WDR81 | S686 | ochoa | WD repeat-containing protein 81 | Functions as a negative regulator of the PI3 kinase/PI3K activity associated with endosomal membranes via BECN1, a core subunit of the PI3K complex. By modifying the phosphatidylinositol 3-phosphate/PtdInsP3 content of endosomal membranes may regulate endosome fusion, recycling, sorting and early to late endosome transport (PubMed:26783301). It is for instance, required for the delivery of cargos like BST2/tetherin from early to late endosome and thereby participates indirectly to their degradation by the lysosome (PubMed:27126989). May also play a role in aggrephagy, the macroautophagic degradation of ubiquitinated protein aggregates. In this process, may regulate the interaction of SQSTM1 with ubiquitinated proteins and also recruit MAP1LC3C (PubMed:28404643). May also be involved in maintenance of normal mitochondrial structure and organization (By similarity). {ECO:0000250|UniProtKB:Q5ND34, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:27126989, ECO:0000269|PubMed:28404643}. |
Q5HYC2 | BRD10 | S1816 | ochoa | Uncharacterized bromodomain-containing protein 10 | None |
Q5JR59 | MTUS2 | S954 | ochoa | Microtubule-associated tumor suppressor candidate 2 (Cardiac zipper protein) (Microtubule plus-end tracking protein TIP150) (Tracking protein of 150 kDa) | Binds microtubules. Together with MAPRE1 may target the microtubule depolymerase KIF2C to the plus-end of microtubules. May regulate the dynamics of microtubules at their growing distal tip. {ECO:0000269|PubMed:19543227}. |
Q5T0Z8 | C6orf132 | S1160 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T1V6 | DDX59 | S76 | ochoa | Probable ATP-dependent RNA helicase DDX59 (EC 3.6.4.13) (DEAD box protein 59) (Zinc finger HIT domain-containing protein 5) | None |
Q5TCX8 | MAP3K21 | S618 | ochoa | Mitogen-activated protein kinase kinase kinase 21 (EC 2.7.11.25) (Mitogen-activated protein kinase kinase kinase MLK4) (Mixed lineage kinase 4) | Negative regulator of TLR4 signaling. Does not activate JNK1/MAPK8 pathway, p38/MAPK14, nor ERK2/MAPK1 pathways. {ECO:0000269|PubMed:21602844}. |
Q5TCZ1 | SH3PXD2A | S644 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5THK1 | PRR14L | S717 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5U5Q3 | MEX3C | S320 | ochoa | RNA-binding E3 ubiquitin-protein ligase MEX3C (EC 2.3.2.27) (RING finger and KH domain-containing protein 2) (RING finger protein 194) (RING-type E3 ubiquitin transferase MEX3C) | E3 ubiquitin ligase responsible for the post-transcriptional regulation of common HLA-A allotypes. Binds to the 3' UTR of HLA-A2 mRNA, and regulates its levels by promoting mRNA decay. RNA binding is sufficient to prevent translation, but ubiquitin ligase activity is required for mRNA degradation. {ECO:0000269|PubMed:22863774, ECO:0000269|PubMed:23446422}. |
Q5VST9 | OBSCN | S6881 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VT52 | RPRD2 | S909 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VUA4 | ZNF318 | S1713 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q63HR2 | TNS2 | S481 | ochoa | Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) | Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}. |
Q68CZ2 | TNS3 | S602 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q69YH5 | CDCA2 | S291 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q69YN4 | VIRMA | S1766 | ochoa | Protein virilizer homolog | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:24981863, PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs in the 3'-UTR near the stop codon: recruits the catalytic core components METTL3 and METTL14, thereby guiding m6A methylation at specific sites (PubMed:29507755). Required for mRNA polyadenylation via its role in selective m6A methylation: m6A methylation of mRNAs in the 3'-UTR near the stop codon correlating with alternative polyadenylation (APA) (PubMed:29507755). {ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}. |
Q6DN90 | IQSEC1 | S417 | ochoa | IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) | Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}. |
Q6H8Q1 | ABLIM2 | S364 | ochoa | Actin-binding LIM protein 2 (abLIM-2) (Actin-binding LIM protein family member 2) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
Q6MZP7 | LIN54 | S264 | ochoa|psp | Protein lin-54 homolog (CXC domain-containing protein 1) | Component of the DREAM complex, a multiprotein complex that can both act as a transcription activator or repressor depending on the context (PubMed:17531812, PubMed:17671431). In G0 phase, the complex binds to more than 800 promoters and is required for repression of E2F target genes (PubMed:17531812, PubMed:17671431). In S phase, the complex selectively binds to the promoters of G2/M genes whose products are required for mitosis and participates in their cell cycle dependent activation (PubMed:17531812, PubMed:17671431). In the complex, acts as a DNA-binding protein that binds the promoter of CDK1 in a sequence-specific manner (PubMed:19725879). Specifically recognizes the consensus motif 5'-TTYRAA-3' in target DNA (PubMed:27465258). {ECO:0000269|PubMed:17531812, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:19725879, ECO:0000269|PubMed:27465258}. |
Q6PIZ9 | TRAT1 | S157 | ochoa | T-cell receptor-associated transmembrane adapter 1 (T-cell receptor-interacting molecule) (TRIM) (pp29/30) | Stabilizes the TCR (T-cell antigen receptor)/CD3 complex at the surface of T-cells. {ECO:0000269|PubMed:11390434}. |
Q6Q0C0 | TRAF7 | S69 | ochoa | E3 ubiquitin-protein ligase TRAF7 (EC 2.3.2.-) (EC 2.3.2.27) (RING finger and WD repeat-containing protein 1) (RING finger protein 119) (RING-type E3 ubiquitin transferase TRAF7) (TNF receptor-associated factor 7) | E3 ubiquitin and SUMO-protein ligase that plays a role in different biological processes such as innate immunity, inflammation or apoptosis (PubMed:15001576, PubMed:37086853). Potentiates MAP3K3-mediated activation of JUN/AP1 and DDIT3 transcriptional regulators (PubMed:14743216). Negatively regulates MYB transcriptional activity by sequestering it to the cytosol via SUMOylation (By similarity). Plays a role in the phosphorylation of MAPK1 and/or MAPK3, probably via its interaction with MAP3K3. Negatively regulates RLR-mediated innate immunity by promoting 'Lys-48'-linked ubiquitination of TBK1 through its RING domain to inhibit the cellular antiviral response (PubMed:37086853). Promotes 'Lys-29'-linked polyubiquitination of NEMO/IKBKG and RELA leading to targeting these two proteins to lysosomal degradative pathways, reducing the transcriptional activity of NF-kappa-B (PubMed:21518757). {ECO:0000250|UniProtKB:Q922B6, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:15001576, ECO:0000269|PubMed:21518757, ECO:0000269|PubMed:29961569, ECO:0000269|PubMed:37086853}. |
Q6T4R5 | NHS | S418 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UB98 | ANKRD12 | S543 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6ZU65 | UBN2 | S1029 | ochoa | Ubinuclein-2 | None |
Q71RC2 | LARP4 | S180 | ochoa | La-related protein 4 (La ribonucleoprotein domain family member 4) | RNA binding protein that binds to the poly-A tract of mRNA molecules (PubMed:21098120). Associates with the 40S ribosomal subunit and with polysomes (PubMed:21098120). Plays a role in the regulation of mRNA translation (PubMed:21098120). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987, PubMed:27615744). {ECO:0000269|PubMed:21098120, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:27615744}. |
Q765P7 | MTSS2 | S428 | ochoa | Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) | Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}. |
Q76L83 | ASXL2 | S395 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q7LBC6 | KDM3B | S766 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q7Z3E2 | CCDC186 | S740 | ochoa | Coiled-coil domain-containing protein 186 (CTCL tumor antigen HD-CL-01/L14-2) | None |
Q7Z3K3 | POGZ | S274 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z478 | DHX29 | S200 | ochoa | ATP-dependent RNA helicase DHX29 (EC 3.6.4.13) (DEAH box protein 29) (Nucleic acid helicase DDXx) | ATP-binding RNA helicase involved in translation initiation. Part of the 43S pre-initiation complex that is required for efficient initiation on mRNAs of higher eukaryotes with structured 5'-UTRs by promoting efficient NTPase-dependent 48S complex formation. Specifically binds to the 40S ribosome near the mRNA entrance. Does not possess a processive helicase activity. {ECO:0000255|HAMAP-Rule:MF_03068, ECO:0000269|PubMed:19109895, ECO:0000269|PubMed:23706745}. |
Q7Z5J4 | RAI1 | S1013 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z5Q1 | CPEB2 | S164 | ochoa | Cytoplasmic polyadenylation element-binding protein 2 (CPE-BP2) (CPE-binding protein 2) (hCPEB-2) | May play a role in translational regulation of stored mRNAs in transcriptionally inactive haploid spermatids. Binds to poly(U) RNA oligomers (By similarity). Required for cell cycle progression, specifically for the transition from metaphase to anaphase (PubMed:26398195). {ECO:0000250|UniProtKB:Q812E0, ECO:0000269|PubMed:26398195}. |
Q7Z6L0 | PRRT2 | S90 | ochoa | Proline-rich transmembrane protein 2 (Dispanin subfamily B member 3) (DSPB3) | As a component of the outer core of AMPAR complex, may be involved in synaptic transmission in the central nervous system. In hippocampal neurons, in presynaptic terminals, plays an important role in the final steps of neurotransmitter release, possibly by regulating Ca(2+)-sensing. In the cerebellum, may inhibit SNARE complex formation and down-regulate short-term facilitation. {ECO:0000250|UniProtKB:E9PUL5}. |
Q86TB9 | PATL1 | S278 | ochoa | Protein PAT1 homolog 1 (PAT1-like protein 1) (Protein PAT1 homolog b) (Pat1b) (hPat1b) | RNA-binding protein involved in deadenylation-dependent decapping of mRNAs, leading to the degradation of mRNAs (PubMed:17936923, PubMed:20543818, PubMed:20584987, PubMed:20852261). Acts as a scaffold protein that connects deadenylation and decapping machinery (PubMed:17936923, PubMed:20543818, PubMed:20584987, PubMed:20852261). Required for cytoplasmic mRNA processing body (P-body) assembly (PubMed:17936923, PubMed:20543818, PubMed:20584987, PubMed:20852261). {ECO:0000269|PubMed:17936923, ECO:0000269|PubMed:20543818, ECO:0000269|PubMed:20584987, ECO:0000269|PubMed:20852261}.; FUNCTION: (Microbial infection) In case of infection, required for translation and replication of hepatitis C virus (HCV). {ECO:0000269|PubMed:19628699}. |
Q86TI2 | DPP9 | S173 | ochoa | Dipeptidyl peptidase 9 (DP9) (EC 3.4.14.5) (Dipeptidyl peptidase IV-related protein 2) (DPRP-2) (Dipeptidyl peptidase IX) (DPP IX) (Dipeptidyl peptidase-like protein 9) (DPLP9) | Dipeptidyl peptidase that cleaves off N-terminal dipeptides from proteins having a Pro or Ala residue at position 2 (PubMed:12662155, PubMed:16475979, PubMed:19667070, PubMed:29382749, PubMed:30291141, PubMed:33731929, PubMed:36112693). Acts as a key inhibitor of caspase-1-dependent monocyte and macrophage pyroptosis in resting cells by preventing activation of NLRP1 and CARD8 (PubMed:27820798, PubMed:29967349, PubMed:30291141, PubMed:31525884, PubMed:32796818, PubMed:36112693, PubMed:36357533). Sequesters the cleaved C-terminal part of NLRP1 and CARD8, which respectively constitute the active part of the NLRP1 and CARD8 inflammasomes, in a ternary complex, thereby preventing their oligomerization and activation (PubMed:33731929, PubMed:33731932, PubMed:34019797). The dipeptidyl peptidase activity is required to suppress NLRP1 and CARD8; however, neither NLRP1 nor CARD8 are bona fide substrates of DPP9, suggesting the existence of substrate(s) required for NLRP1 and CARD8 inhibition (PubMed:33731929). {ECO:0000269|PubMed:12662155, ECO:0000269|PubMed:16475979, ECO:0000269|PubMed:19667070, ECO:0000269|PubMed:27820798, ECO:0000269|PubMed:29382749, ECO:0000269|PubMed:29967349, ECO:0000269|PubMed:30291141, ECO:0000269|PubMed:31525884, ECO:0000269|PubMed:32796818, ECO:0000269|PubMed:33731929, ECO:0000269|PubMed:33731932, ECO:0000269|PubMed:34019797, ECO:0000269|PubMed:36112693, ECO:0000269|PubMed:36357533}. |
Q86XJ1 | GAS2L3 | S418 | ochoa | GAS2-like protein 3 (Growth arrest-specific protein 2-like 3) | Cytoskeletal linker protein. May promote and stabilize the formation of the actin and microtubule network. {ECO:0000269|PubMed:21561867}. |
Q8IUW5 | RELL1 | S148 | ochoa | RELT-like protein 1 | Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}. |
Q8IV36 | HID1 | S640 | ochoa | Protein HID1 (Down-regulated in multiple cancers 1) (HID1 domain-containing protein) (Protein hid-1 homolog) | May play an important role in the development of cancers in a broad range of tissues. {ECO:0000269|PubMed:11281419}. |
Q8IV61 | RASGRP3 | S563 | ochoa | Ras guanyl-releasing protein 3 (Calcium and DAG-regulated guanine nucleotide exchange factor III) (Guanine nucleotide exchange factor for Rap1) | Guanine nucleotide exchange factor (GEF) for Ras and Rap1. {ECO:0000269|PubMed:10934204}. |
Q8IVL1 | NAV2 | S1363 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IWT3 | CUL9 | S2436 | ochoa | Cullin-9 (CUL-9) (UbcH7-associated protein 1) (p53-associated parkin-like cytoplasmic protein) | Core component of a Cul9-RING ubiquitin-protein ligase complex composed of CUL9 and RBX1 (PubMed:38605244). The CUL9-RBX1 complex mediates ubiquitination and subsequent degradation of BIRC5 and is required to maintain microtubule dynamics and genome integrity. Acts downstream of the 3M complex, which inhibits the ubiquitination of BIRC5 (PubMed:24793696). The CUL9-RBX1 complex also mediates mono-ubiquitination of p53/TP53 (PubMed:38605244). Acts as a cytoplasmic anchor protein in p53/TP53-associated protein complex. Regulates the subcellular localization of p53/TP53 and its subsequent function (PubMed:12526791, PubMed:17332328). Ubiquitinates apurinic/apyrimidinic endodeoxyribonuclease APEX2 (PubMed:38605244). Ubiquitination by the CUL9-RBX1 complex is predominantly mediated by E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2D2 (PubMed:38605244). {ECO:0000269|PubMed:12526791, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:38605244}. |
Q8IX03 | WWC1 | S535 | ochoa | Protein KIBRA (HBeAg-binding protein 3) (Kidney and brain protein) (KIBRA) (WW domain-containing protein 1) | Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway (PubMed:24682284). Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway (PubMed:24682284). Along with NF2 can synergistically induce the phosphorylation of LATS1 and LATS2 and function in the regulation of Hippo signaling pathway (PubMed:20159598). Acts as a transcriptional coactivator of ESR1 which plays an essential role in DYNLL1-mediated ESR1 transactivation (PubMed:16684779). Regulates collagen-stimulated activation of the ERK/MAPK cascade (PubMed:18190796). Modulates directional migration of podocytes (PubMed:18596123). Plays a role in cognition and memory performance (PubMed:18672031). Plays an important role in regulating AMPA-selective glutamate receptors (AMPARs) trafficking underlying synaptic plasticity and learning (By similarity). {ECO:0000250|UniProtKB:Q5SXA9, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:18190796, ECO:0000269|PubMed:18596123, ECO:0000269|PubMed:18672031, ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:24682284}. |
Q8IY47 | KBTBD2 | S300 | ochoa | Kelch repeat and BTB domain-containing protein 2 (BTB and kelch domain-containing protein 1) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a regulator of the insulin signaling pathway, modulating insulin sensitivity by limiting PIK3R1/p85alpha abundance in adipocytes. Targets PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase (PI3K), for 'Lys-48'-linked polyubiquitination and proteasome-mediated degradation. {ECO:0000269|PubMed:27708159}. |
Q8IZP0 | ABI1 | S183 | ochoa|psp | Abl interactor 1 (Abelson interactor 1) (Abi-1) (Abl-binding protein 4) (AblBP4) (Eps8 SH3 domain-binding protein) (Eps8-binding protein) (Nap1-binding protein) (Nap1BP) (Spectrin SH3 domain-binding protein 1) (e3B1) | May act in negative regulation of cell growth and transformation by interacting with nonreceptor tyrosine kinases ABL1 and/or ABL2. May play a role in regulation of EGF-induced Erk pathway activation. Involved in cytoskeletal reorganization and EGFR signaling. Together with EPS8 participates in transduction of signals from Ras to Rac. In vitro, a trimeric complex of ABI1, EPS8 and SOS1 exhibits Rac specific guanine nucleotide exchange factor (GEF) activity and ABI1 seems to act as an adapter in the complex. Regulates ABL1/c-Abl-mediated phosphorylation of ENAH. Recruits WASF1 to lamellipodia and there seems to regulate WASF1 protein level. In brain, seems to regulate the dendritic outgrowth and branching as well as to determine the shape and number of synaptic contacts of developing neurons. {ECO:0000269|PubMed:11003655, ECO:0000269|PubMed:18328268}. |
Q8N1I0 | DOCK4 | S1827 | ochoa | Dedicator of cytokinesis protein 4 | Functions as a guanine nucleotide exchange factor (GEF) that promotes the exchange of GDP to GTP, converting inactive GDP-bound small GTPases into their active GTP-bound form (PubMed:12628187, PubMed:16464467). Involved in regulation of adherens junction between cells (PubMed:12628187). Plays a role in cell migration (PubMed:20679435). {ECO:0000269|PubMed:12628187, ECO:0000269|PubMed:16464467, ECO:0000269|PubMed:20679435}.; FUNCTION: [Isoform 2]: Has a higher guanine nucleotide exchange factor activity compared to other isoforms. {ECO:0000269|PubMed:16464467}. |
Q8N1K5 | THEMIS | S584 | ochoa | Protein THEMIS (Thymocyte-expressed molecule involved in selection) | Plays a central role in late thymocyte development by controlling both positive and negative T-cell selection. Required to sustain and/or integrate signals required for proper lineage commitment and maturation of T-cells. Regulates T-cell development through T-cell antigen receptor (TCR) signaling and in particular through the regulation of calcium influx and phosphorylation of Erk. {ECO:0000250|UniProtKB:Q8BGW0}. |
Q8N328 | PGBD3 | S86 | ochoa | PiggyBac transposable element-derived protein 3 | Binds in vitro to PGBD3-related transposable elements, called MER85s; these non-autonomous 140 bp elements are characterized by the presence of PGBD3 terminal inverted repeats and the absence of internal transposase ORF. {ECO:0000269|PubMed:22483866}. |
Q8N344 | MIER2 | S467 | ochoa | Mesoderm induction early response protein 2 (Mi-er2) | Transcriptional repressor. {ECO:0000250}. |
Q8N3K9 | CMYA5 | S155 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N3V7 | SYNPO | S548 | ochoa | Synaptopodin | Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}. |
Q8N4X5 | AFAP1L2 | S559 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q8NDL9 | AGBL5 | S664 | ochoa | Cytosolic carboxypeptidase-like protein 5 (EC 3.4.17.-) (EC 3.4.17.24) (ATP/GTP-binding protein-like 5) (Protein deglutamylase CCP5) | Metallocarboxypeptidase that mediates deglutamylation of tubulin and non-tubulin target proteins. Catalyzes the removal of polyglutamate side chains present on the gamma-carboxyl group of glutamate residues within the C-terminal tail of alpha- and beta-tubulin. Cleaves alpha- and gamma-linked polyglutamate tubulin side-chain, as well as the branching point glutamate. Also catalyzes the removal of alpha-linked glutamate residues from the carboxy-terminus of alpha-tubulin. Mediates deglutamylation of nucleotidyltransferase CGAS, leading to CGAS antiviral defense response activation. {ECO:0000250|UniProtKB:Q09M02}. |
Q8NFH5 | NUP35 | S100 | ochoa | Nucleoporin NUP35 (35 kDa nucleoporin) (Mitotic phosphoprotein 44) (MP-44) (Nuclear pore complex protein Nup53) (Nucleoporin NUP53) | Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. May play a role in the association of MAD1 with the NPC. {ECO:0000269|PubMed:15703211}. |
Q8NG08 | HELB | S967 | ochoa|psp | DNA helicase B (hDHB) (EC 3.6.4.12) | 5'-3' DNA helicase involved in DNA damage response by acting as an inhibitor of DNA end resection (PubMed:25617833, PubMed:26774285). Recruitment to single-stranded DNA (ssDNA) following DNA damage leads to inhibit the nucleases catalyzing resection, such as EXO1, BLM and DNA2, possibly via the 5'-3' ssDNA translocase activity of HELB (PubMed:26774285). As cells approach S phase, DNA end resection is promoted by the nuclear export of HELB following phosphorylation (PubMed:26774285). Acts independently of TP53BP1 (PubMed:26774285). Unwinds duplex DNA with 5'-3' polarity. Has single-strand DNA-dependent ATPase and DNA helicase activities. Prefers ATP and dATP as substrates (PubMed:12181327). During S phase, may facilitate cellular recovery from replication stress (PubMed:22194613). {ECO:0000269|PubMed:12181327, ECO:0000269|PubMed:22194613, ECO:0000269|PubMed:25617833, ECO:0000269|PubMed:26774285}. |
Q8TDM6 | DLG5 | S1156 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TER5 | ARHGEF40 | S984 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8WVT3 | TRAPPC12 | S182 | ochoa | Trafficking protein particle complex subunit 12 (Tetratricopeptide repeat protein 15) (TPR repeat protein 15) (TTC-15) (Trafficking of membranes and mitosis) | Component of the TRAPP complex, which is involved in endoplasmic reticulum to Golgi apparatus trafficking at a very early stage (PubMed:21525244, PubMed:28777934). Also plays a role in chromosome congression, kinetochore assembly and stability and controls the recruitment of CENPE to the kinetochores (PubMed:25918224). {ECO:0000269|PubMed:21525244, ECO:0000269|PubMed:25918224, ECO:0000269|PubMed:28777934}. |
Q8WWM7 | ATXN2L | S339 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q92547 | TOPBP1 | S888 | ochoa | DNA topoisomerase 2-binding protein 1 (DNA topoisomerase II-beta-binding protein 1) (TopBP1) (DNA topoisomerase II-binding protein 1) | Scaffold protein that acts as a key protein-protein adapter in DNA replication and DNA repair (PubMed:10498869, PubMed:11395493, PubMed:11714696, PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:33592542, PubMed:35597237, PubMed:37674080). Composed of multiple BRCT domains, which specifically recognize and bind phosphorylated proteins, bringing proteins together into functional combinations (PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:35597237, PubMed:37674080). Required for DNA replication initiation but not for the formation of pre-replicative complexes or the elongation stages (By similarity). Necessary for the loading of replication factors onto chromatin, including GMNC, CDC45, DNA polymerases and components of the GINS complex (By similarity). Plays a central role in DNA repair by bridging proteins and promoting recruitment of proteins to DNA damage sites (PubMed:30898438, PubMed:35597237, PubMed:37674080). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the exchange between the DNA replication factor A (RPA) complex and RAD51 (PubMed:26811421, PubMed:35597237). Mechanistically, TOPBP1 is recruited to DNA damage sites in S-phase via interaction with phosphorylated HTATSF1, and promotes the loading of RAD51, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). Involved in microhomology-mediated end-joining (MMEJ) DNA repair by promoting recruitment of polymerase theta (POLQ) to DNA damage sites during mitosis (PubMed:37674080). MMEJ is an alternative non-homologous end-joining (NHEJ) machinery that takes place during mitosis to repair DSBs in DNA that originate in S-phase (PubMed:37674080). Recognizes and binds POLQ phosphorylated by PLK1, enabling its recruitment to DSBs for subsequent repair (PubMed:37674080). Involved in G1 DNA damage checkpoint by acting as a molecular adapter that couples TP53BP1 and the 9-1-1 complex (PubMed:31135337). In response to DNA damage, triggers the recruitment of checkpoint signaling proteins on chromatin, which activate the CHEK1 signaling pathway and block S-phase progression (PubMed:16530042, PubMed:21777809). Acts as an activator of the kinase activity of ATR (PubMed:16530042, PubMed:21777809). Also required for chromosomal stability when DSBs occur during mitosis by forming filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Together with CIP2A, plays an essential role in the response to genome instability generated by the presence of acentric chromosome fragments derived from shattered chromosomes within micronuclei (PubMed:35121901, PubMed:35842428, PubMed:37165191, PubMed:37316668). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, the CIP2A-TOPBP1 complex tethers chromosome fragments during mitosis to ensure clustered segregation of the fragments to a single daughter cell nucleus, facilitating re-ligation with limited chromosome scattering and loss (PubMed:37165191, PubMed:37316668). Recruits the SWI/SNF chromatin remodeling complex to E2F1-responsive promoters, thereby down-regulating E2F1 activity and inhibiting E2F1-dependent apoptosis during G1/S transition and after DNA damage (PubMed:12697828, PubMed:15075294). {ECO:0000250|UniProtKB:Q800K6, ECO:0000269|PubMed:10498869, ECO:0000269|PubMed:11395493, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:12697828, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:16530042, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21777809, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:30898438, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:33592542, ECO:0000269|PubMed:35121901, ECO:0000269|PubMed:35597237, ECO:0000269|PubMed:35842428, ECO:0000269|PubMed:37165191, ECO:0000269|PubMed:37316668, ECO:0000269|PubMed:37674080}. |
Q92622 | RUBCN | S197 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q92738 | USP6NL | S680 | ochoa | USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) | Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}. |
Q92793 | CREBBP | S2351 | ochoa | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q96B97 | SH3KBP1 | S587 | ochoa|psp | SH3 domain-containing kinase-binding protein 1 (CD2-binding protein 3) (CD2BP3) (Cbl-interacting protein of 85 kDa) (Human Src family kinase-binding protein 1) (HSB-1) | Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through an association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may be inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Has an essential role in the stimulation of B cell activation (PubMed:29636373). {ECO:0000250, ECO:0000269|PubMed:11894095, ECO:0000269|PubMed:11894096, ECO:0000269|PubMed:12177062, ECO:0000269|PubMed:12734385, ECO:0000269|PubMed:12771190, ECO:0000269|PubMed:15090612, ECO:0000269|PubMed:15707590, ECO:0000269|PubMed:16177060, ECO:0000269|PubMed:16256071, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29636373}. |
Q96JA1 | LRIG1 | S1033 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 1 (LIG-1) | Acts as a feedback negative regulator of signaling by receptor tyrosine kinases, through a mechanism that involves enhancement of receptor ubiquitination and accelerated intracellular degradation. {ECO:0000269|PubMed:15282549}. |
Q96JE7 | SEC16B | S258 | ochoa | Protein transport protein Sec16B (Leucine zipper transcription regulator 2) (Regucalcin gene promoter region-related protein p117) (RGPR-p117) (SEC16 homolog B) | Plays a role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17192411, PubMed:21768384, PubMed:22355596). Involved in peroxisome biogenesis. Regulates the transport of peroxisomal biogenesis factors PEX3 and PEX16 from the ER to peroxisomes (PubMed:21768384). {ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:21768384, ECO:0000303|PubMed:22355596}. |
Q96PN7 | TRERF1 | S540 | ochoa | Transcriptional-regulating factor 1 (Breast cancer anti-estrogen resistance 2) (Transcriptional-regulating protein 132) (Zinc finger protein rapa) (Zinc finger transcription factor TReP-132) | Binds DNA and activates transcription of CYP11A1. Interaction with CREBBP and EP300 results in a synergistic transcriptional activation of CYP11A1. {ECO:0000269|PubMed:11349124, ECO:0000269|PubMed:16371131}. |
Q96S38 | RPS6KC1 | S560 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96T58 | SPEN | S1006 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S1261 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S2101 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99697 | PITX2 | S40 | ochoa | Pituitary homeobox 2 (ALL1-responsive protein ARP1) (Homeobox protein PITX2) (Paired-like homeodomain transcription factor 2) (RIEG bicoid-related homeobox transcription factor) (Solurshin) | May play a role in myoblast differentiation. When unphosphorylated, associates with an ELAVL1-containing complex, which stabilizes cyclin mRNA and ensuring cell proliferation. Phosphorylation by AKT2 impairs this association, leading to CCND1 mRNA destabilization and progression towards differentiation. {ECO:0000250|UniProtKB:P97474}.; FUNCTION: [Isoform PTX2C]: Involved in the establishment of left-right asymmetry in the developing embryo. {ECO:0000250|UniProtKB:P97474}. |
Q99700 | ATXN2 | S667 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q9BRD0 | BUD13 | S175 | ochoa | BUD13 homolog | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9BX66 | SORBS1 | S953 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BX69 | CARD6 | S985 | ochoa | Caspase recruitment domain-containing protein 6 | May be involved in apoptosis. |
Q9BZ95 | NSD3 | S107 | ochoa | Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) | Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}. |
Q9BZA7 | PCDH11X | S932 | ochoa | Protocadherin-11 X-linked (Protocadherin-11) (Protocadherin on the X chromosome) (PCDH-X) (Protocadherin-S) | Potential calcium-dependent cell-adhesion protein. |
Q9BZA8 | PCDH11Y | S964 | ochoa | Protocadherin-11 Y-linked (Protocadherin-11) (Protocadherin on the Y chromosome) (PCDH-Y) (Protocadherin prostate cancer) (Protocadherin-PC) (Protocadherin-22) | Potential calcium-dependent cell-adhesion protein. |
Q9BZF3 | OSBPL6 | S208 | ochoa | Oxysterol-binding protein-related protein 6 (ORP-6) (OSBP-related protein 6) | Regulates cellular transport and efflux of cholesterol (PubMed:26941018). Plays a role in phosphatidylinositol-4-phophate (PI4P) turnover at the neuronal membrane (By similarity). Binds via its PH domain PI4P, phosphatidylinositol-4,5-diphosphate, phosphatidylinositol-3,4,5-triphosphate, and phosphatidic acid (By similarity). Weakly binds 25-hydroxycholesterol (PubMed:17428193). {ECO:0000250|UniProtKB:Q8BXR9, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:26941018}. |
Q9BZI1 | IRX2 | S297 | ochoa | Iroquois-class homeodomain protein IRX-2 (Homeodomain protein IRXA2) (Iroquois homeobox protein 2) | None |
Q9C0A6 | SETD5 | S1198 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0A6 | SETD5 | S1233 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0D5 | TANC1 | S1503 | ochoa | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9H0E3 | SAP130 | S465 | ochoa | Histone deacetylase complex subunit SAP130 (130 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p130) | Acts as a transcriptional repressor. May function in the assembly and/or enzymatic activity of the mSin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes. {ECO:0000269|PubMed:12724404}. |
Q9H0W5 | CCDC8 | S244 | ochoa | Coiled-coil domain-containing protein 8 | Core component of the 3M complex, a complex required to regulate microtubule dynamics and genome integrity. It is unclear how the 3M complex regulates microtubules, it could act by controlling the level of a microtubule stabilizer (PubMed:24793695, PubMed:24793696). Required for localization of CUL7 to the centrosome (PubMed:24793695). {ECO:0000269|PubMed:24793695, ECO:0000269|PubMed:24793696}. |
Q9H257 | CARD9 | S450 | ochoa | Caspase recruitment domain-containing protein 9 (hCARD9) | Adapter protein that plays a key role in innate immune response against fungi by forming signaling complexes downstream of C-type lectin receptors (PubMed:26961233, PubMed:33558980). CARD9-mediated signals are essential for antifungal immunity against a subset of fungi from the phylum Ascomycota (PubMed:24231284, PubMed:25057046, PubMed:25702837, PubMed:26521038, PubMed:26679537, PubMed:26961233, PubMed:27777981, PubMed:29080677, PubMed:33558980). Transduces signals in myeloid cells downstream of C-type lectin receptors CLEC7A (dectin-1), CLEC6A (dectin-2) and CLEC4E (Mincle), which detect pathogen-associated molecular pattern metabolites (PAMPs), such as fungal carbohydrates, and trigger CARD9 activation (By similarity). Upon activation, CARD9 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to activation of NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed:11053425, PubMed:26488816, PubMed:26961233, PubMed:31296852, PubMed:33558980). CARD9 signaling in antigen-presenting cells links innate sensing of fungi to the activation of adaptive immunity and provides a cytokine milieu that induces the development and subsequent of interleukin 17-producing T helper (Th17) cells (PubMed:24231284). Also involved in activation of myeloid cells via classical ITAM-associated receptors and TLR: required for TLR-mediated activation of MAPK, while it is not required for TLR-induced activation of NF-kappa-B (By similarity). CARD9 can also be engaged independently of BCL10: forms a complex with RASGRF1 downstream of C-type lectin receptors, which recruits and activates HRAS, leading to ERK activation and the production of cytokines (By similarity). Acts as an important regulator of the intestinal commensal fungi (mycobiota) component of the gut microbiota (PubMed:33548172). Plays an essential role in antifungal immunity against dissemination of gut fungi: acts by promoting induction of antifungal IgG antibodies response in CX3CR1(+) macrophages to confer protection against disseminated C.albicans or C.auris infection (PubMed:33548172). Also mediates immunity against other pathogens, such as certain bacteria, viruses and parasites; CARD9 signaling is however redundant with other innate immune responses (By similarity). In response to L.monocytogenes infection, required for the production of inflammatory cytokines activated by intracellular peptidoglycan: acts by connecting NOD2 recognition of peptidoglycan to downstream activation of MAP kinases (MAPK) without activating NF-kappa-B (By similarity). {ECO:0000250|UniProtKB:A2AIV8, ECO:0000269|PubMed:11053425, ECO:0000269|PubMed:24231284, ECO:0000269|PubMed:25057046, ECO:0000269|PubMed:25702837, ECO:0000269|PubMed:26488816, ECO:0000269|PubMed:26521038, ECO:0000269|PubMed:26679537, ECO:0000269|PubMed:26961233, ECO:0000269|PubMed:27777981, ECO:0000269|PubMed:29080677, ECO:0000269|PubMed:31296852, ECO:0000269|PubMed:33548172, ECO:0000269|PubMed:33558980}. |
Q9H5Z6 | FAM124B | S303 | ochoa | Protein FAM124B | None |
Q9H9J4 | USP42 | S75 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9HCK8 | CHD8 | S2200 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9NQW6 | ANLN | S388 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NWQ4 | GPATCH2L | S426 | ochoa | G patch domain-containing protein 2-like | None |
Q9NWT1 | PAK1IP1 | S320 | ochoa | p21-activated protein kinase-interacting protein 1 (PAK/PLC-interacting protein 1) (hPIP1) (PAK1-interacting protein 1) (WD repeat-containing protein 84) | Negatively regulates the PAK1 kinase. PAK1 is a member of the PAK kinase family, which has been shown to play a positive role in the regulation of signaling pathways involving MAPK8 and RELA. PAK1 exists as an inactive homodimer, which is activated by binding of small GTPases such as CDC42 to an N-terminal regulatory domain. PAK1IP1 also binds to the N-terminus of PAK1, and inhibits the specific activation of PAK1 by CDC42. May be involved in ribosomal large subunit assembly (PubMed:24120868). {ECO:0000269|PubMed:11371639, ECO:0000269|PubMed:24120868}. |
Q9NWZ5 | UCKL1 | S56 | ochoa | Uridine-cytidine kinase-like 1 (EC 2.7.1.48) | May contribute to UTP accumulation needed for blast transformation and proliferation. {ECO:0000269|PubMed:12199906}. |
Q9NX40 | OCIAD1 | S147 | ochoa | OCIA domain-containing protein 1 (Ovarian cancer immunoreactive antigen domain containing 1) (Ovarian carcinoma immunoreactive antigen) | Maintains stem cell potency (By similarity). Increases STAT3 phosphorylation and controls ERK phosphorylation (By similarity). May act as a scaffold, increasing STAT3 recruitment onto endosomes (By similarity). Involved in integrin-mediated cancer cell adhesion and colony formation in ovarian cancer (PubMed:20515946). {ECO:0000250|UniProtKB:Q9CRD0, ECO:0000269|PubMed:20515946}. |
Q9NYF3 | FAM53C | S162 | ochoa | Protein FAM53C | None |
Q9NYL2 | MAP3K20 | S691 | ochoa | Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) | Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}. |
Q9NYQ6 | CELSR1 | S2960 | ochoa | Cadherin EGF LAG seven-pass G-type receptor 1 (Cadherin family member 9) (Flamingo homolog 2) (hFmi2) | Receptor that may have an important role in cell/cell signaling during nervous system formation. |
Q9P0L2 | MARK1 | S475 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P0L9 | PKD2L1 | S747 | psp | Polycystin-2-like protein 1 (Polycystin-2L1) (Polycystic kidney disease 2-like 1 protein) (Polycystin-2 homolog) (Polycystin-L) (Polycystin-L1) | Homotetrameric, non-selective cation channel that is permeable to sodium, potassium, magnesium and calcium (PubMed:10517637, PubMed:11959145, PubMed:25820328, PubMed:27754867, PubMed:29425510, PubMed:30004384). Also forms functionnal heteromeric channels with PKD1, PKD1L1 and PKD1L3 (PubMed:23212381, PubMed:24336289). Pore-forming subunit of a heterotetrameric, non-selective cation channel, formed by PKD1L2 and PKD1L3, that is permeable to sodium, potassium, magnesium and calcium and which may act as a sour taste receptor in gustatory cells; however, its contribution to sour taste perception is unclear in vivo and may be indirect (PubMed:19812697, PubMed:23212381). The homomeric and heteromeric channels formed by PKD1L2 and PKD1L3 are activated by low pH and Ca(2+), but opens only when the extracellular pH rises again and after the removal of acid stimulus (PubMed:23212381). Pore-forming subunit of a calcium-permeant ion channel formed by PKD1L2 and PKD1L1 in primary cilia, where it controls cilium calcium concentration, without affecting cytoplasmic calcium concentration, and regulates sonic hedgehog/SHH signaling and GLI2 transcription (PubMed:24336289). The PKD1L1:PKD2L1 complex channel is mechanosensitive only at high pressures and is highly temperature sensitive (PubMed:24336289). Pore-forming subunit of a calcium-permeant ion channel formed by PKD1L2 and PKD1 that produces a transient increase in intracellular calcium concentration upon hypo-osmotic stimulation (200 mOsm) (By similarity). May play a role in the perception of carbonation taste (By similarity). May play a role in the sensory perception of water, via a mechanism that activates the channel in response to dilution of salivary bicarbonate and changes in salivary pH (By similarity). {ECO:0000250|UniProtKB:A2A259, ECO:0000269|PubMed:10517637, ECO:0000269|PubMed:11959145, ECO:0000269|PubMed:19812697, ECO:0000269|PubMed:23212381, ECO:0000269|PubMed:24336289, ECO:0000269|PubMed:25820328, ECO:0000269|PubMed:27754867, ECO:0000269|PubMed:29425510, ECO:0000269|PubMed:30004384}. |
Q9P1Q0 | VPS54 | S541 | ochoa | Vacuolar protein sorting-associated protein 54 (Hepatocellular carcinoma protein 8) (Tumor antigen HOM-HCC-8) (Tumor antigen SLP-8p) | Acts as a component of the GARP complex that is involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). The GARP complex is required for the maintenance of the cycling of mannose 6-phosphate receptors between the TGN and endosomes, this cycling is necessary for proper lysosomal sorting of acid hydrolases such as CTSD (PubMed:18367545). Within the GARP complex, required to tether the complex to the TGN. Not involved in endocytic recycling (PubMed:25799061). {ECO:0000269|PubMed:18367545, ECO:0000269|PubMed:25799061}. |
Q9P270 | SLAIN2 | S234 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P2J2 | IGSF9 | S809 | ochoa | Protein turtle homolog A (Immunoglobulin superfamily member 9A) (IgSF9A) | Functions in dendrite outgrowth and synapse maturation. {ECO:0000250}. |
Q9P2R6 | RERE | S142 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9UBK2 | PPARGC1A | S313 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1-alpha) (PPAR-gamma coactivator 1-alpha) (PPARGC-1-alpha) (Ligand effect modulator 6) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:10713165, PubMed:20005308, PubMed:21376232, PubMed:28363985, PubMed:32433991). Greatly increases the transcriptional activity of PPARG and thyroid hormone receptor on the uncoupling protein promoter (PubMed:10713165, PubMed:20005308, PubMed:21376232). Can regulate key mitochondrial genes that contribute to the program of adaptive thermogenesis (PubMed:10713165, PubMed:20005308, PubMed:21376232). Plays an essential role in metabolic reprogramming in response to dietary availability through coordination of the expression of a wide array of genes involved in glucose and fatty acid metabolism (PubMed:10713165, PubMed:20005308, PubMed:21376232). Acts as a key regulator of gluconeogenesis: stimulates hepatic gluconeogenesis by increasing the expression of gluconeogenic enzymes, and acting together with FOXO1 to promote the fasting gluconeogenic program (PubMed:16753578, PubMed:23142079). Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner (PubMed:23836911). Also involved in the integration of the circadian rhythms and energy metabolism (By similarity). Required for oscillatory expression of clock genes, such as BMAL1 and NR1D1, through the coactivation of RORA and RORC, and metabolic genes, such as PDK4 and PEPCK (By similarity). {ECO:0000250|UniProtKB:O70343, ECO:0000269|PubMed:10713165, ECO:0000269|PubMed:16753578, ECO:0000269|PubMed:20005308, ECO:0000269|PubMed:21376232, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:23836911, ECO:0000269|PubMed:28363985, ECO:0000269|PubMed:32433991}. |
Q9UGI0 | ZRANB1 | S115 | ochoa | Ubiquitin thioesterase ZRANB1 (EC 3.4.19.12) (TRAF-binding domain-containing protein) (hTrabid) (Zinc finger Ran-binding domain-containing protein 1) | Ubiquitin thioesterase, which specifically hydrolyzes 'Lys-29'-linked and 'Lys-33'-linked diubiquitin (PubMed:22157957, PubMed:23827681, PubMed:25752573, PubMed:25752577). Also cleaves 'Lys-63'-linked chains, but with 40-fold less efficiency compared to 'Lys-29'-linked ones (PubMed:18281465). Positive regulator of the Wnt signaling pathway that deubiquitinates APC protein, a negative regulator of Wnt-mediated transcription (PubMed:18281465). Acts as a regulator of autophagy by mediating deubiquitination of PIK3C3/VPS34, thereby promoting autophagosome maturation (PubMed:33637724). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987). Required in the stress fiber dynamics and cell migration (PubMed:21834987). {ECO:0000269|PubMed:18281465, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22157957, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25752573, ECO:0000269|PubMed:25752577, ECO:0000269|PubMed:33637724}. |
Q9UGJ0 | PRKAG2 | S162 | ochoa | 5'-AMP-activated protein kinase subunit gamma-2 (AMPK gamma2) (AMPK subunit gamma-2) (H91620p) | AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:14722619, PubMed:24563466). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:14722619, PubMed:24563466). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:14722619, PubMed:24563466). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:14722619, PubMed:24563466). Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits (PubMed:14722619, PubMed:24563466). ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit (PubMed:14722619, PubMed:24563466). ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive (PubMed:14722619, PubMed:24563466). {ECO:0000269|PubMed:14722619, ECO:0000269|PubMed:24563466}. |
Q9UIG0 | BAZ1B | S361 | ochoa | Tyrosine-protein kinase BAZ1B (EC 2.7.10.2) (Bromodomain adjacent to zinc finger domain protein 1B) (Williams syndrome transcription factor) (Williams-Beuren syndrome chromosomal region 10 protein) (Williams-Beuren syndrome chromosomal region 9 protein) (hWALp2) | Atypical tyrosine-protein kinase that plays a central role in chromatin remodeling and acts as a transcription regulator (PubMed:19092802). Involved in DNA damage response by phosphorylating 'Tyr-142' of histone H2AX (H2AXY142ph) (PubMed:19092802, PubMed:19234442). H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19092802, PubMed:19234442). Regulatory subunit of the ATP-dependent WICH-1 and WICH-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:11980720, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The WICH-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the WICH-5 ISWI chromatin remodeling complex (PubMed:28801535). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the recruitment of the WICH-5 ISWI chromatin remodeling complex to replication foci during DNA replication (PubMed:15543136). {ECO:0000250|UniProtKB:Q9Z277, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:19092802, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:28801535}. |
Q9UIS9 | MBD1 | S518 | ochoa | Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) | Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}. |
Q9UK61 | TASOR | S927 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9ULD4 | BRPF3 | S962 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULM2 | ZNF490 | S118 | ochoa | Zinc finger protein 490 | May be involved in transcriptional regulation. |
Q9ULM3 | YEATS2 | S1043 | ochoa | YEATS domain-containing protein 2 | Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}. |
Q9UNH5 | CDC14A | S411 | psp | Dual specificity protein phosphatase CDC14A (EC 3.1.3.16) (EC 3.1.3.48) (CDC14 cell division cycle 14 homolog A) | Dual-specificity phosphatase. Required for centrosome separation and productive cytokinesis during cell division. Dephosphorylates SIRT2 around early anaphase. May dephosphorylate the APC subunit FZR1/CDH1, thereby promoting APC-FZR1 dependent degradation of mitotic cyclins and subsequent exit from mitosis. Required for normal hearing (PubMed:29293958). {ECO:0000269|PubMed:11901424, ECO:0000269|PubMed:12134069, ECO:0000269|PubMed:17488717, ECO:0000269|PubMed:29293958, ECO:0000269|PubMed:9367992}. |
Q9UPQ9 | TNRC6B | S1221 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UPR0 | PLCL2 | S71 | ochoa | Inactive phospholipase C-like protein 2 (PLC-L(2)) (PLC-L2) (Phospholipase C-L2) (Phospholipase C-epsilon-2) (PLC-epsilon-2) | May play an role in the regulation of Ins(1,4,5)P3 around the endoplasmic reticulum. {ECO:0000250}. |
Q9UPU5 | USP24 | S1612 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UQ49 | NEU3 | S310 | ochoa | Sialidase-3 (EC 3.2.1.18) (Ganglioside sialidasedis) (Membrane sialidase) (N-acetyl-alpha-neuraminidase 3) | Exo-alpha-sialidase that catalyzes the hydrolytic cleavage of the terminal sialic acid (N-acetylneuraminic acid, Neu5Ac) of a glycan moiety in the catabolism of glycolipids, glycoproteins and oligosacharides. Displays high catalytic efficiency for gangliosides including alpha-(2->3)-sialylated GD1a and GM3 and alpha-(2->8)-sialylated GD3 (PubMed:10405317, PubMed:10861246, PubMed:11298736, PubMed:12011038, PubMed:15847605, PubMed:20511247, PubMed:28646141). Plays a role in the regulation of transmembrane signaling through the modulation of ganglioside content of the lipid bilayer and by direct interaction with signaling receptors, such as EGFR (PubMed:17334392, PubMed:25922362). Desialylates EGFR and activates downstream signaling in proliferating cells (PubMed:25922362). Contributes to clathrin-mediated endocytosis by regulating sorting of endocytosed receptors to early and recycling endosomes (PubMed:26251452). {ECO:0000269|PubMed:10405317, ECO:0000269|PubMed:10861246, ECO:0000269|PubMed:11298736, ECO:0000269|PubMed:12011038, ECO:0000269|PubMed:15847605, ECO:0000269|PubMed:17334392, ECO:0000269|PubMed:20511247, ECO:0000269|PubMed:25922362, ECO:0000269|PubMed:26251452, ECO:0000269|PubMed:28646141}. |
Q9UQF2 | MAPK8IP1 | S421 | psp | C-Jun-amino-terminal kinase-interacting protein 1 (JIP-1) (JNK-interacting protein 1) (Islet-brain 1) (IB-1) (JNK MAP kinase scaffold protein 1) (Mitogen-activated protein kinase 8-interacting protein 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module. Required for JNK activation in response to excitotoxic stress. Cytoplasmic MAPK8IP1 causes inhibition of JNK-regulated activity by retaining JNK in the cytoplasm and inhibiting JNK phosphorylation of c-Jun. May also participate in ApoER2-specific reelin signaling. Directly, or indirectly, regulates GLUT2 gene expression and beta-cell function. Appears to have a role in cell signaling in mature and developing nerve terminals. May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins. Functions as an anti-apoptotic protein and whose level seems to influence the beta-cell death or survival response. Acts as a scaffold protein that coordinates with SH3RF1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the activation of MAPK8/JNK1 and differentiation of CD8(+) T-cells. {ECO:0000250|UniProtKB:Q9WVI9}. |
Q9Y228 | TRAF3IP3 | S111 | ochoa | TRAF3-interacting JNK-activating modulator (TRAF3-interacting protein 3) | Adapter protein that plays essential roles in both innate and adaptive immunity. Plays a crucial role in the regulation of thymocyte development (PubMed:26195727). Mechanistically, mediates TCR-stimulated activation through recruiting MAP2K1/MEK1 to the Golgi and, thereby, facilitating the interaction of MAP2K1/MEK1 with its activator BRAF (PubMed:26195727). Also plays an essential role in regulatory T-cell stability and function by recruiting the serine-threonine phosphatase catalytic subunit (PPP2CA) to the lysosome, thereby facilitating the interaction of PP2Ac with the mTORC1 component RPTOR and restricting glycolytic metabolism (PubMed:30115741). Positively regulates TLR4 signaling activity in macrophage-mediated inflammation by acting as a molecular clamp to facilitate LPS-induced translocation of TLR4 to lipid rafts (PubMed:30573680). In response to viral infection, facilitates the recruitment of TRAF3 to MAVS within mitochondria leading to IRF3 activation and interferon production (PubMed:31390091). However, participates in the maintenance of immune homeostasis and the prevention of overzealous innate immunity by promoting 'Lys-48'-dependent ubiquitination of TBK1 (PubMed:32366851). {ECO:0000269|PubMed:26195727, ECO:0000269|PubMed:30115741, ECO:0000269|PubMed:30573680, ECO:0000269|PubMed:31390091, ECO:0000269|PubMed:32366851}. |
Q9Y242 | TCF19 | S193 | ochoa | Transcription factor 19 (TCF-19) (Transcription factor SC1) | Potential transcription factor that may play a role in the regulation of genes involved in cell cycle G1/S transition (PubMed:1868030, PubMed:31141247). May bind to regulatory elements of genes, including the promoter of the transcription factor FOXO1 (PubMed:31141247). {ECO:0000269|PubMed:1868030, ECO:0000269|PubMed:31141247}. |
Q9Y2H5 | PLEKHA6 | S459 | ochoa | Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) | None |
Q9Y4B5 | MTCL1 | S1561 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4D2 | DAGLA | S952 | ochoa | Diacylglycerol lipase-alpha (DAGL-alpha) (DGL-alpha) (EC 3.1.1.116) (Neural stem cell-derived dendrite regulator) (Sn1-specific diacylglycerol lipase alpha) | Serine hydrolase that hydrolyzes arachidonic acid-esterified diacylglycerols (DAGs) to produce the principal endocannabinoid, 2-arachidonoylglycerol (2-AG) (PubMed:14610053, PubMed:23502535, PubMed:26668358). Preferentially hydrolyzes sn-1 fatty acids from diacylglycerols (DAG) that contain arachidonic acid (AA) esterified at the sn-2 position to biosynthesize 2-AG (PubMed:14610053, PubMed:23502535, PubMed:26668358). Has negligible activity against other lipids including monoacylglycerols and phospholipids (PubMed:14610053). Plays a key role in regulating 2-AG signaling in the central nervous system (CNS). Regulates 2-AG involved in retrograde suppression at central synapses. Supports axonal growth during development and adult neurogenesis. Plays a role for eCB signaling in the physiological regulation of anxiety and depressive behaviors. Also regulates neuroinflammatory responses in the brain, in particular, LPS-induced microglial activation (By similarity). {ECO:0000250|UniProtKB:Q6WQJ1, ECO:0000269|PubMed:14610053, ECO:0000269|PubMed:23502535, ECO:0000269|PubMed:26668358}. |
Q9Y4F5 | CEP170B | S772 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4R8 | TELO2 | S688 | ochoa | Telomere length regulation protein TEL2 homolog (Protein clk-2 homolog) (hCLK2) | Regulator of the DNA damage response (DDR). Part of the TTT complex that is required to stabilize protein levels of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family proteins. The TTT complex is involved in the cellular resistance to DNA damage stresses, like ionizing radiation (IR), ultraviolet (UV) and mitomycin C (MMC). Together with the TTT complex and HSP90 may participate in the proper folding of newly synthesized PIKKs. Promotes assembly, stabilizes and maintains the activity of mTORC1 and mTORC2 complexes, which regulate cell growth and survival in response to nutrient and hormonal signals. May be involved in telomere length regulation. {ECO:0000269|PubMed:12670948, ECO:0000269|PubMed:20810650}. |
Q9Y6K1 | DNMT3A | S75 | ochoa | DNA (cytosine-5)-methyltransferase 3A (Dnmt3a) (EC 2.1.1.37) (Cysteine methyltransferase DNMT3A) (EC 2.1.1.-) (DNA methyltransferase HsaIIIA) (DNA MTase HsaIIIA) (M.HsaIIIA) | Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development (PubMed:12138111, PubMed:16357870, PubMed:30478443). DNA methylation is coordinated with methylation of histones (PubMed:12138111, PubMed:16357870, PubMed:30478443). It modifies DNA in a non-processive manner and also methylates non-CpG sites (PubMed:12138111, PubMed:16357870, PubMed:30478443). May preferentially methylate DNA linker between 2 nucleosomal cores and is inhibited by histone H1 (By similarity). Plays a role in paternal and maternal imprinting (By similarity). Required for methylation of most imprinted loci in germ cells (By similarity). Acts as a transcriptional corepressor for ZBTB18 (By similarity). Recruited to trimethylated 'Lys-36' of histone H3 (H3K36me3) sites (By similarity). Can actively repress transcription through the recruitment of HDAC activity (By similarity). Also has weak auto-methylation activity on Cys-710 in absence of DNA (By similarity). {ECO:0000250|UniProtKB:O88508, ECO:0000269|PubMed:12138111, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:30478443}. |
Q7Z628 | NET1 | S131 | GPS6 | Neuroepithelial cell-transforming gene 1 protein (Proto-oncogene p65 Net1) (Rho guanine nucleotide exchange factor 8) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPase. May be involved in activation of the SAPK/JNK pathway Stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:21373644}. |
Q99504 | EYA3 | Y90 | PSP | Protein phosphatase EYA3 (EC 3.1.3.48) (Eyes absent homolog 3) | Tyrosine phosphatase that specifically dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph). 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress. Promotes efficient DNA repair by dephosphorylating H2AX, promoting the recruitment of DNA repair complexes containing MDC1 (PubMed:19234442, PubMed:19351884). Its function as histone phosphatase probably explains its role in transcription regulation during organogenesis. Coactivates SIX1, and seems to coactivate SIX2, SIX4 and SIX5. The repression of precursor cell proliferation in myoblasts by SIX1 is switched to activation through recruitment of EYA3 to the SIX1-DACH1 complex and seems to be dependent on EYA3 phosphatase activity (By similarity). May be involved in development of the eye. {ECO:0000250|UniProtKB:P97480, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:19351884}. |
Q9H9S0 | NANOG | S52 | PSP | Homeobox protein NANOG (Homeobox transcription factor Nanog) (hNanog) | Transcription regulator involved in inner cell mass and embryonic stem (ES) cells proliferation and self-renewal. Imposes pluripotency on ES cells and prevents their differentiation towards extraembryonic endoderm and trophectoderm lineages. Blocks bone morphogenetic protein-induced mesoderm differentiation of ES cells by physically interacting with SMAD1 and interfering with the recruitment of coactivators to the active SMAD transcriptional complexes. Acts as a transcriptional activator or repressor. Binds optimally to the DNA consensus sequence 5'-TAAT[GT][GT]-3' or 5'-[CG][GA][CG]C[GC]ATTAN[GC]-3'. Binds to the POU5F1/OCT4 promoter (PubMed:25825768). Able to autorepress its expression in differentiating (ES) cells: binds to its own promoter following interaction with ZNF281/ZFP281, leading to recruitment of the NuRD complex and subsequent repression of expression. When overexpressed, promotes cells to enter into S phase and proliferation. {ECO:0000269|PubMed:15983365, ECO:0000269|PubMed:16000880, ECO:0000269|PubMed:16391521, ECO:0000269|PubMed:25825768}. |
P12830 | CDH1 | S146 | SIGNOR | Cadherin-1 (CAM 120/80) (Epithelial cadherin) (E-cadherin) (Uvomorulin) (CD antigen CD324) [Cleaved into: E-Cad/CTF1; E-Cad/CTF2; E-Cad/CTF3] | Cadherins are calcium-dependent cell adhesion proteins (PubMed:11976333). They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types. CDH1 is involved in mechanisms regulating cell-cell adhesions, mobility and proliferation of epithelial cells (PubMed:11976333). Promotes organization of radial actin fiber structure and cellular response to contractile forces, via its interaction with AMOTL2 which facilitates anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane (By similarity). Plays a role in the early stages of desmosome cell-cell junction formation via facilitating the recruitment of DSG2 and DSP to desmosome plaques (PubMed:29999492). Has a potent invasive suppressor role. It is a ligand for integrin alpha-E/beta-7. {ECO:0000250|UniProtKB:F1PAA9, ECO:0000269|PubMed:11976333, ECO:0000269|PubMed:16417575, ECO:0000269|PubMed:29999492}.; FUNCTION: E-Cad/CTF2 promotes non-amyloidogenic degradation of Abeta precursors. Has a strong inhibitory effect on APP C99 and C83 production. {ECO:0000269|PubMed:16417575}.; FUNCTION: (Microbial infection) Serves as a receptor for Listeria monocytogenes; internalin A (InlA) binds to this protein and promotes uptake of the bacteria. {ECO:0000269|PubMed:10406800, ECO:0000269|PubMed:17540170, ECO:0000269|PubMed:8601315}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-6804754 | Regulation of TP53 Expression | 0.000010 | 4.982 |
R-HSA-9022707 | MECP2 regulates transcription factors | 0.000350 | 3.456 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.000155 | 3.809 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.000327 | 3.485 |
R-HSA-74160 | Gene expression (Transcription) | 0.000291 | 3.537 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.000668 | 3.175 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.001015 | 2.994 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.001279 | 2.893 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.001600 | 2.796 |
R-HSA-1538133 | G0 and Early G1 | 0.001663 | 2.779 |
R-HSA-6807004 | Negative regulation of MET activity | 0.001461 | 2.835 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.001627 | 2.789 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.001729 | 2.762 |
R-HSA-9022534 | Loss of MECP2 binding ability to 5hmC-DNA | 0.002002 | 2.699 |
R-HSA-9707616 | Heme signaling | 0.002294 | 2.639 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.002810 | 2.551 |
R-HSA-1640170 | Cell Cycle | 0.003084 | 2.511 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.003413 | 2.467 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.003350 | 2.475 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 0.003802 | 2.420 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.004344 | 2.362 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 0.004344 | 2.362 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.004680 | 2.330 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.004676 | 2.330 |
R-HSA-5688426 | Deubiquitination | 0.004394 | 2.357 |
R-HSA-2892247 | POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation | 0.005149 | 2.288 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.005149 | 2.288 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.005170 | 2.286 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.005946 | 2.226 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.006123 | 2.213 |
R-HSA-9827857 | Specification of primordial germ cells | 0.006049 | 2.218 |
R-HSA-212436 | Generic Transcription Pathway | 0.006210 | 2.207 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.006790 | 2.168 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.006790 | 2.168 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.007588 | 2.120 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.007588 | 2.120 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.007280 | 2.138 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.007405 | 2.130 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.009040 | 2.044 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.009374 | 2.028 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.009374 | 2.028 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.009374 | 2.028 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.009374 | 2.028 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.009818 | 2.008 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.010367 | 1.984 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.010161 | 1.993 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.010367 | 1.984 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.010676 | 1.972 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.010676 | 1.972 |
R-HSA-9854907 | Regulation of MITF-M dependent genes involved in metabolism | 0.011738 | 1.930 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.011738 | 1.930 |
R-HSA-8866906 | TFAP2 (AP-2) family regulates transcription of other transcription factors | 0.011738 | 1.930 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.012110 | 1.917 |
R-HSA-180746 | Nuclear import of Rev protein | 0.011431 | 1.942 |
R-HSA-9022927 | MECP2 regulates transcription of genes involved in GABA signaling | 0.016548 | 1.781 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 0.016548 | 1.781 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 0.016548 | 1.781 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.012566 | 1.901 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.012558 | 1.901 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.012558 | 1.901 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.013662 | 1.864 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.015704 | 1.804 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.013662 | 1.864 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.015060 | 1.822 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 0.015704 | 1.804 |
R-HSA-4839726 | Chromatin organization | 0.015991 | 1.796 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.016422 | 1.785 |
R-HSA-9830674 | Formation of the ureteric bud | 0.015334 | 1.814 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.016678 | 1.778 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 0.018399 | 1.735 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.017865 | 1.748 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.017560 | 1.755 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 0.018399 | 1.735 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.017865 | 1.748 |
R-HSA-9839394 | TGFBR3 expression | 0.019053 | 1.720 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.019388 | 1.712 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.019388 | 1.712 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.021335 | 1.671 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.020995 | 1.678 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.021335 | 1.671 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.020331 | 1.692 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.020995 | 1.678 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.019743 | 1.705 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 0.022054 | 1.657 |
R-HSA-9022535 | Loss of phosphorylation of MECP2 at T308 | 0.022054 | 1.657 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.022054 | 1.657 |
R-HSA-9909396 | Circadian clock | 0.024200 | 1.616 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.024512 | 1.611 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 0.024512 | 1.611 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.024862 | 1.604 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.028205 | 1.550 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.028205 | 1.550 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.031837 | 1.497 |
R-HSA-9723905 | Loss of function of TP53 in cancer due to loss of tetramerization ability | 0.031837 | 1.497 |
R-HSA-9723907 | Loss of Function of TP53 in Cancer | 0.031837 | 1.497 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.031587 | 1.500 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.028863 | 1.540 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.029927 | 1.524 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.030623 | 1.514 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.030623 | 1.514 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.031587 | 1.500 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.030319 | 1.518 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.028599 | 1.544 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.030623 | 1.514 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.032451 | 1.489 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.036872 | 1.433 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.037200 | 1.429 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.037200 | 1.429 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.033809 | 1.471 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.034967 | 1.456 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.034119 | 1.467 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.033339 | 1.477 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.036192 | 1.441 |
R-HSA-2028269 | Signaling by Hippo | 0.035483 | 1.450 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.034955 | 1.456 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 0.034955 | 1.456 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.036192 | 1.441 |
R-HSA-9830369 | Kidney development | 0.036923 | 1.433 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.038948 | 1.410 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 0.039614 | 1.402 |
R-HSA-156711 | Polo-like kinase mediated events | 0.039614 | 1.402 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.042260 | 1.374 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.048569 | 1.314 |
R-HSA-9843745 | Adipogenesis | 0.052498 | 1.280 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.050124 | 1.300 |
R-HSA-68882 | Mitotic Anaphase | 0.046559 | 1.332 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.047832 | 1.320 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.048966 | 1.310 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.045568 | 1.341 |
R-HSA-9823730 | Formation of definitive endoderm | 0.048569 | 1.314 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.050078 | 1.300 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.045578 | 1.341 |
R-HSA-69205 | G1/S-Specific Transcription | 0.052501 | 1.280 |
R-HSA-9758941 | Gastrulation | 0.047997 | 1.319 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.051154 | 1.291 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.056171 | 1.250 |
R-HSA-73887 | Death Receptor Signaling | 0.056220 | 1.250 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.056220 | 1.250 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.058370 | 1.234 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.058370 | 1.234 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 0.058370 | 1.234 |
R-HSA-193648 | NRAGE signals death through JNK | 0.058883 | 1.230 |
R-HSA-77042 | Formation of editosomes by ADAR proteins | 0.062663 | 1.203 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.063914 | 1.194 |
R-HSA-201556 | Signaling by ALK | 0.063914 | 1.194 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.067096 | 1.173 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.067096 | 1.173 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.068650 | 1.163 |
R-HSA-1227986 | Signaling by ERBB2 | 0.072094 | 1.142 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.067984 | 1.168 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.067984 | 1.168 |
R-HSA-9761174 | Formation of intermediate mesoderm | 0.067096 | 1.173 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.071718 | 1.144 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.071823 | 1.144 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 0.076221 | 1.118 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.068650 | 1.163 |
R-HSA-191859 | snRNP Assembly | 0.068650 | 1.163 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.075630 | 1.121 |
R-HSA-162582 | Signal Transduction | 0.076961 | 1.114 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.067984 | 1.168 |
R-HSA-6806834 | Signaling by MET | 0.068767 | 1.163 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.079258 | 1.101 |
R-HSA-165159 | MTOR signalling | 0.080972 | 1.092 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.085712 | 1.067 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.085712 | 1.067 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.085712 | 1.067 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.085712 | 1.067 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.085712 | 1.067 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.086732 | 1.062 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.086732 | 1.062 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.086732 | 1.062 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.088850 | 1.051 |
R-HSA-5619109 | Defective SLC6A2 causes orthostatic intolerance (OI) | 0.092509 | 1.034 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 0.092509 | 1.034 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.095534 | 1.020 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.095534 | 1.020 |
R-HSA-9005895 | Pervasive developmental disorders | 0.095534 | 1.020 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.099142 | 1.004 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.105659 | 0.976 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.105659 | 0.976 |
R-HSA-209543 | p75NTR recruits signalling complexes | 0.095534 | 1.020 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.112762 | 0.948 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.112762 | 0.948 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.092976 | 1.032 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.095534 | 1.020 |
R-HSA-69236 | G1 Phase | 0.090263 | 1.044 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.090263 | 1.044 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.110091 | 0.958 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.095577 | 1.020 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.098760 | 1.005 |
R-HSA-195721 | Signaling by WNT | 0.097210 | 1.012 |
R-HSA-9635644 | Inhibition of membrane repair | 0.092509 | 1.034 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.100039 | 1.000 |
R-HSA-211000 | Gene Silencing by RNA | 0.094884 | 1.023 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 0.105659 | 0.976 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.111969 | 0.951 |
R-HSA-75153 | Apoptotic execution phase | 0.100039 | 1.000 |
R-HSA-5619089 | Defective SLC6A5 causes hyperekplexia 3 (HKPX3) | 0.121407 | 0.916 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 0.149385 | 0.826 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 0.149385 | 0.826 |
R-HSA-8941237 | Invadopodia formation | 0.149385 | 0.826 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 0.176475 | 0.753 |
R-HSA-9754119 | Drug-mediated inhibition of CDK4/CDK6 activity | 0.176475 | 0.753 |
R-HSA-69200 | Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 ... | 0.176475 | 0.753 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 0.202704 | 0.693 |
R-HSA-74713 | IRS activation | 0.202704 | 0.693 |
R-HSA-68911 | G2 Phase | 0.202704 | 0.693 |
R-HSA-8849470 | PTK6 Regulates Cell Cycle | 0.228098 | 0.642 |
R-HSA-176417 | Phosphorylation of Emi1 | 0.228098 | 0.642 |
R-HSA-5340588 | Signaling by RNF43 mutants | 0.228098 | 0.642 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 0.116057 | 0.935 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.252686 | 0.597 |
R-HSA-177539 | Autointegration results in viral DNA circles | 0.252686 | 0.597 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 0.252686 | 0.597 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.126700 | 0.897 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.126700 | 0.897 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 0.276491 | 0.558 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.276491 | 0.558 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.276491 | 0.558 |
R-HSA-9031525 | NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake | 0.276491 | 0.558 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.276491 | 0.558 |
R-HSA-9632974 | NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis | 0.276491 | 0.558 |
R-HSA-112412 | SOS-mediated signalling | 0.276491 | 0.558 |
R-HSA-9031528 | NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipo... | 0.276491 | 0.558 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 0.299540 | 0.524 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.299540 | 0.524 |
R-HSA-1169092 | Activation of RAS in B cells | 0.299540 | 0.524 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 0.343462 | 0.464 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.141345 | 0.850 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.217821 | 0.662 |
R-HSA-9857377 | Regulation of MITF-M-dependent genes involved in lysosome biogenesis and autopha... | 0.229654 | 0.639 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 0.229654 | 0.639 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.364381 | 0.438 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.364381 | 0.438 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.364381 | 0.438 |
R-HSA-4839744 | Signaling by APC mutants | 0.364381 | 0.438 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.364381 | 0.438 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.364381 | 0.438 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.364381 | 0.438 |
R-HSA-72187 | mRNA 3'-end processing | 0.132088 | 0.879 |
R-HSA-1250342 | PI3K events in ERBB4 signaling | 0.384635 | 0.415 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.384635 | 0.415 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.277250 | 0.557 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 0.404244 | 0.393 |
R-HSA-937039 | IRAK1 recruits IKK complex | 0.404244 | 0.393 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.404244 | 0.393 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.404244 | 0.393 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.404244 | 0.393 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.404244 | 0.393 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.404244 | 0.393 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.167753 | 0.775 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.301025 | 0.521 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 0.423230 | 0.373 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.149098 | 0.827 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.312867 | 0.505 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 0.441612 | 0.355 |
R-HSA-9766229 | Degradation of CDH1 | 0.281165 | 0.551 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.459409 | 0.338 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.459409 | 0.338 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.296837 | 0.527 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.351241 | 0.454 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.174222 | 0.759 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.174222 | 0.759 |
R-HSA-72172 | mRNA Splicing | 0.438344 | 0.358 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.301779 | 0.520 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.301779 | 0.520 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.385006 | 0.415 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.196788 | 0.706 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.304033 | 0.517 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.301779 | 0.520 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.382691 | 0.417 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.116057 | 0.935 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.289150 | 0.539 |
R-HSA-198203 | PI3K/AKT activation | 0.343462 | 0.464 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.254929 | 0.594 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.126700 | 0.897 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.405317 | 0.392 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.134424 | 0.872 |
R-HSA-191650 | Regulation of gap junction activity | 0.176475 | 0.753 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.228098 | 0.642 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.148618 | 0.828 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.171222 | 0.766 |
R-HSA-163680 | AMPK inhibits chREBP transcriptional activation activity | 0.321856 | 0.492 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.404244 | 0.393 |
R-HSA-9796292 | Formation of axial mesoderm | 0.423230 | 0.373 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 0.459409 | 0.338 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.264297 | 0.578 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.217821 | 0.662 |
R-HSA-162592 | Integration of provirus | 0.384635 | 0.415 |
R-HSA-4641265 | Repression of WNT target genes | 0.404244 | 0.393 |
R-HSA-9614085 | FOXO-mediated transcription | 0.149607 | 0.825 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.119686 | 0.922 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.126762 | 0.897 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 0.202704 | 0.693 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 0.202704 | 0.693 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.126700 | 0.897 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 0.159846 | 0.796 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.359704 | 0.444 |
R-HSA-418990 | Adherens junctions interactions | 0.365385 | 0.437 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.405317 | 0.392 |
R-HSA-69895 | Transcriptional activation of cell cycle inhibitor p21 | 0.176475 | 0.753 |
R-HSA-69560 | Transcriptional activation of p53 responsive genes | 0.176475 | 0.753 |
R-HSA-426486 | Small interfering RNA (siRNA) biogenesis | 0.252686 | 0.597 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.148618 | 0.828 |
R-HSA-9930044 | Nuclear RNA decay | 0.133984 | 0.873 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.364381 | 0.438 |
R-HSA-3772470 | Negative regulation of TCF-dependent signaling by WNT ligand antagonists | 0.384635 | 0.415 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.359704 | 0.444 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.325724 | 0.487 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.398863 | 0.399 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.348135 | 0.458 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.159846 | 0.796 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.371239 | 0.430 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.441612 | 0.355 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.382691 | 0.417 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.182727 | 0.738 |
R-HSA-6807070 | PTEN Regulation | 0.392370 | 0.406 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.225294 | 0.647 |
R-HSA-75064 | mRNA Editing: A to I Conversion | 0.121407 | 0.916 |
R-HSA-9708296 | tRNA-derived small RNA (tsRNA or tRNA-related fragment, tRF) biogenesis | 0.121407 | 0.916 |
R-HSA-75102 | C6 deamination of adenosine | 0.121407 | 0.916 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.149385 | 0.826 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.176475 | 0.753 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.176475 | 0.753 |
R-HSA-8866376 | Reelin signalling pathway | 0.202704 | 0.693 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 0.159846 | 0.796 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.299540 | 0.524 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.343462 | 0.464 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.141345 | 0.850 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.384635 | 0.415 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.384635 | 0.415 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.384635 | 0.415 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.423230 | 0.373 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.186735 | 0.729 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.312867 | 0.505 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.382691 | 0.417 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.193575 | 0.713 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.434200 | 0.362 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.140959 | 0.851 |
R-HSA-68877 | Mitotic Prometaphase | 0.154125 | 0.812 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.312867 | 0.505 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.253427 | 0.596 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.159241 | 0.798 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.163011 | 0.788 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.375258 | 0.426 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.299540 | 0.524 |
R-HSA-74749 | Signal attenuation | 0.343462 | 0.464 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 0.423230 | 0.373 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.156455 | 0.806 |
R-HSA-182971 | EGFR downregulation | 0.119686 | 0.922 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.379845 | 0.420 |
R-HSA-111448 | Activation of NOXA and translocation to mitochondria | 0.176475 | 0.753 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.276491 | 0.558 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 0.321856 | 0.492 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.289150 | 0.539 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.441612 | 0.355 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.427538 | 0.369 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.170667 | 0.768 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.136125 | 0.866 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.394758 | 0.404 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.140268 | 0.853 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.225175 | 0.647 |
R-HSA-2559583 | Cellular Senescence | 0.200030 | 0.699 |
R-HSA-5689603 | UCH proteinases | 0.139241 | 0.856 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.281301 | 0.551 |
R-HSA-68886 | M Phase | 0.164572 | 0.784 |
R-HSA-175567 | Integration of viral DNA into host genomic DNA | 0.252686 | 0.597 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 0.148618 | 0.828 |
R-HSA-75072 | mRNA Editing | 0.321856 | 0.492 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.206045 | 0.686 |
R-HSA-426048 | Arachidonate production from DAG | 0.343462 | 0.464 |
R-HSA-164843 | 2-LTR circle formation | 0.343462 | 0.464 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 0.384635 | 0.415 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.129684 | 0.887 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.180331 | 0.744 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.301025 | 0.521 |
R-HSA-3214847 | HATs acetylate histones | 0.149607 | 0.825 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.267044 | 0.573 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.182727 | 0.738 |
R-HSA-1236394 | Signaling by ERBB4 | 0.129684 | 0.887 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.272462 | 0.565 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.253427 | 0.596 |
R-HSA-9842663 | Signaling by LTK | 0.404244 | 0.393 |
R-HSA-9733709 | Cardiogenesis | 0.359704 | 0.444 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.286967 | 0.542 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.289150 | 0.539 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.394052 | 0.404 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.164191 | 0.785 |
R-HSA-5689880 | Ub-specific processing proteases | 0.174222 | 0.759 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 0.384635 | 0.415 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.247237 | 0.607 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.316592 | 0.499 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.449148 | 0.348 |
R-HSA-9833110 | RSV-host interactions | 0.176909 | 0.752 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.202704 | 0.693 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.137562 | 0.862 |
R-HSA-8948747 | Regulation of PTEN localization | 0.276491 | 0.558 |
R-HSA-9683686 | Maturation of spike protein | 0.343462 | 0.464 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.188037 | 0.726 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.417482 | 0.379 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.355994 | 0.449 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.285176 | 0.545 |
R-HSA-3214842 | HDMs demethylate histones | 0.265339 | 0.576 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.263790 | 0.579 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.206056 | 0.686 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.324664 | 0.489 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.206056 | 0.686 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.404244 | 0.393 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.371239 | 0.430 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.247237 | 0.607 |
R-HSA-525793 | Myogenesis | 0.277250 | 0.557 |
R-HSA-114452 | Activation of BH3-only proteins | 0.324664 | 0.489 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.438319 | 0.358 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.416481 | 0.380 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.228098 | 0.642 |
R-HSA-9613354 | Lipophagy | 0.321856 | 0.492 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.217821 | 0.662 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 0.364381 | 0.438 |
R-HSA-200425 | Carnitine shuttle | 0.241527 | 0.617 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.120438 | 0.919 |
R-HSA-177929 | Signaling by EGFR | 0.155503 | 0.808 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.371239 | 0.430 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.354777 | 0.450 |
R-HSA-3371568 | Attenuation phase | 0.449314 | 0.347 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.181646 | 0.741 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.253427 | 0.596 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 0.228098 | 0.642 |
R-HSA-1474165 | Reproduction | 0.335466 | 0.474 |
R-HSA-901042 | Calnexin/calreticulin cycle | 0.382691 | 0.417 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 0.423230 | 0.373 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.193212 | 0.714 |
R-HSA-68875 | Mitotic Prophase | 0.147623 | 0.831 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.229654 | 0.639 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.459409 | 0.338 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.257990 | 0.588 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.455396 | 0.342 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.149509 | 0.825 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 0.241527 | 0.617 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.206369 | 0.685 |
R-HSA-162909 | Host Interactions of HIV factors | 0.290689 | 0.537 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.399265 | 0.399 |
R-HSA-1433559 | Regulation of KIT signaling | 0.441612 | 0.355 |
R-HSA-9831926 | Nephron development | 0.171222 | 0.766 |
R-HSA-159418 | Recycling of bile acids and salts | 0.359704 | 0.444 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.206045 | 0.686 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.241527 | 0.617 |
R-HSA-9006936 | Signaling by TGFB family members | 0.354843 | 0.450 |
R-HSA-2586552 | Signaling by Leptin | 0.343462 | 0.464 |
R-HSA-913531 | Interferon Signaling | 0.240511 | 0.619 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.321856 | 0.492 |
R-HSA-196757 | Metabolism of folate and pterines | 0.416481 | 0.380 |
R-HSA-450294 | MAP kinase activation | 0.386105 | 0.413 |
R-HSA-70171 | Glycolysis | 0.291631 | 0.535 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.310707 | 0.508 |
R-HSA-418885 | DCC mediated attractive signaling | 0.126700 | 0.897 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 0.289150 | 0.539 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 0.437475 | 0.359 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.403379 | 0.394 |
R-HSA-8848021 | Signaling by PTK6 | 0.403379 | 0.394 |
R-HSA-9008059 | Interleukin-37 signaling | 0.324664 | 0.489 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.304073 | 0.517 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.403379 | 0.394 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.380961 | 0.419 |
R-HSA-3371556 | Cellular response to heat stress | 0.151554 | 0.819 |
R-HSA-5357801 | Programmed Cell Death | 0.443176 | 0.353 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.149098 | 0.827 |
R-HSA-9823739 | Formation of the anterior neural plate | 0.459409 | 0.338 |
R-HSA-109581 | Apoptosis | 0.365253 | 0.437 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.359704 | 0.444 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.148838 | 0.827 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.377423 | 0.423 |
R-HSA-70326 | Glucose metabolism | 0.417820 | 0.379 |
R-HSA-75205 | Dissolution of Fibrin Clot | 0.364381 | 0.438 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 0.423230 | 0.373 |
R-HSA-5619102 | SLC transporter disorders | 0.391358 | 0.407 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.375316 | 0.426 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 0.441612 | 0.355 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.460026 | 0.337 |
R-HSA-9607240 | FLT3 Signaling | 0.460026 | 0.337 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.462486 | 0.335 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.462558 | 0.335 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.462558 | 0.335 |
R-HSA-448424 | Interleukin-17 signaling | 0.462558 | 0.335 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.469407 | 0.328 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.469483 | 0.328 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.469483 | 0.328 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.469483 | 0.328 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.470616 | 0.327 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.470616 | 0.327 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.470812 | 0.327 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.470812 | 0.327 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.470812 | 0.327 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.476445 | 0.322 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 0.476640 | 0.322 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.476640 | 0.322 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.476640 | 0.322 |
R-HSA-9945266 | Differentiation of T cells | 0.476640 | 0.322 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.476640 | 0.322 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.476640 | 0.322 |
R-HSA-9754706 | Atorvastatin ADME | 0.476640 | 0.322 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.479007 | 0.320 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.481079 | 0.318 |
R-HSA-69481 | G2/M Checkpoints | 0.486190 | 0.313 |
R-HSA-4086398 | Ca2+ pathway | 0.487143 | 0.312 |
R-HSA-1989781 | PPARA activates gene expression | 0.488225 | 0.311 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.488225 | 0.311 |
R-HSA-8854214 | TBC/RABGAPs | 0.491415 | 0.309 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.491415 | 0.309 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.491415 | 0.309 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 0.493323 | 0.307 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.493323 | 0.307 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 0.493323 | 0.307 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 0.493323 | 0.307 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 0.493323 | 0.307 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.493323 | 0.307 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.493323 | 0.307 |
R-HSA-1483148 | Synthesis of PG | 0.493323 | 0.307 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.493323 | 0.307 |
R-HSA-69275 | G2/M Transition | 0.494877 | 0.306 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.497117 | 0.304 |
R-HSA-446728 | Cell junction organization | 0.497275 | 0.303 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.499233 | 0.302 |
R-HSA-9610379 | HCMV Late Events | 0.499233 | 0.302 |
R-HSA-162587 | HIV Life Cycle | 0.499233 | 0.302 |
R-HSA-373752 | Netrin-1 signaling | 0.501620 | 0.300 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.504372 | 0.297 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 0.509475 | 0.293 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 0.509475 | 0.293 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.509475 | 0.293 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 0.509475 | 0.293 |
R-HSA-877300 | Interferon gamma signaling | 0.510158 | 0.292 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.511692 | 0.291 |
R-HSA-774815 | Nucleosome assembly | 0.511692 | 0.291 |
R-HSA-421270 | Cell-cell junction organization | 0.514289 | 0.289 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.521630 | 0.283 |
R-HSA-9675135 | Diseases of DNA repair | 0.521630 | 0.283 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.525113 | 0.280 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 0.525113 | 0.280 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.525113 | 0.280 |
R-HSA-2564830 | Cytosolic iron-sulfur cluster assembly | 0.525113 | 0.280 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.525113 | 0.280 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.525113 | 0.280 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.531431 | 0.275 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.534595 | 0.272 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.536126 | 0.271 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.537359 | 0.270 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.537359 | 0.270 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.540254 | 0.267 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.540254 | 0.267 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 0.540254 | 0.267 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.541094 | 0.267 |
R-HSA-9833482 | PKR-mediated signaling | 0.542260 | 0.266 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.543909 | 0.264 |
R-HSA-9609690 | HCMV Early Events | 0.544700 | 0.264 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.550410 | 0.259 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.550618 | 0.259 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.550618 | 0.259 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.550618 | 0.259 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.550618 | 0.259 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.554912 | 0.256 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.554912 | 0.256 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.554912 | 0.256 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.554912 | 0.256 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.554912 | 0.256 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.554912 | 0.256 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.554912 | 0.256 |
R-HSA-5662702 | Melanin biosynthesis | 0.554912 | 0.256 |
R-HSA-1181150 | Signaling by NODAL | 0.554912 | 0.256 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.556863 | 0.254 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.564811 | 0.248 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.569104 | 0.245 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.569104 | 0.245 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.569104 | 0.245 |
R-HSA-198753 | ERK/MAPK targets | 0.569104 | 0.245 |
R-HSA-9636383 | Prevention of phagosomal-lysosomal fusion | 0.569104 | 0.245 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.569247 | 0.245 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.575918 | 0.240 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.578349 | 0.238 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.578349 | 0.238 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.578349 | 0.238 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.579463 | 0.237 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.582166 | 0.235 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.582845 | 0.234 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.582845 | 0.234 |
R-HSA-174403 | Glutathione synthesis and recycling | 0.582845 | 0.234 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.582845 | 0.234 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.582845 | 0.234 |
R-HSA-2022377 | Metabolism of Angiotensinogen to Angiotensins | 0.582845 | 0.234 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.587310 | 0.231 |
R-HSA-1221632 | Meiotic synapsis | 0.587310 | 0.231 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.590935 | 0.228 |
R-HSA-9679506 | SARS-CoV Infections | 0.592318 | 0.227 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.594502 | 0.226 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.596129 | 0.225 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.596148 | 0.225 |
R-HSA-166208 | mTORC1-mediated signalling | 0.596148 | 0.225 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.596148 | 0.225 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.596148 | 0.225 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.596407 | 0.224 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.600588 | 0.221 |
R-HSA-438064 | Post NMDA receptor activation events | 0.600850 | 0.221 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.600850 | 0.221 |
R-HSA-9645723 | Diseases of programmed cell death | 0.607818 | 0.216 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.609028 | 0.215 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 0.609028 | 0.215 |
R-HSA-879518 | Organic anion transport by SLCO transporters | 0.609028 | 0.215 |
R-HSA-982772 | Growth hormone receptor signaling | 0.609028 | 0.215 |
R-HSA-75893 | TNF signaling | 0.613341 | 0.212 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.613341 | 0.212 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.613341 | 0.212 |
R-HSA-168255 | Influenza Infection | 0.618460 | 0.209 |
R-HSA-5693538 | Homology Directed Repair | 0.618514 | 0.209 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.621497 | 0.207 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.621497 | 0.207 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.621497 | 0.207 |
R-HSA-429947 | Deadenylation of mRNA | 0.621497 | 0.207 |
R-HSA-9836573 | Mitochondrial RNA degradation | 0.621497 | 0.207 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.621497 | 0.207 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.624376 | 0.205 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.624376 | 0.205 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.624376 | 0.205 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.633570 | 0.198 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.633570 | 0.198 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 0.633570 | 0.198 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.633570 | 0.198 |
R-HSA-9620244 | Long-term potentiation | 0.633570 | 0.198 |
R-HSA-389887 | Beta-oxidation of pristanoyl-CoA | 0.633570 | 0.198 |
R-HSA-1266695 | Interleukin-7 signaling | 0.633570 | 0.198 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.638099 | 0.195 |
R-HSA-9033241 | Peroxisomal protein import | 0.638099 | 0.195 |
R-HSA-186712 | Regulation of beta-cell development | 0.638099 | 0.195 |
R-HSA-391251 | Protein folding | 0.641429 | 0.193 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.641618 | 0.193 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.641618 | 0.193 |
R-HSA-5683057 | MAPK family signaling cascades | 0.641740 | 0.193 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.642786 | 0.192 |
R-HSA-446652 | Interleukin-1 family signaling | 0.643757 | 0.191 |
R-HSA-5689901 | Metalloprotease DUBs | 0.645258 | 0.190 |
R-HSA-9637687 | Suppression of phagosomal maturation | 0.645258 | 0.190 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.646070 | 0.190 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.646070 | 0.190 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.646070 | 0.190 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.646070 | 0.190 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.646070 | 0.190 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.646070 | 0.190 |
R-HSA-983189 | Kinesins | 0.646070 | 0.190 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.646070 | 0.190 |
R-HSA-1500931 | Cell-Cell communication | 0.647523 | 0.189 |
R-HSA-211976 | Endogenous sterols | 0.653902 | 0.184 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.653902 | 0.184 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.656574 | 0.183 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.656574 | 0.183 |
R-HSA-171306 | Packaging Of Telomere Ends | 0.656574 | 0.183 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.656574 | 0.183 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.656574 | 0.183 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.661595 | 0.179 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.661595 | 0.179 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.661857 | 0.179 |
R-HSA-69206 | G1/S Transition | 0.663788 | 0.178 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.667530 | 0.176 |
R-HSA-73614 | Pyrimidine salvage | 0.667530 | 0.176 |
R-HSA-5620971 | Pyroptosis | 0.667530 | 0.176 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.669150 | 0.174 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.673325 | 0.172 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.673857 | 0.171 |
R-HSA-5334118 | DNA methylation | 0.678137 | 0.169 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.678137 | 0.169 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.678137 | 0.169 |
R-HSA-180024 | DARPP-32 events | 0.678137 | 0.169 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.678137 | 0.169 |
R-HSA-1234174 | Cellular response to hypoxia | 0.683850 | 0.165 |
R-HSA-73894 | DNA Repair | 0.685612 | 0.164 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.688406 | 0.162 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.698012 | 0.156 |
R-HSA-9020702 | Interleukin-1 signaling | 0.702415 | 0.153 |
R-HSA-5218859 | Regulated Necrosis | 0.704894 | 0.152 |
R-HSA-1266738 | Developmental Biology | 0.707627 | 0.150 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.707974 | 0.150 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.708056 | 0.150 |
R-HSA-1483255 | PI Metabolism | 0.708056 | 0.150 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.711644 | 0.148 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.717293 | 0.144 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.717293 | 0.144 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.717293 | 0.144 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.717293 | 0.144 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.717293 | 0.144 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.718265 | 0.144 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.724758 | 0.140 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.724758 | 0.140 |
R-HSA-8939211 | ESR-mediated signaling | 0.725665 | 0.139 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.726315 | 0.139 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.726315 | 0.139 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.726315 | 0.139 |
R-HSA-189483 | Heme degradation | 0.726315 | 0.139 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.731124 | 0.136 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.731124 | 0.136 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.731124 | 0.136 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 0.731124 | 0.136 |
R-HSA-72306 | tRNA processing | 0.731642 | 0.136 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.735036 | 0.134 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.735050 | 0.134 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.735050 | 0.134 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.735050 | 0.134 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.735050 | 0.134 |
R-HSA-5673000 | RAF activation | 0.735050 | 0.134 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.735050 | 0.134 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.735050 | 0.134 |
R-HSA-157118 | Signaling by NOTCH | 0.736479 | 0.133 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.737364 | 0.132 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.743481 | 0.129 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.743507 | 0.129 |
R-HSA-169911 | Regulation of Apoptosis | 0.743507 | 0.129 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.743507 | 0.129 |
R-HSA-193775 | Synthesis of bile acids and bile salts via 24-hydroxycholesterol | 0.743507 | 0.129 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.751694 | 0.124 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.751694 | 0.124 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.751694 | 0.124 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.751955 | 0.124 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.755349 | 0.122 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.759620 | 0.119 |
R-HSA-2142789 | Ubiquinol biosynthesis | 0.759620 | 0.119 |
R-HSA-110331 | Cleavage of the damaged purine | 0.759620 | 0.119 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.760545 | 0.119 |
R-HSA-73927 | Depurination | 0.767294 | 0.115 |
R-HSA-8875878 | MET promotes cell motility | 0.767294 | 0.115 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.767294 | 0.115 |
R-HSA-9609646 | HCMV Infection | 0.770362 | 0.113 |
R-HSA-69541 | Stabilization of p53 | 0.774723 | 0.111 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.774723 | 0.111 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.777668 | 0.109 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.781915 | 0.107 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.781915 | 0.107 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.781915 | 0.107 |
R-HSA-69242 | S Phase | 0.784699 | 0.105 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.787430 | 0.104 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 0.788879 | 0.103 |
R-HSA-9694548 | Maturation of spike protein | 0.788879 | 0.103 |
R-HSA-8953854 | Metabolism of RNA | 0.791031 | 0.102 |
R-HSA-373760 | L1CAM interactions | 0.791738 | 0.101 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.795620 | 0.099 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.795620 | 0.099 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.795620 | 0.099 |
R-HSA-9683701 | Translation of Structural Proteins | 0.795620 | 0.099 |
R-HSA-9007101 | Rab regulation of trafficking | 0.795974 | 0.099 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.798186 | 0.098 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.798186 | 0.098 |
R-HSA-390918 | Peroxisomal lipid metabolism | 0.798186 | 0.098 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.798186 | 0.098 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.802146 | 0.096 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.802146 | 0.096 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.802146 | 0.096 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.802146 | 0.096 |
R-HSA-73928 | Depyrimidination | 0.802146 | 0.096 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.802703 | 0.095 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.803046 | 0.095 |
R-HSA-1500620 | Meiosis | 0.803046 | 0.095 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.807803 | 0.093 |
R-HSA-9710421 | Defective pyroptosis | 0.808465 | 0.092 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 0.808465 | 0.092 |
R-HSA-162906 | HIV Infection | 0.810105 | 0.091 |
R-HSA-73886 | Chromosome Maintenance | 0.812204 | 0.090 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.812457 | 0.090 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.814582 | 0.089 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.814582 | 0.089 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.814582 | 0.089 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.820504 | 0.086 |
R-HSA-1489509 | DAG and IP3 signaling | 0.820504 | 0.086 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.826237 | 0.083 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.826237 | 0.083 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.826237 | 0.083 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.826237 | 0.083 |
R-HSA-6802949 | Signaling by RAS mutants | 0.826237 | 0.083 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.826237 | 0.083 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.826237 | 0.083 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.831788 | 0.080 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 0.831788 | 0.080 |
R-HSA-437239 | Recycling pathway of L1 | 0.831788 | 0.080 |
R-HSA-1483191 | Synthesis of PC | 0.831788 | 0.080 |
R-HSA-9031628 | NGF-stimulated transcription | 0.837161 | 0.077 |
R-HSA-425410 | Metal ion SLC transporters | 0.837161 | 0.077 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.841400 | 0.075 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.842165 | 0.075 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.842306 | 0.075 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.842363 | 0.075 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.847400 | 0.072 |
R-HSA-109704 | PI3K Cascade | 0.847400 | 0.072 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.856995 | 0.067 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.856995 | 0.067 |
R-HSA-6794361 | Neurexins and neuroligins | 0.856995 | 0.067 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.860920 | 0.065 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.861565 | 0.065 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.861565 | 0.065 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.861565 | 0.065 |
R-HSA-445355 | Smooth Muscle Contraction | 0.861565 | 0.065 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.861565 | 0.065 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.865989 | 0.062 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.870272 | 0.060 |
R-HSA-3214815 | HDACs deacetylate histones | 0.870272 | 0.060 |
R-HSA-418597 | G alpha (z) signalling events | 0.870272 | 0.060 |
R-HSA-9753281 | Paracetamol ADME | 0.870272 | 0.060 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.870843 | 0.060 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.872132 | 0.059 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.872309 | 0.059 |
R-HSA-199991 | Membrane Trafficking | 0.873254 | 0.059 |
R-HSA-5610787 | Hedgehog 'off' state | 0.874340 | 0.058 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.874418 | 0.058 |
R-HSA-112399 | IRS-mediated signalling | 0.878432 | 0.056 |
R-HSA-1483166 | Synthesis of PA | 0.878432 | 0.056 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.882318 | 0.054 |
R-HSA-1632852 | Macroautophagy | 0.885671 | 0.053 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.885756 | 0.053 |
R-HSA-180786 | Extension of Telomeres | 0.886080 | 0.053 |
R-HSA-4085001 | Sialic acid metabolism | 0.886080 | 0.053 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.886080 | 0.053 |
R-HSA-5362517 | Signaling by Retinoic Acid | 0.889721 | 0.051 |
R-HSA-379724 | tRNA Aminoacylation | 0.889721 | 0.051 |
R-HSA-156590 | Glutathione conjugation | 0.889721 | 0.051 |
R-HSA-8951664 | Neddylation | 0.889968 | 0.051 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.892247 | 0.050 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.893247 | 0.049 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.893247 | 0.049 |
R-HSA-8956321 | Nucleotide salvage | 0.893247 | 0.049 |
R-HSA-1280218 | Adaptive Immune System | 0.894873 | 0.048 |
R-HSA-9734767 | Developmental Cell Lineages | 0.895549 | 0.048 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.896660 | 0.047 |
R-HSA-69239 | Synthesis of DNA | 0.897669 | 0.047 |
R-HSA-597592 | Post-translational protein modification | 0.900124 | 0.046 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.903163 | 0.044 |
R-HSA-2428924 | IGF1R signaling cascade | 0.903163 | 0.044 |
R-HSA-166520 | Signaling by NTRKs | 0.904469 | 0.044 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.906260 | 0.043 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.906260 | 0.043 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.908710 | 0.042 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.914969 | 0.039 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.920322 | 0.036 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.920322 | 0.036 |
R-HSA-9840310 | Glycosphingolipid catabolism | 0.920322 | 0.036 |
R-HSA-9612973 | Autophagy | 0.920430 | 0.036 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.921167 | 0.036 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.921167 | 0.036 |
R-HSA-5632684 | Hedgehog 'on' state | 0.922871 | 0.035 |
R-HSA-8978934 | Metabolism of cofactors | 0.922871 | 0.035 |
R-HSA-189445 | Metabolism of porphyrins | 0.922871 | 0.035 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.923968 | 0.034 |
R-HSA-2980736 | Peptide hormone metabolism | 0.925213 | 0.034 |
R-HSA-428157 | Sphingolipid metabolism | 0.925551 | 0.034 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.927727 | 0.033 |
R-HSA-9749641 | Aspirin ADME | 0.927727 | 0.033 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.928626 | 0.032 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.928639 | 0.032 |
R-HSA-449147 | Signaling by Interleukins | 0.929639 | 0.032 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.930039 | 0.031 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.930039 | 0.031 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.932724 | 0.030 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.934445 | 0.029 |
R-HSA-2132295 | MHC class II antigen presentation | 0.936207 | 0.029 |
R-HSA-9694635 | Translation of Structural Proteins | 0.936543 | 0.028 |
R-HSA-6809371 | Formation of the cornified envelope | 0.937884 | 0.028 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.938574 | 0.028 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 0.938574 | 0.028 |
R-HSA-216083 | Integrin cell surface interactions | 0.938574 | 0.028 |
R-HSA-194138 | Signaling by VEGF | 0.941112 | 0.026 |
R-HSA-114608 | Platelet degranulation | 0.944181 | 0.025 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.946069 | 0.024 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.952502 | 0.021 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.952651 | 0.021 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.953768 | 0.021 |
R-HSA-70268 | Pyruvate metabolism | 0.955635 | 0.020 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.957056 | 0.019 |
R-HSA-9663891 | Selective autophagy | 0.957056 | 0.019 |
R-HSA-1236974 | ER-Phagosome pathway | 0.958431 | 0.018 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.959762 | 0.018 |
R-HSA-202424 | Downstream TCR signaling | 0.959762 | 0.018 |
R-HSA-73884 | Base Excision Repair | 0.959762 | 0.018 |
R-HSA-5358351 | Signaling by Hedgehog | 0.960714 | 0.017 |
R-HSA-9664407 | Parasite infection | 0.962798 | 0.016 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.962798 | 0.016 |
R-HSA-9664417 | Leishmania phagocytosis | 0.962798 | 0.016 |
R-HSA-74752 | Signaling by Insulin receptor | 0.963507 | 0.016 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.963507 | 0.016 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.963800 | 0.016 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.964676 | 0.016 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.964676 | 0.016 |
R-HSA-5617833 | Cilium Assembly | 0.965387 | 0.015 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.965808 | 0.015 |
R-HSA-1474290 | Collagen formation | 0.965808 | 0.015 |
R-HSA-5389840 | Mitochondrial translation elongation | 0.968990 | 0.014 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.968990 | 0.014 |
R-HSA-1296071 | Potassium Channels | 0.968990 | 0.014 |
R-HSA-2262752 | Cellular responses to stress | 0.969494 | 0.013 |
R-HSA-157579 | Telomere Maintenance | 0.969984 | 0.013 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.970123 | 0.013 |
R-HSA-5368286 | Mitochondrial translation initiation | 0.970946 | 0.013 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.973244 | 0.012 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.973651 | 0.012 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.973973 | 0.011 |
R-HSA-9609507 | Protein localization | 0.974684 | 0.011 |
R-HSA-69306 | DNA Replication | 0.974684 | 0.011 |
R-HSA-1483257 | Phospholipid metabolism | 0.975185 | 0.011 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 0.975314 | 0.011 |
R-HSA-192823 | Viral mRNA Translation | 0.975314 | 0.011 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.976105 | 0.011 |
R-HSA-111885 | Opioid Signalling | 0.976105 | 0.011 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.979698 | 0.009 |
R-HSA-5419276 | Mitochondrial translation termination | 0.980349 | 0.009 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.980349 | 0.009 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.980450 | 0.009 |
R-HSA-202403 | TCR signaling | 0.980980 | 0.008 |
R-HSA-6803157 | Antimicrobial peptides | 0.981590 | 0.008 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.982862 | 0.008 |
R-HSA-9748784 | Drug ADME | 0.983203 | 0.007 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.983305 | 0.007 |
R-HSA-9711123 | Cellular response to chemical stress | 0.983747 | 0.007 |
R-HSA-5653656 | Vesicle-mediated transport | 0.984767 | 0.007 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.985895 | 0.006 |
R-HSA-8957322 | Metabolism of steroids | 0.986872 | 0.006 |
R-HSA-168256 | Immune System | 0.987326 | 0.006 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 0.987552 | 0.005 |
R-HSA-1660662 | Glycosphingolipid metabolism | 0.988339 | 0.005 |
R-HSA-15869 | Metabolism of nucleotides | 0.989409 | 0.005 |
R-HSA-8953897 | Cellular responses to stimuli | 0.990674 | 0.004 |
R-HSA-446219 | Synthesis of substrates in N-glycan biosythesis | 0.991586 | 0.004 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.991857 | 0.004 |
R-HSA-9824446 | Viral Infection Pathways | 0.992929 | 0.003 |
R-HSA-163685 | Integration of energy metabolism | 0.993084 | 0.003 |
R-HSA-5368287 | Mitochondrial translation | 0.993521 | 0.003 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.993840 | 0.003 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.994014 | 0.003 |
R-HSA-6805567 | Keratinization | 0.994666 | 0.002 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.994846 | 0.002 |
R-HSA-446193 | Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... | 0.996630 | 0.001 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.997320 | 0.001 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.997344 | 0.001 |
R-HSA-9675108 | Nervous system development | 0.997531 | 0.001 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.997869 | 0.001 |
R-HSA-422475 | Axon guidance | 0.997925 | 0.001 |
R-HSA-418555 | G alpha (s) signalling events | 0.997938 | 0.001 |
R-HSA-112316 | Neuronal System | 0.998605 | 0.001 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.998733 | 0.001 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.998738 | 0.001 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.998818 | 0.001 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.998972 | 0.000 |
R-HSA-416476 | G alpha (q) signalling events | 0.999025 | 0.000 |
R-HSA-1474244 | Extracellular matrix organization | 0.999176 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.999253 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999358 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999379 | 0.000 |
R-HSA-9658195 | Leishmania infection | 0.999413 | 0.000 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.999413 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999445 | 0.000 |
R-HSA-397014 | Muscle contraction | 0.999480 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999524 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999673 | 0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.999702 | 0.000 |
R-HSA-168249 | Innate Immune System | 0.999718 | 0.000 |
R-HSA-72312 | rRNA processing | 0.999730 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999759 | 0.000 |
R-HSA-109582 | Hemostasis | 0.999767 | 0.000 |
R-HSA-156580 | Phase II - Conjugation of compounds | 0.999786 | 0.000 |
R-HSA-6798695 | Neutrophil degranulation | 0.999876 | 0.000 |
R-HSA-5663205 | Infectious disease | 0.999984 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 0.999991 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.999993 | 0.000 |
R-HSA-72766 | Translation | 0.999994 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 0.999996 | 0.000 |
R-HSA-211859 | Biological oxidations | 0.999997 | 0.000 |
R-HSA-1643685 | Disease | 0.999998 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999999 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 0.999999 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-382551 | Transport of small molecules | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CDK18 |
0.897 | 0.887 | 1 | 0.868 |
P38G |
0.896 | 0.919 | 1 | 0.905 |
CDK17 |
0.896 | 0.902 | 1 | 0.896 |
CDK19 |
0.894 | 0.862 | 1 | 0.855 |
JNK2 |
0.891 | 0.921 | 1 | 0.870 |
HIPK2 |
0.891 | 0.813 | 1 | 0.848 |
KIS |
0.891 | 0.789 | 1 | 0.801 |
CDK8 |
0.889 | 0.863 | 1 | 0.823 |
ERK1 |
0.888 | 0.881 | 1 | 0.854 |
CDK16 |
0.887 | 0.867 | 1 | 0.882 |
CDK3 |
0.887 | 0.785 | 1 | 0.888 |
CDK7 |
0.887 | 0.855 | 1 | 0.825 |
CDK1 |
0.886 | 0.857 | 1 | 0.847 |
P38D |
0.886 | 0.895 | 1 | 0.900 |
CDK13 |
0.883 | 0.864 | 1 | 0.847 |
JNK3 |
0.882 | 0.908 | 1 | 0.845 |
P38B |
0.882 | 0.875 | 1 | 0.836 |
CDK5 |
0.881 | 0.835 | 1 | 0.795 |
CDK12 |
0.881 | 0.865 | 1 | 0.868 |
DYRK2 |
0.880 | 0.795 | 1 | 0.766 |
CDK10 |
0.880 | 0.824 | 1 | 0.848 |
CDK14 |
0.879 | 0.860 | 1 | 0.832 |
DYRK4 |
0.877 | 0.810 | 1 | 0.859 |
CDK9 |
0.876 | 0.853 | 1 | 0.842 |
ERK2 |
0.873 | 0.875 | 1 | 0.806 |
P38A |
0.873 | 0.848 | 1 | 0.771 |
HIPK1 |
0.872 | 0.741 | 1 | 0.749 |
DYRK1B |
0.869 | 0.774 | 1 | 0.817 |
CLK3 |
0.869 | 0.531 | 1 | 0.524 |
CDK4 |
0.868 | 0.856 | 1 | 0.874 |
NLK |
0.868 | 0.793 | 1 | 0.569 |
CDK6 |
0.866 | 0.830 | 1 | 0.852 |
HIPK3 |
0.863 | 0.724 | 1 | 0.726 |
HIPK4 |
0.863 | 0.508 | 1 | 0.555 |
DYRK1A |
0.861 | 0.653 | 1 | 0.736 |
JNK1 |
0.861 | 0.811 | 1 | 0.870 |
SRPK1 |
0.857 | 0.374 | -3 | 0.790 |
CDK2 |
0.857 | 0.661 | 1 | 0.730 |
ERK5 |
0.857 | 0.446 | 1 | 0.478 |
DYRK3 |
0.853 | 0.592 | 1 | 0.713 |
CLK1 |
0.852 | 0.461 | -3 | 0.791 |
CLK2 |
0.847 | 0.446 | -3 | 0.789 |
CLK4 |
0.846 | 0.419 | -3 | 0.808 |
MTOR |
0.844 | 0.233 | 1 | 0.371 |
ICK |
0.844 | 0.400 | -3 | 0.880 |
SRPK2 |
0.844 | 0.300 | -3 | 0.713 |
MAK |
0.843 | 0.541 | -2 | 0.814 |
CDKL5 |
0.842 | 0.202 | -3 | 0.836 |
CDKL1 |
0.839 | 0.179 | -3 | 0.842 |
COT |
0.839 | -0.064 | 2 | 0.911 |
MOK |
0.834 | 0.505 | 1 | 0.634 |
SRPK3 |
0.834 | 0.265 | -3 | 0.758 |
PRP4 |
0.832 | 0.482 | -3 | 0.793 |
ERK7 |
0.831 | 0.338 | 2 | 0.648 |
MOS |
0.830 | -0.012 | 1 | 0.230 |
CDC7 |
0.829 | -0.109 | 1 | 0.187 |
TBK1 |
0.828 | -0.156 | 1 | 0.171 |
PKN3 |
0.827 | -0.009 | -3 | 0.869 |
PRPK |
0.827 | -0.105 | -1 | 0.866 |
WNK1 |
0.827 | -0.029 | -2 | 0.900 |
MST4 |
0.826 | -0.006 | 2 | 0.900 |
CAMK1B |
0.825 | -0.016 | -3 | 0.902 |
GCN2 |
0.824 | -0.182 | 2 | 0.841 |
PIM3 |
0.824 | -0.032 | -3 | 0.874 |
RAF1 |
0.824 | -0.175 | 1 | 0.184 |
NUAK2 |
0.823 | 0.028 | -3 | 0.882 |
IKKE |
0.823 | -0.168 | 1 | 0.170 |
ATR |
0.823 | -0.056 | 1 | 0.227 |
PRKD1 |
0.823 | -0.004 | -3 | 0.875 |
PKN2 |
0.823 | -0.021 | -3 | 0.881 |
PRKD2 |
0.822 | 0.023 | -3 | 0.820 |
DSTYK |
0.821 | -0.123 | 2 | 0.924 |
NDR2 |
0.821 | -0.032 | -3 | 0.882 |
PKCD |
0.821 | 0.009 | 2 | 0.851 |
NIK |
0.821 | -0.024 | -3 | 0.918 |
ULK2 |
0.821 | -0.176 | 2 | 0.832 |
IKKB |
0.821 | -0.168 | -2 | 0.765 |
CHAK2 |
0.820 | -0.030 | -1 | 0.914 |
NEK6 |
0.820 | -0.070 | -2 | 0.852 |
PDHK4 |
0.820 | -0.180 | 1 | 0.250 |
RIPK3 |
0.820 | -0.110 | 3 | 0.798 |
RSK2 |
0.820 | 0.007 | -3 | 0.816 |
BMPR2 |
0.820 | -0.177 | -2 | 0.897 |
NDR1 |
0.818 | -0.047 | -3 | 0.879 |
CAMLCK |
0.818 | -0.004 | -2 | 0.879 |
MLK1 |
0.817 | -0.111 | 2 | 0.873 |
PIM1 |
0.817 | 0.029 | -3 | 0.823 |
RSK3 |
0.816 | -0.013 | -3 | 0.809 |
IRE1 |
0.816 | -0.059 | 1 | 0.176 |
SKMLCK |
0.816 | -0.048 | -2 | 0.881 |
P90RSK |
0.816 | -0.003 | -3 | 0.818 |
CAMK2G |
0.816 | -0.101 | 2 | 0.817 |
NEK7 |
0.815 | -0.158 | -3 | 0.878 |
TGFBR2 |
0.815 | -0.098 | -2 | 0.798 |
MAPKAPK3 |
0.815 | -0.046 | -3 | 0.825 |
PDHK1 |
0.814 | -0.197 | 1 | 0.229 |
AURC |
0.814 | 0.027 | -2 | 0.691 |
WNK3 |
0.814 | -0.169 | 1 | 0.185 |
AMPKA1 |
0.813 | -0.066 | -3 | 0.896 |
P70S6KB |
0.813 | -0.004 | -3 | 0.839 |
DAPK2 |
0.813 | -0.043 | -3 | 0.906 |
MLK3 |
0.813 | -0.029 | 2 | 0.813 |
PHKG1 |
0.812 | -0.034 | -3 | 0.868 |
ULK1 |
0.812 | -0.163 | -3 | 0.854 |
HUNK |
0.812 | -0.144 | 2 | 0.848 |
MNK2 |
0.812 | -0.009 | -2 | 0.817 |
PKCB |
0.812 | 0.005 | 2 | 0.817 |
PRKD3 |
0.811 | 0.007 | -3 | 0.791 |
PKCA |
0.811 | 0.012 | 2 | 0.806 |
PKACG |
0.811 | -0.024 | -2 | 0.766 |
MLK2 |
0.811 | -0.107 | 2 | 0.864 |
GRK1 |
0.811 | -0.035 | -2 | 0.809 |
NEK9 |
0.810 | -0.152 | 2 | 0.893 |
PAK6 |
0.810 | 0.014 | -2 | 0.746 |
PKCG |
0.810 | -0.007 | 2 | 0.814 |
LATS2 |
0.810 | -0.048 | -5 | 0.767 |
AMPKA2 |
0.809 | -0.047 | -3 | 0.866 |
IRE2 |
0.809 | -0.061 | 2 | 0.818 |
MNK1 |
0.809 | 0.007 | -2 | 0.829 |
PKCZ |
0.809 | -0.008 | 2 | 0.852 |
PKR |
0.809 | -0.042 | 1 | 0.197 |
GRK5 |
0.809 | -0.164 | -3 | 0.877 |
RIPK1 |
0.808 | -0.174 | 1 | 0.178 |
MAPKAPK2 |
0.808 | -0.029 | -3 | 0.779 |
TSSK1 |
0.808 | -0.053 | -3 | 0.913 |
IKKA |
0.807 | -0.110 | -2 | 0.753 |
PAK3 |
0.807 | -0.060 | -2 | 0.819 |
PAK1 |
0.807 | -0.039 | -2 | 0.821 |
PINK1 |
0.806 | 0.183 | 1 | 0.389 |
MELK |
0.806 | -0.063 | -3 | 0.853 |
DLK |
0.806 | -0.191 | 1 | 0.197 |
CAMK2D |
0.806 | -0.111 | -3 | 0.884 |
NUAK1 |
0.806 | -0.034 | -3 | 0.835 |
TSSK2 |
0.806 | -0.092 | -5 | 0.858 |
LATS1 |
0.806 | 0.004 | -3 | 0.895 |
ANKRD3 |
0.806 | -0.160 | 1 | 0.204 |
MARK4 |
0.806 | -0.107 | 4 | 0.839 |
BCKDK |
0.805 | -0.175 | -1 | 0.793 |
PKCH |
0.805 | -0.025 | 2 | 0.800 |
BMPR1B |
0.805 | -0.055 | 1 | 0.156 |
CAMK4 |
0.805 | -0.104 | -3 | 0.863 |
DNAPK |
0.805 | -0.051 | 1 | 0.222 |
MASTL |
0.804 | -0.204 | -2 | 0.824 |
SGK3 |
0.804 | 0.003 | -3 | 0.809 |
MPSK1 |
0.804 | 0.049 | 1 | 0.247 |
NIM1 |
0.804 | -0.106 | 3 | 0.816 |
TTBK2 |
0.804 | -0.180 | 2 | 0.756 |
VRK2 |
0.803 | 0.028 | 1 | 0.283 |
AKT2 |
0.803 | 0.034 | -3 | 0.730 |
NEK2 |
0.803 | -0.101 | 2 | 0.877 |
GRK6 |
0.803 | -0.141 | 1 | 0.179 |
PKG2 |
0.803 | -0.002 | -2 | 0.707 |
ATM |
0.803 | -0.095 | 1 | 0.193 |
ALK4 |
0.803 | -0.076 | -2 | 0.840 |
GRK7 |
0.802 | -0.016 | 1 | 0.211 |
RSK4 |
0.802 | 0.002 | -3 | 0.785 |
AURB |
0.802 | -0.006 | -2 | 0.686 |
YSK4 |
0.802 | -0.145 | 1 | 0.173 |
CHAK1 |
0.802 | -0.113 | 2 | 0.823 |
MSK2 |
0.801 | -0.043 | -3 | 0.782 |
PKACB |
0.801 | 0.017 | -2 | 0.702 |
TGFBR1 |
0.801 | -0.068 | -2 | 0.809 |
GSK3A |
0.801 | 0.209 | 4 | 0.476 |
MLK4 |
0.800 | -0.086 | 2 | 0.786 |
PIM2 |
0.799 | 0.023 | -3 | 0.790 |
SMG1 |
0.799 | -0.087 | 1 | 0.210 |
MST3 |
0.798 | -0.017 | 2 | 0.902 |
PHKG2 |
0.798 | -0.044 | -3 | 0.844 |
PLK1 |
0.798 | -0.147 | -2 | 0.806 |
MYLK4 |
0.797 | -0.032 | -2 | 0.800 |
IRAK4 |
0.797 | -0.089 | 1 | 0.162 |
QIK |
0.797 | -0.117 | -3 | 0.875 |
PRKX |
0.797 | 0.039 | -3 | 0.723 |
PKCT |
0.797 | -0.027 | 2 | 0.804 |
CAMK2A |
0.796 | -0.041 | 2 | 0.797 |
WNK4 |
0.796 | -0.096 | -2 | 0.886 |
CAMK1G |
0.796 | -0.045 | -3 | 0.802 |
PAK2 |
0.795 | -0.079 | -2 | 0.804 |
PKCI |
0.795 | 0.009 | 2 | 0.828 |
AKT1 |
0.795 | 0.017 | -3 | 0.752 |
MEK1 |
0.795 | -0.168 | 2 | 0.858 |
MSK1 |
0.795 | -0.026 | -3 | 0.790 |
CAMK2B |
0.795 | -0.080 | 2 | 0.770 |
DCAMKL1 |
0.795 | -0.043 | -3 | 0.832 |
GRK4 |
0.794 | -0.191 | -2 | 0.831 |
DRAK1 |
0.793 | -0.132 | 1 | 0.168 |
QSK |
0.793 | -0.075 | 4 | 0.816 |
ACVR2B |
0.793 | -0.108 | -2 | 0.803 |
SIK |
0.793 | -0.071 | -3 | 0.804 |
MEKK1 |
0.792 | -0.139 | 1 | 0.194 |
ACVR2A |
0.792 | -0.114 | -2 | 0.792 |
PKCE |
0.792 | 0.030 | 2 | 0.806 |
HRI |
0.791 | -0.155 | -2 | 0.854 |
TAO3 |
0.791 | -0.040 | 1 | 0.218 |
PERK |
0.791 | -0.145 | -2 | 0.841 |
PLK4 |
0.791 | -0.141 | 2 | 0.652 |
CHK1 |
0.791 | -0.080 | -3 | 0.873 |
MEK5 |
0.791 | -0.153 | 2 | 0.859 |
ALK2 |
0.791 | -0.097 | -2 | 0.817 |
ZAK |
0.791 | -0.155 | 1 | 0.184 |
MAPKAPK5 |
0.791 | -0.095 | -3 | 0.760 |
BRSK2 |
0.790 | -0.115 | -3 | 0.860 |
PKN1 |
0.790 | -0.006 | -3 | 0.771 |
NEK5 |
0.790 | -0.129 | 1 | 0.180 |
DCAMKL2 |
0.789 | -0.050 | -3 | 0.855 |
FAM20C |
0.789 | -0.050 | 2 | 0.591 |
MEKK2 |
0.789 | -0.122 | 2 | 0.850 |
AURA |
0.789 | -0.033 | -2 | 0.656 |
PAK5 |
0.789 | -0.027 | -2 | 0.672 |
BRSK1 |
0.789 | -0.092 | -3 | 0.835 |
MEKK3 |
0.789 | -0.165 | 1 | 0.191 |
GAK |
0.788 | -0.012 | 1 | 0.234 |
SNRK |
0.788 | -0.167 | 2 | 0.705 |
SMMLCK |
0.788 | -0.032 | -3 | 0.860 |
BUB1 |
0.787 | 0.045 | -5 | 0.803 |
GSK3B |
0.787 | 0.056 | 4 | 0.468 |
SSTK |
0.786 | -0.064 | 4 | 0.818 |
TLK2 |
0.786 | -0.174 | 1 | 0.166 |
GRK2 |
0.786 | -0.103 | -2 | 0.720 |
P70S6K |
0.786 | -0.033 | -3 | 0.751 |
TAO2 |
0.786 | -0.040 | 2 | 0.902 |
BRAF |
0.786 | -0.150 | -4 | 0.858 |
NEK11 |
0.786 | -0.118 | 1 | 0.217 |
PLK3 |
0.786 | -0.147 | 2 | 0.781 |
PAK4 |
0.785 | -0.018 | -2 | 0.679 |
PDK1 |
0.785 | -0.058 | 1 | 0.238 |
PKACA |
0.785 | 0.002 | -2 | 0.654 |
MARK3 |
0.785 | -0.087 | 4 | 0.769 |
BMPR1A |
0.785 | -0.079 | 1 | 0.147 |
PASK |
0.784 | -0.050 | -3 | 0.889 |
NEK8 |
0.783 | -0.130 | 2 | 0.878 |
LKB1 |
0.783 | -0.052 | -3 | 0.872 |
MAP3K15 |
0.783 | -0.089 | 1 | 0.199 |
MEKK6 |
0.783 | -0.085 | 1 | 0.189 |
MARK2 |
0.782 | -0.105 | 4 | 0.730 |
CK1E |
0.782 | -0.040 | -3 | 0.543 |
HASPIN |
0.782 | 0.048 | -1 | 0.764 |
GCK |
0.782 | -0.070 | 1 | 0.194 |
HGK |
0.781 | -0.062 | 3 | 0.909 |
NEK4 |
0.781 | -0.128 | 1 | 0.167 |
TNIK |
0.781 | -0.035 | 3 | 0.905 |
AKT3 |
0.780 | 0.018 | -3 | 0.668 |
LOK |
0.780 | -0.049 | -2 | 0.786 |
TLK1 |
0.779 | -0.178 | -2 | 0.825 |
TTBK1 |
0.779 | -0.165 | 2 | 0.670 |
HPK1 |
0.779 | -0.061 | 1 | 0.196 |
LRRK2 |
0.779 | -0.001 | 2 | 0.899 |
CHK2 |
0.779 | -0.010 | -3 | 0.680 |
KHS1 |
0.778 | -0.037 | 1 | 0.189 |
MARK1 |
0.778 | -0.123 | 4 | 0.794 |
MINK |
0.778 | -0.107 | 1 | 0.172 |
MRCKB |
0.778 | 0.008 | -3 | 0.782 |
SBK |
0.778 | 0.112 | -3 | 0.612 |
SGK1 |
0.778 | 0.032 | -3 | 0.651 |
CAMK1D |
0.777 | -0.045 | -3 | 0.729 |
KHS2 |
0.777 | -0.008 | 1 | 0.201 |
CAMKK1 |
0.776 | -0.180 | -2 | 0.786 |
NEK1 |
0.776 | -0.122 | 1 | 0.165 |
ROCK2 |
0.776 | 0.003 | -3 | 0.833 |
PBK |
0.776 | -0.036 | 1 | 0.213 |
EEF2K |
0.776 | -0.068 | 3 | 0.862 |
IRAK1 |
0.775 | -0.214 | -1 | 0.791 |
CAMKK2 |
0.775 | -0.137 | -2 | 0.783 |
SLK |
0.774 | -0.047 | -2 | 0.723 |
DAPK3 |
0.774 | -0.043 | -3 | 0.840 |
CK1D |
0.774 | -0.019 | -3 | 0.491 |
MST2 |
0.774 | -0.141 | 1 | 0.176 |
TAK1 |
0.773 | -0.158 | 1 | 0.174 |
YSK1 |
0.773 | -0.086 | 2 | 0.875 |
MRCKA |
0.772 | -0.014 | -3 | 0.799 |
CAMK1A |
0.772 | -0.024 | -3 | 0.701 |
BIKE |
0.771 | -0.012 | 1 | 0.223 |
VRK1 |
0.770 | -0.164 | 2 | 0.890 |
DMPK1 |
0.769 | 0.034 | -3 | 0.804 |
CK2A2 |
0.769 | -0.079 | 1 | 0.137 |
CK1G1 |
0.769 | -0.090 | -3 | 0.533 |
MST1 |
0.769 | -0.132 | 1 | 0.170 |
CK1A2 |
0.768 | -0.045 | -3 | 0.490 |
DAPK1 |
0.767 | -0.050 | -3 | 0.820 |
AAK1 |
0.767 | 0.022 | 1 | 0.227 |
GRK3 |
0.767 | -0.113 | -2 | 0.672 |
NEK3 |
0.767 | -0.106 | 1 | 0.197 |
PDHK3_TYR |
0.766 | 0.131 | 4 | 0.914 |
RIPK2 |
0.766 | -0.205 | 1 | 0.172 |
STK33 |
0.765 | -0.130 | 2 | 0.645 |
PKG1 |
0.764 | -0.031 | -2 | 0.628 |
ROCK1 |
0.764 | -0.005 | -3 | 0.798 |
CRIK |
0.764 | 0.013 | -3 | 0.751 |
LIMK2_TYR |
0.763 | 0.135 | -3 | 0.933 |
TESK1_TYR |
0.760 | 0.035 | 3 | 0.917 |
CK2A1 |
0.760 | -0.087 | 1 | 0.130 |
ASK1 |
0.759 | -0.118 | 1 | 0.199 |
TAO1 |
0.759 | -0.071 | 1 | 0.191 |
MEK2 |
0.759 | -0.221 | 2 | 0.835 |
PKMYT1_TYR |
0.758 | 0.103 | 3 | 0.890 |
MYO3B |
0.758 | -0.059 | 2 | 0.885 |
PDHK4_TYR |
0.757 | 0.047 | 2 | 0.889 |
OSR1 |
0.757 | -0.094 | 2 | 0.839 |
PLK2 |
0.756 | -0.102 | -3 | 0.808 |
TTK |
0.756 | -0.088 | -2 | 0.818 |
MYO3A |
0.755 | -0.080 | 1 | 0.185 |
PINK1_TYR |
0.754 | -0.091 | 1 | 0.241 |
MAP2K4_TYR |
0.753 | -0.037 | -1 | 0.872 |
MAP2K7_TYR |
0.753 | -0.102 | 2 | 0.880 |
BMPR2_TYR |
0.752 | 0.011 | -1 | 0.883 |
MAP2K6_TYR |
0.752 | -0.008 | -1 | 0.883 |
RET |
0.750 | -0.128 | 1 | 0.211 |
LIMK1_TYR |
0.749 | -0.000 | 2 | 0.889 |
PDHK1_TYR |
0.748 | -0.071 | -1 | 0.900 |
MST1R |
0.748 | -0.094 | 3 | 0.856 |
ALPHAK3 |
0.747 | -0.104 | -1 | 0.783 |
JAK2 |
0.747 | -0.116 | 1 | 0.221 |
CSF1R |
0.747 | -0.085 | 3 | 0.846 |
TYK2 |
0.745 | -0.192 | 1 | 0.198 |
NEK10_TYR |
0.745 | -0.092 | 1 | 0.198 |
EPHA6 |
0.744 | -0.093 | -1 | 0.878 |
ROS1 |
0.743 | -0.137 | 3 | 0.824 |
JAK1 |
0.742 | -0.078 | 1 | 0.195 |
JAK3 |
0.742 | -0.114 | 1 | 0.208 |
TYRO3 |
0.742 | -0.161 | 3 | 0.850 |
ABL2 |
0.740 | -0.108 | -1 | 0.811 |
TNNI3K_TYR |
0.740 | -0.035 | 1 | 0.218 |
TNK1 |
0.740 | -0.057 | 3 | 0.829 |
EPHB4 |
0.740 | -0.135 | -1 | 0.844 |
DDR1 |
0.739 | -0.133 | 4 | 0.837 |
YES1 |
0.739 | -0.104 | -1 | 0.860 |
TXK |
0.738 | -0.089 | 1 | 0.154 |
FGFR2 |
0.738 | -0.057 | 3 | 0.831 |
ABL1 |
0.737 | -0.114 | -1 | 0.803 |
KDR |
0.737 | -0.076 | 3 | 0.806 |
STLK3 |
0.737 | -0.200 | 1 | 0.165 |
YANK3 |
0.737 | -0.080 | 2 | 0.418 |
TNK2 |
0.736 | -0.111 | 3 | 0.800 |
LCK |
0.736 | -0.085 | -1 | 0.859 |
FGFR1 |
0.735 | -0.057 | 3 | 0.808 |
BLK |
0.734 | -0.071 | -1 | 0.861 |
FLT3 |
0.734 | -0.158 | 3 | 0.846 |
TEK |
0.734 | -0.031 | 3 | 0.781 |
KIT |
0.734 | -0.131 | 3 | 0.842 |
HCK |
0.734 | -0.142 | -1 | 0.850 |
PDGFRB |
0.733 | -0.193 | 3 | 0.851 |
FGR |
0.733 | -0.186 | 1 | 0.167 |
ITK |
0.732 | -0.141 | -1 | 0.820 |
INSRR |
0.732 | -0.153 | 3 | 0.794 |
WEE1_TYR |
0.729 | -0.079 | -1 | 0.761 |
EPHA4 |
0.728 | -0.115 | 2 | 0.777 |
MET |
0.728 | -0.121 | 3 | 0.832 |
AXL |
0.728 | -0.176 | 3 | 0.826 |
PDGFRA |
0.728 | -0.204 | 3 | 0.847 |
FER |
0.728 | -0.224 | 1 | 0.174 |
EPHB1 |
0.727 | -0.192 | 1 | 0.157 |
CK1A |
0.727 | -0.071 | -3 | 0.394 |
SRMS |
0.727 | -0.195 | 1 | 0.151 |
DDR2 |
0.727 | -0.045 | 3 | 0.773 |
FGFR3 |
0.725 | -0.077 | 3 | 0.804 |
FLT1 |
0.725 | -0.126 | -1 | 0.842 |
FYN |
0.725 | -0.083 | -1 | 0.840 |
MERTK |
0.725 | -0.173 | 3 | 0.822 |
EPHB3 |
0.724 | -0.188 | -1 | 0.830 |
EPHB2 |
0.724 | -0.174 | -1 | 0.823 |
BMX |
0.723 | -0.131 | -1 | 0.732 |
TEC |
0.723 | -0.151 | -1 | 0.748 |
FRK |
0.722 | -0.147 | -1 | 0.857 |
FLT4 |
0.722 | -0.148 | 3 | 0.794 |
ERBB2 |
0.721 | -0.170 | 1 | 0.184 |
BTK |
0.721 | -0.218 | -1 | 0.780 |
ALK |
0.720 | -0.181 | 3 | 0.757 |
EPHA7 |
0.718 | -0.153 | 2 | 0.788 |
EGFR |
0.718 | -0.117 | 1 | 0.161 |
EPHA1 |
0.718 | -0.174 | 3 | 0.811 |
INSR |
0.717 | -0.180 | 3 | 0.774 |
LTK |
0.716 | -0.196 | 3 | 0.776 |
NTRK2 |
0.716 | -0.223 | 3 | 0.804 |
LYN |
0.716 | -0.148 | 3 | 0.760 |
NTRK1 |
0.716 | -0.237 | -1 | 0.804 |
PTK2B |
0.715 | -0.126 | -1 | 0.786 |
MUSK |
0.715 | -0.130 | 1 | 0.145 |
SRC |
0.714 | -0.126 | -1 | 0.827 |
MATK |
0.713 | -0.120 | -1 | 0.738 |
PTK6 |
0.713 | -0.237 | -1 | 0.739 |
NTRK3 |
0.713 | -0.181 | -1 | 0.753 |
EPHA3 |
0.712 | -0.175 | 2 | 0.753 |
EPHA8 |
0.710 | -0.138 | -1 | 0.824 |
FGFR4 |
0.710 | -0.125 | -1 | 0.765 |
CSK |
0.709 | -0.165 | 2 | 0.789 |
PTK2 |
0.709 | -0.065 | -1 | 0.816 |
EPHA5 |
0.707 | -0.173 | 2 | 0.758 |
CK1G3 |
0.706 | -0.076 | -3 | 0.343 |
SYK |
0.706 | -0.092 | -1 | 0.791 |
ERBB4 |
0.705 | -0.098 | 1 | 0.152 |
YANK2 |
0.702 | -0.100 | 2 | 0.431 |
EPHA2 |
0.699 | -0.151 | -1 | 0.780 |
IGF1R |
0.698 | -0.173 | 3 | 0.708 |
ZAP70 |
0.695 | -0.069 | -1 | 0.708 |
CK1G2 |
0.685 | -0.078 | -3 | 0.444 |
FES |
0.684 | -0.175 | -1 | 0.707 |