Motif 141 (n=398)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A5PLL1 | ANKRD34B | S228 | ochoa | Ankyrin repeat domain-containing protein 34B | None |
A5PLL1 | ANKRD34B | S400 | ochoa | Ankyrin repeat domain-containing protein 34B | None |
E7EW31 | PROB1 | S789 | ochoa | Proline-rich basic protein 1 | None |
E9PCH4 | None | S1544 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
O14523 | C2CD2L | S374 | ochoa | Phospholipid transfer protein C2CD2L (C2 domain-containing protein 2-like) (C2CD2-like) (Transmembrane protein 24) | Lipid-binding protein that transports phosphatidylinositol, the precursor of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), from its site of synthesis in the endoplasmic reticulum to the cell membrane (PubMed:28209843). It thereby maintains the pool of cell membrane phosphoinositides, which are degraded during phospholipase C (PLC) signaling (PubMed:28209843). Plays a key role in the coordination of Ca(2+) and phosphoinositide signaling: localizes to sites of contact between the endoplasmic reticulum and the cell membrane, where it tethers the two bilayers (PubMed:28209843). In response to elevation of cytosolic Ca(2+), it is phosphorylated at its C-terminus and dissociates from the cell membrane, abolishing phosphatidylinositol transport to the cell membrane (PubMed:28209843). Positively regulates insulin secretion in response to glucose: phosphatidylinositol transfer to the cell membrane allows replenishment of PI(4,5)P2 pools and calcium channel opening, priming a new population of insulin granules (PubMed:28209843). {ECO:0000269|PubMed:28209843}. |
O15049 | N4BP3 | S145 | ochoa | NEDD4-binding protein 3 (N4BP3) | Plays a positive role in the antiviral innate immune signaling pathway. Mechanistically, interacts with MAVS and functions as a positive regulator to promote 'Lys-63'-linked polyubiquitination of MAVS and thus strengthens the interaction between MAVS and TRAF2 (PubMed:34880843). Also plays a role in axon and dendrite arborization during cranial nerve development. May also be important for neural crest migration and early development of other anterior structures including eye, brain and cranial cartilage (By similarity). {ECO:0000250|UniProtKB:A0A1L8GXY6, ECO:0000269|PubMed:34880843}. |
O43900 | PRICKLE3 | S122 | ochoa | Prickle planar cell polarity protein 3 (LIM domain only protein 6) (LMO-6) (Prickle-like protein 3) (Pk3) (Triple LIM domain protein 6) | Involved in the planar cell polarity (PCP) pathway that is essential for the polarization of epithelial cells during morphogenetic processes, including gastrulation and neurulation (By similarity). PCP is maintained by two molecular modules, the global and the core modules, PRICKLE3 being part of the core module (By similarity). Distinct complexes of the core module segregate to opposite sides of the cell, where they interact with the opposite complex in the neighboring cell at or near the adherents junctions (By similarity). Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). Required for proper assembly, stability, and function of mitochondrial membrane ATP synthase (mitochondrial complex V) (PubMed:32516135). {ECO:0000250|UniProtKB:A8WH69, ECO:0000269|PubMed:32516135}. |
O60292 | SIPA1L3 | S1685 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60331 | PIP5K1C | S453 | ochoa|psp | Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1gamma) (PtdIns(4)P-5-kinase 1 gamma) (EC 2.7.1.68) (Type I phosphatidylinositol 4-phosphate 5-kinase gamma) | Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:12422219, PubMed:22942276). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (Probable). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport (By similarity). Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis (PubMed:12847086). Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) (PubMed:12847086). Required for clathrin-coated pits assembly at the synapse (PubMed:17261850). Participates in cell junction assembly (PubMed:17261850). Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking (PubMed:17261850). Required for focal adhesion dynamics. Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions (PubMed:12422219). Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins (PubMed:12422219). Required for uropodium formation and retraction of the cell rear during directed migration (By similarity). Has a role in growth factor-stimulated directional cell migration and adhesion (By similarity). Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor (PubMed:17635937). Negative regulator of T-cell activation and adhesion (By similarity). Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor (By similarity). Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth (By similarity). {ECO:0000250|UniProtKB:O70161, ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:12422219, ECO:0000269|PubMed:12847086, ECO:0000269|PubMed:17261850, ECO:0000269|PubMed:17635937, ECO:0000269|PubMed:22942276, ECO:0000305|PubMed:19889969}. |
O75112 | LDB3 | S121 | ochoa | LIM domain-binding protein 3 (Protein cypher) (Z-band alternatively spliced PDZ-motif protein) | May function as an adapter in striated muscle to couple protein kinase C-mediated signaling via its LIM domains to the cytoskeleton. {ECO:0000305}. |
O75995 | SASH3 | S153 | ochoa | SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) | May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}. |
O76021 | RSL1D1 | S443 | ochoa | Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) | Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}. |
O94979 | SEC31A | S799 | ochoa | Protein transport protein Sec31A (ABP125) (ABP130) (SEC31-like protein 1) (SEC31-related protein A) (Web1-like protein) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER) (PubMed:10788476). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules (By similarity). {ECO:0000250|UniProtKB:Q9Z2Q1, ECO:0000269|PubMed:10788476}. |
O95359 | TACC2 | S571 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95935 | TBX18 | S117 | ochoa | T-box transcription factor TBX18 (T-box protein 18) | Acts as a transcriptional repressor involved in developmental processes of a variety of tissues and organs, including the heart and coronary vessels, the ureter and the vertebral column. Required for embryonic development of the sino atrial node (SAN) head area. {ECO:0000250|UniProtKB:Q9EPZ6, ECO:0000269|PubMed:26235987}. |
P02724 | GYPA | S130 | ochoa | Glycophorin-A (MN sialoglycoprotein) (PAS-2) (Sialoglycoprotein alpha) (CD antigen CD235a) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Glycophorin A is the major intrinsic membrane protein of the erythrocyte. The N-terminal glycosylated segment, which lies outside the erythrocyte membrane, has MN blood group receptors. Appears to be important for the function of SLC4A1 and is required for high activity of SLC4A1. May be involved in translocation of SLC4A1 to the plasma membrane. {ECO:0000269|PubMed:10926825, ECO:0000269|PubMed:12813056, ECO:0000269|PubMed:14604989, ECO:0000269|PubMed:19438409, ECO:0000269|PubMed:35835865}.; FUNCTION: (Microbial infection) Appears to be a receptor for Hepatitis A virus (HAV). {ECO:0000269|PubMed:15331714}.; FUNCTION: (Microbial infection) Receptor for P.falciparum erythrocyte-binding antigen 175 (EBA-175); binding of EBA-175 is dependent on sialic acid residues of the O-linked glycans. {ECO:0000269|PubMed:8009226}. |
P03928 | MT-ATP8 | S38 | ochoa | ATP synthase F(0) complex subunit 8 (A6L) (F-ATPase subunit 8) | Subunit 8, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). Part of the complex F(0) domain (PubMed:37244256). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}. |
P12755 | SKI | S383 | ochoa|psp | Ski oncogene (Proto-oncogene c-Ski) | May play a role in terminal differentiation of skeletal muscle cells but not in the determination of cells to the myogenic lineage. Functions as a repressor of TGF-beta signaling. {ECO:0000269|PubMed:19049980}. |
P15822 | HIVEP1 | S523 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15884 | TCF4 | S333 | ochoa | Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) | Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}. |
P15923 | TCF3 | S341 | ochoa|psp | Transcription factor E2-alpha (Class B basic helix-loop-helix protein 21) (bHLHb21) (Immunoglobulin enhancer-binding factor E12/E47) (Immunoglobulin transcription factor 1) (Kappa-E2-binding factor) (Transcription factor 3) (TCF-3) (Transcription factor ITF-1) | Transcriptional regulator involved in the initiation of neuronal differentiation and mesenchymal to epithelial transition (By similarity). Heterodimers between TCF3 and tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation (By similarity). Together with TCF15, required for the mesenchymal to epithelial transition (By similarity). Dimers bind DNA on E-box motifs: 5'-CANNTG-3' (By similarity). Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer (PubMed:2493990). Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (By similarity). {ECO:0000250|UniProtKB:P15806, ECO:0000269|PubMed:2493990}.; FUNCTION: [Isoform E47]: Facilitates ATOH7 binding to DNA at the consensus sequence 5'-CAGGTG-3', and positively regulates transcriptional activity. {ECO:0000269|PubMed:31696227}. |
P16949 | STMN1 | S25 | ochoa|psp | Stathmin (Leukemia-associated phosphoprotein p18) (Metablastin) (Oncoprotein 18) (Op18) (Phosphoprotein p19) (pp19) (Prosolin) (Protein Pr22) (pp17) | Involved in the regulation of the microtubule (MT) filament system by destabilizing microtubules. Prevents assembly and promotes disassembly of microtubules. Phosphorylation at Ser-16 may be required for axon formation during neurogenesis. Involved in the control of the learned and innate fear (By similarity). {ECO:0000250}. |
P18583 | SON | S1697 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P18848 | ATF4 | S248 | ochoa | Cyclic AMP-dependent transcription factor ATF-4 (cAMP-dependent transcription factor ATF-4) (Activating transcription factor 4) (Cyclic AMP-responsive element-binding protein 2) (CREB-2) (cAMP-responsive element-binding protein 2) (Tax-responsive enhancer element-binding protein 67) (TaxREB67) | Transcription factor that binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3') and displays two biological functions, as regulator of metabolic and redox processes under normal cellular conditions, and as master transcription factor during integrated stress response (ISR) (PubMed:16682973, PubMed:17684156, PubMed:31023583, PubMed:31444471, PubMed:32132707). Binds to asymmetric CRE's as a heterodimer and to palindromic CRE's as a homodimer (By similarity). Core effector of the ISR, which is required for adaptation to various stress such as endoplasmic reticulum (ER) stress, amino acid starvation, mitochondrial stress or oxidative stress (PubMed:31023583, PubMed:32132707). During ISR, ATF4 translation is induced via an alternative ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced ATF4 acts as a master transcription factor of stress-responsive genes in order to promote cell recovery (PubMed:31023583, PubMed:32132706, PubMed:32132707). Promotes the transcription of genes linked to amino acid sufficiency and resistance to oxidative stress to protect cells against metabolic consequences of ER oxidation (By similarity). Activates the transcription of NLRP1, possibly in concert with other factors in response to ER stress (PubMed:26086088). Activates the transcription of asparagine synthetase (ASNS) in response to amino acid deprivation or ER stress (PubMed:11960987). However, when associated with DDIT3/CHOP, the transcriptional activation of the ASNS gene is inhibited in response to amino acid deprivation (PubMed:18940792). Together with DDIT3/CHOP, mediates programmed cell death by promoting the expression of genes involved in cellular amino acid metabolic processes, mRNA translation and the terminal unfolded protein response (terminal UPR), a cellular response that elicits programmed cell death when ER stress is prolonged and unresolved (By similarity). Activates the expression of COX7A2L/SCAF1 downstream of the EIF2AK3/PERK-mediated unfolded protein response, thereby promoting formation of respiratory chain supercomplexes and increasing mitochondrial oxidative phosphorylation (PubMed:31023583). Together with DDIT3/CHOP, activates the transcription of the IRS-regulator TRIB3 and promotes ER stress-induced neuronal cell death by regulating the expression of BBC3/PUMA in response to ER stress (PubMed:15775988). May cooperate with the UPR transcriptional regulator QRICH1 to regulate ER protein homeostasis which is critical for cell viability in response to ER stress (PubMed:33384352). In the absence of stress, ATF4 translation is at low levels and it is required for normal metabolic processes such as embryonic lens formation, fetal liver hematopoiesis, bone development and synaptic plasticity (By similarity). Acts as a regulator of osteoblast differentiation in response to phosphorylation by RPS6KA3/RSK2: phosphorylation in osteoblasts enhances transactivation activity and promotes expression of osteoblast-specific genes and post-transcriptionally regulates the synthesis of Type I collagen, the main constituent of the bone matrix (PubMed:15109498). Cooperates with FOXO1 in osteoblasts to regulate glucose homeostasis through suppression of beta-cell production and decrease in insulin production (By similarity). Activates transcription of SIRT4 (By similarity). Regulates the circadian expression of the core clock component PER2 and the serotonin transporter SLC6A4 (By similarity). Binds in a circadian time-dependent manner to the cAMP response elements (CRE) in the SLC6A4 and PER2 promoters and periodically activates the transcription of these genes (By similarity). Mainly acts as a transcriptional activator in cellular stress adaptation, but it can also act as a transcriptional repressor: acts as a regulator of synaptic plasticity by repressing transcription, thereby inhibiting induction and maintenance of long-term memory (By similarity). Regulates synaptic functions via interaction with DISC1 in neurons, which inhibits ATF4 transcription factor activity by disrupting ATF4 dimerization and DNA-binding (PubMed:31444471). {ECO:0000250|UniProtKB:Q06507, ECO:0000269|PubMed:11960987, ECO:0000269|PubMed:15109498, ECO:0000269|PubMed:15775988, ECO:0000269|PubMed:16682973, ECO:0000269|PubMed:17684156, ECO:0000269|PubMed:18940792, ECO:0000269|PubMed:26086088, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:31444471, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:33384352}.; FUNCTION: (Microbial infection) Binds to a Tax-responsive enhancer element in the long terminal repeat of HTLV-I. {ECO:0000269|PubMed:1847461}. |
P19838 | NFKB1 | S893 | ochoa|psp | Nuclear factor NF-kappa-B p105 subunit (DNA-binding factor KBF1) (EBP-1) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1) [Cleaved into: Nuclear factor NF-kappa-B p50 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105. {ECO:0000269|PubMed:15485931, ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:2203531, ECO:0000269|PubMed:2234062, ECO:0000269|PubMed:7830764}.; FUNCTION: [Nuclear factor NF-kappa-B p105 subunit]: P105 is the precursor of the active p50 subunit (Nuclear factor NF-kappa-B p50 subunit) of the nuclear factor NF-kappa-B (PubMed:1423592). Acts as a cytoplasmic retention of attached NF-kappa-B proteins by p105 (PubMed:1423592). {ECO:0000269|PubMed:1423592}.; FUNCTION: [Nuclear factor NF-kappa-B p50 subunit]: Constitutes the active form, which associates with RELA/p65 to form the NF-kappa-B p65-p50 complex to form a transcription factor (PubMed:1740106, PubMed:7830764). Together with RELA/p65, binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions (PubMed:1740106, PubMed:7830764). {ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:7830764}. |
P22681 | CBL | S483 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P35611 | ADD1 | S600 | ochoa | Alpha-adducin (Erythrocyte adducin subunit alpha) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin. |
P41229 | KDM5C | S287 | ochoa | Lysine-specific demethylase 5C (EC 1.14.11.67) (Histone demethylase JARID1C) (Jumonji/ARID domain-containing protein 1C) (Protein SmcX) (Protein Xe169) ([histone H3]-trimethyl-L-lysine(4) demethylase 5C) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code (PubMed:28262558). Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Participates in transcriptional repression of neuronal genes by recruiting histone deacetylases and REST at neuron-restrictive silencer elements. Represses the CLOCK-BMAL1 heterodimer-mediated transcriptional activation of the core clock component PER2 (By similarity). {ECO:0000250|UniProtKB:P41230, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17468742, ECO:0000269|PubMed:26645689, ECO:0000269|PubMed:28262558}. |
P42566 | EPS15 | S681 | ochoa | Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}. |
P42858 | HTT | S2421 | psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P48067 | SLC6A9 | S673 | ochoa | Sodium- and chloride-dependent glycine transporter 1 (GlyT-1) (GlyT1) (Solute carrier family 6 member 9) | Sodium- and chloride-dependent glycine transporter (PubMed:8183239). Essential for regulating glycine concentrations at inhibitory glycinergic synapses. {ECO:0000250|UniProtKB:P28571, ECO:0000269|PubMed:8183239}.; FUNCTION: [Isoform GlyT-1B]: Sodium- and chloride-dependent glycine transporter. {ECO:0000269|PubMed:8183239}.; FUNCTION: [Isoform GlyT-1C]: Sodium- and chloride-dependent glycine transporter. {ECO:0000269|PubMed:8183239}. |
P48436 | SOX9 | S223 | ochoa | Transcription factor SOX-9 | Transcription factor that plays a key role in chondrocytes differentiation and skeletal development (PubMed:24038782). Specifically binds the 5'-ACAAAG-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes COL2A1, COL4A2, COL9A1, COL11A2 and ACAN, SOX5 and SOX6 (PubMed:8640233). Also binds to some promoter regions (By similarity). Plays a central role in successive steps of chondrocyte differentiation (By similarity). Absolutely required for precartilaginous condensation, the first step in chondrogenesis during which skeletal progenitors differentiate into prechondrocytes (By similarity). Together with SOX5 and SOX6, required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes, the second step in chondrogenesis (By similarity). Later, required to direct hypertrophic maturation and block osteoblast differentiation of growth plate chondrocytes: maintains chondrocyte columnar proliferation, delays prehypertrophy and then prevents osteoblastic differentiation of chondrocytes by lowering beta-catenin (CTNNB1) signaling and RUNX2 expression (By similarity). Also required for chondrocyte hypertrophy, both indirectly, by keeping the lineage fate of chondrocytes, and directly, by remaining present in upper hypertrophic cells and transactivating COL10A1 along with MEF2C (By similarity). Low lipid levels are the main nutritional determinant for chondrogenic commitment of skeletal progenitor cells: when lipids levels are low, FOXO (FOXO1 and FOXO3) transcription factors promote expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Mechanistically, helps, but is not required, to remove epigenetic signatures of transcriptional repression and deposit active promoter and enhancer marks at chondrocyte-specific genes (By similarity). Acts in cooperation with the Hedgehog pathway-dependent GLI (GLI1 and GLI3) transcription factors (By similarity). In addition to cartilage development, also acts as a regulator of proliferation and differentiation in epithelial stem/progenitor cells: involved in the lung epithelium during branching morphogenesis, by balancing proliferation and differentiation and regulating the extracellular matrix (By similarity). Controls epithelial branching during kidney development (By similarity). {ECO:0000250|UniProtKB:Q04887, ECO:0000269|PubMed:24038782, ECO:0000269|PubMed:8640233}. |
P50851 | LRBA | S968 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P51451 | BLK | S24 | ochoa | Tyrosine-protein kinase Blk (EC 2.7.10.2) (B lymphocyte kinase) (p55-Blk) | Non-receptor tyrosine kinase involved in B-lymphocyte development, differentiation and signaling (By similarity). B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors (By similarity). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (By similarity). Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis downstream of B-cell receptor (By similarity). Specifically binds and phosphorylates CD79A at 'Tyr-188'and 'Tyr-199', as well as CD79B at 'Tyr-196' and 'Tyr-207' (By similarity). Also phosphorylates the immunoglobulin G receptors FCGR2A, FCGR2B and FCGR2C (PubMed:8756631). With FYN and LYN, plays an essential role in pre-B-cell receptor (pre-BCR)-mediated NF-kappa-B activation (By similarity). Also contributes to BTK activation by indirectly stimulating BTK intramolecular autophosphorylation (By similarity). In pancreatic islets, acts as a modulator of beta-cells function through the up-regulation of PDX1 and NKX6-1 and consequent stimulation of insulin secretion in response to glucose (PubMed:19667185). Phosphorylates CGAS, promoting retention of CGAS in the cytosol (PubMed:30356214). {ECO:0000250|UniProtKB:P16277, ECO:0000269|PubMed:19667185, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:8756631}. |
P51608 | MECP2 | S164 | ochoa|psp | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P51610 | HCFC1 | S1398 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P52746 | ZNF142 | S991 | ochoa | Zinc finger protein 142 | May be involved in transcriptional regulation. {ECO:0000305}. |
P54725 | RAD23A | S92 | ochoa | UV excision repair protein RAD23 homolog A (HR23A) (hHR23A) | Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to 'Lys-48'-linked polyubiquitin chains in a length-dependent manner and with a lower affinity to 'Lys-63'-linked polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome.; FUNCTION: Involved in nucleotide excision repair and is thought to be functional equivalent for RAD23B in global genome nucleotide excision repair (GG-NER) by association with XPC. In vitro, the XPC:RAD23A dimer has NER activity. Can stabilize XPC.; FUNCTION: (Microbial infection) Involved in Vpr-dependent replication of HIV-1 in non-proliferating cells and primary macrophages. Required for the association of HIV-1 Vpr with the host proteasome. {ECO:0000269|PubMed:20614012}. |
P78559 | MAP1A | S896 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P85037 | FOXK1 | Y205 | ochoa | Forkhead box protein K1 (Myocyte nuclear factor) (MNF) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}. |
P85037 | FOXK1 | S472 | ochoa | Forkhead box protein K1 (Myocyte nuclear factor) (MNF) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}. |
P98088 | MUC5AC | S1618 | ochoa | Mucin-5AC (MUC-5AC) (Gastric mucin) (Major airway glycoprotein) (Mucin-5 subtype AC, tracheobronchial) (Tracheobronchial mucin) (TBM) | Gel-forming glycoprotein of gastric and respiratory tract epithelia that protects the mucosa from infection and chemical damage by binding to inhaled microorganisms and particles that are subsequently removed by the mucociliary system (PubMed:14535999, PubMed:14718370). Interacts with H.pylori in the gastric epithelium, Barrett's esophagus as well as in gastric metaplasia of the duodenum (GMD) (PubMed:14535999). {ECO:0000269|PubMed:14535999, ECO:0000303|PubMed:14535999, ECO:0000303|PubMed:14718370}. |
P98175 | RBM10 | S710 | ochoa | RNA-binding protein 10 (G patch domain-containing protein 9) (RNA-binding motif protein 10) (RNA-binding protein S1-1) (S1-1) | Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May be involved in post-transcriptional processing, most probably in mRNA splicing (PubMed:18315527). Binds to RNA homopolymers, with a preference for poly(G) and poly(U) and little for poly(A) (By similarity). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000250|UniProtKB:P70501, ECO:0000269|PubMed:18315527, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:28431233}. |
Q00653 | NFKB2 | S872 | ochoa|psp | Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}. |
Q00872 | MYBPC1 | S611 | ochoa | Myosin-binding protein C, slow-type (Slow MyBP-C) (C-protein, skeletal muscle slow isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. Slow skeletal protein that binds to both myosin and actin (PubMed:31025394, PubMed:31264822). In vitro, binds to native thin filaments and modifies the activity of actin-activated myosin ATPase. May modulate muscle contraction or may play a more structural role. {ECO:0000269|PubMed:31025394, ECO:0000269|PubMed:31264822}. |
Q01167 | FOXK2 | S199 | ochoa | Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}. |
Q02556 | IRF8 | S151 | psp | Interferon regulatory factor 8 (IRF-8) (Interferon consensus sequence-binding protein) (H-ICSBP) (ICSBP) | Transcription factor that specifically binds to the upstream regulatory region of type I interferon (IFN) and IFN-inducible MHC class I genes (the interferon consensus sequence (ICS)) (PubMed:25122610). Can both act as a transcriptional activator or repressor (By similarity). Plays a negative regulatory role in cells of the immune system (By similarity). Involved in CD8(+) dendritic cell differentiation by forming a complex with the BATF-JUNB heterodimer in immune cells, leading to recognition of AICE sequence (5'-TGAnTCA/GAAA-3'), an immune-specific regulatory element, followed by cooperative binding of BATF and IRF8 and activation of genes (By similarity). Required for the development of plasmacytoid dendritic cells (pDCs), which produce most of the type I IFN in response to viral infection (By similarity). Positively regulates macroautophagy in dendritic cells (PubMed:29434592). Acts as a transcriptional repressor of osteoclast differentiation factors such as NFATC1 and EEIG1 (By similarity). {ECO:0000250|UniProtKB:P23611, ECO:0000269|PubMed:25122610, ECO:0000269|PubMed:29434592}. |
Q06455 | RUNX1T1 | S41 | ochoa | Protein CBFA2T1 (Cyclin-D-related protein) (Eight twenty one protein) (Protein ETO) (Protein MTG8) (Zinc finger MYND domain-containing protein 2) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:10688654, PubMed:12559562, PubMed:15203199). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). Can repress transactivation mediated by TCF12 (PubMed:16803958). Acts as a negative regulator of adipogenesis (By similarity). The AML1-MTG8/ETO fusion protein frequently found in leukemic cells is involved in leukemogenesis and contributes to hematopoietic stem/progenitor cell self-renewal (PubMed:23812588). {ECO:0000250|UniProtKB:Q61909, ECO:0000269|PubMed:10688654, ECO:0000269|PubMed:10973986, ECO:0000269|PubMed:16803958, ECO:0000269|PubMed:23251453, ECO:0000269|PubMed:23812588, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}. |
Q07157 | TJP1 | S885 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q12770 | SCAP | S833 | ochoa | Sterol regulatory element-binding protein cleavage-activating protein (SCAP) (SREBP cleavage-activating protein) | Escort protein required for cholesterol as well as lipid homeostasis (By similarity). Regulates export of the SCAP-SREBP complex from the endoplasmic reticulum to the Golgi upon low cholesterol, thereby regulating the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:26311497). At high sterol concentrations, formation of a ternary complex with INSIG (INSIG1 or INSIG2) leads to mask the ER export signal in SCAP, promoting retention of the complex in the endoplasmic reticulum (By similarity). Low sterol concentrations trigger release of INSIG, a conformational change in the SSD domain of SCAP, unmasking of the ER export signal, promoting recruitment into COPII-coated vesicles and transport of the SCAP-SREBP to the Golgi: in the Golgi, SREBPs are then processed, releasing the transcription factor fragment of SREBPs from the membrane, its import into the nucleus and up-regulation of LDLR, INSIG1 and the mevalonate pathway (PubMed:26311497). Binds cholesterol via its SSD domain (By similarity). {ECO:0000250|UniProtKB:P97260, ECO:0000269|PubMed:26311497}. |
Q13017 | ARHGAP5 | Y978 | ochoa | Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) | GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}. |
Q13191 | CBLB | S856 | ochoa | E3 ubiquitin-protein ligase CBL-B (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene b) (RING finger protein 56) (RING-type E3 ubiquitin transferase CBL-B) (SH3-binding protein CBL-B) (Signal transduction protein CBL-B) | E3 ubiquitin-protein ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and transfers it to substrates, generally promoting their degradation by the proteasome. Negatively regulates TCR (T-cell receptor), BCR (B-cell receptor) and FCER1 (high affinity immunoglobulin epsilon receptor) signal transduction pathways. In naive T-cells, inhibits VAV1 activation upon TCR engagement and imposes a requirement for CD28 costimulation for proliferation and IL-2 production. Also acts by promoting PIK3R1/p85 ubiquitination, which impairs its recruitment to the TCR and subsequent activation. In activated T-cells, inhibits PLCG1 activation and calcium mobilization upon restimulation and promotes anergy. In B-cells, acts by ubiquitinating SYK and promoting its proteasomal degradation. Slightly promotes SRC ubiquitination. May be involved in EGFR ubiquitination and internalization. May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBL, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:Q3TTA7, ECO:0000269|PubMed:10022120, ECO:0000269|PubMed:10086340, ECO:0000269|PubMed:11087752, ECO:0000269|PubMed:11526404, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:20525694}. |
Q14160 | SCRIB | S1295 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14185 | DOCK1 | S1758 | ochoa | Dedicator of cytokinesis protein 1 (180 kDa protein downstream of CRK) (DOCK180) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). Functions as a guanine nucleotide exchange factor (GEF), which activates Rac Rho small GTPases by exchanging bound GDP for free GTP. Its GEF activity may be enhanced by ELMO1 (PubMed:8657152). {ECO:0000269|PubMed:19004829, ECO:0000269|PubMed:8657152}. |
Q14202 | ZMYM3 | S172 | ochoa | Zinc finger MYM-type protein 3 (Zinc finger protein 261) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q14296 | FASTK | S45 | ochoa | Fas-activated serine/threonine kinase (FAST kinase) (EC 2.7.11.1) (EC 2.7.11.8) | Phosphorylates the splicing regulator TIA1, thereby promoting the inclusion of FAS exon 6, which leads to an mRNA encoding a pro-apoptotic form of the receptor. {ECO:0000269|PubMed:17135269, ECO:0000269|PubMed:7544399}.; FUNCTION: [Isoform 4]: Required for the biogenesis of some mitochondrial-encoded mRNAs, specifically stabilizes ND6 (NADH dehydrogenase complex subunit 6) mRNA, and regulates its levels. {ECO:0000269|PubMed:25704814}. |
Q14839 | CHD4 | S515 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q15750 | TAB1 | S378 | ochoa | TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 1) (TGF-beta-activated kinase 1-binding protein 1) (TAK1-binding protein 1) | Key adapter protein that plays an essential role in JNK and NF-kappa-B activation and proinflammatory cytokines production in response to stimulation with TLRs and cytokines (PubMed:22307082, PubMed:24403530). Mechanistically, associates with the catalytic domain of MAP3K7/TAK1 to trigger MAP3K7/TAK1 autophosphorylation leading to its full activation (PubMed:10838074, PubMed:25260751, PubMed:37832545). Similarly, associates with MAPK14 and triggers its autophosphorylation and subsequent activation (PubMed:11847341, PubMed:29229647). In turn, MAPK14 phosphorylates TAB1 and inhibits MAP3K7/TAK1 activation in a feedback control mechanism (PubMed:14592977). Also plays a role in recruiting MAPK14 to the TAK1 complex for the phosphorylation of the TAB2 and TAB3 regulatory subunits (PubMed:18021073). {ECO:0000269|PubMed:10838074, ECO:0000269|PubMed:11847341, ECO:0000269|PubMed:14592977, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:22307082, ECO:0000269|PubMed:24403530, ECO:0000269|PubMed:25260751, ECO:0000269|PubMed:29229647, ECO:0000269|PubMed:37832545}. |
Q16799 | RTN1 | S563 | ochoa | Reticulon-1 (Neuroendocrine-specific protein) | Inhibits amyloid precursor protein processing, probably by blocking BACE1 activity. {ECO:0000269|PubMed:15286784}. |
Q2TAL5 | SMTNL2 | S91 | ochoa | Smoothelin-like protein 2 | None |
Q3MIN7 | RGL3 | S559 | ochoa | Ral guanine nucleotide dissociation stimulator-like 3 (RalGDS-like 3) | Guanine nucleotide exchange factor (GEF) for Ral-A. Potential effector of GTPase HRas and Ras-related protein M-Ras. Negatively regulates Elk-1-dependent gene induction downstream of HRas and MEKK1 (By similarity). {ECO:0000250}. |
Q4L180 | FILIP1L | S1068 | ochoa | Filamin A-interacting protein 1-like (130 kDa GPBP-interacting protein) (90 kDa GPBP-interacting protein) (Protein down-regulated in ovarian cancer 1) (DOC-1) | Acts as a regulator of the antiangiogenic activity on endothelial cells. When overexpressed in endothelial cells, leads to inhibition of cell proliferation and migration and an increase in apoptosis. Inhibits melanoma growth When expressed in tumor-associated vasculature. {ECO:0000269|PubMed:18794120}. |
Q4VC44 | FLYWCH1 | S21 | ochoa | FLYWCH-type zinc finger-containing protein 1 | Transcription cofactor (PubMed:30097457). Negatively regulates transcription activation by catenin beta-1 CTNNB1, perhaps acting by competing with TCF4 for CTNNB1 binding (PubMed:30097457). May play a role in DNA-damage response signaling (PubMed:33924684). Binds specifically to DNA sequences at peri-centromeric chromatin loci. {ECO:0000269|PubMed:30097457, ECO:0000269|PubMed:33924684, ECO:0000269|PubMed:34408139}. |
Q5VT52 | RPRD2 | S1197 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VV67 | PPRC1 | S771 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) | Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}. |
Q5VWG9 | TAF3 | S229 | ochoa | Transcription initiation factor TFIID subunit 3 (140 kDa TATA box-binding protein-associated factor) (TBP-associated factor 3) (Transcription initiation factor TFIID 140 kDa subunit) (TAF(II)140) (TAF140) (TAFII-140) (TAFII140) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF3 forms the TFIID-A module together with TAF5 and TBP (PubMed:33795473). Required in complex with TBPL2 for the differentiation of myoblasts into myocytes (PubMed:11438666). The TAF3-TBPL2 complex replaces TFIID at specific promoters at an early stage in the differentiation process (PubMed:11438666). {ECO:0000269|PubMed:11438666, ECO:0000269|PubMed:33795473}. |
Q5VWN6 | TASOR2 | S1539 | ochoa | Protein TASOR 2 | None |
Q5VZ89 | DENND4C | S680 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q659C4 | LARP1B | S593 | ochoa | La-related protein 1B (La ribonucleoprotein domain family member 1B) (La ribonucleoprotein domain family member 2) (La-related protein 2) | None |
Q6IQ23 | PLEKHA7 | S366 | ochoa | Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) | Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}. |
Q6P1N0 | CC2D1A | S239 | ochoa | Coiled-coil and C2 domain-containing protein 1A (Akt kinase-interacting protein 1) (Five prime repressor element under dual repression-binding protein 1) (FRE under dual repression-binding protein 1) (Freud-1) (Putative NF-kappa-B-activating protein 023N) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. The combination of calcium and ATP specifically inactivates the binding with FRE. May play a role in the altered regulation of HTR1A associated with anxiety and major depression. Mediates HDAC-independent repression of HTR1A promoter in neuronal cell. Performs essential function in controlling functional maturation of synapses (By similarity). Plays distinct roles depending on its localization. When cytoplasmic, acts as a scaffold protein in the PI3K/PDK1/AKT pathway. Repressor of HTR1A when nuclear. In the centrosome, regulates spindle pole localization of the cohesin subunit SCC1/RAD21, thereby mediating centriole cohesion during mitosis. {ECO:0000250, ECO:0000269|PubMed:20171170}. |
Q6PJG9 | LRFN4 | S565 | ochoa | Leucine-rich repeat and fibronectin type-III domain-containing protein 4 | Promotes neurite outgrowth in hippocampal neurons. May play a role in redistributing DLG4 to the cell periphery (By similarity). {ECO:0000250}. |
Q6XR72 | SLC30A10 | S402 | ochoa | Calcium/manganese antiporter SLC30A10 (Solute carrier family 30 member 10) (Zinc transporter 10) (ZnT-10) | Calcium:manganese antiporter of the plasma membrane mediating the efflux of intracellular manganese coupled to an active extracellular calcium exchange (PubMed:30755481). Required for intracellular manganese homeostasis, an essential cation for the function of several enzymes, including some crucially important for the metabolism of neurotransmitters and other neuronal metabolic pathways. Manganese can also be cytotoxic and induce oxidative stress, mitochondrial dysfunction and apoptosis (PubMed:22341972, PubMed:25319704, PubMed:26728129, PubMed:27226609, PubMed:27307044). Could also have an intracellular zinc ion transporter activity, directly regulating intracellular zinc ion homeostasis and more indirectly various signaling pathway and biological processes (PubMed:22427991, PubMed:26728129). {ECO:0000269|PubMed:22341972, ECO:0000269|PubMed:22427991, ECO:0000269|PubMed:25319704, ECO:0000269|PubMed:26728129, ECO:0000269|PubMed:27226609, ECO:0000269|PubMed:27307044, ECO:0000269|PubMed:30755481}. |
Q6ZMQ8 | AATK | S1262 | ochoa | Serine/threonine-protein kinase LMTK1 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase) (AATYK) (Brain apoptosis-associated tyrosine kinase) (CDK5-binding protein) (Lemur tyrosine kinase 1) (p35-binding protein) (p35BP) | May be involved in neuronal differentiation. {ECO:0000269|PubMed:10837911}. |
Q6ZNL6 | FGD5 | S740 | ochoa | FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}. |
Q6ZS17 | RIPOR1 | S711 | ochoa | Rho family-interacting cell polarization regulator 1 | Downstream effector protein for Rho-type small GTPases that plays a role in cell polarity and directional migration (PubMed:27807006). Acts as an adapter protein, linking active Rho proteins to STK24 and STK26 kinases, and hence positively regulates Golgi reorientation in polarized cell migration upon Rho activation (PubMed:27807006). Involved in the subcellular relocation of STK26 from the Golgi to cytoplasm punctae in a Rho- and PDCD10-dependent manner upon serum stimulation (PubMed:27807006). {ECO:0000269|PubMed:27807006}. |
Q6ZSS7 | MFSD6 | S755 | ochoa | Major facilitator superfamily domain-containing protein 6 (Macrophage MHC class I receptor 2 homolog) | None |
Q70E73 | RAPH1 | S1012 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q70EL1 | USP54 | S603 | ochoa | Ubiquitin carboxyl-terminal hydrolase 54 (EC 3.4.19.12) (Ubiquitin-specific peptidase 54) | Deubiquitinase that specifically mediates 'Lys-63'-linked deubiquitination of substrates with a polyubiquitin chain composed of at least 3 ubiquitins (PubMed:39587316). Specifically recognizes ubiquitin chain in position S2 and catalyzes cleavage of polyubiquitin within 'Lys-63'-linked chains (PubMed:39587316). Not able to deubiquitinate substrates with shorter ubiquitin chains (PubMed:39587316). Mediates deubiquitination of PLK4, maintaining PLK4 stability by reducing its ubiquitination-mediated degradation (PubMed:36590171). {ECO:0000269|PubMed:36590171, ECO:0000269|PubMed:39587316}. |
Q70SY1 | CREB3L2 | S191 | ochoa | Cyclic AMP-responsive element-binding protein 3-like protein 2 (cAMP-responsive element-binding protein 3-like protein 2) (BBF2 human homolog on chromosome 7) [Cleaved into: Processed cyclic AMP-responsive element-binding protein 3-like protein 2] | Transcription factor involved in unfolded protein response (UPR). In the absence of endoplasmic reticulum (ER) stress, inserted into ER membranes, with N-terminal DNA-binding and transcription activation domains oriented toward the cytosolic face of the membrane. In response to ER stress, transported to the Golgi, where it is cleaved in a site-specific manner by resident proteases S1P/MBTPS1 and S2P/MBTPS2. The released N-terminal cytosolic domain is translocated to the nucleus to effect transcription of specific target genes. Plays a critical role in chondrogenesis by activating the transcription of SEC23A, which promotes the transport and secretion of cartilage matrix proteins, and possibly that of ER biogenesis-related genes (By similarity). In a neuroblastoma cell line, protects cells from ER stress-induced death (PubMed:17178827). In vitro activates transcription of target genes via direct binding to the CRE site (PubMed:17178827). {ECO:0000250|UniProtKB:Q8BH52, ECO:0000269|PubMed:17178827}. |
Q76FK4 | NOL8 | S660 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q7L8C5 | SYT13 | S58 | ochoa | Synaptotagmin-13 (Synaptotagmin XIII) (SytXIII) | May be involved in transport vesicle docking to the plasma membrane. {ECO:0000250}. |
Q7L9B9 | EEPD1 | S220 | ochoa | Endonuclease/exonuclease/phosphatase family domain-containing protein 1 | None |
Q7Z3G6 | PRICKLE2 | S66 | ochoa | Prickle-like protein 2 | None |
Q7Z3K3 | POGZ | S292 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q86SQ0 | PHLDB2 | S95 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86TC9 | MYPN | S561 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86XL3 | ANKLE2 | S528 | ochoa|psp | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86YP4 | GATAD2A | S100 | ochoa | Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q8IV32 | CCDC71 | S208 | ochoa | Coiled-coil domain-containing protein 71 | None |
Q8IX15 | HOMEZ | S317 | ochoa | Homeobox and leucine zipper protein Homez (Homeodomain leucine zipper-containing factor) | May function as a transcriptional regulator. |
Q8IXI1 | RHOT2 | S325 | ochoa | Mitochondrial Rho GTPase 2 (MIRO-2) (hMiro-2) (EC 3.6.5.-) (Ras homolog gene family member T2) | Atypical mitochondrial nucleoside-triphosphatase (NTPase) involved in mitochondrial trafficking (PubMed:16630562, PubMed:22396657, PubMed:30513825). Probably involved in control of anterograde transport of mitochondria and their subcellular distribution (PubMed:22396657). Can hydrolyze GTP (By similarity). Can hydrolyze ATP and UTP (PubMed:30513825). {ECO:0000250|UniProtKB:Q8IXI2, ECO:0000269|PubMed:16630562, ECO:0000269|PubMed:22396657, ECO:0000269|PubMed:30513825}. |
Q8IY63 | AMOTL1 | S295 | ochoa | Angiomotin-like protein 1 | Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. {ECO:0000269|PubMed:22362771}. |
Q8IYB7 | DIS3L2 | S503 | ochoa | DIS3-like exonuclease 2 (hDIS3L2) (EC 3.1.13.-) | 3'-5'-exoribonuclease that specifically recognizes RNAs polyuridylated at their 3' end and mediates their degradation. Component of an exosome-independent RNA degradation pathway that mediates degradation of both mRNAs and miRNAs that have been polyuridylated by a terminal uridylyltransferase, such as ZCCHC11/TUT4. Mediates degradation of cytoplasmic mRNAs that have been deadenylated and subsequently uridylated at their 3'. Mediates degradation of uridylated pre-let-7 miRNAs, contributing to the maintenance of embryonic stem (ES) cells. Essential for correct mitosis, and negatively regulates cell proliferation. {ECO:0000255|HAMAP-Rule:MF_03045, ECO:0000269|PubMed:23756462, ECO:0000269|PubMed:24141620}. |
Q8IZD2 | KMT2E | S1444 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8N1G0 | ZNF687 | S129 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8NF64 | ZMIZ2 | S411 | ochoa | Zinc finger MIZ domain-containing protein 2 (PIAS-like protein Zimp7) | Increases ligand-dependent transcriptional activity of AR and other nuclear hormone receptors. {ECO:0000269|PubMed:16051670}. |
Q8NFH8 | REPS2 | S550 | ochoa | RalBP1-associated Eps domain-containing protein 2 (Partner of RalBP1) (RalBP1-interacting protein 2) | Involved in ligand-dependent receptor mediated endocytosis of the EGF and insulin receptors as part of the Ral signaling pathway (PubMed:10393179, PubMed:12771942, PubMed:9422736). By controlling growth factor receptors endocytosis may regulate cell survival (PubMed:12771942). Through ASAP1 may regulate cell adhesion and migration (PubMed:12149250). {ECO:0000269|PubMed:10393179, ECO:0000269|PubMed:12149250, ECO:0000269|PubMed:12771942, ECO:0000269|PubMed:9422736}. |
Q8TES7 | FBF1 | S359 | ochoa | Fas-binding factor 1 (FBF-1) (Protein albatross) | Keratin-binding protein required for epithelial cell polarization. Involved in apical junction complex (AJC) assembly via its interaction with PARD3. Required for ciliogenesis. {ECO:0000269|PubMed:18838552, ECO:0000269|PubMed:23348840}. |
Q8TEU7 | RAPGEF6 | S1494 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8WUQ7 | CACTIN | S489 | ochoa | Splicing factor Cactin (Renal carcinoma antigen NY-REN-24) | Plays a role in pre-mRNA splicing by facilitating excision of a subset of introns (PubMed:28062851). Required for the splicing of CDCA5/Sororin, a regulator of sister chromatid cohesion (PubMed:28062851). Involved in the regulation of innate immune response (PubMed:20829348). Acts as a negative regulator of Toll-like receptor, interferon-regulatory factor (IRF) and canonical NF-kappa-B signaling pathways (PubMed:20829348, PubMed:26363554). Contributes to the regulation of transcriptional activation of NF-kappa-B target genes in response to endogenous pro-inflammatory stimuli (PubMed:20829348, PubMed:26363554). {ECO:0000269|PubMed:20829348, ECO:0000269|PubMed:26363554, ECO:0000269|PubMed:28062851}. |
Q8WUY3 | PRUNE2 | S597 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q92570 | NR4A3 | S380 | ochoa | Nuclear receptor subfamily 4 group A member 3 (Mitogen-induced nuclear orphan receptor) (Neuron-derived orphan receptor 1) (Nuclear hormone receptor NOR-1) (Translocated in extraskeletal chondrosarcoma) | Transcriptional activator that binds to regulatory elements in promoter regions in a cell- and response element (target)-specific manner. Induces gene expression by binding as monomers to the NR4A1 response element (NBRE) 5'-AAAAGGTCA-3' site and as homodimers to the Nur response element (NurRE) site in the promoter of their regulated target genes (By similarity). Plays a role in the regulation of proliferation, survival and differentiation of many different cell types and also in metabolism and inflammation. Mediates proliferation of vascular smooth muscle, myeloid progenitor cell and type B pancreatic cells; promotes mitogen-induced vascular smooth muscle cell proliferation through transactivation of SKP2 promoter by binding a NBRE site (By similarity). Upon PDGF stimulation, stimulates vascular smooth muscle cell proliferation by regulating CCND1 and CCND2 expression. In islets, induces type B pancreatic cell proliferation through up-regulation of genes that activate cell cycle, as well as genes that cause degradation of the CDKN1A (By similarity). Negatively regulates myeloid progenitor cell proliferation by repressing RUNX1 in a NBRE site-independent manner. During inner ear, plays a role as a key mediator of the proliferative growth phase of semicircular canal development (By similarity). Also mediates survival of neuron and smooth muscle cells; mediates CREB-induced neuronal survival, and during hippocampus development, plays a critical role in pyramidal cell survival and axonal guidance. Is required for S phase entry of the cell cycle and survival of smooth muscle cells by inducing CCND1, resulting in RB1 phosphorylation. Binds to NBRE motif in CCND1 promoter, resulting in the activation of the promoter and CCND1 transcription (By similarity). Also plays a role in inflammation; upon TNF stimulation, mediates monocyte adhesion by inducing the expression of VCAM1 and ICAM1 by binding to the NBRE consensus site (By similarity) (PubMed:20558821). In mast cells activated by Fc-epsilon receptor cross-linking, promotes the synthesis and release of cytokines but impairs events leading to degranulation (By similarity). Also plays a role in metabolism; by modulating feeding behavior; and by playing a role in energy balance by inhibiting the glucocorticoid-induced orexigenic neuropeptides AGRP expression, at least in part by forming a complex with activated NR3C1 on the AGRP- glucocorticoid response element (GRE), and thus weakening the DNA binding activity of NR3C1. Upon catecholamines stimulation, regulates gene expression that controls oxidative metabolism in skeletal muscle (By similarity). Plays a role in glucose transport by regulating translocation of the SLC2A4 glucose transporter to the cell surface (PubMed:24022864). Finally, during gastrulation plays a crucial role in the formation of anterior mesoderm by controlling cell migration. Inhibits adipogenesis (By similarity). Also participates in cardiac hypertrophy by activating PARP1 (By similarity). {ECO:0000250|UniProtKB:P51179, ECO:0000250|UniProtKB:Q9QZB6, ECO:0000269|PubMed:20558821, ECO:0000269|PubMed:24022864}. |
Q92610 | ZNF592 | S680 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92925 | SMARCD2 | S203 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 2 (60 kDa BRG-1/Brm-associated factor subunit B) (BRG1-associated factor 60B) (BAF60B) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:22952240, PubMed:26601204). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (PubMed:28369036). {ECO:0000269|PubMed:28369036, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q93084 | ATP2A3 | S488 | ochoa | Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (SERCA3) (SR Ca(2+)-ATPase 3) (EC 7.2.2.10) (Calcium pump 3) | This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction. {ECO:0000269|PubMed:11956212, ECO:0000269|PubMed:15028735}. |
Q969S8 | HDAC10 | S368 | ochoa | Polyamine deacetylase HDAC10 (EC 3.5.1.48) (EC 3.5.1.62) (Histone deacetylase 10) (HD10) | Polyamine deacetylase (PDAC), which acts preferentially on N(8)-acetylspermidine, and also on acetylcadaverine and acetylputrescine (PubMed:28516954). Exhibits attenuated catalytic activity toward N(1),N(8)-diacetylspermidine and very low activity, if any, toward N(1)-acetylspermidine (PubMed:28516954). Histone deacetylase activity has been observed in vitro (PubMed:11677242, PubMed:11726666, PubMed:11739383, PubMed:11861901). Has also been shown to be involved in MSH2 deacetylation (PubMed:26221039). The physiological relevance of protein/histone deacetylase activity is unclear and could be very weak (PubMed:28516954). May play a role in the promotion of late stages of autophagy, possibly autophagosome-lysosome fusion and/or lysosomal exocytosis in neuroblastoma cells (PubMed:23801752, PubMed:29968769). May play a role in homologous recombination (PubMed:21247901). May promote DNA mismatch repair (PubMed:26221039). {ECO:0000269|PubMed:11677242, ECO:0000269|PubMed:11726666, ECO:0000269|PubMed:11739383, ECO:0000269|PubMed:11861901, ECO:0000269|PubMed:21247901, ECO:0000269|PubMed:23801752, ECO:0000269|PubMed:26221039, ECO:0000269|PubMed:28516954, ECO:0000269|PubMed:29968769}. |
Q96A19 | CCDC102A | S28 | ochoa | Coiled-coil domain-containing protein 102A | None |
Q96CB8 | INTS12 | S350 | ochoa | Integrator complex subunit 12 (Int12) (PHD finger protein 22) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:38570683}. |
Q96CP2 | FLYWCH2 | S21 | ochoa | FLYWCH family member 2 | None |
Q96D09 | GPRASP2 | S534 | ochoa | G-protein coupled receptor-associated sorting protein 2 (GASP-2) | May play a role in regulation of a variety of G-protein coupled receptors. {ECO:0000269|PubMed:15086532}. |
Q96DU7 | ITPKC | S322 | ochoa | Inositol-trisphosphate 3-kinase C (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase C) (IP3 3-kinase C) (IP3K C) (InsP 3-kinase C) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis (PubMed:11085927, PubMed:12747803). Can phosphorylate inositol 2,4,5-triphosphate to inositol 2,4,5,6-tetraphosphate (By similarity). {ECO:0000250|UniProtKB:Q80ZG2, ECO:0000269|PubMed:11085927, ECO:0000269|PubMed:12747803}. |
Q96F46 | IL17RA | S708 | ochoa|psp | Interleukin-17 receptor A (IL-17 receptor A) (IL-17RA) (CDw217) (CD antigen CD217) | Receptor for IL17A and IL17F, major effector cytokines of innate and adaptive immune system involved in antimicrobial host defense and maintenance of tissue integrity. Receptor for IL17A (PubMed:17911633, PubMed:9367539). Receptor for IL17F (PubMed:17911633, PubMed:19838198). Binds to IL17A with higher affinity than to IL17F (PubMed:17911633). Binds IL17A and IL17F homodimers as part of a heterodimeric complex with IL17RC (PubMed:16785495). Also binds heterodimers formed by IL17A and IL17F as part of a heterodimeric complex with IL17RC (PubMed:18684971). Cytokine binding triggers homotypic interaction of IL17RA and IL17RC chains with TRAF3IP2 adapter, leading to TRAF6-mediated activation of NF-kappa-B and MAPkinase pathways, ultimately resulting in transcriptional activation of cytokines, chemokines, antimicrobial peptides and matrix metalloproteinases, with potential strong immune inflammation (PubMed:16785495, PubMed:17911633, PubMed:18684971, PubMed:21350122, PubMed:24120361). Involved in antimicrobial host defense primarily promoting neutrophil activation and recruitment at infection sites to destroy extracellular bacteria and fungi (By similarity). In secondary lymphoid organs, contributes to germinal center formation by regulating the chemotactic response of B cells to CXCL12 and CXCL13, enhancing retention of B cells within the germinal centers, B cell somatic hypermutation rate and selection toward plasma cells (By similarity). Plays a role in the maintenance of the integrity of epithelial barriers during homeostasis and pathogen infection. Stimulates the production of antimicrobial beta-defensins DEFB1, DEFB103A, and DEFB104A by mucosal epithelial cells, limiting the entry of microbes through the epithelial barriers (By similarity). Involved in antiviral host defense through various mechanisms. Enhances immunity against West Nile virus by promoting T cell cytotoxicity. Contributes to Influenza virus clearance by driving the differentiation of B-1a B cells, providing for production of virus-specific IgM antibodies at first line of host defense (By similarity). Receptor for IL17C as part of a heterodimeric complex with IL17RE (PubMed:21993848). {ECO:0000250|UniProtKB:Q60943, ECO:0000269|PubMed:16785495, ECO:0000269|PubMed:17911633, ECO:0000269|PubMed:18684971, ECO:0000269|PubMed:19838198, ECO:0000269|PubMed:21350122, ECO:0000269|PubMed:21993848, ECO:0000269|PubMed:24120361, ECO:0000269|PubMed:9367539}.; FUNCTION: (Microbial infection) Receptor for SARS coronavirus-2/SARS-CoV-2 virus protein ORF8, leading to IL17 pathway activation and an increased secretion of pro-inflammatory factors through activating NF-kappa-B signaling pathway. {ECO:0000269|PubMed:33723527}. |
Q96HI0 | SENP5 | S293 | ochoa | Sentrin-specific protease 5 (EC 3.4.22.-) (Sentrin/SUMO-specific protease SENP5) | Protease that catalyzes two essential functions in the SUMO pathway: processing of full-length SUMO3 to its mature form and deconjugation of SUMO2 and SUMO3 from targeted proteins. Has weak proteolytic activity against full-length SUMO1 or SUMO1 conjugates. Required for cell division. {ECO:0000269|PubMed:16608850, ECO:0000269|PubMed:16738315}. |
Q96JE9 | MAP6 | S519 | ochoa | Microtubule-associated protein 6 (MAP-6) (Stable tubule-only polypeptide) (STOP) | Involved in microtubule stabilization in many cell types, including neuronal cells (By similarity). Specifically has microtubule cold stabilizing activity (By similarity). Involved in dendrite morphogenesis and maintenance by regulating lysosomal trafficking via its interaction with TMEM106B (PubMed:24357581). Regulates KIF5A-mediated axonal cargo transport (By similarity). Regulates axonal growth during neuron polarization (By similarity). {ECO:0000250|UniProtKB:Q63560, ECO:0000269|PubMed:24357581}. |
Q96JH7 | VCPIP1 | S747 | ochoa|psp | Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) | Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}. |
Q96JM2 | ZNF462 | S1090 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96JM3 | CHAMP1 | S131 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JM3 | CHAMP1 | S173 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JM3 | CHAMP1 | S476 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96MT3 | PRICKLE1 | S62 | ochoa | Prickle-like protein 1 (REST/NRSF-interacting LIM domain protein 1) | Involved in the planar cell polarity pathway that controls convergent extension during gastrulation and neural tube closure. Convergent extension is a complex morphogenetic process during which cells elongate, move mediolaterally, and intercalate between neighboring cells, leading to convergence toward the mediolateral axis and extension along the anteroposterior axis. Necessary for nuclear localization of REST. May serve as nuclear receptor. {ECO:0000269|PubMed:21901791}. |
Q96NU1 | SAMD11 | S659 | ochoa | Sterile alpha motif domain-containing protein 11 (SAM domain-containing protein 11) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, essential for establishing rod photoreceptor cell identity and function by silencing nonrod gene expression in developing rod photoreceptor cells. {ECO:0000250|UniProtKB:Q1RNF8}. |
Q96T17 | MAP7D2 | S273 | ochoa | MAP7 domain-containing protein 2 | Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}. |
Q96T17 | MAP7D2 | S290 | ochoa | MAP7 domain-containing protein 2 | Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}. |
Q96T58 | SPEN | S2366 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S3433 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99081 | TCF12 | S348 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99590 | SCAF11 | S802 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q9BTL3 | RAMAC | S86 | ochoa | RNA guanine-N7 methyltransferase activating subunit (Protein FAM103A1) (RNA guanine-7 methyltransferase activating subunit) (RNMT-activating mRNA cap methyltransferase subunit) (RNMT-activating mini protein) (RAM) | Regulatory subunit of the mRNA-capping methyltransferase RNMT:RAMAC complex that methylates the N7 position of the added guanosine to the 5'-cap structure of mRNAs (PubMed:22099306, PubMed:27422871). Promotes the recruitment of the methyl donor, S-adenosyl-L-methionine, to RNMT (PubMed:27422871). Regulates RNMT expression by a post-transcriptional stabilizing mechanism (PubMed:22099306). Binds RNA (PubMed:22099306). {ECO:0000269|PubMed:22099306, ECO:0000269|PubMed:27422871}. |
Q9BTX1 | NDC1 | S406 | ochoa | Nucleoporin NDC1 (hNDC1) (Transmembrane protein 48) | Component of the nuclear pore complex (NPC), which plays a key role in de novo assembly and insertion of NPC in the nuclear envelope. Required for NPC and nuclear envelope assembly, possibly by forming a link between the nuclear envelope membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane. {ECO:0000269|PubMed:16600873, ECO:0000269|PubMed:16702233}. |
Q9BUR4 | WRAP53 | S30 | ochoa | Telomerase Cajal body protein 1 (WD repeat-containing protein 79) (WD40 repeat-containing protein antisense to TP53 gene) (WRAP53beta) | RNA chaperone that plays a key role in telomere maintenance and RNA localization to Cajal bodies (PubMed:29695869, PubMed:29804836). Specifically recognizes and binds the Cajal body box (CAB box) present in both small Cajal body RNAs (scaRNAs) and telomerase RNA template component (TERC) (PubMed:19285445, PubMed:20351177, PubMed:29695869, PubMed:29804836). Essential component of the telomerase holoenzyme complex, a ribonucleoprotein complex essential for the replication of chromosome termini that elongates telomeres in most eukaryotes (PubMed:19179534, PubMed:20351177, PubMed:26170453, PubMed:29695869). In the telomerase holoenzyme complex, required to stimulate the catalytic activity of the complex (PubMed:27525486, PubMed:29804836). Acts by specifically binding the CAB box of the TERC RNA and controlling the folding of the CR4/CR5 region of the TERC RNA, a critical step for telomerase activity (PubMed:29804836). In addition, also controls telomerase holoenzyme complex localization to Cajal body (PubMed:22547674). During S phase, required for delivery of TERC to telomeres during S phase and for telomerase activity (PubMed:29804836). In addition to its role in telomere maintenance, also required for Cajal body formation, probably by mediating localization of scaRNAs to Cajal bodies (PubMed:19285445, PubMed:21072240). Also plays a role in DNA repair: phosphorylated by ATM in response to DNA damage and relocalizes to sites of DNA double-strand breaks to promote the repair of DNA double-strand breaks (PubMed:25512560, PubMed:27715493). Acts by recruiting the ubiquitin ligase RNF8 to DNA breaks and promote both homologous recombination (HR) and non-homologous end joining (NHEJ) (PubMed:25512560, PubMed:27715493). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:19285445, ECO:0000269|PubMed:20351177, ECO:0000269|PubMed:21072240, ECO:0000269|PubMed:22547674, ECO:0000269|PubMed:25512560, ECO:0000269|PubMed:26170453, ECO:0000269|PubMed:27525486, ECO:0000269|PubMed:27715493, ECO:0000269|PubMed:29695869, ECO:0000269|PubMed:29804836}. |
Q9BX69 | CARD6 | S985 | ochoa | Caspase recruitment domain-containing protein 6 | May be involved in apoptosis. |
Q9C0E8 | LNPK | S177 | ochoa | Endoplasmic reticulum junction formation protein lunapark (ER junction formation factor lunapark) | Endoplasmic reticulum (ER)-shaping membrane protein that plays a role in determining ER morphology (PubMed:30032983). Involved in the stabilization of nascent three-way ER tubular junctions within the ER network (PubMed:24223779, PubMed:25404289, PubMed:25548161, PubMed:27619977). May also play a role as a curvature-stabilizing protein within the three-way ER tubular junction network (PubMed:25404289). May be involved in limb development (By similarity). Is involved in central nervous system development (PubMed:30032983). {ECO:0000250|UniProtKB:Q7TQ95, ECO:0000269|PubMed:24223779, ECO:0000269|PubMed:25404289, ECO:0000269|PubMed:25548161, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:30032983}. |
Q9GZM8 | NDEL1 | S231 | ochoa|psp | Nuclear distribution protein nudE-like 1 (Protein Nudel) (Mitosin-associated protein 1) | Required for organization of the cellular microtubule array and microtubule anchoring at the centrosome. May regulate microtubule organization at least in part by targeting the microtubule severing protein KATNA1 to the centrosome. Also positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus ends. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the centripetal motion of secretory vesicles and the coupling of the nucleus and centrosome. Also required during brain development for the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Plays a role, together with DISC1, in the regulation of neurite outgrowth. Required for mitosis in some cell types but appears to be dispensible for mitosis in cortical neuronal progenitors, which instead requires NDE1. Facilitates the polymerization of neurofilaments from the individual subunits NEFH and NEFL. Positively regulates lysosome peripheral distribution and ruffled border formation in osteoclasts (By similarity). Plays a role, together with DISC1, in the regulation of neurite outgrowth (By similarity). May act as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000250|UniProtKB:Q78PB6, ECO:0000250|UniProtKB:Q9ERR1, ECO:0000269|PubMed:12556484, ECO:0000269|PubMed:14970193, ECO:0000269|PubMed:16291865, ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:34793709}. |
Q9GZY8 | MFF | S95 | ochoa | Mitochondrial fission factor | Plays a role in mitochondrial and peroxisomal fission (PubMed:18353969, PubMed:23530241, PubMed:24196833). Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface (PubMed:23530241). May be involved in regulation of synaptic vesicle membrane dynamics by recruitment of DNM1L to clathrin-containing vesicles (By similarity). {ECO:0000250|UniProtKB:Q4KM98, ECO:0000269|PubMed:18353969, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:24196833}. |
Q9H0K1 | SIK2 | S545 | ochoa | Serine/threonine-protein kinase SIK2 (EC 2.7.11.1) (Qin-induced kinase) (Salt-inducible kinase 2) (SIK-2) (Serine/threonine-protein kinase SNF1-like kinase 2) | Serine/threonine-protein kinase that plays a role in many biological processes such as fatty acid oxidation, autophagy, immune response or glucose metabolism (PubMed:23322770, PubMed:26983400). Phosphorylates 'Ser-794' of IRS1 in insulin-stimulated adipocytes, potentially modulating the efficiency of insulin signal transduction. Inhibits CREB activity by phosphorylating and repressing TORCs, the CREB-specific coactivators (PubMed:15454081). Phosphorylates EP300 and thus inhibits its histone acetyltransferase activity (PubMed:21084751, PubMed:26983400). In turn, regulates the DNA-binding ability of several transcription factors such as PPARA or MLXIPL (PubMed:21084751, PubMed:26983400). Also plays a role in thymic T-cell development (By similarity). {ECO:0000250|UniProtKB:Q8CFH6, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:21084751, ECO:0000269|PubMed:23322770, ECO:0000269|PubMed:26983400}. |
Q9H788 | SH2D4A | S275 | ochoa | SH2 domain-containing protein 4A (Protein SH(2)A) (Protein phosphatase 1 regulatory subunit 38) | Inhibits estrogen-induced cell proliferation by competing with PLCG for binding to ESR1, blocking the effect of estrogen on PLCG and repressing estrogen-induced proliferation. May play a role in T-cell development and function. {ECO:0000269|PubMed:18641339, ECO:0000269|PubMed:19712589}. |
Q9H792 | PEAK1 | S1108 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9HAU0 | PLEKHA5 | S126 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HCH0 | NCKAP5L | S577 | psp | Nck-associated protein 5-like (NCKAP5-like) (Centrosomal protein of 169 kDa) (Cep169) | Regulates microtubule organization and stabilization. Promotes microtubule growth and bundling formation and stabilizes microtubules by increasing intense acetylation of microtubules (PubMed:26482847, PubMed:26485573). Both tubulin-binding and homodimer formation are required for NCKAP5L-mediated microtubule bundle formation (PubMed:26485573). {ECO:0000269|PubMed:26482847, ECO:0000269|PubMed:26485573}. |
Q9NQL9 | DMRT3 | S220 | ochoa | Doublesex- and mab-3-related transcription factor 3 | Probable transcription factor that plays a role in configuring the spinal circuits controlling stride in vertebrates. Involved in neuronal specification within specific subdivision of spinal cord neurons and in the development of a coordinated locomotor network controlling limb movements. May regulate transcription during sexual development (By similarity). {ECO:0000250}. |
Q9NR48 | ASH1L | S545 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NR48 | ASH1L | S557 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NX74 | DUS2 | S445 | ochoa | tRNA-dihydrouridine(20) synthase [NAD(P)+]-like (EC 1.3.1.91) (Dihydrouridine synthase 2) (Up-regulated in lung cancer protein 8) (URLC8) (tRNA-dihydrouridine synthase 2-like) (hDUS2) | Catalyzes the NADPH-dependent synthesis of dihydrouridine, a modified base found in the D-loop of most tRNAs (PubMed:15994936, PubMed:26429968, PubMed:30149704, PubMed:34798057, PubMed:38680565). Specifically modifies U20 in cytoplasmic tRNAs (PubMed:38680565). Activity depends on the presence of guanosine at position 19 in the tRNA substrate (PubMed:38680565). Negatively regulates the activation of EIF2AK2/PKR (PubMed:18096616). {ECO:0000269|PubMed:15994936, ECO:0000269|PubMed:18096616, ECO:0000269|PubMed:26429968, ECO:0000269|PubMed:30149704, ECO:0000269|PubMed:34798057, ECO:0000269|PubMed:38680565}. |
Q9NXH9 | TRMT1 | S625 | ochoa | tRNA (guanine(26)-N(2))-dimethyltransferase (EC 2.1.1.216) (tRNA 2,2-dimethylguanosine-26 methyltransferase) (tRNA methyltransferase 1) (hTRM1) (tRNA(guanine-26,N(2)-N(2)) methyltransferase) (tRNA(m(2,2)G26)dimethyltransferase) | Dimethylates a single guanine residue at position 26 of most nuclear- and mitochondrial-encoded tRNAs using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:10982862, PubMed:28784718, PubMed:37204604, PubMed:39786990). tRNA guanine(26)-dimethylation is required for redox homeostasis and ensure proper cellular proliferation and oxidative stress survival (PubMed:28784718). {ECO:0000269|PubMed:10982862, ECO:0000269|PubMed:28784718, ECO:0000269|PubMed:37204604, ECO:0000269|PubMed:39786990}. |
Q9NY27 | PPP4R2 | S159 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q9NYQ7 | CELSR3 | S3175 | ochoa | Cadherin EGF LAG seven-pass G-type receptor 3 (Cadherin family member 11) (Epidermal growth factor-like protein 1) (EGF-like protein 1) (Flamingo homolog 1) (hFmi1) (Multiple epidermal growth factor-like domains protein 2) (Multiple EGF-like domains protein 2) | Receptor that may have an important role in cell/cell signaling during nervous system formation. |
Q9NZ56 | FMN2 | S747 | ochoa | Formin-2 | Actin-binding protein that is involved in actin cytoskeleton assembly and reorganization (PubMed:21730168, PubMed:22330775). Acts as an actin nucleation factor and promotes assembly of actin filaments together with SPIRE1 and SPIRE2 (PubMed:21730168, PubMed:22330775). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning, asymmetric oocyte division and polar body extrusion during female germ cell meiosis (By similarity). Plays a role in responses to DNA damage, cellular stress and hypoxia by protecting CDKN1A against degradation, and thereby plays a role in stress-induced cell cycle arrest (PubMed:23375502). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). Protects cells against apoptosis by protecting CDKN1A against degradation (PubMed:23375502). {ECO:0000250|UniProtKB:Q9JL04, ECO:0000269|PubMed:21730168, ECO:0000269|PubMed:22330775, ECO:0000269|PubMed:23375502, ECO:0000269|PubMed:26287480}. |
Q9P0L9 | PKD2L1 | S747 | psp | Polycystin-2-like protein 1 (Polycystin-2L1) (Polycystic kidney disease 2-like 1 protein) (Polycystin-2 homolog) (Polycystin-L) (Polycystin-L1) | Homotetrameric, non-selective cation channel that is permeable to sodium, potassium, magnesium and calcium (PubMed:10517637, PubMed:11959145, PubMed:25820328, PubMed:27754867, PubMed:29425510, PubMed:30004384). Also forms functionnal heteromeric channels with PKD1, PKD1L1 and PKD1L3 (PubMed:23212381, PubMed:24336289). Pore-forming subunit of a heterotetrameric, non-selective cation channel, formed by PKD1L2 and PKD1L3, that is permeable to sodium, potassium, magnesium and calcium and which may act as a sour taste receptor in gustatory cells; however, its contribution to sour taste perception is unclear in vivo and may be indirect (PubMed:19812697, PubMed:23212381). The homomeric and heteromeric channels formed by PKD1L2 and PKD1L3 are activated by low pH and Ca(2+), but opens only when the extracellular pH rises again and after the removal of acid stimulus (PubMed:23212381). Pore-forming subunit of a calcium-permeant ion channel formed by PKD1L2 and PKD1L1 in primary cilia, where it controls cilium calcium concentration, without affecting cytoplasmic calcium concentration, and regulates sonic hedgehog/SHH signaling and GLI2 transcription (PubMed:24336289). The PKD1L1:PKD2L1 complex channel is mechanosensitive only at high pressures and is highly temperature sensitive (PubMed:24336289). Pore-forming subunit of a calcium-permeant ion channel formed by PKD1L2 and PKD1 that produces a transient increase in intracellular calcium concentration upon hypo-osmotic stimulation (200 mOsm) (By similarity). May play a role in the perception of carbonation taste (By similarity). May play a role in the sensory perception of water, via a mechanism that activates the channel in response to dilution of salivary bicarbonate and changes in salivary pH (By similarity). {ECO:0000250|UniProtKB:A2A259, ECO:0000269|PubMed:10517637, ECO:0000269|PubMed:11959145, ECO:0000269|PubMed:19812697, ECO:0000269|PubMed:23212381, ECO:0000269|PubMed:24336289, ECO:0000269|PubMed:25820328, ECO:0000269|PubMed:27754867, ECO:0000269|PubMed:29425510, ECO:0000269|PubMed:30004384}. |
Q9P1Y5 | CAMSAP3 | S487 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P203 | BTBD7 | S998 | ochoa | BTB/POZ domain-containing protein 7 | Acts as a mediator of epithelial dynamics and organ branching by promoting cleft progression. Induced following accumulation of fibronectin in forming clefts, leading to local expression of the cell-scattering SNAIL2 and suppression of E-cadherin levels, thereby altering cell morphology and reducing cell-cell adhesion. This stimulates cell separation at the base of forming clefts by local, dynamic intercellular gap formation and promotes cleft progression (By similarity). {ECO:0000250}. |
Q9P260 | RELCH | S45 | ochoa | RAB11-binding protein RELCH (LisH domain and HEAT repeat-containing protein KIAA1468) (RAB11 binding and LisH domain, coiled-coil and HEAT repeat-containing) (RAB11-binding protein containing LisH, coiled-coil, and HEAT repeats) | Regulates intracellular cholesterol distribution from recycling endosomes to the trans-Golgi network through interactions with RAB11 and OSBP (PubMed:29514919). Functions in membrane tethering and promotes OSBP-mediated cholesterol transfer between RAB11-bound recycling endosomes and OSBP-bound Golgi-like membranes (PubMed:29514919). {ECO:0000269|PubMed:29514919}. |
Q9P266 | JCAD | S375 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P275 | USP36 | S742 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P2B4 | CTTNBP2NL | S549 | ochoa | CTTNBP2 N-terminal-like protein | Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}. |
Q9UER7 | DAXX | S702 | ochoa | Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) | Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}. |
Q9UGP4 | LIMD1 | S197 | ochoa | LIM domain-containing protein 1 | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing and is essential for P-body formation and integrity. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Acts as a transcriptional corepressor for SNAI1- and SNAI2/SLUG-dependent repression of E-cadherin transcription. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. Inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. Regulates osteoblast development, function, differentiation and stress osteoclastogenesis. Enhances the ability of TRAF6 to activate adapter protein complex 1 (AP-1) and negatively regulates the canonical Wnt receptor signaling pathway in osteoblasts. May act as a tumor suppressor by inhibiting cell proliferation. {ECO:0000269|PubMed:15542589, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}. |
Q9UGP4 | LIMD1 | S277 | ochoa|psp | LIM domain-containing protein 1 | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing and is essential for P-body formation and integrity. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Acts as a transcriptional corepressor for SNAI1- and SNAI2/SLUG-dependent repression of E-cadherin transcription. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. Inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. Regulates osteoblast development, function, differentiation and stress osteoclastogenesis. Enhances the ability of TRAF6 to activate adapter protein complex 1 (AP-1) and negatively regulates the canonical Wnt receptor signaling pathway in osteoblasts. May act as a tumor suppressor by inhibiting cell proliferation. {ECO:0000269|PubMed:15542589, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}. |
Q9UGP4 | LIMD1 | S421 | ochoa|psp | LIM domain-containing protein 1 | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing and is essential for P-body formation and integrity. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Acts as a transcriptional corepressor for SNAI1- and SNAI2/SLUG-dependent repression of E-cadherin transcription. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. Inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. Regulates osteoblast development, function, differentiation and stress osteoclastogenesis. Enhances the ability of TRAF6 to activate adapter protein complex 1 (AP-1) and negatively regulates the canonical Wnt receptor signaling pathway in osteoblasts. May act as a tumor suppressor by inhibiting cell proliferation. {ECO:0000269|PubMed:15542589, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}. |
Q9UHF7 | TRPS1 | S178 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UJM3 | ERRFI1 | S273 | ochoa | ERBB receptor feedback inhibitor 1 (Mitogen-inducible gene 6 protein) (MIG-6) | Negative regulator of EGFR signaling in skin morphogenesis. Acts as a negative regulator for several EGFR family members, including ERBB2, ERBB3 and ERBB4. Inhibits EGFR catalytic activity by interfering with its dimerization. Inhibits autophosphorylation of EGFR, ERBB2 and ERBB4. Important for normal keratinocyte proliferation and differentiation. Plays a role in modulating the response to steroid hormones in the uterus. Required for normal response to progesterone in the uterus and for fertility. Mediates epithelial estrogen responses in the uterus by regulating ESR1 levels and activation. Important for regulation of endometrium cell proliferation. Important for normal prenatal and perinatal lung development (By similarity). {ECO:0000250}. |
Q9ULJ3 | ZBTB21 | S177 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9UM63 | PLAGL1 | S229 | ochoa | Zinc finger protein PLAGL1 (Lost on transformation 1) (LOT-1) (Pleiomorphic adenoma-like protein 1) (Tumor suppressor ZAC) | Acts as a transcriptional activator (PubMed:9722527). Involved in the transcriptional regulation of type 1 receptor for pituitary adenylate cyclase-activating polypeptide. {ECO:0000269|PubMed:18299245, ECO:0000269|PubMed:9722527}. |
Q9UMN6 | KMT2B | S1085 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UMN6 | KMT2B | S1887 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UPQ0 | LIMCH1 | S303 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPQ0 | LIMCH1 | S523 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UQ35 | SRRM2 | S351 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y242 | TCF19 | S193 | ochoa | Transcription factor 19 (TCF-19) (Transcription factor SC1) | Potential transcription factor that may play a role in the regulation of genes involved in cell cycle G1/S transition (PubMed:1868030, PubMed:31141247). May bind to regulatory elements of genes, including the promoter of the transcription factor FOXO1 (PubMed:31141247). {ECO:0000269|PubMed:1868030, ECO:0000269|PubMed:31141247}. |
Q9Y289 | SLC5A6 | S585 | ochoa | Sodium-dependent multivitamin transporter (Na(+)-dependent multivitamin transporter) (hSMVT) (Solute carrier family 5 member 6) | Sodium-dependent multivitamin transporter that mediates the electrogenic transport of pantothenate, biotin, lipoate and iodide (PubMed:10329687, PubMed:15561972, PubMed:19211916, PubMed:20980265, PubMed:21570947, PubMed:22015582, PubMed:25809983, PubMed:25971966, PubMed:27904971, PubMed:28052864, PubMed:31754459). Functions as a Na(+)-coupled substrate symporter where the stoichiometry of Na(+):substrate is 2:1, creating an electrochemical Na(+) gradient used as driving force for substrate uptake (PubMed:10329687, PubMed:20980265). Required for biotin and pantothenate uptake in the intestine across the brush border membrane (PubMed:19211916). Plays a role in the maintenance of intestinal mucosa integrity, by providing the gut mucosa with biotin (By similarity). Contributes to the luminal uptake of biotin and pantothenate into the brain across the blood-brain barrier (PubMed:25809983). {ECO:0000250|UniProtKB:Q5U4D8, ECO:0000269|PubMed:10329687, ECO:0000269|PubMed:15561972, ECO:0000269|PubMed:19211916, ECO:0000269|PubMed:20980265, ECO:0000269|PubMed:21570947, ECO:0000269|PubMed:22015582, ECO:0000269|PubMed:25809983, ECO:0000269|PubMed:25971966, ECO:0000269|PubMed:27904971, ECO:0000269|PubMed:28052864, ECO:0000269|PubMed:31754459}. |
Q9Y2D8 | SSX2IP | S526 | ochoa | Afadin- and alpha-actinin-binding protein (ADIP) (Afadin DIL domain-interacting protein) (SSX2-interacting protein) | Belongs to an adhesion system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs). May connect the nectin-afadin and E-cadherin-catenin system through alpha-actinin and may be involved in organization of the actin cytoskeleton at AJs through afadin and alpha-actinin (By similarity). Involved in cell movement: localizes at the leading edge of moving cells in response to PDGF and is required for the formation of the leading edge and the promotion of cell movement, possibly via activation of Rac signaling (By similarity). Acts as a centrosome maturation factor, probably by maintaining the integrity of the pericentriolar material and proper microtubule nucleation at mitotic spindle poles. The function seems to implicate at least in part WRAP73; the SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome (PubMed:23816619, PubMed:26545777). Involved in ciliogenesis (PubMed:24356449). It is required for targeted recruitment of the BBSome, CEP290, RAB8, and SSTR3 to the cilia (PubMed:24356449). {ECO:0000250|UniProtKB:Q8VC66, ECO:0000269|PubMed:23816619, ECO:0000269|PubMed:24356449, ECO:0000305|PubMed:26545777}. |
Q9Y2F5 | ICE1 | S925 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2I7 | PIKFYVE | S20 | ochoa | 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) | Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}. |
Q9Y2Q9 | MRPS28 | S73 | ochoa | Small ribosomal subunit protein bS1m (28S ribosomal protein S28, mitochondrial) (MRP-S28) (S28mt) (28S ribosomal protein S35, mitochondrial) (MRP-S35) (S35mt) | None |
Q9Y4B6 | DCAF1 | S987 | ochoa | DDB1- and CUL4-associated factor 1 (HIV-1 Vpr-binding protein) (VprBP) (Serine/threonine-protein kinase VPRBP) (EC 2.7.11.1) (Vpr-interacting protein) | Acts both as a substrate recognition component of E3 ubiquitin-protein ligase complexes and as an atypical serine/threonine-protein kinase, playing key roles in various processes such as cell cycle, telomerase regulation and histone modification. Probable substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex, named CUL4A-RBX1-DDB1-DCAF1/VPRBP complex, which mediates ubiquitination and proteasome-dependent degradation of proteins such as NF2 (PubMed:23063525). Involved in the turnover of methylated proteins: recognizes and binds methylated proteins via its chromo domain, leading to ubiquitination of target proteins by the RBX1-DDB1-DCAF1/VPRBP complex (PubMed:23063525). The CUL4A-RBX1-DDB1-DCAF1/VPRBP complex is also involved in B-cell development: DCAF1 is recruited by RAG1 to ubiquitinate proteins, leading to limit error-prone repair during V(D)J recombination (By similarity). Also part of the EDVP complex, an E3 ligase complex that mediates ubiquitination of proteins such as TERT, leading to TERT degradation and telomerase inhibition (PubMed:19287380, PubMed:23362280). The EDVP complex also mediates ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Also acts as an atypical serine/threonine-protein kinase that specifically mediates phosphorylation of 'Thr-120' of histone H2A (H2AT120ph) in a nucleosomal context, thereby repressing transcription (PubMed:24140421). H2AT120ph is present in the regulatory region of many tumor suppresor genes, down-regulates their transcription and is present at high level in a number of tumors (PubMed:24140421). Involved in JNK-mediated apoptosis during cell competition process via its interaction with LLGL1 and LLGL2 (PubMed:20644714). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). {ECO:0000250|UniProtKB:Q80TR8, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:18606781, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:20644714, ECO:0000269|PubMed:22184063, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:24140421, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, it is recruited by HIV-1 Vpr in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to arrest the cell cycle in G2 phase, and also to protect the viral protein from proteasomal degradation by another E3 ubiquitin ligase. The HIV-1 Vpr protein hijacks the CUL4A-RBX1-DDB1-DCAF1/VPRBP complex to promote ubiquitination and degradation of proteins such as TERT and ZIP/ZGPAT. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:17559673, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17620334, ECO:0000269|PubMed:17626091, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:24116224}.; FUNCTION: (Microbial infection) In case of infection by HIV-2 virus, it is recruited by HIV-2 Vpx in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to enhanced efficiency of macrophage infection and promotion of the replication of cognate primate lentiviruses in cells of monocyte/macrophage lineage. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:18464893, ECO:0000269|PubMed:19264781, ECO:0000269|PubMed:19923175, ECO:0000269|PubMed:24336198}. |
Q9Y4F1 | FARP1 | S20 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 1 (Chondrocyte-derived ezrin-like protein) (FERM, RhoGEF and pleckstrin domain-containing protein 1) (Pleckstrin homology domain-containing family C member 2) (PH domain-containing family C member 2) | Functions as a guanine nucleotide exchange factor for RAC1. May play a role in semaphorin signaling. Plays a role in the assembly and disassembly of dendritic filopodia, the formation of dendritic spines, regulation of dendrite length and ultimately the formation of synapses (By similarity). {ECO:0000250}. |
Q9Y4F5 | CEP170B | S711 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4F5 | CEP170B | S1545 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y520 | PRRC2C | S395 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y5U2 | TSSC4 | S132 | ochoa | U5 small nuclear ribonucleoprotein TSSC4 (Tumor-suppressing STF cDNA 4 protein) (Tumor-suppressing subchromosomal transferable fragment candidate gene 4 protein) | Protein associated with the U5 snRNP, during its maturation and its post-splicing recycling and which is required for spliceosomal tri-snRNP complex assembly in the nucleus (PubMed:34131137, PubMed:35188580). Has a molecular sequestering activity and transiently hinders SNRNP200 binding sites for constitutive splicing factors that intervene later during the assembly of the spliceosome and splicing (PubMed:35188580). Together with its molecular sequestering activity, may also function as a molecular adapter and placeholder, coordinating the assembly of the U5 snRNP and its association with the U4/U6 di-snRNP (PubMed:34131137). {ECO:0000269|PubMed:34131137, ECO:0000269|PubMed:35188580}. |
Q9Y5W9 | SNX11 | S194 | ochoa | Sorting nexin-11 | Phosphoinositide-binding protein involved in protein sorting and membrane trafficking in endosomes (PubMed:23615901). Regulates the levels of TRPV3 by promoting its trafficking from the cell membrane to lysosome for degradation (PubMed:26818531). {ECO:0000269|PubMed:23615901, ECO:0000269|PubMed:26818531}. |
Q9Y5Y5 | PEX16 | S138 | ochoa | Peroxisomal membrane protein PEX16 (Peroxin-16) (Peroxisomal biogenesis factor 16) | Required for peroxisome membrane biogenesis. May play a role in early stages of peroxisome assembly. Can recruit other peroxisomal proteins, such as PEX3 and PMP34, to de novo peroxisomes derived from the endoplasmic reticulum (ER). May function as receptor for PEX3. {ECO:0000269|PubMed:10704444, ECO:0000269|PubMed:12223482, ECO:0000269|PubMed:16717127}. |
Q9Y6K9 | IKBKG | S377 | ochoa|psp | NF-kappa-B essential modulator (NEMO) (FIP-3) (IkB kinase-associated protein 1) (IKKAP1) (Inhibitor of nuclear factor kappa-B kinase subunit gamma) (I-kappa-B kinase subunit gamma) (IKK-gamma) (IKKG) (IkB kinase subunit gamma) (NF-kappa-B essential modifier) | Regulatory subunit of the IKK core complex which phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor (PubMed:14695475, PubMed:20724660, PubMed:21518757, PubMed:9751060). Its binding to scaffolding polyubiquitin plays a key role in IKK activation by multiple signaling receptor pathways (PubMed:16547522, PubMed:18287044, PubMed:19033441, PubMed:19185524, PubMed:21606507, PubMed:27777308, PubMed:33567255). Can recognize and bind both 'Lys-63'-linked and linear polyubiquitin upon cell stimulation, with a much higher affinity for linear polyubiquitin (PubMed:16547522, PubMed:18287044, PubMed:19033441, PubMed:19185524, PubMed:21606507, PubMed:27777308). Could be implicated in NF-kappa-B-mediated protection from cytokine toxicity. Essential for viral activation of IRF3 (PubMed:19854139). Involved in TLR3- and IFIH1-mediated antiviral innate response; this function requires 'Lys-27'-linked polyubiquitination (PubMed:20724660). {ECO:0000269|PubMed:14695475, ECO:0000269|PubMed:16547522, ECO:0000269|PubMed:18287044, ECO:0000269|PubMed:19033441, ECO:0000269|PubMed:19185524, ECO:0000269|PubMed:19854139, ECO:0000269|PubMed:20724660, ECO:0000269|PubMed:21518757, ECO:0000269|PubMed:21606507, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:33567255, ECO:0000269|PubMed:9751060}.; FUNCTION: (Microbial infection) Also considered to be a mediator for HTLV-1 Tax oncoprotein activation of NF-kappa-B. {ECO:0000269|PubMed:10364167, ECO:0000269|PubMed:11064457}. |
Q96RT7 | TUBGCP6 | S1437 | SIGNOR | Gamma-tubulin complex component 6 (GCP-6) | Component of the gamma-tubulin ring complex (gTuRC) which mediates microtubule nucleation (PubMed:11694571, PubMed:38305685, PubMed:38609661, PubMed:39321809). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:38305685, PubMed:38609661, PubMed:39321809). {ECO:0000269|PubMed:11694571, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
Q08J23 | NSUN2 | S383 | Sugiyama | RNA cytosine C(5)-methyltransferase NSUN2 (EC 2.1.1.-) (Myc-induced SUN domain-containing protein) (Misu) (NOL1/NOP2/Sun domain family member 2) (Substrate of AIM1/Aurora kinase B) (mRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-) (tRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-, EC 2.1.1.203) (tRNA methyltransferase 4 homolog) (hTrm4) | RNA cytosine C(5)-methyltransferase that methylates cytosine to 5-methylcytosine (m5C) in various RNAs, such as tRNAs, mRNAs and some long non-coding RNAs (lncRNAs) (PubMed:17071714, PubMed:22995836, PubMed:31199786, PubMed:31358969). Involved in various processes, such as epidermal stem cell differentiation, testis differentiation and maternal to zygotic transition during early development: acts by increasing protein synthesis; cytosine C(5)-methylation promoting tRNA stability and preventing mRNA decay (PubMed:31199786). Methylates cytosine to 5-methylcytosine (m5C) at positions 34 and 48 of intron-containing tRNA(Leu)(CAA) precursors, and at positions 48, 49 and 50 of tRNA(Gly)(GCC) precursors (PubMed:17071714, PubMed:22995836, PubMed:31199786). tRNA methylation is required generation of RNA fragments derived from tRNAs (tRFs) (PubMed:31199786). Also mediates C(5)-methylation of mitochondrial tRNAs (PubMed:31276587). Catalyzes cytosine C(5)-methylation of mRNAs, leading to stabilize them and prevent mRNA decay: mRNA stabilization involves YBX1 that specifically recognizes and binds m5C-modified transcripts (PubMed:22395603, PubMed:31358969, PubMed:34556860). Cytosine C(5)-methylation of mRNAs also regulates mRNA export: methylated transcripts are specifically recognized by THOC4/ALYREF, which mediates mRNA nucleo-cytoplasmic shuttling (PubMed:28418038). Also mediates cytosine C(5)-methylation of non-coding RNAs, such as vault RNAs (vtRNAs), promoting their processing into regulatory small RNAs (PubMed:23871666). Cytosine C(5)-methylation of vtRNA VTRNA1.1 promotes its processing into small-vault RNA4 (svRNA4) and regulates epidermal differentiation (PubMed:31186410). May act downstream of Myc to regulate epidermal cell growth and proliferation (By similarity). Required for proper spindle assembly and chromosome segregation, independently of its methyltransferase activity (PubMed:19596847). {ECO:0000250|UniProtKB:Q1HFZ0, ECO:0000269|PubMed:17071714, ECO:0000269|PubMed:19596847, ECO:0000269|PubMed:22395603, ECO:0000269|PubMed:22995836, ECO:0000269|PubMed:23871666, ECO:0000269|PubMed:28418038, ECO:0000269|PubMed:31186410, ECO:0000269|PubMed:31199786, ECO:0000269|PubMed:31276587, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:34556860}. |
A0A1B0GU03 | None | S350 | ochoa | Cathepsin D (EC 3.4.23.5) | None |
A0A1W2PPC1 | PRR33 | S215 | ochoa | Proline rich 33 | None |
A6NF01 | POM121B | S299 | ochoa | Putative nuclear envelope pore membrane protein POM 121B | Putative component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane (By similarity). {ECO:0000250}. |
A6NFI3 | ZNF316 | S328 | ochoa | Zinc finger protein 316 | May be involved in transcriptional regulation. {ECO:0000250}. |
A6NIX2 | WTIP | S171 | ochoa | Wilms tumor protein 1-interacting protein (WT1-interacting protein) | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing. Negatively regulates Hippo signaling pathway and antagonizes phosphorylation of YAP1. Acts as a transcriptional corepressor for SNAI1 and SNAI2/SLUG-dependent repression of E-cadherin transcription. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. In podocytes, may play a role in the regulation of actin dynamics and/or foot process cytoarchitecture (By similarity). In the course of podocyte injury, shuttles into the nucleus and acts as a transcription regulator that represses WT1-dependent transcription regulation, thereby translating changes in slit diaphragm structure into altered gene expression and a less differentiated phenotype. Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:A9LS46, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}. |
A8CG34 | POM121C | S692 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
A8MZF0 | PRR33 | S67 | ochoa | Proline-rich protein 33 | None |
H0YIS7 | RNASEK-C17orf49 | S137 | ochoa | BPTF-associated chromatin complex component 1 (BPTF-associated protein of 18 kDa) (Chromatin complexes subunit BAP18) | Component of chromatin complexes such as the MLL1/MLL and NURF complexes. {ECO:0000256|ARBA:ARBA00059556}. |
H3BNR1 | BORCS8-MEF2B | S205 | ochoa | BORCS8-MEF2B readthrough | None |
O00512 | BCL9 | S62 | ochoa | B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) | Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}. |
O14686 | KMT2D | S2260 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S2438 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O15018 | PDZD2 | S1270 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15164 | TRIM24 | S209 | ochoa | Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) | Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}. |
O15446 | POLR1G | S128 | ochoa | DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}. |
O15534 | PER1 | S592 | ochoa | Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui) | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. {ECO:0000269|PubMed:24005054}. |
O43255 | SIAH2 | S28 | psp | E3 ubiquitin-protein ligase SIAH2 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase SIAH2) (Seven in absentia homolog 2) (Siah-2) (hSiah2) | E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:11483518, PubMed:19224863, PubMed:9334332). E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:11483518, PubMed:19224863, PubMed:9334332). Mediates E3 ubiquitin ligase activity either through direct binding to substrates or by functioning as the essential RING domain subunit of larger E3 complexes (PubMed:11483518, PubMed:19224863, PubMed:9334332). Triggers the ubiquitin-mediated degradation of many substrates, including proteins involved in transcription regulation (GPS2, POU2AF1, PML, NCOR1), a cell surface receptor (DCC), an antiapoptotic protein (BAG1), and a protein involved in synaptic vesicle function in neurons (SYP) (PubMed:11483518, PubMed:19224863, PubMed:9334332). Mediates ubiquitination and proteasomal degradation of DYRK2 in response to hypoxia (PubMed:22878263). It is thereby involved in apoptosis, tumor suppression, cell cycle, transcription and signaling processes (PubMed:11483518, PubMed:19224863, PubMed:22878263, PubMed:9334332). Has some overlapping function with SIAH1 (PubMed:11483518, PubMed:19224863, PubMed:9334332). Triggers the ubiquitin-mediated degradation of TRAF2, whereas SIAH1 does not (PubMed:12411493). Promotes monoubiquitination of SNCA (PubMed:19224863). Regulates cellular clock function via ubiquitination of the circadian transcriptional repressors NR1D1 and NR1D2 leading to their proteasomal degradation (PubMed:26392558). Plays an important role in mediating the rhythmic degradation/clearance of NR1D1 and NR1D2 contributing to their circadian profile of protein abundance (PubMed:26392558). Mediates ubiquitination and degradation of EGLN2 and EGLN3 in response to the unfolded protein response (UPR), leading to their degradation and subsequent stabilization of ATF4 (By similarity). Also part of the Wnt signaling pathway in which it mediates the Wnt-induced ubiquitin-mediated proteasomal degradation of AXIN1. {ECO:0000250|UniProtKB:Q06986, ECO:0000269|PubMed:11483518, ECO:0000269|PubMed:12411493, ECO:0000269|PubMed:19224863, ECO:0000269|PubMed:22878263, ECO:0000269|PubMed:26392558, ECO:0000269|PubMed:28546513, ECO:0000269|PubMed:9334332}. |
O43426 | SYNJ1 | S1084 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43493 | TGOLN2 | S66 | ochoa | Trans-Golgi network integral membrane protein 2 (Trans-Golgi network glycoprotein 46) (TGN38 homolog) (hTGN46) (Trans-Golgi network glycoprotein 48) (hTGN48) (Trans-Golgi network glycoprotein 51) (hTGN51) (Trans-Golgi network protein 2) | May be involved in regulating membrane traffic to and from trans-Golgi network. |
O43516 | WIPF1 | S350 | ochoa | WAS/WASL-interacting protein family member 1 (Protein PRPL-2) (Wiskott-Aldrich syndrome protein-interacting protein) (WASP-interacting protein) | Plays a role in the reorganization of the actin cytoskeleton. Contributes with NCK1 and GRB2 in the recruitment and activation of WASL. May participate in regulating the subcellular localization of WASL, resulting in the disassembly of stress fibers in favor of filopodia formation. Plays a role in the formation of cell ruffles (By similarity). Plays an important role in the intracellular motility of vaccinia virus by functioning as an adapter for recruiting WASL to vaccinia virus. {ECO:0000250, ECO:0000269|PubMed:10878810, ECO:0000269|PubMed:19910490, ECO:0000269|PubMed:9405671}. |
O43526 | KCNQ2 | S466 | ochoa | Potassium voltage-gated channel subfamily KQT member 2 (KQT-like 2) (Neuroblastoma-specific potassium channel subunit alpha KvLQT2) (Voltage-gated potassium channel subunit Kv7.2) | Pore-forming subunit of the voltage-gated potassium (Kv) M-channel which is responsible for the M-current, a key controller of neuronal excitability (PubMed:24277843, PubMed:28793216, PubMed:9836639). M-channel is composed of pore-forming subunits KCNQ2 and KCNQ3 assembled as heterotetramers (PubMed:10781098, PubMed:14534157, PubMed:32884139, PubMed:37857637, PubMed:9836639). The native M-current has a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs (PubMed:14534157, PubMed:28793216, PubMed:9836639). KCNQ2-KCNQ3 M-channel is selectively permeable in vitro to other cations besides potassium, in decreasing order of affinity K(+) > Rb(+) > Cs(+) > Na(+) (PubMed:28793216). M-channel association with SLC5A3/SMIT1 alters channel ion selectivity, increasing Na(+) and Cs(+) permeation relative to K(+) (PubMed:28793216). Suppressed by activation of the muscarinic acetylcholine receptor CHRM1 (PubMed:10684873, PubMed:10713961). {ECO:0000269|PubMed:10684873, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:10781098, ECO:0000269|PubMed:14534157, ECO:0000269|PubMed:24277843, ECO:0000269|PubMed:28793216, ECO:0000269|PubMed:32884139, ECO:0000269|PubMed:37857637, ECO:0000269|PubMed:9836639}. |
O60308 | CEP104 | S353 | ochoa | Centrosomal protein of 104 kDa (Cep104) | Required for ciliogenesis and for structural integrity at the ciliary tip. {ECO:0000269|PubMed:23970417}. |
O75061 | DNAJC6 | S658 | ochoa | Auxilin (EC 3.1.3.-) (DnaJ homolog subfamily C member 6) | May act as a protein phosphatase and/or a lipid phosphatase. Co-chaperone that recruits HSPA8/HSC70 to clathrin-coated vesicles (CCVs) and promotes the ATP-dependent dissociation of clathrin from CCVs and participates in clathrin-mediated endocytosis of synaptic vesicles and their recycling and also in intracellular trafficking (PubMed:18489706). Firstly, binds tightly to the clathrin cages, at a ratio of one DNAJC6 per clathrin triskelion. The HSPA8:ATP complex then binds to the clathrin-auxilin cage, initially at a ratio of one HSPA8 per triskelion leading to ATP hydrolysis stimulation and causing a conformational change in the HSPA8. This cycle is repeated three times to drive to a complex containing the clathrin-auxilin cage associated to three HSPA8:ADP complex. The ATP hydrolysis of the third HSPA8:ATP complex leads to a concerted dismantling of the cage into component triskelia. Then, dissociates from the released triskelia and be recycled to initiate another cycle of HSPA8's recruitment. Also acts during the early steps of clathrin-coated vesicle (CCV) formation through its interaction with the GTP bound form of DNM1 (By similarity). {ECO:0000250|UniProtKB:Q27974, ECO:0000269|PubMed:18489706}. |
O75064 | DENND4B | S1071 | ochoa | DENN domain-containing protein 4B | Guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}. |
O75147 | OBSL1 | S232 | ochoa | Obscurin-like protein 1 | Core component of the 3M complex, a complex required to regulate microtubule dynamics and genome integrity. It is unclear how the 3M complex regulates microtubules, it could act by controlling the level of a microtubule stabilizer (PubMed:24793695, PubMed:24793696). Acts as a regulator of the Cul7-RING(FBXW8) ubiquitin-protein ligase, playing a critical role in the ubiquitin ligase pathway that regulates Golgi morphogenesis and dendrite patterning in brain. Required to localize CUL7 to the Golgi apparatus in neurons. {ECO:0000269|PubMed:21572988, ECO:0000269|PubMed:24793695, ECO:0000269|PubMed:24793696}. |
O75362 | ZNF217 | S848 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75427 | LRCH4 | S267 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) | Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}. |
O94763 | URI1 | S488 | ochoa | Unconventional prefoldin RPB5 interactor 1 (Protein NNX3) (Protein phosphatase 1 regulatory subunit 19) (RNA polymerase II subunit 5-mediating protein) (RPB5-mediating protein) | Involved in gene transcription regulation. Acts as a transcriptional repressor in concert with the corepressor UXT to regulate androgen receptor (AR) transcription. May act as a tumor suppressor to repress AR-mediated gene transcription and to inhibit anchorage-independent growth in prostate cancer cells. Required for cell survival in ovarian cancer cells. Together with UXT, associates with chromatin to the NKX3-1 promoter region. Antagonizes transcriptional modulation via hepatitis B virus X protein.; FUNCTION: Plays a central role in maintaining S6K1 signaling and BAD phosphorylation under normal growth conditions thereby protecting cells from potential deleterious effects of sustained S6K1 signaling. The URI1-PPP1CC complex acts as a central component of a negative feedback mechanism that counteracts excessive S6K1 survival signaling to BAD in response to growth factors. Mediates inhibition of PPP1CC phosphatase activity in mitochondria. Coordinates the regulation of nutrient-sensitive gene expression availability in a mTOR-dependent manner. Seems to be a scaffolding protein able to assemble a prefoldin-like complex that contains PFDs and proteins with roles in transcription and ubiquitination. |
O94850 | DDN | S508 | ochoa | Dendrin | Promotes apoptosis of kidney glomerular podocytes. Podocytes are highly specialized cells essential to the ultrafiltration of blood, resulting in the extraction of urine and the retention of protein (By similarity). {ECO:0000250}. |
O95359 | TACC2 | S561 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95382 | MAP3K6 | S931 | ochoa | Mitogen-activated protein kinase kinase kinase 6 (EC 2.7.11.25) (Apoptosis signal-regulating kinase 2) | Component of a protein kinase signal transduction cascade. Activates the JNK, but not ERK or p38 kinase pathways. {ECO:0000269|PubMed:17210579, ECO:0000269|PubMed:9875215}. |
O95382 | MAP3K6 | S1144 | ochoa | Mitogen-activated protein kinase kinase kinase 6 (EC 2.7.11.25) (Apoptosis signal-regulating kinase 2) | Component of a protein kinase signal transduction cascade. Activates the JNK, but not ERK or p38 kinase pathways. {ECO:0000269|PubMed:17210579, ECO:0000269|PubMed:9875215}. |
O95613 | PCNT | S3284 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O96013 | PAK4 | S258 | ochoa | Serine/threonine-protein kinase PAK 4 (EC 2.7.11.1) (p21-activated kinase 4) (PAK-4) | Serine/threonine-protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell adhesion turnover, cell migration, growth, proliferation or cell survival (PubMed:26598620). Activation by various effectors including growth factor receptors or active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates and inactivates the protein phosphatase SSH1, leading to increased inhibitory phosphorylation of the actin binding/depolymerizing factor cofilin. Decreased cofilin activity may lead to stabilization of actin filaments. Phosphorylates LIMK1, a kinase that also inhibits the activity of cofilin. Phosphorylates integrin beta5/ITGB5 and thus regulates cell motility. Phosphorylates ARHGEF2 and activates the downstream target RHOA that plays a role in the regulation of assembly of focal adhesions and actin stress fibers. Stimulates cell survival by phosphorylating the BCL2 antagonist of cell death BAD. Alternatively, inhibits apoptosis by preventing caspase-8 binding to death domain receptors in a kinase independent manner. Plays a role in cell-cycle progression by controlling levels of the cell-cycle regulatory protein CDKN1A and by phosphorylating RAN. Promotes kinase-independent stabilization of RHOU, thereby contributing to focal adhesion disassembly during cell migration (PubMed:26598620). {ECO:0000269|PubMed:11278822, ECO:0000269|PubMed:11313478, ECO:0000269|PubMed:14560027, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:20507994, ECO:0000269|PubMed:20631255, ECO:0000269|PubMed:20805321, ECO:0000269|PubMed:26598620, ECO:0000269|PubMed:26607847}. |
P03372 | ESR1 | S104 | psp | Estrogen receptor (ER) (ER-alpha) (Estradiol receptor) (Nuclear receptor subfamily 3 group A member 1) | Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3 (PubMed:17922032). Maintains neuronal survival in response to ischemic reperfusion injury when in the presence of circulating estradiol (17-beta-estradiol/E2) (By similarity). {ECO:0000250|UniProtKB:P06211, ECO:0000269|PubMed:10681512, ECO:0000269|PubMed:10816575, ECO:0000269|PubMed:11477071, ECO:0000269|PubMed:11682626, ECO:0000269|PubMed:14764652, ECO:0000269|PubMed:15078875, ECO:0000269|PubMed:15891768, ECO:0000269|PubMed:16043358, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:17932106, ECO:0000269|PubMed:18247370, ECO:0000269|PubMed:19350539, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20705611, ECO:0000269|PubMed:21330404, ECO:0000269|PubMed:22083956, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:7651415, ECO:0000269|PubMed:9328340}.; FUNCTION: [Isoform 3]: Involved in activation of NOS3 and endothelial nitric oxide production (PubMed:21937726). Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full-length receptor (PubMed:10970861). Binds to ERE and inhibits isoform 1 (PubMed:10970861). {ECO:0000269|PubMed:10970861, ECO:0000269|PubMed:21937726}. |
P06401 | PGR | S400 | ochoa|psp | Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) | The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone. |
P08651 | NFIC | S323 | ochoa | Nuclear factor 1 C-type (NF1-C) (Nuclear factor 1/C) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/C) (NF-I/C) (NFI-C) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
P10636 | MAPT | S411 | ochoa | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P15407 | FOSL1 | S191 | ochoa | Fos-related antigen 1 (FRA-1) | None |
P15408 | FOSL2 | S83 | ochoa | Fos-related antigen 2 (FRA-2) | Controls osteoclast survival and size (By similarity). As a dimer with JUN, activates LIF transcription (By similarity). Activates CEBPB transcription in PGE2-activated osteoblasts (By similarity). {ECO:0000250|UniProtKB:P47930, ECO:0000250|UniProtKB:P51145}. |
P19634 | SLC9A1 | S771 | ochoa|psp | Sodium/hydrogen exchanger 1 (APNH) (Na(+)/H(+) antiporter, amiloride-sensitive) (Na(+)/H(+) exchanger 1) (NHE-1) (Solute carrier family 9 member 1) | Electroneutral Na(+) /H(+) antiporter that extrudes Na(+) in exchange for external protons driven by the inward sodium ion chemical gradient, protecting cells from acidification that occurs from metabolism (PubMed:11350981, PubMed:11532004, PubMed:14680478, PubMed:15035633, PubMed:15677483, PubMed:17073455, PubMed:17493937, PubMed:22020933, PubMed:27650500, PubMed:32130622, PubMed:7110335, PubMed:7603840). Exchanges intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry (By similarity). Plays a key role in maintening intracellular pH neutral and cell volume, and thus is important for cell growth, proliferation, migration and survival (PubMed:12947095, PubMed:15096511, PubMed:22020933, PubMed:8901634). In addition, can transport lithium Li(+) and also functions as a Na(+)/Li(+) antiporter (PubMed:7603840). SLC9A1 also functions in membrane anchoring and organization of scaffolding complexes that coordinate signaling inputs (PubMed:15096511). {ECO:0000250|UniProtKB:P26431, ECO:0000269|PubMed:11350981, ECO:0000269|PubMed:11532004, ECO:0000269|PubMed:12947095, ECO:0000269|PubMed:14680478, ECO:0000269|PubMed:15035633, ECO:0000269|PubMed:15096511, ECO:0000269|PubMed:15677483, ECO:0000269|PubMed:17073455, ECO:0000269|PubMed:17493937, ECO:0000269|PubMed:22020933, ECO:0000269|PubMed:27650500, ECO:0000269|PubMed:32130622, ECO:0000269|PubMed:7110335, ECO:0000269|PubMed:7603840, ECO:0000269|PubMed:8901634}. |
P27816 | MAP4 | S197 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P27816 | MAP4 | S507 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P27987 | ITPKB | S456 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P28715 | ERCC5 | S324 | ochoa | DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) | Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}. |
P35520 | CBS | S63 | ochoa | Cystathionine beta-synthase (EC 4.2.1.22) (Beta-thionase) (Serine sulfhydrase) | Hydro-lyase catalyzing the first step of the transsulfuration pathway, where the hydroxyl group of L-serine is displaced by L-homocysteine in a beta-replacement reaction to form L-cystathionine, the precursor of L-cysteine. This catabolic route allows the elimination of L-methionine and the toxic metabolite L-homocysteine (PubMed:20506325, PubMed:23974653, PubMed:23981774). Also involved in the production of hydrogen sulfide, a gasotransmitter with signaling and cytoprotective effects on neurons (By similarity). {ECO:0000250|UniProtKB:P32232, ECO:0000269|PubMed:20506325, ECO:0000269|PubMed:23974653, ECO:0000269|PubMed:23981774}. |
P40306 | PSMB10 | S230 | ochoa | Proteasome subunit beta type-10 (EC 3.4.25.1) (Low molecular mass protein 10) (Macropain subunit MECl-1) (Multicatalytic endopeptidase complex subunit MECl-1) (Proteasome MECl-1) (Proteasome subunit beta-2i) | The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This subunit is involved in antigen processing to generate class I binding peptides. |
P40337 | VHL | S80 | ochoa|psp | von Hippel-Lindau disease tumor suppressor (Protein G7) (pVHL) | Involved in the ubiquitination and subsequent proteasomal degradation via the von Hippel-Lindau ubiquitination complex (PubMed:10944113, PubMed:17981124, PubMed:19584355). Seems to act as a target recruitment subunit in the E3 ubiquitin ligase complex and recruits hydroxylated hypoxia-inducible factor (HIF) under normoxic conditions (PubMed:10944113, PubMed:17981124). Involved in transcriptional repression through interaction with HIF1A, HIF1AN and histone deacetylases (PubMed:10944113, PubMed:17981124). Ubiquitinates, in an oxygen-responsive manner, ADRB2 (PubMed:19584355). Acts as a negative regulator of mTORC1 by promoting ubiquitination and degradation of RPTOR (PubMed:34290272). {ECO:0000269|PubMed:10944113, ECO:0000269|PubMed:17981124, ECO:0000269|PubMed:19584355, ECO:0000269|PubMed:34290272}. |
P40926 | MDH2 | S47 | ochoa | Malate dehydrogenase, mitochondrial (EC 1.1.1.37) | None |
P48634 | PRRC2A | S2113 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49418 | AMPH | S262 | ochoa | Amphiphysin | May participate in mechanisms of regulated exocytosis in synapses and certain endocrine cell types. May control the properties of the membrane associated cytoskeleton. |
P49792 | RANBP2 | S837 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P54253 | ATXN1 | S406 | ochoa | Ataxin-1 (Spinocerebellar ataxia type 1 protein) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression. Binds RNA in vitro. May be involved in RNA metabolism (PubMed:21475249). In concert with CIC and ATXN1L, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P54254, ECO:0000269|PubMed:21475249}. |
P58012 | FOXL2 | S326 | psp | Forkhead box protein L2 | Transcriptional regulator. Critical factor essential for ovary differentiation and maintenance, and repression of the genetic program for somatic testis determination. Prevents trans-differentiation of ovary to testis through transcriptional repression of the Sertoli cell-promoting gene SOX9 (By similarity). Has apoptotic activity in ovarian cells. Suppresses ESR1-mediated transcription of PTGS2/COX2 stimulated by tamoxifen (By similarity). Is a regulator of CYP19 expression (By similarity). Participates in SMAD3-dependent transcription of FST via the intronic SMAD-binding element (By similarity). Is a transcriptional repressor of STAR. Activates SIRT1 transcription under cellular stress conditions. Activates transcription of OSR2. {ECO:0000250, ECO:0000269|PubMed:16153597, ECO:0000269|PubMed:19010791, ECO:0000269|PubMed:19429596, ECO:0000269|PubMed:19744555}. |
P60866 | RPS20 | S93 | ochoa | Small ribosomal subunit protein uS10 (40S ribosomal protein S20) | Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). {ECO:0000269|PubMed:23636399}. |
P78312 | FAM193A | S677 | ochoa | Protein FAM193A (Protein IT14) | None |
P78367 | NKX3-2 | S73 | ochoa | Homeobox protein Nkx-3.2 (Bagpipe homeobox protein homolog 1) (Homeobox protein NK-3 homolog B) | Transcriptional repressor that acts as a negative regulator of chondrocyte maturation. PLays a role in distal stomach development; required for proper antral-pyloric morphogenesis and development of antral-type epithelium. In concert with GSC, defines the structural components of the middle ear; required for tympanic ring and gonium development and in the regulation of the width of the malleus (By similarity). {ECO:0000250}. |
P78411 | IRX5 | S274 | ochoa | Iroquois-class homeodomain protein IRX-5 (Homeodomain protein IRX-2A) (Homeodomain protein IRXB2) (Iroquois homeobox protein 5) | Establishes the cardiac repolarization gradient by its repressive actions on the KCND2 potassium-channel gene. Required for retinal cone bipolar cell differentiation. May regulate contrast adaptation in the retina and control specific aspects of visual function in circuits of the mammalian retina (By similarity). Could be involved in the regulation of both the cell cycle and apoptosis in prostate cancer cells. Involved in craniofacial and gonadal development. Modulates the migration of progenitor cell populations in branchial arches and gonads by repressing CXCL12. {ECO:0000250, ECO:0000269|PubMed:22581230}. |
P78560 | CRADD | S114 | ochoa | Death domain-containing protein CRADD (Caspase and RIP adapter with death domain) (RIP-associated protein with a death domain) | Adapter protein that associates with PIDD1 and the caspase CASP2 to form the PIDDosome, a complex that activates CASP2 and triggers apoptosis (PubMed:15073321, PubMed:16652156, PubMed:17159900, PubMed:17289572, PubMed:9044836). Also recruits CASP2 to the TNFR-1 signaling complex through its interaction with RIPK1 and TRADD and may play a role in the tumor necrosis factor-mediated signaling pathway (PubMed:8985253). {ECO:0000269|PubMed:15073321, ECO:0000269|PubMed:16652156, ECO:0000269|PubMed:17159900, ECO:0000269|PubMed:17289572, ECO:0000269|PubMed:8985253, ECO:0000269|PubMed:9044836}. |
Q01196 | RUNX1 | S295 | ochoa | Runt-related transcription factor 1 (Acute myeloid leukemia 1 protein) (Core-binding factor subunit alpha-2) (CBF-alpha-2) (Oncogene AML-1) (Polyomavirus enhancer-binding protein 2 alpha B subunit) (PEA2-alpha B) (PEBP2-alpha B) (SL3-3 enhancer factor 1 alpha B subunit) (SL3/AKV core-binding factor alpha B subunit) | Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (Probable). Essential for the development of normal hematopoiesis (PubMed:17431401). Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the BLK promoter (PubMed:10207087, PubMed:14970218). Inhibits KAT6B-dependent transcriptional activation (By similarity). Involved in lineage commitment of immature T cell precursors. CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Controls the anergy and suppressive function of regulatory T-cells (Treg) by associating with FOXP3. Activates the expression of IL2 and IFNG and down-regulates the expression of TNFRSF18, IL2RA and CTLA4, in conventional T-cells (PubMed:17377532). Positively regulates the expression of RORC in T-helper 17 cells (By similarity). {ECO:0000250|UniProtKB:Q03347, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:14970218, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:17431401, ECO:0000305}.; FUNCTION: Isoform AML-1G shows higher binding activities for target genes and binds TCR-beta-E2 and RAG-1 target site with threefold higher affinity than other isoforms. It is less effective in the context of neutrophil terminal differentiation. {ECO:0000250|UniProtKB:Q03347}.; FUNCTION: Isoform AML-1L interferes with the transactivation activity of RUNX1. {ECO:0000269|PubMed:9199349}. |
Q02080 | MEF2B | S188 | ochoa | Myocyte-specific enhancer factor 2B (RSRFR2) (Serum response factor-like protein 2) | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Activates transcription via this element. May be involved in muscle-specific and/or growth factor-related transcription. |
Q02446 | SP4 | S757 | ochoa | Transcription factor Sp4 (SPR-1) | Binds to GT and GC boxes promoters elements. Probable transcriptional activator. |
Q03164 | KMT2A | S680 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q05193 | DNM1 | S778 | psp | Dynamin-1 (EC 3.6.5.5) (Dynamin) (Dynamin I) | Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission and participates in many forms of endocytosis, such as clathrin-mediated endocytosis or synaptic vesicle endocytosis as well as rapid endocytosis (RE) (PubMed:15703209, PubMed:20428113, PubMed:29668686, PubMed:8101525, PubMed:8910402, PubMed:9362482). Associates to the membrane, through lipid binding, and self-assembles into rings and stacks of interconnected rings through oligomerization to form a helical polymer around the vesicle membrane leading to constriction of invaginated coated pits around their necks (PubMed:30069048, PubMed:7877694, PubMed:9922133). Self-assembly of the helical polymer induces membrane tubules narrowing until the polymer reaches a length sufficient to trigger GTP hydrolysis (PubMed:19084269). Depending on the curvature imposed on the tubules, membrane detachment from the helical polymer upon GTP hydrolysis can cause spontaneous hemifission followed by complete fission (PubMed:19084269). May play a role in regulating early stages of clathrin-mediated endocytosis in non-neuronal cells through its activation by dephosphorylation via the signaling downstream of EGFR (PubMed:29668686). Controls vesicle size at a step before fission, during formation of membrane pits, at hippocampal synapses (By similarity). Controls plastic adaptation of the synaptic vesicle recycling machinery to high levels of activity (By similarity). Mediates rapid endocytosis (RE), a Ca(2+)-dependent and clathrin- and K(+)-independent process in chromaffin cells (By similarity). Microtubule-associated force-producing protein involved in producing microtubule bundles and able to bind and hydrolyze GTP (By similarity). Through its interaction with DNAJC6, acts during the early steps of clathrin-coated vesicle (CCV) formation (PubMed:12791276). {ECO:0000250|UniProtKB:P39053, ECO:0000250|UniProtKB:Q08DF4, ECO:0000269|PubMed:12791276, ECO:0000269|PubMed:15703209, ECO:0000269|PubMed:19084269, ECO:0000269|PubMed:20428113, ECO:0000269|PubMed:29668686, ECO:0000269|PubMed:30069048, ECO:0000269|PubMed:7877694, ECO:0000269|PubMed:8101525, ECO:0000269|PubMed:8910402, ECO:0000269|PubMed:9362482, ECO:0000269|PubMed:9922133}. |
Q08050 | FOXM1 | S638 | psp | Forkhead box protein M1 (Forkhead-related protein FKHL16) (Hepatocyte nuclear factor 3 forkhead homolog 11) (HFH-11) (HNF-3/fork-head homolog 11) (M-phase phosphoprotein 2) (MPM-2 reactive phosphoprotein 2) (Transcription factor Trident) (Winged-helix factor from INS-1 cells) | Transcription factor regulating the expression of cell cycle genes essential for DNA replication and mitosis (PubMed:19160488, PubMed:20360045). Plays a role in the control of cell proliferation (PubMed:19160488). Also plays a role in DNA break repair, participating in the DNA damage checkpoint response (PubMed:17101782). Promotes transcription of PHB2 (PubMed:33754036). {ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:20360045, ECO:0000269|PubMed:33754036}. |
Q09472 | EP300 | S831 | psp | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q10571 | MN1 | S1007 | ochoa | Transcriptional activator MN1 (Probable tumor suppressor protein MN1) | Transcriptional activator which specifically regulates expression of TBX22 in the posterior region of the developing palate. Required during later stages of palate development for growth and medial fusion of the palatal shelves. Promotes maturation and normal function of calvarial osteoblasts, including expression of the osteoclastogenic cytokine TNFSF11/RANKL. Necessary for normal development of the membranous bones of the skull (By similarity). May play a role in tumor suppression (Probable). {ECO:0000250|UniProtKB:D3YWE6, ECO:0000305|PubMed:7731706}. |
Q12772 | SREBF2 | S455 | psp | Sterol regulatory element-binding protein 2 (SREBP-2) (Class D basic helix-loop-helix protein 2) (bHLHd2) (Sterol regulatory element-binding transcription factor 2) [Cleaved into: Processed sterol regulatory element-binding protein 2 (Transcription factor SREBF2)] | [Sterol regulatory element-binding protein 2]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 2), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis (PubMed:32322062). {ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 2]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis (PubMed:12177166, PubMed:32322062). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:7903453). Regulates transcription of genes related to cholesterol synthesis pathway (PubMed:12177166, PubMed:32322062). {ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:7903453}. |
Q12778 | FOXO1 | S394 | psp | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q12778 | FOXO1 | S418 | psp | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q12882 | DPYD | S587 | ochoa | Dihydropyrimidine dehydrogenase [NADP(+)] (DHPDHase) (DPD) (EC 1.3.1.2) (Dihydrothymine dehydrogenase) (Dihydrouracil dehydrogenase) | Involved in pyrimidine base degradation (PubMed:1512248). Catalyzes the reduction of uracil and thymine (PubMed:1512248). Also involved the degradation of the chemotherapeutic drug 5-fluorouracil (PubMed:1512248). {ECO:0000269|PubMed:1512248}. |
Q12904 | AIMP1 | S232 | ochoa | Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] | Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}. |
Q13029 | PRDM2 | S914 | ochoa | PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) | S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}. |
Q13233 | MAP3K1 | S242 | ochoa | Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) | Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}. |
Q13387 | MAPK8IP2 | S364 | ochoa | C-Jun-amino-terminal kinase-interacting protein 2 (JIP-2) (JNK-interacting protein 2) (Islet-brain-2) (IB-2) (JNK MAP kinase scaffold protein 2) (Mitogen-activated protein kinase 8-interacting protein 2) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module. JIP2 inhibits IL1 beta-induced apoptosis in insulin-secreting cells. May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). {ECO:0000250}. |
Q13415 | ORC1 | S273 | ochoa|psp | Origin recognition complex subunit 1 (Replication control protein 1) | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. |
Q13625 | TP53BP2 | S827 | psp | Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) | Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}. |
Q14005 | IL16 | S908 | ochoa | Pro-interleukin-16 [Cleaved into: Interleukin-16 (IL-16) (Lymphocyte chemoattractant factor) (LCF)] | Interleukin-16 stimulates a migratory response in CD4+ lymphocytes, monocytes, and eosinophils. Primes CD4+ T-cells for IL-2 and IL-15 responsiveness. Also induces T-lymphocyte expression of interleukin 2 receptor. Ligand for CD4.; FUNCTION: [Isoform 1]: May act as a scaffolding protein that anchors ion channels in the membrane.; FUNCTION: Isoform 3 is involved in cell cycle progression in T-cells. Appears to be involved in transcriptional regulation of SKP2 and is probably part of a transcriptional repression complex on the core promoter of the SKP2 gene. May act as a scaffold for GABPB1 (the DNA-binding subunit the GABP transcription factor complex) and HDAC3 thus maintaining transcriptional repression and blocking cell cycle progression in resting T-cells. |
Q14106 | TOB2 | S153 | psp | Protein Tob2 (Protein Tob4) (Transducer of erbB-2 2) | Anti-proliferative protein inhibits cell cycle progression from the G0/G1 to S phases. |
Q14526 | HIC1 | S366 | ochoa | Hypermethylated in cancer 1 protein (Hic-1) (Zinc finger and BTB domain-containing protein 29) | Transcriptional repressor (PubMed:12052894, PubMed:15231840). Recognizes and binds to the consensus sequence '5-[CG]NG[CG]GGGCA[CA]CC-3' (PubMed:15231840). May act as a tumor suppressor (PubMed:20154726). Involved in development of head, face, limbs and ventral body wall (By similarity). Involved in down-regulation of SIRT1 and thereby is involved in regulation of p53/TP53-dependent apoptotic DNA-damage responses (PubMed:16269335). The specific target gene promoter association seems to be depend on corepressors, such as CTBP1 or CTBP2 and MTA1 (PubMed:12052894, PubMed:20547755). In cooperation with MTA1 (indicative for an association with the NuRD complex) represses transcription from CCND1/cyclin-D1 and CDKN1C/p57Kip2 specifically in quiescent cells (PubMed:20547755). Involved in regulation of the Wnt signaling pathway probably by association with TCF7L2 and preventing TCF7L2 and CTNNB1 association with promoters of TCF-responsive genes (PubMed:16724116). Seems to repress transcription from E2F1 and ATOH1 which involves ARID1A, indicative for the participation of a distinct SWI/SNF-type chromatin-remodeling complex (PubMed:18347096, PubMed:19486893). Probably represses transcription of ACKR3, FGFBP1 and EFNA1 (PubMed:16690027, PubMed:19525223, PubMed:20154726). {ECO:0000250|UniProtKB:Q9R1Y5, ECO:0000269|PubMed:12052894, ECO:0000269|PubMed:15231840, ECO:0000269|PubMed:16269335, ECO:0000269|PubMed:16690027, ECO:0000269|PubMed:16724116, ECO:0000269|PubMed:18347096, ECO:0000269|PubMed:19486893, ECO:0000269|PubMed:19525223, ECO:0000269|PubMed:20154726, ECO:0000269|PubMed:20547755}. |
Q14669 | TRIP12 | S977 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14684 | RRP1B | S706 | ochoa|psp | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q15047 | SETDB1 | S528 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15561 | TEAD4 | S198 | ochoa | Transcriptional enhancer factor TEF-3 (TEA domain family member 4) (TEAD-4) (Transcription factor 13-like 1) (Transcription factor RTEF-1) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and non-cooperatively to the Sph and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q2LD37 | BLTP1 | S704 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2M1Z3 | ARHGAP31 | S460 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2TAL8 | QRICH1 | S303 | ochoa | Transcriptional regulator QRICH1 (Glutamine-rich protein 1) | Transcriptional regulator that acts as a mediator of the integrated stress response (ISR) through transcriptional control of protein homeostasis under conditions of ER stress (PubMed:33384352). Controls the outcome of the unfolded protein response (UPR) which is an ER-stress response pathway (PubMed:33384352). ER stress induces QRICH1 translation by a ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced QRICH1 regulates a transcriptional program associated with protein translation, protein secretion-mediated proteotoxicity and cell death during the terminal UPR (PubMed:33384352). May cooperate with ATF4 transcription factor signaling to regulate ER homeostasis which is critical for cell viability (PubMed:33384352). Up-regulates CASP3/caspase-3 activity in epithelial cells under ER stress. Central regulator of proteotoxicity associated with ER stress-mediated inflammatory diseases in the intestines and liver (PubMed:33384352). Involved in chondrocyte hypertrophy, a process required for normal longitudinal bone growth (PubMed:30281152). {ECO:0000269|PubMed:30281152, ECO:0000269|PubMed:33384352}. |
Q3KQU3 | MAP7D1 | S469 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q5JR12 | PPM1J | S25 | ochoa | Protein phosphatase 1J (EC 3.1.3.16) (Protein phosphatase 2C isoform zeta) (PP2C-zeta) | None |
Q5JSZ5 | PRRC2B | S2153 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTD0 | TJAP1 | S449 | ochoa | Tight junction-associated protein 1 (Protein incorporated later into tight junctions) (Tight junction protein 4) | Plays a role in regulating the structure of the Golgi apparatus. {ECO:0000250|UniProtKB:Q9DCD5}. |
Q5T1R4 | HIVEP3 | S1017 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T5Y3 | CAMSAP1 | S1120 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T7B8 | KIF24 | S1117 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5U5R9 | HECTD2 | S78 | ochoa | Probable E3 ubiquitin-protein ligase HECTD2 (EC 2.3.2.26) (HECT domain-containing protein 2) (HECT-type E3 ubiquitin transferase HECTD2) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:28584101}.; FUNCTION: (Microbial infection) Catalyzes ubiquitination of Botulinum neurotoxin A light chain (LC) of C.botulinum neurotoxin type A (BoNT/A). {ECO:0000269|PubMed:28584101}. |
Q66K74 | MAP1S | S600 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q68CZ2 | TNS3 | S732 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q68EM7 | ARHGAP17 | S625 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q6DN90 | IQSEC1 | S211 | ochoa | IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) | Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}. |
Q6IBW4 | NCAPH2 | S232 | ochoa | Condensin-2 complex subunit H2 (Chromosome-associated protein H2) (hCAP-H2) (Kleisin-beta) (Non-SMC condensin II complex subunit H2) | Regulatory subunit of the condensin-2 complex, a complex that seems to provide chromosomes with an additional level of organization and rigidity and in establishing mitotic chromosome architecture (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of chromatin bridges at anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (By similarity). Seems to have lineage-specific role in T-cell development (PubMed:14532007). {ECO:0000250|UniProtKB:Q8BSP2, ECO:0000269|PubMed:14532007}. |
Q6P0Q8 | MAST2 | S1344 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P4E1 | GOLM2 | S319 | ochoa | Protein GOLM2 (Cancer susceptibility candidate gene 4 protein) (CASC4) (Golgi membrane protein 2) | None |
Q6UB99 | ANKRD11 | S1990 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6ZRI6 | C15orf39 | S108 | ochoa | Uncharacterized protein C15orf39 | None |
Q6ZRI6 | C15orf39 | S322 | ochoa | Uncharacterized protein C15orf39 | None |
Q6ZS17 | RIPOR1 | S391 | ochoa | Rho family-interacting cell polarization regulator 1 | Downstream effector protein for Rho-type small GTPases that plays a role in cell polarity and directional migration (PubMed:27807006). Acts as an adapter protein, linking active Rho proteins to STK24 and STK26 kinases, and hence positively regulates Golgi reorientation in polarized cell migration upon Rho activation (PubMed:27807006). Involved in the subcellular relocation of STK26 from the Golgi to cytoplasm punctae in a Rho- and PDCD10-dependent manner upon serum stimulation (PubMed:27807006). {ECO:0000269|PubMed:27807006}. |
Q71RG4 | TMUB2 | S154 | ochoa | Transmembrane and ubiquitin-like domain-containing protein 2 | None |
Q76N32 | CEP68 | S435 | ochoa | Centrosomal protein of 68 kDa (Cep68) | Involved in maintenance of centrosome cohesion, probably as part of a linker structure which prevents centrosome splitting (PubMed:18042621). Required for localization of CDK5RAP2 to the centrosome during interphase (PubMed:24554434, PubMed:25503564). Contributes to CROCC/rootletin filament formation (PubMed:30404835). {ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:30404835}. |
Q7L804 | RAB11FIP2 | S426 | ochoa | Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) | A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}. |
Q7Z3K3 | POGZ | S425 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z5L9 | IRF2BP2 | S175 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q7Z624 | CAMKMT | S20 | ochoa | Calmodulin-lysine N-methyltransferase (CLNMT) (CaM KMT) (EC 2.1.1.60) | Catalyzes the trimethylation of 'Lys-116' in calmodulin. {ECO:0000269|PubMed:20975703}. |
Q7Z6J9 | TSEN54 | S230 | ochoa | tRNA-splicing endonuclease subunit Sen54 (SEN54 homolog) (HsSEN54) (tRNA-intron endonuclease Sen54) | Non-catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5' and 3' splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3' cyclic phosphate and 5'-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant distance from the constant structural features of the tRNA body. The tRNA splicing endonuclease is also involved in mRNA processing via its association with pre-mRNA 3'-end processing factors, establishing a link between pre-tRNA splicing and pre-mRNA 3'-end formation, suggesting that the endonuclease subunits function in multiple RNA-processing events. {ECO:0000269|PubMed:15109492}. |
Q86U86 | PBRM1 | S1453 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86UR5 | RIMS1 | S728 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86UU0 | BCL9L | S88 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86UU0 | BCL9L | S954 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86XN7 | PROSER1 | S613 | ochoa | Proline and serine-rich protein 1 | Mediates OGT interaction with and O-GlcNAcylation of TET2 to control TET2 stabilization at enhancers and CpG islands (CGIs). {ECO:0000269|PubMed:34667079}. |
Q86XZ4 | SPATS2 | S394 | ochoa | Spermatogenesis-associated serine-rich protein 2 (Serine-rich spermatocytes and round spermatid 59 kDa protein) (p59scr) | None |
Q86YV5 | PRAG1 | S782 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q8IVF2 | AHNAK2 | S4785 | ochoa | Protein AHNAK2 | None |
Q8IX01 | SUGP2 | S745 | ochoa | SURP and G-patch domain-containing protein 2 (Arginine/serine-rich-splicing factor 14) (Splicing factor, arginine/serine-rich 14) | May play a role in mRNA splicing. {ECO:0000305}. |
Q8IXI1 | RHOT2 | S538 | ochoa | Mitochondrial Rho GTPase 2 (MIRO-2) (hMiro-2) (EC 3.6.5.-) (Ras homolog gene family member T2) | Atypical mitochondrial nucleoside-triphosphatase (NTPase) involved in mitochondrial trafficking (PubMed:16630562, PubMed:22396657, PubMed:30513825). Probably involved in control of anterograde transport of mitochondria and their subcellular distribution (PubMed:22396657). Can hydrolyze GTP (By similarity). Can hydrolyze ATP and UTP (PubMed:30513825). {ECO:0000250|UniProtKB:Q8IXI2, ECO:0000269|PubMed:16630562, ECO:0000269|PubMed:22396657, ECO:0000269|PubMed:30513825}. |
Q8IXM2 | BACC1 | S96 | ochoa|psp | BPTF-associated chromatin complex component 1 (BPTF-associated protein of 18 kDa) (Chromatin complexes subunit BAP18) | Component of chromatin complexes such as the MLL1/MLL and NURF complexes. |
Q8IY26 | PLPP6 | S63 | ochoa | Polyisoprenoid diphosphate/phosphate phosphohydrolase PLPP6 (EC 3.1.3.-) (EC 3.6.1.-) (EC 3.6.1.68) (Lipid phosphatase-related protein-B) (LPRP-B) (PA-PSP) (Phosphatidic acid phosphatase type 2 domain-containing protein 2) (PPAP2 domain-containing protein 2) (Phospholipid phosphatase 6) (Presqualene diphosphate phosphatase) (Type 1 polyisoprenoid diphosphate phosphatase) | Magnesium-independent polyisoprenoid diphosphatase that catalyzes the sequential dephosphorylation of presqualene, farnesyl, geranyl and geranylgeranyl diphosphates (PubMed:16464866, PubMed:19220020, PubMed:20110354). Functions in the innate immune response through the dephosphorylation of presqualene diphosphate which acts as a potent inhibitor of the signaling pathways contributing to polymorphonuclear neutrophils activation (PubMed:16464866, PubMed:23568778). May regulate the biosynthesis of cholesterol and related sterols by dephosphorylating presqualene and farnesyl diphosphate, two key intermediates in this biosynthetic pathway (PubMed:20110354). May also play a role in protein prenylation by acting on farnesyl diphosphate and its derivative geranylgeranyl diphosphate, two precursors for the addition of isoprenoid anchors to membrane proteins (PubMed:20110354). Has a lower activity towards phosphatidic acid (PA), but through phosphatidic acid dephosphorylation may participate in the biosynthesis of phospholipids and triacylglycerols (PubMed:18930839). May also act on ceramide-1-P, lysophosphatidic acid (LPA) and sphing-4-enine 1-phosphate/sphingosine-1-phosphate (PubMed:18930839, PubMed:20110354). {ECO:0000269|PubMed:16464866, ECO:0000269|PubMed:18930839, ECO:0000269|PubMed:19220020, ECO:0000269|PubMed:20110354, ECO:0000269|PubMed:23568778}. |
Q8IYB3 | SRRM1 | S781 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8IZ21 | PHACTR4 | S344 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8IZU2 | WDR17 | S333 | ochoa | WD repeat-containing protein 17 | None |
Q8N3D4 | EHBP1L1 | S237 | ochoa | EH domain-binding protein 1-like protein 1 | May act as Rab effector protein and play a role in vesicle trafficking. {ECO:0000305|PubMed:27552051}. |
Q8N554 | ZNF276 | S160 | ochoa | Zinc finger protein 276 (Zfp-276) (Zinc finger protein 477) | May be involved in transcriptional regulation. |
Q8N612 | FHIP1B | S523 | ochoa | FHF complex subunit HOOK-interacting protein 1B (FHIP1B) (FTS- and Hook-interacting protein) (FHIP) | Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}. |
Q8N9T8 | KRI1 | S480 | ochoa | Protein KRI1 homolog | None |
Q8NBZ0 | INO80E | S127 | ochoa | INO80 complex subunit E (Coiled-coil domain-containing protein 95) | Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. |
Q8NC74 | RBBP8NL | S466 | ochoa | RBBP8 N-terminal-like protein | None |
Q8ND56 | LSM14A | S192 | ochoa | Protein LSM14 homolog A (Protein FAM61A) (Protein SCD6 homolog) (Putative alpha-synuclein-binding protein) (AlphaSNBP) (RNA-associated protein 55A) (hRAP55) (hRAP55A) | Essential for formation of P-bodies, cytoplasmic structures that provide storage sites for translationally inactive mRNAs and protect them from degradation (PubMed:16484376, PubMed:17074753, PubMed:29510985). Acts as a repressor of mRNA translation (PubMed:29510985). May play a role in mitotic spindle assembly (PubMed:26339800). {ECO:0000269|PubMed:16484376, ECO:0000269|PubMed:17074753, ECO:0000269|PubMed:26339800, ECO:0000269|PubMed:29510985}. |
Q8NDV7 | TNRC6A | S771 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8NEY1 | NAV1 | S1382 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8TAB5 | C1orf216 | S76 | ochoa | UPF0500 protein C1orf216 | None |
Q8TEH3 | DENND1A | S546 | ochoa | DENN domain-containing protein 1A (Connecdenn 1) (Connecdenn) (Protein FAM31A) | Guanine nucleotide exchange factor (GEF) regulating clathrin-mediated endocytosis through RAB35 activation. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form. Regulates clathrin-mediated endocytosis of synaptic vesicles and mediates exit from early endosomes (PubMed:20154091, PubMed:20937701). Binds phosphatidylinositol-phosphates (PtdInsPs), with some preference for PtdIns(3)P (By similarity). {ECO:0000250|UniProtKB:Q8K382, ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701}. |
Q8TEW8 | PARD3B | S338 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8WTV1 | THAP3 | S122 | ochoa | THAP domain-containing protein 3 | Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1. {ECO:0000269|PubMed:20200153}. |
Q8WUF5 | PPP1R13L | S53 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WUF5 | PPP1R13L | S187 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WUF5 | PPP1R13L | S567 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WYP5 | AHCTF1 | S2212 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q92610 | ZNF592 | S334 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92738 | USP6NL | S655 | ochoa | USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) | Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}. |
Q92750 | TAF4B | S64 | ochoa | Transcription initiation factor TFIID subunit 4B (Transcription initiation factor TFIID 105 kDa subunit) (TAF(II)105) (TAFII-105) (TAFII105) | Cell type-specific subunit of the general transcription factor TFIID that may function as a gene-selective coactivator in certain cells. TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. TAF4B is a transcriptional coactivator of the p65/RELA NF-kappa-B subunit. Involved in the activation of a subset of antiapoptotic genes including TNFAIP3. May be involved in regulating folliculogenesis. Through interaction with OCBA/POU2AF1, acts as a coactivator of B-cell-specific transcription. Plays a role in spermiogenesis and oogenesis. {ECO:0000250|UniProtKB:G5E8Z2, ECO:0000269|PubMed:10828057, ECO:0000269|PubMed:10849440, ECO:0000269|PubMed:16088961, ECO:0000303|PubMed:24431330}. |
Q92797 | SYMPK | S1243 | ochoa | Symplekin | Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3'-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house-keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity. {ECO:0000269|PubMed:16230528, ECO:0000269|PubMed:20861839}. |
Q92997 | DVL3 | S516 | psp | Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) | Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}. |
Q969Z4 | RELT | S309 | ochoa | Tumor necrosis factor receptor superfamily member 19L (Receptor expressed in lymphoid tissues) | May play a role in apoptosis (PubMed:19969290, PubMed:28688764). Induces activation of MAPK14/p38 and MAPK8/JNK MAPK cascades, when overexpressed (PubMed:16530727). Involved in dental enamel formation (PubMed:30506946). {ECO:0000269|PubMed:16530727, ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764, ECO:0000269|PubMed:30506946}. |
Q96D05 | FAM241B | S62 | ochoa | Protein FAM241B | May play a role in lysosome homeostasis. {ECO:0000269|PubMed:31270356}. |
Q96DN6 | MBD6 | S975 | ochoa | Methyl-CpG-binding domain protein 6 (Methyl-CpG-binding protein MBD6) | Non-catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:24634419). Important for stability of PR-DUB components and stimulating its ubiquitinase activity (PubMed:36180891). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). MBD5 and MBD6 containing complexes associate with distinct chromatin regions enriched in genes involved in different pathways (PubMed:36180891). Heterochromatin recruitment is not mediated by DNA methylation (PubMed:20700456). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in development, cell communication, signaling, cell proliferation and cell viability; may promote cancer cell growth (PubMed:36180891). {ECO:0000269|PubMed:20700456, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:36180891}. |
Q96F46 | IL17RA | S726 | ochoa|psp | Interleukin-17 receptor A (IL-17 receptor A) (IL-17RA) (CDw217) (CD antigen CD217) | Receptor for IL17A and IL17F, major effector cytokines of innate and adaptive immune system involved in antimicrobial host defense and maintenance of tissue integrity. Receptor for IL17A (PubMed:17911633, PubMed:9367539). Receptor for IL17F (PubMed:17911633, PubMed:19838198). Binds to IL17A with higher affinity than to IL17F (PubMed:17911633). Binds IL17A and IL17F homodimers as part of a heterodimeric complex with IL17RC (PubMed:16785495). Also binds heterodimers formed by IL17A and IL17F as part of a heterodimeric complex with IL17RC (PubMed:18684971). Cytokine binding triggers homotypic interaction of IL17RA and IL17RC chains with TRAF3IP2 adapter, leading to TRAF6-mediated activation of NF-kappa-B and MAPkinase pathways, ultimately resulting in transcriptional activation of cytokines, chemokines, antimicrobial peptides and matrix metalloproteinases, with potential strong immune inflammation (PubMed:16785495, PubMed:17911633, PubMed:18684971, PubMed:21350122, PubMed:24120361). Involved in antimicrobial host defense primarily promoting neutrophil activation and recruitment at infection sites to destroy extracellular bacteria and fungi (By similarity). In secondary lymphoid organs, contributes to germinal center formation by regulating the chemotactic response of B cells to CXCL12 and CXCL13, enhancing retention of B cells within the germinal centers, B cell somatic hypermutation rate and selection toward plasma cells (By similarity). Plays a role in the maintenance of the integrity of epithelial barriers during homeostasis and pathogen infection. Stimulates the production of antimicrobial beta-defensins DEFB1, DEFB103A, and DEFB104A by mucosal epithelial cells, limiting the entry of microbes through the epithelial barriers (By similarity). Involved in antiviral host defense through various mechanisms. Enhances immunity against West Nile virus by promoting T cell cytotoxicity. Contributes to Influenza virus clearance by driving the differentiation of B-1a B cells, providing for production of virus-specific IgM antibodies at first line of host defense (By similarity). Receptor for IL17C as part of a heterodimeric complex with IL17RE (PubMed:21993848). {ECO:0000250|UniProtKB:Q60943, ECO:0000269|PubMed:16785495, ECO:0000269|PubMed:17911633, ECO:0000269|PubMed:18684971, ECO:0000269|PubMed:19838198, ECO:0000269|PubMed:21350122, ECO:0000269|PubMed:21993848, ECO:0000269|PubMed:24120361, ECO:0000269|PubMed:9367539}.; FUNCTION: (Microbial infection) Receptor for SARS coronavirus-2/SARS-CoV-2 virus protein ORF8, leading to IL17 pathway activation and an increased secretion of pro-inflammatory factors through activating NF-kappa-B signaling pathway. {ECO:0000269|PubMed:33723527}. |
Q96FI4 | NEIL1 | S306 | ochoa|psp | Endonuclease 8-like 1 (EC 3.2.2.-) (EC 4.2.99.18) (DNA glycosylase/AP lyase Neil1) (DNA-(apurinic or apyrimidinic site) lyase Neil1) (Endonuclease VIII-like 1) (FPG1) (Nei homolog 1) (NEH1) (Nei-like protein 1) | Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as a DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized pyrimidines, such as thymine glycol, formamidopyrimidine (Fapy) and 5-hydroxyuracil. Has marginal activity towards 8-oxoguanine. Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. Has DNA glycosylase/lyase activity towards mismatched uracil and thymine, in particular in U:C and T:C mismatches. Specifically binds 5-hydroxymethylcytosine (5hmC), suggesting that it acts as a specific reader of 5hmC. {ECO:0000269|PubMed:11904416, ECO:0000269|PubMed:12200441, ECO:0000269|PubMed:12509226, ECO:0000269|PubMed:14522990}. |
Q96HA1 | POM121 | S715 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96KV7 | WDR90 | S241 | ochoa | WD repeat-containing protein 90 | Microtubule-binding protein that plays a crucial role in ensuring inner core protein localization within the centriole core, as well as in maintaining the microtubule wall integrity and the overall centriole roundness and stability (PubMed:32946374). Required for efficient primary cilium formation (PubMed:28781053). {ECO:0000269|PubMed:28781053}. |
Q96L34 | MARK4 | S594 | ochoa | MAP/microtubule affinity-regulating kinase 4 (EC 2.7.11.1) (MAP/microtubule affinity-regulating kinase-like 1) | Serine/threonine-protein kinase (PubMed:14594945, PubMed:15009667, PubMed:23184942, PubMed:23666762). Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:14594945, PubMed:23666762). Also phosphorylates the microtubule-associated proteins MAP2 and MAP4 (PubMed:14594945). Involved in regulation of the microtubule network, causing reorganization of microtubules into bundles (PubMed:14594945, PubMed:25123532). Required for the initiation of axoneme extension during cilium assembly (PubMed:23400999). Regulates the centrosomal location of ODF2 and phosphorylates ODF2 in vitro (PubMed:23400999). Plays a role in cell cycle progression, specifically in the G1/S checkpoint (PubMed:25123532). Reduces neuronal cell survival (PubMed:15009667). Plays a role in energy homeostasis by regulating satiety and metabolic rate (By similarity). Promotes adipogenesis by activating JNK1 and inhibiting the p38MAPK pathway, and triggers apoptosis by activating the JNK1 pathway (By similarity). Phosphorylates mTORC1 complex member RPTOR and acts as a negative regulator of the mTORC1 complex, probably due to disruption of the interaction between phosphorylated RPTOR and the RRAGA/RRAGC heterodimer which is required for mTORC1 activation (PubMed:23184942). Involved in NLRP3 positioning along microtubules by mediating NLRP3 recruitment to microtubule organizing center (MTOC) upon inflammasome activation (PubMed:28656979). {ECO:0000250|UniProtKB:Q8CIP4, ECO:0000269|PubMed:14594945, ECO:0000269|PubMed:15009667, ECO:0000269|PubMed:23184942, ECO:0000269|PubMed:23400999, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:25123532, ECO:0000269|PubMed:28656979}. |
Q96L73 | NSD1 | S2338 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96LJ8 | UBXN10 | S65 | ochoa | UBX domain-containing protein 10 (UBX domain-containing protein 3) | VCP/p97-binding protein required for ciliogenesis (PubMed:26389662). Acts as a tethering factor that facilitates recruitment of VCP/p97 to the intraflagellar transport complex B (IFT-B) in cilia (PubMed:26389662). UBX domain-containing proteins act as tethering factors for VCP/p97 and may specify substrate specificity of VCP/p97 (PubMed:26389662). {ECO:0000269|PubMed:26389662}. |
Q96NM4 | TOX2 | S351 | ochoa | TOX high mobility group box family member 2 (Granulosa cell HMG box protein 1) (GCX-1) | Putative transcriptional activator involved in the hypothalamo-pituitary-gonadal system. |
Q96PY6 | NEK1 | S1008 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96T58 | SPEN | S2896 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99569 | PKP4 | S337 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q9BST9 | RTKN | S529 | ochoa | Rhotekin | Mediates Rho signaling to activate NF-kappa-B and may confer increased resistance to apoptosis to cells in gastric tumorigenesis. May play a novel role in the organization of septin structures. {ECO:0000269|PubMed:10940294, ECO:0000269|PubMed:15480428, ECO:0000269|PubMed:16007136}. |
Q9BTX1 | NDC1 | S500 | ochoa | Nucleoporin NDC1 (hNDC1) (Transmembrane protein 48) | Component of the nuclear pore complex (NPC), which plays a key role in de novo assembly and insertion of NPC in the nuclear envelope. Required for NPC and nuclear envelope assembly, possibly by forming a link between the nuclear envelope membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane. {ECO:0000269|PubMed:16600873, ECO:0000269|PubMed:16702233}. |
Q9BUH6 | PAXX | S152 | ochoa | Protein PAXX (Paralog of XRCC4 and XLF) (XRCC4-like small protein) | Non-essential DNA repair protein involved in DNA non-homologous end joining (NHEJ); participates in double-strand break (DSB) repair and V(D)J recombination (PubMed:25574025, PubMed:25670504, PubMed:25941166, PubMed:27705800). May act as a scaffold required for accumulation of the Ku heterodimer, composed of XRCC5/Ku80 and XRCC6/Ku70, at double-strand break sites and promote the assembly and/or stability of the NHEJ machinery (PubMed:25574025, PubMed:25670504, PubMed:25941166). Involved in NHEJ by promoting the ligation of blunt-ended DNA ends (PubMed:27703001). Together with NHEJ1/XLF, collaborates with DNA polymerase lambda (POLL) to promote joining of non-cohesive DNA ends (PubMed:25670504, PubMed:30250067). Constitutes a non-essential component of classical NHEJ: has a complementary but distinct function with NHEJ1/XLF in DNA repair (PubMed:27705800). Able to restrict infection by herpesvirus 1 (HSV-1) via an unknown mechanism (PubMed:29144403). {ECO:0000269|PubMed:25574025, ECO:0000269|PubMed:25670504, ECO:0000269|PubMed:25941166, ECO:0000269|PubMed:27703001, ECO:0000269|PubMed:27705800, ECO:0000269|PubMed:29144403, ECO:0000269|PubMed:30250067}. |
Q9BX66 | SORBS1 | S89 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BXI6 | TBC1D10A | S383 | ochoa | TBC1 domain family member 10A (EBP50-PDX interactor of 64 kDa) (EPI64 protein) (Rab27A-GAP-alpha) | GTPase-activating protein (GAP) specific for RAB27A and RAB35 (PubMed:16923811, PubMed:30905672). Does not show GAP activity for RAB2A, RAB3A and RAB4A (PubMed:16923811). {ECO:0000269|PubMed:16923811, ECO:0000269|PubMed:30905672}. |
Q9BYB0 | SHANK3 | S435 | ochoa | SH3 and multiple ankyrin repeat domains protein 3 (Shank3) (Proline-rich synapse-associated protein 2) (ProSAP2) | Major scaffold postsynaptic density protein which interacts with multiple proteins and complexes to orchestrate the dendritic spine and synapse formation, maturation and maintenance. Interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and HOMER, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction through the interaction with Arp2/3 and WAVE1 complex as well as the promotion of the F-actin clusters. By way of this control of actin dynamics, participates in the regulation of developing neurons growth cone motility and the NMDA receptor-signaling. Also modulates GRIA1 exocytosis and GRM5/MGLUR5 expression and signaling to control the AMPA and metabotropic glutamate receptor-mediated synaptic transmission and plasticity. May be required at an early stage of synapse formation and be inhibited by IGF1 to promote synapse maturation. {ECO:0000269|PubMed:24132240}. |
Q9BZE9 | ASPSCR1 | S500 | ochoa | Tether containing UBX domain for GLUT4 (Alveolar soft part sarcoma chromosomal region candidate gene 1 protein) (Alveolar soft part sarcoma locus) (Renal papillary cell carcinoma protein 17) (UBX domain-containing protein 9) | Tethering protein that sequesters GLUT4-containing vesicles in the cytoplasm in the absence of insulin. Modulates the amount of GLUT4 that is available at the cell surface (By similarity). Enhances VCP methylation catalyzed by VCPKMT. {ECO:0000250, ECO:0000269|PubMed:23349634}. |
Q9H3S7 | PTPN23 | S1081 | ochoa | Tyrosine-protein phosphatase non-receptor type 23 (EC 3.1.3.48) (His domain-containing protein tyrosine phosphatase) (HD-PTP) (Protein tyrosine phosphatase TD14) (PTP-TD14) | Plays a role in sorting of endocytic ubiquitinated cargos into multivesicular bodies (MVBs) via its interaction with the ESCRT-I complex (endosomal sorting complex required for transport I), and possibly also other ESCRT complexes (PubMed:18434552, PubMed:21757351). May act as a negative regulator of Ras-mediated mitogenic activity (PubMed:18434552). Plays a role in ciliogenesis (PubMed:20393563). {ECO:0000269|PubMed:18434552, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:21757351}. |
Q9H4M7 | PLEKHA4 | S241 | ochoa | Pleckstrin homology domain-containing family A member 4 (PH domain-containing family A member 4) (Phosphoinositol 3-phosphate-binding protein 1) (PEPP-1) | Binds specifically to phosphatidylinositol 3-phosphate (PtdIns3P), but not to other phosphoinositides. {ECO:0000269|PubMed:11001876}. |
Q9H4M7 | PLEKHA4 | S559 | ochoa | Pleckstrin homology domain-containing family A member 4 (PH domain-containing family A member 4) (Phosphoinositol 3-phosphate-binding protein 1) (PEPP-1) | Binds specifically to phosphatidylinositol 3-phosphate (PtdIns3P), but not to other phosphoinositides. {ECO:0000269|PubMed:11001876}. |
Q9H9L7 | AKIRIN1 | S19 | ochoa | Akirin-1 | Molecular adapter that acts as a bridge between proteins, and which is involved skeletal muscle development (By similarity). Functions as a signal transducer for MSTN during skeletal muscle regeneration and myogenesis (By similarity). May regulate chemotaxis of both macrophages and myoblasts by reorganising actin cytoskeleton, leading to more efficient lamellipodia formation via a PI3 kinase dependent pathway (By similarity). In contrast to AKIRIN2, not involved in nuclear import of proteasomes (PubMed:34711951). {ECO:0000250|UniProtKB:Q99LF1, ECO:0000269|PubMed:34711951}. |
Q9HAU0 | PLEKHA5 | S1090 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HCD6 | TANC2 | S404 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCD6 | TANC2 | S1476 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCK4 | ROBO2 | S1140 | ochoa | Roundabout homolog 2 | Receptor for SLIT2, and probably SLIT1, which are thought to act as molecular guidance cue in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development. |
Q9NQU5 | PAK6 | S328 | ochoa|psp | Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) | Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}. |
Q9NR48 | ASH1L | S1170 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NTG7 | SIRT3 | S159 | psp | NAD-dependent protein deacetylase sirtuin-3, mitochondrial (hSIRT3) (EC 2.3.1.286) (NAD-dependent protein delactylase sirtuin-3) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 3) (SIR2-like protein 3) | NAD-dependent protein deacetylase (PubMed:12186850, PubMed:12374852, PubMed:16788062, PubMed:18680753, PubMed:18794531, PubMed:19535340, PubMed:23283301, PubMed:24121500, PubMed:24252090). Activates or deactivates mitochondrial target proteins by deacetylating key lysine residues (PubMed:12186850, PubMed:12374852, PubMed:16788062, PubMed:18680753, PubMed:18794531, PubMed:23283301, PubMed:24121500, PubMed:24252090, PubMed:38146092). Known targets include ACSS1, IDH, GDH, SOD2, PDHA1, LCAD, SDHA, MRPL12 and the ATP synthase subunit ATP5PO (PubMed:16788062, PubMed:18680753, PubMed:19535340, PubMed:24121500, PubMed:24252090, PubMed:38146092). Contributes to the regulation of the cellular energy metabolism (PubMed:24252090). Important for regulating tissue-specific ATP levels (PubMed:18794531). In response to metabolic stress, deacetylates transcription factor FOXO3 and recruits FOXO3 and mitochondrial RNA polymerase POLRMT to mtDNA to promote mtDNA transcription (PubMed:23283301). Acts as a regulator of ceramide metabolism by mediating deacetylation of ceramide synthases CERS1, CERS2 and CERS6, thereby increasing their activity and promoting mitochondrial ceramide accumulation (By similarity). Regulates hepatic lipogenesis (By similarity). Uses NAD(+) substrate imported by SLC25A47, triggering downstream activation of PRKAA1/AMPK-alpha signaling cascade that ultimately downregulates sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance (By similarity). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by mediating delactylation of proteins, such as CCNE2 and 'Lys-16' of histone H4 (H4K16la) (PubMed:36896611, PubMed:37720100). {ECO:0000250|UniProtKB:Q8R104, ECO:0000269|PubMed:12186850, ECO:0000269|PubMed:12374852, ECO:0000269|PubMed:16788062, ECO:0000269|PubMed:18680753, ECO:0000269|PubMed:18794531, ECO:0000269|PubMed:19535340, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:24121500, ECO:0000269|PubMed:24252090, ECO:0000269|PubMed:36896611, ECO:0000269|PubMed:37720100, ECO:0000269|PubMed:38146092}. |
Q9NVH0 | EXD2 | S352 | ochoa | Exonuclease 3'-5' domain-containing protein 2 (EC 3.1.11.1) (3'-5' exoribonuclease EXD2) (EC 3.1.13.-) (Exonuclease 3'-5' domain-like-containing protein 2) | Exonuclease that has both 3'-5' exoribonuclease and exodeoxyribonuclease activities, depending on the divalent metal cation used as cofactor (PubMed:29335528, PubMed:31127291). In presence of Mg(2+), only shows 3'-5' exoribonuclease activity, while it shows both exoribonuclease and exodeoxyribonuclease activities in presence of Mn(2+) (PubMed:29335528, PubMed:31127291). Acts as an exoribonuclease in mitochondrion, possibly by regulating ATP production and mitochondrial translation (PubMed:29335528). Also involved in the response to DNA damage (PubMed:26807646, PubMed:31255466). Acts as 3'-5' exodeoxyribonuclease for double-strand breaks resection and efficient homologous recombination (PubMed:20603073, PubMed:26807646). Plays a key role in controlling the initial steps of chromosomal break repair, it is recruited to chromatin in a damage-dependent manner and functionally interacts with the MRN complex to accelerate resection through its 3'-5' exonuclease activity, which efficiently processes double-stranded DNA substrates containing nicks (PubMed:26807646). Also involved in response to replicative stress: recruited to stalled forks and is required to stabilize and restart stalled replication forks by restraining excessive fork regression, thereby suppressing their degradation (PubMed:31255466). {ECO:0000269|PubMed:20603073, ECO:0000269|PubMed:26807646, ECO:0000269|PubMed:29335528, ECO:0000269|PubMed:31127291, ECO:0000269|PubMed:31255466}. |
Q9NX94 | WBP1L | S168 | ochoa | WW domain binding protein 1-like (Outcome predictor in acute leukemia 1) | None |
Q9NXC5 | MIOS | S766 | ochoa | GATOR2 complex protein MIOS (Missing oocyte meiosis regulator homolog) | As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:26586190, PubMed:27487210, PubMed:35831510, PubMed:36528027). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:26586190, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25263562, PubMed:25457612, PubMed:26586190, PubMed:27487210). Within the GATOR2 complex, MIOS is required to prevent autoubiquitination of WDR24, the catalytic subunit of the complex (PubMed:35831510). The GATOR2 complex is required for brain myelination (By similarity). {ECO:0000250|UniProtKB:Q8VE19, ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25263562, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:26586190, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027}. |
Q9NZ53 | PODXL2 | S144 | ochoa | Podocalyxin-like protein 2 (Endoglycan) | Acts as a ligand for vascular selectins. Mediates rapid rolling of leukocytes over vascular surfaces through high affinity divalent cation-dependent interactions with E-, P- and L-selectins. {ECO:0000269|PubMed:18606703}. |
Q9P0V3 | SH3BP4 | S637 | ochoa | SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) | May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}. |
Q9P219 | CCDC88C | S1930 | ochoa | Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) | Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}. |
Q9P219 | CCDC88C | S2003 | ochoa | Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) | Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}. |
Q9P266 | JCAD | S1123 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P267 | MBD5 | S507 | ochoa | Methyl-CpG-binding domain protein 5 (Methyl-CpG-binding protein MBD5) | Non-catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:24634419). Important for stability of PR-DUB components and stimulating its ubiquitinase activity (PubMed:36180891). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in cell growth and survivability (PubMed:36180891). MBD5 and MBD6 containing complexes associate with distinct chromatin regions enriched in genes involved in different pathways (PubMed:36180891). Heterochromatin recruitment is not mediated by DNA methylation (PubMed:20700456). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:36180891). {ECO:0000269|PubMed:20700456, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:36180891}. |
Q9UHI6 | DDX20 | S187 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UIW0 | VAX2 | S53 | ochoa | Ventral anterior homeobox 2 | Transcription factor that may function in dorsoventral specification of the forebrain. Regulates the expression of Wnt signaling antagonists including the expression of a truncated TCF7L2 isoform that cannot bind CTNNB1 and acts therefore as a potent dominant-negative Wnt antagonist. Plays a crucial role in eye development and, in particular, in the specification of the ventral optic vesicle (By similarity). May be a regulator of axial polarization in the retina. {ECO:0000250}. |
Q9UJU2 | LEF1 | S132 | ochoa|psp | Lymphoid enhancer-binding factor 1 (LEF-1) (T cell-specific transcription factor 1-alpha) (TCF1-alpha) | Transcription factor that binds DNA in a sequence-specific manner (PubMed:2010090). Participates in the Wnt signaling pathway (By similarity). Activates transcription of target genes in the presence of CTNNB1 and EP300 (By similarity). PIAG antagonizes both Wnt-dependent and Wnt-independent activation by LEF1 (By similarity). TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by LEF1 and CTNNB1 (PubMed:11266540). Regulates T-cell receptor alpha enhancer function (PubMed:19653274). Required for IL17A expressing gamma-delta T-cell maturation and development, via binding to regulator loci of BLK to modulate expression (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, expression is repressed during the bell stage by MSX1-mediated inhibition of CTNNB1 signaling (By similarity). May play a role in hair cell differentiation and follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:P27782, ECO:0000269|PubMed:11266540, ECO:0000269|PubMed:19653274, ECO:0000269|PubMed:2010090}.; FUNCTION: [Isoform 1]: Transcriptionally activates MYC and CCND1 expression and enhances proliferation of pancreatic tumor cells. {ECO:0000269|PubMed:19653274}.; FUNCTION: [Isoform 3]: Lacks the CTNNB1 interaction domain and may therefore be an antagonist for Wnt signaling. {ECO:0000269|PubMed:11326276}.; FUNCTION: [Isoform 5]: Transcriptionally activates the fibronectin promoter, binds to and represses transcription from the E-cadherin promoter in a CTNNB1-independent manner, and is involved in reducing cellular aggregation and increasing cell migration of pancreatic cancer cells. {ECO:0000269|PubMed:19653274}. |
Q9UK61 | TASOR | S945 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UKK3 | PARP4 | S1306 | ochoa | Protein mono-ADP-ribosyltransferase PARP4 (EC 2.4.2.-) (193 kDa vault protein) (ADP-ribosyltransferase diphtheria toxin-like 4) (ARTD4) (PARP-related/IalphaI-related H5/proline-rich) (PH5P) (Poly [ADP-ribose] polymerase 4) (PARP-4) (Vault poly(ADP-ribose) polymerase) (VPARP) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}. |
Q9UKV3 | ACIN1 | S729 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UL17 | TBX21 | S503 | ochoa|psp | T-box transcription factor TBX21 (T-box protein 21) (T-cell-specific T-box transcription factor T-bet) (Transcription factor TBLYM) | Lineage-defining transcription factor which initiates Th1 lineage development from naive Th precursor cells both by activating Th1 genetic programs and by repressing the opposing Th2 and Th17 genetic programs (PubMed:10761931). Activates transcription of a set of genes important for Th1 cell function, including those encoding IFN-gamma and the chemokine receptor CXCR3. Induces permissive chromatin accessibilty and CpG methylation in IFNG (PubMed:33296702). Activates IFNG and CXCR3 genes in part by recruiting chromatin remodeling complexes including KDM6B, a SMARCA4-containing SWI/SNF-complex, and an H3K4me2-methyltransferase complex to their promoters and all of these complexes serve to establish a more permissive chromatin state conducive with transcriptional activation (By similarity). Can activate Th1 genes also via recruitment of Mediator complex and P-TEFb (composed of CDK9 and CCNT1/cyclin-T1) in the form of the super elongation complex (SEC) to super-enhancers and associated genes in activated Th1 cells (PubMed:27292648). Inhibits the Th17 cell lineage commitment by blocking RUNX1-mediated transactivation of Th17 cell-specific transcriptinal regulator RORC. Inhibits the Th2 cell lineage commitment by suppressing the production of Th2 cytokines, such as IL-4, IL-5, and IL- 13, via repression of transcriptional regulators GATA3 and NFATC2. Protects Th1 cells from amplifying aberrant type-I IFN response in an IFN-gamma abundant microenvironment by acting as a repressor of type-I IFN transcription factors and type-I IFN-stimulated genes. Acts as a regulator of antiviral B-cell responses; controls chronic viral infection by promoting the antiviral antibody IgG2a isotype switching and via regulation of a broad antiviral gene expression program (By similarity). Required for the correct development of natural killer (NK) and mucosal-associated invariant T (MAIT) cells (PubMed:33296702). {ECO:0000250|UniProtKB:Q9JKD8, ECO:0000269|PubMed:10761931, ECO:0000269|PubMed:27292648, ECO:0000269|PubMed:33296702}. |
Q9ULD5 | ZNF777 | S604 | ochoa | Zinc finger protein 777 | May be involved in transcriptional repression (PubMed:31856708). Inhibits cell proliferation through CDKN1A/p21 induction by down-regulation of NIBAN1/FAM129A at low cell density (PubMed:25560148). {ECO:0000269|PubMed:25560148, ECO:0000269|PubMed:31856708}. |
Q9UPN4 | CEP131 | S150 | ochoa | Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) | Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}. |
Q9UQ35 | SRRM2 | S1648 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y2H9 | MAST1 | S789 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y3A4 | RRP7A | S99 | ochoa | Ribosomal RNA-processing protein 7 homolog A (Gastric cancer antigen Zg14) | Nucleolar protein that is involved in ribosomal RNA (rRNA) processing (PubMed:33199730). Also plays a role in primary cilia resorption, and cell cycle progression in neurogenesis and neocortex development (PubMed:33199730). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:33199730, ECO:0000269|PubMed:34516797}. |
Q9Y3Q8 | TSC22D4 | S24 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y4F5 | CEP170B | S512 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4F5 | CEP170B | S972 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y5K3 | PCYT1B | S319 | ochoa | Choline-phosphate cytidylyltransferase B (EC 2.7.7.15) (CCT-beta) (CTP:phosphocholine cytidylyltransferase B) (CCT B) (CT B) (Phosphorylcholine transferase B) | [Isoform 1]: Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912, ECO:0000269|PubMed:9593753}.; FUNCTION: [Isoform 2]: Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912}. |
Q9Y6N7 | ROBO1 | S1055 | ochoa | Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) | Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}. |
R4GMW8 | BIVM-ERCC5 | S778 | ochoa | DNA excision repair protein ERCC-5 | None |
O43283 | MAP3K13 | S681 | Sugiyama | Mitogen-activated protein kinase kinase kinase 13 (EC 2.7.11.25) (Leucine zipper-bearing kinase) (Mixed lineage kinase) (MLK) | Activates the JUN N-terminal pathway through activation of the MAP kinase kinase MAP2K7. Acts synergistically with PRDX3 to regulate the activation of NF-kappa-B in the cytosol. This activation is kinase-dependent and involves activating the IKK complex, the IKBKB-containing complex that phosphorylates inhibitors of NF-kappa-B. {ECO:0000269|PubMed:11726277, ECO:0000269|PubMed:12492477, ECO:0000269|PubMed:9353328}. |
P00540 | MOS | S26 | Sugiyama | Proto-oncogene serine/threonine-protein kinase mos (EC 2.7.11.1) (Oocyte maturation factor mos) (Proto-oncogene c-Mos) | Serine/threonine kinase involved in the regulation of MAPK signaling. Is an activator of the ERK1/2 signaling cascade playing an essential role in the stimulation of oocyte maturation. {ECO:0000269|PubMed:34779126, ECO:0000269|PubMed:34997960, ECO:0000269|PubMed:35670744}. |
P35658 | NUP214 | S661 | Sugiyama | Nuclear pore complex protein Nup214 (214 kDa nucleoporin) (Nucleoporin Nup214) (Protein CAN) | Part of the nuclear pore complex (PubMed:9049309). Has a critical role in nucleocytoplasmic transport (PubMed:31178128). May serve as a docking site in the receptor-mediated import of substrates across the nuclear pore complex (PubMed:31178128, PubMed:8108440). {ECO:0000269|PubMed:31178128, ECO:0000269|PubMed:9049309, ECO:0000303|PubMed:8108440}.; FUNCTION: (Microbial infection) Required for capsid disassembly of the human adenovirus 5 (HadV-5) leading to release of the viral genome to the nucleus (in vitro). {ECO:0000269|PubMed:25410864}. |
Q9NZB2 | FAM120A | S849 | Sugiyama | Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) | Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-3214841 | PKMTs methylate histone lysines | 0.000043 | 4.369 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.000023 | 4.633 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.000067 | 4.176 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.000093 | 4.033 |
R-HSA-9839394 | TGFBR3 expression | 0.000176 | 3.755 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.000156 | 3.806 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.000398 | 3.400 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 0.000542 | 3.266 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.000588 | 3.231 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.001275 | 2.895 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.001275 | 2.895 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.001275 | 2.895 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.001275 | 2.895 |
R-HSA-9022534 | Loss of MECP2 binding ability to 5hmC-DNA | 0.001275 | 2.895 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.001275 | 2.895 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.000844 | 3.074 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.001236 | 2.908 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 0.001236 | 2.908 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.000911 | 3.040 |
R-HSA-4839726 | Chromatin organization | 0.000748 | 3.126 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.001363 | 2.866 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.001518 | 2.819 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.002325 | 2.634 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.002325 | 2.634 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.002208 | 2.656 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.002599 | 2.585 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.002920 | 2.535 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.002920 | 2.535 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.003009 | 2.522 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.003645 | 2.438 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.003645 | 2.438 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.004052 | 2.392 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.004052 | 2.392 |
R-HSA-74160 | Gene expression (Transcription) | 0.004218 | 2.375 |
R-HSA-180746 | Nuclear import of Rev protein | 0.004491 | 2.348 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 0.004929 | 2.307 |
R-HSA-8951911 | RUNX3 regulates RUNX1-mediated transcription | 0.004929 | 2.307 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.004963 | 2.304 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.006010 | 2.221 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.007572 | 2.121 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.007572 | 2.121 |
R-HSA-428540 | Activation of RAC1 | 0.007140 | 2.146 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.007949 | 2.100 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.006869 | 2.163 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.007857 | 2.105 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.007857 | 2.105 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.007857 | 2.105 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.006587 | 2.181 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.007203 | 2.143 |
R-HSA-191859 | snRNP Assembly | 0.008344 | 2.079 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.008344 | 2.079 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.008505 | 2.070 |
R-HSA-4641265 | Repression of WNT target genes | 0.008505 | 2.070 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.008552 | 2.068 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.009434 | 2.025 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.009890 | 2.005 |
R-HSA-9796292 | Formation of axial mesoderm | 0.010012 | 1.999 |
R-HSA-525793 | Myogenesis | 0.009890 | 2.005 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.010189 | 1.992 |
R-HSA-9022927 | MECP2 regulates transcription of genes involved in GABA signaling | 0.010721 | 1.970 |
R-HSA-72306 | tRNA processing | 0.010845 | 1.965 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.012668 | 1.897 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.013265 | 1.877 |
R-HSA-9022535 | Loss of phosphorylation of MECP2 at T308 | 0.014349 | 1.843 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.013464 | 1.871 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 0.014349 | 1.843 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.013628 | 1.866 |
R-HSA-9945266 | Differentiation of T cells | 0.015413 | 1.812 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.015413 | 1.812 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.016097 | 1.793 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.017514 | 1.757 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 0.017514 | 1.757 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.017514 | 1.757 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.017468 | 1.758 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.018430 | 1.734 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.019003 | 1.721 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.018414 | 1.735 |
R-HSA-212436 | Generic Transcription Pathway | 0.018250 | 1.739 |
R-HSA-195721 | Signaling by WNT | 0.019328 | 1.714 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.019429 | 1.712 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 0.022938 | 1.639 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.022938 | 1.639 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.022938 | 1.639 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.022317 | 1.651 |
R-HSA-5689603 | UCH proteinases | 0.022702 | 1.644 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.022169 | 1.654 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.024097 | 1.618 |
R-HSA-9616334 | Defective Base Excision Repair Associated with NEIL1 | 0.025383 | 1.595 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 0.027849 | 1.555 |
R-HSA-9022707 | MECP2 regulates transcription factors | 0.027849 | 1.555 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.027849 | 1.555 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.025146 | 1.600 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.027880 | 1.555 |
R-HSA-5688426 | Deubiquitination | 0.027728 | 1.557 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.027527 | 1.560 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.033303 | 1.478 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.034219 | 1.466 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.036558 | 1.437 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 0.038789 | 1.411 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.038789 | 1.411 |
R-HSA-448706 | Interleukin-1 processing | 0.038789 | 1.411 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.041399 | 1.383 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.044583 | 1.351 |
R-HSA-1234174 | Cellular response to hypoxia | 0.041839 | 1.378 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.044773 | 1.349 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.046388 | 1.334 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.046449 | 1.333 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.050568 | 1.296 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.055008 | 1.260 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.050568 | 1.296 |
R-HSA-75153 | Apoptotic execution phase | 0.052115 | 1.283 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.057251 | 1.242 |
R-HSA-5602636 | IKBKB deficiency causes SCID | 0.074236 | 1.129 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 0.074236 | 1.129 |
R-HSA-5603027 | IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (E... | 0.074236 | 1.129 |
R-HSA-5658034 | HHAT G278V doesn't palmitoylate Hh-Np | 0.097738 | 1.010 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 0.120646 | 0.918 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 0.120646 | 0.918 |
R-HSA-211163 | AKT-mediated inactivation of FOXO1A | 0.142973 | 0.845 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.164734 | 0.783 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 0.164734 | 0.783 |
R-HSA-9706377 | FLT3 signaling by CBL mutants | 0.164734 | 0.783 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.057669 | 1.239 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.064542 | 1.190 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.064542 | 1.190 |
R-HSA-9005895 | Pervasive developmental disorders | 0.064542 | 1.190 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 0.185945 | 0.731 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.071672 | 1.145 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.079044 | 1.102 |
R-HSA-113507 | E2F-enabled inhibition of pre-replication complex formation | 0.206618 | 0.685 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.246406 | 0.608 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.246406 | 0.608 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 0.265547 | 0.576 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.265547 | 0.576 |
R-HSA-201688 | WNT mediated activation of DVL | 0.265547 | 0.576 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.265547 | 0.576 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.302386 | 0.519 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.199327 | 0.700 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 0.354217 | 0.451 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 0.354217 | 0.451 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.073170 | 1.136 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.386619 | 0.413 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.386619 | 0.413 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.274693 | 0.561 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 0.402206 | 0.396 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 0.402206 | 0.396 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.157621 | 0.802 |
R-HSA-380287 | Centrosome maturation | 0.167378 | 0.776 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.255421 | 0.593 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.224414 | 0.649 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.224414 | 0.649 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.340497 | 0.468 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.340497 | 0.468 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.276079 | 0.559 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.276079 | 0.559 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.229836 | 0.639 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.240776 | 0.618 |
R-HSA-167161 | HIV Transcription Initiation | 0.358999 | 0.445 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.358999 | 0.445 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.296894 | 0.527 |
R-HSA-5419276 | Mitochondrial translation termination | 0.377679 | 0.423 |
R-HSA-182971 | EGFR downregulation | 0.246294 | 0.609 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.387288 | 0.412 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.358999 | 0.445 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 0.079044 | 1.102 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.284155 | 0.546 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.118955 | 0.925 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 0.402206 | 0.396 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.395397 | 0.403 |
R-HSA-156711 | Polo-like kinase mediated events | 0.118955 | 0.925 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.340497 | 0.468 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.152337 | 0.817 |
R-HSA-8939211 | ESR-mediated signaling | 0.130292 | 0.885 |
R-HSA-191650 | Regulation of gap junction activity | 0.142973 | 0.845 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.064542 | 1.190 |
R-HSA-8939242 | RUNX1 regulates transcription of genes involved in differentiation of keratinocy... | 0.246406 | 0.608 |
R-HSA-190873 | Gap junction degradation | 0.265547 | 0.576 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.067429 | 1.171 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 0.337382 | 0.472 |
R-HSA-381042 | PERK regulates gene expression | 0.293606 | 0.532 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.337382 | 0.472 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.148085 | 0.829 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.377308 | 0.423 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.168435 | 0.774 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 0.171711 | 0.765 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.190057 | 0.721 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.190057 | 0.721 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.283283 | 0.548 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 0.164734 | 0.783 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.139301 | 0.856 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.370626 | 0.431 |
R-HSA-9664420 | Killing mechanisms | 0.402206 | 0.396 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.402206 | 0.396 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.213673 | 0.670 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.358999 | 0.445 |
R-HSA-376176 | Signaling by ROBO receptors | 0.215655 | 0.666 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.380390 | 0.420 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.268629 | 0.571 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 0.086640 | 1.062 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.302386 | 0.519 |
R-HSA-3214815 | HDACs deacetylate histones | 0.221550 | 0.655 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.366546 | 0.436 |
R-HSA-9010642 | ROBO receptors bind AKAP5 | 0.246406 | 0.608 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.320109 | 0.495 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.274693 | 0.561 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.395397 | 0.403 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.319929 | 0.495 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.177538 | 0.751 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.284365 | 0.546 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.120646 | 0.918 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.142973 | 0.845 |
R-HSA-8941333 | RUNX2 regulates genes involved in differentiation of myeloid cells | 0.142973 | 0.845 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.164734 | 0.783 |
R-HSA-68689 | CDC6 association with the ORC:origin complex | 0.185945 | 0.731 |
R-HSA-9837092 | FASTK family proteins regulate processing and stability of mitochondrial RNAs | 0.086640 | 1.062 |
R-HSA-1614603 | Cysteine formation from homocysteine | 0.226767 | 0.644 |
R-HSA-196025 | Formation of annular gap junctions | 0.246406 | 0.608 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.284203 | 0.546 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.320109 | 0.495 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.320109 | 0.495 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 0.337382 | 0.472 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.337382 | 0.472 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.386619 | 0.413 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.152825 | 0.816 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.284155 | 0.546 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.340497 | 0.468 |
R-HSA-9909396 | Circadian clock | 0.332952 | 0.478 |
R-HSA-9843745 | Adipogenesis | 0.327936 | 0.484 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.079044 | 1.102 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.324772 | 0.488 |
R-HSA-6807004 | Negative regulation of MET activity | 0.136071 | 0.866 |
R-HSA-418885 | DCC mediated attractive signaling | 0.386619 | 0.413 |
R-HSA-4086400 | PCP/CE pathway | 0.380390 | 0.420 |
R-HSA-9609690 | HCMV Early Events | 0.317792 | 0.498 |
R-HSA-9020702 | Interleukin-1 signaling | 0.325690 | 0.487 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.400710 | 0.397 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.226767 | 0.644 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 0.265547 | 0.576 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 0.320109 | 0.495 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.208649 | 0.681 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.370626 | 0.431 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 0.255756 | 0.592 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.255756 | 0.592 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.153687 | 0.813 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.296978 | 0.527 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.198648 | 0.702 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.080570 | 1.094 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.340497 | 0.468 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.340497 | 0.468 |
R-HSA-448424 | Interleukin-17 signaling | 0.143404 | 0.843 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.144822 | 0.839 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 0.302386 | 0.519 |
R-HSA-418359 | Reduction of cytosolic Ca++ levels | 0.320109 | 0.495 |
R-HSA-177504 | Retrograde neurotrophin signalling | 0.370626 | 0.431 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 0.386619 | 0.413 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.192653 | 0.715 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.213673 | 0.670 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.371906 | 0.430 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.059528 | 1.225 |
R-HSA-68877 | Mitotic Prometaphase | 0.305617 | 0.515 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.152052 | 0.818 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.152052 | 0.818 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.152052 | 0.818 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.363713 | 0.439 |
R-HSA-9836573 | Mitochondrial RNA degradation | 0.180849 | 0.743 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.092316 | 1.035 |
R-HSA-69275 | G2/M Transition | 0.277614 | 0.557 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.102871 | 0.988 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.203109 | 0.692 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.258971 | 0.587 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.383447 | 0.416 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.285550 | 0.544 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 0.265547 | 0.576 |
R-HSA-5260271 | Diseases of Immune System | 0.122075 | 0.913 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.122075 | 0.913 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.370626 | 0.431 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.287660 | 0.541 |
R-HSA-446652 | Interleukin-1 family signaling | 0.274576 | 0.561 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.258971 | 0.587 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.273488 | 0.563 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.383447 | 0.416 |
R-HSA-450294 | MAP kinase activation | 0.262285 | 0.581 |
R-HSA-68886 | M Phase | 0.241708 | 0.617 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.354568 | 0.450 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.273488 | 0.563 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.180849 | 0.743 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.108234 | 0.966 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.386619 | 0.413 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.402206 | 0.396 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.221280 | 0.655 |
R-HSA-9031628 | NGF-stimulated transcription | 0.057987 | 1.237 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.235220 | 0.629 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.343008 | 0.465 |
R-HSA-68875 | Mitotic Prophase | 0.134373 | 0.872 |
R-HSA-9605308 | Diseases of Base Excision Repair | 0.185945 | 0.731 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.293606 | 0.532 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.395397 | 0.403 |
R-HSA-5660668 | CLEC7A/inflammasome pathway | 0.185945 | 0.731 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 0.246406 | 0.608 |
R-HSA-425986 | Sodium/Proton exchangers | 0.246406 | 0.608 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.265547 | 0.576 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 0.265547 | 0.576 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 0.337382 | 0.472 |
R-HSA-937039 | IRAK1 recruits IKK complex | 0.337382 | 0.472 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 0.354217 | 0.451 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.227416 | 0.643 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.402206 | 0.396 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.402206 | 0.396 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.197846 | 0.704 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.249400 | 0.603 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.262285 | 0.581 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.257365 | 0.589 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.208649 | 0.681 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.144822 | 0.839 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.136383 | 0.865 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.337382 | 0.472 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.108234 | 0.966 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.177631 | 0.750 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.116626 | 0.933 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.324772 | 0.488 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.265547 | 0.576 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.105704 | 0.976 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.265224 | 0.576 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.152825 | 0.816 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.312449 | 0.505 |
R-HSA-373752 | Netrin-1 signaling | 0.151214 | 0.820 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.164734 | 0.783 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.071672 | 1.145 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 0.265547 | 0.576 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.153687 | 0.813 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 0.302386 | 0.519 |
R-HSA-427601 | Inorganic anion exchange by SLC26 transporters | 0.302386 | 0.519 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.302386 | 0.519 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 0.354217 | 0.451 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.177343 | 0.751 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.377679 | 0.423 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.262252 | 0.581 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.058689 | 1.231 |
R-HSA-9758941 | Gastrulation | 0.261640 | 0.582 |
R-HSA-8874211 | CREB3 factors activate genes | 0.206618 | 0.685 |
R-HSA-4086398 | Ca2+ pathway | 0.157621 | 0.802 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.255867 | 0.592 |
R-HSA-1483255 | PI Metabolism | 0.168435 | 0.774 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.121796 | 0.914 |
R-HSA-1640170 | Cell Cycle | 0.328148 | 0.484 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.402206 | 0.396 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.228255 | 0.642 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.317792 | 0.498 |
R-HSA-1236394 | Signaling by ERBB4 | 0.062458 | 1.204 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 0.185945 | 0.731 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.102441 | 0.990 |
R-HSA-2028269 | Signaling by Hippo | 0.110616 | 0.956 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.080570 | 1.094 |
R-HSA-5689877 | Josephin domain DUBs | 0.284203 | 0.546 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.227627 | 0.643 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.227627 | 0.643 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.148085 | 0.829 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.386619 | 0.413 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.110774 | 0.956 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.091846 | 1.037 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.086640 | 1.062 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.284203 | 0.546 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.162654 | 0.789 |
R-HSA-9856872 | Malate-aspartate shuttle | 0.370626 | 0.431 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.143404 | 0.843 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.255421 | 0.593 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.358999 | 0.445 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.386382 | 0.413 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 0.296894 | 0.527 |
R-HSA-9006936 | Signaling by TGFB family members | 0.091846 | 1.037 |
R-HSA-1433559 | Regulation of KIT signaling | 0.370626 | 0.431 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.175943 | 0.755 |
R-HSA-211000 | Gene Silencing by RNA | 0.089273 | 1.049 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.402206 | 0.396 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.253670 | 0.596 |
R-HSA-162587 | HIV Life Cycle | 0.167788 | 0.775 |
R-HSA-168255 | Influenza Infection | 0.400008 | 0.398 |
R-HSA-3214842 | HDMs demethylate histones | 0.190057 | 0.721 |
R-HSA-6806834 | Signaling by MET | 0.394167 | 0.404 |
R-HSA-9683610 | Maturation of nucleoprotein | 0.354217 | 0.451 |
R-HSA-8876725 | Protein methylation | 0.386619 | 0.413 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.258971 | 0.587 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.302699 | 0.519 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.307960 | 0.512 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.246406 | 0.608 |
R-HSA-9833482 | PKR-mediated signaling | 0.394167 | 0.404 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.234997 | 0.629 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.194220 | 0.712 |
R-HSA-162909 | Host Interactions of HIV factors | 0.283259 | 0.548 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.151214 | 0.820 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.386619 | 0.413 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.293606 | 0.532 |
R-HSA-70171 | Glycolysis | 0.160158 | 0.795 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.194220 | 0.712 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.189829 | 0.722 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.307056 | 0.513 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.143404 | 0.843 |
R-HSA-196780 | Biotin transport and metabolism | 0.386619 | 0.413 |
R-HSA-9008059 | Interleukin-37 signaling | 0.236845 | 0.626 |
R-HSA-69205 | G1/S-Specific Transcription | 0.303039 | 0.519 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.168435 | 0.774 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.159996 | 0.796 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.079213 | 1.101 |
R-HSA-3371556 | Cellular response to heat stress | 0.137707 | 0.861 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.065047 | 1.187 |
R-HSA-844456 | The NLRP3 inflammasome | 0.127444 | 0.895 |
R-HSA-9679506 | SARS-CoV Infections | 0.163313 | 0.787 |
R-HSA-1059683 | Interleukin-6 signaling | 0.354217 | 0.451 |
R-HSA-70326 | Glucose metabolism | 0.249400 | 0.603 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 0.354217 | 0.451 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.229836 | 0.639 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 0.370626 | 0.431 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.262994 | 0.580 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.235112 | 0.629 |
R-HSA-622312 | Inflammasomes | 0.218015 | 0.662 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.404352 | 0.393 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.404352 | 0.393 |
R-HSA-68882 | Mitotic Anaphase | 0.404606 | 0.393 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.408764 | 0.389 |
R-HSA-418990 | Adherens junctions interactions | 0.412921 | 0.384 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.413242 | 0.384 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.417398 | 0.379 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 0.417398 | 0.379 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.417398 | 0.379 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.417398 | 0.379 |
R-HSA-6787450 | tRNA modification in the mitochondrion | 0.417398 | 0.379 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.421467 | 0.375 |
R-HSA-425410 | Metal ion SLC transporters | 0.422066 | 0.375 |
R-HSA-166520 | Signaling by NTRKs | 0.423595 | 0.373 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.430821 | 0.366 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.430821 | 0.366 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 0.432205 | 0.364 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 0.432205 | 0.364 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.432205 | 0.364 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 0.432205 | 0.364 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.432205 | 0.364 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.432205 | 0.364 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 0.432205 | 0.364 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.433592 | 0.363 |
R-HSA-9007101 | Rab regulation of trafficking | 0.434951 | 0.362 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.434964 | 0.362 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.438577 | 0.358 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.440609 | 0.356 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.443552 | 0.353 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.446637 | 0.350 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.446637 | 0.350 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 0.446637 | 0.350 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.446637 | 0.350 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.446637 | 0.350 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.446637 | 0.350 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.448117 | 0.349 |
R-HSA-5617833 | Cilium Assembly | 0.449668 | 0.347 |
R-HSA-162906 | HIV Infection | 0.450198 | 0.347 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.454146 | 0.343 |
R-HSA-72187 | mRNA 3'-end processing | 0.456654 | 0.340 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.456654 | 0.340 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.457479 | 0.340 |
R-HSA-912631 | Regulation of signaling by CBL | 0.460703 | 0.337 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.460703 | 0.337 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 0.460703 | 0.337 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.460703 | 0.337 |
R-HSA-449836 | Other interleukin signaling | 0.460703 | 0.337 |
R-HSA-9834899 | Specification of the neural plate border | 0.460703 | 0.337 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 0.460703 | 0.337 |
R-HSA-9694631 | Maturation of nucleoprotein | 0.460703 | 0.337 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 0.460703 | 0.337 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.465114 | 0.332 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.465114 | 0.332 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.465114 | 0.332 |
R-HSA-9610379 | HCMV Late Events | 0.468255 | 0.330 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.468630 | 0.329 |
R-HSA-9711097 | Cellular response to starvation | 0.473156 | 0.325 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.473496 | 0.325 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.474412 | 0.324 |
R-HSA-163210 | Formation of ATP by chemiosmotic coupling | 0.474412 | 0.324 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.474412 | 0.324 |
R-HSA-9823730 | Formation of definitive endoderm | 0.474412 | 0.324 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.474703 | 0.324 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.487773 | 0.312 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.487773 | 0.312 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.487773 | 0.312 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.487773 | 0.312 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.487773 | 0.312 |
R-HSA-177929 | Signaling by EGFR | 0.490019 | 0.310 |
R-HSA-75893 | TNF signaling | 0.490019 | 0.310 |
R-HSA-109581 | Apoptosis | 0.492612 | 0.307 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.500471 | 0.301 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.500795 | 0.300 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.500795 | 0.300 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.500795 | 0.300 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.500795 | 0.300 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.500795 | 0.300 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.500795 | 0.300 |
R-HSA-2262752 | Cellular responses to stress | 0.505296 | 0.296 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.512333 | 0.290 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.513487 | 0.289 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.513487 | 0.289 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.513487 | 0.289 |
R-HSA-186712 | Regulation of beta-cell development | 0.514184 | 0.289 |
R-HSA-5619102 | SLC transporter disorders | 0.516551 | 0.287 |
R-HSA-5389840 | Mitochondrial translation elongation | 0.519370 | 0.285 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.519370 | 0.285 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.522070 | 0.282 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.522070 | 0.282 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.522070 | 0.282 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.522070 | 0.282 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.522070 | 0.282 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.522070 | 0.282 |
R-HSA-157579 | Telomere Maintenance | 0.525583 | 0.279 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.525858 | 0.279 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 0.525858 | 0.279 |
R-HSA-9830674 | Formation of the ureteric bud | 0.525858 | 0.279 |
R-HSA-9937008 | Mitochondrial mRNA modification | 0.525858 | 0.279 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.525858 | 0.279 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.529869 | 0.276 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.529869 | 0.276 |
R-HSA-5368286 | Mitochondrial translation initiation | 0.531752 | 0.274 |
R-HSA-9614085 | FOXO-mediated transcription | 0.537876 | 0.269 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.537914 | 0.269 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.537914 | 0.269 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.537914 | 0.269 |
R-HSA-9609646 | HCMV Infection | 0.542743 | 0.265 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.545207 | 0.263 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.545207 | 0.263 |
R-HSA-8848021 | Signaling by PTK6 | 0.545207 | 0.263 |
R-HSA-421270 | Cell-cell junction organization | 0.546631 | 0.262 |
R-HSA-9620244 | Long-term potentiation | 0.549665 | 0.260 |
R-HSA-2160916 | Hyaluronan degradation | 0.549665 | 0.260 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.549665 | 0.260 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.549985 | 0.260 |
R-HSA-199991 | Membrane Trafficking | 0.553795 | 0.257 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.561117 | 0.251 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.561117 | 0.251 |
R-HSA-5689901 | Metalloprotease DUBs | 0.561117 | 0.251 |
R-HSA-70635 | Urea cycle | 0.561117 | 0.251 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.561117 | 0.251 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 0.561117 | 0.251 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.562198 | 0.250 |
R-HSA-5368287 | Mitochondrial translation | 0.564523 | 0.248 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.567794 | 0.246 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.572279 | 0.242 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.572279 | 0.242 |
R-HSA-8949613 | Cristae formation | 0.572279 | 0.242 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.572279 | 0.242 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.572279 | 0.242 |
R-HSA-201451 | Signaling by BMP | 0.572279 | 0.242 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.573633 | 0.241 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.573633 | 0.241 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.579424 | 0.237 |
R-HSA-167172 | Transcription of the HIV genome | 0.582003 | 0.235 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 0.583158 | 0.234 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.583158 | 0.234 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.583158 | 0.234 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.583158 | 0.234 |
R-HSA-9675108 | Nervous system development | 0.587701 | 0.231 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.589095 | 0.230 |
R-HSA-913531 | Interferon Signaling | 0.591527 | 0.228 |
R-HSA-9615710 | Late endosomal microautophagy | 0.593760 | 0.226 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.593760 | 0.226 |
R-HSA-210745 | Regulation of gene expression in beta cells | 0.593760 | 0.226 |
R-HSA-418360 | Platelet calcium homeostasis | 0.593760 | 0.226 |
R-HSA-422475 | Axon guidance | 0.595501 | 0.225 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.596097 | 0.225 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.596174 | 0.225 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.604094 | 0.219 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.604094 | 0.219 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 0.604094 | 0.219 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.604094 | 0.219 |
R-HSA-112311 | Neurotransmitter clearance | 0.604094 | 0.219 |
R-HSA-114452 | Activation of BH3-only proteins | 0.604094 | 0.219 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.609831 | 0.215 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.614165 | 0.212 |
R-HSA-8953854 | Metabolism of RNA | 0.618145 | 0.209 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.623208 | 0.205 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.623981 | 0.205 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.623981 | 0.205 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.629762 | 0.201 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 0.629762 | 0.201 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 0.633548 | 0.198 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.633548 | 0.198 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.633548 | 0.198 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.633548 | 0.198 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.633548 | 0.198 |
R-HSA-9733709 | Cardiogenesis | 0.633548 | 0.198 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.633548 | 0.198 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.636228 | 0.196 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.640292 | 0.194 |
R-HSA-390522 | Striated Muscle Contraction | 0.642871 | 0.192 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.642871 | 0.192 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.642871 | 0.192 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.642871 | 0.192 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.642871 | 0.192 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 0.642871 | 0.192 |
R-HSA-446728 | Cell junction organization | 0.645607 | 0.190 |
R-HSA-191273 | Cholesterol biosynthesis | 0.648893 | 0.188 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.651958 | 0.186 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.651958 | 0.186 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.651958 | 0.186 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 0.651958 | 0.186 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.651958 | 0.186 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.651958 | 0.186 |
R-HSA-2142845 | Hyaluronan metabolism | 0.651958 | 0.186 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.651958 | 0.186 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 0.655093 | 0.184 |
R-HSA-2408508 | Metabolism of ingested SeMet, Sec, MeSec into H2Se | 0.660815 | 0.180 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.663967 | 0.178 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.669447 | 0.174 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.669447 | 0.174 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.669447 | 0.174 |
R-HSA-8853659 | RET signaling | 0.669447 | 0.174 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.669447 | 0.174 |
R-HSA-9682385 | FLT3 signaling in disease | 0.669447 | 0.174 |
R-HSA-8953897 | Cellular responses to stimuli | 0.673054 | 0.172 |
R-HSA-1266738 | Developmental Biology | 0.673495 | 0.172 |
R-HSA-73886 | Chromosome Maintenance | 0.674874 | 0.171 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.677859 | 0.169 |
R-HSA-4641258 | Degradation of DVL | 0.677859 | 0.169 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.677859 | 0.169 |
R-HSA-549127 | SLC-mediated transport of organic cations | 0.677859 | 0.169 |
R-HSA-72172 | mRNA Splicing | 0.683163 | 0.165 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.684431 | 0.165 |
R-HSA-6785470 | tRNA processing in the mitochondrion | 0.686058 | 0.164 |
R-HSA-8875878 | MET promotes cell motility | 0.686058 | 0.164 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.686058 | 0.164 |
R-HSA-5357801 | Programmed Cell Death | 0.686885 | 0.163 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.688532 | 0.162 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.690472 | 0.161 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.690472 | 0.161 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.694049 | 0.159 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.694049 | 0.159 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.694049 | 0.159 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.694049 | 0.159 |
R-HSA-201556 | Signaling by ALK | 0.694049 | 0.159 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.698371 | 0.156 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.698371 | 0.156 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.698371 | 0.156 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.701583 | 0.154 |
R-HSA-9646399 | Aggrephagy | 0.701836 | 0.154 |
R-HSA-3371568 | Attenuation phase | 0.701836 | 0.154 |
R-HSA-8868766 | rRNA processing in the mitochondrion | 0.701836 | 0.154 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.701836 | 0.154 |
R-HSA-9854311 | Maturation of TCA enzymes and regulation of TCA cycle | 0.701836 | 0.154 |
R-HSA-438064 | Post NMDA receptor activation events | 0.707013 | 0.151 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.709426 | 0.149 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.709426 | 0.149 |
R-HSA-9607240 | FLT3 Signaling | 0.709426 | 0.149 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.712139 | 0.147 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.713655 | 0.147 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.716824 | 0.145 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.716824 | 0.145 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.716824 | 0.145 |
R-HSA-9683701 | Translation of Structural Proteins | 0.716824 | 0.145 |
R-HSA-1236974 | ER-Phagosome pathway | 0.717627 | 0.144 |
R-HSA-202424 | Downstream TCR signaling | 0.722812 | 0.141 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.724033 | 0.140 |
R-HSA-73928 | Depyrimidination | 0.724033 | 0.140 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.724033 | 0.140 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.724033 | 0.140 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.724033 | 0.140 |
R-HSA-8854214 | TBC/RABGAPs | 0.731059 | 0.136 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.731059 | 0.136 |
R-HSA-5654743 | Signaling by FGFR4 | 0.731059 | 0.136 |
R-HSA-73621 | Pyrimidine catabolism | 0.731059 | 0.136 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.731059 | 0.136 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.731059 | 0.136 |
R-HSA-9734767 | Developmental Cell Lineages | 0.735493 | 0.133 |
R-HSA-9907900 | Proteasome assembly | 0.737907 | 0.132 |
R-HSA-190828 | Gap junction trafficking | 0.737907 | 0.132 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.744581 | 0.128 |
R-HSA-9824272 | Somitogenesis | 0.744581 | 0.128 |
R-HSA-5654741 | Signaling by FGFR3 | 0.744581 | 0.128 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.744581 | 0.128 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.751085 | 0.124 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.751085 | 0.124 |
R-HSA-9675135 | Diseases of DNA repair | 0.751085 | 0.124 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.751085 | 0.124 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.751085 | 0.124 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 0.751085 | 0.124 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.757425 | 0.121 |
R-HSA-437239 | Recycling pathway of L1 | 0.757425 | 0.121 |
R-HSA-1483191 | Synthesis of PC | 0.757425 | 0.121 |
R-HSA-1500931 | Cell-Cell communication | 0.761115 | 0.119 |
R-HSA-6807070 | PTEN Regulation | 0.764883 | 0.116 |
R-HSA-162582 | Signal Transduction | 0.768132 | 0.115 |
R-HSA-9766229 | Degradation of CDH1 | 0.769624 | 0.114 |
R-HSA-3214847 | HATs acetylate histones | 0.774701 | 0.111 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.781211 | 0.107 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.781211 | 0.107 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 0.781211 | 0.107 |
R-HSA-2514856 | The phototransduction cascade | 0.781211 | 0.107 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.786555 | 0.104 |
R-HSA-68949 | Orc1 removal from chromatin | 0.786784 | 0.104 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.786784 | 0.104 |
R-HSA-6794361 | Neurexins and neuroligins | 0.786784 | 0.104 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.786784 | 0.104 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.787299 | 0.104 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.788813 | 0.103 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 0.791359 | 0.102 |
R-HSA-445355 | Smooth Muscle Contraction | 0.792216 | 0.101 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.795350 | 0.099 |
R-HSA-72649 | Translation initiation complex formation | 0.797510 | 0.098 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.797510 | 0.098 |
R-HSA-157118 | Signaling by NOTCH | 0.798500 | 0.098 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.802669 | 0.095 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.807698 | 0.093 |
R-HSA-5654736 | Signaling by FGFR1 | 0.807698 | 0.093 |
R-HSA-5578775 | Ion homeostasis | 0.807698 | 0.093 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.807698 | 0.093 |
R-HSA-5621480 | Dectin-2 family | 0.812598 | 0.090 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.812598 | 0.090 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.814311 | 0.089 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.816587 | 0.088 |
R-HSA-6782135 | Dual incision in TC-NER | 0.817374 | 0.088 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.817374 | 0.088 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.817374 | 0.088 |
R-HSA-73887 | Death Receptor Signaling | 0.818985 | 0.087 |
R-HSA-1483257 | Phospholipid metabolism | 0.820315 | 0.086 |
R-HSA-202403 | TCR signaling | 0.821446 | 0.085 |
R-HSA-1989781 | PPARA activates gene expression | 0.821986 | 0.085 |
R-HSA-180786 | Extension of Telomeres | 0.822028 | 0.085 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.822656 | 0.085 |
R-HSA-379724 | tRNA Aminoacylation | 0.826564 | 0.083 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.827861 | 0.082 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.830736 | 0.081 |
R-HSA-445717 | Aquaporin-mediated transport | 0.830985 | 0.080 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.834983 | 0.078 |
R-HSA-9707616 | Heme signaling | 0.835293 | 0.078 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.839492 | 0.076 |
R-HSA-373755 | Semaphorin interactions | 0.839492 | 0.076 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.842360 | 0.075 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.843584 | 0.074 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.844521 | 0.073 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.844521 | 0.073 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.847135 | 0.072 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.847572 | 0.072 |
R-HSA-373760 | L1CAM interactions | 0.847587 | 0.072 |
R-HSA-9830369 | Kidney development | 0.855246 | 0.068 |
R-HSA-196807 | Nicotinate metabolism | 0.855246 | 0.068 |
R-HSA-913709 | O-linked glycosylation of mucins | 0.858937 | 0.066 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.858937 | 0.066 |
R-HSA-5653656 | Vesicle-mediated transport | 0.859416 | 0.066 |
R-HSA-9711123 | Cellular response to chemical stress | 0.863138 | 0.064 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.866040 | 0.062 |
R-HSA-2132295 | MHC class II antigen presentation | 0.867558 | 0.062 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.869456 | 0.061 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.869456 | 0.061 |
R-HSA-5689880 | Ub-specific processing proteases | 0.871409 | 0.060 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.872786 | 0.059 |
R-HSA-69206 | G1/S Transition | 0.875359 | 0.058 |
R-HSA-194138 | Signaling by VEGF | 0.875359 | 0.058 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.876031 | 0.057 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.876031 | 0.057 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.879193 | 0.056 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.879193 | 0.056 |
R-HSA-425397 | Transport of vitamins, nucleosides, and related molecules | 0.879193 | 0.056 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.882275 | 0.054 |
R-HSA-2559583 | Cellular Senescence | 0.886315 | 0.052 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.886674 | 0.052 |
R-HSA-9658195 | Leishmania infection | 0.886674 | 0.052 |
R-HSA-9694635 | Translation of Structural Proteins | 0.888206 | 0.051 |
R-HSA-5654738 | Signaling by FGFR2 | 0.896547 | 0.047 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.896547 | 0.047 |
R-HSA-977225 | Amyloid fiber formation | 0.899187 | 0.046 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.899187 | 0.046 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.901760 | 0.045 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.904268 | 0.044 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.909093 | 0.041 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.912108 | 0.040 |
R-HSA-9664407 | Parasite infection | 0.912108 | 0.040 |
R-HSA-9664417 | Leishmania phagocytosis | 0.912108 | 0.040 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.913202 | 0.039 |
R-HSA-1614635 | Sulfur amino acid metabolism | 0.913675 | 0.039 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.913918 | 0.039 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.915879 | 0.038 |
R-HSA-70268 | Pyruvate metabolism | 0.915879 | 0.038 |
R-HSA-156902 | Peptide chain elongation | 0.918027 | 0.037 |
R-HSA-9663891 | Selective autophagy | 0.918027 | 0.037 |
R-HSA-1280218 | Adaptive Immune System | 0.919194 | 0.037 |
R-HSA-112310 | Neurotransmitter release cycle | 0.922160 | 0.035 |
R-HSA-73884 | Base Excision Repair | 0.922160 | 0.035 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.924066 | 0.034 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.924148 | 0.034 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.926085 | 0.033 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.927973 | 0.032 |
R-HSA-391251 | Protein folding | 0.927973 | 0.032 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.927973 | 0.032 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.927973 | 0.032 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.929812 | 0.032 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.929812 | 0.032 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.930194 | 0.031 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.931605 | 0.031 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.933080 | 0.030 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.933352 | 0.030 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.935055 | 0.029 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.935055 | 0.029 |
R-HSA-1296071 | Potassium Channels | 0.936714 | 0.028 |
R-HSA-397014 | Muscle contraction | 0.937738 | 0.028 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.939907 | 0.027 |
R-HSA-190236 | Signaling by FGFR | 0.939907 | 0.027 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.941443 | 0.026 |
R-HSA-9824446 | Viral Infection Pathways | 0.942303 | 0.026 |
R-HSA-877300 | Interferon gamma signaling | 0.942318 | 0.026 |
R-HSA-2408557 | Selenocysteine synthesis | 0.944397 | 0.025 |
R-HSA-449147 | Signaling by Interleukins | 0.944688 | 0.025 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.945818 | 0.024 |
R-HSA-192823 | Viral mRNA Translation | 0.947203 | 0.024 |
R-HSA-9833110 | RSV-host interactions | 0.949868 | 0.022 |
R-HSA-418346 | Platelet homeostasis | 0.952398 | 0.021 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.953616 | 0.021 |
R-HSA-69239 | Synthesis of DNA | 0.953616 | 0.021 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.954802 | 0.020 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.954802 | 0.020 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.955401 | 0.020 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.955957 | 0.020 |
R-HSA-72312 | rRNA processing | 0.957413 | 0.019 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.959094 | 0.018 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.959251 | 0.018 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.959251 | 0.018 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.959251 | 0.018 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.960092 | 0.018 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.961309 | 0.017 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.962298 | 0.017 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.963263 | 0.016 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.965118 | 0.015 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.965118 | 0.015 |
R-HSA-2980736 | Peptide hormone metabolism | 0.966011 | 0.015 |
R-HSA-5693538 | Homology Directed Repair | 0.966881 | 0.015 |
R-HSA-73894 | DNA Repair | 0.967546 | 0.014 |
R-HSA-112316 | Neuronal System | 0.968715 | 0.014 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.969846 | 0.013 |
R-HSA-6809371 | Formation of the cornified envelope | 0.971652 | 0.012 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.972381 | 0.012 |
R-HSA-114608 | Platelet degranulation | 0.974445 | 0.011 |
R-HSA-69481 | G2/M Checkpoints | 0.974445 | 0.011 |
R-HSA-72766 | Translation | 0.974916 | 0.011 |
R-HSA-8956319 | Nucleotide catabolism | 0.975737 | 0.011 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.976849 | 0.010 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.976921 | 0.010 |
R-HSA-8957322 | Metabolism of steroids | 0.977342 | 0.010 |
R-HSA-5576891 | Cardiac conduction | 0.977554 | 0.010 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.978689 | 0.009 |
R-HSA-5173105 | O-linked glycosylation | 0.981283 | 0.008 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.981283 | 0.008 |
R-HSA-9948299 | Ribosome-associated quality control | 0.981762 | 0.008 |
R-HSA-5358351 | Signaling by Hedgehog | 0.981762 | 0.008 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.982659 | 0.008 |
R-HSA-597592 | Post-translational protein modification | 0.982979 | 0.007 |
R-HSA-1632852 | Macroautophagy | 0.983129 | 0.007 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.983482 | 0.007 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.983658 | 0.007 |
R-HSA-5683057 | MAPK family signaling cascades | 0.985246 | 0.006 |
R-HSA-8951664 | Neddylation | 0.985825 | 0.006 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.985933 | 0.006 |
R-HSA-2187338 | Visual phototransduction | 0.985933 | 0.006 |
R-HSA-69242 | S Phase | 0.986294 | 0.006 |
R-HSA-69306 | DNA Replication | 0.987964 | 0.005 |
R-HSA-9609507 | Protein localization | 0.987964 | 0.005 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.987964 | 0.005 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.988427 | 0.005 |
R-HSA-9612973 | Autophagy | 0.988866 | 0.005 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.993382 | 0.003 |
R-HSA-611105 | Respiratory electron transport | 0.993879 | 0.003 |
R-HSA-3781865 | Diseases of glycosylation | 0.994764 | 0.002 |
R-HSA-983712 | Ion channel transport | 0.995403 | 0.002 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 0.995858 | 0.002 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.996724 | 0.001 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.996808 | 0.001 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.997012 | 0.001 |
R-HSA-6805567 | Keratinization | 0.997124 | 0.001 |
R-HSA-5663205 | Infectious disease | 0.997327 | 0.001 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.997462 | 0.001 |
R-HSA-15869 | Metabolism of nucleotides | 0.998686 | 0.001 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.998720 | 0.001 |
R-HSA-156580 | Phase II - Conjugation of compounds | 0.998785 | 0.001 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999491 | 0.000 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.999514 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999564 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.999734 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999907 | 0.000 |
R-HSA-6798695 | Neutrophil degranulation | 0.999948 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.999948 | 0.000 |
R-HSA-1643685 | Disease | 0.999959 | 0.000 |
R-HSA-168256 | Immune System | 0.999974 | 0.000 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.999990 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999992 | 0.000 |
R-HSA-109582 | Hemostasis | 0.999999 | 0.000 |
R-HSA-211859 | Biological oxidations | 0.999999 | 0.000 |
R-HSA-168249 | Innate Immune System | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CDK18 |
0.892 | 0.876 | 1 | 0.902 |
CDK19 |
0.892 | 0.860 | 1 | 0.899 |
CDK17 |
0.887 | 0.883 | 1 | 0.921 |
HIPK2 |
0.887 | 0.803 | 1 | 0.897 |
JNK2 |
0.887 | 0.913 | 1 | 0.902 |
P38G |
0.886 | 0.900 | 1 | 0.929 |
CDK8 |
0.886 | 0.858 | 1 | 0.872 |
CDK3 |
0.886 | 0.785 | 1 | 0.916 |
P38D |
0.884 | 0.893 | 1 | 0.932 |
KIS |
0.883 | 0.774 | 1 | 0.849 |
CDK1 |
0.882 | 0.848 | 1 | 0.883 |
CDK7 |
0.881 | 0.842 | 1 | 0.870 |
P38B |
0.880 | 0.878 | 1 | 0.870 |
CDK16 |
0.880 | 0.848 | 1 | 0.913 |
DYRK2 |
0.878 | 0.795 | 1 | 0.825 |
ERK1 |
0.878 | 0.862 | 1 | 0.886 |
CDK13 |
0.878 | 0.845 | 1 | 0.888 |
DYRK4 |
0.876 | 0.807 | 1 | 0.904 |
CDK5 |
0.876 | 0.825 | 1 | 0.845 |
JNK3 |
0.876 | 0.894 | 1 | 0.883 |
CDK12 |
0.876 | 0.846 | 1 | 0.905 |
CDK9 |
0.870 | 0.831 | 1 | 0.881 |
CDK14 |
0.869 | 0.834 | 1 | 0.871 |
CDK10 |
0.869 | 0.786 | 1 | 0.884 |
P38A |
0.868 | 0.846 | 1 | 0.818 |
HIPK1 |
0.866 | 0.728 | 1 | 0.809 |
CLK3 |
0.866 | 0.531 | 1 | 0.590 |
HIPK4 |
0.865 | 0.541 | 1 | 0.634 |
DYRK1B |
0.864 | 0.759 | 1 | 0.868 |
ERK2 |
0.860 | 0.839 | 1 | 0.849 |
NLK |
0.858 | 0.760 | 1 | 0.635 |
JNK1 |
0.857 | 0.803 | 1 | 0.897 |
CDK6 |
0.855 | 0.798 | 1 | 0.887 |
HIPK3 |
0.855 | 0.705 | 1 | 0.786 |
DYRK1A |
0.855 | 0.645 | 1 | 0.792 |
CDK4 |
0.854 | 0.818 | 1 | 0.911 |
SRPK1 |
0.852 | 0.366 | -3 | 0.765 |
CDK2 |
0.851 | 0.649 | 1 | 0.776 |
ERK5 |
0.850 | 0.447 | 1 | 0.541 |
CLK2 |
0.845 | 0.440 | -3 | 0.755 |
DYRK3 |
0.845 | 0.570 | 1 | 0.777 |
MTOR |
0.843 | 0.272 | 1 | 0.437 |
MAK |
0.842 | 0.556 | -2 | 0.837 |
CLK1 |
0.842 | 0.431 | -3 | 0.750 |
ICK |
0.839 | 0.408 | -3 | 0.855 |
CLK4 |
0.838 | 0.395 | -3 | 0.769 |
SRPK2 |
0.838 | 0.284 | -3 | 0.685 |
CDKL5 |
0.835 | 0.204 | -3 | 0.813 |
COT |
0.832 | -0.057 | 2 | 0.891 |
CDKL1 |
0.831 | 0.174 | -3 | 0.814 |
PRP4 |
0.830 | 0.497 | -3 | 0.811 |
MOK |
0.828 | 0.502 | 1 | 0.700 |
PRKD1 |
0.827 | 0.053 | -3 | 0.867 |
SRPK3 |
0.825 | 0.247 | -3 | 0.729 |
CDC7 |
0.823 | -0.086 | 1 | 0.254 |
NDR2 |
0.823 | 0.015 | -3 | 0.864 |
MOS |
0.823 | -0.003 | 1 | 0.307 |
PRPK |
0.822 | -0.063 | -1 | 0.877 |
PIM3 |
0.821 | -0.013 | -3 | 0.849 |
ATR |
0.819 | -0.029 | 1 | 0.306 |
TBK1 |
0.819 | -0.143 | 1 | 0.240 |
PRKD2 |
0.818 | 0.025 | -3 | 0.798 |
IKKB |
0.817 | -0.146 | -2 | 0.767 |
IKKE |
0.817 | -0.149 | 1 | 0.238 |
RSK2 |
0.816 | 0.016 | -3 | 0.788 |
ERK7 |
0.816 | 0.277 | 2 | 0.549 |
MST4 |
0.816 | -0.031 | 2 | 0.870 |
PDHK4 |
0.816 | -0.147 | 1 | 0.328 |
CAMK1B |
0.816 | -0.028 | -3 | 0.863 |
NUAK2 |
0.815 | 0.023 | -3 | 0.846 |
PKN3 |
0.815 | -0.033 | -3 | 0.841 |
P90RSK |
0.815 | 0.019 | -3 | 0.792 |
WNK1 |
0.814 | -0.073 | -2 | 0.901 |
GCN2 |
0.813 | -0.208 | 2 | 0.798 |
SKMLCK |
0.813 | -0.029 | -2 | 0.874 |
RAF1 |
0.813 | -0.201 | 1 | 0.260 |
NDR1 |
0.813 | -0.046 | -3 | 0.850 |
BMPR2 |
0.812 | -0.179 | -2 | 0.872 |
MAPKAPK3 |
0.812 | -0.031 | -3 | 0.803 |
NEK6 |
0.812 | -0.084 | -2 | 0.831 |
PKN2 |
0.811 | -0.053 | -3 | 0.848 |
MAPKAPK2 |
0.811 | -0.002 | -3 | 0.752 |
CHAK2 |
0.811 | -0.048 | -1 | 0.840 |
DSTYK |
0.811 | -0.154 | 2 | 0.904 |
ULK2 |
0.811 | -0.198 | 2 | 0.784 |
PKCD |
0.811 | -0.015 | 2 | 0.799 |
NIK |
0.811 | -0.059 | -3 | 0.884 |
PIM1 |
0.811 | 0.026 | -3 | 0.789 |
RSK3 |
0.810 | -0.016 | -3 | 0.780 |
CAMK2G |
0.809 | -0.099 | 2 | 0.807 |
PDHK1 |
0.809 | -0.179 | 1 | 0.307 |
CAMK2D |
0.809 | -0.063 | -3 | 0.861 |
CAMLCK |
0.808 | -0.020 | -2 | 0.853 |
LATS2 |
0.808 | -0.027 | -5 | 0.786 |
GRK1 |
0.807 | -0.015 | -2 | 0.803 |
IKKA |
0.807 | -0.079 | -2 | 0.759 |
MLK2 |
0.806 | -0.084 | 2 | 0.832 |
AMPKA1 |
0.806 | -0.065 | -3 | 0.868 |
MARK4 |
0.806 | -0.064 | 4 | 0.831 |
AURC |
0.806 | 0.010 | -2 | 0.656 |
DAPK2 |
0.806 | -0.044 | -3 | 0.877 |
TGFBR2 |
0.805 | -0.107 | -2 | 0.766 |
DNAPK |
0.805 | -0.021 | 1 | 0.283 |
MLK1 |
0.805 | -0.149 | 2 | 0.830 |
MPSK1 |
0.805 | 0.111 | 1 | 0.334 |
RIPK3 |
0.805 | -0.151 | 3 | 0.722 |
NEK7 |
0.805 | -0.193 | -3 | 0.865 |
PKCB |
0.803 | -0.017 | 2 | 0.761 |
GRK5 |
0.803 | -0.149 | -3 | 0.843 |
HUNK |
0.803 | -0.151 | 2 | 0.828 |
PKACG |
0.803 | -0.043 | -2 | 0.739 |
GSK3A |
0.803 | 0.225 | 4 | 0.471 |
MLK3 |
0.803 | -0.046 | 2 | 0.765 |
AMPKA2 |
0.803 | -0.042 | -3 | 0.838 |
BCKDK |
0.803 | -0.155 | -1 | 0.804 |
MASTL |
0.802 | -0.149 | -2 | 0.824 |
IRE1 |
0.802 | -0.098 | 1 | 0.267 |
PRKD3 |
0.802 | -0.005 | -3 | 0.760 |
P70S6KB |
0.802 | -0.030 | -3 | 0.803 |
LATS1 |
0.801 | 0.036 | -3 | 0.877 |
PKCA |
0.801 | -0.010 | 2 | 0.745 |
TSSK1 |
0.801 | -0.040 | -3 | 0.891 |
NEK9 |
0.801 | -0.174 | 2 | 0.842 |
MNK2 |
0.801 | -0.039 | -2 | 0.797 |
PKCG |
0.801 | -0.030 | 2 | 0.760 |
PAK6 |
0.800 | -0.002 | -2 | 0.720 |
ULK1 |
0.800 | -0.194 | -3 | 0.825 |
PHKG1 |
0.800 | -0.067 | -3 | 0.840 |
CAMK2A |
0.800 | -0.008 | 2 | 0.802 |
GRK7 |
0.800 | 0.008 | 1 | 0.271 |
TSSK2 |
0.799 | -0.073 | -5 | 0.891 |
NIM1 |
0.798 | -0.088 | 3 | 0.760 |
RSK4 |
0.798 | 0.009 | -3 | 0.761 |
WNK3 |
0.798 | -0.235 | 1 | 0.269 |
SMG1 |
0.798 | -0.064 | 1 | 0.290 |
MNK1 |
0.797 | -0.019 | -2 | 0.802 |
PAK1 |
0.797 | -0.057 | -2 | 0.800 |
VRK2 |
0.797 | 0.053 | 1 | 0.368 |
PAK3 |
0.797 | -0.081 | -2 | 0.798 |
DLK |
0.797 | -0.203 | 1 | 0.273 |
BMPR1B |
0.797 | -0.051 | 1 | 0.217 |
PKCZ |
0.797 | -0.049 | 2 | 0.789 |
CAMK2B |
0.796 | -0.048 | 2 | 0.781 |
PKACB |
0.796 | 0.009 | -2 | 0.669 |
ATM |
0.796 | -0.092 | 1 | 0.265 |
MSK2 |
0.796 | -0.045 | -3 | 0.759 |
AKT2 |
0.796 | 0.024 | -3 | 0.697 |
NUAK1 |
0.796 | -0.043 | -3 | 0.796 |
PKR |
0.796 | -0.094 | 1 | 0.284 |
TGFBR1 |
0.796 | -0.053 | -2 | 0.798 |
GRK6 |
0.795 | -0.139 | 1 | 0.248 |
IRE2 |
0.795 | -0.088 | 2 | 0.750 |
ALK4 |
0.795 | -0.068 | -2 | 0.824 |
YSK4 |
0.795 | -0.144 | 1 | 0.247 |
PINK1 |
0.795 | 0.140 | 1 | 0.473 |
RIPK1 |
0.794 | -0.216 | 1 | 0.256 |
SGK3 |
0.794 | -0.016 | -3 | 0.782 |
NEK2 |
0.794 | -0.134 | 2 | 0.819 |
PKG2 |
0.794 | -0.018 | -2 | 0.671 |
MELK |
0.793 | -0.089 | -3 | 0.825 |
PKCH |
0.793 | -0.061 | 2 | 0.738 |
CAMK4 |
0.793 | -0.130 | -3 | 0.825 |
TTBK2 |
0.792 | -0.195 | 2 | 0.713 |
QSK |
0.792 | -0.048 | 4 | 0.808 |
MSK1 |
0.792 | -0.023 | -3 | 0.764 |
FAM20C |
0.791 | -0.023 | 2 | 0.627 |
ANKRD3 |
0.790 | -0.226 | 1 | 0.280 |
QIK |
0.790 | -0.118 | -3 | 0.846 |
MST3 |
0.789 | -0.039 | 2 | 0.862 |
PIM2 |
0.789 | 0.008 | -3 | 0.756 |
CHK1 |
0.789 | -0.048 | -3 | 0.844 |
CHAK1 |
0.789 | -0.151 | 2 | 0.780 |
PRKX |
0.789 | 0.019 | -3 | 0.691 |
MEK1 |
0.788 | -0.159 | 2 | 0.843 |
AURB |
0.788 | -0.033 | -2 | 0.651 |
DCAMKL1 |
0.787 | -0.049 | -3 | 0.800 |
GRK4 |
0.786 | -0.193 | -2 | 0.810 |
MLK4 |
0.786 | -0.132 | 2 | 0.735 |
SIK |
0.786 | -0.067 | -3 | 0.767 |
GSK3B |
0.786 | 0.065 | 4 | 0.464 |
PAK2 |
0.785 | -0.097 | -2 | 0.783 |
TLK2 |
0.785 | -0.143 | 1 | 0.263 |
MARK3 |
0.785 | -0.058 | 4 | 0.762 |
MAPKAPK5 |
0.785 | -0.095 | -3 | 0.741 |
PKCT |
0.785 | -0.059 | 2 | 0.744 |
MYLK4 |
0.784 | -0.059 | -2 | 0.776 |
PLK1 |
0.784 | -0.177 | -2 | 0.774 |
BRSK2 |
0.784 | -0.109 | -3 | 0.829 |
AKT1 |
0.784 | -0.005 | -3 | 0.721 |
TAO3 |
0.784 | -0.048 | 1 | 0.292 |
ALK2 |
0.784 | -0.093 | -2 | 0.799 |
PASK |
0.783 | -0.004 | -3 | 0.870 |
BRSK1 |
0.783 | -0.087 | -3 | 0.804 |
PLK4 |
0.782 | -0.146 | 2 | 0.625 |
ACVR2B |
0.782 | -0.127 | -2 | 0.773 |
DRAK1 |
0.782 | -0.151 | 1 | 0.210 |
MEK5 |
0.782 | -0.170 | 2 | 0.829 |
ZAK |
0.782 | -0.166 | 1 | 0.256 |
MEKK1 |
0.781 | -0.162 | 1 | 0.279 |
CAMK1G |
0.781 | -0.072 | -3 | 0.766 |
WNK4 |
0.781 | -0.141 | -2 | 0.888 |
ACVR2A |
0.781 | -0.129 | -2 | 0.757 |
IRAK4 |
0.781 | -0.138 | 1 | 0.248 |
NEK5 |
0.781 | -0.146 | 1 | 0.265 |
LKB1 |
0.781 | -0.028 | -3 | 0.871 |
PKCI |
0.780 | -0.043 | 2 | 0.756 |
MARK2 |
0.780 | -0.079 | 4 | 0.724 |
PHKG2 |
0.780 | -0.094 | -3 | 0.801 |
AURA |
0.780 | -0.046 | -2 | 0.620 |
BUB1 |
0.779 | 0.056 | -5 | 0.836 |
PKCE |
0.779 | -0.005 | 2 | 0.746 |
PLK3 |
0.779 | -0.149 | 2 | 0.772 |
PAK5 |
0.778 | -0.046 | -2 | 0.651 |
DCAMKL2 |
0.778 | -0.069 | -3 | 0.816 |
PKACA |
0.778 | -0.012 | -2 | 0.617 |
GAK |
0.778 | -0.028 | 1 | 0.309 |
PERK |
0.778 | -0.185 | -2 | 0.814 |
HRI |
0.778 | -0.199 | -2 | 0.823 |
MEKK2 |
0.777 | -0.153 | 2 | 0.810 |
NEK11 |
0.777 | -0.130 | 1 | 0.284 |
GCK |
0.777 | -0.060 | 1 | 0.269 |
SSTK |
0.777 | -0.067 | 4 | 0.798 |
PAK4 |
0.776 | -0.031 | -2 | 0.656 |
GRK2 |
0.776 | -0.109 | -2 | 0.706 |
SBK |
0.776 | 0.117 | -3 | 0.580 |
CK1E |
0.776 | -0.042 | -3 | 0.510 |
SMMLCK |
0.776 | -0.057 | -3 | 0.826 |
PDK1 |
0.776 | -0.064 | 1 | 0.297 |
SNRK |
0.776 | -0.191 | 2 | 0.667 |
MAP3K15 |
0.776 | -0.073 | 1 | 0.269 |
TAO2 |
0.776 | -0.070 | 2 | 0.857 |
PKN1 |
0.775 | -0.039 | -3 | 0.738 |
BMPR1A |
0.775 | -0.084 | 1 | 0.206 |
MEKK3 |
0.775 | -0.203 | 1 | 0.269 |
BRAF |
0.775 | -0.174 | -4 | 0.843 |
HGK |
0.775 | -0.064 | 3 | 0.875 |
MEKK6 |
0.774 | -0.089 | 1 | 0.276 |
TNIK |
0.774 | -0.038 | 3 | 0.880 |
MARK1 |
0.774 | -0.106 | 4 | 0.782 |
AKT3 |
0.774 | 0.010 | -3 | 0.643 |
P70S6K |
0.774 | -0.057 | -3 | 0.719 |
KHS1 |
0.773 | -0.029 | 1 | 0.265 |
HPK1 |
0.772 | -0.068 | 1 | 0.265 |
PBK |
0.771 | -0.026 | 1 | 0.288 |
NEK4 |
0.771 | -0.151 | 1 | 0.251 |
TLK1 |
0.771 | -0.189 | -2 | 0.804 |
MINK |
0.770 | -0.112 | 1 | 0.250 |
SGK1 |
0.770 | 0.022 | -3 | 0.621 |
LRRK2 |
0.769 | -0.034 | 2 | 0.848 |
CAMKK2 |
0.769 | -0.136 | -2 | 0.778 |
KHS2 |
0.769 | -0.019 | 1 | 0.275 |
CAMKK1 |
0.769 | -0.190 | -2 | 0.777 |
CK1D |
0.768 | -0.020 | -3 | 0.458 |
NEK1 |
0.768 | -0.126 | 1 | 0.247 |
TTBK1 |
0.768 | -0.176 | 2 | 0.633 |
LOK |
0.768 | -0.086 | -2 | 0.772 |
CAMK1D |
0.767 | -0.057 | -3 | 0.694 |
CK2A2 |
0.767 | -0.057 | 1 | 0.186 |
EEF2K |
0.767 | -0.079 | 3 | 0.842 |
NEK8 |
0.767 | -0.198 | 2 | 0.824 |
HASPIN |
0.767 | 0.018 | -1 | 0.710 |
MST2 |
0.766 | -0.146 | 1 | 0.256 |
CK1G1 |
0.766 | -0.083 | -3 | 0.490 |
MRCKB |
0.764 | -0.025 | -3 | 0.745 |
CHK2 |
0.764 | -0.033 | -3 | 0.643 |
DAPK3 |
0.764 | -0.062 | -3 | 0.805 |
ROCK2 |
0.764 | -0.025 | -3 | 0.802 |
PDHK3_TYR |
0.763 | 0.197 | 4 | 0.901 |
SLK |
0.763 | -0.086 | -2 | 0.717 |
YSK1 |
0.763 | -0.110 | 2 | 0.819 |
TAK1 |
0.762 | -0.181 | 1 | 0.254 |
VRK1 |
0.762 | -0.161 | 2 | 0.847 |
MRCKA |
0.762 | -0.037 | -3 | 0.760 |
IRAK1 |
0.762 | -0.246 | -1 | 0.770 |
CK1A2 |
0.761 | -0.052 | -3 | 0.456 |
MST1 |
0.760 | -0.147 | 1 | 0.248 |
GRK3 |
0.759 | -0.111 | -2 | 0.659 |
CAMK1A |
0.759 | -0.041 | -3 | 0.662 |
DMPK1 |
0.758 | 0.012 | -3 | 0.761 |
BIKE |
0.758 | -0.022 | 1 | 0.289 |
CK2A1 |
0.758 | -0.064 | 1 | 0.174 |
DAPK1 |
0.758 | -0.063 | -3 | 0.786 |
AAK1 |
0.758 | 0.028 | 1 | 0.283 |
LIMK2_TYR |
0.757 | 0.151 | -3 | 0.915 |
STK33 |
0.757 | -0.146 | 2 | 0.620 |
NEK3 |
0.756 | -0.125 | 1 | 0.277 |
TESK1_TYR |
0.754 | 0.060 | 3 | 0.882 |
PKMYT1_TYR |
0.753 | 0.138 | 3 | 0.846 |
PDHK4_TYR |
0.753 | 0.082 | 2 | 0.881 |
CRIK |
0.752 | -0.007 | -3 | 0.723 |
ASK1 |
0.752 | -0.106 | 1 | 0.267 |
MEK2 |
0.752 | -0.217 | 2 | 0.808 |
MYO3B |
0.751 | -0.070 | 2 | 0.834 |
RIPK2 |
0.751 | -0.240 | 1 | 0.239 |
PKG1 |
0.751 | -0.056 | -2 | 0.582 |
PLK2 |
0.750 | -0.105 | -3 | 0.750 |
MAP2K4_TYR |
0.750 | 0.023 | -1 | 0.890 |
TAO1 |
0.749 | -0.092 | 1 | 0.266 |
ROCK1 |
0.749 | -0.043 | -3 | 0.762 |
OSR1 |
0.749 | -0.106 | 2 | 0.803 |
MAP2K6_TYR |
0.747 | 0.021 | -1 | 0.890 |
MAP2K7_TYR |
0.747 | -0.070 | 2 | 0.861 |
MYO3A |
0.746 | -0.094 | 1 | 0.272 |
BMPR2_TYR |
0.743 | -0.010 | -1 | 0.861 |
PDHK1_TYR |
0.743 | -0.050 | -1 | 0.890 |
LIMK1_TYR |
0.742 | -0.002 | 2 | 0.853 |
PINK1_TYR |
0.742 | -0.146 | 1 | 0.318 |
RET |
0.740 | -0.142 | 1 | 0.289 |
TTK |
0.738 | -0.143 | -2 | 0.788 |
JAK2 |
0.738 | -0.113 | 1 | 0.297 |
NEK10_TYR |
0.736 | -0.094 | 1 | 0.262 |
MST1R |
0.736 | -0.117 | 3 | 0.807 |
TYK2 |
0.735 | -0.199 | 1 | 0.278 |
TNNI3K_TYR |
0.735 | -0.028 | 1 | 0.310 |
CSF1R |
0.735 | -0.098 | 3 | 0.782 |
JAK1 |
0.734 | -0.066 | 1 | 0.267 |
YANK3 |
0.734 | -0.074 | 2 | 0.413 |
ALPHAK3 |
0.734 | -0.123 | -1 | 0.768 |
ROS1 |
0.733 | -0.131 | 3 | 0.763 |
EPHA6 |
0.732 | -0.116 | -1 | 0.829 |
TYRO3 |
0.731 | -0.172 | 3 | 0.796 |
JAK3 |
0.731 | -0.137 | 1 | 0.281 |
DDR1 |
0.731 | -0.137 | 4 | 0.808 |
EPHB4 |
0.729 | -0.143 | -1 | 0.818 |
TNK1 |
0.729 | -0.070 | 3 | 0.772 |
ABL2 |
0.728 | -0.122 | -1 | 0.799 |
STLK3 |
0.728 | -0.204 | 1 | 0.242 |
TNK2 |
0.727 | -0.111 | 3 | 0.747 |
FGFR2 |
0.726 | -0.077 | 3 | 0.781 |
FGR |
0.726 | -0.163 | 1 | 0.247 |
YES1 |
0.725 | -0.124 | -1 | 0.858 |
TXK |
0.725 | -0.106 | 1 | 0.222 |
FGFR1 |
0.725 | -0.067 | 3 | 0.751 |
ABL1 |
0.725 | -0.129 | -1 | 0.794 |
CK1A |
0.724 | -0.069 | -3 | 0.361 |
TEK |
0.724 | -0.042 | 3 | 0.724 |
LCK |
0.723 | -0.114 | -1 | 0.823 |
KIT |
0.722 | -0.146 | 3 | 0.783 |
KDR |
0.722 | -0.117 | 3 | 0.736 |
ITK |
0.721 | -0.150 | -1 | 0.797 |
HCK |
0.721 | -0.166 | -1 | 0.824 |
EPHA4 |
0.721 | -0.113 | 2 | 0.778 |
INSRR |
0.720 | -0.173 | 3 | 0.735 |
FER |
0.719 | -0.217 | 1 | 0.251 |
BLK |
0.719 | -0.106 | -1 | 0.824 |
PDGFRB |
0.719 | -0.228 | 3 | 0.793 |
DDR2 |
0.719 | -0.041 | 3 | 0.722 |
WEE1_TYR |
0.718 | -0.097 | -1 | 0.760 |
SRMS |
0.718 | -0.196 | 1 | 0.226 |
EPHB1 |
0.717 | -0.197 | 1 | 0.232 |
FLT3 |
0.717 | -0.213 | 3 | 0.787 |
PDGFRA |
0.716 | -0.219 | 3 | 0.792 |
AXL |
0.716 | -0.191 | 3 | 0.763 |
MET |
0.716 | -0.138 | 3 | 0.779 |
EPHB3 |
0.716 | -0.186 | -1 | 0.799 |
FGFR3 |
0.714 | -0.095 | 3 | 0.750 |
MERTK |
0.714 | -0.180 | 3 | 0.758 |
BMX |
0.713 | -0.133 | -1 | 0.712 |
EPHB2 |
0.713 | -0.184 | -1 | 0.792 |
FYN |
0.711 | -0.109 | -1 | 0.806 |
FLT1 |
0.710 | -0.163 | -1 | 0.805 |
TEC |
0.710 | -0.177 | -1 | 0.730 |
BTK |
0.709 | -0.237 | -1 | 0.769 |
ALK |
0.709 | -0.191 | 3 | 0.706 |
ERBB2 |
0.708 | -0.194 | 1 | 0.251 |
EPHA7 |
0.707 | -0.161 | 2 | 0.776 |
FRK |
0.707 | -0.177 | -1 | 0.818 |
EGFR |
0.706 | -0.124 | 1 | 0.219 |
EPHA1 |
0.706 | -0.188 | 3 | 0.756 |
PTK2B |
0.706 | -0.126 | -1 | 0.773 |
FLT4 |
0.706 | -0.189 | 3 | 0.725 |
INSR |
0.706 | -0.188 | 3 | 0.717 |
LTK |
0.705 | -0.205 | 3 | 0.723 |
PTK6 |
0.705 | -0.236 | -1 | 0.740 |
NTRK1 |
0.705 | -0.248 | -1 | 0.814 |
EPHA3 |
0.704 | -0.175 | 2 | 0.746 |
NTRK3 |
0.704 | -0.174 | -1 | 0.769 |
LYN |
0.703 | -0.169 | 3 | 0.698 |
NTRK2 |
0.703 | -0.248 | 3 | 0.733 |
MATK |
0.702 | -0.132 | -1 | 0.727 |
SRC |
0.701 | -0.147 | -1 | 0.808 |
MUSK |
0.701 | -0.148 | 1 | 0.210 |
FGFR4 |
0.701 | -0.126 | -1 | 0.758 |
CK1G3 |
0.699 | -0.084 | -3 | 0.310 |
YANK2 |
0.698 | -0.097 | 2 | 0.425 |
CSK |
0.698 | -0.174 | 2 | 0.779 |
EPHA8 |
0.698 | -0.154 | -1 | 0.777 |
EPHA5 |
0.697 | -0.180 | 2 | 0.759 |
PTK2 |
0.696 | -0.089 | -1 | 0.752 |
SYK |
0.694 | -0.110 | -1 | 0.746 |
ERBB4 |
0.691 | -0.115 | 1 | 0.213 |
EPHA2 |
0.689 | -0.157 | -1 | 0.737 |
IGF1R |
0.686 | -0.186 | 3 | 0.652 |
ZAP70 |
0.685 | -0.072 | -1 | 0.679 |
CK1G2 |
0.678 | -0.087 | -3 | 0.406 |
FES |
0.673 | -0.180 | -1 | 0.696 |