Motif 135 (n=402)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A6NEL2 | SOWAHB | S271 | ochoa | Ankyrin repeat domain-containing protein SOWAHB (Ankyrin repeat domain-containing protein 56) (Protein sosondowah homolog B) | None |
A6NHQ4 | EPOP | S180 | ochoa | Elongin BC and Polycomb repressive complex 2-associated protein (Proline-rich protein 28) | Scaffold protein that serves as a bridging partner between the PRC2/EZH2 complex and the elongin BC complex: required to fine-tune the transcriptional status of Polycomb group (PcG) target genes in embryonic stem cells (ESCs). Plays a key role in genomic regions that display both active and repressive chromatin properties in pluripotent stem cells by sustaining low level expression at PcG target genes: acts by recruiting the elongin BC complex, thereby restricting excessive activity of the PRC2/EZH2 complex. Interaction with USP7 promotes deubiquitination of H2B at promoter sites. Acts as a regulator of neuronal differentiation. {ECO:0000250|UniProtKB:Q7TNS8}. |
A7E2V4 | ZSWIM8 | S1092 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
O00204 | SULT2B1 | S347 | ochoa | Sulfotransferase 2B1 (EC 2.8.2.2) (Alcohol sulfotransferase) (Hydroxysteroid sulfotransferase 2) (Sulfotransferase family 2B member 1) (Sulfotransferase family cytosolic 2B member 1) (ST2B1) | Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation. Responsible for the sulfation of cholesterol (PubMed:12145317, PubMed:19589875). Catalyzes sulfation of the 3beta-hydroxyl groups of steroids, such as, pregnenolone and dehydroepiandrosterone (DHEA) (PubMed:12145317, PubMed:16855051, PubMed:21855633, PubMed:9799594). Preferentially sulfonates cholesterol, while it also has significant activity with pregnenolone and DHEA (PubMed:12145317, PubMed:21855633). Plays a role in epidermal cholesterol metabolism and in the regulation of epidermal proliferation and differentiation (PubMed:28575648). {ECO:0000269|PubMed:12145317, ECO:0000269|PubMed:16855051, ECO:0000269|PubMed:19589875, ECO:0000269|PubMed:21855633, ECO:0000269|PubMed:28575648, ECO:0000269|PubMed:9799594}.; FUNCTION: [Isoform 2]: Sulfonates pregnenolone but not cholesterol. {ECO:0000269|PubMed:12145317}. |
O00459 | PIK3R2 | S262 | ochoa | Phosphatidylinositol 3-kinase regulatory subunit beta (PI3-kinase regulatory subunit beta) (PI3K regulatory subunit beta) (PtdIns-3-kinase regulatory subunit beta) (Phosphatidylinositol 3-kinase 85 kDa regulatory subunit beta) (PI3-kinase subunit p85-beta) (PtdIns-3-kinase regulatory subunit p85-beta) | Regulatory subunit of phosphoinositide-3-kinase (PI3K), a kinase that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Binds to activated (phosphorylated) protein-tyrosine kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Indirectly regulates autophagy (PubMed:23604317). Promotes nuclear translocation of XBP1 isoform 2 in a ER stress- and/or insulin-dependent manner during metabolic overloading in the liver and hence plays a role in glucose tolerance improvement (By similarity). {ECO:0000250|UniProtKB:O08908, ECO:0000269|PubMed:23604317}. |
O00512 | BCL9 | S153 | ochoa | B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) | Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}. |
O14639 | ABLIM1 | S677 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O14641 | DVL2 | S651 | ochoa | Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) | Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}. |
O15105 | SMAD7 | S206 | psp | Mothers against decapentaplegic homolog 7 (MAD homolog 7) (Mothers against DPP homolog 7) (Mothers against decapentaplegic homolog 8) (MAD homolog 8) (Mothers against DPP homolog 8) (SMAD family member 7) (SMAD 7) (Smad7) (hSMAD7) | Antagonist of signaling by TGF-beta (transforming growth factor) type 1 receptor superfamily members; has been shown to inhibit TGF-beta (Transforming growth factor) and activin signaling by associating with their receptors thus preventing SMAD2 access (PubMed:21791611). Functions as an adapter to recruit SMURF2 to the TGF-beta receptor complex. Also acts by recruiting the PPP1R15A-PP1 complex to TGFBR1, which promotes its dephosphorylation. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. {ECO:0000269|PubMed:11163210, ECO:0000269|PubMed:12023024, ECO:0000269|PubMed:14718519, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:21791611, ECO:0000269|PubMed:9892009}. |
O15117 | FYB1 | S391 | ochoa | FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) | Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}. |
O15211 | RGL2 | S588 | ochoa | Ral guanine nucleotide dissociation stimulator-like 2 (RalGDS-like 2) (RalGDS-like factor) (Ras-associated protein RAB2L) | Probable guanine nucleotide exchange factor. Putative effector of Ras and/or Rap. Associates with the GTP-bound form of Rap 1A and H-Ras in vitro (By similarity). {ECO:0000250}. |
O15350 | TP73 | S166 | ochoa | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O15417 | TNRC18 | S2359 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15417 | TNRC18 | S2372 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O43281 | EFS | S298 | ochoa | Embryonal Fyn-associated substrate (hEFS) (Cas scaffolding protein family member 3) | Docking protein which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. May serve as an activator of SRC and a downstream effector. Interacts with the SH3 domain of FYN and with CRK, SRC, and YES (By similarity). {ECO:0000250}. |
O43426 | SYNJ1 | S1223 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43482 | OIP5 | S47 | ochoa | Protein Mis18-beta (Cancer/testis antigen 86) (CT86) (Opa-interacting protein 5) (OIP-5) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038}. |
O60271 | SPAG9 | S1188 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60303 | KATNIP | S758 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O60496 | DOK2 | S277 | ochoa | Docking protein 2 (Downstream of tyrosine kinase 2) (p56(dok-2)) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK2 may modulate the cellular proliferation induced by IL-4, as well as IL-2 and IL-3. May be involved in modulating Bcr-Abl signaling. Attenuates EGF-stimulated MAP kinase activation (By similarity). {ECO:0000250}. |
O75962 | TRIO | S2370 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O76039 | CDKL5 | S388 | ochoa | Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) | Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}. |
O94875 | SORBS2 | S154 | ochoa | Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) | Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}. |
O94979 | SEC31A | S351 | ochoa | Protein transport protein Sec31A (ABP125) (ABP130) (SEC31-like protein 1) (SEC31-related protein A) (Web1-like protein) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER) (PubMed:10788476). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules (By similarity). {ECO:0000250|UniProtKB:Q9Z2Q1, ECO:0000269|PubMed:10788476}. |
O95104 | SCAF4 | S650 | ochoa | SR-related and CTD-associated factor 4 (CTD-binding SR-like protein RA4) (Splicing factor, arginine/serine-rich 15) | Anti-terminator protein required to prevent early mRNA termination during transcription (PubMed:31104839). Together with SCAF8, acts by suppressing the use of early, alternative poly(A) sites, thereby preventing the accumulation of non-functional truncated proteins (PubMed:31104839). Mechanistically, associates with the phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit (POLR2A), and subsequently binds nascent RNA upstream of early polyadenylation sites to prevent premature mRNA transcript cleavage and polyadenylation (PubMed:31104839). Independently of SCAF8, also acts as a suppressor of transcriptional readthrough (PubMed:31104839). {ECO:0000269|PubMed:31104839}. |
O95630 | STAMBP | S245 | ochoa|psp | STAM-binding protein (EC 3.4.19.-) (Associated molecule with the SH3 domain of STAM) (Endosome-associated ubiquitin isopeptidase) | Zinc metalloprotease that specifically cleaves 'Lys-63'-linked polyubiquitin chains (PubMed:15314065, PubMed:23542699, PubMed:34425109). Does not cleave 'Lys-48'-linked polyubiquitin chains (PubMed:15314065). Plays a role in signal transduction for cell growth and MYC induction mediated by IL-2 and GM-CSF (PubMed:10383417). Potentiates BMP (bone morphogenetic protein) signaling by antagonizing the inhibitory action of SMAD6 and SMAD7 (PubMed:11483516). Has a key role in regulation of cell surface receptor-mediated endocytosis and ubiquitin-dependent sorting of receptors to lysosomes (PubMed:15314065, PubMed:17261583). Endosomal localization of STAMBP is required for efficient EGFR degradation but not for its internalization (PubMed:15314065, PubMed:17261583). Involved in the negative regulation of PI3K-AKT-mTOR and RAS-MAP signaling pathways (PubMed:23542699). {ECO:0000269|PubMed:10383417, ECO:0000269|PubMed:11483516, ECO:0000269|PubMed:15314065, ECO:0000269|PubMed:17261583, ECO:0000269|PubMed:23542699, ECO:0000269|PubMed:34425109}. |
O95716 | RAB3D | S199 | ochoa | Ras-related protein Rab-3D (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). RAB3D may be involved in the insulin-induced exocytosis of GLUT4-containing vesicles in adipocytes (By similarity). {ECO:0000250|UniProtKB:P20336, ECO:0000250|UniProtKB:P35276}. |
O95782 | AP2A1 | S652 | ochoa | AP-2 complex subunit alpha-1 (100 kDa coated vesicle protein A) (Adaptor protein complex AP-2 subunit alpha-1) (Adaptor-related protein complex 2 subunit alpha-1) (Alpha-adaptin A) (Alpha1-adaptin) (Clathrin assembly protein complex 2 alpha-A large chain) (Plasma membrane adaptor HA2/AP2 adaptin alpha A subunit) | Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). {ECO:0000250, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}. |
O95785 | WIZ | S982 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O96013 | PAK4 | S244 | ochoa | Serine/threonine-protein kinase PAK 4 (EC 2.7.11.1) (p21-activated kinase 4) (PAK-4) | Serine/threonine-protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell adhesion turnover, cell migration, growth, proliferation or cell survival (PubMed:26598620). Activation by various effectors including growth factor receptors or active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates and inactivates the protein phosphatase SSH1, leading to increased inhibitory phosphorylation of the actin binding/depolymerizing factor cofilin. Decreased cofilin activity may lead to stabilization of actin filaments. Phosphorylates LIMK1, a kinase that also inhibits the activity of cofilin. Phosphorylates integrin beta5/ITGB5 and thus regulates cell motility. Phosphorylates ARHGEF2 and activates the downstream target RHOA that plays a role in the regulation of assembly of focal adhesions and actin stress fibers. Stimulates cell survival by phosphorylating the BCL2 antagonist of cell death BAD. Alternatively, inhibits apoptosis by preventing caspase-8 binding to death domain receptors in a kinase independent manner. Plays a role in cell-cycle progression by controlling levels of the cell-cycle regulatory protein CDKN1A and by phosphorylating RAN. Promotes kinase-independent stabilization of RHOU, thereby contributing to focal adhesion disassembly during cell migration (PubMed:26598620). {ECO:0000269|PubMed:11278822, ECO:0000269|PubMed:11313478, ECO:0000269|PubMed:14560027, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:20507994, ECO:0000269|PubMed:20631255, ECO:0000269|PubMed:20805321, ECO:0000269|PubMed:26598620, ECO:0000269|PubMed:26607847}. |
P00533 | EGFR | S1104 | ochoa | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P06396 | GSN | S51 | ochoa | Gelsolin (AGEL) (Actin-depolymerizing factor) (ADF) (Brevin) | Calcium-regulated, actin-modulating protein that binds to the plus (or barbed) ends of actin monomers or filaments, preventing monomer exchange (end-blocking or capping). It can promote the assembly of monomers into filaments (nucleation) as well as sever filaments already formed (PubMed:19666512). Plays a role in ciliogenesis (PubMed:20393563). {ECO:0000269|PubMed:19666512, ECO:0000269|PubMed:20393563}. |
P06729 | CD2 | S271 | ochoa | T-cell surface antigen CD2 (Erythrocyte receptor) (LFA-2) (LFA-3 receptor) (Rosette receptor) (T-cell surface antigen T11/Leu-5) (CD antigen CD2) | CD2 interacts with lymphocyte function-associated antigen CD58 (LFA-3) and CD48/BCM1 to mediate adhesion between T-cells and other cell types. CD2 is implicated in the triggering of T-cells, the cytoplasmic domain is implicated in the signaling function. |
P10586 | PTPRF | S1311 | ochoa | Receptor-type tyrosine-protein phosphatase F (EC 3.1.3.48) (Leukocyte common antigen related) (LAR) | Possible cell adhesion receptor. It possesses an intrinsic protein tyrosine phosphatase activity (PTPase) and dephosphorylates EPHA2 regulating its activity.; FUNCTION: The first PTPase domain has enzymatic activity, while the second one seems to affect the substrate specificity of the first one. |
P10636 | MAPT | S515 | ochoa|psp | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P11274 | BCR | S93 | ochoa | Breakpoint cluster region protein (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-26) | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein (GAP) domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:1903516, PubMed:7479768). The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:23940119, PubMed:7479768). The amino terminus contains an intrinsic kinase activity (PubMed:1657398). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF1-directed motility and phagocytosis through the modulation of RAC1 activity (PubMed:17116687). Plays a major role as a RHOA GEF in keratinocytes being involved in focal adhesion formation and keratinocyte differentiation (PubMed:23940119). {ECO:0000250|UniProtKB:Q6PAJ1, ECO:0000269|PubMed:1657398, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:1903516, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:7479768}. |
P13861 | PRKAR2A | S48 | ochoa | cAMP-dependent protein kinase type II-alpha regulatory subunit | Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase. |
P14317 | HCLS1 | S311 | ochoa | Hematopoietic lineage cell-specific protein (Hematopoietic cell-specific LYN substrate 1) (LckBP1) (p75) | Substrate of the antigen receptor-coupled tyrosine kinase. Plays a role in antigen receptor signaling for both clonal expansion and deletion in lymphoid cells. May also be involved in the regulation of gene expression. |
P17483 | HOXB4 | S116 | ochoa | Homeobox protein Hox-B4 (Homeobox protein Hox-2.6) (Homeobox protein Hox-2F) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P17600 | SYN1 | S520 | ochoa | Synapsin-1 (Brain protein 4.1) (Synapsin I) | Neuronal phosphoprotein that coats synaptic vesicles, and binds to the cytoskeleton. Acts as a regulator of synaptic vesicles trafficking, involved in the control of neurotransmitter release at the pre-synaptic terminal (PubMed:21441247, PubMed:23406870). Also involved in the regulation of axon outgrowth and synaptogenesis (By similarity). The complex formed with NOS1 and CAPON proteins is necessary for specific nitric-oxid functions at a presynaptic level (By similarity). {ECO:0000250|UniProtKB:O88935, ECO:0000250|UniProtKB:P09951, ECO:0000269|PubMed:21441247, ECO:0000269|PubMed:23406870}. |
P22681 | CBL | S667 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P23588 | EIF4B | S462 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P25054 | APC | S2469 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P27816 | MAP4 | S715 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P28698 | MZF1 | S453 | psp | Myeloid zinc finger 1 (MZF-1) (Zinc finger and SCAN domain-containing protein 6) (Zinc finger protein 42) | Binds to target promoter DNA and functions as a transcription regulator. Regulates transcription from the PADI1 and CDH2 promoter. May be one regulator of transcriptional events during hemopoietic development. {ECO:0000269|PubMed:15541732, ECO:0000269|PubMed:17851584}. |
P29966 | MARCKS | S131 | ochoa | Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) | Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}. |
P30622 | CLIP1 | S159 | ochoa | CAP-Gly domain-containing linker protein 1 (Cytoplasmic linker protein 1) (Cytoplasmic linker protein 170 alpha-2) (CLIP-170) (Reed-Sternberg intermediate filament-associated protein) (Restin) | Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes microtubule growth and microtubule bundling. Links cytoplasmic vesicles to microtubules and thereby plays an important role in intracellular vesicle trafficking. Plays a role macropinocytosis and endosome trafficking. {ECO:0000269|PubMed:12433698, ECO:0000269|PubMed:17563362, ECO:0000269|PubMed:17889670}. |
P39880 | CUX1 | S425 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P46013 | MKI67 | S1740 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P48634 | PRRC2A | S383 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S516 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S1282 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S1328 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49848 | TAF6 | S641 | ochoa | Transcription initiation factor TFIID subunit 6 (RNA polymerase II TBP-associated factor subunit E) (Transcription initiation factor TFIID 70 kDa subunit) (TAF(II)70) (TAFII-70) (TAFII70) (Transcription initiation factor TFIID 80 kDa subunit) (TAF(II)80) (TAFII-80) (TAFII80) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF6 homodimer connects TFIID modules, forming a rigid core (PubMed:33795473). {ECO:0000269|PubMed:33795473}.; FUNCTION: [Isoform 4]: Transcriptional regulator which acts primarily as a positive regulator of transcription (PubMed:20096117, PubMed:29358700). Recruited to the promoters of a number of genes including GADD45A and CDKN1A/p21, leading to transcriptional up-regulation and subsequent induction of apoptosis (PubMed:11583621). Also up-regulates expression of other genes including GCNA/ACRC, HES1 and IFFO1 (PubMed:18628956). In contrast, down-regulates transcription of MDM2 (PubMed:11583621). Acts as a transcriptional coactivator to enhance transcription of TP53/p53-responsive genes such as DUSP1 (PubMed:20096117). Can also activate transcription and apoptosis independently of TP53 (PubMed:18628956). Drives apoptosis via the intrinsic apoptotic pathway by up-regulating apoptosis effectors such as BCL2L11/BIM and PMAIP1/NOXA (PubMed:29358700). {ECO:0000269|PubMed:11583621, ECO:0000269|PubMed:18628956, ECO:0000269|PubMed:20096117, ECO:0000269|PubMed:29358700}. |
P50548 | ERF | S131 | ochoa | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P50552 | VASP | S157 | psp | Vasodilator-stimulated phosphoprotein (VASP) | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance, lamellipodial and filopodial dynamics, platelet activation and cell migration. VASP promotes actin filament elongation. It protects the barbed end of growing actin filaments against capping and increases the rate of actin polymerization in the presence of capping protein. VASP stimulates actin filament elongation by promoting the transfer of profilin-bound actin monomers onto the barbed end of growing actin filaments. Plays a role in actin-based mobility of Listeria monocytogenes in host cells. Regulates actin dynamics in platelets and plays an important role in regulating platelet aggregation. {ECO:0000269|PubMed:10087267, ECO:0000269|PubMed:10438535, ECO:0000269|PubMed:15939738, ECO:0000269|PubMed:17082196, ECO:0000269|PubMed:18559661}. |
P51116 | FXR2 | S525 | ochoa | RNA-binding protein FXR2 (FXR2P) (FMR1 autosomal homolog 2) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for adult hippocampal neurogenesis (By similarity). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (By similarity). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs: mRNAs storage into membraneless compartments regulates their translation and/or stability (By similarity). Acts as a regulator of adult hippocampal neurogenesis by regulating translation and/or stability of NOG mRNA, thereby preventing NOG protein expression in the dentate gyrus (By similarity). {ECO:0000250|UniProtKB:Q61584, ECO:0000250|UniProtKB:Q9WVR4}. |
P52948 | NUP98 | S913 | ochoa|psp | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P52948 | NUP98 | S1771 | ochoa|psp | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P53350 | PLK1 | S335 | psp | Serine/threonine-protein kinase PLK1 (EC 2.7.11.21) (Polo-like kinase 1) (PLK-1) (Serine/threonine-protein kinase 13) (STPK13) | Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase-promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Polo-like kinase proteins act by binding and phosphorylating proteins that are already phosphorylated on a specific motif recognized by the POLO box domains (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Phosphorylates BORA, BUB1B/BUBR1, CCNB1, CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, CENPU, NEDD1, NINL, NPM1, NUDC, PKMYT1/MYT1, KIZ, MRE11, PPP1R12A/MYPT1, POLQ, PRC1, RACGAP1/CYK4, RAD51, RHNO1, SGO1, STAG2/SA2, TEX14, TOPORS, p73/TP73, TPT1, WEE1 and HNRNPU (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17218258, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:22325354, PubMed:23455478, PubMed:23509069, PubMed:25986610, PubMed:26811421, PubMed:28512243, PubMed:37440612, PubMed:37674080, PubMed:8991084). Plays a key role in centrosome functions and the assembly of bipolar spindles by phosphorylating KIZ, NEDD1 and NINL (PubMed:16980960, PubMed:19509060). NEDD1 phosphorylation promotes subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation (PubMed:19509060). Phosphorylation of NINL component of the centrosome leads to NINL dissociation from other centrosomal proteins (PubMed:12852856). Involved in mitosis exit and cytokinesis by phosphorylating CEP55, ECT2, KIF20A/MKLP2, CENPU, PRC1 and RACGAP1 (PubMed:12939256, PubMed:16247472, PubMed:17351640, PubMed:19468300, PubMed:19468302). Recruited at the central spindle by phosphorylating and docking PRC1 and KIF20A/MKLP2; creates its own docking sites on PRC1 and KIF20A/MKLP2 by mediating phosphorylation of sites subsequently recognized by the POLO box domains (PubMed:12939256, PubMed:17351640). Phosphorylates RACGAP1, thereby creating a docking site for the Rho GTP exchange factor ECT2 that is essential for the cleavage furrow formation (PubMed:19468300, PubMed:19468302). Promotes the central spindle recruitment of ECT2 (PubMed:16247472). Plays a central role in G2/M transition of mitotic cell cycle by phosphorylating CCNB1, CDC25C, FOXM1, CENPU, PKMYT1/MYT1, PPP1R12A/MYPT1 and WEE1 (PubMed:11202906, PubMed:12447691, PubMed:12524548, PubMed:19160488). Part of a regulatory circuit that promotes the activation of CDK1 by phosphorylating the positive regulator CDC25C and inhibiting the negative regulators WEE1 and PKMYT1/MYT1 (PubMed:11202906). Also acts by mediating phosphorylation of cyclin-B1 (CCNB1) on centrosomes in prophase (PubMed:12447691, PubMed:12524548). Phosphorylates FOXM1, a key mitotic transcription regulator, leading to enhance FOXM1 transcriptional activity (PubMed:19160488). Involved in kinetochore functions and sister chromatid cohesion by phosphorylating BUB1B/BUBR1, FBXO5/EMI1 and STAG2/SA2 (PubMed:15148369, PubMed:15469984, PubMed:17376779, PubMed:18331714). PLK1 is high on non-attached kinetochores suggesting a role of PLK1 in kinetochore attachment or in spindle assembly checkpoint (SAC) regulation (PubMed:17617734). Required for kinetochore localization of BUB1B (PubMed:17376779). Regulates the dissociation of cohesin from chromosomes by phosphorylating cohesin subunits such as STAG2/SA2 (By similarity). Phosphorylates SGO1: required for spindle pole localization of isoform 3 of SGO1 and plays a role in regulating its centriole cohesion function (PubMed:18331714). Mediates phosphorylation of FBXO5/EMI1, a negative regulator of the APC/C complex during prophase, leading to FBXO5/EMI1 ubiquitination and degradation by the proteasome (PubMed:15148369, PubMed:15469984). Acts as a negative regulator of p53 family members: phosphorylates TOPORS, leading to inhibit the sumoylation of p53/TP53 and simultaneously enhance the ubiquitination and subsequent degradation of p53/TP53 (PubMed:19473992). Phosphorylates the transactivation domain of the transcription factor p73/TP73, leading to inhibit p73/TP73-mediated transcriptional activation and pro-apoptotic functions. Phosphorylates BORA, and thereby promotes the degradation of BORA (PubMed:18521620). Contributes to the regulation of AURKA function (PubMed:18615013, PubMed:18662541). Also required for recovery after DNA damage checkpoint and entry into mitosis (PubMed:18615013, PubMed:18662541). Phosphorylates MISP, leading to stabilization of cortical and astral microtubule attachments required for proper spindle positioning (PubMed:23509069). Together with MEIKIN, acts as a regulator of kinetochore function during meiosis I: required both for mono-orientation of kinetochores on sister chromosomes and protection of centromeric cohesin from separase-mediated cleavage (By similarity). Phosphorylates CEP68 and is required for its degradation (PubMed:25503564). Regulates nuclear envelope breakdown during prophase by phosphorylating DCTN1 resulting in its localization in the nuclear envelope (PubMed:20679239). Phosphorylates the heat shock transcription factor HSF1, promoting HSF1 nuclear translocation upon heat shock (PubMed:15661742). Phosphorylates HSF1 also in the early mitotic period; this phosphorylation regulates HSF1 localization to the spindle pole, the recruitment of the SCF(BTRC) ubiquitin ligase complex induicing HSF1 degradation, and hence mitotic progression (PubMed:18794143). Regulates mitotic progression by phosphorylating RIOK2 (PubMed:21880710). Through the phosphorylation of DZIP1 regulates the localization during mitosis of the BBSome, a ciliary protein complex involved in cilium biogenesis (PubMed:27979967). Regulates DNA repair during mitosis by mediating phosphorylation of POLQ and RHNO1, thereby promoting POLQ recruitment to DNA damage sites (PubMed:37440612, PubMed:37674080). Phosphorylates ATXN10 which may play a role in the regulation of cytokinesis and may stimulate the proteasome-mediated degradation of ATXN10 (PubMed:21857149). {ECO:0000250|UniProtKB:P70032, ECO:0000250|UniProtKB:Q5F2C3, ECO:0000269|PubMed:11202906, ECO:0000269|PubMed:12207013, ECO:0000269|PubMed:12447691, ECO:0000269|PubMed:12524548, ECO:0000269|PubMed:12738781, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:12939256, ECO:0000269|PubMed:14532005, ECO:0000269|PubMed:14734534, ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:15148369, ECO:0000269|PubMed:15469984, ECO:0000269|PubMed:15661742, ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:16247472, ECO:0000269|PubMed:16980960, ECO:0000269|PubMed:17081991, ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:17351640, ECO:0000269|PubMed:17376779, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:18418051, ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:18521620, ECO:0000269|PubMed:18615013, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:19351716, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:19509060, ECO:0000269|PubMed:19597481, ECO:0000269|PubMed:20679239, ECO:0000269|PubMed:21857149, ECO:0000269|PubMed:21880710, ECO:0000269|PubMed:22325354, ECO:0000269|PubMed:23455478, ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:25986610, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:27979967, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080, ECO:0000269|PubMed:8991084}. |
P53992 | SEC24C | S308 | ochoa | Protein transport protein Sec24C (SEC24-related protein C) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:10214955, PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24D may have a different specificity compared to SEC24A and SEC24B (PubMed:17499046, PubMed:18843296, PubMed:20427317). May more specifically package GPI-anchored proteins through the cargo receptor TMED10 (PubMed:20427317). May also be specific for IxM motif-containing cargos like the SNAREs GOSR2 and STX5 (PubMed:18843296). {ECO:0000269|PubMed:10214955, ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}. |
P78563 | ADARB1 | S216 | psp | Double-stranded RNA-specific editase 1 (EC 3.5.4.37) (RNA-editing deaminase 1) (RNA-editing enzyme 1) (dsRNA adenosine deaminase) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C), GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis. {ECO:0000269|PubMed:18178553, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159}.; FUNCTION: [Isoform 1]: Has a lower catalytic activity than isoform 2. {ECO:0000269|PubMed:9149227}.; FUNCTION: [Isoform 2]: Has a higher catalytic activity than isoform 1. {ECO:0000269|PubMed:9149227}. |
P85299 | PRR5 | S309 | ochoa | Proline-rich protein 5 (Protein observed with Rictor-1) (Protor-1) | Associated subunit of mTORC2, which regulates cell growth and survival in response to hormonal signals (PubMed:17461779, PubMed:17599906, PubMed:29424687). mTORC2 is activated by growth factors, but, in contrast to mTORC1, seems to be nutrient-insensitive (PubMed:17461779, PubMed:17599906, PubMed:29424687). mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:17461779, PubMed:17599906, PubMed:29424687). PRR5 plays an important role in regulation of PDGFRB expression and in modulation of platelet-derived growth factor signaling (PubMed:17599906). May act as a tumor suppressor in breast cancer (PubMed:15718101). {ECO:0000269|PubMed:15718101, ECO:0000269|PubMed:17461779, ECO:0000269|PubMed:17599906, ECO:0000269|PubMed:29424687}. |
P98174 | FGD1 | S135 | ochoa | FYVE, RhoGEF and PH domain-containing protein 1 (Faciogenital dysplasia 1 protein) (Rho/Rac guanine nucleotide exchange factor FGD1) (Rho/Rac GEF) (Zinc finger FYVE domain-containing protein 3) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:8969170}. |
Q02641 | CACNB1 | S417 | ochoa | Voltage-dependent L-type calcium channel subunit beta-1 (CAB1) (Calcium channel voltage-dependent subunit beta 1) | Regulatory subunit of L-type calcium channels (PubMed:1309651, PubMed:15615847, PubMed:8107964). Regulates the activity of L-type calcium channels that contain CACNA1A as pore-forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane (PubMed:15615847). Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit (PubMed:1309651). Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subunit (PubMed:8107964). {ECO:0000250|UniProtKB:P19517, ECO:0000269|PubMed:1309651, ECO:0000269|PubMed:15615847, ECO:0000269|PubMed:8107964}. |
Q03111 | MLLT1 | S152 | ochoa | Protein ENL (YEATS domain-containing protein 1) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948). Specifically recognizes and binds acetylated and crotonylated histones, with a preference for histones that are crotonylated (PubMed:27105114). Has a slightly higher affinity for binding histone H3 crotonylated at 'Lys-27' (H3K27cr) than 'Lys-20' (H3K9cr20) (PubMed:27105114). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:27105114}.; FUNCTION: Acts as a key chromatin reader in acute myeloid leukemia by recognizing and binding to acetylated histones via its YEATS domain, thereby regulating oncogenic gene transcription. {ECO:0000269|PubMed:28241139, ECO:0000269|PubMed:28241141}. |
Q04637 | EIF4G1 | S204 | ochoa | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q05209 | PTPN12 | S507 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q07820 | MCL1 | S67 | ochoa | Induced myeloid leukemia cell differentiation protein Mcl-1 (Bcl-2-like protein 3) (Bcl2-L-3) (Bcl-2-related protein EAT/mcl1) (mcl1/EAT) | Involved in the regulation of apoptosis versus cell survival, and in the maintenance of viability but not of proliferation. Mediates its effects by interactions with a number of other regulators of apoptosis. Isoform 1 inhibits apoptosis. Isoform 2 promotes apoptosis. {ECO:0000269|PubMed:10766760, ECO:0000269|PubMed:16543145}. |
Q08378 | GOLGA3 | S1391 | ochoa | Golgin subfamily A member 3 (Golgi complex-associated protein of 170 kDa) (GCP170) (Golgin-160) | Golgi auto-antigen; probably involved in maintaining Golgi structure. |
Q08999 | RBL2 | S965 | ochoa | Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) | Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor. |
Q09666 | AHNAK | S332 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q0VG06 | FAAP100 | S688 | ochoa | Fanconi anemia core complex-associated protein 100 (Fanconi anemia-associated protein of 100 kDa) | Plays a role in Fanconi anemia-associated DNA damage response network. Regulates FANCD2 monoubiquitination and the stability of the FA core complex. Induces chromosomal instability as well as hypersensitivity to DNA cross-linking agents, when repressed. {ECO:0000269|PubMed:17396147}. |
Q10713 | PMPCA | S34 | ochoa | Mitochondrial-processing peptidase subunit alpha (Alpha-MPP) (Inactive zinc metalloprotease alpha) (P-55) | Substrate recognition and binding subunit of the essential mitochondrial processing protease (MPP), which cleaves the mitochondrial sequence off newly imported precursors proteins. {ECO:0000269|PubMed:25808372}. |
Q12774 | ARHGEF5 | Y836 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q12815 | TROAP | S344 | ochoa | Tastin (Trophinin-assisting protein) (Trophinin-associated protein) | Could be involved with bystin and trophinin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation. |
Q12929 | EPS8 | S203 | psp | Epidermal growth factor receptor kinase substrate 8 | Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}. |
Q12929 | EPS8 | Y602 | ochoa|psp | Epidermal growth factor receptor kinase substrate 8 | Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}. |
Q13094 | LCP2 | T341 | ochoa | Lymphocyte cytosolic protein 2 (SH2 domain-containing leukocyte protein of 76 kDa) (SLP-76 tyrosine phosphoprotein) (SLP76) | Adapter protein primarily involved in signaling pathways within T-cells, as well as other immune cells such as platelets, mast cells, and natural killer (NK) cells (PubMed:11313406, PubMed:33159816). Plays a crucial role for transducing signal from the T-cell receptor (TCR) after antigen recognition leading to T-cell activation. Mechanistically, once phosphorylated by the kinase ZAP70, mediates interactions with the guanine-nucleotide exchange factor VAV1, the adapter protein NCK and the kinase ITK (PubMed:8673706, PubMed:8702662). In turn, stimulates the activation of PKC-theta/PRKCQ and NF-kappa-B transcriptional activity in response to CD3 and CD28 costimulation (PubMed:11313406). Also plays an essential role in AGER-induced signaling pathways including p38 MAPK and ERK1/2 activation leading to cytokine release and pro-inflammatory responses (PubMed:33436632). {ECO:0000269|PubMed:11313406, ECO:0000269|PubMed:33436632, ECO:0000269|PubMed:8673706, ECO:0000269|PubMed:8702662}. |
Q13761 | RUNX3 | S251 | ochoa | Runt-related transcription factor 3 (Acute myeloid leukemia 2 protein) (Core-binding factor subunit alpha-3) (CBF-alpha-3) (Oncogene AML-2) (Polyomavirus enhancer-binding protein 2 alpha C subunit) (PEA2-alpha C) (PEBP2-alpha C) (SL3-3 enhancer factor 1 alpha C subunit) (SL3/AKV core-binding factor alpha C subunit) | Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (By similarity). May be involved in the control of cellular proliferation and/or differentiation. In association with ZFHX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Necessary for the development and survival of sensory neurons expressing parvalbumin (By similarity). {ECO:0000250|UniProtKB:Q64131, ECO:0000269|PubMed:20599712}. |
Q14005 | IL16 | S920 | ochoa | Pro-interleukin-16 [Cleaved into: Interleukin-16 (IL-16) (Lymphocyte chemoattractant factor) (LCF)] | Interleukin-16 stimulates a migratory response in CD4+ lymphocytes, monocytes, and eosinophils. Primes CD4+ T-cells for IL-2 and IL-15 responsiveness. Also induces T-lymphocyte expression of interleukin 2 receptor. Ligand for CD4.; FUNCTION: [Isoform 1]: May act as a scaffolding protein that anchors ion channels in the membrane.; FUNCTION: Isoform 3 is involved in cell cycle progression in T-cells. Appears to be involved in transcriptional regulation of SKP2 and is probably part of a transcriptional repression complex on the core promoter of the SKP2 gene. May act as a scaffold for GABPB1 (the DNA-binding subunit the GABP transcription factor complex) and HDAC3 thus maintaining transcriptional repression and blocking cell cycle progression in resting T-cells. |
Q14008 | CKAP5 | S1107 | ochoa | Cytoskeleton-associated protein 5 (Colonic and hepatic tumor overexpressed gene protein) (Ch-TOG) | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Acts as a processive microtubule polymerase. Promotes cytoplasmic microtubule nucleation and elongation. Plays a major role in organizing spindle poles. In spindle formation protects kinetochore microtubules from depolymerization by KIF2C and has an essential role in centrosomal microtubule assembly independently of KIF2C activity. Contributes to centrosome integrity. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Enhances the strength of NDC80 complex-mediated kinetochore-tip microtubule attachments (PubMed:27156448). {ECO:0000269|PubMed:12569123, ECO:0000269|PubMed:18809577, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:21646404, ECO:0000269|PubMed:23532825, ECO:0000269|PubMed:27156448, ECO:0000269|PubMed:9570755}. |
Q14118 | DAG1 | S812 | ochoa | Dystroglycan 1 (Dystroglycan) (Dystrophin-associated glycoprotein 1) [Cleaved into: Alpha-dystroglycan (Alpha-DG); Beta-dystroglycan (Beta-DG)] | The dystroglycan complex is involved in a number of processes including laminin and basement membrane assembly, sarcolemmal stability, cell survival, peripheral nerve myelination, nodal structure, cell migration, and epithelial polarization.; FUNCTION: [Alpha-dystroglycan]: Extracellular peripheral glycoprotein that acts as a receptor for extracellular matrix proteins containing laminin-G domains. Receptor for laminin-2 (LAMA2) and agrin in peripheral nerve Schwann cells. Also acts as a receptor for laminin LAMA5 (By similarity). {ECO:0000250|UniProtKB:O18738}.; FUNCTION: [Beta-dystroglycan]: Transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton. Acts as a cell adhesion receptor in both muscle and non-muscle tissues. Receptor for both DMD and UTRN and, through these interactions, scaffolds axin to the cytoskeleton. Also functions in cell adhesion-mediated signaling and implicated in cell polarity.; FUNCTION: [Alpha-dystroglycan]: (Microbial infection) Acts as a receptor for lassa virus and lymphocytic choriomeningitis virus glycoprotein and class C new-world arenaviruses (PubMed:16254364, PubMed:17360738, PubMed:19324387). Acts as a Schwann cell receptor for Mycobacterium leprae, the causative organism of leprosy, but only in the presence of the G-domain of LAMA2 (PubMed:9851927). {ECO:0000269|PubMed:16254364, ECO:0000269|PubMed:17360738, ECO:0000269|PubMed:19324387, ECO:0000269|PubMed:9851927}. |
Q14160 | SCRIB | S1330 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14289 | PTK2B | S746 | ochoa | Protein-tyrosine kinase 2-beta (EC 2.7.10.2) (Calcium-dependent tyrosine kinase) (CADTK) (Calcium-regulated non-receptor proline-rich tyrosine kinase) (Cell adhesion kinase beta) (CAK-beta) (CAKB) (Focal adhesion kinase 2) (FADK 2) (Proline-rich tyrosine kinase 2) (Related adhesion focal tyrosine kinase) (RAFTK) | Non-receptor protein-tyrosine kinase that regulates reorganization of the actin cytoskeleton, cell polarization, cell migration, adhesion, spreading and bone remodeling. Plays a role in the regulation of the humoral immune response, and is required for normal levels of marginal B-cells in the spleen and normal migration of splenic B-cells. Required for normal macrophage polarization and migration towards sites of inflammation. Regulates cytoskeleton rearrangement and cell spreading in T-cells, and contributes to the regulation of T-cell responses. Promotes osteoclastic bone resorption; this requires both PTK2B/PYK2 and SRC. May inhibit differentiation and activity of osteoprogenitor cells. Functions in signaling downstream of integrin and collagen receptors, immune receptors, G-protein coupled receptors (GPCR), cytokine, chemokine and growth factor receptors, and mediates responses to cellular stress. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and of the AKT1 signaling cascade. Promotes activation of NOS3. Regulates production of the cellular messenger cGMP. Promotes activation of the MAP kinase signaling cascade, including activation of MAPK1/ERK2, MAPK3/ERK1 and MAPK8/JNK1. Promotes activation of Rho family GTPases, such as RHOA and RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Acts as a scaffold, binding to both PDPK1 and SRC, thereby allowing SRC to phosphorylate PDPK1 at 'Tyr-9, 'Tyr-373', and 'Tyr-376'. Promotes phosphorylation of NMDA receptors by SRC family members, and thereby contributes to the regulation of NMDA receptor ion channel activity and intracellular Ca(2+) levels. May also regulate potassium ion transport by phosphorylation of potassium channel subunits. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ASAP1, NPHP1, KCNA2 and SHC1. Promotes phosphorylation of ASAP2, RHOU and PXN; this requires both SRC and PTK2/PYK2. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:12771146, ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:15050747, ECO:0000269|PubMed:15166227, ECO:0000269|PubMed:17634955, ECO:0000269|PubMed:18086875, ECO:0000269|PubMed:18339875, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18765415, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:19207108, ECO:0000269|PubMed:19244237, ECO:0000269|PubMed:19428251, ECO:0000269|PubMed:19648005, ECO:0000269|PubMed:19880522, ECO:0000269|PubMed:20001213, ECO:0000269|PubMed:20381867, ECO:0000269|PubMed:20521079, ECO:0000269|PubMed:21357692, ECO:0000269|PubMed:21533080, ECO:0000269|PubMed:7544443, ECO:0000269|PubMed:8670418, ECO:0000269|PubMed:8849729}. |
Q14678 | KANK1 | S115 | ochoa | KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) | Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}. |
Q14678 | KANK1 | S128 | ochoa | KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) | Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}. |
Q14684 | RRP1B | S460 | ochoa | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q14686 | NCOA6 | S1891 | ochoa | Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins. |
Q15003 | NCAPH | S429 | ochoa | Condensin complex subunit 2 (Barren homolog protein 1) (Chromosome-associated protein H) (hCAP-H) (Non-SMC condensin I complex subunit H) (XCAP-H homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases (PubMed:11136719). Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}. |
Q15642 | TRIP10 | S477 | ochoa | Cdc42-interacting protein 4 (Protein Felic) (Salt tolerant protein) (hSTP) (Thyroid receptor-interacting protein 10) (TR-interacting protein 10) (TRIP-10) | Required for translocation of GLUT4 to the plasma membrane in response to insulin signaling (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by recruiting WASL/N-WASP which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Required for the formation of podosomes, actin-rich adhesion structures specific to monocyte-derived cells. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:11069762, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391}. |
Q15654 | TRIP6 | Y123 | ochoa | Thyroid receptor-interacting protein 6 (TR-interacting protein 6) (TRIP-6) (Opa-interacting protein 1) (OIP-1) (Zyxin-related protein 1) (ZRP-1) | Relays signals from the cell surface to the nucleus to weaken adherens junction and promote actin cytoskeleton reorganization and cell invasiveness. Involved in lysophosphatidic acid-induced cell adhesion and migration. Acts as a transcriptional coactivator for NF-kappa-B and JUN, and mediates the transrepression of these transcription factors induced by glucocorticoid receptor. {ECO:0000269|PubMed:14688263, ECO:0000269|PubMed:15489293, ECO:0000269|PubMed:16624523, ECO:0000269|PubMed:19017743}. |
Q15743 | GPR68 | S331 | ochoa | G-protein coupled receptor 68 (G-protein coupled receptor 12A) (GPR12A) (Ovarian cancer G-protein coupled receptor 1) (OGR-1) | Proton-sensing G-protein coupled receptor activated by extracellular pH, which is required to monitor pH changes and generate adaptive reactions (PubMed:12955148, PubMed:29677517, PubMed:32865988, PubMed:33478938, PubMed:39753132). The receptor is almost silent at pH 7.8 but fully activated at pH 6.8 (PubMed:12955148, PubMed:39753132). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors, such as phospholipase C (PubMed:29677517, PubMed:39753132). GPR68 is mainly coupled to G(q) G proteins and mediates production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:29677517, PubMed:39753132). Acts as a key mechanosensor of fluid shear stress and membrane stretch (PubMed:29677517, PubMed:30471999). Expressed in endothelial cells of small-diameter resistance arteries, where it mediates flow-induced dilation in response to shear stress (PubMed:29677517). May represents an osteoblastic pH sensor regulating cell-mediated responses to acidosis in bone (By similarity). Acts as a regulator of calcium-sensing receptor CASR in a seesaw manner: GPR68-mediated signaling inhibits CASR signaling in response to protons, while CASR inhibits GPR68 in presence of extracellular calcium (By similarity). {ECO:0000250|UniProtKB:Q8BFQ3, ECO:0000269|PubMed:12955148, ECO:0000269|PubMed:29677517, ECO:0000269|PubMed:30471999, ECO:0000269|PubMed:32865988, ECO:0000269|PubMed:33478938, ECO:0000269|PubMed:39753132}. |
Q15758 | SLC1A5 | S491 | ochoa | Neutral amino acid transporter B(0) (ATB(0)) (Baboon M7 virus receptor) (RD114/simian type D retrovirus receptor) (Sodium-dependent neutral amino acid transporter type 2) (Solute carrier family 1 member 5) | Sodium-coupled antiporter of neutral amino acids. In a tri-substrate transport cycle, exchanges neutral amino acids between the extracellular and intracellular compartments, coupled to the inward cotransport of at least one sodium ion (PubMed:17094966, PubMed:23756778, PubMed:26492990, PubMed:29872227, PubMed:34741534, PubMed:8702519). The preferred substrate is the essential amino acid L-glutamine, a precursor for biosynthesis of proteins, nucleotides and amine sugars as well as an alternative fuel for mitochondrial oxidative phosphorylation. Exchanges L-glutamine with other neutral amino acids such as L-serine, L-threonine and L-asparagine in a bidirectional way. Provides L-glutamine to proliferating stem and activated cells driving the metabolic switch toward cell differentiation (PubMed:23756778, PubMed:24953180). The transport cycle is usually pH-independent, with the exception of L-glutamate. Transports extracellular L-glutamate coupled to the cotransport of one proton and one sodium ion in exchange for intracellular L-glutamine counter-ion. May provide for L-glutamate uptake in glial cells regulating glutamine/glutamate cycle in the nervous system (PubMed:32733894). Can transport D-amino acids. Mediates D-serine release from the retinal glia potentially affecting NMDA receptor function in retinal neurons (PubMed:17094966). Displays sodium- and amino acid-dependent but uncoupled channel-like anion conductance with a preference SCN(-) >> NO3(-) > I(-) > Cl(-) (By similarity). Through binding of the fusogenic protein syncytin-1/ERVW-1 may mediate trophoblasts syncytialization, the spontaneous fusion of their plasma membranes, an essential process in placental development (PubMed:10708449, PubMed:23492904). {ECO:0000250|UniProtKB:D3ZJ25, ECO:0000269|PubMed:10708449, ECO:0000269|PubMed:17094966, ECO:0000269|PubMed:23492904, ECO:0000269|PubMed:23756778, ECO:0000269|PubMed:24953180, ECO:0000269|PubMed:26492990, ECO:0000269|PubMed:29872227, ECO:0000269|PubMed:32733894, ECO:0000269|PubMed:34741534, ECO:0000269|PubMed:8702519}.; FUNCTION: (Microbial infection) Acts as a cell surface receptor for Feline endogenous virus RD114. {ECO:0000269|PubMed:10051606, ECO:0000269|PubMed:10196349}.; FUNCTION: (Microbial infection) Acts as a cell surface receptor for Baboon M7 endogenous virus. {ECO:0000269|PubMed:10196349}.; FUNCTION: (Microbial infection) Acts as a cell surface receptor for type D simian retroviruses. {ECO:0000269|PubMed:10196349}. |
Q15758 | SLC1A5 | S493 | ochoa | Neutral amino acid transporter B(0) (ATB(0)) (Baboon M7 virus receptor) (RD114/simian type D retrovirus receptor) (Sodium-dependent neutral amino acid transporter type 2) (Solute carrier family 1 member 5) | Sodium-coupled antiporter of neutral amino acids. In a tri-substrate transport cycle, exchanges neutral amino acids between the extracellular and intracellular compartments, coupled to the inward cotransport of at least one sodium ion (PubMed:17094966, PubMed:23756778, PubMed:26492990, PubMed:29872227, PubMed:34741534, PubMed:8702519). The preferred substrate is the essential amino acid L-glutamine, a precursor for biosynthesis of proteins, nucleotides and amine sugars as well as an alternative fuel for mitochondrial oxidative phosphorylation. Exchanges L-glutamine with other neutral amino acids such as L-serine, L-threonine and L-asparagine in a bidirectional way. Provides L-glutamine to proliferating stem and activated cells driving the metabolic switch toward cell differentiation (PubMed:23756778, PubMed:24953180). The transport cycle is usually pH-independent, with the exception of L-glutamate. Transports extracellular L-glutamate coupled to the cotransport of one proton and one sodium ion in exchange for intracellular L-glutamine counter-ion. May provide for L-glutamate uptake in glial cells regulating glutamine/glutamate cycle in the nervous system (PubMed:32733894). Can transport D-amino acids. Mediates D-serine release from the retinal glia potentially affecting NMDA receptor function in retinal neurons (PubMed:17094966). Displays sodium- and amino acid-dependent but uncoupled channel-like anion conductance with a preference SCN(-) >> NO3(-) > I(-) > Cl(-) (By similarity). Through binding of the fusogenic protein syncytin-1/ERVW-1 may mediate trophoblasts syncytialization, the spontaneous fusion of their plasma membranes, an essential process in placental development (PubMed:10708449, PubMed:23492904). {ECO:0000250|UniProtKB:D3ZJ25, ECO:0000269|PubMed:10708449, ECO:0000269|PubMed:17094966, ECO:0000269|PubMed:23492904, ECO:0000269|PubMed:23756778, ECO:0000269|PubMed:24953180, ECO:0000269|PubMed:26492990, ECO:0000269|PubMed:29872227, ECO:0000269|PubMed:32733894, ECO:0000269|PubMed:34741534, ECO:0000269|PubMed:8702519}.; FUNCTION: (Microbial infection) Acts as a cell surface receptor for Feline endogenous virus RD114. {ECO:0000269|PubMed:10051606, ECO:0000269|PubMed:10196349}.; FUNCTION: (Microbial infection) Acts as a cell surface receptor for Baboon M7 endogenous virus. {ECO:0000269|PubMed:10196349}.; FUNCTION: (Microbial infection) Acts as a cell surface receptor for type D simian retroviruses. {ECO:0000269|PubMed:10196349}. |
Q16513 | PKN2 | S559 | ochoa | Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) | PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}. |
Q2LD37 | BLTP1 | S2931 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q3KQU3 | MAP7D1 | S471 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3L8U1 | CHD9 | S2012 | ochoa | Chromodomain-helicase-DNA-binding protein 9 (CHD-9) (EC 3.6.4.-) (ATP-dependent helicase CHD9) (Chromatin-related mesenchymal modulator) (CReMM) (Chromatin-remodeling factor CHROM1) (Kismet homolog 2) (PPAR-alpha-interacting complex protein 320 kDa) (Peroxisomal proliferator-activated receptor A-interacting complex 320 kDa protein) | Probable ATP-dependent chromatin-remodeling factor. Acts as a transcriptional coactivator for PPARA and possibly other nuclear receptors. Has DNA-dependent ATPase activity and binds to A/T-rich DNA. Associates with A/T-rich regulatory regions in promoters of genes that participate in the differentiation of progenitors during osteogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:16095617, ECO:0000269|PubMed:16554032}. |
Q53ET0 | CRTC2 | S178 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q5PRF9 | SAMD4B | T406 | ochoa|psp | Protein Smaug homolog 2 (Smaug 2) (hSmaug2) (Sterile alpha motif domain-containing protein 4B) (SAM domain-containing protein 4B) | Has transcriptional repressor activity. Overexpression inhibits the transcriptional activities of AP-1, p53/TP53 and CDKN1A. {ECO:0000269|PubMed:20510020}. |
Q5SQI0 | ATAT1 | S237 | psp | Alpha-tubulin N-acetyltransferase 1 (Alpha-TAT) (Alpha-TAT1) (TAT) (EC 2.3.1.108) (Acetyltransferase mec-17 homolog) | Specifically acetylates 'Lys-40' in alpha-tubulin on the lumenal side of microtubules. Promotes microtubule destabilization and accelerates microtubule dynamics; this activity may be independent of acetylation activity. Acetylates alpha-tubulin with a slow enzymatic rate, due to a catalytic site that is not optimized for acetyl transfer. Enters the microtubule through each end and diffuses quickly throughout the lumen of microtubules. Acetylates only long/old microtubules because of its slow acetylation rate since it does not have time to act on dynamically unstable microtubules before the enzyme is released. Required for normal sperm flagellar function. Promotes directional cell locomotion and chemotaxis, through AP2A2-dependent acetylation of alpha-tubulin at clathrin-coated pits that are concentrated at the leading edge of migrating cells. May facilitate primary cilium assembly. {ECO:0000255|HAMAP-Rule:MF_03130, ECO:0000269|PubMed:20829795, ECO:0000269|PubMed:21068373, ECO:0000269|PubMed:24097348, ECO:0000269|PubMed:24906155}. |
Q5SXM8 | DNLZ | S157 | ochoa | DNL-type zinc finger protein (Hsp70-escort protein 1) (HEP1) (mtHsp70-escort protein) | May function as a co-chaperone towards HSPA9/mortalin which, by itself, is prone to self-aggregation. {ECO:0000269|PubMed:23462535}. |
Q5THJ4 | VPS13D | S1744 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5THJ4 | VPS13D | S1746 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q6JBY9 | RCSD1 | S82 | ochoa | CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) | Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}. |
Q6N021 | TET2 | S393 | ochoa | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6N022 | TENM4 | S209 | ochoa | Teneurin-4 (Ten-4) (Protein Odd Oz/ten-m homolog 4) (Tenascin-M4) (Ten-m4) (Teneurin transmembrane protein 4) | Involved in neural development, regulating the establishment of proper connectivity within the nervous system. Plays a role in the establishment of the anterior-posterior axis during gastrulation. Regulates the differentiation and cellular process formation of oligodendrocytes and myelination of small-diameter axons in the central nervous system (CNS) (PubMed:26188006). Promotes activation of focal adhesion kinase. May function as a cellular signal transducer (By similarity). {ECO:0000250|UniProtKB:Q3UHK6, ECO:0000269|PubMed:26188006}. |
Q6P1J9 | CDC73 | S345 | ochoa | Parafibromin (Cell division cycle protein 73 homolog) (Hyperparathyroidism 2 protein) | Tumor suppressor probably involved in transcriptional and post-transcriptional control pathways. May be involved in cell cycle progression through the regulation of cyclin D1/PRAD1 expression. Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Connects PAF1C with the cleavage and polyadenylation specificity factor (CPSF) complex and the cleavage stimulation factor (CSTF) complex, and with Wnt signaling. Involved in polyadenylation of mRNA precursors. {ECO:0000269|PubMed:15580289, ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15923622, ECO:0000269|PubMed:16630820, ECO:0000269|PubMed:16989776, ECO:0000269|PubMed:19136632, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}. |
Q6PJG2 | MIDEAS | Y624 | ochoa | Mitotic deacetylase-associated SANT domain protein (ELM2 and SANT domain-containing protein 1) | None |
Q6ZNJ1 | NBEAL2 | S1305 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZNJ1 | NBEAL2 | S1384 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZRV2 | FAM83H | S516 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZU65 | UBN2 | S78 | ochoa | Ubinuclein-2 | None |
Q6ZVL6 | KIAA1549L | S1593 | ochoa | UPF0606 protein KIAA1549L | None |
Q711Q0 | CEFIP | S160 | ochoa | Cardiac-enriched FHL2-interacting protein | Plays an important role in cardiomyocyte hypertrophy via activation of the calcineurin/NFAT signaling pathway. {ECO:0000250|UniProtKB:M0RD54}. |
Q711Q0 | CEFIP | S1248 | ochoa | Cardiac-enriched FHL2-interacting protein | Plays an important role in cardiomyocyte hypertrophy via activation of the calcineurin/NFAT signaling pathway. {ECO:0000250|UniProtKB:M0RD54}. |
Q765P7 | MTSS2 | S579 | ochoa | Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) | Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}. |
Q76N32 | CEP68 | S368 | ochoa | Centrosomal protein of 68 kDa (Cep68) | Involved in maintenance of centrosome cohesion, probably as part of a linker structure which prevents centrosome splitting (PubMed:18042621). Required for localization of CDK5RAP2 to the centrosome during interphase (PubMed:24554434, PubMed:25503564). Contributes to CROCC/rootletin filament formation (PubMed:30404835). {ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:30404835}. |
Q7LBC6 | KDM3B | S462 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q7Z3B3 | KANSL1 | S1021 | ochoa | KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) | Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}. |
Q7Z3K3 | POGZ | S438 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z3K3 | POGZ | S704 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z5L9 | IRF2BP2 | S131 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q86T24 | ZBTB33 | S237 | ochoa | Transcriptional regulator Kaiso (Zinc finger and BTB domain-containing protein 33) | Transcriptional regulator with bimodal DNA-binding specificity. Binds to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' and also binds to the non-methylated consensus sequence 5'-CTGCNA-3' also known as the consensus kaiso binding site (KBS). Recruits the N-CoR repressor complex to promote histone deacetylation and the formation of repressive chromatin structures in target gene promoters. May contribute to the repression of target genes of the Wnt signaling pathway. May also activate transcription of a subset of target genes by the recruitment of CTNND2. Represses expression of MMP7 in conjunction with transcriptional corepressors CBFA2T3, CBFA2T2 and RUNX1T1 (PubMed:23251453). {ECO:0000269|PubMed:11445535, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:15548582, ECO:0000269|PubMed:15817151, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:23251453}. |
Q86V42 | FAM124A | S302 | ochoa | Protein FAM124A | None |
Q86WV6 | STING1 | S358 | psp | Stimulator of interferon genes protein (hSTING) (Endoplasmic reticulum interferon stimulator) (ERIS) (Mediator of IRF3 activation) (hMITA) (Transmembrane protein 173) | Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:18724357, PubMed:18818105, PubMed:19433799, PubMed:19776740, PubMed:23027953, PubMed:23747010, PubMed:23910378, PubMed:27801882, PubMed:29973723, PubMed:30842659, PubMed:35045565, PubMed:35388221, PubMed:36808561, PubMed:37832545, PubMed:25704810, PubMed:39255680). Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm (PubMed:26300263). Acts by binding cyclic dinucleotides: recognizes and binds cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, cyclic UMP-AMP (2',3'-cUAMP), and cyclic GMP-AMP (cGAMP), a messenger produced by CGAS in response to DNA virus in the cytosol (PubMed:21947006, PubMed:23258412, PubMed:23707065, PubMed:23722158, PubMed:23747010, PubMed:23910378, PubMed:26229117, PubMed:30842659, PubMed:35388221, PubMed:37379839). Upon binding to c-di-GMP, cUAMP or cGAMP, STING1 oligomerizes, translocates from the endoplasmic reticulum and is phosphorylated by TBK1 on the pLxIS motif, leading to recruitment and subsequent activation of the transcription factor IRF3 to induce expression of type I interferon and exert a potent anti-viral state (PubMed:22394562, PubMed:25636800, PubMed:29973723, PubMed:30842653, PubMed:35045565, PubMed:35388221). Exhibits 2',3' phosphodiester linkage-specific ligand recognition: can bind both 2'-3' linked cGAMP (2'-3'-cGAMP) and 3'-3' linked cGAMP but is preferentially activated by 2'-3' linked cGAMP (PubMed:23747010, PubMed:23910378, PubMed:26300263). The preference for 2'-3'-cGAMP, compared to other linkage isomers is probably due to the ligand itself, whichs adopts an organized free-ligand conformation that resembles the STING1-bound conformation and pays low energy costs in changing into the active conformation (PubMed:26150511). In addition to promote the production of type I interferons, plays a direct role in autophagy (PubMed:30568238, PubMed:30842662). Following cGAMP-binding, STING1 buds from the endoplasmic reticulum into COPII vesicles, which then form the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) (PubMed:30842662). The ERGIC serves as the membrane source for WIPI2 recruitment and LC3 lipidation, leading to formation of autophagosomes that target cytosolic DNA or DNA viruses for degradation by the lysosome (PubMed:30842662). Promotes autophagy by acting as a proton channel that directs proton efflux from the Golgi to facilitate MAP1LC3B/LC3B lipidation (PubMed:37535724). The autophagy- and interferon-inducing activities can be uncoupled and autophagy induction is independent of TBK1 phosphorylation (PubMed:30568238, PubMed:30842662). Autophagy is also triggered upon infection by bacteria: following c-di-GMP-binding, which is produced by live Gram-positive bacteria, promotes reticulophagy (By similarity). May be involved in translocon function, the translocon possibly being able to influence the induction of type I interferons (PubMed:18724357). May be involved in transduction of apoptotic signals via its association with the major histocompatibility complex class II (MHC-II) (By similarity). {ECO:0000250|UniProtKB:Q3TBT3, ECO:0000269|PubMed:18724357, ECO:0000269|PubMed:18818105, ECO:0000269|PubMed:19433799, ECO:0000269|PubMed:19776740, ECO:0000269|PubMed:21947006, ECO:0000269|PubMed:22394562, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:23258412, ECO:0000269|PubMed:23707065, ECO:0000269|PubMed:23722158, ECO:0000269|PubMed:23747010, ECO:0000269|PubMed:23910378, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:26150511, ECO:0000269|PubMed:26229117, ECO:0000269|PubMed:26300263, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29973723, ECO:0000269|PubMed:30568238, ECO:0000269|PubMed:30842653, ECO:0000269|PubMed:30842659, ECO:0000269|PubMed:30842662, ECO:0000269|PubMed:35045565, ECO:0000269|PubMed:35388221, ECO:0000269|PubMed:36808561, ECO:0000269|PubMed:37379839, ECO:0000269|PubMed:37535724, ECO:0000269|PubMed:37832545, ECO:0000269|PubMed:39255680}.; FUNCTION: (Microbial infection) Antiviral activity is antagonized by oncoproteins, such as papillomavirus (HPV) protein E7 and adenovirus early E1A protein (PubMed:26405230). Such oncoproteins prevent the ability to sense cytosolic DNA (PubMed:26405230). {ECO:0000269|PubMed:26405230}. |
Q86X51 | EZHIP | S462 | ochoa | EZH inhibitory protein | Inhibits PRC2/EED-EZH1 and PRC2/EED-EZH2 complex function by inhibiting EZH1/EZH2 methyltransferase activity, thereby causing down-regulation of histone H3 trimethylation on 'Lys-27' (H3K27me3) (PubMed:29909548, PubMed:30923826, PubMed:31086175, PubMed:31451685). Probably inhibits methyltransferase activity by limiting the stimulatory effect of cofactors such as AEBP2 and JARID2 (PubMed:30923826). Inhibits H3K27me3 deposition during spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B1B0V2, ECO:0000269|PubMed:29909548, ECO:0000269|PubMed:30923826, ECO:0000269|PubMed:31086175, ECO:0000269|PubMed:31451685}. |
Q86XL3 | ANKLE2 | S872 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86YH2 | ZNF280B | S111 | ochoa | Zinc finger protein 280B (5'OY11.1) (Suppressor of hairy wing homolog 2) (Zinc finger protein 279) (Zinc finger protein 632) | May function as a transcription factor. |
Q86YW5 | TREML1 | S247 | ochoa | Trem-like transcript 1 protein (TLT-1) (Triggering receptor expressed on myeloid cells-like protein 1) | Cell surface receptor that may play a role in the innate and adaptive immune response. {ECO:0000269|PubMed:15128762}. |
Q86Z02 | HIPK1 | S1063 | ochoa | Homeodomain-interacting protein kinase 1 (EC 2.7.11.1) (Nuclear body-associated kinase 2) | Serine/threonine-protein kinase involved in transcription regulation and TNF-mediated cellular apoptosis. Plays a role as a corepressor for homeodomain transcription factors. Phosphorylates DAXX and MYB. Phosphorylates DAXX in response to stress, and mediates its translocation from the nucleus to the cytoplasm. Inactivates MYB transcription factor activity by phosphorylation. Prevents MAP3K5-JNK activation in the absence of TNF. TNF triggers its translocation to the cytoplasm in response to stress stimuli, thus activating nuclear MAP3K5-JNK by derepression and promoting apoptosis. May be involved in anti-oxidative stress responses. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. Promotes angiogenesis and to be involved in erythroid differentiation. May be involved in malignant squamous cell tumor formation. Phosphorylates PAGE4 at 'Thr-51' which is critical for the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:24559171). {ECO:0000269|PubMed:12702766, ECO:0000269|PubMed:12968034, ECO:0000269|PubMed:15701637, ECO:0000269|PubMed:16390825, ECO:0000269|PubMed:19646965, ECO:0000269|PubMed:24559171}. |
Q8IVF2 | AHNAK2 | S729 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S2702 | ochoa | Protein AHNAK2 | None |
Q8IWZ8 | SUGP1 | S346 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8IX12 | CCAR1 | S214 | ochoa | Cell division cycle and apoptosis regulator protein 1 (Cell cycle and apoptosis regulatory protein 1) (CARP-1) (Death inducer with SAP domain) | Associates with components of the Mediator and p160 coactivator complexes that play a role as intermediaries transducing regulatory signals from upstream transcriptional activator proteins to basal transcription machinery at the core promoter. Recruited to endogenous nuclear receptor target genes in response to the appropriate hormone. Also functions as a p53 coactivator. May thus play an important role in transcriptional regulation (By similarity). May be involved in apoptosis signaling in the presence of the reinoid CD437. Apoptosis induction involves sequestration of 14-3-3 protein(s) and mediated altered expression of multiple cell cycle regulatory genes including MYC, CCNB1 and CDKN1A. Plays a role in cell cycle progression and/or cell proliferation (PubMed:12816952). In association with CALCOCO1 enhances GATA1- and MED1-mediated transcriptional activation from the gamma-globin promoter during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). Can act as a both a coactivator and corepressor of AR-mediated transcription. Contributes to chromatin looping and AR transcription complex assembly by stabilizing AR-GATA2 association on chromatin and facilitating MED1 and RNA polymerase II recruitment to AR-binding sites. May play an important role in the growth and tumorigenesis of prostate cancer cells (PubMed:23887938). {ECO:0000250|UniProtKB:Q8CH18, ECO:0000269|PubMed:12816952, ECO:0000269|PubMed:23887938, ECO:0000269|PubMed:24245781}. |
Q8IZW8 | TNS4 | S368 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8IZW8 | TNS4 | S385 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8N1G0 | ZNF687 | S241 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1I0 | DOCK4 | S1750 | ochoa | Dedicator of cytokinesis protein 4 | Functions as a guanine nucleotide exchange factor (GEF) that promotes the exchange of GDP to GTP, converting inactive GDP-bound small GTPases into their active GTP-bound form (PubMed:12628187, PubMed:16464467). Involved in regulation of adherens junction between cells (PubMed:12628187). Plays a role in cell migration (PubMed:20679435). {ECO:0000269|PubMed:12628187, ECO:0000269|PubMed:16464467, ECO:0000269|PubMed:20679435}.; FUNCTION: [Isoform 2]: Has a higher guanine nucleotide exchange factor activity compared to other isoforms. {ECO:0000269|PubMed:16464467}. |
Q8N3D4 | EHBP1L1 | S998 | ochoa | EH domain-binding protein 1-like protein 1 | May act as Rab effector protein and play a role in vesicle trafficking. {ECO:0000305|PubMed:27552051}. |
Q8N3F8 | MICALL1 | S589 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3V7 | SYNPO | S814 | ochoa | Synaptopodin | Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}. |
Q8N4C8 | MINK1 | S601 | ochoa | Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) | Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration. |
Q8N684 | CPSF7 | S48 | ochoa | Cleavage and polyadenylation specificity factor subunit 7 (Cleavage and polyadenylation specificity factor 59 kDa subunit) (CPSF 59 kDa subunit) (Cleavage factor Im complex 59 kDa subunit) (CFIm59) (Pre-mRNA cleavage factor Im 59 kDa subunit) | Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:17024186, PubMed:29276085, PubMed:8626397). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:17024186, PubMed:8626397). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF7 activates directly the mRNA 3'-processing machinery (PubMed:29276085). Binds to pA signals in RNA substrates (PubMed:17024186, PubMed:8626397). {ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397}. |
Q8N6T7 | SIRT6 | S326 | ochoa | NAD-dependent protein deacylase sirtuin-6 (EC 2.3.1.-) (NAD-dependent protein deacetylase sirtuin-6) (EC 2.3.1.286) (Protein mono-ADP-ribosyltransferase sirtuin-6) (EC 2.4.2.-) (Regulatory protein SIR2 homolog 6) (hSIRT6) (SIR2-like protein 6) | NAD-dependent protein deacetylase, deacylase and mono-ADP-ribosyltransferase that plays an essential role in DNA damage repair, telomere maintenance, metabolic homeostasis, inflammation, tumorigenesis and aging (PubMed:18337721, PubMed:19135889, PubMed:19625767, PubMed:21362626, PubMed:21680843, PubMed:23217706, PubMed:23552949, PubMed:23653361, PubMed:24052263, PubMed:27180906, PubMed:27322069, PubMed:29555651, PubMed:30374165). Displays protein-lysine deacetylase or defatty-acylase (demyristoylase and depalmitoylase) activity, depending on the context (PubMed:23552949, PubMed:24052263, PubMed:27322069). Acts as a key histone deacetylase by catalyzing deacetylation of histone H3 at 'Lys-9', 'Lys-18' and 'Lys-56' (H3K9ac, H3K18ac and H3K56ac, respectively), suppressing target gene expression of several transcription factors, including NF-kappa-B (PubMed:19625767, PubMed:21362626, PubMed:23892288, PubMed:23911928, PubMed:24012758, PubMed:26456828, PubMed:26898756, PubMed:27043296, PubMed:27180906, PubMed:30374165, PubMed:33067423). Acts as an inhibitor of transcription elongation by mediating deacetylation of H3K9ac and H3K56ac, preventing release of NELFE from chromatin and causing transcriptional pausing (By similarity). Involved in DNA repair by promoting double-strand break (DSB) repair: acts as a DSB sensor by recognizing and binding DSB sites, leading to (1) recruitment of DNA repair proteins, such as SMARCA5/SNF2H, and (2) deacetylation of histone H3K9ac and H3K56ac (PubMed:23911928, PubMed:31995034, PubMed:32538779). SIRT6 participation to DSB repair is probably involved in extension of life span (By similarity). Also promotes DNA repair by deacetylating non-histone proteins, such as DDB2 and p53/TP53 (PubMed:29474172, PubMed:32789493). Specifically deacetylates H3K18ac at pericentric heterochromatin, thereby maintaining pericentric heterochromatin silencing at centromeres and protecting against genomic instability and cellular senescence (PubMed:27043296). Involved in telomere maintenance by catalyzing deacetylation of histone H3 in telomeric chromatin, regulating telomere position effect and telomere movement in response to DNA damage (PubMed:18337721, PubMed:19625767, PubMed:21847107). Required for embryonic stem cell differentiation by mediating histone deacetylation of H3K9ac (PubMed:25915124, PubMed:29555651). Plays a major role in metabolism by regulating processes such as glycolysis, gluconeogenesis, insulin secretion and lipid metabolism (PubMed:24012758, PubMed:26787900). Inhibits glycolysis via histone deacetylase activity and by acting as a corepressor of the transcription factor HIF1A, thereby controlling the expression of multiple glycolytic genes (By similarity). Has tumor suppressor activity by repressing glycolysis, thereby inhibiting the Warburg effect (PubMed:23217706). Also regulates glycolysis and tumorigenesis by mediating deacetylation and nuclear export of non-histone proteins, such as isoform M2 of PKM (PKM2) (PubMed:26787900). Acts as a negative regulator of gluconeogenesis by mediating deacetylation of non-histone proteins, such as FOXO1 and KAT2A/GCN5 (PubMed:23142079, PubMed:25009184). Promotes beta-oxidation of fatty acids during fasting by catalyzing deacetylation of NCOA2, inducing coactivation of PPARA (By similarity). Acts as a regulator of lipid catabolism in brown adipocytes, both by catalyzing deacetylation of histones and non-histone proteins, such as FOXO1 (By similarity). Also acts as a regulator of circadian rhythms, both by regulating expression of clock-controlled genes involved in lipid and carbohydrate metabolism, and by catalyzing deacetylation of PER2 (By similarity). The defatty-acylase activity is specifically involved in regulation of protein secretion (PubMed:23552949, PubMed:24052263, PubMed:27322069, PubMed:28406396). Has high activity toward long-chain fatty acyl groups and mediates protein-lysine demyristoylation and depalmitoylation of target proteins, such as RRAS2 and TNF, thereby regulating their secretion (PubMed:23552949, PubMed:28406396). Also acts as a mono-ADP-ribosyltransferase by mediating mono-ADP-ribosylation of PARP1, TRIM28/KAP1 or SMARCC2/BAF170 (PubMed:21680843, PubMed:22753495, PubMed:27322069, PubMed:27568560). Mono-ADP-ribosyltransferase activity is involved in DNA repair, cellular senescence, repression of LINE-1 retrotransposon elements and regulation of transcription (PubMed:21680843, PubMed:22753495, PubMed:27568560). {ECO:0000250|UniProtKB:P59941, ECO:0000269|PubMed:18337721, ECO:0000269|PubMed:19135889, ECO:0000269|PubMed:19625767, ECO:0000269|PubMed:21362626, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:21847107, ECO:0000269|PubMed:22753495, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:23217706, ECO:0000269|PubMed:23552949, ECO:0000269|PubMed:23653361, ECO:0000269|PubMed:23892288, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:24012758, ECO:0000269|PubMed:24052263, ECO:0000269|PubMed:25009184, ECO:0000269|PubMed:25915124, ECO:0000269|PubMed:26456828, ECO:0000269|PubMed:26787900, ECO:0000269|PubMed:26898756, ECO:0000269|PubMed:27043296, ECO:0000269|PubMed:27180906, ECO:0000269|PubMed:27322069, ECO:0000269|PubMed:27568560, ECO:0000269|PubMed:28406396, ECO:0000269|PubMed:29474172, ECO:0000269|PubMed:29555651, ECO:0000269|PubMed:30374165, ECO:0000269|PubMed:31995034, ECO:0000269|PubMed:32538779, ECO:0000269|PubMed:32789493, ECO:0000269|PubMed:33067423}. |
Q8NAX2 | KDF1 | S160 | ochoa | Keratinocyte differentiation factor 1 | Plays a role in the regulation of the epidermis formation during early development. Required both as an inhibitor of basal cell proliferation and a promoter of differentiation of basal progenitor cell progeny (By similarity). {ECO:0000250|UniProtKB:A2A9F4}. |
Q8ND04 | SMG8 | S656 | ochoa | Nonsense-mediated mRNA decay factor SMG8 (Amplified in breast cancer gene 2 protein) (Protein smg-8 homolog) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited by release factors to stalled ribosomes together with SMG1 and SMG9 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required to mediate the recruitment of SMG1 to the ribosome:SURF complex and to suppress SMG1 kinase activity until the ribosome:SURF complex locates the exon junction complex (EJC). Acts as a regulator of kinase activity. {ECO:0000269|PubMed:19417104}. |
Q8NEA6 | GLIS3 | S580 | ochoa | Zinc finger protein GLIS3 (GLI-similar 3) (Zinc finger protein 515) | Acts both as a repressor and an activator of transcription. Binds to the consensus sequence 5'-GACCACCCAC-3' (By similarity). {ECO:0000250}. |
Q8TDM6 | DLG5 | S1164 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TF72 | SHROOM3 | S1462 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WUM4 | PDCD6IP | S729 | ochoa | Programmed cell death 6-interacting protein (PDCD6-interacting protein) (ALG-2-interacting protein 1) (ALG-2-interacting protein X) (Hp95) | Multifunctional protein involved in endocytosis, multivesicular body biogenesis, membrane repair, cytokinesis, apoptosis and maintenance of tight junction integrity. Class E VPS protein involved in concentration and sorting of cargo proteins of the multivesicular body (MVB) for incorporation into intralumenal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome. Binds to the phospholipid lysobisphosphatidic acid (LBPA) which is abundant in MVBs internal membranes. The MVB pathway requires the sequential function of ESCRT-O, -I,-II and -III complexes (PubMed:14739459). The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:17556548, PubMed:17853893). Adapter for a subset of ESCRT-III proteins, such as CHMP4, to function at distinct membranes. Required for completion of cytokinesis (PubMed:17556548, PubMed:17853893, PubMed:18641129). May play a role in the regulation of both apoptosis and cell proliferation. Regulates exosome biogenesis in concert with SDC1/4 and SDCBP (PubMed:22660413). By interacting with F-actin, PARD3 and TJP1 secures the proper assembly and positioning of actomyosin-tight junction complex at the apical sides of adjacent epithelial cells that defines a spatial membrane domain essential for the maintenance of epithelial cell polarity and barrier (By similarity). {ECO:0000250|UniProtKB:Q9WU78, ECO:0000269|PubMed:14739459, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:18641129, ECO:0000269|PubMed:22660413}.; FUNCTION: (Microbial infection) Involved in HIV-1 virus budding. Can replace TSG101 it its role of supporting HIV-1 release; this function requires the interaction with CHMP4B. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:14505569, ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:18641129}. |
Q8WWM7 | ATXN2L | S390 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q8WXE0 | CASKIN2 | S358 | ochoa | Caskin-2 (CASK-interacting protein 2) | None |
Q8WYL5 | SSH1 | S696 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q92538 | GBF1 | S1781 | ochoa | Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (BFA-resistant GEF 1) | Guanine-nucleotide exchange factor (GEF) for members of the Arf family of small GTPases involved in trafficking in the early secretory pathway; its GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs through replacement of GDP with GTP. Recruitment to cis-Golgi membranes requires membrane association of Arf-GDP and can be regulated by ARF1, ARF3, ARF4 and ARF5. Involved in the recruitment of the COPI coat complex to the endoplasmic reticulum exit sites (ERES), and the endoplasmic reticulum-Golgi intermediate (ERGIC) and cis-Golgi compartments which implicates ARF1 activation. Involved in COPI vesicle-dependent retrograde transport from the ERGIC and cis-Golgi compartments to the endoplasmic reticulum (ER) (PubMed:12047556, PubMed:12808027, PubMed:16926190, PubMed:17956946, PubMed:18003980, PubMed:19039328, PubMed:24213530). Involved in the trans-Golgi network recruitment of GGA1, GGA2, GGA3, BIG1, BIG2, and the AP-1 adaptor protein complex related to chlathrin-dependent transport; the function requires its GEF activity (probably at least in part on ARF4 and ARF5) (PubMed:23386609). Has GEF activity towards ARF1 (PubMed:15616190). Has in vitro GEF activity towards ARF5 (By similarity). Involved in the processing of PSAP (PubMed:17666033). Required for the assembly of the Golgi apparatus (PubMed:12808027, PubMed:18003980). The AMPK-phosphorylated form is involved in Golgi disassembly during mitotis and under stress conditions (PubMed:18063581, PubMed:23418352). May be involved in the COPI vesicle-dependent recruitment of PNPLA2 to lipid droplets; however, this function is under debate (PubMed:19461073, PubMed:22185782). In neutrophils, involved in G protein-coupled receptor (GPCR)-mediated chemotaxis und superoxide production. Proposed to be recruited by phosphatidylinositol-phosphates generated upon GPCR stimulation to the leading edge where it recruits and activates ARF1, and is involved in recruitment of GIT2 and the NADPH oxidase complex (PubMed:22573891). Plays a role in maintaining mitochondrial morphology (PubMed:25190516). {ECO:0000250|UniProtKB:Q9R1D7, ECO:0000269|PubMed:12047556, ECO:0000269|PubMed:12808027, ECO:0000269|PubMed:15616190, ECO:0000269|PubMed:16926190, ECO:0000269|PubMed:17666033, ECO:0000269|PubMed:17956946, ECO:0000269|PubMed:18003980, ECO:0000269|PubMed:18063581, ECO:0000269|PubMed:19461073, ECO:0000269|PubMed:22185782, ECO:0000269|PubMed:22573891, ECO:0000269|PubMed:23386609, ECO:0000269|PubMed:23418352, ECO:0000269|PubMed:24213530, ECO:0000269|PubMed:25190516, ECO:0000305|PubMed:19039328, ECO:0000305|PubMed:22573891}. |
Q92738 | USP6NL | S765 | ochoa | USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) | Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}. |
Q92794 | KAT6A | S842 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q92835 | INPP5D | S1027 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (EC 3.1.3.86) (Inositol polyphosphate-5-phosphatase D) (EC 3.1.3.56) (Inositol polyphosphate-5-phosphatase of 145 kDa) (SIP-145) (Phosphatidylinositol 4,5-bisphosphate 5-phosphatase) (EC 3.1.3.36) (SH2 domain-containing inositol 5'-phosphatase 1) (SH2 domain-containing inositol phosphatase 1) (SHIP-1) (p150Ship) (hp51CN) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:10764818, PubMed:8723348, PubMed:8769125). Able also to hydrolyzes the 5-phosphate of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (PubMed:10764818, PubMed:8769125, PubMed:9108392). Acts as a negative regulator of B-cell antigen receptor signaling. Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Acts as a negative regulator of myeloid cell proliferation/survival and chemotaxis, mast cell degranulation, immune cells homeostasis, integrin alpha-IIb/beta-3 signaling in platelets and JNK signaling in B-cells. Regulates proliferation of osteoclast precursors, macrophage programming, phagocytosis and activation and is required for endotoxin tolerance. Involved in the control of cell-cell junctions, CD32a signaling in neutrophils and modulation of EGF-induced phospholipase C activity (PubMed:16682172). Key regulator of neutrophil migration, by governing the formation of the leading edge and polarization required for chemotaxis. Modulates FCGR3/CD16-mediated cytotoxicity in NK cells. Mediates the activin/TGF-beta-induced apoptosis through its Smad-dependent expression. {ECO:0000269|PubMed:10764818, ECO:0000269|PubMed:12421919, ECO:0000269|PubMed:16682172, ECO:0000269|PubMed:8723348, ECO:0000269|PubMed:8769125, ECO:0000269|PubMed:9108392}. |
Q92997 | DVL3 | S512 | psp | Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) | Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}. |
Q96D05 | FAM241B | S28 | ochoa | Protein FAM241B | May play a role in lysosome homeostasis. {ECO:0000269|PubMed:31270356}. |
Q96DF8 | ESS2 | S440 | ochoa | Splicing factor ESS-2 homolog (DiGeorge syndrome critical region 13) (DiGeorge syndrome critical region 14) (DiGeorge syndrome protein H) (DGS-H) (Protein ES2) | May be involved in pre-mRNA splicing. {ECO:0000250|UniProtKB:P34420}. |
Q96E39 | RBMXL1 | S287 | ochoa | RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) | RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}. |
Q96EZ8 | MCRS1 | S91 | ochoa | Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) | Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}. |
Q96F81 | DISP1 | S64 | ochoa | Protein dispatched homolog 1 | Functions in hedgehog (Hh) signaling. Regulates the release and extracellular accumulation of cholesterol-modified hedgehog proteins and is hence required for effective production of the Hh signal (By similarity). Synergizes with SCUBE2 to cause an increase in SHH secretion (PubMed:22902404). {ECO:0000250|UniProtKB:Q3TDN0, ECO:0000269|PubMed:22902404}. |
Q96I24 | FUBP3 | S442 | ochoa | Far upstream element-binding protein 3 (FUSE-binding protein 3) | May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. |
Q96IQ9 | ZNF414 | S68 | ochoa | Zinc finger protein 414 | May be involved in transcriptional regulation. |
Q96JM3 | CHAMP1 | S241 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JT2 | SLC45A3 | S422 | ochoa | Solute carrier family 45 member 3 (Prostate cancer-associated protein 6) (Prostein) | Proton-associated sucrose transporter. May be able to transport also glucose and fructose. {ECO:0000250|UniProtKB:Q8K0H7}. |
Q96KQ4 | PPP1R13B | S475 | ochoa | Apoptosis-stimulating of p53 protein 1 (Protein phosphatase 1 regulatory subunit 13B) | Regulator that plays a central role in regulation of apoptosis via its interaction with p53/TP53 (PubMed:11684014, PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540}. |
Q96PK6 | RBM14 | S560 | ochoa | RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) | Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}. |
Q96Q15 | SMG1 | S3576 | ochoa | Serine/threonine-protein kinase SMG1 (SMG-1) (hSMG-1) (EC 2.7.11.1) (Lambda/iota protein kinase C-interacting protein) (Lambda-interacting protein) (Nonsense mediated mRNA decay-associated PI3K-related kinase SMG1) | Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Also acts as a genotoxic stress-activated protein kinase that displays some functional overlap with ATM. Can phosphorylate p53/TP53 and is required for optimal p53/TP53 activation after cellular exposure to genotoxic stress. Its depletion leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). May activate PRKCI but not PRKCZ. {ECO:0000269|PubMed:11331269, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:15175154, ECO:0000269|PubMed:16452507}. |
Q96RE7 | NACC1 | S141 | ochoa | Nucleus accumbens-associated protein 1 (NAC-1) (BTB/POZ domain-containing protein 14B) | Functions as a transcriptional repressor. Seems to function as a transcriptional corepressor in neuronal cells through recruitment of HDAC3 and HDAC4. Contributes to tumor progression, and tumor cell proliferation and survival. This may be mediated at least in part through repressing transcriptional activity of GADD45GIP1. Required for recruiting the proteasome from the nucleus to the cytoplasm and dendritic spines. {ECO:0000269|PubMed:17130457, ECO:0000269|PubMed:17804717}. |
Q96RT1 | ERBIN | S1106 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96ST3 | SIN3A | S23 | ochoa | Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) | Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}. |
Q99684 | GFI1 | S101 | ochoa | Zinc finger protein Gfi-1 (Growth factor independent protein 1) (Zinc finger protein 163) | Transcription repressor essential for hematopoiesis (PubMed:11060035, PubMed:17197705, PubMed:17646546, PubMed:18805794, PubMed:19164764, PubMed:20190815, PubMed:8754800). Functions in a cell-context and development-specific manner (PubMed:11060035, PubMed:17197705, PubMed:17646546, PubMed:18805794, PubMed:19164764, PubMed:20190815, PubMed:8754800). Binds to 5'-TAAATCAC[AT]GCA-3' in the promoter region of a large number of genes (PubMed:11060035, PubMed:17197705, PubMed:17646546, PubMed:18805794, PubMed:19164764, PubMed:20190815, PubMed:8754800). Component of several complexes, including the EHMT2-GFI1-HDAC1, AJUBA-GFI1-HDAC1 and RCOR-GFI-KDM1A-HDAC complexes, that suppress, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (PubMed:16287849). Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte development (PubMed:12778173). Inhibits SPI1 transcriptional activity at macrophage-specific genes, repressing macrophage differentiation of myeloid progenitor cells and promoting granulocyte commitment (By similarity). Mediates, together with U2AF1L4, the alternative splicing of CD45 and controls T-cell receptor signaling (By similarity). Regulates the endotoxin-mediated Toll-like receptor (TLR) inflammatory response by antagonizing RELA (PubMed:20547752). Cooperates with CBFA2T2 to regulate ITGB1-dependent neurite growth (PubMed:19026687). Controls cell-cycle progression by repressing CDKNIA/p21 transcription in response to TGFB1 via recruitment of GFI1 by ZBTB17 to the CDKNIA/p21 and CDKNIB promoters (PubMed:16287849). Required for the maintenance of inner ear hair cells (By similarity). In addition to its role in transcription, acts as a substrate adapter for PRMT1 in the DNA damage response: facilitates the recognition of TP53BP1 and MRE11 substrates by PRMT1, promoting their methylation and the DNA damage response (PubMed:29651020). {ECO:0000250|UniProtKB:P70338, ECO:0000269|PubMed:11060035, ECO:0000269|PubMed:12778173, ECO:0000269|PubMed:16287849, ECO:0000269|PubMed:17197705, ECO:0000269|PubMed:17646546, ECO:0000269|PubMed:18805794, ECO:0000269|PubMed:19026687, ECO:0000269|PubMed:19164764, ECO:0000269|PubMed:20190815, ECO:0000269|PubMed:20547752, ECO:0000269|PubMed:29651020, ECO:0000269|PubMed:8754800}. |
Q9BRG2 | SH2D3A | S197 | ochoa | SH2 domain-containing protein 3A (Novel SH2-containing protein 1) | May play a role in JNK activation. |
Q9BTA9 | WAC | S279 | ochoa | WW domain-containing adapter protein with coiled-coil | Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}. |
Q9BTC0 | DIDO1 | S1650 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BU19 | ZNF692 | S470 | psp | Zinc finger protein 692 (AICAR responsive element binding protein) | May act as an transcriptional repressor for PCK1 gene expression, in turn may participate in the hepatic gluconeogenesis regulation through the activated AMPK signaling pathway. {ECO:0000269|PubMed:17097062, ECO:0000269|PubMed:21910974}. |
Q9BVA0 | KATNB1 | S400 | ochoa | Katanin p80 WD40 repeat-containing subunit B1 (Katanin p80 subunit B1) (p80 katanin) | Participates in a complex which severs microtubules in an ATP-dependent manner. May act to target the enzymatic subunit of this complex to sites of action such as the centrosome. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth. {ECO:0000255|HAMAP-Rule:MF_03022, ECO:0000269|PubMed:10751153}. |
Q9BVJ6 | UTP14A | S479 | ochoa | U3 small nucleolar RNA-associated protein 14 homolog A (Antigen NY-CO-16) (Serologically defined colon cancer antigen 16) | May be required for ribosome biogenesis. {ECO:0000250}. |
Q9BW71 | HIRIP3 | S500 | ochoa | HIRA-interacting protein 3 | Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}. |
Q9BY89 | KIAA1671 | S1602 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BZD6 | PRRG4 | S163 | ochoa | Transmembrane gamma-carboxyglutamic acid protein 4 (Proline-rich gamma-carboxyglutamic acid protein 4) (Proline-rich Gla protein 4) | May control axon guidance across the CNS (PubMed:28859078). Prevents the delivery of ROBO1 at the cell surface and down-regulates its expression (PubMed:28859078). {ECO:0000269|PubMed:28859078}. |
Q9C0C2 | TNKS1BP1 | S368 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S1533 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0D0 | PHACTR1 | S186 | ochoa | Phosphatase and actin regulator 1 | Binds actin monomers (G actin) and plays a role in multiple processes including the regulation of actin cytoskeleton dynamics, actin stress fibers formation, cell motility and survival, formation of tubules by endothelial cells, and regulation of PPP1CA activity (PubMed:21798305, PubMed:21939755). Involved in the regulation of cortical neuron migration and dendrite arborization (By similarity). {ECO:0000250|UniProtKB:Q2M3X8, ECO:0000269|PubMed:21798305, ECO:0000269|PubMed:21939755}. |
Q9C0E4 | GRIP2 | S824 | ochoa | Glutamate receptor-interacting protein 2 (GRIP-2) | May play a role as a localized scaffold for the assembly of a multiprotein signaling complex and as mediator of the trafficking of its binding partners at specific subcellular location in neurons. {ECO:0000250}. |
Q9C0K0 | BCL11B | S258 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9H0F6 | SHARPIN | S143 | ochoa | Sharpin (Shank-associated RH domain-interacting protein) (Shank-interacting protein-like 1) (hSIPL1) | Component of the LUBAC complex which conjugates linear polyubiquitin chains in a head-to-tail manner to substrates and plays a key role in NF-kappa-B activation and regulation of inflammation (PubMed:21455173, PubMed:21455180, PubMed:21455181). LUBAC conjugates linear polyubiquitin to IKBKG and RIPK1 and is involved in activation of the canonical NF-kappa-B and the JNK signaling pathways (PubMed:21455173, PubMed:21455180, PubMed:21455181). Linear ubiquitination mediated by the LUBAC complex interferes with TNF-induced cell death and thereby prevents inflammation (PubMed:21455173, PubMed:21455180, PubMed:21455181). LUBAC is recruited to the TNF-R1 signaling complex (TNF-RSC) following polyubiquitination of TNF-RSC components by BIRC2 and/or BIRC3 and to conjugate linear polyubiquitin to IKBKG and possibly other components contributing to the stability of the complex (PubMed:21455173, PubMed:21455180, PubMed:21455181). The LUBAC complex is also involved in innate immunity by conjugating linear polyubiquitin chains at the surface of bacteria invading the cytosol to form the ubiquitin coat surrounding bacteria (PubMed:28481331). LUBAC is not able to initiate formation of the bacterial ubiquitin coat, and can only promote formation of linear polyubiquitins on pre-existing ubiquitin (PubMed:28481331). The bacterial ubiquitin coat acts as an 'eat-me' signal for xenophagy and promotes NF-kappa-B activation (PubMed:28481331). Together with OTULIN, the LUBAC complex regulates the canonical Wnt signaling during angiogenesis (PubMed:23708998). {ECO:0000269|PubMed:21455173, ECO:0000269|PubMed:21455180, ECO:0000269|PubMed:21455181, ECO:0000269|PubMed:23708998, ECO:0000269|PubMed:28481331}. |
Q9H0W8 | SMG9 | S117 | ochoa | Nonsense-mediated mRNA decay factor SMG9 | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (PubMed:19417104). Is recruited by release factors to stalled ribosomes together with SMG1 and SMG8 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required for the efficient association between SMG1 and SMG8 (PubMed:19417104). Plays a role in brain, heart, and eye development (By similarity). {ECO:0000250|UniProtKB:Q9DB90, ECO:0000269|PubMed:19417104}. |
Q9H4L4 | SENP3 | S44 | ochoa | Sentrin-specific protease 3 (EC 3.4.22.-) (SUMO-1-specific protease 3) (Sentrin/SUMO-specific protease SENP3) | Protease that releases SUMO2 and SUMO3 monomers from sumoylated substrates, but has only weak activity against SUMO1 conjugates (PubMed:16608850, PubMed:32832608, PubMed:36050397). Deconjugates SUMO2 from MEF2D, which increases its transcriptional activation capability (PubMed:15743823). Deconjugates SUMO2 and SUMO3 from CDCA8 (PubMed:18946085). Redox sensor that, when redistributed into nucleoplasm, can act as an effector to enhance HIF1A transcriptional activity by desumoylating EP300 (PubMed:19680224). Required for rRNA processing through deconjugation of SUMO2 and SUMO3 from nucleophosmin, NPM1 (PubMed:19015314). Plays a role in the regulation of sumoylation status of ZNF148 (PubMed:18259216). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Deconjugates SUMO2 from KAT5 (PubMed:32832608). Catalyzes desumoylation of MRE11 (PubMed:36050397). {ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:16608850, ECO:0000269|PubMed:18259216, ECO:0000269|PubMed:18946085, ECO:0000269|PubMed:19015314, ECO:0000269|PubMed:19680224, ECO:0000269|PubMed:22872859, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:36050397}. |
Q9H6Y7 | RNF167 | S313 | ochoa | E3 ubiquitin-protein ligase RNF167 (EC 2.3.2.27) (RING finger protein 167) | E3 ubiquitin-protein ligase that acts as a regulator of the TORC1 signaling pathway (PubMed:33594058, PubMed:35114100). Positively regulates the TORC1 signaling pathway independently of arginine levels: acts by catalyzing 'Lys-29'-polyubiquitination and degradation of CASTOR1, releasing the GATOR2 complex from CASTOR1 (PubMed:33594058). Also negatively regulates the TORC1 signaling pathway in response to leucine deprivation: acts by mediating 'Lys-63'-linked polyubiquitination of SESN2, promoting SESN2-interaction with the GATOR2 complex (PubMed:35114100). Also involved in protein trafficking and localization (PubMed:23129617, PubMed:23353890, PubMed:24387786, PubMed:27808481, PubMed:32409562). Acts as a regulator of synaptic transmission by mediating ubiquitination and degradation of AMPAR receptor GluA2/GRIA2 (PubMed:23129617, PubMed:33650289). Does not catalyze ubiquitination of GluA1/GRIA1 (PubMed:23129617). Also acts as a regulator of the recycling endosome pathway by mediating ubiquitination of VAMP3 (PubMed:23353890). Regulates lysosome positioning by catalyzing ubiquitination and degradation of ARL8B (PubMed:27808481). Plays a role in growth regulation involved in G1/S transition by mediating, possibly by mediating ubiquitination of SLC22A18 (PubMed:16314844). Acts with a limited set of E2 enzymes, such as UBE2D1 and UBE2N (PubMed:33650289). {ECO:0000269|PubMed:16314844, ECO:0000269|PubMed:23129617, ECO:0000269|PubMed:23353890, ECO:0000269|PubMed:24387786, ECO:0000269|PubMed:27808481, ECO:0000269|PubMed:32409562, ECO:0000269|PubMed:33594058, ECO:0000269|PubMed:33650289, ECO:0000269|PubMed:35114100}. |
Q9H7D0 | DOCK5 | S1802 | ochoa | Dedicator of cytokinesis protein 5 | Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}. |
Q9H7P6 | MVB12B | S200 | ochoa | Multivesicular body subunit 12B (ESCRT-I complex subunit MVB12B) (Protein FAM125B) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies. |
Q9H869 | YY1AP1 | S714 | ochoa | YY1-associated protein 1 (Hepatocellular carcinoma susceptibility protein) (Hepatocellular carcinoma-associated protein 2) | Associates with the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication (PubMed:27939641). Enhances transcription activation by YY1 (PubMed:14744866). Plays a role in cell cycle regulation (PubMed:17541814, PubMed:27939641). {ECO:0000269|PubMed:14744866, ECO:0000269|PubMed:17541814, ECO:0000269|PubMed:27939641}. |
Q9H8G2 | CAAP1 | S311 | ochoa | Caspase activity and apoptosis inhibitor 1 (Conserved anti-apoptotic protein) (CAAP) | Anti-apoptotic protein that modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. {ECO:0000269|PubMed:21980415}. |
Q9HBL0 | TNS1 | S708 | psp | Tensin-1 (EC 3.1.3.-) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in fibrillar adhesion formation (PubMed:21768292, PubMed:28005397). Essential for myofibroblast differentiation and myofibroblast-mediated extracellular matrix deposition (PubMed:28005397). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in cell polarization and migration (PubMed:19826001). May be involved in cartilage development and in linking signal transduction pathways to the cytoskeleton (PubMed:21768292). {ECO:0000269|PubMed:19826001, ECO:0000269|PubMed:21768292, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28005397, ECO:0000305}. |
Q9HBR0 | SLC38A10 | S646 | ochoa | Solute carrier family 38 member 10 (Amino acid transporter SLC38A10) | Facilitates bidirectional transport of amino acids. May act as a glutamate sensor that regulates glutamate-glutamine cycle and mTOR signaling in the brain. The transport mechanism remains to be elucidated. {ECO:0000250|UniProtKB:Q5I012}. |
Q9HC77 | CPAP | S1109 | ochoa|psp | Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) | Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}. |
Q9HCI7 | MSL2 | S369 | ochoa | E3 ubiquitin-protein ligase MSL2 (EC 2.3.2.27) (Male-specific lethal 2-like 1) (MSL2-like 1) (Male-specific lethal-2 homolog) (MSL-2) (Male-specific lethal-2 homolog 1) (RING finger protein 184) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). MSL2 plays a key role in gene dosage by ensuring biallelic expression of a subset of dosage-sensitive genes, including many haploinsufficient genes (By similarity). Acts by promoting promoter-enhancer contacts, thereby preventing DNA methylation of one allele and creating a methylation-free environment for methylation-sensitive transcription factors such as SP1, KANSL1 and KANSL3 (By similarity). Also acts as an E3 ubiquitin ligase that promotes monoubiquitination of histone H2B at 'Lys-35' (H2BK34Ub), but not that of H2A (PubMed:21726816, PubMed:30930284). This activity is greatly enhanced by heterodimerization with MSL1 (PubMed:21726816, PubMed:30930284). H2B ubiquitination in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). Also involved in the DNA damage response by mediating ubiquitination of TP53/p53 and TP53BP1 (PubMed:19033443, PubMed:23874665). {ECO:0000250|UniProtKB:Q69ZF8, ECO:0000250|UniProtKB:Q9D1P2, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:19033443, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:23874665, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q9HCK8 | CHD8 | S1981 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9NPI6 | DCP1A | S334 | ochoa | mRNA-decapping enzyme 1A (EC 3.6.1.62) (Smad4-interacting transcriptional co-activator) (Transcription factor SMIF) | Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:12417715). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12417715). Contributes to the transactivation of target genes after stimulation by TGFB1 (PubMed:11836524). Essential for embryonic development (PubMed:33813271). {ECO:0000269|PubMed:11836524, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:33813271}. |
Q9NQS7 | INCENP | S510 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NR12 | PDLIM7 | S203 | ochoa | PDZ and LIM domain protein 7 (LIM mineralization protein) (LMP) (Protein enigma) | May function as a scaffold on which the coordinated assembly of proteins can occur. May play a role as an adapter that, via its PDZ domain, localizes LIM-binding proteins to actin filaments of both skeletal muscle and nonmuscle tissues. Involved in both of the two fundamental mechanisms of bone formation, direct bone formation (e.g. embryonic flat bones mandible and cranium), and endochondral bone formation (e.g. embryonic long bone development). Plays a role during fracture repair. Involved in BMP6 signaling pathway (By similarity). {ECO:0000250, ECO:0000269|PubMed:11874232, ECO:0000269|PubMed:7929196}. |
Q9NRA0 | SPHK2 | S487 | ochoa | Sphingosine kinase 2 (SK 2) (SPK 2) (EC 2.7.1.91) | Catalyzes the phosphorylation of sphingosine to form sphingosine-1-phosphate (SPP), a lipid mediator with both intra- and extracellular functions. Also acts on D-erythro-dihydrosphingosine, D-erythro-sphingosine and L-threo-dihydrosphingosine. Binds phosphoinositides (PubMed:12954646, PubMed:19168031). In contrast to prosurvival SPHK1, has a positive effect on intracellular ceramide levels, inhibits cells growth and enhances apoptosis (PubMed:16118219). In mitochondria, is important for cytochrome-c oxidase assembly and mitochondrial respiration. The SPP produced in mitochondria binds PHB2 and modulates the regulation via PHB2 of complex IV assembly and respiration (PubMed:20959514). In nucleus, plays a role in epigenetic regulation of gene expression. Interacts with HDAC1 and HDAC2 and, through SPP production, inhibits their enzymatic activity, preventing the removal of acetyl groups from lysine residues with histones. Up-regulates acetylation of histone H3-K9, histone H4-K5 and histone H2B-K12 (PubMed:19729656). In nucleus, may have an inhibitory effect on DNA synthesis and cell cycle (PubMed:12954646, PubMed:16103110). In mast cells, is the main regulator of SPP production which mediates calcium influx, NF-kappa-B activation, cytokine production, such as TNF and IL6, and degranulation of mast cells (By similarity). In dopaminergic neurons, is involved in promoting mitochondrial functions regulating ATP and ROS levels (By similarity). Also involved in the regulation of glucose and lipid metabolism (By similarity). {ECO:0000250|UniProtKB:Q9JIA7, ECO:0000269|PubMed:12954646, ECO:0000269|PubMed:16103110, ECO:0000269|PubMed:16118219, ECO:0000269|PubMed:19168031, ECO:0000269|PubMed:19729656, ECO:0000269|PubMed:20959514}. |
Q9NRR5 | UBQLN4 | S315 | ochoa | Ubiquilin-4 (Ataxin-1 interacting ubiquitin-like protein) (A1Up) (Ataxin-1 ubiquitin-like-interacting protein A1U) (Connexin43-interacting protein of 75 kDa) (CIP75) | Regulator of protein degradation that mediates the proteasomal targeting of misfolded, mislocalized or accumulated proteins (PubMed:15280365, PubMed:27113755, PubMed:29666234, PubMed:30612738). Acts by binding polyubiquitin chains of target proteins via its UBA domain and by interacting with subunits of the proteasome via its ubiquitin-like domain (PubMed:15280365, PubMed:27113755, PubMed:30612738). Key regulator of DNA repair that represses homologous recombination repair: in response to DNA damage, recruited to sites of DNA damage following phosphorylation by ATM and acts by binding and removing ubiquitinated MRE11 from damaged chromatin, leading to MRE11 degradation by the proteasome (PubMed:30612738). MRE11 degradation prevents homologous recombination repair, redirecting double-strand break repair toward non-homologous end joining (NHEJ) (PubMed:30612738). Specifically recognizes and binds mislocalized transmembrane-containing proteins and targets them to proteasomal degradation (PubMed:27113755). Collaborates with DESI1/POST in the export of ubiquitinated proteins from the nucleus to the cytoplasm (PubMed:29666234). Also plays a role in the regulation of the proteasomal degradation of non-ubiquitinated GJA1 (By similarity). Acts as an adapter protein that recruits UBQLN1 to the autophagy machinery (PubMed:23459205). Mediates the association of UBQLN1 with autophagosomes and the autophagy-related protein LC3 (MAP1LC3A/B/C) and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion (PubMed:23459205). {ECO:0000250|UniProtKB:Q99NB8, ECO:0000269|PubMed:15280365, ECO:0000269|PubMed:23459205, ECO:0000269|PubMed:27113755, ECO:0000269|PubMed:29666234, ECO:0000269|PubMed:30612738}. |
Q9NRR5 | UBQLN4 | S317 | ochoa | Ubiquilin-4 (Ataxin-1 interacting ubiquitin-like protein) (A1Up) (Ataxin-1 ubiquitin-like-interacting protein A1U) (Connexin43-interacting protein of 75 kDa) (CIP75) | Regulator of protein degradation that mediates the proteasomal targeting of misfolded, mislocalized or accumulated proteins (PubMed:15280365, PubMed:27113755, PubMed:29666234, PubMed:30612738). Acts by binding polyubiquitin chains of target proteins via its UBA domain and by interacting with subunits of the proteasome via its ubiquitin-like domain (PubMed:15280365, PubMed:27113755, PubMed:30612738). Key regulator of DNA repair that represses homologous recombination repair: in response to DNA damage, recruited to sites of DNA damage following phosphorylation by ATM and acts by binding and removing ubiquitinated MRE11 from damaged chromatin, leading to MRE11 degradation by the proteasome (PubMed:30612738). MRE11 degradation prevents homologous recombination repair, redirecting double-strand break repair toward non-homologous end joining (NHEJ) (PubMed:30612738). Specifically recognizes and binds mislocalized transmembrane-containing proteins and targets them to proteasomal degradation (PubMed:27113755). Collaborates with DESI1/POST in the export of ubiquitinated proteins from the nucleus to the cytoplasm (PubMed:29666234). Also plays a role in the regulation of the proteasomal degradation of non-ubiquitinated GJA1 (By similarity). Acts as an adapter protein that recruits UBQLN1 to the autophagy machinery (PubMed:23459205). Mediates the association of UBQLN1 with autophagosomes and the autophagy-related protein LC3 (MAP1LC3A/B/C) and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion (PubMed:23459205). {ECO:0000250|UniProtKB:Q99NB8, ECO:0000269|PubMed:15280365, ECO:0000269|PubMed:23459205, ECO:0000269|PubMed:27113755, ECO:0000269|PubMed:29666234, ECO:0000269|PubMed:30612738}. |
Q9NSV4 | DIAPH3 | S26 | ochoa | Protein diaphanous homolog 3 (Diaphanous-related formin-3) (DRF3) (MDia2) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers. Required for cytokinesis, stress fiber formation and transcriptional activation of the serum response factor. Binds to GTP-bound form of Rho and to profilin: acts in a Rho-dependent manner to recruit profilin to the membrane, where it promotes actin polymerization. DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics. Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity. {ECO:0000250|UniProtKB:Q9Z207}. |
Q9NZQ3 | NCKIPSD | S151 | ochoa | NCK-interacting protein with SH3 domain (54 kDa VacA-interacting protein) (54 kDa vimentin-interacting protein) (VIP54) (90 kDa SH3 protein interacting with Nck) (AF3p21) (Dia-interacting protein 1) (DIP-1) (Diaphanous protein-interacting protein) (SH3 adapter protein SPIN90) (WASP-interacting SH3-domain protein) (WISH) (Wiskott-Aldrich syndrome protein-interacting protein) | Has an important role in stress fiber formation induced by active diaphanous protein homolog 1 (DRF1). Induces microspike formation, in vivo (By similarity). In vitro, stimulates N-WASP-induced ARP2/3 complex activation in the absence of CDC42 (By similarity). May play an important role in the maintenance of sarcomeres and/or in the assembly of myofibrils into sarcomeres. Implicated in regulation of actin polymerization and cell adhesion. Plays a role in angiogenesis. {ECO:0000250, ECO:0000269|PubMed:22419821}. |
Q9UHI6 | DDX20 | S695 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UHV7 | MED13 | S553 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UJF2 | RASAL2 | S758 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJM3 | ERRFI1 | S126 | ochoa | ERBB receptor feedback inhibitor 1 (Mitogen-inducible gene 6 protein) (MIG-6) | Negative regulator of EGFR signaling in skin morphogenesis. Acts as a negative regulator for several EGFR family members, including ERBB2, ERBB3 and ERBB4. Inhibits EGFR catalytic activity by interfering with its dimerization. Inhibits autophosphorylation of EGFR, ERBB2 and ERBB4. Important for normal keratinocyte proliferation and differentiation. Plays a role in modulating the response to steroid hormones in the uterus. Required for normal response to progesterone in the uterus and for fertility. Mediates epithelial estrogen responses in the uterus by regulating ESR1 levels and activation. Important for regulation of endometrium cell proliferation. Important for normal prenatal and perinatal lung development (By similarity). {ECO:0000250}. |
Q9UK76 | JPT1 | S115 | ochoa | Jupiter microtubule associated homolog 1 (Androgen-regulated protein 2) (Hematological and neurological expressed 1 protein) [Cleaved into: Jupiter microtubule associated homolog 1, N-terminally processed] | Modulates negatively AKT-mediated GSK3B signaling (PubMed:21323578, PubMed:22155408). Induces CTNNB1 'Ser-33' phosphorylation and degradation through the suppression of the inhibitory 'Ser-9' phosphorylation of GSK3B, which represses the function of the APC:CTNNB1:GSK3B complex and the interaction with CDH1/E-cadherin in adherent junctions (PubMed:25169422). Plays a role in the regulation of cell cycle and cell adhesion (PubMed:25169422, PubMed:25450365). Has an inhibitory role on AR-signaling pathway through the induction of receptor proteasomal degradation (PubMed:22155408). {ECO:0000269|PubMed:21323578, ECO:0000269|PubMed:22155408, ECO:0000269|PubMed:25169422, ECO:0000269|PubMed:25450365}. |
Q9UK76 | JPT1 | S119 | ochoa | Jupiter microtubule associated homolog 1 (Androgen-regulated protein 2) (Hematological and neurological expressed 1 protein) [Cleaved into: Jupiter microtubule associated homolog 1, N-terminally processed] | Modulates negatively AKT-mediated GSK3B signaling (PubMed:21323578, PubMed:22155408). Induces CTNNB1 'Ser-33' phosphorylation and degradation through the suppression of the inhibitory 'Ser-9' phosphorylation of GSK3B, which represses the function of the APC:CTNNB1:GSK3B complex and the interaction with CDH1/E-cadherin in adherent junctions (PubMed:25169422). Plays a role in the regulation of cell cycle and cell adhesion (PubMed:25169422, PubMed:25450365). Has an inhibitory role on AR-signaling pathway through the induction of receptor proteasomal degradation (PubMed:22155408). {ECO:0000269|PubMed:21323578, ECO:0000269|PubMed:22155408, ECO:0000269|PubMed:25169422, ECO:0000269|PubMed:25450365}. |
Q9UKE5 | TNIK | S701 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UPT8 | ZC3H4 | S907 | ochoa | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q9UQ35 | SRRM2 | S311 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S2147 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQB8 | BAIAP2 | S261 | ochoa | BAR/IMD domain-containing adapter protein 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2) (BAI-associated protein 2) (BAI1-associated protein 2) (Protein BAP2) (Fas ligand-associated factor 3) (FLAF3) (Insulin receptor substrate p53/p58) (IRS-58) (IRSp53/58) (Insulin receptor substrate protein of 53 kDa) (IRSp53) (Insulin receptor substrate p53) | Adapter protein that links membrane-bound small G-proteins to cytoplasmic effector proteins. Necessary for CDC42-mediated reorganization of the actin cytoskeleton and for RAC1-mediated membrane ruffling. Involved in the regulation of the actin cytoskeleton by WASF family members and the Arp2/3 complex. Plays a role in neurite growth. Acts syngeristically with ENAH to promote filipodia formation. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. Participates in actin bundling when associated with EPS8, promoting filopodial protrusions. {ECO:0000269|PubMed:11130076, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:14752106, ECO:0000269|PubMed:17115031, ECO:0000269|PubMed:19366662}. |
Q9Y2H0 | DLGAP4 | S615 | ochoa | Disks large-associated protein 4 (DAP-4) (PSD-95/SAP90-binding protein 4) (SAP90/PSD-95-associated protein 4) (SAPAP-4) | May play a role in the molecular organization of synapses and neuronal cell signaling. Could be an adapter protein linking ion channel to the subsynaptic cytoskeleton. May induce enrichment of PSD-95/SAP90 at the plasma membrane. |
Q9Y2U8 | LEMD3 | S351 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2W2 | WBP11 | S600 | ochoa | WW domain-binding protein 11 (WBP-11) (Npw38-binding protein) (NpwBP) (SH3 domain-binding protein SNP70) (Splicing factor that interacts with PQBP-1 and PP1) | Activates pre-mRNA splicing. May inhibit PP1 phosphatase activity. {ECO:0000269|PubMed:10593949, ECO:0000269|PubMed:11375989, ECO:0000269|PubMed:14640981}. |
Q9Y3Q8 | TSC22D4 | S28 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y692 | GMEB1 | S372 | ochoa | Glucocorticoid modulatory element-binding protein 1 (GMEB-1) (DNA-binding protein p96PIF) (Parvovirus initiation factor p96) (PIF p96) | Trans-acting factor that binds to glucocorticoid modulatory elements (GME) present in the TAT (tyrosine aminotransferase) promoter and increases sensitivity to low concentrations of glucocorticoids. Also binds to the transferrin receptor promoter. Essential auxiliary factor for the replication of parvoviruses. |
Q9Y6I3 | EPN1 | S442 | ochoa | Epsin-1 (EH domain-binding mitotic phosphoprotein) (EPS-15-interacting protein 1) | Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Modifies membrane curvature and facilitates the formation of clathrin-coated invaginations (By similarity). Regulates receptor-mediated endocytosis (PubMed:10393179, PubMed:10557078). {ECO:0000250|UniProtKB:O88339, ECO:0000269|PubMed:10393179, ECO:0000269|PubMed:10557078}. |
Q9Y6J0 | CABIN1 | S1764 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
Q9Y6X9 | MORC2 | S686 | ochoa | ATPase MORC2 (EC 3.6.1.-) (MORC family CW-type zinc finger protein 2) (Zinc finger CW-type coiled-coil domain protein 1) | Essential for epigenetic silencing by the HUSH (human silencing hub) complex. Recruited by HUSH to target site in heterochromatin, the ATPase activity and homodimerization are critical for HUSH-mediated silencing (PubMed:28581500, PubMed:29440755, PubMed:32693025). Represses germ cell-related genes and L1 retrotransposons in collaboration with SETDB1 and the HUSH complex, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). During DNA damage response, regulates chromatin remodeling through ATP hydrolysis. Upon DNA damage, is phosphorylated by PAK1, both colocalize to chromatin and induce H2AX expression. ATPase activity is required and dependent of phosphorylation by PAK1 and presence of DNA (PubMed:23260667). Recruits histone deacetylases, such as HDAC4, to promoter regions, causing local histone H3 deacetylation and transcriptional repression of genes such as CA9 (PubMed:20110259, PubMed:20225202). Exhibits a cytosolic function in lipogenesis, adipogenic differentiation, and lipid homeostasis by increasing the activity of ACLY, possibly preventing its dephosphorylation (PubMed:24286864). {ECO:0000269|PubMed:20110259, ECO:0000269|PubMed:20225202, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:24286864, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:29440755, ECO:0000269|PubMed:32693025}. |
Q92918 | MAP4K1 | Y381 | SIGNOR|EPSD | Mitogen-activated protein kinase kinase kinase kinase 1 (EC 2.7.11.1) (Hematopoietic progenitor kinase) (MAPK/ERK kinase kinase kinase 1) (MEK kinase kinase 1) (MEKKK 1) | Serine/threonine-protein kinase, which plays a role in the response to environmental stress (PubMed:24362026). Appears to act upstream of the JUN N-terminal pathway (PubMed:8824585). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). May play a role in hematopoietic lineage decisions and growth regulation (PubMed:24362026, PubMed:8824585). Together with CLNK, it enhances CD3-triggered activation of T-cells and subsequent IL2 production (By similarity). {ECO:0000250|UniProtKB:P70218, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:8824585}. |
P78347 | GTF2I | Y318 | EPSD | General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) | Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}. |
Q01892 | SPIB | S37 | SIGNOR|ELM|iPTMNet | Transcription factor Spi-B | Sequence specific transcriptional activator which binds to the PU-box, a purine-rich DNA sequence (5'-GAGGAA-3') that can act as a lymphoid-specific enhancer. Promotes development of plasmacytoid dendritic cells (pDCs), also known as type 2 DC precursors (pre-DC2) or natural interferon (IFN)-producing cells. These cells have the capacity to produce large amounts of interferon and block viral replication. May be required for B-cell receptor (BCR) signaling, which is necessary for normal B-cell development and antigenic stimulation. {ECO:0000269|PubMed:10196196, ECO:0000269|PubMed:12393575, ECO:0000269|PubMed:1406622, ECO:0000269|PubMed:15583020}. |
O94776 | MTA2 | S496 | Sugiyama | Metastasis-associated protein MTA2 (Metastasis-associated 1-like 1) (MTA1-L1 protein) (p53 target protein in deacetylase complex) | May function as a transcriptional coregulator (PubMed:16428440, PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q15642 | TRIP10 | S288 | Sugiyama | Cdc42-interacting protein 4 (Protein Felic) (Salt tolerant protein) (hSTP) (Thyroid receptor-interacting protein 10) (TR-interacting protein 10) (TRIP-10) | Required for translocation of GLUT4 to the plasma membrane in response to insulin signaling (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by recruiting WASL/N-WASP which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Required for the formation of podosomes, actin-rich adhesion structures specific to monocyte-derived cells. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:11069762, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391}. |
Q9NQU5 | PAK6 | S146 | Sugiyama | Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) | Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}. |
Q9NQU5 | PAK6 | S189 | Sugiyama | Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) | Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}. |
A0A0C4DFX4 | None | S2785 | ochoa | Snf2 related CREBBP activator protein | None |
A0A0C4DFX4 | None | S2787 | ochoa | Snf2 related CREBBP activator protein | None |
A0A0C4DFX4 | None | S2822 | ochoa | Snf2 related CREBBP activator protein | None |
A4D1S0 | KLRG2 | S139 | ochoa | Killer cell lectin-like receptor subfamily G member 2 (C-type lectin domain family 15 member B) | None |
A6NKD9 | CCDC85C | S209 | ochoa | Coiled-coil domain-containing protein 85C | May play a role in cell-cell adhesion and epithelium development through its interaction with proteins of the beta-catenin family (Probable). May play an important role in cortical development, especially in the maintenance of radial glia (By similarity). {ECO:0000250|UniProtKB:E9Q6B2, ECO:0000305|PubMed:25009281}. |
E9PCH4 | None | Y1540 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
O00750 | PIK3C2B | S155 | ochoa | Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit beta (PI3K-C2-beta) (PtdIns-3-kinase C2 subunit beta) (EC 2.7.1.137) (EC 2.7.1.154) (C2-PI3K) (Phosphoinositide 3-kinase-C2-beta) | Phosphorylates PtdIns and PtdIns4P with a preference for PtdIns (PubMed:10805725, PubMed:11533253, PubMed:9830063). Does not phosphorylate PtdIns(4,5)P2 (PubMed:9830063). May be involved in EGF and PDGF signaling cascades (PubMed:10805725). {ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11533253, ECO:0000269|PubMed:9830063}. |
O14686 | KMT2D | S4321 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O15042 | U2SURP | S175 | ochoa | U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) | None |
O15054 | KDM6B | S466 | ochoa | Lysine-specific demethylase 6B (EC 1.14.11.68) (JmjC domain-containing protein 3) (Jumonji domain-containing protein 3) (Lysine demethylase 6B) ([histone H3]-trimethyl-L-lysine(27) demethylase 6B) | Histone demethylase that specifically demethylates 'Lys-27' of histone H3, thereby playing a central role in histone code (PubMed:17713478, PubMed:17825402, PubMed:17851529, PubMed:18003914). Demethylates trimethylated and dimethylated H3 'Lys-27' (PubMed:17713478, PubMed:17825402, PubMed:17851529, PubMed:18003914). Plays a central role in regulation of posterior development, by regulating HOX gene expression (PubMed:17851529). Involved in inflammatory response by participating in macrophage differentiation in case of inflammation by regulating gene expression and macrophage differentiation (PubMed:17825402). Plays a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression by acting as a link between T-box factors and the SMARCA4-containing SWI/SNF remodeling complex (By similarity). {ECO:0000250|UniProtKB:Q5NCY0, ECO:0000269|PubMed:17713478, ECO:0000269|PubMed:17825402, ECO:0000269|PubMed:17851529, ECO:0000269|PubMed:18003914, ECO:0000269|PubMed:28262558}. |
O15117 | FYB1 | Y387 | ochoa | FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) | Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}. |
O15126 | SCAMP1 | S41 | ochoa | Secretory carrier-associated membrane protein 1 (Secretory carrier membrane protein 1) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O15156 | ZBTB7B | S172 | ochoa | Zinc finger and BTB domain-containing protein 7B (Krueppel-related zinc finger protein cKrox) (hcKrox) (T-helper-inducing POZ/Krueppel-like factor) (Zinc finger and BTB domain-containing protein 15) (Zinc finger protein 67 homolog) (Zfp-67) (Zinc finger protein 857B) (Zinc finger protein Th-POK) | Transcription regulator that acts as a key regulator of lineage commitment of immature T-cell precursors. Exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Necessary and sufficient for commitment of CD4 lineage, while its absence causes CD8 commitment. Development of immature T-cell precursors (thymocytes) to either the CD4 helper or CD8 killer T-cell lineages correlates precisely with their T-cell receptor specificity for major histocompatibility complex class II or class I molecules, respectively. Cross-antagonism between ZBTB7B and CBF complexes are determinative to CD4 versus CD8 cell fate decision. Suppresses RUNX3 expression and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. induces, as a transcriptional activator, SOCS genes expression which represses RUNX3 expression and promotes the CD4+ lineage fate. During CD4 lineage commitment, associates with multiple sites at the CD8 locus, acting as a negative regulator of the CD8 promoter and enhancers by epigenetic silencing through the recruitment of class II histone deacetylases, such as HDAC4 and HDAC5, to these loci. Regulates the development of IL17-producing CD1d-restricted naural killer (NK) T cells. Also functions as an important metabolic regulator in the lactating mammary glands. Critical feed-forward regulator of insulin signaling in mammary gland lactation, directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling (By similarity). Transcriptional repressor of the collagen COL1A1 and COL1A2 genes. May also function as a repressor of fibronectin and possibly other extracellular matrix genes (PubMed:9370309). Potent driver of brown fat development, thermogenesis and cold-induced beige fat formation. Recruits the brown fat lncRNA 1 (Blnc1):HNRNPU ribonucleoprotein complex to activate thermogenic gene expression in brown and beige adipocytes (By similarity). {ECO:0000250|UniProtKB:Q64321, ECO:0000269|PubMed:9370309}. |
O43150 | ASAP2 | S756 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 (Development and differentiation-enhancing factor 2) (Paxillin-associated protein with ARF GAP activity 3) (PAG3) (Pyk2 C-terminus-associated protein) (PAP) | Activates the small GTPases ARF1, ARF5 and ARF6. Regulates the formation of post-Golgi vesicles and modulates constitutive secretion. Modulates phagocytosis mediated by Fc gamma receptor and ARF6. Modulates PXN recruitment to focal contacts and cell migration. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:10749932, ECO:0000269|PubMed:11304556}. |
O43314 | PPIP5K2 | S1110 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43379 | WDR62 | S995 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43432 | EIF4G3 | S164 | ochoa | Eukaryotic translation initiation factor 4 gamma 3 (eIF-4-gamma 3) (eIF-4G 3) (eIF4G 3) (eIF-4-gamma II) (eIF4GII) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:9418880). Functional homolog of EIF4G1 (PubMed:9418880). {ECO:0000269|PubMed:9418880}. |
O43516 | WIPF1 | S340 | ochoa | WAS/WASL-interacting protein family member 1 (Protein PRPL-2) (Wiskott-Aldrich syndrome protein-interacting protein) (WASP-interacting protein) | Plays a role in the reorganization of the actin cytoskeleton. Contributes with NCK1 and GRB2 in the recruitment and activation of WASL. May participate in regulating the subcellular localization of WASL, resulting in the disassembly of stress fibers in favor of filopodia formation. Plays a role in the formation of cell ruffles (By similarity). Plays an important role in the intracellular motility of vaccinia virus by functioning as an adapter for recruiting WASL to vaccinia virus. {ECO:0000250, ECO:0000269|PubMed:10878810, ECO:0000269|PubMed:19910490, ECO:0000269|PubMed:9405671}. |
O43516 | WIPF1 | S342 | ochoa | WAS/WASL-interacting protein family member 1 (Protein PRPL-2) (Wiskott-Aldrich syndrome protein-interacting protein) (WASP-interacting protein) | Plays a role in the reorganization of the actin cytoskeleton. Contributes with NCK1 and GRB2 in the recruitment and activation of WASL. May participate in regulating the subcellular localization of WASL, resulting in the disassembly of stress fibers in favor of filopodia formation. Plays a role in the formation of cell ruffles (By similarity). Plays an important role in the intracellular motility of vaccinia virus by functioning as an adapter for recruiting WASL to vaccinia virus. {ECO:0000250, ECO:0000269|PubMed:10878810, ECO:0000269|PubMed:19910490, ECO:0000269|PubMed:9405671}. |
O43516 | WIPF1 | S343 | ochoa | WAS/WASL-interacting protein family member 1 (Protein PRPL-2) (Wiskott-Aldrich syndrome protein-interacting protein) (WASP-interacting protein) | Plays a role in the reorganization of the actin cytoskeleton. Contributes with NCK1 and GRB2 in the recruitment and activation of WASL. May participate in regulating the subcellular localization of WASL, resulting in the disassembly of stress fibers in favor of filopodia formation. Plays a role in the formation of cell ruffles (By similarity). Plays an important role in the intracellular motility of vaccinia virus by functioning as an adapter for recruiting WASL to vaccinia virus. {ECO:0000250, ECO:0000269|PubMed:10878810, ECO:0000269|PubMed:19910490, ECO:0000269|PubMed:9405671}. |
O43516 | WIPF1 | S344 | ochoa | WAS/WASL-interacting protein family member 1 (Protein PRPL-2) (Wiskott-Aldrich syndrome protein-interacting protein) (WASP-interacting protein) | Plays a role in the reorganization of the actin cytoskeleton. Contributes with NCK1 and GRB2 in the recruitment and activation of WASL. May participate in regulating the subcellular localization of WASL, resulting in the disassembly of stress fibers in favor of filopodia formation. Plays a role in the formation of cell ruffles (By similarity). Plays an important role in the intracellular motility of vaccinia virus by functioning as an adapter for recruiting WASL to vaccinia virus. {ECO:0000250, ECO:0000269|PubMed:10878810, ECO:0000269|PubMed:19910490, ECO:0000269|PubMed:9405671}. |
O43516 | WIPF1 | S412 | ochoa | WAS/WASL-interacting protein family member 1 (Protein PRPL-2) (Wiskott-Aldrich syndrome protein-interacting protein) (WASP-interacting protein) | Plays a role in the reorganization of the actin cytoskeleton. Contributes with NCK1 and GRB2 in the recruitment and activation of WASL. May participate in regulating the subcellular localization of WASL, resulting in the disassembly of stress fibers in favor of filopodia formation. Plays a role in the formation of cell ruffles (By similarity). Plays an important role in the intracellular motility of vaccinia virus by functioning as an adapter for recruiting WASL to vaccinia virus. {ECO:0000250, ECO:0000269|PubMed:10878810, ECO:0000269|PubMed:19910490, ECO:0000269|PubMed:9405671}. |
O43526 | KCNQ2 | S52 | psp | Potassium voltage-gated channel subfamily KQT member 2 (KQT-like 2) (Neuroblastoma-specific potassium channel subunit alpha KvLQT2) (Voltage-gated potassium channel subunit Kv7.2) | Pore-forming subunit of the voltage-gated potassium (Kv) M-channel which is responsible for the M-current, a key controller of neuronal excitability (PubMed:24277843, PubMed:28793216, PubMed:9836639). M-channel is composed of pore-forming subunits KCNQ2 and KCNQ3 assembled as heterotetramers (PubMed:10781098, PubMed:14534157, PubMed:32884139, PubMed:37857637, PubMed:9836639). The native M-current has a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs (PubMed:14534157, PubMed:28793216, PubMed:9836639). KCNQ2-KCNQ3 M-channel is selectively permeable in vitro to other cations besides potassium, in decreasing order of affinity K(+) > Rb(+) > Cs(+) > Na(+) (PubMed:28793216). M-channel association with SLC5A3/SMIT1 alters channel ion selectivity, increasing Na(+) and Cs(+) permeation relative to K(+) (PubMed:28793216). Suppressed by activation of the muscarinic acetylcholine receptor CHRM1 (PubMed:10684873, PubMed:10713961). {ECO:0000269|PubMed:10684873, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:10781098, ECO:0000269|PubMed:14534157, ECO:0000269|PubMed:24277843, ECO:0000269|PubMed:28793216, ECO:0000269|PubMed:32884139, ECO:0000269|PubMed:37857637, ECO:0000269|PubMed:9836639}. |
O60307 | MAST3 | S1182 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60315 | ZEB2 | S184 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O75376 | NCOR1 | S2380 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75791 | GRAP2 | S187 | ochoa | GRB2-related adapter protein 2 (Adapter protein GRID) (GRB-2-like protein) (GRB2L) (GRBLG) (GRBX) (Grf40 adapter protein) (Grf-40) (Growth factor receptor-binding protein) (Hematopoietic cell-associated adapter protein GrpL) (P38) (Protein GADS) (SH3-SH2-SH3 adapter Mona) | Interacts with SLP-76 to regulate NF-AT activation. Binds to tyrosine-phosphorylated shc. |
O75962 | TRIO | S2367 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O75970 | MPDZ | S1283 | ochoa | Multiple PDZ domain protein (Multi-PDZ domain protein 1) | Member of the NMDAR signaling complex that may play a role in control of AMPAR potentiation and synaptic plasticity in excitatory synapses (PubMed:11150294, PubMed:15312654). Promotes clustering of HT2RC at the cell surface (By similarity). {ECO:0000250|UniProtKB:O55164, ECO:0000269|PubMed:11150294, ECO:0000269|PubMed:15312654}. |
O95644 | NFATC1 | S345 | psp | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
P00519 | ABL1 | S884 | ochoa | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P02452 | COL1A1 | S176 | ochoa | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P18206 | VCL | S600 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P19878 | NCF2 | S213 | ochoa | Neutrophil cytosol factor 2 (NCF-2) (67 kDa neutrophil oxidase factor) (NADPH oxidase activator 2) (Neutrophil NADPH oxidase factor 2) (p67-phox) | Subunit of the phagocyte NADPH oxidase complex that mediates the transfer of electrons from cytosolic NADPH to O2 to produce the superoxide anion (O2(-)) (PubMed:12207919, PubMed:38355798). In the activated complex, electrons are first transferred from NADPH to flavin adenine dinucleotide (FAD) and subsequently transferred via two heme molecules to molecular oxygen, producing superoxide through an outer-sphere reaction (PubMed:38355798). Activation of the NADPH oxidase complex is initiated by the assembly of cytosolic subunits of the NADPH oxidase complex with the core NADPH oxidase complex to form a complex at the plasma membrane or phagosomal membrane (PubMed:38355798). This activation process is initiated by phosphorylation dependent binding of the cytosolic NCF1/p47-phox subunit to the C-terminus of CYBA/p22-phox (By similarity). {ECO:0000250|UniProtKB:P14598, ECO:0000269|PubMed:12207919, ECO:0000269|PubMed:38355798}. |
P25054 | APC | S1436 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25440 | BRD2 | S253 | ochoa | Bromodomain-containing protein 2 (O27.1.1) | Chromatin reader protein that specifically recognizes and binds histone H4 acetylated at 'Lys-5' and 'Lys-12' (H4K5ac and H4K12ac, respectively), thereby controlling gene expression and remodeling chromatin structures (PubMed:17148447, PubMed:17848202, PubMed:18406326, PubMed:20048151, PubMed:20709061, PubMed:20871596). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:28262505). Plays a key role in genome compartmentalization via its association with CTCF and cohesin: recruited to chromatin by CTCF and promotes formation of topologically associating domains (TADs) via its ability to bind acetylated histones, contributing to CTCF boundary formation and enhancer insulation (PubMed:35410381). Also recognizes and binds acetylated non-histone proteins, such as STAT3 (PubMed:28262505). Involved in inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17: recognizes and binds STAT3 acetylated at 'Lys-87', promoting STAT3 recruitment to chromatin (PubMed:28262505). In addition to acetylated lysines, also recognizes and binds lysine residues on histones that are both methylated and acetylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Specifically binds histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). {ECO:0000269|PubMed:17148447, ECO:0000269|PubMed:17848202, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:20048151, ECO:0000269|PubMed:20709061, ECO:0000269|PubMed:20871596, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:35410381, ECO:0000269|PubMed:37731000}. |
P26651 | ZFP36 | S66 | psp | mRNA decay activator protein ZFP36 (G0/G1 switch regulatory protein 24) (Growth factor-inducible nuclear protein NUP475) (Tristetraprolin) (Zinc finger protein 36) (Zfp-36) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:10330172, PubMed:10751406, PubMed:11279239, PubMed:12115244, PubMed:12748283, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:23644599, PubMed:25815583, PubMed:27193233, PubMed:31439631, PubMed:9703499). Acts as an 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258, PubMed:23644599). Recruits deadenylase CNOT7 (and probably the CCR4-NOT complex) via association with CNOT1, and hence promotes ARE-mediated mRNA deadenylation (PubMed:23644599). Functions also by recruiting components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs (PubMed:11719186, PubMed:12748283, PubMed:15687258, PubMed:16364915). Self regulates by destabilizing its own mRNA (PubMed:15187101). Binds to 3'-UTR ARE of numerous mRNAs and of its own mRNA (PubMed:10330172, PubMed:10751406, PubMed:12115244, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:19188452, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:25815583). Plays a role in anti-inflammatory responses; suppresses tumor necrosis factor (TNF)-alpha production by stimulating ARE-mediated TNF-alpha mRNA decay and several other inflammatory ARE-containing mRNAs in interferon (IFN)- and/or lipopolysaccharide (LPS)-induced macrophages (By similarity). Also plays a role in the regulation of dendritic cell maturation at the post-transcriptional level, and hence operates as part of a negative feedback loop to limit the inflammatory response (PubMed:18367721). Promotes ARE-mediated mRNA decay of hypoxia-inducible factor HIF1A mRNA during the response of endothelial cells to hypoxia (PubMed:21775632). Positively regulates early adipogenesis of preadipocytes by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Plays a role in maintaining skeletal muscle satellite cell quiescence by promoting ARE-mediated mRNA decay of the myogenic determination factor MYOD1 mRNA (By similarity). Associates also with and regulates the expression of non-ARE-containing target mRNAs at the post-transcriptional level, such as MHC class I mRNAs (PubMed:18367721). Participates in association with argonaute RISC catalytic components in the ARE-mediated mRNA decay mechanism; assists microRNA (miRNA) targeting ARE-containing mRNAs (PubMed:15766526). May also play a role in the regulation of cytoplasmic mRNA decapping; enhances decapping of ARE-containing RNAs, in vitro (PubMed:16364915). Involved in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, affects nuclear pre-mRNA processing (By similarity). Negatively regulates nuclear poly(A)-binding protein PABPN1-stimulated polyadenylation activity on ARE-containing pre-mRNA during LPS-stimulated macrophages (By similarity). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role as a tumor suppressor by inhibiting cell proliferation in breast cancer cells (PubMed:26926077). {ECO:0000250|UniProtKB:P22893, ECO:0000269|PubMed:10330172, ECO:0000269|PubMed:10751406, ECO:0000269|PubMed:11279239, ECO:0000269|PubMed:11719186, ECO:0000269|PubMed:12115244, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15187101, ECO:0000269|PubMed:15634918, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15766526, ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:16702957, ECO:0000269|PubMed:17030620, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18367721, ECO:0000269|PubMed:19188452, ECO:0000269|PubMed:20221403, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21775632, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:26926077, ECO:0000269|PubMed:27182009, ECO:0000269|PubMed:27193233, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:9703499}.; FUNCTION: (Microbial infection) Negatively regulates HTLV-1 TAX-dependent transactivation of viral long terminal repeat (LTR) promoter. {ECO:0000269|PubMed:14679154}. |
P26651 | ZFP36 | S184 | ochoa | mRNA decay activator protein ZFP36 (G0/G1 switch regulatory protein 24) (Growth factor-inducible nuclear protein NUP475) (Tristetraprolin) (Zinc finger protein 36) (Zfp-36) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:10330172, PubMed:10751406, PubMed:11279239, PubMed:12115244, PubMed:12748283, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:23644599, PubMed:25815583, PubMed:27193233, PubMed:31439631, PubMed:9703499). Acts as an 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258, PubMed:23644599). Recruits deadenylase CNOT7 (and probably the CCR4-NOT complex) via association with CNOT1, and hence promotes ARE-mediated mRNA deadenylation (PubMed:23644599). Functions also by recruiting components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs (PubMed:11719186, PubMed:12748283, PubMed:15687258, PubMed:16364915). Self regulates by destabilizing its own mRNA (PubMed:15187101). Binds to 3'-UTR ARE of numerous mRNAs and of its own mRNA (PubMed:10330172, PubMed:10751406, PubMed:12115244, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:19188452, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:25815583). Plays a role in anti-inflammatory responses; suppresses tumor necrosis factor (TNF)-alpha production by stimulating ARE-mediated TNF-alpha mRNA decay and several other inflammatory ARE-containing mRNAs in interferon (IFN)- and/or lipopolysaccharide (LPS)-induced macrophages (By similarity). Also plays a role in the regulation of dendritic cell maturation at the post-transcriptional level, and hence operates as part of a negative feedback loop to limit the inflammatory response (PubMed:18367721). Promotes ARE-mediated mRNA decay of hypoxia-inducible factor HIF1A mRNA during the response of endothelial cells to hypoxia (PubMed:21775632). Positively regulates early adipogenesis of preadipocytes by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Plays a role in maintaining skeletal muscle satellite cell quiescence by promoting ARE-mediated mRNA decay of the myogenic determination factor MYOD1 mRNA (By similarity). Associates also with and regulates the expression of non-ARE-containing target mRNAs at the post-transcriptional level, such as MHC class I mRNAs (PubMed:18367721). Participates in association with argonaute RISC catalytic components in the ARE-mediated mRNA decay mechanism; assists microRNA (miRNA) targeting ARE-containing mRNAs (PubMed:15766526). May also play a role in the regulation of cytoplasmic mRNA decapping; enhances decapping of ARE-containing RNAs, in vitro (PubMed:16364915). Involved in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, affects nuclear pre-mRNA processing (By similarity). Negatively regulates nuclear poly(A)-binding protein PABPN1-stimulated polyadenylation activity on ARE-containing pre-mRNA during LPS-stimulated macrophages (By similarity). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role as a tumor suppressor by inhibiting cell proliferation in breast cancer cells (PubMed:26926077). {ECO:0000250|UniProtKB:P22893, ECO:0000269|PubMed:10330172, ECO:0000269|PubMed:10751406, ECO:0000269|PubMed:11279239, ECO:0000269|PubMed:11719186, ECO:0000269|PubMed:12115244, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15187101, ECO:0000269|PubMed:15634918, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15766526, ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:16702957, ECO:0000269|PubMed:17030620, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18367721, ECO:0000269|PubMed:19188452, ECO:0000269|PubMed:20221403, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21775632, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:26926077, ECO:0000269|PubMed:27182009, ECO:0000269|PubMed:27193233, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:9703499}.; FUNCTION: (Microbial infection) Negatively regulates HTLV-1 TAX-dependent transactivation of viral long terminal repeat (LTR) promoter. {ECO:0000269|PubMed:14679154}. |
P31645 | SLC6A4 | S48 | psp | Sodium-dependent serotonin transporter (SERT) (5HT transporter) (5HTT) (Solute carrier family 6 member 4) | Serotonin transporter that cotransports serotonin with one Na(+) ion in exchange for one K(+) ion and possibly one proton in an overall electroneutral transport cycle. Transports serotonin across the plasma membrane from the extracellular compartment to the cytosol thus limiting serotonin intercellular signaling (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Essential for serotonin homeostasis in the central nervous system. In the developing somatosensory cortex, acts in glutamatergic neurons to control serotonin uptake and its trophic functions accounting for proper spatial organization of cortical neurons and elaboration of sensory circuits. In the mature cortex, acts primarily in brainstem raphe neurons to mediate serotonin uptake from the synaptic cleft back into the pre-synaptic terminal thus terminating serotonin signaling at the synapse (By similarity). Modulates mucosal serotonin levels in the gastrointestinal tract through uptake and clearance of serotonin in enterocytes. Required for enteric neurogenesis and gastrointestinal reflexes (By similarity). Regulates blood serotonin levels by ensuring rapid high affinity uptake of serotonin from plasma to platelets, where it is further stored in dense granules via vesicular monoamine transporters and then released upon stimulation (PubMed:17506858, PubMed:18317590). Mechanistically, the transport cycle starts with an outward-open conformation having Na1(+) and Cl(-) sites occupied. The binding of a second extracellular Na2(+) ion and serotonin substrate leads to structural changes to outward-occluded to inward-occluded to inward-open, where the Na2(+) ion and serotonin are released into the cytosol. Binding of intracellular K(+) ion induces conformational transitions to inward-occluded to outward-open and completes the cycle by releasing K(+) possibly together with a proton bound to Asp-98 into the extracellular compartment. Na1(+) and Cl(-) ions remain bound throughout the transport cycle (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Additionally, displays serotonin-induced channel-like conductance for monovalent cations, mainly Na(+) ions. The channel activity is uncoupled from the transport cycle and may contribute to the membrane resting potential or excitability (By similarity). {ECO:0000250|UniProtKB:P31652, ECO:0000250|UniProtKB:Q60857, ECO:0000269|PubMed:10407194, ECO:0000269|PubMed:12869649, ECO:0000269|PubMed:17506858, ECO:0000269|PubMed:18317590, ECO:0000269|PubMed:21730057, ECO:0000269|PubMed:27049939, ECO:0000269|PubMed:27756841, ECO:0000269|PubMed:34851672}. |
P35869 | AHR | S689 | psp | Aryl hydrocarbon receptor (Ah receptor) (AhR) (Class E basic helix-loop-helix protein 76) (bHLHe76) | Ligand-activated transcription factor that enables cells to adapt to changing conditions by sensing compounds from the environment, diet, microbiome and cellular metabolism, and which plays important roles in development, immunity and cancer (PubMed:23275542, PubMed:30373764, PubMed:32818467, PubMed:7961644). Upon ligand binding, translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE) (PubMed:23275542, PubMed:30373764, PubMed:7961644). Regulates a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (PubMed:12213388). Xenobiotics can act as ligands: upon xenobiotic-binding, activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene) (PubMed:7961644, PubMed:33193710). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons (PubMed:34521881, PubMed:7961644). Next to xenobiotics, natural ligands derived from plants, microbiota, and endogenous metabolism are potent AHR agonists (PubMed:18076143). Tryptophan (Trp) derivatives constitute an important class of endogenous AHR ligands (PubMed:32818467, PubMed:32866000). Acts as a negative regulator of anti-tumor immunity: indoles and kynurenic acid generated by Trp catabolism act as ligand and activate AHR, thereby promoting AHR-driven cancer cell motility and suppressing adaptive immunity (PubMed:32818467). Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1 (PubMed:28602820). Inhibits PER1 by repressing the CLOCK-BMAL1 heterodimer mediated transcriptional activation of PER1 (PubMed:28602820). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28602820). {ECO:0000269|PubMed:23275542, ECO:0000269|PubMed:28602820, ECO:0000269|PubMed:30373764, ECO:0000269|PubMed:32818467, ECO:0000269|PubMed:32866000, ECO:0000269|PubMed:33193710, ECO:0000269|PubMed:34521881, ECO:0000269|PubMed:7961644, ECO:0000303|PubMed:12213388, ECO:0000303|PubMed:18076143}. |
P38159 | RBMX | S221 | ochoa | RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] | RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}. |
P42684 | ABL2 | S968 | ochoa | Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) | Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}. |
P42684 | ABL2 | S969 | ochoa | Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) | Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}. |
P43403 | ZAP70 | S289 | ochoa | Tyrosine-protein kinase ZAP-70 (EC 2.7.10.2) (70 kDa zeta-chain associated protein) (Syk-related tyrosine kinase) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates motility, adhesion and cytokine expression of mature T-cells, as well as thymocyte development. Also contributes to the development and activation of primary B-lymphocytes. When antigen presenting cells (APC) activate T-cell receptor (TCR), a serie of phosphorylations lead to the recruitment of ZAP70 to the doubly phosphorylated TCR component CD247/CD3Z through ITAM motif at the plasma membrane. This recruitment serves to localization to the stimulated TCR and to relieve its autoinhibited conformation. Release of ZAP70 active conformation is further stabilized by phosphorylation mediated by LCK. Subsequently, ZAP70 phosphorylates at least 2 essential adapter proteins: LAT and LCP2. In turn, a large number of signaling molecules are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation. Furthermore, ZAP70 controls cytoskeleton modifications, adhesion and mobility of T-lymphocytes, thus ensuring correct delivery of effectors to the APC. ZAP70 is also required for TCR-CD247/CD3Z internalization and degradation through interaction with the E3 ubiquitin-protein ligase CBL and adapter proteins SLA and SLA2. Thus, ZAP70 regulates both T-cell activation switch on and switch off by modulating TCR expression at the T-cell surface. During thymocyte development, ZAP70 promotes survival and cell-cycle progression of developing thymocytes before positive selection (when cells are still CD4/CD8 double negative). Additionally, ZAP70-dependent signaling pathway may also contribute to primary B-cells formation and activation through B-cell receptor (BCR). {ECO:0000269|PubMed:11353765, ECO:0000269|PubMed:12051764, ECO:0000269|PubMed:1423621, ECO:0000269|PubMed:20135127, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:38614099, ECO:0000269|PubMed:8124727, ECO:0000269|PubMed:8702662, ECO:0000269|PubMed:9489702}. |
P46013 | MKI67 | S565 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46821 | MAP1B | S2126 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P47974 | ZFP36L2 | S430 | ochoa | mRNA decay activator protein ZFP36L2 (Butyrate response factor 2) (EGF-response factor 2) (ERF-2) (TPA-induced sequence 11d) (Zinc finger protein 36, C3H1 type-like 2) (ZFP36-like 2) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:14981510, PubMed:25106868, PubMed:34611029). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:25106868). Functions by recruiting the CCR4-NOT deadenylase complex and probably other components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:25106868). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:14981510, PubMed:20506496, PubMed:25106868). Promotes ARE-containing mRNA decay of the low-density lipoprotein (LDL) receptor (LDLR) mRNA in response to phorbol 12-myristate 13-acetate (PMA) treatment in a p38 MAPK-dependent manner (PubMed:25106868). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs). Plays a role in mature peripheral neuron integrity by promoting ARE-containing mRNA decay of the transcriptional repressor REST mRNA. Plays a role in ovulation and oocyte meiotic maturation by promoting ARE-mediated mRNA decay of the luteinizing hormone receptor LHCGR mRNA. Acts as a negative regulator of erythroid cell differentiation: promotes glucocorticoid-induced self-renewal of erythroid cells by binding mRNAs that are induced or highly expressed during terminal erythroid differentiation and promotes their degradation, preventing erythroid cell differentiation. In association with ZFP36L1 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination process and functional immune cell formation. Together with ZFP36L1 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA. {ECO:0000250|UniProtKB:P23949, ECO:0000269|PubMed:14981510, ECO:0000269|PubMed:20506496, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:34611029}. |
P48634 | PRRC2A | S823 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49796 | RGS3 | S749 | ochoa | Regulator of G-protein signaling 3 (RGP3) (RGS3) | Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein-mediated release of inositol phosphates and activation of MAP kinases. {ECO:0000269|PubMed:10749886, ECO:0000269|PubMed:11294858, ECO:0000269|PubMed:8602223, ECO:0000269|PubMed:9858594}. |
P50570 | DNM2 | S762 | ochoa | Dynamin-2 (EC 3.6.5.5) (Dynamin 2) (Dynamin II) | Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission at plasma membrane during endocytosis and filament remodeling at many actin structures during organization of the actin cytoskeleton (PubMed:15731758, PubMed:19605363, PubMed:19623537, PubMed:33713620, PubMed:34744632). Plays an important role in vesicular trafficking processes, namely clathrin-mediated endocytosis (CME), exocytic and clathrin-coated vesicle from the trans-Golgi network, and PDGF stimulated macropinocytosis (PubMed:15731758, PubMed:19623537, PubMed:33713620). During vesicular trafficking process, associates to the membrane, through lipid binding, and self-assembles into ring-like structure through oligomerization to form a helical polymer around the vesicle membrane and leading to vesicle scission (PubMed:17636067, PubMed:34744632, PubMed:36445308). Plays a role in organization of the actin cytoskeleton by mediating arrangement of stress fibers and actin bundles in podocytes (By similarity). During organization of the actin cytoskeleton, self-assembles into ring-like structure that directly bundles actin filaments to form typical membrane tubules decorated with dynamin spiral polymers (By similarity). Self-assembly increases GTPase activity and the GTP hydrolysis causes the rapid depolymerization of dynamin spiral polymers, and results in dispersion of actin bundles (By similarity). Remodels, through its interaction with CTTN, bundled actin filaments in a GTPase-dependent manner and plays a role in orchestrating the global actomyosin cytoskeleton (PubMed:19605363). The interaction with CTTN stabilizes the interaction of DNM2 and actin filaments and stimulates the intrinsic GTPase activity that results in actin filament-barbed ends and increases the sensitivity of filaments in bundles to the actin depolymerizing factor, CFL1 (By similarity). Plays a role in the autophagy process, by participating in the formation of ATG9A vesicles destined for the autophagosomes through its interaction with SNX18 (PubMed:29437695), by mediating recycling endosome scission leading to autophagosome release through MAP1LC3B interaction (PubMed:29437695, PubMed:32315611). Also regulates maturation of apoptotic cell corpse-containing phagosomes by recruiting PIK3C3 to the phagosome membrane (By similarity). Also plays a role in cytokinesis (By similarity). May participate in centrosome cohesion through its interaction with TUBG1 (By similarity). Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Involved in membrane tubulation (PubMed:24135484). {ECO:0000250|UniProtKB:P39052, ECO:0000250|UniProtKB:P39054, ECO:0000269|PubMed:15731758, ECO:0000269|PubMed:17636067, ECO:0000269|PubMed:19605363, ECO:0000269|PubMed:19623537, ECO:0000269|PubMed:24135484, ECO:0000269|PubMed:29437695, ECO:0000269|PubMed:32315611, ECO:0000269|PubMed:33713620, ECO:0000269|PubMed:34744632, ECO:0000269|PubMed:36445308}. |
P54284 | CACNB3 | S138 | ochoa | Voltage-dependent L-type calcium channel subunit beta-3 (CAB3) (Calcium channel voltage-dependent subunit beta 3) | Regulatory subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents (PubMed:8119293). Increases CACNA1B peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). Increases CACNA1C peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). {ECO:0000250|UniProtKB:P54287, ECO:0000250|UniProtKB:Q9MZL3, ECO:0000269|PubMed:8119293}. |
P54725 | RAD23A | S99 | ochoa | UV excision repair protein RAD23 homolog A (HR23A) (hHR23A) | Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to 'Lys-48'-linked polyubiquitin chains in a length-dependent manner and with a lower affinity to 'Lys-63'-linked polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome.; FUNCTION: Involved in nucleotide excision repair and is thought to be functional equivalent for RAD23B in global genome nucleotide excision repair (GG-NER) by association with XPC. In vitro, the XPC:RAD23A dimer has NER activity. Can stabilize XPC.; FUNCTION: (Microbial infection) Involved in Vpr-dependent replication of HIV-1 in non-proliferating cells and primary macrophages. Required for the association of HIV-1 Vpr with the host proteasome. {ECO:0000269|PubMed:20614012}. |
P56693 | SOX10 | S224 | psp | Transcription factor SOX-10 | Transcription factor that plays a central role in developing and mature glia (By similarity). Specifically activates expression of myelin genes, during oligodendrocyte (OL) maturation, such as DUSP15 and MYRF, thereby playing a central role in oligodendrocyte maturation and CNS myelination (By similarity). Once induced, MYRF cooperates with SOX10 to implement the myelination program (By similarity). Transcriptional activator of MITF, acting synergistically with PAX3 (PubMed:21965087). Transcriptional activator of MBP, via binding to the gene promoter (By similarity). {ECO:0000250|UniProtKB:O55170, ECO:0000250|UniProtKB:Q04888, ECO:0000269|PubMed:21965087}. |
P78363 | ABCA4 | S1317 | psp | Retinal-specific phospholipid-transporting ATPase ABCA4 (EC 7.6.2.1) (ATP-binding cassette sub-family A member 4) (RIM ABC transporter) (RIM proteinv) (RmP) (Retinal-specific ATP-binding cassette transporter) (Stargardt disease protein) | Flippase that catalyzes in an ATP-dependent manner the transport of retinal-phosphatidylethanolamine conjugates like 11-cis and all-trans isomers of N-retinylidene-phosphatidylethanolamine (N-Ret-PE) from the lumen to the cytoplasmic leaflet of photoreceptor outer segment disk membranes, where 11-cis-retinylidene-phosphatidylethanolamine is then isomerized to its all-trans isomer and reduced by RDH8 to produce all-trans-retinol. This transport activity ensures that all-trans-retinal generated from photoexcitation and 11-cis-retinal not needed for the regeneration of rhodopsin and cone opsins are effectively cleared from the photoreceptors, therefore preventing their accumulation and the formation of toxic bisretinoid (PubMed:10075733, PubMed:20404325, PubMed:22735453, PubMed:23144455, PubMed:24097981, PubMed:29847635, PubMed:33375396). Displays ATPase activity in vitro in absence of retinal substrate (PubMed:33605212, PubMed:39128720, PubMed:29847635, PubMed:33375396). May display GTPase activity that is strongly influenced by the lipid environment and the presence of retinoid compounds (PubMed:22735453). Binds the unprotonated form of N-retinylidene-phosphatidylethanolamine with high affinity in the absence of ATP, and ATP binding and hydrolysis induce a protein conformational change that causes N-retinylidene-phosphatidylethanolamine release (By similarity). {ECO:0000250|UniProtKB:F1MWM0, ECO:0000269|PubMed:10075733, ECO:0000269|PubMed:20404325, ECO:0000269|PubMed:22735453, ECO:0000269|PubMed:23144455, ECO:0000269|PubMed:24097981, ECO:0000269|PubMed:29847635, ECO:0000269|PubMed:33375396, ECO:0000269|PubMed:33605212, ECO:0000269|PubMed:39128720}. |
P81408 | ENTREP3 | S467 | ochoa | Protein ENTREP3 (Endosomal transmembrane epsin interactor 3) (Protein COTE1) | None |
Q02833 | RASSF7 | S96 | ochoa | Ras association domain-containing protein 7 (HRAS1-related cluster protein 1) | Negatively regulates stress-induced JNK activation and apoptosis by promoting MAP2K7 phosphorylation and inhibiting its ability to activate JNK. Following prolonged stress, anti-apoptotic effect stops because of degradation of RASSF7 protein via the ubiquitin-proteasome pathway. Required for the activation of AURKB and chromosomal congression during mitosis where it stimulates microtubule polymerization. {ECO:0000269|PubMed:20629633, ECO:0000269|PubMed:21278800}. |
Q07889 | SOS1 | S1286 | ochoa | Son of sevenless homolog 1 (SOS-1) | Promotes the exchange of Ras-bound GDP by GTP (PubMed:8493579). Probably by promoting Ras activation, regulates phosphorylation of MAP kinase MAPK3/ERK1 in response to EGF (PubMed:17339331). Catalytic component of a trimeric complex that participates in transduction of signals from Ras to Rac by promoting the Rac-specific guanine nucleotide exchange factor (GEF) activity (By similarity). {ECO:0000250|UniProtKB:Q62245, ECO:0000269|PubMed:17339331, ECO:0000269|PubMed:8493579}. |
Q13177 | PAK2 | S24 | ochoa | Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}. |
Q13685 | AAMP | S20 | ochoa | Angio-associated migratory cell protein | Plays a role in angiogenesis and cell migration. In smooth muscle cell migration, may act through the RhoA pathway. {ECO:0000269|PubMed:10329261, ECO:0000269|PubMed:18634987}. |
Q13905 | RAPGEF1 | S253 | ochoa | Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) | Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}. |
Q14185 | DOCK1 | Y1811 | ochoa | Dedicator of cytokinesis protein 1 (180 kDa protein downstream of CRK) (DOCK180) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). Functions as a guanine nucleotide exchange factor (GEF), which activates Rac Rho small GTPases by exchanging bound GDP for free GTP. Its GEF activity may be enhanced by ELMO1 (PubMed:8657152). {ECO:0000269|PubMed:19004829, ECO:0000269|PubMed:8657152}. |
Q14185 | DOCK1 | S1823 | ochoa | Dedicator of cytokinesis protein 1 (180 kDa protein downstream of CRK) (DOCK180) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). Functions as a guanine nucleotide exchange factor (GEF), which activates Rac Rho small GTPases by exchanging bound GDP for free GTP. Its GEF activity may be enhanced by ELMO1 (PubMed:8657152). {ECO:0000269|PubMed:19004829, ECO:0000269|PubMed:8657152}. |
Q14517 | FAT1 | S4243 | ochoa | Protocadherin Fat 1 (Cadherin family member 7) (Cadherin-related tumor suppressor homolog) (Protein fat homolog) [Cleaved into: Protocadherin Fat 1, nuclear form] | [Protocadherin Fat 1]: Plays an essential role for cellular polarization, directed cell migration and modulating cell-cell contact. {ECO:0000250}. |
Q15084 | PDIA6 | S259 | ochoa | Protein disulfide-isomerase A6 (EC 5.3.4.1) (Endoplasmic reticulum protein 5) (ER protein 5) (ERp5) (Protein disulfide isomerase P5) (Thioredoxin domain-containing protein 7) | May function as a chaperone that inhibits aggregation of misfolded proteins (PubMed:12204115). Negatively regulates the unfolded protein response (UPR) through binding to UPR sensors such as ERN1, which in turn inactivates ERN1 signaling (PubMed:24508390). May also regulate the UPR via the EIF2AK3 UPR sensor (PubMed:24508390). Plays a role in platelet aggregation and activation by agonists such as convulxin, collagen and thrombin (PubMed:15466936). {ECO:0000269|PubMed:12204115, ECO:0000269|PubMed:15466936, ECO:0000269|PubMed:24508390}. |
Q15569 | TESK1 | S437 | ochoa | Dual specificity testis-specific protein kinase 1 (EC 2.7.12.1) (Testicular protein kinase 1) | Dual specificity protein kinase activity catalyzing autophosphorylation and phosphorylation of exogenous substrates on both serine/threonine and tyrosine residues (By similarity). Regulates the cellular cytoskeleton by enhancing actin stress fiber formation via phosphorylation of cofilin and by preventing microtubule breakdown via inhibition of TAOK1/MARKK kinase activity (By similarity). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Positively regulates integrin-mediated cell spreading, via phosphorylation of cofilin (PubMed:15584898). Suppresses ciliogenesis via multiple pathways; phosphorylation of CFL1, suppression of ciliary vesicle directional trafficking to the ciliary base, and by facilitating YAP1 nuclear localization where it acts as a transcriptional corepressor of the TEAD4 target genes AURKA and PLK1 (PubMed:25849865). Probably plays a central role at and after the meiotic phase of spermatogenesis (By similarity). {ECO:0000250|UniProtKB:O70146, ECO:0000250|UniProtKB:Q63572, ECO:0000269|PubMed:15584898, ECO:0000269|PubMed:25849865}. |
Q16637 | SMN1 | S180 | psp | Survival motor neuron protein (Component of gems 1) (Gemin-1) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9845364). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Within the SMN complex, SMN1 acts as a structural backbone and together with GEMIN2 it gathers the Sm complex subunits (PubMed:17178713, PubMed:21816274, PubMed:22101937). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development (PubMed:23063131). Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:17178713, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:22101937, ECO:0000269|PubMed:23063131, ECO:0000269|PubMed:26700805, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9845364}. |
Q2TAZ0 | ATG2A | S1309 | ochoa | Autophagy-related protein 2 homolog A | Lipid transfer protein involved in autophagosome assembly (PubMed:28561066, PubMed:30952800, PubMed:31271352). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:30952800, PubMed:31271352). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (PubMed:30952800, PubMed:31271352). Lipid transfer activity is enhanced by WIPI1 and WDR45/WIPI4, which promote ATG2A-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31271352). Also regulates lipid droplets morphology and distribution within the cell (PubMed:22219374, PubMed:28561066). {ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:30952800, ECO:0000269|PubMed:31271352}. |
Q2VPK5 | CTU2 | S415 | ochoa | Cytoplasmic tRNA 2-thiolation protein 2 (Cytosolic thiouridylase subunit 2) | Plays a central role in 2-thiolation of mcm(5)S(2)U at tRNA wobble positions of tRNA(Lys), tRNA(Glu) and tRNA(Gln). May act by forming a heterodimer with CTU1/ATPBD3 that ligates sulfur from thiocarboxylated URM1 onto the uridine of tRNAs at wobble position. {ECO:0000255|HAMAP-Rule:MF_03054, ECO:0000269|PubMed:19017811}. |
Q3KQU3 | MAP7D1 | S93 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q4KMQ1 | TPRN | S296 | ochoa | Taperin | Essential for hearing (By similarity). Required for maintenance of stereocilia on both inner and outer hair cells (By similarity). Necessary for the integrity of the stereociliary rootlet (By similarity). May act as an actin cytoskeleton regulator involved in the regulation of actin dynamics at the pointed end in hair cells (By similarity). Forms rings at the base of stereocilia and binds actin filaments in the stereocilia which may stabilize the stereocilia (By similarity). Acts as a strong inhibitor of PPP1CA phosphatase activity (PubMed:23213405). Recruited to sites of DNA damage and may play a role in DNA damage repair (PubMed:23213405). {ECO:0000250|UniProtKB:A2AI08, ECO:0000269|PubMed:23213405}. |
Q53ET0 | CRTC2 | S519 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q53ET0 | CRTC2 | S520 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q5JRA6 | MIA3 | S1706 | ochoa | Transport and Golgi organization protein 1 homolog (TANGO1) (C219-reactive peptide) (D320) (Melanoma inhibitory activity protein 3) | Plays a role in the transport of cargos that are too large to fit into COPII-coated vesicles and require specific mechanisms to be incorporated into membrane-bound carriers and exported from the endoplasmic reticulum. This protein is required for collagen VII (COL7A1) secretion by loading COL7A1 into transport carriers. It may participate in cargo loading of COL7A1 at endoplasmic reticulum exit sites by binding to COPII coat subunits Sec23/24 and guiding SH3-bound COL7A1 into a growing carrier. Does not play a role in global protein secretion and is apparently specific to COL7A1 cargo loading. However, it may participate in secretion of other proteins in cells that do not secrete COL7A1. It is also specifically required for the secretion of lipoproteins by participating in their export from the endoplasmic reticulum (PubMed:19269366, PubMed:27138255). Required for correct assembly of COPII coat components at endoplasmic reticulum exit sites (ERES) and for the localization of SEC16A and membrane-bound ER-resident complexes consisting of MIA2 and PREB/SEC12 to ERES (PubMed:28442536). {ECO:0000269|PubMed:19269366, ECO:0000269|PubMed:27138255, ECO:0000269|PubMed:28442536}. |
Q5T5P2 | KIAA1217 | S1030 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5TGY3 | AHDC1 | S1007 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5TGY3 | AHDC1 | S1399 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q69YN4 | VIRMA | S173 | ochoa | Protein virilizer homolog | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:24981863, PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs in the 3'-UTR near the stop codon: recruits the catalytic core components METTL3 and METTL14, thereby guiding m6A methylation at specific sites (PubMed:29507755). Required for mRNA polyadenylation via its role in selective m6A methylation: m6A methylation of mRNAs in the 3'-UTR near the stop codon correlating with alternative polyadenylation (APA) (PubMed:29507755). {ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}. |
Q6DN14 | MCTP1 | S198 | ochoa | Multiple C2 and transmembrane domain-containing protein 1 | Calcium sensor which is essential for the stabilization of normal baseline neurotransmitter release and for the induction and long-term maintenance of presynaptic homeostatic plasticity. {ECO:0000250|UniProtKB:A1ZBD6}. |
Q6DN14 | MCTP1 | S199 | ochoa | Multiple C2 and transmembrane domain-containing protein 1 | Calcium sensor which is essential for the stabilization of normal baseline neurotransmitter release and for the induction and long-term maintenance of presynaptic homeostatic plasticity. {ECO:0000250|UniProtKB:A1ZBD6}. |
Q6GQQ9 | OTUD7B | S63 | ochoa | OTU domain-containing protein 7B (EC 3.4.19.12) (Cellular zinc finger anti-NF-kappa-B protein) (Cezanne) (Zinc finger A20 domain-containing protein 1) (Zinc finger protein Cezanne) | Negative regulator of the non-canonical NF-kappa-B pathway that acts by mediating deubiquitination of TRAF3, an inhibitor of the NF-kappa-B pathway, thereby acting as a negative regulator of B-cell responses (PubMed:18178551). In response to non-canonical NF-kappa-B stimuli, deubiquitinates 'Lys-48'-linked polyubiquitin chains of TRAF3, preventing TRAF3 proteolysis and over-activation of non-canonical NF-kappa-B (By similarity). Negatively regulates mucosal immunity against infections (By similarity). Deubiquitinates ZAP70, and thereby regulates T cell receptor (TCR) signaling that leads to the activation of NF-kappa-B (PubMed:26903241). Plays a role in T cell homeostasis and is required for normal T cell responses, including production of IFNG and IL2 (By similarity). Mediates deubiquitination of EGFR (PubMed:22179831). Has deubiquitinating activity toward 'Lys-11', 'Lys-48' and 'Lys-63'-linked polyubiquitin chains (PubMed:11463333, PubMed:20622874, PubMed:23827681, PubMed:27732584). Has a much higher catalytic rate with 'Lys-11'-linked polyubiquitin chains (in vitro); however the physiological significance of these data are unsure (PubMed:27732584). Hydrolyzes both linear and branched forms of polyubiquitin (PubMed:12682062). Acts as a regulator of mTORC1 and mTORC2 assembly by mediating 'Lys-63'-linked deubiquitination of MLST8, thereby promoting assembly of the mTORC2 complex, while inibiting formation of the mTORC1 complex (PubMed:28489822). {ECO:0000250|UniProtKB:B2RUR8, ECO:0000269|PubMed:11463333, ECO:0000269|PubMed:12682062, ECO:0000269|PubMed:18178551, ECO:0000269|PubMed:20622874, ECO:0000269|PubMed:22179831, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:27732584, ECO:0000269|PubMed:28489822}. |
Q6N021 | TET2 | S391 | ochoa | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6P0Q8 | MAST2 | S1337 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P1L5 | FAM117B | S124 | ochoa | Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) | None |
Q6PJ61 | FBXO46 | S334 | ochoa | F-box only protein 46 (F-box only protein 34-like) | Substrate-recognition component of the SCF(FBXO46) protein ligase complex, which mediates the ubiquitination and degradation of target proteins (PubMed:30171069). In absence of stress, the SCF(FBXO46) complex catalyzes ubiquitination and degradation of MTOR-phosphorylated FBXO31 (PubMed:30171069). {ECO:0000269|PubMed:30171069}. |
Q6UUV7 | CRTC3 | S172 | ochoa | CREB-regulated transcription coactivator 3 (Transducer of regulated cAMP response element-binding protein 3) (TORC-3) (Transducer of CREB protein 3) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:15466468, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223, ECO:0000269|PubMed:17644518}. |
Q6UUV7 | CRTC3 | S429 | ochoa | CREB-regulated transcription coactivator 3 (Transducer of regulated cAMP response element-binding protein 3) (TORC-3) (Transducer of CREB protein 3) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:15466468, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223, ECO:0000269|PubMed:17644518}. |
Q6ZRS2 | SRCAP | S2962 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q6ZRS2 | SRCAP | S2964 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q6ZRS2 | SRCAP | S2999 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q70E73 | RAPH1 | S1060 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q70E73 | RAPH1 | S1069 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q70E73 | RAPH1 | S1189 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q7Z2Z1 | TICRR | S1359 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q86TC9 | MYPN | S769 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86VE0 | MYPOP | S206 | ochoa | Myb-related transcription factor, partner of profilin (Myb-related protein p42POP) (Partner of profilin) | Transcriptional repressor; DNA-binding protein that specifically recognizes the core sequence 5'-YAAC[GT]G-3'. Dimerization with PFN1 reduces its DNA-binding capacity (By similarity). {ECO:0000250}. |
Q86YP4 | GATAD2A | S185 | ochoa | Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q86YV0 | RASAL3 | S58 | ochoa | RAS protein activator like-3 | Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}. |
Q86YV0 | RASAL3 | S831 | ochoa | RAS protein activator like-3 | Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}. |
Q8IUC6 | TICAM1 | S343 | ochoa | TIR domain-containing adapter molecule 1 (TICAM-1) (Proline-rich, vinculin and TIR domain-containing protein B) (Putative NF-kappa-B-activating protein 502H) (Toll-interleukin-1 receptor domain-containing adapter protein inducing interferon beta) (MyD88-3) (TIR domain-containing adapter protein inducing IFN-beta) | Involved in innate immunity against invading pathogens. Adapter used by TLR3, TLR4 (through TICAM2) and TLR5 to mediate NF-kappa-B and interferon-regulatory factor (IRF) activation, and to induce apoptosis (PubMed:12471095, PubMed:12539043, PubMed:14739303, PubMed:28747347, PubMed:35215908). Ligand binding to these receptors results in TRIF recruitment through its TIR domain (PubMed:12471095, PubMed:12539043, PubMed:14739303). Distinct protein-interaction motifs allow recruitment of the effector proteins TBK1, TRAF6 and RIPK1, which in turn, lead to the activation of transcription factors IRF3 and IRF7, NF-kappa-B and FADD respectively (PubMed:12471095, PubMed:12539043, PubMed:14739303). Phosphorylation by TBK1 on the pLxIS motif leads to recruitment and subsequent activation of the transcription factor IRF3 to induce expression of type I interferon and exert a potent immunity against invading pathogens (PubMed:25636800). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines (By similarity). {ECO:0000250|UniProtKB:Q80UF7, ECO:0000269|PubMed:12471095, ECO:0000269|PubMed:12539043, ECO:0000269|PubMed:14739303, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:35215908}. |
Q8IUC6 | TICAM1 | T346 | ochoa | TIR domain-containing adapter molecule 1 (TICAM-1) (Proline-rich, vinculin and TIR domain-containing protein B) (Putative NF-kappa-B-activating protein 502H) (Toll-interleukin-1 receptor domain-containing adapter protein inducing interferon beta) (MyD88-3) (TIR domain-containing adapter protein inducing IFN-beta) | Involved in innate immunity against invading pathogens. Adapter used by TLR3, TLR4 (through TICAM2) and TLR5 to mediate NF-kappa-B and interferon-regulatory factor (IRF) activation, and to induce apoptosis (PubMed:12471095, PubMed:12539043, PubMed:14739303, PubMed:28747347, PubMed:35215908). Ligand binding to these receptors results in TRIF recruitment through its TIR domain (PubMed:12471095, PubMed:12539043, PubMed:14739303). Distinct protein-interaction motifs allow recruitment of the effector proteins TBK1, TRAF6 and RIPK1, which in turn, lead to the activation of transcription factors IRF3 and IRF7, NF-kappa-B and FADD respectively (PubMed:12471095, PubMed:12539043, PubMed:14739303). Phosphorylation by TBK1 on the pLxIS motif leads to recruitment and subsequent activation of the transcription factor IRF3 to induce expression of type I interferon and exert a potent immunity against invading pathogens (PubMed:25636800). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines (By similarity). {ECO:0000250|UniProtKB:Q80UF7, ECO:0000269|PubMed:12471095, ECO:0000269|PubMed:12539043, ECO:0000269|PubMed:14739303, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:35215908}. |
Q8IXQ3 | C9orf40 | S83 | ochoa | Uncharacterized protein C9orf40 | None |
Q8N1I0 | DOCK4 | S1897 | ochoa | Dedicator of cytokinesis protein 4 | Functions as a guanine nucleotide exchange factor (GEF) that promotes the exchange of GDP to GTP, converting inactive GDP-bound small GTPases into their active GTP-bound form (PubMed:12628187, PubMed:16464467). Involved in regulation of adherens junction between cells (PubMed:12628187). Plays a role in cell migration (PubMed:20679435). {ECO:0000269|PubMed:12628187, ECO:0000269|PubMed:16464467, ECO:0000269|PubMed:20679435}.; FUNCTION: [Isoform 2]: Has a higher guanine nucleotide exchange factor activity compared to other isoforms. {ECO:0000269|PubMed:16464467}. |
Q8N684 | CPSF7 | S46 | ochoa | Cleavage and polyadenylation specificity factor subunit 7 (Cleavage and polyadenylation specificity factor 59 kDa subunit) (CPSF 59 kDa subunit) (Cleavage factor Im complex 59 kDa subunit) (CFIm59) (Pre-mRNA cleavage factor Im 59 kDa subunit) | Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:17024186, PubMed:29276085, PubMed:8626397). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:17024186, PubMed:8626397). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF7 activates directly the mRNA 3'-processing machinery (PubMed:29276085). Binds to pA signals in RNA substrates (PubMed:17024186, PubMed:8626397). {ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397}. |
Q8NEZ4 | KMT2C | S1889 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8TAB5 | C1orf216 | S124 | ochoa | UPF0500 protein C1orf216 | None |
Q8TAB5 | C1orf216 | S125 | ochoa | UPF0500 protein C1orf216 | None |
Q8TE68 | EPS8L1 | S549 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 1 (EPS8-like protein 1) (Epidermal growth factor receptor pathway substrate 8-related protein 1) (EPS8-related protein 1) | Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. {ECO:0000269|PubMed:14565974}. |
Q8TED9 | AFAP1L1 | S98 | ochoa | Actin filament-associated protein 1-like 1 (AFAP1-like protein 1) | May be involved in podosome and invadosome formation. {ECO:0000269|PubMed:21333378}. |
Q8TEU7 | RAPGEF6 | Y1490 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8TF74 | WIPF2 | S174 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8TF74 | WIPF2 | S175 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8WUF5 | PPP1R13L | S339 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WWM7 | ATXN2L | S430 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q92558 | WASF1 | S333 | ochoa | Actin-binding protein WASF1 (Protein WAVE-1) (Verprolin homology domain-containing protein 1) (Wiskott-Aldrich syndrome protein family member 1) (WASP family protein member 1) | Downstream effector molecule involved in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Promotes formation of actin filaments. Part of the WAVE complex that regulates lamellipodia formation (PubMed:29961568). The WAVE complex regulates actin filament reorganization via its interaction with the Arp2/3 complex (By similarity). As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). Also involved in the regulation of mitochondrial dynamics (PubMed:29961568). {ECO:0000250|UniProtKB:Q8R5H6, ECO:0000269|PubMed:29961568, ECO:0000269|PubMed:9889097}. |
Q92734 | TFG | S369 | ochoa | Protein TFG (TRK-fused gene protein) | Plays a role in the normal dynamic function of the endoplasmic reticulum (ER) and its associated microtubules (PubMed:23479643, PubMed:27813252). Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:21478858). {ECO:0000269|PubMed:21478858, ECO:0000269|PubMed:23479643, ECO:0000269|PubMed:27813252}. |
Q96AW1 | VOPP1 | S99 | ochoa | WW domain binding protein VOPP1 (EGFR-coamplified and overexpressed protein) (ECop) (Glioblastoma-amplified secreted protein) (Putative NF-kappa-B-activating protein 055N) (Vesicular, overexpressed in cancer, prosurvival protein 1) | Increases the transcriptional activity of NFKB1 by facilitating its nuclear translocation, DNA-binding and associated apoptotic response, when overexpressed (PubMed:15735698). May sequester WWOX in lysosomal vesicles and thereby regulate WWOX role as tumor suppressor (PubMed:30285739). {ECO:0000269|PubMed:15735698, ECO:0000269|PubMed:30285739}. |
Q96E39 | RBMXL1 | S221 | ochoa | RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) | RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}. |
Q96HB5 | CCDC120 | Y398 | ochoa | Coiled-coil domain-containing protein 120 | Centriolar protein required for centriole subdistal appendage assembly and microtubule anchoring in interphase cells (PubMed:28422092). Together with CCDC68, cooperate with subdistal appendage components ODF2, NIN and CEP170 for hierarchical subdistal appendage assembly (PubMed:28422092). Recruits NIN and CEP170 to centrosomes (PubMed:28422092). Also required for neurite growth. Localizes CYTH2 to vesicles to allow its transport along neurites, and subsequent ARF6 activation and neurite growth. {ECO:0000269|PubMed:25326380}. |
Q96QT6 | PHF12 | S648 | ochoa | PHD finger protein 12 (PHD factor 1) (Pf1) | Transcriptional repressor acting as key scaffolding subunit of SIN3 complexes which contributes to complex assembly by contacting each core subunit domain, stabilizes the complex and constitutes the substrate receptor by recruiting the H3 histone tail (PubMed:37137925). SIN3 complexes are composed of a SIN3 scaffold subunit, one catalytic core (HDAC1 or HDAC2) and 2 chromatin targeting modules (PubMed:11390640, PubMed:37137925). SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). May also repress transcription in a SIN3A-independent manner through recruitment of functional TLE5 complexes to DNA (PubMed:11390640). May also play a role in ribosomal biogenesis (By similarity). {ECO:0000250|UniProtKB:Q5SPL2, ECO:0000269|PubMed:11390640, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
Q96RY5 | CRAMP1 | S645 | ochoa | Protein cramped-like (Cramped chromatin regulator homolog 1) (Hematological and neurological expressed 1-like protein) | None |
Q96TA1 | NIBAN2 | S624 | ochoa | Protein Niban 2 (Meg-3) (Melanoma invasion by ERK) (MINERVA) (Niban-like protein 1) (Protein FAM129B) | May play a role in apoptosis suppression. May promote melanoma cell invasion in vitro. {ECO:0000269|PubMed:19362540, ECO:0000269|PubMed:21148485}. |
Q96TA1 | NIBAN2 | T651 | ochoa | Protein Niban 2 (Meg-3) (Melanoma invasion by ERK) (MINERVA) (Niban-like protein 1) (Protein FAM129B) | May play a role in apoptosis suppression. May promote melanoma cell invasion in vitro. {ECO:0000269|PubMed:19362540, ECO:0000269|PubMed:21148485}. |
Q99490 | AGAP2 | S808 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 2 (AGAP-2) (Centaurin-gamma-1) (Cnt-g1) (GTP-binding and GTPase-activating protein 2) (GGAP2) (Phosphatidylinositol 3-kinase enhancer) (PIKE) | GTPase-activating protein (GAP) for ARF1 and ARF5, which also shows strong GTPase activity. Isoform 1 participates in the prevention of neuronal apoptosis by enhancing PI3 kinase activity. It aids the coupling of metabotropic glutamate receptor 1 (GRM1) to cytoplasmic PI3 kinase by interacting with Homer scaffolding proteins, and also seems to mediate anti-apoptotic effects of NGF by activating nuclear PI3 kinase. Isoform 2 does not stimulate PI3 kinase but may protect cells from apoptosis by stimulating Akt. It also regulates the adapter protein 1 (AP-1)-dependent trafficking of proteins in the endosomal system. It seems to be oncogenic. It is overexpressed in cancer cells, prevents apoptosis and promotes cancer cell invasion. {ECO:0000269|PubMed:12640130, ECO:0000269|PubMed:14761976, ECO:0000269|PubMed:15118108, ECO:0000269|PubMed:16079295}. |
Q99650 | OSMR | S943 | ochoa | Oncostatin-M-specific receptor subunit beta (Interleukin-31 receptor subunit beta) (IL-31 receptor subunit beta) (IL-31R subunit beta) (IL-31R-beta) (IL-31RB) | Associates with IL31RA to form the IL31 receptor. Binds IL31 to activate STAT3 and possibly STAT1 and STAT5. Capable of transducing OSM-specific signaling events. {ECO:0000269|PubMed:15184896, ECO:0000269|PubMed:8999038}. |
Q99759 | MAP3K3 | S162 | ochoa | Mitogen-activated protein kinase kinase kinase 3 (EC 2.7.11.25) (MAPK/ERK kinase kinase 3) (MEK kinase 3) (MEKK 3) | Component of a protein kinase signal transduction cascade. Mediates activation of the NF-kappa-B, AP1 and DDIT3 transcriptional regulators. {ECO:0000269|PubMed:12912994, ECO:0000269|PubMed:14661019, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:33729480, ECO:0000269|PubMed:33891857, ECO:0000269|PubMed:9006902}. |
Q9BRD0 | BUD13 | S184 | ochoa | BUD13 homolog | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9BRQ0 | PYGO2 | S48 | ochoa|psp | Pygopus homolog 2 | Involved in signal transduction through the Wnt pathway. |
Q9BTC0 | DIDO1 | S1242 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BU23 | LMF2 | S678 | ochoa | Lipase maturation factor 2 (Transmembrane protein 112B) (Transmembrane protein 153) | Involved in the maturation of specific proteins in the endoplasmic reticulum. May be required for maturation and transport of active lipoprotein lipase (LPL) through the secretory pathway (By similarity). {ECO:0000250}. |
Q9BX66 | SORBS1 | S228 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9C0A6 | SETD5 | S590 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0C4 | SEMA4C | S742 | ochoa | Semaphorin-4C | Cell surface receptor for PLXNB2 that plays an important role in cell-cell signaling. PLXNB2 binding promotes downstream activation of RHOA and phosphorylation of ERBB2 at 'Tyr-1248'. Required for normal brain development, axon guidance and cell migration (By similarity). Probable signaling receptor which may play a role in myogenic differentiation through activation of the stress-activated MAPK cascade. {ECO:0000250, ECO:0000269|PubMed:17498836}. |
Q9C0K0 | BCL11B | S164 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9H3P2 | NELFA | S340 | ochoa | Negative elongation factor A (NELF-A) (Wolf-Hirschhorn syndrome candidate 2 protein) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II. The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex. {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:12563561, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}. |
Q9H4Z2 | ZNF335 | S989 | ochoa | Zinc finger protein 335 (NRC-interacting factor 1) (NIF-1) | Component or associated component of some histone methyltransferase complexes may regulate transcription through recruitment of those complexes on gene promoters (PubMed:19131338, PubMed:23178126). Enhances ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:12215545, PubMed:18180299, PubMed:19131338). Plays an important role in neural progenitor cell proliferation and self-renewal through the regulation of specific genes involved brain development, including REST (PubMed:23178126). Also controls the expression of genes involved in somatic development and regulates, for instance, lymphoblast proliferation (PubMed:23178126). {ECO:0000269|PubMed:12215545, ECO:0000269|PubMed:18180299, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:23178126}. |
Q9H7D0 | DOCK5 | T1835 | ochoa | Dedicator of cytokinesis protein 5 | Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}. |
Q9HBR0 | SLC38A10 | S802 | ochoa | Solute carrier family 38 member 10 (Amino acid transporter SLC38A10) | Facilitates bidirectional transport of amino acids. May act as a glutamate sensor that regulates glutamate-glutamine cycle and mTOR signaling in the brain. The transport mechanism remains to be elucidated. {ECO:0000250|UniProtKB:Q5I012}. |
Q9NQW6 | ANLN | S168 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NVZ3 | NECAP2 | S186 | ochoa | Adaptin ear-binding coat-associated protein 2 (NECAP endocytosis-associated protein 2) (NECAP-2) | Involved in endocytosis. {ECO:0000250}. |
Q9NWH9 | SLTM | S815 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NYV4 | CDK12 | S614 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NYV4 | CDK12 | T1071 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NZM4 | BICRA | S919 | ochoa | BRD4-interacting chromatin-remodeling complex-associated protein (Glioma tumor suppressor candidate region gene 1 protein) | Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). May play a role in BRD4-mediated gene transcription (PubMed:21555454). {ECO:0000269|PubMed:21555454, ECO:0000269|PubMed:29374058}. |
Q9P1Y5 | CAMSAP3 | S434 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P206 | NHSL3 | S948 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P266 | JCAD | S371 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9UBW5 | BIN2 | S398 | ochoa | Bridging integrator 2 (Breast cancer-associated protein 1) | Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}. |
Q9UJY5 | GGA1 | S355 | psp | ADP-ribosylation factor-binding protein GGA1 (Gamma-adaptin-related protein 1) (Golgi-localized, gamma ear-containing, ARF-binding protein 1) | Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif (PubMed:11301005, PubMed:15886016). Mediates export of the GPCR receptor ADRA2B to the cell surface (PubMed:27901063). Required for targeting PKD1:PKD2 complex from the trans-Golgi network to the cilium membrane (By similarity). Regulates retrograde transport of proteins such as phosphorylated form of BACE1 from endosomes to the trans-Golgi network (PubMed:15615712, PubMed:15886016). {ECO:0000250|UniProtKB:Q8R0H9, ECO:0000269|PubMed:11301005, ECO:0000269|PubMed:15615712, ECO:0000269|PubMed:15886016, ECO:0000269|PubMed:27901063}. |
Q9UKV3 | ACIN1 | S410 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKV3 | ACIN1 | S1104 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9ULH1 | ASAP1 | S812 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 (130 kDa phosphatidylinositol 4,5-bisphosphate-dependent ARF1 GTPase-activating protein) (ADP-ribosylation factor-directed GTPase-activating protein 1) (ARF GTPase-activating protein 1) (Development and differentiation-enhancing factor 1) (DEF-1) (Differentiation-enhancing factor 1) (PIP2-dependent ARF1 GAP) | Possesses phosphatidylinositol 4,5-bisphosphate-dependent GTPase-activating protein activity for ARF1 (ADP ribosylation factor 1) and ARF5 and a lesser activity towards ARF6. May coordinate membrane trafficking with cell growth or actin cytoskeleton remodeling by binding to both SRC and PIP2. May function as a signal transduction protein involved in the differentiation of fibroblasts into adipocytes and possibly other cell types. Part of the ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which direct preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879). {ECO:0000250, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:25673879}. |
Q9UPP1 | PHF8 | T957 | ochoa | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UQ35 | SRRM2 | S346 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQB3 | CTNND2 | S201 | ochoa | Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) | Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}. |
Q9Y2H0 | DLGAP4 | S763 | ochoa | Disks large-associated protein 4 (DAP-4) (PSD-95/SAP90-binding protein 4) (SAP90/PSD-95-associated protein 4) (SAPAP-4) | May play a role in the molecular organization of synapses and neuronal cell signaling. Could be an adapter protein linking ion channel to the subsynaptic cytoskeleton. May induce enrichment of PSD-95/SAP90 at the plasma membrane. |
Q9Y2J4 | AMOTL2 | S727 | ochoa | Angiomotin-like protein 2 (Leman coiled-coil protein) (LCCP) | Regulates the translocation of phosphorylated SRC to peripheral cell-matrix adhesion sites. Required for proper architecture of actin filaments. Plays a role in coupling actin fibers to cell junctions in endothelial cells and is therefore required for correct endothelial cell morphology via facilitating transcellular transmission of mechanical force resulting in endothelial cell elongation (By similarity). Required for the anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane which facilitates organization of radial actin fiber structure and cellular response to contractile forces (PubMed:28842668). This contributes to maintenance of cell area, size, shape, epithelial sheet organization and trophectoderm cell properties that facilitate blastocyst zona hatching (PubMed:28842668). Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. Participates in angiogenesis. Activates the Hippo signaling pathway in response to cell contact inhibition via interaction with and ubiquitination by Crumbs complex-bound WWP1 (PubMed:34404733). Ubiquitinated AMOTL2 then interacts with LATS2 which in turn phosphorylates YAP1, excluding it from the nucleus and localizing it to the cytoplasm and tight junctions, therefore ultimately repressing YAP1-driven transcription of target genes (PubMed:17293535, PubMed:21205866, PubMed:26598551). Acts to inhibit WWTR1/TAZ transcriptional coactivator activity via sequestering WWTR1/TAZ in the cytoplasm and at tight junctions (PubMed:23911299). Regulates the size and protein composition of the podosome cortex and core at myofibril neuromuscular junctions (PubMed:23525008). Selectively promotes FGF-induced MAPK activation through SRC (PubMed:17293535). May play a role in the polarity, proliferation and migration of endothelial cells. {ECO:0000250|UniProtKB:Q8K371, ECO:0000269|PubMed:17293535, ECO:0000269|PubMed:21205866, ECO:0000269|PubMed:21937427, ECO:0000269|PubMed:22362771, ECO:0000269|PubMed:23525008, ECO:0000269|PubMed:23911299, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:28842668, ECO:0000269|PubMed:34404733}. |
Q9Y2K6 | USP20 | S394 | ochoa | Ubiquitin carboxyl-terminal hydrolase 20 (EC 3.4.19.12) (Deubiquitinating enzyme 20) (Ubiquitin thioesterase 20) (Ubiquitin-specific-processing protease 20) (VHL-interacting deubiquitinating enzyme 2) (hVDU2) | Deubiquitinating enzyme that plays a role in many cellular processes including autophagy, cellular antiviral response or membrane protein biogenesis (PubMed:27801882, PubMed:29487085). Attenuates TLR4-mediated NF-kappa-B signaling by cooperating with beta-arrestin-2/ARRB2 and inhibiting TRAF6 autoubiquitination (PubMed:26839314). Promotes cellular antiviral responses by deconjugating 'Lys-33' and 'Lys-48'-linked ubiquitination of STING1 leading to its stabilization (PubMed:27801882). Plays an essential role in autophagy induction by regulating the ULK1 stability through deubiquitination of ULK1 (PubMed:29487085). Acts as a positive regulator for NF-kappa-B activation by TNF-alpha through deubiquitinating 'Lys-48'-linked polyubiquitination of SQSTM1, leading to its increased stability (PubMed:32354117). Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination beta-2 adrenergic receptor (ADRB2) (PubMed:19424180). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, possibly leading to beta-arrestins deubiquitination and disengagement from ADRB2 (PubMed:19424180). This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Deubiquitinates HIF1A, leading to stabilize HIF1A and enhance HIF1A-mediated activity (PubMed:15776016). Deubiquitinates MCL1, a pivotal member of the anti-apoptotic Bcl-2 protein family to regulate its stability (PubMed:35063767). Within the endoplasmic reticulum, participates with USP33 in the rescue of post-translationally targeted membrane proteins that are inappropriately ubiquitinated by the cytosolic protein quality control in the cytosol (PubMed:33792613). {ECO:0000269|PubMed:12056827, ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:15776016, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:26839314, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:32354117, ECO:0000269|PubMed:33792613, ECO:0000269|PubMed:35063767}. |
Q9Y3C5 | RNF11 | S21 | ochoa | RING finger protein 11 | Essential component of a ubiquitin-editing protein complex, comprising also TNFAIP3, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. Promotes the association of TNFAIP3 to RIPK1 after TNF stimulation. TNFAIP3 deubiquitinates 'Lys-63' polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Recruits STAMBP to the E3 ubiquitin-ligase SMURF2 for ubiquitination, leading to its degradation by the 26S proteasome. {ECO:0000269|PubMed:14755250}. |
Q9Y5B0 | CTDP1 | S793 | ochoa | RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) | Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}. |
Q9Y6W5 | WASF2 | S284 | ochoa | Actin-binding protein WASF2 (Protein WAVE-2) (Verprolin homology domain-containing protein 2) (Wiskott-Aldrich syndrome protein family member 2) (WASP family protein member 2) | Downstream effector molecule involved in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Promotes formation of actin filaments. Part of the WAVE complex that regulates lamellipodia formation. The WAVE complex regulates actin filament reorganization via its interaction with the Arp2/3 complex. {ECO:0000269|PubMed:10381382, ECO:0000269|PubMed:16275905}. |
O14733 | MAP2K7 | S277 | Sugiyama | Dual specificity mitogen-activated protein kinase kinase 7 (MAP kinase kinase 7) (MAPKK 7) (EC 2.7.12.2) (JNK-activating kinase 2) (MAPK/ERK kinase 7) (MEK 7) (Stress-activated protein kinase kinase 4) (SAPK kinase 4) (SAPKK-4) (SAPKK4) (c-Jun N-terminal kinase kinase 2) (JNK kinase 2) (JNKK 2) | Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K4/MKK4, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4/MKK4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The monophosphorylation of JNKs on the Thr residue is sufficient to increase JNK activity indicating that MAP2K7/MKK7 is important to trigger JNK activity, while the additional phosphorylation of the Tyr residue by MAP2K4/MKK4 ensures optimal JNK activation. Has a specific role in JNK signal transduction pathway activated by pro-inflammatory cytokines. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Part of a non-canonical MAPK signaling pathway, composed of the upstream MAP3K12 kinase and downstream MAP kinases MAPK1/ERK2 and MAPK3/ERK1, that enhances the AP-1-mediated transcription of APP in response to APOE (PubMed:28111074). {ECO:0000269|PubMed:28111074, ECO:0000269|PubMed:9312068, ECO:0000269|PubMed:9372971, ECO:0000269|PubMed:9535930, ECO:0000269|Ref.5}. |
P56645 | PER3 | S625 | SIGNOR|iPTMNet | Period circadian protein homolog 3 (hPER3) (Cell growth-inhibiting gene 13 protein) (Circadian clock protein PERIOD 3) | Originally described as a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1, NR1D2, RORA, RORB and RORG, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Has a redundant role with the other PER proteins PER1 and PER2 and is not essential for the circadian rhythms maintenance. In contrast, plays an important role in sleep-wake timing and sleep homeostasis probably through the transcriptional regulation of sleep homeostasis-related genes, without influencing circadian parameters. Can bind heme. {ECO:0000269|PubMed:17346965, ECO:0000269|PubMed:19716732, ECO:0000269|PubMed:24439663, ECO:0000269|PubMed:24577121, ECO:0000269|PubMed:26903630}. |
P08151 | GLI1 | S550 | GPS6 | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
Q96PV0 | SYNGAP1 | S779 | SIGNOR | Ras/Rap GTPase-activating protein SynGAP (Neuronal RasGAP) (Synaptic Ras GTPase-activating protein 1) (Synaptic Ras-GAP 1) | Major constituent of the PSD essential for postsynaptic signaling. Inhibitory regulator of the Ras-cAMP pathway. Member of the NMDAR signaling complex in excitatory synapses, it may play a role in NMDAR-dependent control of AMPAR potentiation, AMPAR membrane trafficking and synaptic plasticity. Regulates AMPAR-mediated miniature excitatory postsynaptic currents. Exhibits dual GTPase-activating specificity for Ras and Rap. May be involved in certain forms of brain injury, leading to long-term learning and memory deficits (By similarity). {ECO:0000250}. |
Q96PV0 | SYNGAP1 | S780 | SIGNOR | Ras/Rap GTPase-activating protein SynGAP (Neuronal RasGAP) (Synaptic Ras GTPase-activating protein 1) (Synaptic Ras-GAP 1) | Major constituent of the PSD essential for postsynaptic signaling. Inhibitory regulator of the Ras-cAMP pathway. Member of the NMDAR signaling complex in excitatory synapses, it may play a role in NMDAR-dependent control of AMPAR potentiation, AMPAR membrane trafficking and synaptic plasticity. Regulates AMPAR-mediated miniature excitatory postsynaptic currents. Exhibits dual GTPase-activating specificity for Ras and Rap. May be involved in certain forms of brain injury, leading to long-term learning and memory deficits (By similarity). {ECO:0000250}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-428540 | Activation of RAC1 | 0.000473 | 3.325 |
R-HSA-194138 | Signaling by VEGF | 0.000561 | 3.251 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.000674 | 3.172 |
R-HSA-202433 | Generation of second messenger molecules | 0.000944 | 3.025 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.001051 | 2.979 |
R-HSA-422475 | Axon guidance | 0.001006 | 2.997 |
R-HSA-9675108 | Nervous system development | 0.001169 | 2.932 |
R-HSA-75153 | Apoptotic execution phase | 0.001897 | 2.722 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.002192 | 2.659 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.002979 | 2.526 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.003353 | 2.475 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.003990 | 2.399 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.003803 | 2.420 |
R-HSA-177929 | Signaling by EGFR | 0.004335 | 2.363 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.004902 | 2.310 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.005018 | 2.299 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.004580 | 2.339 |
R-HSA-162582 | Signal Transduction | 0.005040 | 2.298 |
R-HSA-4839726 | Chromatin organization | 0.005070 | 2.295 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.005387 | 2.269 |
R-HSA-191859 | snRNP Assembly | 0.005387 | 2.269 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.006325 | 2.199 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.006593 | 2.181 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.006624 | 2.179 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.006624 | 2.179 |
R-HSA-376176 | Signaling by ROBO receptors | 0.006874 | 2.163 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.006900 | 2.161 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.007775 | 2.109 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.007658 | 2.116 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.007658 | 2.116 |
R-HSA-202403 | TCR signaling | 0.008809 | 2.055 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.008665 | 2.062 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.010716 | 1.970 |
R-HSA-2424491 | DAP12 signaling | 0.010716 | 1.970 |
R-HSA-418885 | DCC mediated attractive signaling | 0.010490 | 1.979 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.010539 | 1.977 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.012023 | 1.920 |
R-HSA-182971 | EGFR downregulation | 0.011744 | 1.930 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.013690 | 1.864 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.015465 | 1.811 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.015475 | 1.810 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.015475 | 1.810 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.014765 | 1.831 |
R-HSA-68875 | Mitotic Prophase | 0.014735 | 1.832 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.016480 | 1.783 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.017385 | 1.760 |
R-HSA-210993 | Tie2 Signaling | 0.017385 | 1.760 |
R-HSA-8853659 | RET signaling | 0.019237 | 1.716 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.018267 | 1.738 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.018060 | 1.743 |
R-HSA-193648 | NRAGE signals death through JNK | 0.018265 | 1.738 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.019237 | 1.716 |
R-HSA-9842640 | Signaling by LTK in cancer | 0.019276 | 1.715 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.019375 | 1.713 |
R-HSA-912631 | Regulation of signaling by CBL | 0.019421 | 1.712 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.023141 | 1.636 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.023437 | 1.630 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.023437 | 1.630 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.022264 | 1.652 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.023871 | 1.622 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.023871 | 1.622 |
R-HSA-9707616 | Heme signaling | 0.025586 | 1.592 |
R-HSA-451927 | Interleukin-2 family signaling | 0.025563 | 1.592 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.025781 | 1.589 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.026031 | 1.585 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.026285 | 1.580 |
R-HSA-9607240 | FLT3 Signaling | 0.027318 | 1.564 |
R-HSA-109581 | Apoptosis | 0.027672 | 1.558 |
R-HSA-201688 | WNT mediated activation of DVL | 0.032739 | 1.485 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.031491 | 1.502 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.033485 | 1.475 |
R-HSA-9664417 | Leishmania phagocytosis | 0.033380 | 1.477 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.033380 | 1.477 |
R-HSA-9664407 | Parasite infection | 0.033380 | 1.477 |
R-HSA-8953854 | Metabolism of RNA | 0.031172 | 1.506 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.033005 | 1.481 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.034281 | 1.465 |
R-HSA-429947 | Deadenylation of mRNA | 0.034281 | 1.465 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.034442 | 1.463 |
R-HSA-2172127 | DAP12 interactions | 0.035043 | 1.455 |
R-HSA-373752 | Netrin-1 signaling | 0.035043 | 1.455 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.039333 | 1.405 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.036636 | 1.436 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 0.037846 | 1.422 |
R-HSA-195721 | Signaling by WNT | 0.039089 | 1.408 |
R-HSA-3214842 | HDMs demethylate histones | 0.037195 | 1.430 |
R-HSA-211728 | Regulation of PAK-2p34 activity by PS-GAP/RHG10 | 0.045747 | 1.340 |
R-HSA-5602566 | TICAM1 deficiency - HSE | 0.045747 | 1.340 |
R-HSA-5083628 | Defective POMGNT1 causes MDDGA3, MDDGB3 and MDDGC3 | 0.067832 | 1.169 |
R-HSA-9845622 | Defective VWF binding to collagen type I | 0.067832 | 1.169 |
R-HSA-5602571 | TRAF3 deficiency - HSE | 0.067832 | 1.169 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 0.089407 | 1.049 |
R-HSA-211736 | Stimulation of the cell death response by PAK-2p34 | 0.089407 | 1.049 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 0.089407 | 1.049 |
R-HSA-8951911 | RUNX3 regulates RUNX1-mediated transcription | 0.089407 | 1.049 |
R-HSA-68881 | Mitotic Metaphase/Anaphase Transition | 0.089407 | 1.049 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 0.089407 | 1.049 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 0.089407 | 1.049 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 0.089407 | 1.049 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 0.089407 | 1.049 |
R-HSA-9918454 | Defective visual phototransduction due to ABCA4 loss of function | 0.089407 | 1.049 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 0.089407 | 1.049 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 0.089407 | 1.049 |
R-HSA-9845619 | Enhanced cleavage of VWF variant by ADAMTS13 | 0.089407 | 1.049 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 0.089407 | 1.049 |
R-HSA-5083633 | Defective POMT1 causes MDDGA1, MDDGB1 and MDDGC1 | 0.089407 | 1.049 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 0.089407 | 1.049 |
R-HSA-9845621 | Defective VWF cleavage by ADAMTS13 variant | 0.089407 | 1.049 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 0.089407 | 1.049 |
R-HSA-5083629 | Defective POMT2 causes MDDGA2, MDDGB2 and MDDGC2 | 0.089407 | 1.049 |
R-HSA-112308 | Presynaptic depolarization and calcium channel opening | 0.043233 | 1.364 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.054791 | 1.261 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.054791 | 1.261 |
R-HSA-179812 | GRB2 events in EGFR signaling | 0.054791 | 1.261 |
R-HSA-177504 | Retrograde neurotrophin signalling | 0.067294 | 1.172 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.073865 | 1.132 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.073865 | 1.132 |
R-HSA-180336 | SHC1 events in EGFR signaling | 0.073865 | 1.132 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.087582 | 1.058 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.053578 | 1.271 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.057207 | 1.243 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.057207 | 1.243 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.064804 | 1.188 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.064804 | 1.188 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.068767 | 1.163 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.077014 | 1.113 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.048772 | 1.312 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.053920 | 1.268 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.056600 | 1.247 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.072003 | 1.143 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.072003 | 1.143 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.073698 | 1.133 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.073698 | 1.133 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.065932 | 1.181 |
R-HSA-72172 | mRNA Splicing | 0.083764 | 1.077 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.040231 | 1.395 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.050064 | 1.300 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.053578 | 1.271 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 0.080632 | 1.093 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.087582 | 1.058 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.043389 | 1.363 |
R-HSA-1227986 | Signaling by ERBB2 | 0.077307 | 1.112 |
R-HSA-9832991 | Formation of the posterior neural plate | 0.043233 | 1.364 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.080632 | 1.093 |
R-HSA-9664420 | Killing mechanisms | 0.080632 | 1.093 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.045264 | 1.344 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.051779 | 1.286 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 0.073865 | 1.132 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 0.073865 | 1.132 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.053578 | 1.271 |
R-HSA-77042 | Formation of editosomes by ADAR proteins | 0.045747 | 1.340 |
R-HSA-75064 | mRNA Editing: A to I Conversion | 0.089407 | 1.049 |
R-HSA-75102 | C6 deamination of adenosine | 0.089407 | 1.049 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.085672 | 1.067 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.074144 | 1.130 |
R-HSA-9945266 | Differentiation of T cells | 0.080632 | 1.093 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.080632 | 1.093 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.053578 | 1.271 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.054791 | 1.261 |
R-HSA-9005895 | Pervasive developmental disorders | 0.054791 | 1.261 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.054791 | 1.261 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.068767 | 1.163 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.055459 | 1.256 |
R-HSA-162587 | HIV Life Cycle | 0.056112 | 1.251 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.081293 | 1.090 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.080632 | 1.093 |
R-HSA-9909396 | Circadian clock | 0.061740 | 1.209 |
R-HSA-162906 | HIV Infection | 0.068253 | 1.166 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.057743 | 1.239 |
R-HSA-186763 | Downstream signal transduction | 0.057207 | 1.243 |
R-HSA-6806834 | Signaling by MET | 0.057743 | 1.239 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.067294 | 1.172 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.064804 | 1.188 |
R-HSA-180746 | Nuclear import of Rev protein | 0.072838 | 1.138 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.040136 | 1.396 |
R-HSA-389356 | Co-stimulation by CD28 | 0.043909 | 1.357 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.060950 | 1.215 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.083832 | 1.077 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.055459 | 1.256 |
R-HSA-9842663 | Signaling by LTK | 0.054791 | 1.261 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.067294 | 1.172 |
R-HSA-9823739 | Formation of the anterior neural plate | 0.073865 | 1.132 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.073865 | 1.132 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.044342 | 1.353 |
R-HSA-186797 | Signaling by PDGF | 0.083832 | 1.077 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.073698 | 1.133 |
R-HSA-1266738 | Developmental Biology | 0.053722 | 1.270 |
R-HSA-2559583 | Cellular Senescence | 0.047002 | 1.328 |
R-HSA-1433559 | Regulation of KIT signaling | 0.067294 | 1.172 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.046667 | 1.331 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.047220 | 1.326 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.087582 | 1.058 |
R-HSA-5357801 | Programmed Cell Death | 0.041444 | 1.383 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.053385 | 1.273 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.059996 | 1.222 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.043357 | 1.363 |
R-HSA-8875878 | MET promotes cell motility | 0.090150 | 1.045 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.090150 | 1.045 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 0.110483 | 0.957 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 0.110483 | 0.957 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 0.131074 | 0.882 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 0.131074 | 0.882 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 0.131074 | 0.882 |
R-HSA-9846298 | Defective binding of VWF variant to GPIb:IX:V | 0.151188 | 0.820 |
R-HSA-9706377 | FLT3 signaling by CBL mutants | 0.151188 | 0.820 |
R-HSA-9845620 | Enhanced binding of GP1BA variant to VWF multimer:collagen | 0.151188 | 0.820 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 0.170839 | 0.767 |
R-HSA-9823587 | Defects of platelet adhesion to exposed collagen | 0.170839 | 0.767 |
R-HSA-182218 | Nef Mediated CD8 Down-regulation | 0.170839 | 0.767 |
R-HSA-5638302 | Signaling by Overexpressed Wild-Type EGFR in Cancer | 0.170839 | 0.767 |
R-HSA-5638303 | Inhibition of Signaling by Overexpressed EGFR | 0.170839 | 0.767 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.170839 | 0.767 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.190036 | 0.721 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 0.190036 | 0.721 |
R-HSA-8949275 | RUNX3 Regulates Immune Response and Cell Migration | 0.208789 | 0.680 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 0.208789 | 0.680 |
R-HSA-112412 | SOS-mediated signalling | 0.208789 | 0.680 |
R-HSA-111367 | SLBP independent Processing of Histone Pre-mRNAs | 0.208789 | 0.680 |
R-HSA-8932506 | DAG1 core M1 glycosylations | 0.208789 | 0.680 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 0.227109 | 0.644 |
R-HSA-8932504 | DAG1 core M2 glycosylations | 0.227109 | 0.644 |
R-HSA-212718 | EGFR interacts with phospholipase C-gamma | 0.227109 | 0.644 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 0.101983 | 0.991 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.109412 | 0.961 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.262490 | 0.581 |
R-HSA-8932505 | DAG1 core M3 glycosylations | 0.279570 | 0.554 |
R-HSA-4839744 | Signaling by APC mutants | 0.279570 | 0.554 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.279570 | 0.554 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.279570 | 0.554 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.279570 | 0.554 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 0.296256 | 0.528 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 0.296256 | 0.528 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.296256 | 0.528 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.296256 | 0.528 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.094723 | 1.024 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.099390 | 1.003 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.312556 | 0.505 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.312556 | 0.505 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.312556 | 0.505 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.312556 | 0.505 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.312556 | 0.505 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.181307 | 0.742 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.181307 | 0.742 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.189693 | 0.722 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.189693 | 0.722 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.189693 | 0.722 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.328479 | 0.483 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 0.328479 | 0.483 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.198131 | 0.703 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 0.344035 | 0.463 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.359231 | 0.445 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.359231 | 0.445 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 0.359231 | 0.445 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.359231 | 0.445 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.240857 | 0.618 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.374076 | 0.427 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.301154 | 0.521 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.232647 | 0.633 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.232647 | 0.633 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.251208 | 0.600 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.295224 | 0.530 |
R-HSA-380287 | Centrosome maturation | 0.307907 | 0.512 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.229425 | 0.639 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.101983 | 0.991 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.352355 | 0.453 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.113555 | 0.945 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.113555 | 0.945 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.113555 | 0.945 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.116978 | 0.932 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.301154 | 0.521 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 0.296256 | 0.528 |
R-HSA-167169 | HIV Transcription Elongation | 0.301154 | 0.521 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 0.170839 | 0.767 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.189693 | 0.722 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.292560 | 0.534 |
R-HSA-167172 | Transcription of the HIV genome | 0.263701 | 0.579 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.245007 | 0.611 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 0.208789 | 0.680 |
R-HSA-190873 | Gap junction degradation | 0.245007 | 0.611 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 0.312556 | 0.505 |
R-HSA-75892 | Platelet Adhesion to exposed collagen | 0.328479 | 0.483 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.215133 | 0.667 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.295224 | 0.530 |
R-HSA-68877 | Mitotic Prometaphase | 0.231468 | 0.636 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.132483 | 0.878 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.312556 | 0.505 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.352218 | 0.453 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.156527 | 0.805 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.168029 | 0.775 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.211779 | 0.674 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.276269 | 0.559 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.243152 | 0.614 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.190036 | 0.721 |
R-HSA-77588 | SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs | 0.227109 | 0.644 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.245007 | 0.611 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.124672 | 0.904 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.240857 | 0.618 |
R-HSA-4086400 | PCP/CE pathway | 0.144824 | 0.839 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.365015 | 0.438 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.104947 | 0.979 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.357293 | 0.447 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 0.359231 | 0.445 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 0.208789 | 0.680 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.208789 | 0.680 |
R-HSA-5221030 | TET1,2,3 and TDG demethylate DNA | 0.262490 | 0.581 |
R-HSA-8851805 | MET activates RAS signaling | 0.312556 | 0.505 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.181307 | 0.742 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.359231 | 0.445 |
R-HSA-3214815 | HDACs deacetylate histones | 0.184633 | 0.734 |
R-HSA-74749 | Signal attenuation | 0.262490 | 0.581 |
R-HSA-4641258 | Degradation of DVL | 0.275334 | 0.560 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.121708 | 0.915 |
R-HSA-437239 | Recycling pathway of L1 | 0.368969 | 0.433 |
R-HSA-9843745 | Adipogenesis | 0.133834 | 0.873 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.344269 | 0.463 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.232261 | 0.634 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.108993 | 0.963 |
R-HSA-3249367 | STAT6-mediated induction of chemokines | 0.110483 | 0.957 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.110483 | 0.957 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.110483 | 0.957 |
R-HSA-176417 | Phosphorylation of Emi1 | 0.170839 | 0.767 |
R-HSA-196025 | Formation of annular gap junctions | 0.227109 | 0.644 |
R-HSA-9927354 | Co-stimulation by ICOS | 0.227109 | 0.644 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 0.262490 | 0.581 |
R-HSA-9034864 | Activated NTRK3 signals through RAS | 0.279570 | 0.554 |
R-HSA-9026519 | Activated NTRK2 signals through RAS | 0.296256 | 0.528 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.296256 | 0.528 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.296256 | 0.528 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.296256 | 0.528 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 0.312556 | 0.505 |
R-HSA-8866427 | VLDLR internalisation and degradation | 0.312556 | 0.505 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.328479 | 0.483 |
R-HSA-174490 | Membrane binding and targetting of GAG proteins | 0.328479 | 0.483 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.129205 | 0.889 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.215133 | 0.667 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 0.359231 | 0.445 |
R-HSA-176412 | Phosphorylation of the APC/C | 0.374076 | 0.427 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.374076 | 0.427 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.301154 | 0.521 |
R-HSA-68886 | M Phase | 0.095177 | 1.021 |
R-HSA-156711 | Polo-like kinase mediated events | 0.101983 | 0.991 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.339667 | 0.469 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.335315 | 0.475 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.321082 | 0.493 |
R-HSA-5694530 | Cargo concentration in the ER | 0.215133 | 0.667 |
R-HSA-68882 | Mitotic Anaphase | 0.317368 | 0.498 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.170839 | 0.767 |
R-HSA-198203 | PI3K/AKT activation | 0.262490 | 0.581 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.262490 | 0.581 |
R-HSA-2428933 | SHC-related events triggered by IGF1R | 0.312556 | 0.505 |
R-HSA-174495 | Synthesis And Processing Of GAG, GAGPOL Polyproteins | 0.344035 | 0.463 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.156775 | 0.805 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.266366 | 0.575 |
R-HSA-5632684 | Hedgehog 'on' state | 0.282576 | 0.549 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.360614 | 0.443 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.140402 | 0.853 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.359231 | 0.445 |
R-HSA-5617833 | Cilium Assembly | 0.365157 | 0.438 |
R-HSA-525793 | Myogenesis | 0.172979 | 0.762 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.301154 | 0.521 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.301154 | 0.521 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.289740 | 0.538 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.148419 | 0.829 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.282576 | 0.549 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 0.109412 | 0.961 |
R-HSA-75072 | mRNA Editing | 0.245007 | 0.611 |
R-HSA-1236973 | Cross-presentation of particulate exogenous antigens (phagosomes) | 0.262490 | 0.581 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.296256 | 0.528 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.181307 | 0.742 |
R-HSA-442720 | CREB1 phosphorylation through the activation of Adenylate Cyclase | 0.328479 | 0.483 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.344035 | 0.463 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.232261 | 0.634 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 0.374076 | 0.427 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.220417 | 0.657 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.309730 | 0.509 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.198131 | 0.703 |
R-HSA-445355 | Smooth Muscle Contraction | 0.173072 | 0.762 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.249468 | 0.603 |
R-HSA-199991 | Membrane Trafficking | 0.306884 | 0.513 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.248185 | 0.605 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.150884 | 0.821 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.343784 | 0.464 |
R-HSA-69236 | G1 Phase | 0.343784 | 0.464 |
R-HSA-9028731 | Activated NTRK2 signals through FRS2 and FRS3 | 0.312556 | 0.505 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 0.328479 | 0.483 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.263701 | 0.579 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.359231 | 0.445 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.288895 | 0.539 |
R-HSA-3214847 | HATs acetylate histones | 0.258317 | 0.588 |
R-HSA-6794361 | Neurexins and neuroligins | 0.167371 | 0.776 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 0.190036 | 0.721 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.208789 | 0.680 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 0.227109 | 0.644 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.262490 | 0.581 |
R-HSA-166208 | mTORC1-mediated signalling | 0.140402 | 0.853 |
R-HSA-2214320 | Anchoring fibril formation | 0.296256 | 0.528 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.164716 | 0.783 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.164716 | 0.783 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.099390 | 1.003 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.099390 | 1.003 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.104147 | 0.982 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.359231 | 0.445 |
R-HSA-1640170 | Cell Cycle | 0.265444 | 0.576 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.175736 | 0.755 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.301563 | 0.521 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.326963 | 0.486 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.178015 | 0.750 |
R-HSA-9659379 | Sensory processing of sound | 0.149102 | 0.827 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.232647 | 0.633 |
R-HSA-8848021 | Signaling by PTK6 | 0.232647 | 0.633 |
R-HSA-162909 | Host Interactions of HIV factors | 0.224302 | 0.649 |
R-HSA-5654743 | Signaling by FGFR4 | 0.335315 | 0.475 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.190489 | 0.720 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.245007 | 0.611 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.275334 | 0.560 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.192173 | 0.716 |
R-HSA-5654741 | Signaling by FGFR3 | 0.352218 | 0.453 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.170839 | 0.767 |
R-HSA-164944 | Nef and signal transduction | 0.190036 | 0.721 |
R-HSA-8949664 | Processing of SMDT1 | 0.328479 | 0.483 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.134453 | 0.871 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.344035 | 0.463 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.359231 | 0.445 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.288895 | 0.539 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.210266 | 0.677 |
R-HSA-9658195 | Leishmania infection | 0.099867 | 1.001 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.099867 | 1.001 |
R-HSA-373760 | L1CAM interactions | 0.362559 | 0.441 |
R-HSA-73887 | Death Receptor Signaling | 0.112367 | 0.949 |
R-HSA-1236394 | Signaling by ERBB4 | 0.301563 | 0.521 |
R-HSA-5683057 | MAPK family signaling cascades | 0.156860 | 0.804 |
R-HSA-2028269 | Signaling by Hippo | 0.094703 | 1.024 |
R-HSA-5689877 | Josephin domain DUBs | 0.262490 | 0.581 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.094723 | 1.024 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.328479 | 0.483 |
R-HSA-5578768 | Physiological factors | 0.344035 | 0.463 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.359231 | 0.445 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.178827 | 0.748 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.326814 | 0.486 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.181307 | 0.742 |
R-HSA-112316 | Neuronal System | 0.259406 | 0.586 |
R-HSA-9669938 | Signaling by KIT in disease | 0.140402 | 0.853 |
R-HSA-170968 | Frs2-mediated activation | 0.328479 | 0.483 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.232261 | 0.634 |
R-HSA-5210891 | Uptake and function of anthrax toxins | 0.094703 | 1.024 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.156527 | 0.805 |
R-HSA-9010642 | ROBO receptors bind AKAP5 | 0.227109 | 0.644 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.140402 | 0.853 |
R-HSA-210990 | PECAM1 interactions | 0.279570 | 0.554 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.232261 | 0.634 |
R-HSA-201556 | Signaling by ALK | 0.292560 | 0.534 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.226516 | 0.645 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.309730 | 0.509 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 0.344035 | 0.463 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.258088 | 0.588 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.226516 | 0.645 |
R-HSA-187687 | Signalling to ERKs | 0.258088 | 0.588 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.190489 | 0.720 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.374076 | 0.427 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.172979 | 0.762 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.344035 | 0.463 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 0.374076 | 0.427 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.321407 | 0.493 |
R-HSA-9827857 | Specification of primordial germ cells | 0.094703 | 1.024 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.140402 | 0.853 |
R-HSA-9020558 | Interleukin-2 signaling | 0.279570 | 0.554 |
R-HSA-114452 | Activation of BH3-only proteins | 0.206613 | 0.685 |
R-HSA-169893 | Prolonged ERK activation events | 0.374076 | 0.427 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.171621 | 0.765 |
R-HSA-419037 | NCAM1 interactions | 0.275334 | 0.560 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.245642 | 0.610 |
R-HSA-166520 | Signaling by NTRKs | 0.348856 | 0.457 |
R-HSA-1500931 | Cell-Cell communication | 0.265470 | 0.576 |
R-HSA-9682385 | FLT3 signaling in disease | 0.266711 | 0.574 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.333316 | 0.477 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.196391 | 0.707 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.303761 | 0.517 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.109412 | 0.961 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.132483 | 0.878 |
R-HSA-1483255 | PI Metabolism | 0.273663 | 0.563 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.228549 | 0.641 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.232261 | 0.634 |
R-HSA-8953897 | Cellular responses to stimuli | 0.199308 | 0.700 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.352218 | 0.453 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.262490 | 0.581 |
R-HSA-9008059 | Interleukin-37 signaling | 0.206613 | 0.685 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.112367 | 0.949 |
R-HSA-165159 | MTOR signalling | 0.326814 | 0.486 |
R-HSA-8983432 | Interleukin-15 signaling | 0.312556 | 0.505 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.232261 | 0.634 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.249468 | 0.603 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.195452 | 0.709 |
R-HSA-1059683 | Interleukin-6 signaling | 0.328479 | 0.483 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.378343 | 0.422 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.166681 | 0.778 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.343784 | 0.464 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.184954 | 0.733 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.213494 | 0.671 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.377282 | 0.423 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.118424 | 0.927 |
R-HSA-1989781 | PPARA activates gene expression | 0.381028 | 0.419 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 0.388578 | 0.411 |
R-HSA-5576893 | Phase 2 - plateau phase | 0.388578 | 0.411 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.388578 | 0.411 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 0.388578 | 0.411 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.388578 | 0.411 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.388578 | 0.411 |
R-HSA-1566977 | Fibronectin matrix formation | 0.388578 | 0.411 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.388578 | 0.411 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.388578 | 0.411 |
R-HSA-438064 | Post NMDA receptor activation events | 0.390199 | 0.409 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.396459 | 0.402 |
R-HSA-2132295 | MHC class II antigen presentation | 0.399327 | 0.399 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 0.401935 | 0.396 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.402745 | 0.395 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 0.402745 | 0.395 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.408926 | 0.388 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.410052 | 0.387 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 0.410052 | 0.387 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.411714 | 0.385 |
R-HSA-180292 | GAB1 signalosome | 0.416585 | 0.380 |
R-HSA-163615 | PKA activation | 0.416585 | 0.380 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.416585 | 0.380 |
R-HSA-164378 | PKA activation in glucagon signalling | 0.416585 | 0.380 |
R-HSA-3928664 | Ephrin signaling | 0.416585 | 0.380 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.416585 | 0.380 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.416585 | 0.380 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.416585 | 0.380 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.418678 | 0.378 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.422290 | 0.374 |
R-HSA-72649 | Translation initiation complex formation | 0.426119 | 0.370 |
R-HSA-74752 | Signaling by Insulin receptor | 0.427476 | 0.369 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.427476 | 0.369 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.430104 | 0.366 |
R-HSA-2243919 | Crosslinking of collagen fibrils | 0.430104 | 0.366 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.430104 | 0.366 |
R-HSA-9671793 | Diseases of hemostasis | 0.430104 | 0.366 |
R-HSA-449836 | Other interleukin signaling | 0.430104 | 0.366 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.441956 | 0.355 |
R-HSA-75893 | TNF signaling | 0.441956 | 0.355 |
R-HSA-5654736 | Signaling by FGFR1 | 0.441956 | 0.355 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.441956 | 0.355 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.443312 | 0.353 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.443312 | 0.353 |
R-HSA-6807004 | Negative regulation of MET activity | 0.443312 | 0.353 |
R-HSA-445144 | Signal transduction by L1 | 0.443312 | 0.353 |
R-HSA-373753 | Nephrin family interactions | 0.443312 | 0.353 |
R-HSA-449147 | Signaling by Interleukins | 0.444860 | 0.352 |
R-HSA-112399 | IRS-mediated signalling | 0.449784 | 0.347 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.449784 | 0.347 |
R-HSA-9939291 | Matriglycan biosynthesis on DAG1 | 0.456213 | 0.341 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.456213 | 0.341 |
R-HSA-5654704 | SHC-mediated cascade:FGFR3 | 0.456213 | 0.341 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 0.456213 | 0.341 |
R-HSA-167044 | Signalling to RAS | 0.456213 | 0.341 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.456213 | 0.341 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.457549 | 0.340 |
R-HSA-5688426 | Deubiquitination | 0.464324 | 0.333 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.468817 | 0.329 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.468817 | 0.329 |
R-HSA-5654719 | SHC-mediated cascade:FGFR4 | 0.468817 | 0.329 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.468817 | 0.329 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.468817 | 0.329 |
R-HSA-5654706 | FRS-mediated FGFR3 signaling | 0.468817 | 0.329 |
R-HSA-175474 | Assembly Of The HIV Virion | 0.468817 | 0.329 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.468817 | 0.329 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.468817 | 0.329 |
R-HSA-422356 | Regulation of insulin secretion | 0.469901 | 0.328 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.472887 | 0.325 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.472887 | 0.325 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.472887 | 0.325 |
R-HSA-9614085 | FOXO-mediated transcription | 0.475849 | 0.323 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.480458 | 0.318 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.480458 | 0.318 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.481129 | 0.318 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.481129 | 0.318 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.481129 | 0.318 |
R-HSA-5654712 | FRS-mediated FGFR4 signaling | 0.481129 | 0.318 |
R-HSA-8964038 | LDL clearance | 0.481129 | 0.318 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.481129 | 0.318 |
R-HSA-189200 | Cellular hexose transport | 0.481129 | 0.318 |
R-HSA-5610787 | Hedgehog 'off' state | 0.481766 | 0.317 |
R-HSA-70171 | Glycolysis | 0.481766 | 0.317 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.487962 | 0.312 |
R-HSA-5358351 | Signaling by Hedgehog | 0.491537 | 0.308 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 0.493157 | 0.307 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 0.493157 | 0.307 |
R-HSA-3000170 | Syndecan interactions | 0.493157 | 0.307 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.493157 | 0.307 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.493504 | 0.307 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.493504 | 0.307 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.493504 | 0.307 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.495397 | 0.305 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.496502 | 0.304 |
R-HSA-416476 | G alpha (q) signalling events | 0.497685 | 0.303 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.502764 | 0.299 |
R-HSA-2428924 | IGF1R signaling cascade | 0.502764 | 0.299 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 0.504907 | 0.297 |
R-HSA-5654688 | SHC-mediated cascade:FGFR1 | 0.504907 | 0.297 |
R-HSA-8963889 | Assembly of active LPL and LIPC lipase complexes | 0.504907 | 0.297 |
R-HSA-428930 | Thromboxane signalling through TP receptor | 0.504907 | 0.297 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.504907 | 0.297 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 0.504907 | 0.297 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.510061 | 0.292 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.510061 | 0.292 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.515900 | 0.287 |
R-HSA-9620244 | Long-term potentiation | 0.516384 | 0.287 |
R-HSA-5654693 | FRS-mediated FGFR1 signaling | 0.516384 | 0.287 |
R-HSA-1266695 | Interleukin-7 signaling | 0.516384 | 0.287 |
R-HSA-2453864 | Retinoid cycle disease events | 0.516384 | 0.287 |
R-HSA-2474795 | Diseases associated with visual transduction | 0.516384 | 0.287 |
R-HSA-9675143 | Diseases of the neuronal system | 0.516384 | 0.287 |
R-HSA-9830364 | Formation of the nephric duct | 0.516384 | 0.287 |
R-HSA-69275 | G2/M Transition | 0.524568 | 0.280 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.527597 | 0.278 |
R-HSA-5689901 | Metalloprotease DUBs | 0.527597 | 0.278 |
R-HSA-8874081 | MET activates PTK2 signaling | 0.527597 | 0.278 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 0.527597 | 0.278 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.527597 | 0.278 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.527597 | 0.278 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 0.527597 | 0.278 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 0.527597 | 0.278 |
R-HSA-211000 | Gene Silencing by RNA | 0.527901 | 0.277 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.533114 | 0.273 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.533507 | 0.273 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.533507 | 0.273 |
R-HSA-5654699 | SHC-mediated cascade:FGFR2 | 0.538550 | 0.269 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.538550 | 0.269 |
R-HSA-201451 | Signaling by BMP | 0.538550 | 0.269 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.538550 | 0.269 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 0.538550 | 0.269 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.545479 | 0.263 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.545479 | 0.263 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.545479 | 0.263 |
R-HSA-446728 | Cell junction organization | 0.548178 | 0.261 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.549250 | 0.260 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 0.549250 | 0.260 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.549250 | 0.260 |
R-HSA-5654700 | FRS-mediated FGFR2 signaling | 0.549250 | 0.260 |
R-HSA-77387 | Insulin receptor recycling | 0.549250 | 0.260 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.552345 | 0.258 |
R-HSA-3000178 | ECM proteoglycans | 0.552345 | 0.258 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.552345 | 0.258 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.554340 | 0.256 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.554340 | 0.256 |
R-HSA-2262752 | Cellular responses to stress | 0.556872 | 0.254 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.558331 | 0.253 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.559138 | 0.252 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.559138 | 0.252 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.559702 | 0.252 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.559702 | 0.252 |
R-HSA-9615710 | Late endosomal microautophagy | 0.559702 | 0.252 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 0.559702 | 0.252 |
R-HSA-180024 | DARPP-32 events | 0.559702 | 0.252 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.559702 | 0.252 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.563635 | 0.249 |
R-HSA-9609690 | HCMV Early Events | 0.566582 | 0.247 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.566582 | 0.247 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 0.569913 | 0.244 |
R-HSA-112311 | Neurotransmitter clearance | 0.569913 | 0.244 |
R-HSA-5653656 | Vesicle-mediated transport | 0.570606 | 0.244 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.577377 | 0.239 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.579074 | 0.237 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.579074 | 0.237 |
R-HSA-8852135 | Protein ubiquitination | 0.579074 | 0.237 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.579888 | 0.237 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.579888 | 0.237 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 0.579888 | 0.237 |
R-HSA-5689603 | UCH proteinases | 0.585571 | 0.232 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.585571 | 0.232 |
R-HSA-9020591 | Interleukin-12 signaling | 0.585571 | 0.232 |
R-HSA-9610379 | HCMV Late Events | 0.586402 | 0.232 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.587426 | 0.231 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.587426 | 0.231 |
R-HSA-1538133 | G0 and Early G1 | 0.589631 | 0.229 |
R-HSA-8931838 | DAG1 glycosylations | 0.589631 | 0.229 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.589631 | 0.229 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.590863 | 0.229 |
R-HSA-70326 | Glucose metabolism | 0.592594 | 0.227 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.597721 | 0.224 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.598342 | 0.223 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.599150 | 0.222 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.599150 | 0.222 |
R-HSA-9930044 | Nuclear RNA decay | 0.599150 | 0.222 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.599150 | 0.222 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.599150 | 0.222 |
R-HSA-354192 | Integrin signaling | 0.599150 | 0.222 |
R-HSA-9006936 | Signaling by TGFB family members | 0.599726 | 0.222 |
R-HSA-913531 | Interferon Signaling | 0.605333 | 0.218 |
R-HSA-9609646 | HCMV Infection | 0.606129 | 0.217 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.608448 | 0.216 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.610816 | 0.214 |
R-HSA-5654738 | Signaling by FGFR2 | 0.610816 | 0.214 |
R-HSA-9833482 | PKR-mediated signaling | 0.610816 | 0.214 |
R-HSA-3371556 | Cellular response to heat stress | 0.612846 | 0.213 |
R-HSA-977225 | Amyloid fiber formation | 0.616941 | 0.210 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.617531 | 0.209 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.617531 | 0.209 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.617531 | 0.209 |
R-HSA-392518 | Signal amplification | 0.617531 | 0.209 |
R-HSA-74160 | Gene expression (Transcription) | 0.621428 | 0.207 |
R-HSA-169911 | Regulation of Apoptosis | 0.626404 | 0.203 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.626404 | 0.203 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 0.626404 | 0.203 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 0.626404 | 0.203 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.633364 | 0.198 |
R-HSA-397014 | Muscle contraction | 0.633364 | 0.198 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.634562 | 0.198 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.634873 | 0.197 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.634873 | 0.197 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.635071 | 0.197 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.635071 | 0.197 |
R-HSA-111933 | Calmodulin induced events | 0.635071 | 0.197 |
R-HSA-111997 | CaM pathway | 0.635071 | 0.197 |
R-HSA-69205 | G1/S-Specific Transcription | 0.635071 | 0.197 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.635071 | 0.197 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.640702 | 0.193 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.640702 | 0.193 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.643538 | 0.191 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.643538 | 0.191 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.643538 | 0.191 |
R-HSA-8948216 | Collagen chain trimerization | 0.643538 | 0.191 |
R-HSA-72306 | tRNA processing | 0.646318 | 0.190 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.651809 | 0.186 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.651809 | 0.186 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.652142 | 0.186 |
R-HSA-418990 | Adherens junctions interactions | 0.655380 | 0.184 |
R-HSA-447115 | Interleukin-12 family signaling | 0.657752 | 0.182 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.658386 | 0.182 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.658386 | 0.182 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.659889 | 0.181 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.659889 | 0.181 |
R-HSA-1474165 | Reproduction | 0.664979 | 0.177 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.667782 | 0.175 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.667782 | 0.175 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.667782 | 0.175 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.667782 | 0.175 |
R-HSA-5260271 | Diseases of Immune System | 0.667782 | 0.175 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.667782 | 0.175 |
R-HSA-202424 | Downstream TCR signaling | 0.674150 | 0.171 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.675492 | 0.170 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.679472 | 0.168 |
R-HSA-168255 | Influenza Infection | 0.681682 | 0.166 |
R-HSA-167161 | HIV Transcription Initiation | 0.683023 | 0.166 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.683023 | 0.166 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.683023 | 0.166 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.683023 | 0.166 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.683023 | 0.166 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.683023 | 0.166 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.683023 | 0.166 |
R-HSA-6811438 | Intra-Golgi traffic | 0.683023 | 0.166 |
R-HSA-3000480 | Scavenging by Class A Receptors | 0.683023 | 0.166 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.683023 | 0.166 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.683023 | 0.166 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.683023 | 0.166 |
R-HSA-6798695 | Neutrophil degranulation | 0.683298 | 0.165 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.684723 | 0.164 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.686399 | 0.163 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.689904 | 0.161 |
R-HSA-111996 | Ca-dependent events | 0.690380 | 0.161 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.690380 | 0.161 |
R-HSA-163685 | Integration of energy metabolism | 0.695401 | 0.158 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.697567 | 0.156 |
R-HSA-8854214 | TBC/RABGAPs | 0.697567 | 0.156 |
R-HSA-9679506 | SARS-CoV Infections | 0.698405 | 0.156 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.699573 | 0.155 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.700056 | 0.155 |
R-HSA-190828 | Gap junction trafficking | 0.704588 | 0.152 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.704588 | 0.152 |
R-HSA-774815 | Nucleosome assembly | 0.711445 | 0.148 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.711445 | 0.148 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.711445 | 0.148 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.711445 | 0.148 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 0.711445 | 0.148 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.711445 | 0.148 |
R-HSA-1489509 | DAG and IP3 signaling | 0.711445 | 0.148 |
R-HSA-2453902 | The canonical retinoid cycle in rods (twilight vision) | 0.711445 | 0.148 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.711445 | 0.148 |
R-HSA-168249 | Innate Immune System | 0.712168 | 0.147 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.714765 | 0.146 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.718145 | 0.144 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.718145 | 0.144 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.718145 | 0.144 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.718145 | 0.144 |
R-HSA-6802949 | Signaling by RAS mutants | 0.718145 | 0.144 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.719533 | 0.143 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.724233 | 0.140 |
R-HSA-190236 | Signaling by FGFR | 0.724233 | 0.140 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.724295 | 0.140 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.724689 | 0.140 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.724689 | 0.140 |
R-HSA-9634597 | GPER1 signaling | 0.731081 | 0.136 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 0.731081 | 0.136 |
R-HSA-9031628 | NGF-stimulated transcription | 0.731081 | 0.136 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.737325 | 0.132 |
R-HSA-9766229 | Degradation of CDH1 | 0.737325 | 0.132 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.737325 | 0.132 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.737935 | 0.132 |
R-HSA-109704 | PI3K Cascade | 0.743425 | 0.129 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.743425 | 0.129 |
R-HSA-168256 | Immune System | 0.744304 | 0.128 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.746281 | 0.127 |
R-HSA-72187 | mRNA 3'-end processing | 0.755204 | 0.122 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.755204 | 0.122 |
R-HSA-9833110 | RSV-host interactions | 0.755300 | 0.122 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.759483 | 0.119 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.759483 | 0.119 |
R-HSA-446652 | Interleukin-1 family signaling | 0.760506 | 0.119 |
R-HSA-421270 | Cell-cell junction organization | 0.760785 | 0.119 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.760890 | 0.119 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.760890 | 0.119 |
R-HSA-1221632 | Meiotic synapsis | 0.760890 | 0.119 |
R-HSA-212436 | Generic Transcription Pathway | 0.770484 | 0.113 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.771664 | 0.113 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.771664 | 0.113 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.771869 | 0.112 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.774421 | 0.111 |
R-HSA-5663205 | Infectious disease | 0.775286 | 0.111 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.775603 | 0.110 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.777169 | 0.109 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 0.777169 | 0.109 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.779483 | 0.108 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.779483 | 0.108 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.779706 | 0.108 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.787402 | 0.104 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.790773 | 0.102 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.792342 | 0.101 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.792342 | 0.101 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.792342 | 0.101 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.794422 | 0.100 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.795209 | 0.100 |
R-HSA-8873719 | RAB geranylgeranylation | 0.797167 | 0.098 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.797167 | 0.098 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.797167 | 0.098 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.797167 | 0.098 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.797167 | 0.098 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.797167 | 0.098 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.797167 | 0.098 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.798014 | 0.098 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.801551 | 0.096 |
R-HSA-1442490 | Collagen degradation | 0.801880 | 0.096 |
R-HSA-112043 | PLC beta mediated events | 0.801880 | 0.096 |
R-HSA-445717 | Aquaporin-mediated transport | 0.801880 | 0.096 |
R-HSA-450294 | MAP kinase activation | 0.801880 | 0.096 |
R-HSA-211976 | Endogenous sterols | 0.801880 | 0.096 |
R-HSA-9711123 | Cellular response to chemical stress | 0.804715 | 0.094 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.806484 | 0.093 |
R-HSA-1268020 | Mitochondrial protein import | 0.806484 | 0.093 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.806484 | 0.093 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.806484 | 0.093 |
R-HSA-9824446 | Viral Infection Pathways | 0.807826 | 0.093 |
R-HSA-5619102 | SLC transporter disorders | 0.808183 | 0.092 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.810982 | 0.091 |
R-HSA-373755 | Semaphorin interactions | 0.810982 | 0.091 |
R-HSA-5693538 | Homology Directed Repair | 0.815154 | 0.089 |
R-HSA-211981 | Xenobiotics | 0.815375 | 0.089 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.815375 | 0.089 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.819463 | 0.086 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.819666 | 0.086 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.823858 | 0.084 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 0.823858 | 0.084 |
R-HSA-112040 | G-protein mediated events | 0.827953 | 0.082 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.827953 | 0.082 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.827953 | 0.082 |
R-HSA-9830369 | Kidney development | 0.827953 | 0.082 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.830985 | 0.080 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 0.831952 | 0.080 |
R-HSA-5218859 | Regulated Necrosis | 0.831952 | 0.080 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.835859 | 0.078 |
R-HSA-1643685 | Disease | 0.838126 | 0.077 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.839676 | 0.076 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.839676 | 0.076 |
R-HSA-448424 | Interleukin-17 signaling | 0.839676 | 0.076 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.839676 | 0.076 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.839676 | 0.076 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.843404 | 0.074 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.843404 | 0.074 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.843404 | 0.074 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.843404 | 0.074 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.847045 | 0.072 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.847045 | 0.072 |
R-HSA-109582 | Hemostasis | 0.848811 | 0.071 |
R-HSA-4086398 | Ca2+ pathway | 0.850602 | 0.070 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.851508 | 0.070 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.853787 | 0.069 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 0.854076 | 0.069 |
R-HSA-5576891 | Cardiac conduction | 0.859032 | 0.066 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.860785 | 0.065 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.861097 | 0.065 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.863480 | 0.064 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.864023 | 0.063 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.867186 | 0.062 |
R-HSA-216083 | Integrin cell surface interactions | 0.867186 | 0.062 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.869824 | 0.061 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.876242 | 0.057 |
R-HSA-6807070 | PTEN Regulation | 0.880572 | 0.055 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.887322 | 0.052 |
R-HSA-1500620 | Meiosis | 0.887366 | 0.052 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.892547 | 0.049 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.897128 | 0.047 |
R-HSA-156902 | Peptide chain elongation | 0.897492 | 0.047 |
R-HSA-112310 | Neurotransmitter release cycle | 0.902209 | 0.045 |
R-HSA-9758941 | Gastrulation | 0.902767 | 0.044 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.904486 | 0.044 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.904486 | 0.044 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.908882 | 0.041 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.909838 | 0.041 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.911004 | 0.040 |
R-HSA-1474290 | Collagen formation | 0.913076 | 0.039 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.913076 | 0.039 |
R-HSA-1280218 | Adaptive Immune System | 0.914785 | 0.039 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.915101 | 0.039 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.917078 | 0.038 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.917078 | 0.038 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.917078 | 0.038 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.918002 | 0.037 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.919009 | 0.037 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.919009 | 0.037 |
R-HSA-1296071 | Potassium Channels | 0.919009 | 0.037 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.919009 | 0.037 |
R-HSA-877300 | Interferon gamma signaling | 0.919549 | 0.036 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.922739 | 0.035 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.922739 | 0.035 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.922739 | 0.035 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.926297 | 0.033 |
R-HSA-2408557 | Selenocysteine synthesis | 0.928014 | 0.032 |
R-HSA-9020702 | Interleukin-1 signaling | 0.928014 | 0.032 |
R-HSA-192823 | Viral mRNA Translation | 0.931330 | 0.031 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.932930 | 0.030 |
R-HSA-111885 | Opioid Signalling | 0.932930 | 0.030 |
R-HSA-72312 | rRNA processing | 0.934863 | 0.029 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.937319 | 0.028 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.937511 | 0.028 |
R-HSA-1483257 | Phospholipid metabolism | 0.937590 | 0.028 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.938967 | 0.027 |
R-HSA-5689880 | Ub-specific processing proteases | 0.939699 | 0.027 |
R-HSA-8939211 | ESR-mediated signaling | 0.940192 | 0.027 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.940390 | 0.027 |
R-HSA-157118 | Signaling by NOTCH | 0.943194 | 0.025 |
R-HSA-73894 | DNA Repair | 0.943506 | 0.025 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.947023 | 0.024 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.949663 | 0.022 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.951795 | 0.021 |
R-HSA-9007101 | Rab regulation of trafficking | 0.954017 | 0.020 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.956138 | 0.019 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.956138 | 0.019 |
R-HSA-73886 | Chromosome Maintenance | 0.958160 | 0.019 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.958409 | 0.018 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.959137 | 0.018 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.959137 | 0.018 |
R-HSA-9734767 | Developmental Cell Lineages | 0.961963 | 0.017 |
R-HSA-69206 | G1/S Transition | 0.962820 | 0.016 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.963688 | 0.016 |
R-HSA-114608 | Platelet degranulation | 0.964535 | 0.016 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.969222 | 0.014 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.969222 | 0.014 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.969941 | 0.013 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.972652 | 0.012 |
R-HSA-5173105 | O-linked glycosylation | 0.973291 | 0.012 |
R-HSA-9948299 | Ribosome-associated quality control | 0.973915 | 0.011 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.978352 | 0.010 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.979349 | 0.009 |
R-HSA-2187338 | Visual phototransduction | 0.979408 | 0.009 |
R-HSA-69242 | S Phase | 0.979890 | 0.009 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.980562 | 0.009 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 0.980819 | 0.008 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.981706 | 0.008 |
R-HSA-9609507 | Protein localization | 0.982133 | 0.008 |
R-HSA-9612973 | Autophagy | 0.983358 | 0.007 |
R-HSA-9711097 | Cellular response to starvation | 0.984127 | 0.007 |
R-HSA-156580 | Phase II - Conjugation of compounds | 0.984141 | 0.007 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.986229 | 0.006 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.987174 | 0.006 |
R-HSA-8957322 | Metabolism of steroids | 0.987471 | 0.005 |
R-HSA-418555 | G alpha (s) signalling events | 0.988606 | 0.005 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.988873 | 0.005 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.989134 | 0.005 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.989134 | 0.005 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.989637 | 0.005 |
R-HSA-388396 | GPCR downstream signalling | 0.990411 | 0.004 |
R-HSA-3781865 | Diseases of glycosylation | 0.991628 | 0.004 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.994272 | 0.002 |
R-HSA-428157 | Sphingolipid metabolism | 0.994406 | 0.002 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.996013 | 0.002 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.996522 | 0.002 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.996967 | 0.001 |
R-HSA-372790 | Signaling by GPCR | 0.997034 | 0.001 |
R-HSA-1474244 | Extracellular matrix organization | 0.997683 | 0.001 |
R-HSA-72766 | Translation | 0.998389 | 0.001 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999043 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999126 | 0.000 |
R-HSA-597592 | Post-translational protein modification | 0.999388 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 0.999561 | 0.000 |
R-HSA-211859 | Biological oxidations | 0.999762 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999947 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999952 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999961 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999976 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 0.999998 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999998 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CLK3 |
0.879 | 0.310 | 1 | 0.832 |
COT |
0.875 | 0.201 | 2 | 0.777 |
CDC7 |
0.874 | 0.287 | 1 | 0.909 |
HIPK4 |
0.871 | 0.355 | 1 | 0.787 |
PIM3 |
0.870 | 0.235 | -3 | 0.871 |
MOS |
0.868 | 0.296 | 1 | 0.904 |
NDR2 |
0.867 | 0.196 | -3 | 0.864 |
SRPK1 |
0.861 | 0.214 | -3 | 0.803 |
SKMLCK |
0.860 | 0.228 | -2 | 0.886 |
RSK2 |
0.860 | 0.205 | -3 | 0.815 |
PRKD1 |
0.860 | 0.241 | -3 | 0.840 |
GRK1 |
0.858 | 0.187 | -2 | 0.798 |
KIS |
0.857 | 0.181 | 1 | 0.674 |
CDKL1 |
0.857 | 0.206 | -3 | 0.839 |
AURC |
0.857 | 0.221 | -2 | 0.707 |
CLK2 |
0.856 | 0.266 | -3 | 0.803 |
CDKL5 |
0.856 | 0.234 | -3 | 0.832 |
PRKD2 |
0.856 | 0.223 | -3 | 0.803 |
ICK |
0.855 | 0.269 | -3 | 0.866 |
PRPK |
0.854 | -0.009 | -1 | 0.885 |
MTOR |
0.854 | 0.037 | 1 | 0.773 |
PIM1 |
0.854 | 0.186 | -3 | 0.833 |
CAMK1B |
0.853 | 0.105 | -3 | 0.872 |
BMPR1B |
0.852 | 0.236 | 1 | 0.909 |
P90RSK |
0.852 | 0.167 | -3 | 0.815 |
RAF1 |
0.852 | 0.024 | 1 | 0.837 |
ATR |
0.851 | 0.084 | 1 | 0.823 |
IKKB |
0.850 | -0.016 | -2 | 0.720 |
NDR1 |
0.850 | 0.104 | -3 | 0.855 |
CHAK2 |
0.850 | 0.160 | -1 | 0.859 |
MAPKAPK2 |
0.850 | 0.179 | -3 | 0.780 |
DYRK2 |
0.850 | 0.179 | 1 | 0.701 |
HIPK2 |
0.849 | 0.230 | 1 | 0.613 |
RSK4 |
0.849 | 0.208 | -3 | 0.797 |
DAPK2 |
0.849 | 0.177 | -3 | 0.872 |
PKACB |
0.849 | 0.215 | -2 | 0.713 |
NLK |
0.848 | 0.041 | 1 | 0.819 |
GRK7 |
0.848 | 0.183 | 1 | 0.808 |
GRK5 |
0.848 | 0.042 | -3 | 0.851 |
ERK5 |
0.847 | 0.078 | 1 | 0.807 |
RSK3 |
0.847 | 0.141 | -3 | 0.802 |
CAMLCK |
0.847 | 0.131 | -2 | 0.864 |
SRPK2 |
0.846 | 0.171 | -3 | 0.738 |
PRKX |
0.846 | 0.224 | -3 | 0.737 |
PKACG |
0.846 | 0.130 | -2 | 0.769 |
LATS2 |
0.845 | 0.085 | -5 | 0.766 |
BMPR2 |
0.845 | -0.062 | -2 | 0.856 |
TBK1 |
0.844 | -0.049 | 1 | 0.702 |
P70S6KB |
0.844 | 0.119 | -3 | 0.825 |
LATS1 |
0.844 | 0.174 | -3 | 0.872 |
CAMK2A |
0.843 | 0.127 | 2 | 0.716 |
IKKA |
0.843 | 0.033 | -2 | 0.716 |
CAMK2G |
0.843 | -0.084 | 2 | 0.720 |
MAPKAPK3 |
0.843 | 0.127 | -3 | 0.805 |
NIK |
0.843 | 0.049 | -3 | 0.874 |
GRK6 |
0.843 | 0.051 | 1 | 0.883 |
GCN2 |
0.843 | -0.133 | 2 | 0.701 |
PDHK4 |
0.843 | -0.207 | 1 | 0.840 |
DSTYK |
0.843 | -0.065 | 2 | 0.788 |
PKN3 |
0.842 | 0.046 | -3 | 0.842 |
RIPK3 |
0.842 | -0.012 | 3 | 0.701 |
NUAK2 |
0.842 | 0.045 | -3 | 0.865 |
CAMK2B |
0.842 | 0.090 | 2 | 0.701 |
MSK1 |
0.842 | 0.166 | -3 | 0.792 |
CLK4 |
0.841 | 0.175 | -3 | 0.811 |
CAMK2D |
0.841 | 0.057 | -3 | 0.843 |
AMPKA1 |
0.841 | 0.077 | -3 | 0.864 |
MST4 |
0.841 | 0.022 | 2 | 0.771 |
PKN2 |
0.841 | 0.048 | -3 | 0.847 |
SRPK3 |
0.841 | 0.137 | -3 | 0.778 |
TGFBR2 |
0.840 | -0.001 | -2 | 0.767 |
HIPK1 |
0.840 | 0.196 | 1 | 0.711 |
WNK1 |
0.840 | -0.003 | -2 | 0.887 |
PKCD |
0.840 | 0.086 | 2 | 0.680 |
PAK1 |
0.840 | 0.109 | -2 | 0.829 |
NEK6 |
0.840 | -0.015 | -2 | 0.827 |
IKKE |
0.839 | -0.081 | 1 | 0.696 |
TGFBR1 |
0.839 | 0.100 | -2 | 0.771 |
MARK4 |
0.838 | -0.005 | 4 | 0.757 |
CDK1 |
0.838 | 0.103 | 1 | 0.649 |
AMPKA2 |
0.837 | 0.089 | -3 | 0.841 |
MSK2 |
0.837 | 0.101 | -3 | 0.793 |
AURB |
0.836 | 0.136 | -2 | 0.702 |
CDK8 |
0.836 | 0.083 | 1 | 0.650 |
ULK2 |
0.836 | -0.174 | 2 | 0.684 |
CDK7 |
0.836 | 0.096 | 1 | 0.669 |
CLK1 |
0.836 | 0.159 | -3 | 0.783 |
CDK19 |
0.836 | 0.113 | 1 | 0.612 |
MLK1 |
0.836 | -0.098 | 2 | 0.704 |
ALK4 |
0.835 | 0.068 | -2 | 0.799 |
DLK |
0.835 | -0.029 | 1 | 0.837 |
DYRK4 |
0.835 | 0.149 | 1 | 0.625 |
PASK |
0.835 | 0.217 | -3 | 0.881 |
AKT2 |
0.835 | 0.169 | -3 | 0.745 |
JNK2 |
0.835 | 0.109 | 1 | 0.616 |
CDK18 |
0.834 | 0.116 | 1 | 0.601 |
MLK2 |
0.834 | 0.028 | 2 | 0.728 |
FAM20C |
0.834 | 0.021 | 2 | 0.552 |
PDHK1 |
0.834 | -0.214 | 1 | 0.807 |
TSSK1 |
0.833 | 0.042 | -3 | 0.878 |
GRK4 |
0.833 | -0.049 | -2 | 0.817 |
MASTL |
0.833 | -0.138 | -2 | 0.796 |
ACVR2B |
0.833 | 0.121 | -2 | 0.761 |
PRKD3 |
0.833 | 0.123 | -3 | 0.778 |
DYRK1A |
0.833 | 0.174 | 1 | 0.721 |
TSSK2 |
0.833 | 0.004 | -5 | 0.856 |
PKG2 |
0.833 | 0.131 | -2 | 0.711 |
MYLK4 |
0.832 | 0.111 | -2 | 0.796 |
P38B |
0.832 | 0.141 | 1 | 0.632 |
PAK3 |
0.832 | 0.058 | -2 | 0.812 |
MAK |
0.832 | 0.317 | -2 | 0.893 |
MLK3 |
0.832 | 0.011 | 2 | 0.634 |
HUNK |
0.832 | -0.154 | 2 | 0.721 |
AURA |
0.831 | 0.113 | -2 | 0.683 |
NEK7 |
0.831 | -0.174 | -3 | 0.820 |
PKCB |
0.831 | 0.048 | 2 | 0.627 |
MNK2 |
0.831 | 0.070 | -2 | 0.811 |
P38A |
0.830 | 0.120 | 1 | 0.697 |
ACVR2A |
0.830 | 0.086 | -2 | 0.748 |
PKCA |
0.830 | 0.068 | 2 | 0.623 |
QSK |
0.830 | 0.055 | 4 | 0.736 |
PIM2 |
0.829 | 0.144 | -3 | 0.788 |
GSK3A |
0.829 | 0.133 | 4 | 0.539 |
RIPK1 |
0.829 | -0.112 | 1 | 0.801 |
JNK3 |
0.829 | 0.065 | 1 | 0.648 |
CAMK4 |
0.829 | -0.007 | -3 | 0.835 |
PKCG |
0.829 | 0.036 | 2 | 0.627 |
MNK1 |
0.828 | 0.075 | -2 | 0.814 |
BMPR1A |
0.828 | 0.141 | 1 | 0.884 |
ATM |
0.828 | -0.029 | 1 | 0.770 |
GRK2 |
0.828 | 0.061 | -2 | 0.720 |
SGK3 |
0.828 | 0.119 | -3 | 0.794 |
CK1E |
0.828 | 0.102 | -3 | 0.631 |
PKACA |
0.827 | 0.164 | -2 | 0.664 |
BCKDK |
0.827 | -0.159 | -1 | 0.812 |
ALK2 |
0.827 | 0.047 | -2 | 0.780 |
GSK3B |
0.827 | 0.102 | 4 | 0.535 |
PLK1 |
0.827 | -0.043 | -2 | 0.766 |
CDK5 |
0.826 | 0.059 | 1 | 0.689 |
ERK1 |
0.826 | 0.093 | 1 | 0.617 |
TLK2 |
0.826 | 0.024 | 1 | 0.782 |
PAK6 |
0.826 | 0.101 | -2 | 0.735 |
ANKRD3 |
0.826 | -0.144 | 1 | 0.835 |
PAK2 |
0.826 | 0.046 | -2 | 0.810 |
DYRK1B |
0.825 | 0.122 | 1 | 0.651 |
PKR |
0.825 | -0.037 | 1 | 0.824 |
ULK1 |
0.825 | -0.204 | -3 | 0.780 |
NIM1 |
0.825 | -0.068 | 3 | 0.725 |
HIPK3 |
0.825 | 0.144 | 1 | 0.696 |
P38G |
0.825 | 0.074 | 1 | 0.550 |
PKCZ |
0.825 | 0.021 | 2 | 0.678 |
NEK9 |
0.824 | -0.175 | 2 | 0.733 |
IRE1 |
0.824 | -0.086 | 1 | 0.774 |
CDK13 |
0.824 | 0.028 | 1 | 0.639 |
BRSK1 |
0.824 | 0.014 | -3 | 0.815 |
DYRK3 |
0.824 | 0.149 | 1 | 0.712 |
DRAK1 |
0.824 | 0.046 | 1 | 0.855 |
MEK1 |
0.824 | -0.092 | 2 | 0.763 |
CDK17 |
0.823 | 0.068 | 1 | 0.556 |
MELK |
0.823 | 0.006 | -3 | 0.821 |
TTBK2 |
0.823 | -0.160 | 2 | 0.609 |
MPSK1 |
0.822 | 0.184 | 1 | 0.760 |
DCAMKL1 |
0.822 | 0.065 | -3 | 0.814 |
WNK3 |
0.822 | -0.266 | 1 | 0.789 |
VRK2 |
0.822 | -0.134 | 1 | 0.849 |
SIK |
0.822 | 0.032 | -3 | 0.790 |
MARK3 |
0.822 | 0.010 | 4 | 0.692 |
YSK4 |
0.821 | -0.084 | 1 | 0.754 |
NUAK1 |
0.821 | -0.007 | -3 | 0.817 |
MLK4 |
0.821 | -0.049 | 2 | 0.612 |
CK1D |
0.821 | 0.110 | -3 | 0.584 |
PHKG1 |
0.821 | -0.014 | -3 | 0.844 |
CDK14 |
0.821 | 0.084 | 1 | 0.643 |
CDK3 |
0.820 | 0.069 | 1 | 0.576 |
DNAPK |
0.820 | 0.002 | 1 | 0.681 |
SMG1 |
0.820 | -0.037 | 1 | 0.765 |
P38D |
0.820 | 0.108 | 1 | 0.548 |
PKCH |
0.819 | -0.017 | 2 | 0.605 |
CDK10 |
0.819 | 0.095 | 1 | 0.631 |
DAPK3 |
0.819 | 0.142 | -3 | 0.833 |
QIK |
0.818 | -0.091 | -3 | 0.835 |
CDK12 |
0.818 | 0.030 | 1 | 0.611 |
CHAK1 |
0.818 | -0.082 | 2 | 0.716 |
CHK1 |
0.818 | 0.018 | -3 | 0.830 |
CAMK1G |
0.818 | 0.023 | -3 | 0.796 |
MST3 |
0.818 | 0.028 | 2 | 0.751 |
GRK3 |
0.817 | 0.056 | -2 | 0.683 |
BRSK2 |
0.817 | -0.051 | -3 | 0.823 |
AKT1 |
0.817 | 0.131 | -3 | 0.757 |
CK1A2 |
0.816 | 0.090 | -3 | 0.588 |
DAPK1 |
0.816 | 0.146 | -3 | 0.820 |
PRP4 |
0.816 | 0.022 | -3 | 0.708 |
IRE2 |
0.816 | -0.093 | 2 | 0.630 |
MOK |
0.815 | 0.236 | 1 | 0.735 |
SMMLCK |
0.815 | 0.061 | -3 | 0.836 |
PLK3 |
0.815 | -0.109 | 2 | 0.688 |
MARK2 |
0.814 | -0.044 | 4 | 0.657 |
AKT3 |
0.814 | 0.176 | -3 | 0.695 |
ERK2 |
0.814 | 0.003 | 1 | 0.664 |
TAO3 |
0.814 | 0.020 | 1 | 0.779 |
CK2A2 |
0.814 | 0.076 | 1 | 0.821 |
NEK2 |
0.814 | -0.121 | 2 | 0.721 |
CDK16 |
0.813 | 0.069 | 1 | 0.570 |
CDK9 |
0.813 | -0.006 | 1 | 0.644 |
BRAF |
0.813 | -0.073 | -4 | 0.838 |
GAK |
0.812 | 0.039 | 1 | 0.837 |
CDK2 |
0.812 | -0.041 | 1 | 0.731 |
P70S6K |
0.812 | 0.065 | -3 | 0.748 |
MAPKAPK5 |
0.812 | -0.026 | -3 | 0.757 |
SGK1 |
0.811 | 0.149 | -3 | 0.679 |
CAMK1D |
0.811 | 0.076 | -3 | 0.733 |
MEK5 |
0.810 | -0.193 | 2 | 0.733 |
CK1G1 |
0.810 | 0.028 | -3 | 0.620 |
GCK |
0.810 | 0.094 | 1 | 0.806 |
MARK1 |
0.810 | -0.057 | 4 | 0.705 |
NEK5 |
0.810 | -0.082 | 1 | 0.804 |
JNK1 |
0.810 | 0.042 | 1 | 0.613 |
MEKK3 |
0.810 | -0.159 | 1 | 0.794 |
LKB1 |
0.809 | 0.086 | -3 | 0.797 |
PERK |
0.809 | -0.130 | -2 | 0.794 |
DCAMKL2 |
0.809 | -0.013 | -3 | 0.828 |
TLK1 |
0.808 | -0.097 | -2 | 0.802 |
SSTK |
0.808 | -0.028 | 4 | 0.721 |
MEKK2 |
0.808 | -0.121 | 2 | 0.699 |
SNRK |
0.808 | -0.159 | 2 | 0.598 |
PLK4 |
0.808 | -0.128 | 2 | 0.542 |
PAK5 |
0.808 | 0.068 | -2 | 0.690 |
ROCK2 |
0.807 | 0.152 | -3 | 0.816 |
PKCT |
0.807 | -0.007 | 2 | 0.616 |
BUB1 |
0.807 | 0.193 | -5 | 0.800 |
PAK4 |
0.806 | 0.080 | -2 | 0.701 |
CK2A1 |
0.806 | 0.077 | 1 | 0.807 |
PKCE |
0.806 | 0.048 | 2 | 0.613 |
WNK4 |
0.806 | -0.126 | -2 | 0.877 |
ZAK |
0.805 | -0.167 | 1 | 0.756 |
MEKK1 |
0.804 | -0.200 | 1 | 0.773 |
NEK11 |
0.804 | -0.103 | 1 | 0.777 |
CAMKK2 |
0.803 | -0.028 | -2 | 0.723 |
MRCKA |
0.803 | 0.111 | -3 | 0.787 |
PDK1 |
0.803 | -0.020 | 1 | 0.770 |
PKCI |
0.803 | -0.014 | 2 | 0.640 |
ERK7 |
0.802 | -0.002 | 2 | 0.467 |
HPK1 |
0.802 | 0.045 | 1 | 0.784 |
MRCKB |
0.802 | 0.113 | -3 | 0.771 |
IRAK4 |
0.802 | -0.142 | 1 | 0.768 |
PINK1 |
0.802 | -0.166 | 1 | 0.805 |
HRI |
0.801 | -0.244 | -2 | 0.814 |
CAMKK1 |
0.800 | -0.134 | -2 | 0.720 |
NEK8 |
0.800 | -0.145 | 2 | 0.713 |
TNIK |
0.800 | 0.026 | 3 | 0.835 |
DMPK1 |
0.799 | 0.146 | -3 | 0.796 |
CHK2 |
0.799 | 0.076 | -3 | 0.692 |
TAK1 |
0.798 | -0.055 | 1 | 0.818 |
EEF2K |
0.798 | -0.050 | 3 | 0.786 |
MST2 |
0.798 | -0.084 | 1 | 0.797 |
SBK |
0.798 | 0.121 | -3 | 0.641 |
PDHK3_TYR |
0.797 | 0.308 | 4 | 0.826 |
KHS2 |
0.797 | 0.072 | 1 | 0.779 |
TAO2 |
0.797 | -0.122 | 2 | 0.746 |
MAP3K15 |
0.797 | -0.049 | 1 | 0.733 |
PLK2 |
0.797 | -0.042 | -3 | 0.764 |
KHS1 |
0.797 | 0.058 | 1 | 0.754 |
PBK |
0.796 | 0.067 | 1 | 0.741 |
MINK |
0.796 | -0.041 | 1 | 0.767 |
MEKK6 |
0.796 | -0.088 | 1 | 0.772 |
HGK |
0.796 | -0.036 | 3 | 0.831 |
PHKG2 |
0.795 | -0.096 | -3 | 0.807 |
CAMK1A |
0.795 | 0.070 | -3 | 0.704 |
SLK |
0.794 | -0.016 | -2 | 0.704 |
LOK |
0.794 | -0.014 | -2 | 0.750 |
CDK6 |
0.794 | 0.014 | 1 | 0.613 |
LRRK2 |
0.794 | -0.124 | 2 | 0.750 |
NEK4 |
0.793 | -0.113 | 1 | 0.758 |
CRIK |
0.793 | 0.142 | -3 | 0.760 |
PKN1 |
0.793 | 0.016 | -3 | 0.761 |
CDK4 |
0.792 | 0.020 | 1 | 0.598 |
PDHK4_TYR |
0.792 | 0.194 | 2 | 0.809 |
CK1A |
0.790 | 0.091 | -3 | 0.502 |
TTBK1 |
0.790 | -0.210 | 2 | 0.534 |
VRK1 |
0.790 | -0.159 | 2 | 0.733 |
NEK1 |
0.790 | -0.090 | 1 | 0.772 |
MAP2K4_TYR |
0.789 | 0.201 | -1 | 0.893 |
ROCK1 |
0.788 | 0.096 | -3 | 0.784 |
MST1 |
0.788 | -0.106 | 1 | 0.770 |
YANK3 |
0.788 | -0.024 | 2 | 0.362 |
MAP2K6_TYR |
0.788 | 0.141 | -1 | 0.894 |
STK33 |
0.787 | -0.136 | 2 | 0.543 |
TESK1_TYR |
0.786 | 0.107 | 3 | 0.846 |
OSR1 |
0.785 | -0.027 | 2 | 0.719 |
IRAK1 |
0.784 | -0.328 | -1 | 0.761 |
PKG1 |
0.784 | 0.052 | -2 | 0.626 |
BMPR2_TYR |
0.784 | 0.080 | -1 | 0.891 |
PDHK1_TYR |
0.784 | 0.103 | -1 | 0.898 |
LIMK2_TYR |
0.782 | 0.147 | -3 | 0.865 |
HASPIN |
0.781 | 0.009 | -1 | 0.733 |
YSK1 |
0.781 | -0.118 | 2 | 0.709 |
TXK |
0.781 | 0.206 | 1 | 0.903 |
TTK |
0.780 | -0.061 | -2 | 0.796 |
PKMYT1_TYR |
0.780 | 0.006 | 3 | 0.816 |
MEK2 |
0.779 | -0.247 | 2 | 0.726 |
MAP2K7_TYR |
0.778 | -0.116 | 2 | 0.771 |
EPHB4 |
0.777 | 0.091 | -1 | 0.838 |
ALPHAK3 |
0.777 | -0.026 | -1 | 0.789 |
EPHA6 |
0.777 | 0.060 | -1 | 0.867 |
MYO3B |
0.774 | -0.047 | 2 | 0.734 |
ABL2 |
0.773 | 0.085 | -1 | 0.814 |
PINK1_TYR |
0.772 | -0.178 | 1 | 0.834 |
BIKE |
0.771 | -0.029 | 1 | 0.702 |
RET |
0.770 | -0.064 | 1 | 0.772 |
RIPK2 |
0.770 | -0.322 | 1 | 0.703 |
ASK1 |
0.770 | -0.149 | 1 | 0.719 |
TNK2 |
0.769 | 0.069 | 3 | 0.716 |
FGR |
0.769 | 0.001 | 1 | 0.860 |
ABL1 |
0.768 | 0.049 | -1 | 0.807 |
NEK3 |
0.768 | -0.184 | 1 | 0.709 |
EPHA4 |
0.768 | 0.023 | 2 | 0.704 |
MYO3A |
0.767 | -0.111 | 1 | 0.756 |
SRMS |
0.766 | 0.019 | 1 | 0.887 |
TYRO3 |
0.766 | -0.097 | 3 | 0.750 |
LIMK1_TYR |
0.766 | -0.160 | 2 | 0.757 |
MST1R |
0.765 | -0.106 | 3 | 0.774 |
YES1 |
0.765 | -0.056 | -1 | 0.858 |
LCK |
0.764 | 0.048 | -1 | 0.845 |
CSF1R |
0.764 | -0.071 | 3 | 0.749 |
ROS1 |
0.764 | -0.094 | 3 | 0.712 |
ITK |
0.764 | 0.008 | -1 | 0.805 |
BLK |
0.763 | 0.046 | -1 | 0.843 |
FER |
0.763 | -0.086 | 1 | 0.892 |
DDR1 |
0.763 | -0.158 | 4 | 0.737 |
EPHB1 |
0.762 | -0.011 | 1 | 0.867 |
TAO1 |
0.762 | -0.147 | 1 | 0.684 |
INSRR |
0.762 | -0.078 | 3 | 0.687 |
EPHB3 |
0.761 | -0.003 | -1 | 0.819 |
BMX |
0.760 | 0.016 | -1 | 0.736 |
EPHB2 |
0.760 | -0.005 | -1 | 0.814 |
JAK3 |
0.760 | -0.108 | 1 | 0.761 |
MERTK |
0.760 | -0.019 | 3 | 0.737 |
JAK2 |
0.759 | -0.143 | 1 | 0.756 |
HCK |
0.759 | -0.064 | -1 | 0.838 |
TYK2 |
0.758 | -0.242 | 1 | 0.762 |
MET |
0.758 | -0.027 | 3 | 0.750 |
FYN |
0.758 | 0.027 | -1 | 0.832 |
AAK1 |
0.757 | 0.020 | 1 | 0.594 |
KIT |
0.756 | -0.104 | 3 | 0.750 |
KDR |
0.756 | -0.093 | 3 | 0.713 |
TNK1 |
0.755 | -0.048 | 3 | 0.736 |
PTK2B |
0.755 | 0.042 | -1 | 0.782 |
NEK10_TYR |
0.755 | -0.051 | 1 | 0.645 |
PTK2 |
0.754 | 0.085 | -1 | 0.804 |
EPHA7 |
0.754 | -0.017 | 2 | 0.697 |
FGFR2 |
0.754 | -0.162 | 3 | 0.752 |
STLK3 |
0.754 | -0.217 | 1 | 0.718 |
AXL |
0.753 | -0.095 | 3 | 0.731 |
CK1G3 |
0.753 | 0.009 | -3 | 0.457 |
TEC |
0.752 | -0.067 | -1 | 0.740 |
JAK1 |
0.752 | -0.054 | 1 | 0.699 |
YANK2 |
0.751 | -0.060 | 2 | 0.371 |
EPHA3 |
0.750 | -0.088 | 2 | 0.671 |
TNNI3K_TYR |
0.750 | -0.067 | 1 | 0.767 |
DDR2 |
0.750 | -0.037 | 3 | 0.678 |
PDGFRB |
0.750 | -0.204 | 3 | 0.754 |
FLT1 |
0.750 | -0.090 | -1 | 0.833 |
SYK |
0.749 | 0.066 | -1 | 0.787 |
EPHA5 |
0.748 | -0.036 | 2 | 0.683 |
TEK |
0.747 | -0.183 | 3 | 0.674 |
FLT3 |
0.746 | -0.219 | 3 | 0.750 |
FGFR1 |
0.746 | -0.195 | 3 | 0.714 |
WEE1_TYR |
0.746 | -0.123 | -1 | 0.770 |
ALK |
0.746 | -0.143 | 3 | 0.656 |
EPHA1 |
0.745 | -0.094 | 3 | 0.729 |
LTK |
0.745 | -0.143 | 3 | 0.688 |
PTK6 |
0.745 | -0.158 | -1 | 0.740 |
EPHA8 |
0.744 | -0.042 | -1 | 0.807 |
FGFR3 |
0.744 | -0.165 | 3 | 0.720 |
NTRK1 |
0.744 | -0.185 | -1 | 0.826 |
LYN |
0.744 | -0.093 | 3 | 0.669 |
FRK |
0.743 | -0.112 | -1 | 0.833 |
BTK |
0.743 | -0.224 | -1 | 0.768 |
ERBB2 |
0.743 | -0.168 | 1 | 0.754 |
SRC |
0.743 | -0.071 | -1 | 0.824 |
MATK |
0.742 | -0.098 | -1 | 0.746 |
NTRK3 |
0.742 | -0.096 | -1 | 0.782 |
CK1G2 |
0.742 | 0.009 | -3 | 0.543 |
PDGFRA |
0.741 | -0.237 | 3 | 0.753 |
INSR |
0.740 | -0.176 | 3 | 0.668 |
EGFR |
0.738 | -0.099 | 1 | 0.667 |
CSK |
0.737 | -0.128 | 2 | 0.696 |
EPHA2 |
0.737 | -0.038 | -1 | 0.773 |
FLT4 |
0.736 | -0.229 | 3 | 0.704 |
NTRK2 |
0.735 | -0.240 | 3 | 0.701 |
FGFR4 |
0.735 | -0.111 | -1 | 0.775 |
ZAP70 |
0.733 | 0.047 | -1 | 0.724 |
ERBB4 |
0.732 | -0.045 | 1 | 0.715 |
IGF1R |
0.726 | -0.166 | 3 | 0.604 |
FES |
0.719 | -0.113 | -1 | 0.717 |
MUSK |
0.718 | -0.186 | 1 | 0.652 |