Motif 123 (n=651)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A024R4G9 | C19orf48 | S20 | psp | Chromosome 19 open reading frame 48 (Multidrug resistance-related protein, isoform CRA_a) | None |
A0A0A0MRY4 | None | S254 | ochoa | Spermatogenesis-associated protein 13 | None |
A0A0A0MRY4 | None | S291 | ochoa | Spermatogenesis-associated protein 13 | None |
A0A0G2JPF8 | HNRNPCL4 | S158 | ochoa | Heterogeneous nuclear ribonucleoprotein C like 4 | None |
A0JNW5 | BLTP3B | S1021 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A4UGR9 | XIRP2 | S868 | ochoa | Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}. |
A4UGR9 | XIRP2 | S3241 | ochoa | Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}. |
A6H8Y1 | BDP1 | S1524 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A7KAX9 | ARHGAP32 | S1585 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7MBM2 | DISP2 | S1175 | ochoa | Protein dispatched homolog 2 | None |
A8K0R7 | ZNF839 | S574 | ochoa | Zinc finger protein 839 (Renal carcinoma antigen NY-REN-50) | None |
A8MSY1 | STIMATE-MUSTN1 | S249 | ochoa | Musculoskeletal embryonic nuclear protein 1 | None |
B2RXH8 | HNRNPCL2 | S158 | ochoa | Heterogeneous nuclear ribonucleoprotein C-like 2 (hnRNP C-like-2) | May play a role in nucleosome assembly by neutralizing basic proteins such as A and B core hnRNPs. {ECO:0000250}. |
B7ZW38 | HNRNPCL3 | S158 | ochoa | Heterogeneous nuclear ribonucleoprotein C-like 3 | None |
C9JH25 | PRRT4 | S766 | ochoa | Proline-rich transmembrane protein 4 | None |
E7ERA6 | RNF223 | S19 | ochoa | RING finger protein 223 | None |
E7EW31 | PROB1 | S306 | ochoa | Proline-rich basic protein 1 | None |
F8WAN1 | SPECC1L-ADORA2A | S156 | ochoa | SPECC1L-ADORA2A readthrough (NMD candidate) | None |
O00305 | CACNB4 | S51 | ochoa | Voltage-dependent L-type calcium channel subunit beta-4 (CAB4) (Calcium channel voltage-dependent subunit beta 4) | The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting. {ECO:0000269|PubMed:11880487}. |
O00311 | CDC7 | S509 | ochoa | Cell division cycle 7-related protein kinase (CDC7-related kinase) (HsCdc7) (huCdc7) (EC 2.7.11.1) | Kinase involved in initiation of DNA replication. Phosphorylates critical substrates that regulate the G1/S phase transition and initiation of DNA replication, such as MCM proteins and CLASPIN. {ECO:0000269|PubMed:12065429, ECO:0000269|PubMed:27401717}. |
O00423 | EML1 | S160 | ochoa | Echinoderm microtubule-associated protein-like 1 (EMAP-1) (HuEMAP-1) | Modulates the assembly and organization of the microtubule cytoskeleton, and probably plays a role in regulating the orientation of the mitotic spindle and the orientation of the plane of cell division. Required for normal proliferation of neuronal progenitor cells in the developing brain and for normal brain development. Does not affect neuron migration per se. {ECO:0000250|UniProtKB:Q05BC3}. |
O00444 | PLK4 | S378 | ochoa | Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) | Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}. |
O00478 | BTN3A3 | S214 | ochoa | Butyrophilin subfamily 3 member A3 | Plays a role in T-cell responses in the adaptive immune response. {ECO:0000269|PubMed:22767497}. |
O00622 | CCN1 | S84 | ochoa | CCN family member 1 (Cellular communication network factor 1) (Cysteine-rich angiogenic inducer 61) (Insulin-like growth factor-binding protein 10) (IBP-10) (IGF-binding protein 10) (IGFBP-10) (Protein CYR61) (Protein GIG1) | Promotes cell proliferation, chemotaxis, angiogenesis and cell adhesion. Appears to play a role in wound healing by up-regulating, in skin fibroblasts, the expression of a number of genes involved in angiogenesis, inflammation and matrix remodeling including VEGA-A, VEGA-C, MMP1, MMP3, TIMP1, uPA, PAI-1 and integrins alpha-3 and alpha-5. CCN1-mediated gene regulation is dependent on heparin-binding. Down-regulates the expression of alpha-1 and alpha-2 subunits of collagen type-1. Promotes cell adhesion and adhesive signaling through integrin alpha-6/beta-1, cell migration through integrin alpha-v/beta-5 and cell proliferation through integrin alpha-v/beta-3. {ECO:0000269|PubMed:11584015}. |
O14497 | ARID1A | S1184 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14513 | NCKAP5 | S1311 | ochoa | Nck-associated protein 5 (NAP-5) (Peripheral clock protein) | None |
O14639 | ABLIM1 | S640 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O14649 | KCNK3 | S358 | psp | Potassium channel subfamily K member 3 (Acid-sensitive potassium channel protein TASK-1) (TWIK-related acid-sensitive K(+) channel 1) (Two pore potassium channel KT3.1) (Two pore K(+) channel KT3.1) | K(+) channel that conducts voltage-dependent outward rectifying currents upon membrane depolarization. Voltage sensing is coupled to K(+) electrochemical gradient in an 'ion flux gating' mode where outward but not inward ion flow opens the gate (PubMed:23169818, PubMed:26919430, PubMed:32499642, PubMed:36195757, PubMed:9312005). Changes ion selectivity and becomes permeable to Na(+) ions in response to extracellular acidification. Protonation of the pH sensor His-98 stabilizes C-type inactivation conformation likely converting the channel from outward K(+)-conducting, to inward Na(+)-conducting to nonconductive state (PubMed:22948150). Homo- and heterodimerizes to form functional channels with distinct regulatory and gating properties (PubMed:23169818, PubMed:32499642). Allows K(+) currents with fast-gating kinetics important for the repolarization and hyperpolarization phases of action potentials (By similarity). In cerebellar granule cells, heteromeric KCNK3:KCNK9 channel may hyperpolarize the resting membrane potential to limit intrinsic neuronal excitability, but once the action potential threshold is reached, it may support high-frequency action potential firing and increased neuronal excitability (By similarity). Dispensable for central chemosensory respiration i.e. breathing controlled by brainstem CO2/pH, it rather conducts pH-sensitive currents and controls the firing rate of serotonergic raphe neurons involved in potentiation of the respiratory chemoreflex. Additionally, imparts chemosensitivity to type 1 cells in carotid bodies which respond to a decrease in arterial oxygen pressure or an increase in carbon dioxide pressure or pH to initiate adaptive changes in pulmonary ventilation (By similarity). In adrenal gland, contributes to the maintenance of a hyperpolarized resting membrane potential of aldosterone-producing cells at zona glomerulosa and limits aldosterone release as part of a regulatory mechanism that controls arterial blood pressure and electrolyte homeostasis (By similarity). In brown adipocytes, mediates K(+) efflux that counteracts norepinephrine-induced membrane depolarization, limits Ca(2+) efflux and downstream cAMP and PKA signaling, ultimately attenuating lipid oxidation and adaptive thermogenesis (By similarity). {ECO:0000250|UniProtKB:O35111, ECO:0000250|UniProtKB:O54912, ECO:0000269|PubMed:22948150, ECO:0000269|PubMed:23169818, ECO:0000269|PubMed:26919430, ECO:0000269|PubMed:32499642, ECO:0000269|PubMed:36195757, ECO:0000269|PubMed:9312005}. |
O14746 | TERT | S824 | psp | Telomerase reverse transcriptase (EC 2.7.7.49) (HEST2) (Telomerase catalytic subunit) (Telomerase-associated protein 2) (TP2) | Telomerase is a ribonucleoprotein enzyme essential for the replication of chromosome termini in most eukaryotes. Active in progenitor and cancer cells. Inactive, or very low activity, in normal somatic cells. Catalytic component of the teleromerase holoenzyme complex whose main activity is the elongation of telomeres by acting as a reverse transcriptase that adds simple sequence repeats to chromosome ends by copying a template sequence within the RNA component of the enzyme. Catalyzes the RNA-dependent extension of 3'-chromosomal termini with the 6-nucleotide telomeric repeat unit, 5'-TTAGGG-3'. The catalytic cycle involves primer binding, primer extension and release of product once the template boundary has been reached or nascent product translocation followed by further extension. More active on substrates containing 2 or 3 telomeric repeats. Telomerase activity is regulated by a number of factors including telomerase complex-associated proteins, chaperones and polypeptide modifiers. Modulates Wnt signaling. Plays important roles in aging and antiapoptosis. {ECO:0000269|PubMed:14963003, ECO:0000269|PubMed:15082768, ECO:0000269|PubMed:15857955, ECO:0000269|PubMed:17026956, ECO:0000269|PubMed:17264120, ECO:0000269|PubMed:17296728, ECO:0000269|PubMed:17548608, ECO:0000269|PubMed:19188162, ECO:0000269|PubMed:19567472, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:19777057, ECO:0000269|PubMed:9389643}. |
O14976 | GAK | S826 | ochoa | Cyclin-G-associated kinase (EC 2.7.11.1) (DnaJ homolog subfamily C member 26) | Associates with cyclin G and CDK5. Seems to act as an auxilin homolog that is involved in the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells. Expression oscillates slightly during the cell cycle, peaking at G1 (PubMed:10625686). May play a role in clathrin-mediated endocytosis and intracellular trafficking, and in the dynamics of clathrin assembly/disassembly (PubMed:18489706). {ECO:0000269|PubMed:10625686, ECO:0000269|PubMed:18489706}. |
O15014 | ZNF609 | S379 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15014 | ZNF609 | S413 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15018 | PDZD2 | S543 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15069 | NACAD | S1130 | ochoa | NAC-alpha domain-containing protein 1 | May prevent inappropriate targeting of non-secretory polypeptides to the endoplasmic reticulum (ER). May bind to nascent polypeptide chains as they emerge from the ribosome and block their interaction with the signal recognition particle (SRP), which normally targets nascent secretory peptides to the ER. May also reduce the inherent affinity of ribosomes for protein translocation sites in the ER membrane (M sites) (By similarity). {ECO:0000250}. |
O15117 | FYB1 | S245 | ochoa | FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) | Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}. |
O15169 | AXIN1 | S215 | ochoa | Axin-1 (Axis inhibition protein 1) (hAxin) | Component of the beta-catenin destruction complex required for regulating CTNNB1 levels through phosphorylation and ubiquitination, and modulating Wnt-signaling (PubMed:12192039, PubMed:27098453, PubMed:28829046). Controls dorsoventral patterning via two opposing effects; down-regulates CTNNB1 to inhibit the Wnt signaling pathway and ventralize embryos, but also dorsalizes embryos by activating a Wnt-independent JNK signaling pathway (PubMed:12192039). In Wnt signaling, probably facilitates the phosphorylation of CTNNB1 and APC by GSK3B (PubMed:12192039). Likely to function as a tumor suppressor. Enhances TGF-beta signaling by recruiting the RNF111 E3 ubiquitin ligase and promoting the degradation of inhibitory SMAD7 (PubMed:16601693). Also a component of the AXIN1-HIPK2-TP53 complex which controls cell growth, apoptosis and development (PubMed:17210684). Facilitates the phosphorylation of TP53 by HIPK2 upon ultraviolet irradiation (PubMed:17210684). {ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:16601693, ECO:0000269|PubMed:17210684, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:28546513}. |
O15438 | ABCC3 | S1141 | ochoa | ATP-binding cassette sub-family C member 3 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (Canalicular multispecific organic anion transporter 2) (Multi-specific organic anion transporter D) (MOAT-D) (Multidrug resistance-associated protein 3) | ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes (PubMed:10359813, PubMed:11581266, PubMed:15083066). Transports glucuronide conjugates such as bilirubin diglucuronide, estradiol-17-beta-o-glucuronide and GSH conjugates such as leukotriene C4 (LTC4) (PubMed:11581266, PubMed:15083066). Transports also various bile salts (taurocholate, glycocholate, taurochenodeoxycholate-3-sulfate, taurolithocholate- 3-sulfate) (By similarity). Does not contribute substantially to bile salt physiology but provides an alternative route for the export of bile acids and glucuronides from cholestatic hepatocytes (By similarity). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Can confer resistance to various anticancer drugs, methotrexate, tenoposide and etoposide, by decreasing accumulation of these drugs in cells (PubMed:10359813, PubMed:11581266). {ECO:0000250|UniProtKB:O88563, ECO:0000269|PubMed:10359813, ECO:0000269|PubMed:11581266, ECO:0000269|PubMed:15083066, ECO:0000305|PubMed:35307651}. |
O15530 | PDPK1 | S410 | psp | 3-phosphoinositide-dependent protein kinase 1 (hPDK1) (EC 2.7.11.1) | Serine/threonine kinase which acts as a master kinase, phosphorylating and activating a subgroup of the AGC family of protein kinases (PubMed:10226025, PubMed:10480933, PubMed:10995762, PubMed:12167717, PubMed:14585963, PubMed:14604990, PubMed:16207722, PubMed:16251192, PubMed:17327236, PubMed:17371830, PubMed:18835241, PubMed:9094314, PubMed:9368760, PubMed:9445476, PubMed:9445477, PubMed:9707564, PubMed:9768361). Its targets include: protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), p70 ribosomal protein S6 kinase (RPS6KB1), p90 ribosomal protein S6 kinase (RPS6KA1, RPS6KA2 and RPS6KA3), cyclic AMP-dependent protein kinase (PRKACA), protein kinase C (PRKCD and PRKCZ), serum and glucocorticoid-inducible kinase (SGK1, SGK2 and SGK3), p21-activated kinase-1 (PAK1), TSSK3, protein kinase PKN (PKN1 and PKN2) (PubMed:10226025, PubMed:10480933, PubMed:10995762, PubMed:12167717, PubMed:14585963, PubMed:14604990, PubMed:16207722, PubMed:16251192, PubMed:17327236, PubMed:17371830, PubMed:18835241, PubMed:9094314, PubMed:9368760, PubMed:9445476, PubMed:9707564, PubMed:9768361). Plays a central role in the transduction of signals from insulin by providing the activating phosphorylation to PKB/AKT1, thus propagating the signal to downstream targets controlling cell proliferation and survival, as well as glucose and amino acid uptake and storage (PubMed:10226025, PubMed:12167717, PubMed:9094314). Negatively regulates the TGF-beta-induced signaling by: modulating the association of SMAD3 and SMAD7 with TGF-beta receptor, phosphorylating SMAD2, SMAD3, SMAD4 and SMAD7, preventing the nuclear translocation of SMAD3 and SMAD4 and the translocation of SMAD7 from the nucleus to the cytoplasm in response to TGF-beta (PubMed:17327236). Activates PPARG transcriptional activity and promotes adipocyte differentiation (By similarity). Activates the NF-kappa-B pathway via phosphorylation of IKKB (PubMed:16207722). The tyrosine phosphorylated form is crucial for the regulation of focal adhesions by angiotensin II (PubMed:14585963). Controls proliferation, survival, and growth of developing pancreatic cells (By similarity). Participates in the regulation of Ca(2+) entry and Ca(2+)-activated K(+) channels of mast cells (By similarity). Essential for the motility of vascular endothelial cells (ECs) and is involved in the regulation of their chemotaxis (PubMed:17371830). Plays a critical role in cardiac homeostasis by serving as a dual effector for cell survival and beta-adrenergic response (By similarity). Plays an important role during thymocyte development by regulating the expression of key nutrient receptors on the surface of pre-T cells and mediating Notch-induced cell growth and proliferative responses (By similarity). Provides negative feedback inhibition to toll-like receptor-mediated NF-kappa-B activation in macrophages (By similarity). {ECO:0000250|UniProtKB:Q9Z2A0, ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10480933, ECO:0000269|PubMed:10995762, ECO:0000269|PubMed:12167717, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:14604990, ECO:0000269|PubMed:16207722, ECO:0000269|PubMed:16251192, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:17371830, ECO:0000269|PubMed:18835241, ECO:0000269|PubMed:9094314, ECO:0000269|PubMed:9368760, ECO:0000269|PubMed:9445476, ECO:0000269|PubMed:9445477, ECO:0000269|PubMed:9707564, ECO:0000269|PubMed:9768361}.; FUNCTION: [Isoform 3]: Catalytically inactive. {ECO:0000269|PubMed:9445477}. |
O43150 | ASAP2 | S722 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 (Development and differentiation-enhancing factor 2) (Paxillin-associated protein with ARF GAP activity 3) (PAG3) (Pyk2 C-terminus-associated protein) (PAP) | Activates the small GTPases ARF1, ARF5 and ARF6. Regulates the formation of post-Golgi vesicles and modulates constitutive secretion. Modulates phagocytosis mediated by Fc gamma receptor and ARF6. Modulates PXN recruitment to focal contacts and cell migration. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:10749932, ECO:0000269|PubMed:11304556}. |
O43166 | SIPA1L1 | S176 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43166 | SIPA1L1 | S1192 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43314 | PPIP5K2 | S1091 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43439 | CBFA2T2 | S409 | ochoa | Protein CBFA2T2 (ETO homologous on chromosome 20) (MTG8-like protein) (MTG8-related protein 1) (Myeloid translocation-related protein 1) (p85) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:12559562, PubMed:15203199). Via association with PRDM14 is involved in regulation of embryonic stem cell (ESC) pluripotency (PubMed:27281218). Involved in primordial germ cell (PCG) formation. Stabilizes PRDM14 and OCT4 on chromatin in a homooligomerization-dependent manner (By similarity). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). May function as a complex with the chimeric protein RUNX1/AML1-CBFA2T1/MTG8 (AML1-MTG8/ETO fusion protein) which is produced in acute myeloid leukemia with the chromosomal translocation t(8;21). May thus be involved in the repression of AML1-dependent transcription and the induction of G-CSF/CSF3-dependent cell growth. May be a tumor suppressor gene candidate involved in myeloid tumors with the deletion of the 20q11 region. Through heteromerization with CBFA2T3/MTG16 may be involved in regulation of the proliferation and the differentiation of erythroid progenitors by repressing the expression of TAL1 target genes (By similarity). Required for the maintenance of the secretory cell lineage in the small intestine. Can inhibit Notch signaling probably by association with RBPJ and may be involved in GFI1-mediated Paneth cell differentiation (By similarity). {ECO:0000250|UniProtKB:O70374, ECO:0000269|PubMed:23251453, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}. |
O43683 | BUB1 | T213 | psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O43900 | PRICKLE3 | S383 | ochoa | Prickle planar cell polarity protein 3 (LIM domain only protein 6) (LMO-6) (Prickle-like protein 3) (Pk3) (Triple LIM domain protein 6) | Involved in the planar cell polarity (PCP) pathway that is essential for the polarization of epithelial cells during morphogenetic processes, including gastrulation and neurulation (By similarity). PCP is maintained by two molecular modules, the global and the core modules, PRICKLE3 being part of the core module (By similarity). Distinct complexes of the core module segregate to opposite sides of the cell, where they interact with the opposite complex in the neighboring cell at or near the adherents junctions (By similarity). Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). Required for proper assembly, stability, and function of mitochondrial membrane ATP synthase (mitochondrial complex V) (PubMed:32516135). {ECO:0000250|UniProtKB:A8WH69, ECO:0000269|PubMed:32516135}. |
O60307 | MAST3 | S754 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60346 | PHLPP1 | S1526 | ochoa | PH domain leucine-rich repeat-containing protein phosphatase 1 (EC 3.1.3.16) (Pleckstrin homology domain-containing family E member 1) (PH domain-containing family E member 1) (Suprachiasmatic nucleus circadian oscillatory protein) (hSCOP) | Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT2 and AKT3, 'Ser-660' of PRKCB and 'Ser-657' of PRKCA (PubMed:15808505, PubMed:17386267, PubMed:18162466). Isoform 2 seems to have a major role in regulating Akt signaling in hippocampal neurons (By similarity). Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and suppression of tumor growth. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation (PubMed:18162466). Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor (PubMed:19079341). Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). May act as a negative regulator of K-Ras signaling in membrane rafts (By similarity). Involved in the hippocampus-dependent long-term memory formation (By similarity). Involved in circadian control by regulating the consolidation of circadian periodicity after resetting (By similarity). Involved in development and function of regulatory T-cells (By similarity). {ECO:0000250|UniProtKB:Q8CHE4, ECO:0000250|UniProtKB:Q9WTR8, ECO:0000269|PubMed:15808505, ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}. |
O60503 | ADCY9 | S27 | ochoa | Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) | Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}. |
O60673 | REV3L | S1075 | psp | DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) | Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}. |
O60749 | SNX2 | S185 | ochoa | Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}. |
O60812 | HNRNPCL1 | S158 | ochoa | Heterogeneous nuclear ribonucleoprotein C-like 1 (hnRNP C-like-1) (hnRNP core protein C-like 1) | May play a role in nucleosome assembly by neutralizing basic proteins such as A and B core hnRNPs. {ECO:0000250}. |
O75051 | PLXNA2 | S1612 | ochoa | Plexin-A2 (Semaphorin receptor OCT) | Coreceptor for SEMA3A and SEMA6A. Necessary for signaling by SEMA6A and class 3 semaphorins and subsequent remodeling of the cytoskeleton. Plays a role in axon guidance, invasive growth and cell migration. Class 3 semaphorins bind to a complex composed of a neuropilin and a plexin. The plexin modulates the affinity of the complex for specific semaphorins, and its cytoplasmic domain is required for the activation of down-stream signaling events in the cytoplasm (By similarity). {ECO:0000250, ECO:0000269|PubMed:10520995}. |
O75152 | ZC3H11A | S576 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75376 | NCOR1 | S1450 | ochoa|psp | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75417 | POLQ | S925 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O75604 | USP2 | S207 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 2 (EC 3.4.19.12) (41 kDa ubiquitin-specific protease) (Deubiquitinating enzyme 2) (Ubiquitin thioesterase 2) (Ubiquitin-specific-processing protease 2) | Hydrolase that deubiquitinates polyubiquitinated target proteins such as MDM2, MDM4 and CCND1 (PubMed:17290220, PubMed:19838211, PubMed:19917254). Isoform 1 and isoform 4 possess both ubiquitin-specific peptidase and isopeptidase activities (By similarity). Deubiquitinates MDM2 without reversing MDM2-mediated p53/TP53 ubiquitination and thus indirectly promotes p53/TP53 degradation and limits p53 activity (PubMed:17290220, PubMed:19838211). Has no deubiquitinase activity against p53/TP53 (PubMed:17290220). Prevents MDM2-mediated degradation of MDM4 (PubMed:17290220). Plays a role in the G1/S cell-cycle progression in normal and cancer cells (PubMed:19917254). Regulates the circadian clock by modulating its intrinsic circadian rhythm and its capacity to respond to external cues (By similarity). Associates with clock proteins and deubiquitinates core clock component PER1 but does not affect its overall stability (By similarity). Regulates the nucleocytoplasmic shuttling and nuclear retention of PER1 and its repressive role on the clock transcription factors CLOCK and BMAL1 (By similarity). Plays a role in the regulation of myogenic differentiation of embryonic muscle cells (By similarity). {ECO:0000250|UniProtKB:O88623, ECO:0000250|UniProtKB:Q5U349, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19838211, ECO:0000269|PubMed:19917254}.; FUNCTION: [Isoform 4]: Circadian clock output effector that regulates Ca(2+) absorption in the small intestine. Probably functions by regulating protein levels of the membrane scaffold protein NHERF4 in a rhythmic manner, and is therefore likely to control Ca(2+) membrane permeability mediated by the Ca(2+) channel TRPV6 in the intestine. {ECO:0000250|UniProtKB:O88623}. |
O75665 | OFD1 | S63 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75717 | WDHD1 | S886 | ochoa | WD repeat and HMG-box DNA-binding protein 1 (Acidic nucleoplasmic DNA-binding protein 1) (And-1) | Core replisome component that acts as a replication initiation factor. Binds directly to the CMG complex and functions as a hub to recruit additional proteins to the replication fork. {ECO:0000269|PubMed:19805216, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
O75962 | TRIO | S1900 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O94823 | ATP10B | S1412 | ochoa | Phospholipid-transporting ATPase VB (EC 7.6.2.1) (ATPase class V type 10B) (P4-ATPase flippase complex alpha subunit ATP10B) | Catalytic component of a P4-ATPase flippase complex, which catalyzes the hydrolysis of ATP coupled to the transport of glucosylceramide (GlcCer) from the outer to the inner leaflet of lysosome membranes. Plays an important role in the maintenance of lysosome membrane integrity and function in cortical neurons. {ECO:0000269|PubMed:32172343}. |
O94885 | SASH1 | S743 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O94921 | CDK14 | S95 | ochoa | Cyclin-dependent kinase 14 (EC 2.7.11.22) (Cell division protein kinase 14) (Serine/threonine-protein kinase PFTAIRE-1) (hPFTAIRE1) | Serine/threonine-protein kinase involved in the control of the eukaryotic cell cycle, whose activity is controlled by an associated cyclin. Acts as a cell-cycle regulator of Wnt signaling pathway during G2/M phase by mediating the phosphorylation of LRP6 at 'Ser-1490', leading to the activation of the Wnt signaling pathway. Acts as a regulator of cell cycle progression and cell proliferation via its interaction with CCDN3. Phosphorylates RB1 in vitro, however the relevance of such result remains to be confirmed in vivo. May also play a role in meiosis, neuron differentiation and may indirectly act as a negative regulator of insulin-responsive glucose transport. {ECO:0000269|PubMed:16461467, ECO:0000269|PubMed:17517622, ECO:0000269|PubMed:19524571, ECO:0000269|PubMed:20059949}. |
O95359 | TACC2 | S2088 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95405 | ZFYVE9 | S48 | ochoa | Zinc finger FYVE domain-containing protein 9 (Mothers against decapentaplegic homolog-interacting protein) (Madh-interacting protein) (Novel serine protease) (NSP) (Receptor activation anchor) (hSARA) (Smad anchor for receptor activation) | Early endosomal protein that functions to recruit SMAD2/SMAD3 to intracellular membranes and to the TGF-beta receptor. Plays a significant role in TGF-mediated signaling by regulating the subcellular location of SMAD2 and SMAD3 and modulating the transcriptional activity of the SMAD3/SMAD4 complex. Possibly associated with TGF-beta receptor internalization. {ECO:0000269|PubMed:15356634, ECO:0000269|PubMed:9865696}. |
O95425 | SVIL | S707 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95822 | MLYCD | S471 | ochoa | Malonyl-CoA decarboxylase, mitochondrial (MCD) (EC 4.1.1.9) | Catalyzes the conversion of malonyl-CoA to acetyl-CoA. In the fatty acid biosynthesis MCD selectively removes malonyl-CoA and thus assures that methyl-malonyl-CoA is the only chain elongating substrate for fatty acid synthase and that fatty acids with multiple methyl side chains are produced. In peroxisomes it may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids. Plays a role in the metabolic balance between glucose and lipid oxidation in muscle independent of alterations in insulin signaling. May play a role in controlling the extent of ischemic injury by promoting glucose oxidation. {ECO:0000269|PubMed:10455107, ECO:0000269|PubMed:15003260, ECO:0000269|PubMed:18314420, ECO:0000269|PubMed:23482565}. |
O95831 | AIFM1 | S268 | ochoa | Apoptosis-inducing factor 1, mitochondrial (EC 1.6.99.-) (Programmed cell death protein 8) | Functions both as NADH oxidoreductase and as regulator of apoptosis (PubMed:17094969, PubMed:20362274, PubMed:23217327, PubMed:33168626). In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway (PubMed:20362274). Release into the cytoplasm is mediated upon binding to poly-ADP-ribose chains (By similarity). The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA (PubMed:20362274). Binds to DNA in a sequence-independent manner (PubMed:27178839). Interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthesis, and activates caspase-7 to amplify apoptosis (PubMed:17094969). Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells (PubMed:19418225). In contrast, participates in normal mitochondrial metabolism. Plays an important role in the regulation of respiratory chain biogenesis by interacting with CHCHD4 and controlling CHCHD4 mitochondrial import (PubMed:26004228). {ECO:0000250|UniProtKB:Q9Z0X1, ECO:0000269|PubMed:17094969, ECO:0000269|PubMed:19418225, ECO:0000269|PubMed:20362274, ECO:0000269|PubMed:23217327, ECO:0000269|PubMed:26004228, ECO:0000269|PubMed:27178839, ECO:0000269|PubMed:33168626}.; FUNCTION: [Isoform 4]: Has NADH oxidoreductase activity. Does not induce nuclear apoptosis. {ECO:0000269|PubMed:16644725}.; FUNCTION: [Isoform 5]: Pro-apoptotic isoform. {ECO:0000269|PubMed:16365034}. |
O95835 | LATS1 | S872 | psp | Serine/threonine-protein kinase LATS1 (EC 2.7.11.1) (Large tumor suppressor homolog 1) (WARTS protein kinase) (h-warts) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:10518011, PubMed:10831611, PubMed:18158288, PubMed:26437443, PubMed:28068668). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288, PubMed:26437443, PubMed:28068668). Phosphorylation of YAP1 by LATS1 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:18158288, PubMed:26437443, PubMed:28068668). Acts as a tumor suppressor which plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G1 tetraploidy checkpoint (PubMed:15122335, PubMed:19927127). Negatively regulates G2/M transition by down-regulating CDK1 kinase activity (PubMed:9988268). Involved in the control of p53 expression (PubMed:15122335). Affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1 (PubMed:15220930). May also play a role in endocrine function. Plays a role in mammary gland epithelial cell differentiation, both through the Hippo signaling pathway and the intracellular estrogen receptor signaling pathway by promoting the degradation of ESR1 (PubMed:28068668). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10518011, ECO:0000269|PubMed:10831611, ECO:0000269|PubMed:15122335, ECO:0000269|PubMed:15220930, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:28068668, ECO:0000269|PubMed:39173637, ECO:0000269|PubMed:9988268}. |
O95863 | SNAI1 | S246 | psp | Zinc finger protein SNAI1 (Protein snail homolog 1) (Protein sna) | Involved in induction of the epithelial to mesenchymal transition (EMT), formation and maintenance of embryonic mesoderm, growth arrest, survival and cell migration (PubMed:10655587, PubMed:15647282, PubMed:20389281, PubMed:20562920, PubMed:21952048, PubMed:25827072). Binds to 3 E-boxes of the E-cadherin/CDH1 gene promoter and to the promoters of CLDN7 and KRT8 and, in association with histone demethylase KDM1A which it recruits to the promoters, causes a decrease in dimethylated H3K4 levels and represses transcription (PubMed:10655587, PubMed:20389281, PubMed:20562920). The N-terminal SNAG domain competes with histone H3 for the same binding site on the histone demethylase complex formed by KDM1A and RCOR1, and thereby inhibits demethylation of histone H3 at 'Lys-4' (in vitro) (PubMed:20389281, PubMed:21300290, PubMed:23721412). During EMT, involved with LOXL2 in negatively regulating pericentromeric heterochromatin transcription (PubMed:16096638). SNAI1 recruits LOXL2 to pericentromeric regions to oxidize histone H3 and repress transcription which leads to release of heterochromatin component CBX5/HP1A, enabling chromatin reorganization and acquisition of mesenchymal traits (By similarity). Associates with EGR1 and SP1 to mediate tetradecanoyl phorbol acetate (TPA)-induced up-regulation of CDKN2B, possibly by binding to the CDKN2B promoter region 5'-TCACA-3 (PubMed:20121949). In addition, may also activate the CDKN2B promoter by itself (PubMed:20121949). {ECO:0000250|UniProtKB:Q02085, ECO:0000269|PubMed:10655587, ECO:0000269|PubMed:15647282, ECO:0000269|PubMed:16096638, ECO:0000269|PubMed:20121949, ECO:0000269|PubMed:20389281, ECO:0000269|PubMed:20562920, ECO:0000269|PubMed:21300290, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:23721412, ECO:0000269|PubMed:25827072}. |
O95873 | C6orf47 | S34 | ochoa | Uncharacterized protein C6orf47 (Protein G4) | None |
O95996 | APC2 | S1164 | psp | Adenomatous polyposis coli protein 2 (Adenomatous polyposis coli protein-like) (APC-like) | Stabilizes microtubules and may regulate actin fiber dynamics through the activation of Rho family GTPases (PubMed:25753423). May also function in Wnt signaling by promoting the rapid degradation of CTNNB1 (PubMed:10021369, PubMed:11691822, PubMed:9823329). {ECO:0000269|PubMed:10021369, ECO:0000269|PubMed:11691822, ECO:0000269|PubMed:25753423, ECO:0000269|PubMed:9823329}. |
P01100 | FOS | S362 | ochoa|psp | Protein c-Fos (Cellular oncogene fos) (Fos proto-oncogene, AP-1 transcription factor subunit) (G0/G1 switch regulatory protein 7) (Proto-oncogene c-Fos) (Transcription factor AP-1 subunit c-Fos) | Nuclear phosphoprotein which forms a tight but non-covalently linked complex with the JUN/AP-1 transcription factor. In the heterodimer, FOS and JUN/AP-1 basic regions each seems to interact with symmetrical DNA half sites. On TGF-beta activation, forms a multimeric SMAD3/SMAD4/JUN/FOS complex at the AP1/SMAD-binding site to regulate TGF-beta-mediated signaling. Has a critical function in regulating the development of cells destined to form and maintain the skeleton. It is thought to have an important role in signal transduction, cell proliferation and differentiation. In growing cells, activates phospholipid synthesis, possibly by activating CDS1 and PI4K2A. This activity requires Tyr-dephosphorylation and association with the endoplasmic reticulum. {ECO:0000269|PubMed:16055710, ECO:0000269|PubMed:17160021, ECO:0000269|PubMed:22105363, ECO:0000269|PubMed:7588633, ECO:0000269|PubMed:9732876}. |
P03372 | ESR1 | S167 | psp | Estrogen receptor (ER) (ER-alpha) (Estradiol receptor) (Nuclear receptor subfamily 3 group A member 1) | Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3 (PubMed:17922032). Maintains neuronal survival in response to ischemic reperfusion injury when in the presence of circulating estradiol (17-beta-estradiol/E2) (By similarity). {ECO:0000250|UniProtKB:P06211, ECO:0000269|PubMed:10681512, ECO:0000269|PubMed:10816575, ECO:0000269|PubMed:11477071, ECO:0000269|PubMed:11682626, ECO:0000269|PubMed:14764652, ECO:0000269|PubMed:15078875, ECO:0000269|PubMed:15891768, ECO:0000269|PubMed:16043358, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:17932106, ECO:0000269|PubMed:18247370, ECO:0000269|PubMed:19350539, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20705611, ECO:0000269|PubMed:21330404, ECO:0000269|PubMed:22083956, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:7651415, ECO:0000269|PubMed:9328340}.; FUNCTION: [Isoform 3]: Involved in activation of NOS3 and endothelial nitric oxide production (PubMed:21937726). Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full-length receptor (PubMed:10970861). Binds to ERE and inhibits isoform 1 (PubMed:10970861). {ECO:0000269|PubMed:10970861, ECO:0000269|PubMed:21937726}. |
P06730 | EIF4E | S53 | psp | Eukaryotic translation initiation factor 4E (eIF-4E) (eIF4E) (eIF-4F 25 kDa subunit) (mRNA cap-binding protein) | Acts in the cytoplasm to initiate and regulate protein synthesis and is required in the nucleus for export of a subset of mRNAs from the nucleus to the cytoplasm which promotes processes such as RNA capping, processing and splicing (PubMed:11606200, PubMed:22578813, PubMed:22684010, PubMed:24335285, PubMed:29987188). Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (By similarity). This protein recognizes and binds the 7-methylguanosine (m7G)-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures (PubMed:16271312, PubMed:22578813). Together with EIF4G1, antagonizes the scanning promoted by EIF1-EIF4G1 and is required for TISU translation, a process where the TISU element recognition makes scanning unnecessary (PubMed:29987188). In addition to its role in translation initiation, also acts as a regulator of translation and stability in the cytoplasm (PubMed:24335285). Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression: in the complex, EIF4E mediates the binding to the mRNA cap (By similarity). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). In P-bodies, component of a complex that mediates the storage of translationally inactive mRNAs in the cytoplasm and prevents their degradation (PubMed:24335285). May play an important role in spermatogenesis through translational regulation of stage-specific mRNAs during germ cell development (By similarity). As well as its roles in translation, also involved in mRNA nucleocytoplasmic transport (By similarity). Its role in mRNA export from the nucleus to the cytoplasm relies on its ability to bind the m7G cap of RNAs and on the presence of the 50-nucleotide EIF4E sensitivity element (4ESE) in the 3'UTR of sensitive transcripts (By similarity). Interaction with the 4ESE is mediated by LRPPRC which binds simultaneously to both EIF4E and the 4ESE, thereby acting as a platform for assembly for the RNA export complex (By similarity). EIF4E-dependent mRNA export is independent of ongoing protein or RNA synthesis and is also NFX1-independent but is XPO1-dependent with LRPPRC interacting with XPO1 to form an EIF4E-dependent mRNA export complex (By similarity). Alters the composition of the cytoplasmic face of the nuclear pore to promote RNA export by reducing RANBP2 expression, relocalizing nucleoporin NUP214 and increasing expression of RANBP1 and RNA export factors DDX19 and GLE1 (By similarity). Promotes the nuclear export of cyclin CCND1 mRNA (By similarity). Promotes the nuclear export of NOS2/iNOS mRNA (PubMed:23471078). Promotes the nuclear export of MDM2 mRNA (PubMed:22684010). Promotes the export of additional mRNAs, including others involved in the cell cycle (By similarity). In the nucleus, binds to capped splice factor-encoding mRNAs and stimulates their nuclear export to enhance splice factor production by increasing their cytoplasmic availability to the translation machinery (By similarity). May also regulate splicing through interaction with the spliceosome in an RNA and m7G cap-dependent manner (By similarity). Also binds to some pre-mRNAs and may play a role in their recruitment to the spliceosome (By similarity). Promotes steady-state capping of a subset of coding and non-coding RNAs by mediating nuclear export of capping machinery mRNAs including RNMT, RNGTT and RAMAC to enhance their translation (By similarity). Stimulates mRNA 3'-end processing by promoting the expression of several core cleavage complex factors required for mRNA cleavage and polyadenylation, and may also have a direct effect through its interaction with the CPSF3 cleavage enzyme (By similarity). Rescues cells from apoptosis by promoting activation of serine/threonine-protein kinase AKT1 through mRNA export of NBS1 which potentiates AKT1 phosphorylation and also through mRNA export of AKT1 effectors, allowing for increased production of these proteins (By similarity). {ECO:0000250|UniProtKB:P63073, ECO:0000250|UniProtKB:P63074, ECO:0000269|PubMed:11606200, ECO:0000269|PubMed:16271312, ECO:0000269|PubMed:22578813, ECO:0000269|PubMed:22684010, ECO:0000269|PubMed:23471078, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:29987188}. |
P07910 | HNRNPC | S171 | ochoa | Heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C1/C2) | Binds pre-mRNA and nucleates the assembly of 40S hnRNP particles (PubMed:8264621). Interacts with poly-U tracts in the 3'-UTR or 5'-UTR of mRNA and modulates the stability and the level of translation of bound mRNA molecules (PubMed:12509468, PubMed:16010978, PubMed:7567451, PubMed:8264621). Single HNRNPC tetramers bind 230-240 nucleotides. Trimers of HNRNPC tetramers bind 700 nucleotides (PubMed:8264621). May play a role in the early steps of spliceosome assembly and pre-mRNA splicing. N6-methyladenosine (m6A) has been shown to alter the local structure in mRNAs and long non-coding RNAs (lncRNAs) via a mechanism named 'm(6)A-switch', facilitating binding of HNRNPC, leading to regulation of mRNA splicing (PubMed:25719671). {ECO:0000269|PubMed:12509468, ECO:0000269|PubMed:16010978, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:7567451, ECO:0000269|PubMed:8264621}. |
P08034 | GJB1 | S229 | psp | Gap junction beta-1 protein (Connexin-32) (Cx32) (GAP junction 28 kDa liver protein) | One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. |
P0CG40 | SP9 | S440 | ochoa | Transcription factor Sp9 | Transcription factor which plays a key role in limb development. Positively regulates FGF8 expression in the apical ectodermal ridge (AER) and contributes to limb outgrowth in embryos (By similarity). {ECO:0000250}. |
P0DMR1 | HNRNPCL4 | S158 | ochoa | Heterogeneous nuclear ribonucleoprotein C-like 4 | None |
P10071 | GLI3 | S849 | ochoa|psp | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P10071 | GLI3 | S850 | ochoa | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P10071 | GLI3 | S865 | ochoa|psp | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P10588 | NR2F6 | S83 | psp | Nuclear receptor subfamily 2 group F member 6 (V-erbA-related protein 2) (EAR-2) | Transcription factor predominantly involved in transcriptional repression. Binds to promoter/enhancer response elements that contain the imperfect 5'-AGGTCA-3' direct or inverted repeats with various spacings which are also recognized by other nuclear hormone receptors. Involved in modulation of hormonal responses. Represses transcriptional activity of the lutropin-choriogonadotropic hormone receptor/LHCGR gene, the renin/REN gene and the oxytocin-neurophysin/OXT gene. Represses the triiodothyronine-dependent and -independent transcriptional activity of the thyroid hormone receptor gene in a cell type-specific manner. The corepressing function towards thyroid hormone receptor beta/THRB involves at least in part the inhibition of THRB binding to triiodothyronine response elements (TREs) by NR2F6. Inhibits NFATC transcription factor DNA binding and subsequently its transcriptional activity. Acts as transcriptional repressor of IL-17 expression in Th-17 differentiated CD4(+) T cells and may be involved in induction and/or maintenance of peripheral immunological tolerance and autoimmunity. Involved in development of forebrain circadian clock; is required early in the development of the locus coeruleus (LC). {ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:10713182, ECO:0000269|PubMed:11682620, ECO:0000269|PubMed:18701084}. |
P11473 | VDR | S172 | psp | Vitamin D3 receptor (VDR) (1,25-dihydroxyvitamin D3 receptor) (Nuclear receptor subfamily 1 group I member 1) | Nuclear receptor for calcitriol, the active form of vitamin D3 which mediates the action of this vitamin on cells (PubMed:10678179, PubMed:15728261, PubMed:16913708, PubMed:28698609, PubMed:37478846). Enters the nucleus upon vitamin D3 binding where it forms heterodimers with the retinoid X receptor/RXR (PubMed:28698609). The VDR-RXR heterodimers bind to specific response elements on DNA and activate the transcription of vitamin D3-responsive target genes (PubMed:28698609). Plays a central role in calcium homeostasis (By similarity). Also functions as a receptor for the secondary bile acid lithocholic acid (LCA) and its metabolites (PubMed:12016314, PubMed:32354638). {ECO:0000250|UniProtKB:P13053, ECO:0000269|PubMed:10678179, ECO:0000269|PubMed:12016314, ECO:0000269|PubMed:15728261, ECO:0000269|PubMed:16913708, ECO:0000269|PubMed:28698609, ECO:0000269|PubMed:32354638, ECO:0000269|PubMed:37478846}. |
P15036 | ETS2 | S310 | ochoa|psp | Protein C-ets-2 | Transcription factor activating transcription. Binds specifically the DNA GGAA/T core motif (Ets-binding site or EBS) in gene promoters and stimulates transcription. {ECO:0000269|PubMed:11909962}. |
P15144 | ANPEP | S43 | psp | Aminopeptidase N (AP-N) (hAPN) (EC 3.4.11.2) (Alanyl aminopeptidase) (Aminopeptidase M) (AP-M) (Microsomal aminopeptidase) (Myeloid plasma membrane glycoprotein CD13) (gp150) (CD antigen CD13) | Broad specificity aminopeptidase which plays a role in the final digestion of peptides generated from hydrolysis of proteins by gastric and pancreatic proteases. Also involved in the processing of various peptides including peptide hormones, such as angiotensin III and IV, neuropeptides, and chemokines. May also be involved the cleavage of peptides bound to major histocompatibility complex class II molecules of antigen presenting cells. May have a role in angiogenesis and promote cholesterol crystallization. May have a role in amino acid transport by acting as binding partner of amino acid transporter SLC6A19 and regulating its activity (By similarity). {ECO:0000250|UniProtKB:P97449, ECO:0000269|PubMed:10605003, ECO:0000269|PubMed:10676659, ECO:0000269|PubMed:11384645, ECO:0000269|PubMed:12473585, ECO:0000269|PubMed:7576235, ECO:0000269|PubMed:8102610, ECO:0000269|PubMed:9056417}.; FUNCTION: (Microbial infection) Acts as a receptor for human coronavirus 229E/HCoV-229E. In case of human coronavirus 229E (HCoV-229E) infection, serves as receptor for HCoV-229E spike glycoprotein. {ECO:0000269|PubMed:12551991, ECO:0000269|PubMed:1350662, ECO:0000269|PubMed:8887485, ECO:0000269|PubMed:9367365}.; FUNCTION: (Microbial infection) Mediates as well Human cytomegalovirus (HCMV) infection. {ECO:0000269|PubMed:8105105}. |
P15923 | TCF3 | S56 | ochoa | Transcription factor E2-alpha (Class B basic helix-loop-helix protein 21) (bHLHb21) (Immunoglobulin enhancer-binding factor E12/E47) (Immunoglobulin transcription factor 1) (Kappa-E2-binding factor) (Transcription factor 3) (TCF-3) (Transcription factor ITF-1) | Transcriptional regulator involved in the initiation of neuronal differentiation and mesenchymal to epithelial transition (By similarity). Heterodimers between TCF3 and tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation (By similarity). Together with TCF15, required for the mesenchymal to epithelial transition (By similarity). Dimers bind DNA on E-box motifs: 5'-CANNTG-3' (By similarity). Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer (PubMed:2493990). Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (By similarity). {ECO:0000250|UniProtKB:P15806, ECO:0000269|PubMed:2493990}.; FUNCTION: [Isoform E47]: Facilitates ATOH7 binding to DNA at the consensus sequence 5'-CAGGTG-3', and positively regulates transcriptional activity. {ECO:0000269|PubMed:31696227}. |
P16144 | ITGB4 | S1747 | ochoa | Integrin beta-4 (GP150) (CD antigen CD104) | Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}. |
P17480 | UBTF | S546 | ochoa | Nucleolar transcription factor 1 (Autoantigen NOR-90) (Upstream-binding factor 1) (UBF-1) | Recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I (Pol I) through cooperative interactions with the transcription factor SL1/TIF-IB complex. It binds specifically to the upstream control element and can activate Pol I promoter escape. {ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:28777933, ECO:0000269|PubMed:7982918}. |
P18887 | XRCC1 | S151 | ochoa | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P20719 | HOXA5 | S61 | ochoa | Homeobox protein Hox-A5 (Homeobox protein Hox-1C) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Also binds to its own promoter. Binds specifically to the motif 5'-CYYNATTA[TG]Y-3'. |
P20719 | HOXA5 | S123 | ochoa | Homeobox protein Hox-A5 (Homeobox protein Hox-1C) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Also binds to its own promoter. Binds specifically to the motif 5'-CYYNATTA[TG]Y-3'. |
P21453 | S1PR1 | T236 | psp | Sphingosine 1-phosphate receptor 1 (S1P receptor 1) (S1P1) (Endothelial differentiation G-protein coupled receptor 1) (Sphingosine 1-phosphate receptor Edg-1) (S1P receptor Edg-1) (CD antigen CD363) | G-protein coupled receptor for the bioactive lysosphingolipid sphingosine 1-phosphate (S1P) that seems to be coupled to the G(i) subclass of heteromeric G proteins. Signaling leads to the activation of RAC1, SRC, PTK2/FAK1 and MAP kinases. Plays an important role in cell migration, probably via its role in the reorganization of the actin cytoskeleton and the formation of lamellipodia in response to stimuli that increase the activity of the sphingosine kinase SPHK1. Required for normal chemotaxis toward sphingosine 1-phosphate. Required for normal embryonic heart development and normal cardiac morphogenesis. Plays an important role in the regulation of sprouting angiogenesis and vascular maturation. Inhibits sprouting angiogenesis to prevent excessive sprouting during blood vessel development. Required for normal egress of mature T-cells from the thymus into the blood stream and into peripheral lymphoid organs. Plays a role in the migration of osteoclast precursor cells, the regulation of bone mineralization and bone homeostasis (By similarity). Plays a role in responses to oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by pulmonary endothelial cells and in the protection against ventilator-induced lung injury. {ECO:0000250, ECO:0000269|PubMed:10982820, ECO:0000269|PubMed:11230698, ECO:0000269|PubMed:11583630, ECO:0000269|PubMed:11604399, ECO:0000269|PubMed:19286607, ECO:0000269|PubMed:22344443, ECO:0000269|PubMed:8626678, ECO:0000269|PubMed:9488656}. |
P21802 | FGFR2 | S453 | ochoa | Fibroblast growth factor receptor 2 (FGFR-2) (EC 2.7.10.1) (K-sam) (KGFR) (Keratinocyte growth factor receptor) (CD antigen CD332) | Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation, migration and apoptosis, and in the regulation of embryonic development. Required for normal embryonic patterning, trophoblast function, limb bud development, lung morphogenesis, osteogenesis and skin development. Plays an essential role in the regulation of osteoblast differentiation, proliferation and apoptosis, and is required for normal skeleton development. Promotes cell proliferation in keratinocytes and immature osteoblasts, but promotes apoptosis in differentiated osteoblasts. Phosphorylates PLCG1, FRS2 and PAK4. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. FGFR2 signaling is down-regulated by ubiquitination, internalization and degradation. Mutations that lead to constitutive kinase activation or impair normal FGFR2 maturation, internalization and degradation lead to aberrant signaling. Over-expressed FGFR2 promotes activation of STAT1. {ECO:0000269|PubMed:12529371, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:15629145, ECO:0000269|PubMed:16384934, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17623664, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19103595, ECO:0000269|PubMed:19387476, ECO:0000269|PubMed:19410646, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:8663044}. |
P23193 | TCEA1 | S57 | ochoa | Transcription elongation factor A protein 1 (Transcription elongation factor S-II protein 1) (Transcription elongation factor TFIIS.o) | Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus. |
P25054 | APC | S1389 | psp | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2350 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2374 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25205 | MCM3 | S160 | ochoa|psp | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P29475 | NOS1 | S852 | ochoa|psp | Nitric oxide synthase 1 (EC 1.14.13.39) (Constitutive NOS) (NC-NOS) (NOS type I) (Neuronal NOS) (N-NOS) (nNOS) (Nitric oxide synthase, brain) (bNOS) (Peptidyl-cysteine S-nitrosylase NOS1) | Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR. {ECO:0000269|PubMed:35772285}. |
P30405 | PPIF | S31 | psp | Peptidyl-prolyl cis-trans isomerase F, mitochondrial (PPIase F) (EC 5.2.1.8) (Cyclophilin D) (CyP-D) (CypD) (Cyclophilin F) (Mitochondrial cyclophilin) (CyP-M) (Rotamase F) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Involved in regulation of the mitochondrial permeability transition pore (mPTP) (PubMed:26387735). It is proposed that its association with the mPTP is masking a binding site for inhibiting inorganic phosphate (Pi) and promotes the open probability of the mPTP leading to apoptosis or necrosis; the requirement of the PPIase activity for this function is debated (PubMed:26387735). In cooperation with mitochondrial p53/TP53 is involved in activating oxidative stress-induced necrosis (PubMed:22726440). Involved in modulation of mitochondrial membrane F(1)F(0) ATP synthase activity and regulation of mitochondrial matrix adenine nucleotide levels (By similarity). Has anti-apoptotic activity independently of mPTP and in cooperation with BCL2 inhibits cytochrome c-dependent apoptosis (PubMed:19228691). {ECO:0000250|UniProtKB:Q99KR7, ECO:0000269|PubMed:19228691, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:26387735}. |
P30556 | AGTR1 | S335 | psp | Type-1 angiotensin II receptor (AT1AR) (AT1BR) (Angiotensin II type-1 receptor) (AT1 receptor) | Receptor for angiotensin II, a vasoconstricting peptide, which acts as a key regulator of blood pressure and sodium retention by the kidney (PubMed:15611106, PubMed:1567413, PubMed:25913193, PubMed:26420482, PubMed:30639100, PubMed:32079768, PubMed:8987975). The activated receptor in turn couples to G-alpha proteins G(q) (GNAQ, GNA11, GNA14 or GNA15) and thus activates phospholipase C and increases the cytosolic Ca(2+) concentrations, which in turn triggers cellular responses such as stimulation of protein kinase C (PubMed:15611106). {ECO:0000269|PubMed:15611106, ECO:0000269|PubMed:1567413, ECO:0000269|PubMed:25913193, ECO:0000269|PubMed:26420482, ECO:0000269|PubMed:30639100, ECO:0000269|PubMed:32079768, ECO:0000269|PubMed:8987975}.; FUNCTION: (Microbial infection) During SARS coronavirus-2/SARS-CoV-2 infection, it is able to recognize and internalize the complex formed by secreted ACE2 and SARS-CoV-2 spike protein through DNM2/dynamin 2-dependent endocytosis. {ECO:0000269|PubMed:33713620}. |
P30679 | GNA15 | S330 | ochoa | Guanine nucleotide-binding protein subunit alpha-15 (G alpha-15) (G-protein subunit alpha-15) (Epididymis tissue protein Li 17E) (Guanine nucleotide-binding protein subunit alpha-16) (G alpha-16) (G-protein subunit alpha-16) | Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. |
P31629 | HIVEP2 | S2400 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P32248 | CCR7 | S356 | psp | C-C chemokine receptor type 7 (C-C CKR-7) (CC-CKR-7) (CCR-7) (BLR2) (CDw197) (Epstein-Barr virus-induced G-protein coupled receptor 1) (EBI1) (EBV-induced G-protein coupled receptor 1) (MIP-3 beta receptor) (CD antigen CD197) | Receptor for the MIP-3-beta chemokine. Probable mediator of EBV effects on B-lymphocytes or of normal lymphocyte functions. |
P32519 | ELF1 | S318 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P35251 | RFC1 | S518 | psp | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P35408 | PTGER4 | S379 | psp | Prostaglandin E2 receptor EP4 subtype (PGE receptor EP4 subtype) (PGE2 receptor EP4 subtype) (Prostanoid EP4 receptor) | Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. Has a relaxing effect on smooth muscle. May play an important role in regulating renal hemodynamics, intestinal epithelial transport, adrenal aldosterone secretion, and uterine function. |
P35498 | SCN1A | S551 | ochoa | Sodium channel protein type 1 subunit alpha (Sodium channel protein brain I subunit alpha) (Sodium channel protein type I subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.1) | Pore-forming subunit of Nav1.1, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:14672992). By regulating the excitability of neurons, ensures that they respond appropriately to synaptic inputs, maintaining the balance between excitation and inhibition in brain neural circuits (By similarity). Nav1.1 plays a role in controlling the excitability and action potential propagation from somatosensory neurons, thereby contributing to the sensory perception of mechanically-induced pain (By similarity). {ECO:0000250|UniProtKB:A2APX8, ECO:0000269|PubMed:14672992}. |
P35568 | IRS1 | S463 | ochoa | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35637 | FUS | S42 | psp | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P35670 | ATP7B | S1121 | psp | Copper-transporting ATPase 2 (EC 7.2.2.8) (Copper pump 2) (Wilson disease-associated protein) [Cleaved into: WND/140 kDa] | Copper ion transmembrane transporter involved in the export of copper out of the cells. It is involved in copper homeostasis in the liver, where it ensures the efflux of copper from hepatocytes into the bile in response to copper overload. {ECO:0000269|PubMed:18203200, ECO:0000269|PubMed:22240481, ECO:0000269|PubMed:24706876, ECO:0000269|PubMed:26004889}. |
P36871 | PGM1 | S509 | ochoa | Phosphoglucomutase-1 (PGM 1) (EC 5.4.2.2) (Glucose phosphomutase 1) | Catalyzes the reversible isomerization of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate (PubMed:15378030, PubMed:25288802). The mechanism proceeds via the intermediate compound alpha-D-glucose 1,6-bisphosphate (Probable) (PubMed:25288802). This enzyme participates in both the breakdown and synthesis of glucose (PubMed:17924679, PubMed:25288802). {ECO:0000269|PubMed:15378030, ECO:0000269|PubMed:17924679, ECO:0000269|PubMed:25288802, ECO:0000305|PubMed:15378030}. |
P37198 | NUP62 | S272 | psp | Nuclear pore glycoprotein p62 (62 kDa nucleoporin) (Nucleoporin Nup62) | Essential component of the nuclear pore complex (PubMed:1915414). The N-terminal is probably involved in nucleocytoplasmic transport (PubMed:1915414). The C-terminal is involved in protein-protein interaction probably via coiled-coil formation, promotes its association with centrosomes and may function in anchorage of p62 to the pore complex (PubMed:1915414, PubMed:24107630). Plays a role in mitotic cell cycle progression by regulating centrosome segregation, centriole maturation and spindle orientation (PubMed:24107630). It might be involved in protein recruitment to the centrosome after nuclear breakdown (PubMed:24107630). {ECO:0000269|PubMed:1915414, ECO:0000269|PubMed:24107630}. |
P38398 | BRCA1 | S632 | ochoa|psp | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P38432 | COIL | S235 | ochoa | Coilin (p80-coilin) | Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}. |
P38919 | EIF4A3 | S84 | ochoa | Eukaryotic initiation factor 4A-III (eIF-4A-III) (eIF4A-III) (EC 3.6.4.13) (ATP-dependent RNA helicase DDX48) (ATP-dependent RNA helicase eIF4A-3) (DEAD box protein 48) (Eukaryotic initiation factor 4A-like NUK-34) (Eukaryotic translation initiation factor 4A isoform 3) (Nuclear matrix protein 265) (NMP 265) (hNMP 265) [Cleaved into: Eukaryotic initiation factor 4A-III, N-terminally processed] | ATP-dependent RNA helicase (PubMed:16170325). Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs (PubMed:16170325, PubMed:16209946, PubMed:16314458, PubMed:16923391, PubMed:16931718, PubMed:19033377, PubMed:20479275). The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Its RNA-dependent ATPase and RNA-helicase activities are induced by CASC3, but abolished in presence of the MAGOH-RBM8A heterodimer, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The inhibition of ATPase activity by the MAGOH-RBM8A heterodimer increases the RNA-binding affinity of the EJC. Involved in translational enhancement of spliced mRNAs after formation of the 80S ribosome complex. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Shows higher affinity for single-stranded RNA in an ATP-bound core EJC complex than after the ATP is hydrolyzed. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly (PubMed:22203037). Involved in craniofacial development (PubMed:24360810). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:15034551, ECO:0000269|PubMed:16170325, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16314458, ECO:0000269|PubMed:16923391, ECO:0000269|PubMed:16931718, ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:19033377, ECO:0000269|PubMed:19409878, ECO:0000269|PubMed:20479275, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:24360810, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
P39880 | CUX1 | S652 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P41180 | CASR | S901 | ochoa | Extracellular calcium-sensing receptor (CaR) (CaSR) (hCasR) (Parathyroid cell calcium-sensing receptor 1) (PCaR1) | G-protein-coupled receptor that senses changes in the extracellular concentration of calcium ions and plays a key role in maintaining calcium homeostasis (PubMed:17555508, PubMed:19789209, PubMed:21566075, PubMed:22114145, PubMed:22789683, PubMed:23966241, PubMed:25104082, PubMed:25292184, PubMed:25766501, PubMed:26386835, PubMed:32817431, PubMed:33603117, PubMed:34194040, PubMed:34467854, PubMed:7759551, PubMed:8636323, PubMed:8702647, PubMed:8878438). Senses fluctuations in the circulating calcium concentration: activated by elevated circulating calcium, leading to decreased parathyroid hormone (PTH) secretion in parathyroid glands (By similarity). In kidneys, acts as a key regulator of renal tubular calcium resorption (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G-proteins) and modulates the activity of downstream effectors (PubMed:38632411). CASR is coupled with different G(q)/G(11), G(i)/G(o)- or G(s)-classes of G-proteins depending on the context (PubMed:38632411). In the parathyroid and kidney, CASR signals through G(q)/G(11) and G(i)/G(o) G-proteins: G(q)/G(11) coupling activates phospholipase C-beta, releasing diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) second messengers, while G(i)/G(o) coupling mediates inhibition of adenylate cyclase activity (PubMed:38632411, PubMed:7759551). The G-protein-coupled receptor activity is activated by a co-agonist mechanism: aromatic amino acids, such as Trp or Phe, act concertedly with divalent cations, such as calcium or magnesium, to achieve full receptor activation (PubMed:27386547, PubMed:27434672, PubMed:32817431, PubMed:33603117, PubMed:34194040). Acts as an activator of the NLRP3 inflammasome via G(i)/G(o)-mediated signaling: down-regulation of cyclic AMP (cAMP) relieving NLRP3 inhibition by cAMP (PubMed:32843625). Acts as a regulator of proton-sensing receptor GPR68 in a seesaw manner: CASR-mediated signaling inhibits GPR68 signaling in response to extracellular calcium, while GPR68 inhibits CASR in presence of extracellular protons (By similarity). {ECO:0000250|UniProtKB:P48442, ECO:0000250|UniProtKB:Q9QY96, ECO:0000269|PubMed:17555508, ECO:0000269|PubMed:19789209, ECO:0000269|PubMed:21566075, ECO:0000269|PubMed:22114145, ECO:0000269|PubMed:22789683, ECO:0000269|PubMed:23966241, ECO:0000269|PubMed:25104082, ECO:0000269|PubMed:25292184, ECO:0000269|PubMed:25766501, ECO:0000269|PubMed:26386835, ECO:0000269|PubMed:27386547, ECO:0000269|PubMed:27434672, ECO:0000269|PubMed:32817431, ECO:0000269|PubMed:32843625, ECO:0000269|PubMed:33603117, ECO:0000269|PubMed:34194040, ECO:0000269|PubMed:34467854, ECO:0000269|PubMed:38632411, ECO:0000269|PubMed:7759551, ECO:0000269|PubMed:8636323, ECO:0000269|PubMed:8702647, ECO:0000269|PubMed:8878438}. |
P41594 | GRM5 | S1020 | ochoa | Metabotropic glutamate receptor 5 (mGluR5) | G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Signaling activates a phosphatidylinositol-calcium second messenger system and generates a calcium-activated chloride current. Plays an important role in the regulation of synaptic plasticity and the modulation of the neural network activity. {ECO:0000269|PubMed:25042998, ECO:0000269|PubMed:7908515}. |
P42568 | MLLT3 | S301 | ochoa | Protein AF-9 (ALL1-fused gene from chromosome 9 protein) (Myeloid/lymphoid or mixed-lineage leukemia translocated to chromosome 3 protein) (YEATS domain-containing protein 3) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948, PubMed:25417107, PubMed:27105114, PubMed:27545619). Specifically recognizes and binds acylated histone H3, with a preference for histone H3 that is crotonylated (PubMed:25417107, PubMed:27105114, PubMed:27545619, PubMed:30374167, PubMed:30385749). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25417107, PubMed:27105114, PubMed:27545619). Recognizes and binds histone H3 crotonylated at 'Lys-9' (H3K9cr), and with slightly lower affinity histone H3 crotonylated at 'Lys-18' (H3K18cr) (PubMed:27105114). Also recognizes and binds histone H3 acetylated and butyrylated at 'Lys-9' (H3K9ac and H3K9bu, respectively), but with lower affinity than crotonylated histone H3 (PubMed:25417107, PubMed:27105114, PubMed:30385749). In the SEC complex, MLLT3 is required to recruit the complex to crotonylated histones (PubMed:27105114, PubMed:27545619). Recruitment of the SEC complex to crotonylated histones promotes recruitment of DOT1L on active chromatin to deposit histone H3 'Lys-79' methylation (H3K79me) (PubMed:25417107). Plays a key role in hematopoietic stem cell (HSC) maintenance by preserving, rather than conferring, HSC stemness (PubMed:31776511). Acts by binding to the transcription start site of active genes in HSCs and sustaining level of H3K79me2, probably by recruiting DOT1L (PubMed:31776511). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:25417107, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:27545619, ECO:0000269|PubMed:30374167, ECO:0000269|PubMed:30385749, ECO:0000269|PubMed:31776511}. |
P46109 | CRKL | S42 | ochoa | Crk-like protein | May mediate the transduction of intracellular signals. |
P46934 | NEDD4 | S670 | ochoa | E3 ubiquitin-protein ligase NEDD4 (EC 2.3.2.26) (Cell proliferation-inducing gene 53 protein) (HECT-type E3 ubiquitin transferase NEDD4) (Neural precursor cell expressed developmentally down-regulated protein 4) (NEDD-4) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Specifically ubiquitinates 'Lys-63' in target proteins (PubMed:19920177, PubMed:21399620, PubMed:23644597). Involved in the pathway leading to the degradation of VEGFR-2/KDFR, independently of its ubiquitin-ligase activity. Monoubiquitinates IGF1R at multiple sites, thus leading to receptor internalization and degradation in lysosomes (By similarity). Ubiquitinates FGFR1, leading to receptor internalization and degradation in lysosomes (PubMed:21765395). Promotes ubiquitination of RAPGEF2 (PubMed:11598133). According to PubMed:18562292 the direct link between NEDD4 and PTEN regulation through polyubiquitination described in PubMed:17218260 is questionable. Involved in ubiquitination of ERBB4 intracellular domain E4ICD (By similarity). Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development (By similarity). Ubiquitinates TNK2 and regulates EGF-induced degradation of EGFR and TNF2 (PubMed:20086093). Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Ubiquitinates DAZAP2, leading to its proteasomal degradation (PubMed:11342538). Ubiquitinates POLR2A (PubMed:19920177). Functions as a platform to recruit USP13 to form an NEDD4-USP13 deubiquitination complex that plays a critical role in cleaving the 'Lys-48'-linked ubiquitin chains of VPS34 and then stabilizing VPS34, thus promoting the formation of autophagosomes (PubMed:32101753). {ECO:0000250|UniProtKB:P46935, ECO:0000269|PubMed:11342538, ECO:0000269|PubMed:11598133, ECO:0000269|PubMed:17218260, ECO:0000269|PubMed:18562292, ECO:0000269|PubMed:21399620, ECO:0000269|PubMed:21765395, ECO:0000269|PubMed:23644597, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:32101753}.; FUNCTION: (Microbial infection) Involved in the ubiquitination of Ebola virus protein VP40 which plays a role in viral budding. {ECO:0000269|PubMed:12559917, ECO:0000269|PubMed:18305167}. |
P47712 | PLA2G4A | S228 | psp | Cytosolic phospholipase A2 (cPLA2) (Phospholipase A2 group IVA) [Includes: Phospholipase A2 (EC 3.1.1.4) (Phosphatidylcholine 2-acylhydrolase); Lysophospholipase (EC 3.1.1.5)] | Has primarily calcium-dependent phospholipase and lysophospholipase activities, with a major role in membrane lipid remodeling and biosynthesis of lipid mediators of the inflammatory response (PubMed:10358058, PubMed:14709560, PubMed:16617059, PubMed:17472963, PubMed:18451993, PubMed:27642067, PubMed:7794891, PubMed:8619991, PubMed:8702602, PubMed:9425121). Plays an important role in embryo implantation and parturition through its ability to trigger prostanoid production (By similarity). Preferentially hydrolyzes the ester bond of the fatty acyl group attached at sn-2 position of phospholipids (phospholipase A2 activity) (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:8619991, PubMed:9425121). Selectively hydrolyzes sn-2 arachidonoyl group from membrane phospholipids, providing the precursor for eicosanoid biosynthesis via the cyclooxygenase pathway (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:9425121). In an alternative pathway of eicosanoid biosynthesis, hydrolyzes sn-2 fatty acyl chain of eicosanoid lysophopholipids to release free bioactive eicosanoids (PubMed:27642067). Hydrolyzes the ester bond of the fatty acyl group attached at sn-1 position of phospholipids (phospholipase A1 activity) only if an ether linkage rather than an ester linkage is present at the sn-2 position. This hydrolysis is not stereospecific (PubMed:7794891). Has calcium-independent phospholipase A2 and lysophospholipase activities in the presence of phosphoinositides (PubMed:12672805). Has O-acyltransferase activity. Catalyzes the transfer of fatty acyl chains from phospholipids to a primary hydroxyl group of glycerol (sn-1 or sn-3), potentially contributing to monoacylglycerol synthesis (PubMed:7794891). {ECO:0000250|UniProtKB:P47713, ECO:0000269|PubMed:10358058, ECO:0000269|PubMed:12672805, ECO:0000269|PubMed:14709560, ECO:0000269|PubMed:16617059, ECO:0000269|PubMed:17472963, ECO:0000269|PubMed:18451993, ECO:0000269|PubMed:27642067, ECO:0000269|PubMed:7794891, ECO:0000269|PubMed:8619991, ECO:0000269|PubMed:8702602, ECO:0000269|PubMed:9425121}. |
P49189 | ALDH9A1 | S233 | ochoa | 4-trimethylaminobutyraldehyde dehydrogenase (TMABA-DH) (TMABALDH) (EC 1.2.1.47) (Aldehyde dehydrogenase E3 isozyme) (Aldehyde dehydrogenase family 9 member A1) (EC 1.2.1.3) (Formaldehyde dehydrogenase) (EC 1.2.1.46) (Gamma-aminobutyraldehyde dehydrogenase) (EC 1.2.1.19) (R-aminobutyraldehyde dehydrogenase) [Cleaved into: 4-trimethylaminobutyraldehyde dehydrogenase, N-terminally processed] | Converts gamma-trimethylaminobutyraldehyde into gamma-butyrobetaine with high efficiency (in vitro). Can catalyze the irreversible oxidation of a broad range of aldehydes to the corresponding acids in an NAD-dependent reaction, but with low efficiency. Catalyzes the oxidation of aldehydes arising from biogenic amines and polyamines. {ECO:0000269|PubMed:10702312, ECO:0000269|PubMed:1799975, ECO:0000269|PubMed:30914451, ECO:0000269|PubMed:8645224}. |
P49238 | CX3CR1 | S329 | ochoa | CX3C chemokine receptor 1 (C-X3-C CKR-1) (CX3CR1) (Beta chemokine receptor-like 1) (CMK-BRL-1) (CMK-BRL1) (Fractalkine receptor) (G-protein coupled receptor 13) (V28) | Receptor for the C-X3-C chemokine fractalkine (CX3CL1) present on many early leukocyte cells; CX3CR1-CX3CL1 signaling exerts distinct functions in different tissue compartments, such as immune response, inflammation, cell adhesion and chemotaxis (PubMed:12055230, PubMed:23125415, PubMed:9390561, PubMed:9782118). CX3CR1-CX3CL1 signaling mediates cell migratory functions (By similarity). Responsible for the recruitment of natural killer (NK) cells to inflamed tissues (By similarity). Acts as a regulator of inflammation process leading to atherogenesis by mediating macrophage and monocyte recruitment to inflamed atherosclerotic plaques, promoting cell survival (By similarity). Involved in airway inflammation by promoting interleukin 2-producing T helper (Th2) cell survival in inflamed lung (By similarity). Involved in the migration of circulating monocytes to non-inflamed tissues, where they differentiate into macrophages and dendritic cells (By similarity). Acts as a negative regulator of angiogenesis, probably by promoting macrophage chemotaxis (PubMed:14581400, PubMed:18971423). Plays a key role in brain microglia by regulating inflammatory response in the central nervous system (CNS) and regulating synapse maturation (By similarity). Required to restrain the microglial inflammatory response in the CNS and the resulting parenchymal damage in response to pathological stimuli (By similarity). Involved in brain development by participating in synaptic pruning, a natural process during which brain microglia eliminates extra synapses during postnatal development (By similarity). Synaptic pruning by microglia is required to promote the maturation of circuit connectivity during brain development (By similarity). Acts as an important regulator of the gut microbiota by controlling immunity to intestinal bacteria and fungi (By similarity). Expressed in lamina propria dendritic cells in the small intestine, which form transepithelial dendrites capable of taking up bacteria in order to provide defense against pathogenic bacteria (By similarity). Required to initiate innate and adaptive immune responses against dissemination of commensal fungi (mycobiota) component of the gut: expressed in mononuclear phagocytes (MNPs) and acts by promoting induction of antifungal IgG antibodies response to confer protection against disseminated C.albicans or C.auris infection (PubMed:29326275). Also acts as a receptor for C-C motif chemokine CCL26, inducing cell chemotaxis (PubMed:20974991). {ECO:0000250|UniProtKB:Q9Z0D9, ECO:0000269|PubMed:12055230, ECO:0000269|PubMed:14581400, ECO:0000269|PubMed:18971423, ECO:0000269|PubMed:20974991, ECO:0000269|PubMed:23125415, ECO:0000269|PubMed:29326275, ECO:0000269|PubMed:9390561, ECO:0000269|PubMed:9782118}.; FUNCTION: [Isoform 1]: (Microbial infection) Acts as a coreceptor with CD4 for HIV-1 virus envelope protein. {ECO:0000269|PubMed:14607932, ECO:0000269|PubMed:9726990}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a coreceptor with CD4 for HIV-1 virus envelope protein (PubMed:14607932). May have more potent HIV-1 coreceptothr activity than isoform 1 (PubMed:14607932). {ECO:0000269|PubMed:14607932}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a coreceptor with CD4 for HIV-1 virus envelope protein (PubMed:14607932). May have more potent HIV-1 coreceptor activity than isoform 1 (PubMed:14607932). {ECO:0000269|PubMed:14607932}. |
P49238 | CX3CR1 | S336 | ochoa | CX3C chemokine receptor 1 (C-X3-C CKR-1) (CX3CR1) (Beta chemokine receptor-like 1) (CMK-BRL-1) (CMK-BRL1) (Fractalkine receptor) (G-protein coupled receptor 13) (V28) | Receptor for the C-X3-C chemokine fractalkine (CX3CL1) present on many early leukocyte cells; CX3CR1-CX3CL1 signaling exerts distinct functions in different tissue compartments, such as immune response, inflammation, cell adhesion and chemotaxis (PubMed:12055230, PubMed:23125415, PubMed:9390561, PubMed:9782118). CX3CR1-CX3CL1 signaling mediates cell migratory functions (By similarity). Responsible for the recruitment of natural killer (NK) cells to inflamed tissues (By similarity). Acts as a regulator of inflammation process leading to atherogenesis by mediating macrophage and monocyte recruitment to inflamed atherosclerotic plaques, promoting cell survival (By similarity). Involved in airway inflammation by promoting interleukin 2-producing T helper (Th2) cell survival in inflamed lung (By similarity). Involved in the migration of circulating monocytes to non-inflamed tissues, where they differentiate into macrophages and dendritic cells (By similarity). Acts as a negative regulator of angiogenesis, probably by promoting macrophage chemotaxis (PubMed:14581400, PubMed:18971423). Plays a key role in brain microglia by regulating inflammatory response in the central nervous system (CNS) and regulating synapse maturation (By similarity). Required to restrain the microglial inflammatory response in the CNS and the resulting parenchymal damage in response to pathological stimuli (By similarity). Involved in brain development by participating in synaptic pruning, a natural process during which brain microglia eliminates extra synapses during postnatal development (By similarity). Synaptic pruning by microglia is required to promote the maturation of circuit connectivity during brain development (By similarity). Acts as an important regulator of the gut microbiota by controlling immunity to intestinal bacteria and fungi (By similarity). Expressed in lamina propria dendritic cells in the small intestine, which form transepithelial dendrites capable of taking up bacteria in order to provide defense against pathogenic bacteria (By similarity). Required to initiate innate and adaptive immune responses against dissemination of commensal fungi (mycobiota) component of the gut: expressed in mononuclear phagocytes (MNPs) and acts by promoting induction of antifungal IgG antibodies response to confer protection against disseminated C.albicans or C.auris infection (PubMed:29326275). Also acts as a receptor for C-C motif chemokine CCL26, inducing cell chemotaxis (PubMed:20974991). {ECO:0000250|UniProtKB:Q9Z0D9, ECO:0000269|PubMed:12055230, ECO:0000269|PubMed:14581400, ECO:0000269|PubMed:18971423, ECO:0000269|PubMed:20974991, ECO:0000269|PubMed:23125415, ECO:0000269|PubMed:29326275, ECO:0000269|PubMed:9390561, ECO:0000269|PubMed:9782118}.; FUNCTION: [Isoform 1]: (Microbial infection) Acts as a coreceptor with CD4 for HIV-1 virus envelope protein. {ECO:0000269|PubMed:14607932, ECO:0000269|PubMed:9726990}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a coreceptor with CD4 for HIV-1 virus envelope protein (PubMed:14607932). May have more potent HIV-1 coreceptothr activity than isoform 1 (PubMed:14607932). {ECO:0000269|PubMed:14607932}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a coreceptor with CD4 for HIV-1 virus envelope protein (PubMed:14607932). May have more potent HIV-1 coreceptor activity than isoform 1 (PubMed:14607932). {ECO:0000269|PubMed:14607932}. |
P49790 | NUP153 | S562 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49815 | TSC2 | S1420 | ochoa|psp | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P51610 | HCFC1 | S507 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P51668 | UBE2D1 | S80 | ochoa | Ubiquitin-conjugating enzyme E2 D1 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme D1) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme D1) (Stimulator of Fe transport) (SFT) (UBC4/5 homolog) (UbcH5) (Ubiquitin carrier protein D1) (Ubiquitin-conjugating enzyme E2(17)KB 1) (Ubiquitin-conjugating enzyme E2-17 kDa 1) (Ubiquitin-protein ligase D1) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:22496338). In vitro catalyzes 'Lys-48'-linked polyubiquitination (PubMed:20061386). Mediates the selective degradation of short-lived and abnormal proteins. Functions in the E6/E6-AP-induced ubiquitination of p53/TP53. Mediates ubiquitination of PEX5 and auto-ubiquitination of STUB1, TRAF6 and TRIM63/MURF1 (PubMed:18042044, PubMed:18359941). Ubiquitinates STUB1-associated HSP90AB1 in vitro (PubMed:18042044). Lacks inherent specificity for any particular lysine residue of ubiquitin (PubMed:18042044). Essential for viral activation of IRF3 (PubMed:19854139). Mediates polyubiquitination of CYP3A4 (PubMed:19103148). {ECO:0000269|PubMed:18042044, ECO:0000269|PubMed:18359941, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:19854139, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:22496338}. |
P51813 | BMX | S325 | ochoa | Cytoplasmic tyrosine-protein kinase BMX (EC 2.7.10.2) (Bone marrow tyrosine kinase gene in chromosome X protein) (Epithelial and endothelial tyrosine kinase) (ETK) (NTK38) | Non-receptor tyrosine kinase that plays central but diverse modulatory roles in various signaling processes involved in the regulation of actin reorganization, cell migration, cell proliferation and survival, cell adhesion, and apoptosis. Participates in signal transduction stimulated by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen receptors and integrins. Induces tyrosine phosphorylation of BCAR1 in response to integrin regulation. Activation of BMX by integrins is mediated by PTK2/FAK1, a key mediator of integrin signaling events leading to the regulation of actin cytoskeleton and cell motility. Plays a critical role in TNF-induced angiogenesis, and implicated in the signaling of TEK and FLT1 receptors, 2 important receptor families essential for angiogenesis. Required for the phosphorylation and activation of STAT3, a transcription factor involved in cell differentiation. Also involved in interleukin-6 (IL6) induced differentiation. Also plays a role in programming adaptive cytoprotection against extracellular stress in different cell systems, salivary epithelial cells, brain endothelial cells, and dermal fibroblasts. May be involved in regulation of endocytosis through its interaction with an endosomal protein RUFY1. May also play a role in the growth and differentiation of hematopoietic cells; as well as in signal transduction in endocardial and arterial endothelial cells. {ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:12370298, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:15788485, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:9520419}. |
P52333 | JAK3 | S493 | ochoa | Tyrosine-protein kinase JAK3 (EC 2.7.10.2) (Janus kinase 3) (JAK-3) (Leukocyte janus kinase) (L-JAK) | Non-receptor tyrosine kinase involved in various processes such as cell growth, development, or differentiation. Mediates essential signaling events in both innate and adaptive immunity and plays a crucial role in hematopoiesis during T-cells development. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors sharing the common subunit gamma such as IL2R, IL4R, IL7R, IL9R, IL15R and IL21R. Following ligand binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins. Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, upon IL2R activation by IL2, JAK1 and JAK3 molecules bind to IL2R beta (IL2RB) and gamma chain (IL2RG) subunits inducing the tyrosine phosphorylation of both receptor subunits on their cytoplasmic domain. Then, STAT5A and STAT5B are recruited, phosphorylated and activated by JAK1 and JAK3. Once activated, dimerized STAT5 translocates to the nucleus and promotes the transcription of specific target genes in a cytokine-specific fashion. {ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:20440074, ECO:0000269|PubMed:7662955, ECO:0000269|PubMed:8022485}. |
P53602 | MVD | S96 | ochoa|psp | Diphosphomevalonate decarboxylase (EC 4.1.1.33) (Mevalonate (diphospho)decarboxylase) (MDDase) (Mevalonate pyrophosphate decarboxylase) | Catalyzes the ATP dependent decarboxylation of (R)-5-diphosphomevalonate to form isopentenyl diphosphate (IPP). Functions in the mevalonate (MVA) pathway leading to isopentenyl diphosphate (IPP), a key precursor for the biosynthesis of isoprenoids and sterol synthesis. {ECO:0000269|PubMed:18823933, ECO:0000269|PubMed:8626466, ECO:0000269|PubMed:9392419}. |
P53814 | SMTN | S690 | ochoa | Smoothelin | Structural protein of the cytoskeleton. |
P54296 | MYOM2 | S828 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54578 | USP14 | S456 | ochoa | Ubiquitin carboxyl-terminal hydrolase 14 (EC 3.4.19.12) (Deubiquitinating enzyme 14) (Ubiquitin thioesterase 14) (Ubiquitin-specific-processing protease 14) | Proteasome-associated deubiquitinase which releases ubiquitin from the proteasome targeted ubiquitinated proteins (PubMed:35145029). Ensures the regeneration of ubiquitin at the proteasome (PubMed:18162577, PubMed:28396413). Is a reversibly associated subunit of the proteasome and a large fraction of proteasome-free protein exists within the cell (PubMed:18162577). Required for the degradation of the chemokine receptor CXCR4 which is critical for CXCL12-induced cell chemotaxis (PubMed:19106094). Also serves as a physiological inhibitor of endoplasmic reticulum-associated degradation (ERAD) under the non-stressed condition by inhibiting the degradation of unfolded endoplasmic reticulum proteins via interaction with ERN1 (PubMed:19135427). Indispensable for synaptic development and function at neuromuscular junctions (NMJs) (By similarity). Plays a role in the innate immune defense against viruses by stabilizing the viral DNA sensor CGAS and thus inhibiting its autophagic degradation (PubMed:27666593). Inhibits OPTN-mediated selective autophagic degradation of KDM4D and thereby negatively regulates H3K9me2 and H3K9me3 (PubMed:35145029). {ECO:0000250|UniProtKB:Q9JMA1, ECO:0000269|PubMed:18162577, ECO:0000269|PubMed:19106094, ECO:0000269|PubMed:19135427, ECO:0000269|PubMed:27666593, ECO:0000269|PubMed:28396413, ECO:0000269|PubMed:35145029}. |
P55212 | CASP6 | S257 | psp | Caspase-6 (CASP-6) (CSP-6) (EC 3.4.22.59) (Apoptotic protease Mch-2) [Cleaved into: Caspase-6 subunit p18 (Caspase-6 subunit p20); Caspase-6 subunit p11 (Caspase-6 subunit p10)] | Cysteine protease that plays essential roles in programmed cell death, axonal degeneration, development and innate immunity (PubMed:19133298, PubMed:22858542, PubMed:27032039, PubMed:28864531, PubMed:30420425, PubMed:32298652, PubMed:8663580). Acts as a non-canonical executioner caspase during apoptosis: localizes in the nucleus and cleaves the nuclear structural protein NUMA1 and lamin A/LMNA thereby inducing nuclear shrinkage and fragmentation (PubMed:11953316, PubMed:17401638, PubMed:8663580, PubMed:9463409). Lamin-A/LMNA cleavage is required for chromatin condensation and nuclear disassembly during apoptotic execution (PubMed:11953316). Acts as a regulator of liver damage by promoting hepatocyte apoptosis: in absence of phosphorylation by AMP-activated protein kinase (AMPK), catalyzes cleavage of BID, leading to cytochrome c release, thereby participating in nonalcoholic steatohepatitis (PubMed:32029622). Cleaves PARK7/DJ-1 in cells undergoing apoptosis (By similarity). Involved in intrinsic apoptosis by mediating cleavage of RIPK1 (PubMed:22858542). Furthermore, cleaves many transcription factors such as NF-kappa-B and cAMP response element-binding protein/CREBBP (PubMed:10559921, PubMed:14657026). Cleaves phospholipid scramblase proteins XKR4 and XKR9 (By similarity). In addition to apoptosis, involved in different forms of programmed cell death (PubMed:32298652). Plays an essential role in defense against viruses by acting as a central mediator of the ZBP1-mediated pyroptosis, apoptosis, and necroptosis (PANoptosis), independently of its cysteine protease activity (PubMed:32298652). PANoptosis is a unique inflammatory programmed cell death, which provides a molecular scaffold that allows the interactions and activation of machinery required for inflammasome/pyroptosis, apoptosis and necroptosis (PubMed:32298652). Mechanistically, interacts with RIPK3 and enhances the interaction between RIPK3 and ZBP1, leading to ZBP1-mediated inflammasome activation and cell death (PubMed:32298652). Plays an essential role in axon degeneration during axon pruning which is the remodeling of axons during neurogenesis but not apoptosis (By similarity). Regulates B-cell programs both during early development and after antigen stimulation (By similarity). {ECO:0000250|UniProtKB:O08738, ECO:0000269|PubMed:10559921, ECO:0000269|PubMed:11953316, ECO:0000269|PubMed:14657026, ECO:0000269|PubMed:17401638, ECO:0000269|PubMed:19133298, ECO:0000269|PubMed:22858542, ECO:0000269|PubMed:27032039, ECO:0000269|PubMed:28864531, ECO:0000269|PubMed:30420425, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:32298652, ECO:0000269|PubMed:8663580, ECO:0000269|PubMed:9463409}.; FUNCTION: (Microbial infection) Proteolytically cleaves the N protein of coronaviruses such as MERS-CoV and SARS-CoV (PubMed:18155731, PubMed:35922005). The cleavage of MERS-CoV N-protein leads to two fragments and modulates coronavirus replication by regulating IFN signaling. The two fragments produced by the cleavage interact with IRF3 inhibiting its nuclear translocation after activation and reduce the expression of IFNB and IFN-stimulated genes (PubMed:35922005). The same mechanism seems to be used by other coronaviruses such as SARS-CoV and SARS-CoV-2 to enhance their replication (PubMed:35922005). {ECO:0000269|PubMed:18155731, ECO:0000269|PubMed:35922005}. |
P57768 | SNX16 | S29 | ochoa | Sorting nexin-16 | May be involved in several stages of intracellular trafficking. Plays a role in protein transport from early to late endosomes. Plays a role in protein transport to the lysosome. Promotes degradation of EGFR after EGF signaling. Plays a role in intracellular transport of vesicular stomatitis virus nucleocapsids from the endosome to the cytoplasm. {ECO:0000269|PubMed:12813048, ECO:0000269|PubMed:15951806}. |
P58340 | MLF1 | S34 | ochoa | Myeloid leukemia factor 1 (Myelodysplasia-myeloid leukemia factor 1) | Involved in lineage commitment of primary hemopoietic progenitors by restricting erythroid formation and enhancing myeloid formation. Interferes with erythropoietin-induced erythroid terminal differentiation by preventing cells from exiting the cell cycle through suppression of CDKN1B/p27Kip1 levels. Suppresses COP1 activity via CSN3 which activates p53 and induces cell cycle arrest. Binds DNA and affects the expression of a number of genes so may function as a transcription factor in the nucleus. {ECO:0000269|PubMed:15861129}. |
P60842 | EIF4A1 | S78 | ochoa | Eukaryotic initiation factor 4A-I (eIF-4A-I) (eIF4A-I) (EC 3.6.4.13) (ATP-dependent RNA helicase eIF4A-1) | ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome (PubMed:20156963). In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5'-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon. As a result, promotes cell proliferation and growth (PubMed:20156963). {ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291, ECO:0000269|PubMed:20156963}. |
P61077 | UBE2D3 | S80 | ochoa | Ubiquitin-conjugating enzyme E2 D3 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme D3) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme D3) (Ubiquitin carrier protein D3) (Ubiquitin-conjugating enzyme E2(17)KB 3) (Ubiquitin-conjugating enzyme E2-17 kDa 3) (Ubiquitin-protein ligase D3) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:15247280, PubMed:15496420, PubMed:18284575, PubMed:20061386, PubMed:21532592, PubMed:28322253). In vitro catalyzes 'Lys-11'-, as well as 'Lys-48'-linked polyubiquitination (PubMed:15247280, PubMed:15496420, PubMed:18284575, PubMed:20061386, PubMed:21532592). Cooperates with the E2 CDC34 and the SCF(FBXW11) E3 ligase complex for the polyubiquitination of NFKBIA leading to its subsequent proteasomal degradation (PubMed:20347421). Acts as an initiator E2, priming the phosphorylated NFKBIA target at positions 'Lys-21' and/or 'Lys-22' with a monoubiquitin (PubMed:10329681). Ubiquitin chain elongation is then performed by CDC34, building ubiquitin chains from the UBE2D3-primed NFKBIA-linked ubiquitin (PubMed:10329681). Also acts as an initiator E2, in conjunction with RNF8, for the priming of PCNA (PubMed:18948756). Monoubiquitination of PCNA, and its subsequent polyubiquitination, are essential events in the operation of the DNA damage tolerance (DDT) pathway that is activated after DNA damage caused by UV or chemical agents during S-phase (PubMed:18948756). Associates with the BRCA1/BARD1 E3 ligase complex to perform ubiquitination at DNA damage sites following ionizing radiation leading to DNA repair (PubMed:16628214). Targets DAPK3 for ubiquitination which influences promyelocytic leukemia protein nuclear body (PML-NB) formation in the nucleus (PubMed:18515077). In conjunction with the MDM2 and TOPORS E3 ligases, functions ubiquitination of p53/TP53 (PubMed:12646252, PubMed:15280377). In conjunction with the CBL E3 ligase, targets EGFR for polyubiquitination at the plasma membrane as well as during its internalization and transport on endosomes (PubMed:18508924). In conjunction with the STUB1 E3 quality control E3 ligase, ubiquitinates unfolded proteins to catalyze their immediate destruction (PubMed:11743028). Together with RNF135, catalyzes the viral RNA-dependent 'Lys-63'-linked polyubiquitination of RIGI to activate the downstream signaling pathway that leads to interferon beta production (PubMed:28469175). Together with ZNF598, catalyzes ubiquitination of 40S ribosomal proteins in response to ribosome collisions (PubMed:28685749). In cooperation with the GATOR2 complex, catalyzes 'Lys-6'-linked ubiquitination of NPRL2 (PubMed:36528027). {ECO:0000269|PubMed:10329681, ECO:0000269|PubMed:11743028, ECO:0000269|PubMed:12646252, ECO:0000269|PubMed:15247280, ECO:0000269|PubMed:15280377, ECO:0000269|PubMed:15496420, ECO:0000269|PubMed:16628214, ECO:0000269|PubMed:18284575, ECO:0000269|PubMed:18508924, ECO:0000269|PubMed:18515077, ECO:0000269|PubMed:18948756, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20347421, ECO:0000269|PubMed:21532592, ECO:0000269|PubMed:28322253, ECO:0000269|PubMed:28469175, ECO:0000269|PubMed:28685749, ECO:0000269|PubMed:36528027}. |
P62837 | UBE2D2 | S80 | ochoa | Ubiquitin-conjugating enzyme E2 D2 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme D2) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme D2) (Ubiquitin carrier protein D2) (Ubiquitin-conjugating enzyme E2(17)KB 2) (Ubiquitin-conjugating enzyme E2-17 kDa 2) (Ubiquitin-protein ligase D2) (p53-regulated ubiquitin-conjugating enzyme 1) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:10329681, PubMed:18042044, PubMed:18703417, PubMed:20061386, PubMed:20403326, PubMed:20525694, PubMed:26475854, PubMed:28322253). Catalyzes 'Lys-48'-linked polyubiquitination (PubMed:10329681, PubMed:18042044, PubMed:18359941, PubMed:18703417, PubMed:20061386, PubMed:20403326, PubMed:20525694, PubMed:26475854). Mediates the selective degradation of short-lived and abnormal proteins (PubMed:10329681, PubMed:18042044, PubMed:18359941, PubMed:18703417, PubMed:20061386, PubMed:20403326, PubMed:20525694, PubMed:26475854). Functions in the E6/E6-AP-induced ubiquitination of p53/TP53 (PubMed:15280377). Mediates ubiquitination of PEX5 and SQSTM1 and autoubiquitination of STUB1 and TRAF6 (PubMed:18359941, PubMed:28322253). Involved in the signal-induced conjugation and subsequent degradation of NFKBIA, FBXW2-mediated GCM1 ubiquitination and degradation, MDM2-dependent degradation of p53/TP53 and the activation of MAVS in the mitochondria by RIGI in response to viral infection (PubMed:18703417, PubMed:20403326). Essential for viral activation of IRF3 (PubMed:19854139). {ECO:0000269|PubMed:10329681, ECO:0000269|PubMed:15280377, ECO:0000269|PubMed:18042044, ECO:0000269|PubMed:18359941, ECO:0000269|PubMed:18703417, ECO:0000269|PubMed:19854139, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20403326, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:26475854, ECO:0000269|PubMed:28322253}. |
P82094 | TMF1 | S960 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
P98088 | MUC5AC | S2239 | ochoa | Mucin-5AC (MUC-5AC) (Gastric mucin) (Major airway glycoprotein) (Mucin-5 subtype AC, tracheobronchial) (Tracheobronchial mucin) (TBM) | Gel-forming glycoprotein of gastric and respiratory tract epithelia that protects the mucosa from infection and chemical damage by binding to inhaled microorganisms and particles that are subsequently removed by the mucociliary system (PubMed:14535999, PubMed:14718370). Interacts with H.pylori in the gastric epithelium, Barrett's esophagus as well as in gastric metaplasia of the duodenum (GMD) (PubMed:14535999). {ECO:0000269|PubMed:14535999, ECO:0000303|PubMed:14535999, ECO:0000303|PubMed:14718370}. |
P98161 | PKD1 | S4252 | psp | Polycystin-1 (PC1) (Autosomal dominant polycystic kidney disease 1 protein) | Component of a heteromeric calcium-permeable ion channel formed by PKD1 and PKD2 that is activated by interaction between PKD1 and a Wnt family member, such as WNT3A and WNT9B (PubMed:27214281). Both PKD1 and PKD2 are required for channel activity (PubMed:27214281). Involved in renal tubulogenesis (PubMed:12482949). Involved in fluid-flow mechanosensation by the primary cilium in renal epithelium (By similarity). Acts as a regulator of cilium length, together with PKD2 (By similarity). The dynamic control of cilium length is essential in the regulation of mechanotransductive signaling (By similarity). The cilium length response creates a negative feedback loop whereby fluid shear-mediated deflection of the primary cilium, which decreases intracellular cAMP, leads to cilium shortening and thus decreases flow-induced signaling (By similarity). May be an ion-channel regulator. Involved in adhesive protein-protein and protein-carbohydrate interactions. Likely to be involved with polycystin-1-interacting protein 1 in the detection, sequestration and exocytosis of senescent mitochondria (PubMed:37681898). {ECO:0000250|UniProtKB:O08852, ECO:0000269|PubMed:12482949, ECO:0000269|PubMed:27214281, ECO:0000269|PubMed:37681898}. |
Q00613 | HSF1 | S230 | ochoa|psp | Heat shock factor protein 1 (HSF 1) (Heat shock transcription factor 1) (HSTF 1) | Functions as a stress-inducible and DNA-binding transcription factor that plays a central role in the transcriptional activation of the heat shock response (HSR), leading to the expression of a large class of molecular chaperones, heat shock proteins (HSPs), that protect cells from cellular insult damage (PubMed:11447121, PubMed:12659875, PubMed:12917326, PubMed:15016915, PubMed:18451878, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7760831, PubMed:8940068, PubMed:8946918, PubMed:9121459, PubMed:9341107, PubMed:9499401, PubMed:9535852, PubMed:9727490). In unstressed cells, is present in a HSP90-containing multichaperone complex that maintains it in a non-DNA-binding inactivated monomeric form (PubMed:11583998, PubMed:16278218, PubMed:9727490). Upon exposure to heat and other stress stimuli, undergoes homotrimerization and activates HSP gene transcription through binding to site-specific heat shock elements (HSEs) present in the promoter regions of HSP genes (PubMed:10359787, PubMed:11583998, PubMed:12659875, PubMed:16278218, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7935471, PubMed:8455624, PubMed:8940068, PubMed:9499401, PubMed:9727490). Upon heat shock stress, forms a chromatin-associated complex with TTC5/STRAP and p300/EP300 to stimulate HSR transcription, therefore increasing cell survival (PubMed:18451878). Activation is reversible, and during the attenuation and recovery phase period of the HSR, returns to its unactivated form (PubMed:11583998, PubMed:16278218). Binds to inverted 5'-NGAAN-3' pentamer DNA sequences (PubMed:1986252, PubMed:26727489). Binds to chromatin at heat shock gene promoters (PubMed:25963659). Activates transcription of transcription factor FOXR1 which in turn activates transcription of the heat shock chaperones HSPA1A and HSPA6 and the antioxidant NADPH-dependent reductase DHRS2 (PubMed:34723967). Also serves several other functions independently of its transcriptional activity. Involved in the repression of Ras-induced transcriptional activation of the c-fos gene in heat-stressed cells (PubMed:9341107). Positively regulates pre-mRNA 3'-end processing and polyadenylation of HSP70 mRNA upon heat-stressed cells in a symplekin (SYMPK)-dependent manner (PubMed:14707147). Plays a role in nuclear export of stress-induced HSP70 mRNA (PubMed:17897941). Plays a role in the regulation of mitotic progression (PubMed:18794143). Also plays a role as a negative regulator of non-homologous end joining (NHEJ) repair activity in a DNA damage-dependent manner (PubMed:26359349). Involved in stress-induced cancer cell proliferation in a IER5-dependent manner (PubMed:26754925). {ECO:0000269|PubMed:10359787, ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:11583998, ECO:0000269|PubMed:12659875, ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:1871105, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:1986252, ECO:0000269|PubMed:25963659, ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:26727489, ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:34723967, ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:7760831, ECO:0000269|PubMed:7935471, ECO:0000269|PubMed:8455624, ECO:0000269|PubMed:8940068, ECO:0000269|PubMed:8946918, ECO:0000269|PubMed:9121459, ECO:0000269|PubMed:9341107, ECO:0000269|PubMed:9499401, ECO:0000269|PubMed:9535852, ECO:0000269|PubMed:9727490}.; FUNCTION: (Microbial infection) Plays a role in latent human immunodeficiency virus (HIV-1) transcriptional reactivation. Binds to the HIV-1 long terminal repeat promoter (LTR) to reactivate viral transcription by recruiting cellular transcriptional elongation factors, such as CDK9, CCNT1 and EP300. {ECO:0000269|PubMed:27189267}. |
Q00872 | MYBPC1 | S162 | ochoa | Myosin-binding protein C, slow-type (Slow MyBP-C) (C-protein, skeletal muscle slow isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. Slow skeletal protein that binds to both myosin and actin (PubMed:31025394, PubMed:31264822). In vitro, binds to native thin filaments and modifies the activity of actin-activated myosin ATPase. May modulate muscle contraction or may play a more structural role. {ECO:0000269|PubMed:31025394, ECO:0000269|PubMed:31264822}. |
Q00987 | MDM2 | S395 | psp | E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) | E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}. |
Q01167 | FOXK2 | S61 | ochoa | Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}. |
Q01484 | ANK2 | S2834 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q03188 | CENPC | S557 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q05469 | LIPE | S951 | ochoa|psp | Hormone-sensitive lipase (HSL) (EC 3.1.1.79) (Monoacylglycerol lipase LIPE) (EC 3.1.1.23) (Retinyl ester hydrolase) (REH) | Lipase with broad substrate specificity, catalyzing the hydrolysis of triacylglycerols (TAGs), diacylglycerols (DAGs), monoacylglycerols (MAGs), cholesteryl esters and retinyl esters (PubMed:15716583, PubMed:15955102, PubMed:19800417, PubMed:8812477). Shows a preferential hydrolysis of DAGs over TAGs and MAGs and preferentially hydrolyzes the fatty acid (FA) esters at the sn-3 position of the glycerol backbone in DAGs (PubMed:19800417). Preferentially hydrolyzes FA esters at the sn-1 and sn-2 positions of the glycerol backbone in TAGs (By similarity). Catalyzes the hydrolysis of 2-arachidonoylglycerol, an endocannabinoid and of 2-acetyl monoalkylglycerol ether, the penultimate precursor of the pathway for de novo synthesis of platelet-activating factor (By similarity). In adipose tissue and heart, it primarily hydrolyzes stored triglycerides to free fatty acids, while in steroidogenic tissues, it principally converts cholesteryl esters to free cholesterol for steroid hormone production (By similarity). {ECO:0000250|UniProtKB:P15304, ECO:0000250|UniProtKB:P54310, ECO:0000269|PubMed:15716583, ECO:0000269|PubMed:15955102, ECO:0000269|PubMed:19800417, ECO:0000269|PubMed:8812477}. |
Q06187 | BTK | S342 | ochoa | Tyrosine-protein kinase BTK (EC 2.7.10.2) (Agammaglobulinemia tyrosine kinase) (ATK) (B-cell progenitor kinase) (BPK) (Bruton tyrosine kinase) | Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling (PubMed:19290921). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (PubMed:19290921). After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members (PubMed:11606584). PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK (PubMed:11606584). BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways (PubMed:16517732, PubMed:17932028). Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway (PubMed:16517732). The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense (PubMed:16517732). Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells (PubMed:16517732, PubMed:17932028). Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation (PubMed:16415872). BTK also plays a critical role in transcription regulation (PubMed:19290921). Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes (PubMed:19290921). BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B (PubMed:19290921). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (PubMed:34554188). Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR (PubMed:9012831). GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression (PubMed:9012831). ARID3A and NFAT are other transcriptional target of BTK (PubMed:16738337). BTK is required for the formation of functional ARID3A DNA-binding complexes (PubMed:16738337). There is however no evidence that BTK itself binds directly to DNA (PubMed:16738337). BTK has a dual role in the regulation of apoptosis (PubMed:9751072). Plays a role in STING1-mediated induction of type I interferon (IFN) response by phosphorylating DDX41 (PubMed:25704810). {ECO:0000269|PubMed:11606584, ECO:0000269|PubMed:16415872, ECO:0000269|PubMed:16517732, ECO:0000269|PubMed:16738337, ECO:0000269|PubMed:17932028, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:9012831, ECO:0000303|PubMed:19290921, ECO:0000303|PubMed:9751072}. |
Q06190 | PPP2R3A | S181 | ochoa | Serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit alpha (PP2A subunit B isoform PR72/PR130) (PP2A subunit B isoform R3 isoform) (PP2A subunit B isoforms B''-PR72/PR130) (PP2A subunit B isoforms B72/B130) (Serine/threonine-protein phosphatase 2A 72/130 kDa regulatory subunit B) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q08289 | CACNB2 | S73 | ochoa | Voltage-dependent L-type calcium channel subunit beta-2 (CAB2) (Calcium channel voltage-dependent subunit beta 2) (Lambert-Eaton myasthenic syndrome antigen B) (MYSB) | Beta subunit of voltage-dependent calcium channels which contributes to the function of the calcium channel by increasing peak calcium current (By similarity). Plays a role in shifting voltage dependencies of activation and inactivation of the channel (By similarity). May modulate G protein inhibition (By similarity). May contribute to beta-adrenergic augmentation of Ca(2+) influx in cardiomyocytes, thereby regulating increases in heart rate and contractile force (PubMed:36424916). Involved in membrane targeting of the alpha-1 subunit CACNA1C (PubMed:17525370). {ECO:0000250|UniProtKB:Q8CC27, ECO:0000250|UniProtKB:Q8VGC3, ECO:0000269|PubMed:17525370, ECO:0000269|PubMed:36424916}. |
Q08357 | SLC20A2 | S316 | ochoa | Sodium-dependent phosphate transporter 2 (Gibbon ape leukemia virus receptor 2) (GLVR-2) (Phosphate transporter 2) (PiT-2) (Pit2) (hPit2) (Solute carrier family 20 member 2) | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion (PubMed:12205090, PubMed:15955065, PubMed:16790504, PubMed:17494632, PubMed:22327515, PubMed:28722801, PubMed:30704756). Plays a critical role in the determination of bone quality and strength by providing phosphate for bone mineralization (By similarity). Required to maintain normal cerebrospinal fluid phosphate levels (By similarity). Mediates phosphate-induced calcification of vascular smooth muscle cells (VCMCs) and can functionally compensate for loss of SLC20A1 in VCMCs (By similarity). {ECO:0000250|UniProtKB:Q80UP8, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:16790504, ECO:0000269|PubMed:17494632, ECO:0000269|PubMed:22327515, ECO:0000269|PubMed:28722801, ECO:0000269|PubMed:30704756}.; FUNCTION: (Microbial infection) Functions as a retroviral receptor and confers human cells susceptibility to infection to amphotropic murine leukemia virus (A-MuLV), 10A1 murine leukemia virus (10A1 MLV) and some feline leukemia virus subgroup B (FeLV-B) variants. {ECO:0000269|PubMed:11435563, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:8302848}. |
Q0VF96 | CGNL1 | S297 | ochoa | Cingulin-like protein 1 (Junction-associated coiled-coil protein) (Paracingulin) | May be involved in anchoring the apical junctional complex, especially tight junctions, to actin-based cytoskeletons. {ECO:0000269|PubMed:22891260}. |
Q10713 | PMPCA | S34 | ochoa | Mitochondrial-processing peptidase subunit alpha (Alpha-MPP) (Inactive zinc metalloprotease alpha) (P-55) | Substrate recognition and binding subunit of the essential mitochondrial processing protease (MPP), which cleaves the mitochondrial sequence off newly imported precursors proteins. {ECO:0000269|PubMed:25808372}. |
Q12778 | FOXO1 | S153 | psp | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q12923 | PTPN13 | S1232 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12955 | ANK3 | S918 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12955 | ANK3 | S1459 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q13017 | ARHGAP5 | S1173 | ochoa | Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) | GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}. |
Q13075 | NAIP | S982 | ochoa | Baculoviral IAP repeat-containing protein 1 (Neuronal apoptosis inhibitory protein) | Anti-apoptotic protein which acts by inhibiting the activities of CASP3, CASP7 and CASP9. Can inhibit the autocleavage of pro-CASP9 and cleavage of pro-CASP3 by CASP9. Capable of inhibiting CASP9 autoproteolysis at 'Asp-315' and decreasing the rate of auto proteolysis at 'Asp-330'. Acts as a mediator of neuronal survival in pathological conditions. Prevents motor-neuron apoptosis induced by a variety of signals. Possible role in the prevention of spinal muscular atrophy that seems to be caused by inappropriate persistence of motor-neuron apoptosis: mutated or deleted forms of NAIP have been found in individuals with severe spinal muscular atrophy.; FUNCTION: Acts as a sensor component of the NLRC4 inflammasome that specifically recognizes and binds needle protein CprI from pathogenic bacteria C.violaceum. Association of pathogenic bacteria proteins drives in turn drive assembly and activation of the NLRC4 inflammasome, promoting caspase-1 activation, cytokine production and macrophage pyroptosis. The NLRC4 inflammasome is activated as part of the innate immune response to a range of intracellular bacteria such as C.violaceum and L.pneumophila. |
Q13233 | MAP3K1 | S1088 | ochoa | Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) | Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}. |
Q13243 | SRSF5 | S250 | ochoa | Serine/arginine-rich splicing factor 5 (Delayed-early protein HRS) (Pre-mRNA-splicing factor SRP40) (Splicing factor, arginine/serine-rich 5) | Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. |
Q13247 | SRSF6 | S265 | ochoa | Serine/arginine-rich splicing factor 6 (Pre-mRNA-splicing factor SRP55) (Splicing factor, arginine/serine-rich 6) | Plays a role in constitutive splicing and modulates the selection of alternative splice sites. Plays a role in the alternative splicing of MAPT/Tau exon 10. Binds to alternative exons of TNC pre-mRNA and promotes the expression of alternatively spliced TNC. Plays a role in wound healing and in the regulation of keratinocyte differentiation and proliferation via its role in alternative splicing. {ECO:0000269|PubMed:12549914, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:22767602, ECO:0000269|PubMed:24440982}. |
Q13315 | ATM | S1270 | psp | Serine-protein kinase ATM (EC 2.7.11.1) (Ataxia telangiectasia mutated) (A-T mutated) | Serine/threonine protein kinase which activates checkpoint signaling upon double strand breaks (DSBs), apoptosis and genotoxic stresses such as ionizing ultraviolet A light (UVA), thereby acting as a DNA damage sensor (PubMed:10550055, PubMed:10839545, PubMed:10910365, PubMed:12556884, PubMed:14871926, PubMed:15064416, PubMed:15448695, PubMed:15456891, PubMed:15790808, PubMed:15916964, PubMed:17923702, PubMed:21757780, PubMed:24534091, PubMed:35076389, PubMed:9733514). Recognizes the substrate consensus sequence [ST]-Q (PubMed:10550055, PubMed:10839545, PubMed:10910365, PubMed:12556884, PubMed:14871926, PubMed:15448695, PubMed:15456891, PubMed:15916964, PubMed:17923702, PubMed:24534091, PubMed:9733514). Phosphorylates 'Ser-139' of histone variant H2AX at double strand breaks (DSBs), thereby regulating DNA damage response mechanism (By similarity). Also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospecific recognition by the B-cell antigen receptor (BCR) expressed on individual B-lymphocytes. After the introduction of DNA breaks by the RAG complex on one immunoglobulin allele, acts by mediating a repositioning of the second allele to pericentromeric heterochromatin, preventing accessibility to the RAG complex and recombination of the second allele. Also involved in signal transduction and cell cycle control. May function as a tumor suppressor. Necessary for activation of ABL1 and SAPK. Phosphorylates DYRK2, CHEK2, p53/TP53, FBXW7, FANCD2, NFKBIA, BRCA1, CREBBP/CBP, RBBP8/CTIP, FBXO46, MRE11, nibrin (NBN), RAD50, RAD17, PELI1, TERF1, UFL1, RAD9, UBQLN4 and DCLRE1C (PubMed:10550055, PubMed:10766245, PubMed:10802669, PubMed:10839545, PubMed:10910365, PubMed:10973490, PubMed:11375976, PubMed:12086603, PubMed:15456891, PubMed:19965871, PubMed:21757780, PubMed:24534091, PubMed:26240375, PubMed:26774286, PubMed:30171069, PubMed:30612738, PubMed:30886146, PubMed:30952868, PubMed:38128537, PubMed:9733515, PubMed:9843217). May play a role in vesicle and/or protein transport. Could play a role in T-cell development, gonad and neurological function. Plays a role in replication-dependent histone mRNA degradation. Binds DNA ends. Phosphorylation of DYRK2 in nucleus in response to genotoxic stress prevents its MDM2-mediated ubiquitination and subsequent proteasome degradation (PubMed:19965871). Phosphorylates ATF2 which stimulates its function in DNA damage response (PubMed:15916964). Phosphorylates ERCC6 which is essential for its chromatin remodeling activity at DNA double-strand breaks (PubMed:29203878). Phosphorylates TTC5/STRAP at 'Ser-203' in the cytoplasm in response to DNA damage, which promotes TTC5/STRAP nuclear localization (PubMed:15448695). Also involved in pexophagy by mediating phosphorylation of PEX5: translocated to peroxisomes in response to reactive oxygen species (ROS), and catalyzes phosphorylation of PEX5, promoting PEX5 ubiquitination and induction of pexophagy (PubMed:26344566). {ECO:0000250|UniProtKB:Q62388, ECO:0000269|PubMed:10550055, ECO:0000269|PubMed:10766245, ECO:0000269|PubMed:10802669, ECO:0000269|PubMed:10839545, ECO:0000269|PubMed:10910365, ECO:0000269|PubMed:10973490, ECO:0000269|PubMed:11375976, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12556884, ECO:0000269|PubMed:14871926, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:16086026, ECO:0000269|PubMed:16858402, ECO:0000269|PubMed:17923702, ECO:0000269|PubMed:19431188, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:21757780, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9733514, ECO:0000269|PubMed:9733515, ECO:0000269|PubMed:9843217}. |
Q13370 | PDE3B | S295 | ochoa|psp | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13370 | PDE3B | S442 | ochoa|psp | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13422 | IKZF1 | S442 | ochoa | DNA-binding protein Ikaros (Ikaros family zinc finger protein 1) (Lymphoid transcription factor LyF-1) | Transcription regulator of hematopoietic cell differentiation (PubMed:17934067). Binds gamma-satellite DNA (PubMed:17135265, PubMed:19141594). Plays a role in the development of lymphocytes, B- and T-cells. Binds and activates the enhancer (delta-A element) of the CD3-delta gene. Repressor of the TDT (fikzfterminal deoxynucleotidyltransferase) gene during thymocyte differentiation. Regulates transcription through association with both HDAC-dependent and HDAC-independent complexes. Targets the 2 chromatin-remodeling complexes, NuRD and BAF (SWI/SNF), in a single complex (PYR complex), to the beta-globin locus in adult erythrocytes. Increases normal apoptosis in adult erythroid cells. Confers early temporal competence to retinal progenitor cells (RPCs) (By similarity). Function is isoform-specific and is modulated by dominant-negative inactive isoforms (PubMed:17135265, PubMed:17934067). {ECO:0000250|UniProtKB:Q03267, ECO:0000269|PubMed:10204490, ECO:0000269|PubMed:17135265, ECO:0000269|PubMed:17934067, ECO:0000269|PubMed:19141594}. |
Q13428 | TCOF1 | S1350 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13615 | MTMR3 | S1173 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR3 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 1) (FYVE-DSP1) (Myotubularin-related protein 3) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Phosphatidylinositol-3-phosphate phosphatase) (Zinc finger FYVE domain-containing protein 10) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:10733931, PubMed:11302699, PubMed:11676921, PubMed:12646134). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic (PubMed:11302699, PubMed:11676921, PubMed:12646134). Could also have a molecular sequestering/adapter activity and regulate biological processes independently of its phosphatase activity. It includes the regulation of midbody abscission during mitotic cytokinesis (PubMed:25659891). {ECO:0000269|PubMed:10733931, ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:11676921, ECO:0000269|PubMed:12646134, ECO:0000269|PubMed:25659891}. |
Q13946 | PDE7A | S84 | ochoa | High affinity 3',5'-cyclic-AMP phosphodiesterase 7A (EC 3.1.4.53) (HCP1) (TM22) (cAMP-specific phosphodiesterase 7A) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:19350606, PubMed:8389765, PubMed:9195912). May have a role in muscle signal transduction (PubMed:9195912). {ECO:0000269|PubMed:19350606, ECO:0000269|PubMed:8389765, ECO:0000269|PubMed:9195912}. |
Q14005 | IL16 | S322 | ochoa | Pro-interleukin-16 [Cleaved into: Interleukin-16 (IL-16) (Lymphocyte chemoattractant factor) (LCF)] | Interleukin-16 stimulates a migratory response in CD4+ lymphocytes, monocytes, and eosinophils. Primes CD4+ T-cells for IL-2 and IL-15 responsiveness. Also induces T-lymphocyte expression of interleukin 2 receptor. Ligand for CD4.; FUNCTION: [Isoform 1]: May act as a scaffolding protein that anchors ion channels in the membrane.; FUNCTION: Isoform 3 is involved in cell cycle progression in T-cells. Appears to be involved in transcriptional regulation of SKP2 and is probably part of a transcriptional repression complex on the core promoter of the SKP2 gene. May act as a scaffold for GABPB1 (the DNA-binding subunit the GABP transcription factor complex) and HDAC3 thus maintaining transcriptional repression and blocking cell cycle progression in resting T-cells. |
Q14005 | IL16 | S974 | ochoa | Pro-interleukin-16 [Cleaved into: Interleukin-16 (IL-16) (Lymphocyte chemoattractant factor) (LCF)] | Interleukin-16 stimulates a migratory response in CD4+ lymphocytes, monocytes, and eosinophils. Primes CD4+ T-cells for IL-2 and IL-15 responsiveness. Also induces T-lymphocyte expression of interleukin 2 receptor. Ligand for CD4.; FUNCTION: [Isoform 1]: May act as a scaffolding protein that anchors ion channels in the membrane.; FUNCTION: Isoform 3 is involved in cell cycle progression in T-cells. Appears to be involved in transcriptional regulation of SKP2 and is probably part of a transcriptional repression complex on the core promoter of the SKP2 gene. May act as a scaffold for GABPB1 (the DNA-binding subunit the GABP transcription factor complex) and HDAC3 thus maintaining transcriptional repression and blocking cell cycle progression in resting T-cells. |
Q14123 | PDE1C | S486 | ochoa | Dual specificity calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1C (Cam-PDE 1C) (EC 3.1.4.17) (Hcam3) | Calmodulin-dependent cyclic nucleotide phosphodiesterase with a dual specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:29860631, PubMed:8557689). Has a high affinity for both cAMP and cGMP (PubMed:8557689). Modulates the amplitude and duration of the cAMP signal in sensory cilia in response to odorant stimulation, hence contributing to the generation of action potentials. Regulates smooth muscle cell proliferation. Regulates the stability of growth factor receptors, including PDGFRB (Probable). {ECO:0000269|PubMed:29860631, ECO:0000269|PubMed:8557689, ECO:0000305|PubMed:29860631}. |
Q14153 | FAM53B | S118 | ochoa | Protein FAM53B (Protein simplet) | Acts as a regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) nuclear localization. {ECO:0000269|PubMed:25183871}. |
Q14240 | EIF4A2 | S79 | ochoa | Eukaryotic initiation factor 4A-II (eIF-4A-II) (eIF4A-II) (EC 3.6.4.13) (ATP-dependent RNA helicase eIF4A-2) | ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5'-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon. |
Q14432 | PDE3A | S293 | ochoa|psp | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) | Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}. |
Q14432 | PDE3A | S294 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) | Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}. |
Q14493 | SLBP | S59 | ochoa | Histone RNA hairpin-binding protein (Histone stem-loop-binding protein) | RNA-binding protein involved in the histone pre-mRNA processing (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Binds the stem-loop structure of replication-dependent histone pre-mRNAs and contributes to efficient 3'-end processing by stabilizing the complex between histone pre-mRNA and U7 small nuclear ribonucleoprotein (snRNP), via the histone downstream element (HDE) (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Plays an important role in targeting mature histone mRNA from the nucleus to the cytoplasm and to the translation machinery (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Stabilizes mature histone mRNA and could be involved in cell-cycle regulation of histone gene expression (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Involved in the mechanism by which growing oocytes accumulate histone proteins that support early embryogenesis (By similarity). Binds to the 5' side of the stem-loop structure of histone pre-mRNAs (By similarity). {ECO:0000250|UniProtKB:P97440, ECO:0000269|PubMed:12588979, ECO:0000269|PubMed:19155325, ECO:0000269|PubMed:8957003, ECO:0000269|PubMed:9049306}. |
Q14493 | SLBP | S111 | ochoa | Histone RNA hairpin-binding protein (Histone stem-loop-binding protein) | RNA-binding protein involved in the histone pre-mRNA processing (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Binds the stem-loop structure of replication-dependent histone pre-mRNAs and contributes to efficient 3'-end processing by stabilizing the complex between histone pre-mRNA and U7 small nuclear ribonucleoprotein (snRNP), via the histone downstream element (HDE) (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Plays an important role in targeting mature histone mRNA from the nucleus to the cytoplasm and to the translation machinery (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Stabilizes mature histone mRNA and could be involved in cell-cycle regulation of histone gene expression (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Involved in the mechanism by which growing oocytes accumulate histone proteins that support early embryogenesis (By similarity). Binds to the 5' side of the stem-loop structure of histone pre-mRNAs (By similarity). {ECO:0000250|UniProtKB:P97440, ECO:0000269|PubMed:12588979, ECO:0000269|PubMed:19155325, ECO:0000269|PubMed:8957003, ECO:0000269|PubMed:9049306}. |
Q14524 | SCN5A | S1985 | psp | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
Q14669 | TRIP12 | S161 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14669 | TRIP12 | S312 | ochoa|psp | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14674 | ESPL1 | S1305 | psp | Separin (EC 3.4.22.49) (Caspase-like protein ESPL1) (Extra spindle poles-like 1 protein) (Separase) | Caspase-like protease, which plays a central role in the chromosome segregation by cleaving the SCC1/RAD21 subunit of the cohesin complex at the onset of anaphase. During most of the cell cycle, it is inactivated by different mechanisms. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11509732}. |
Q14677 | CLINT1 | S459 | ochoa | Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) | Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}. |
Q14686 | NCOA6 | S2018 | ochoa | Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins. |
Q14831 | GRM7 | S862 | psp | Metabotropic glutamate receptor 7 (mGluR7) | G-protein coupled receptor activated by glutamate that regulates axon outgrowth through the MAPK-cAMP-PKA signaling pathway during neuronal development (PubMed:33500274). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors, such as adenylate cyclase that it inhibits (PubMed:9473604). {ECO:0000269|PubMed:33500274, ECO:0000269|PubMed:9473604}. |
Q14966 | ZNF638 | S560 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q15032 | R3HDM1 | S393 | ochoa | R3H domain-containing protein 1 | None |
Q15084 | PDIA6 | S259 | ochoa | Protein disulfide-isomerase A6 (EC 5.3.4.1) (Endoplasmic reticulum protein 5) (ER protein 5) (ERp5) (Protein disulfide isomerase P5) (Thioredoxin domain-containing protein 7) | May function as a chaperone that inhibits aggregation of misfolded proteins (PubMed:12204115). Negatively regulates the unfolded protein response (UPR) through binding to UPR sensors such as ERN1, which in turn inactivates ERN1 signaling (PubMed:24508390). May also regulate the UPR via the EIF2AK3 UPR sensor (PubMed:24508390). Plays a role in platelet aggregation and activation by agonists such as convulxin, collagen and thrombin (PubMed:15466936). {ECO:0000269|PubMed:12204115, ECO:0000269|PubMed:15466936, ECO:0000269|PubMed:24508390}. |
Q15390 | MTFR1 | S290 | ochoa | Mitochondrial fission regulator 1 (Chondrocyte protein with a poly-proline region) | May play a role in mitochondrial aerobic respiration. May also regulate mitochondrial organization and fission (By similarity). {ECO:0000250}. |
Q15648 | MED1 | S588 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15648 | MED1 | S1375 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15695 | ZRSR2P1 | S389 | ochoa | U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 1 (CCCH type zinc finger, RNA-binding motif and serine/arginine rich protein 1) (U2(RNU2) small nuclear RNA auxiliary factor 1-like 1) | None |
Q15696 | ZRSR2 | S384 | ochoa | U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 2 (CCCH type zinc finger, RNA-binding motif and serine/arginine rich protein 2) (Renal carcinoma antigen NY-REN-20) (U2(RNU2) small nuclear RNA auxiliary factor 1-like 2) (U2AF35-related protein) (URP) | Pre-mRNA-binding protein required for splicing of both U2- and U12-type introns. Selectively interacts with the 3'-splice site of U2- and U12-type pre-mRNAs and promotes different steps in U2 and U12 intron splicing. Recruited to U12 pre-mRNAs in an ATP-dependent manner and is required for assembly of the pre-spliceosome, a precursor to other spliceosomal complexes. For U2-type introns, it is selectively and specifically required for the second step of splicing. {ECO:0000269|PubMed:21041408, ECO:0000269|PubMed:9237760}. |
Q15717 | ELAVL1 | S100 | ochoa|psp | ELAV-like protein 1 (Hu-antigen R) (HuR) | RNA-binding protein that binds to the 3'-UTR region of mRNAs and increases their stability (PubMed:14517288, PubMed:18285462, PubMed:31358969). Involved in embryonic stem cell (ESC) differentiation: preferentially binds mRNAs that are not methylated by N6-methyladenosine (m6A), stabilizing them, promoting ESC differentiation (By similarity). Has also been shown to be capable of binding to m6A-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398, PubMed:17632515, PubMed:18285462, PubMed:23519412, PubMed:8626503). Binds avidly to the AU-rich element in FOS and IL3/interleukin-3 mRNAs. In the case of the FOS AU-rich element, binds to a core element of 27 nucleotides that contain AUUUA, AUUUUA, and AUUUUUA motifs. Binds preferentially to the 5'-UUUU[AG]UUU-3' motif in vitro (PubMed:8626503). With ZNF385A, binds the 3'-UTR of p53/TP53 mRNA to control their nuclear export induced by CDKN2A. Hence, may regulate p53/TP53 expression and mediate in part the CDKN2A anti-proliferative activity. May also bind with ZNF385A the CCNB1 mRNA (By similarity). Increases the stability of the leptin mRNA harboring an AU-rich element (ARE) in its 3' UTR (PubMed:29180010). {ECO:0000250|UniProtKB:P70372, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:17632515, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:23519412, ECO:0000269|PubMed:29180010, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:32245947, ECO:0000269|PubMed:8626503}. |
Q15735 | INPP5J | S903 | ochoa | Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A (EC 3.1.3.36) (Inositol polyphosphate 5-phosphatase J) (Phosphatidylinositol 1,3,4,5-tetrakisphosphate 5-phosphatase) (EC 3.1.3.56) (Phosphatidylinositol 1,4,5-trisphosphate 5-phosphatase) (EC 3.1.3.56) | Inositol 5-phosphatase, which converts inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate. Also converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate and inositol 1,3,4,5-tetrakisphosphate to inositol 1,3,4-trisphosphate in vitro. May be involved in modulation of the function of inositol and phosphatidylinositol polyphosphate-binding proteins that are present at membranes ruffles. {ECO:0000250|UniProtKB:Q9JMC1}. |
Q16821 | PPP1R3A | S65 | psp | Protein phosphatase 1 regulatory subunit 3A (Protein phosphatase 1 glycogen-associated regulatory subunit) (Protein phosphatase type-1 glycogen targeting subunit) (RG1) | Seems to act as a glycogen-targeting subunit for PP1. PP1 is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Plays an important role in glycogen synthesis but is not essential for insulin activation of glycogen synthase (By similarity). {ECO:0000250}. |
Q2KHT3 | CLEC16A | S864 | ochoa | Protein CLEC16A (C-type lectin domain family 16 member A) | Regulator of mitophagy through the upstream regulation of the RNF41/NRDP1-PRKN pathway. Mitophagy is a selective form of autophagy necessary for mitochondrial quality control. The RNF41/NRDP1-PRKN pathway regulates autophagosome-lysosome fusion during late mitophagy. May protect RNF41/NRDP1 from proteasomal degradation, RNF41/NRDP1 which regulates proteasomal degradation of PRKN. Plays a key role in beta cells functions by regulating mitophagy/autophagy and mitochondrial health. {ECO:0000269|PubMed:24949970}. |
Q2M1Z3 | ARHGAP31 | S1178 | ochoa|psp | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q3V6T2 | CCDC88A | S1587 | ochoa | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q49A88 | CCDC14 | S124 | ochoa | Coiled-coil domain-containing protein 14 | Negatively regulates centriole duplication. Negatively regulates CEP63 and CDK2 centrosomal localization. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806}. |
Q4ADV7 | RIC1 | S1037 | ochoa | Guanine nucleotide exchange factor subunit RIC1 (Connexin-43-interacting protein of 150 kDa) (Protein RIC1 homolog) (RAB6A-GEF complex partner protein 1) | The RIC1-RGP1 complex acts as a guanine nucleotide exchange factor (GEF), which activates RAB6A by exchanging bound GDP for free GTP, and may thereby be required for efficient fusion of endosome-derived vesicles with the Golgi compartment (PubMed:23091056). The RIC1-RGP1 complex participates in the recycling of mannose-6-phosphate receptors (PubMed:23091056). Required for phosphorylation and localization of GJA1 (PubMed:16112082). Is a regulator of procollagen transport and secretion, and is required for correct cartilage morphogenesis and development of the craniofacial skeleton (PubMed:31932796). {ECO:0000269|PubMed:16112082, ECO:0000269|PubMed:23091056, ECO:0000269|PubMed:31932796}. |
Q4L235 | AASDH | S649 | ochoa | Beta-alanine-activating enzyme (EC 6.2.1.-) (Acyl-CoA synthetase family member 4) (Protein NRPS998) | Covalently binds beta-alanine in an ATP-dependent manner to form a thioester bond with its phosphopantetheine group and transfers it to an, as yet, unknown acceptor. May be required for a post-translational protein modification or for post-transcriptional modification of an RNA. {ECO:0000250|UniProtKB:Q80WC9}. |
Q4VCS5 | AMOT | S175 | psp | Angiomotin | Plays a central role in tight junction maintenance via the complex formed with ARHGAP17, which acts by regulating the uptake of polarity proteins at tight junctions. Appears to regulate endothelial cell migration and tube formation. May also play a role in the assembly of endothelial cell-cell junctions. Repressor of YAP1 and WWTR1/TAZ transcription of target genes, potentially via regulation of Hippo signaling-mediated phosphorylation of YAP1 which results in its recruitment to tight junctions (PubMed:21205866). {ECO:0000269|PubMed:11257124, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21205866}. |
Q53ET0 | CRTC2 | S244 | psp | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q53GL0 | PLEKHO1 | S227 | ochoa | Pleckstrin homology domain-containing family O member 1 (PH domain-containing family O member 1) (C-Jun-binding protein) (JBP) (Casein kinase 2-interacting protein 1) (CK2-interacting protein 1) (CKIP-1) (Osteoclast maturation-associated gene 120 protein) | Plays a role in the regulation of the actin cytoskeleton through its interactions with actin capping protein (CP). May function to target CK2 to the plasma membrane thereby serving as an adapter to facilitate the phosphorylation of CP by protein kinase 2 (CK2). Appears to target ATM to the plasma membrane. Appears to also inhibit tumor cell growth by inhibiting AKT-mediated cell-survival. Also implicated in PI3K-regulated muscle differentiation, the regulation of AP-1 activity (plasma membrane bound AP-1 regulator that translocates to the nucleus) and the promotion of apoptosis induced by tumor necrosis factor TNF. When bound to PKB, it inhibits it probably by decreasing PKB level of phosphorylation. {ECO:0000269|PubMed:14729969, ECO:0000269|PubMed:15706351, ECO:0000269|PubMed:15831458, ECO:0000269|PubMed:16325375, ECO:0000269|PubMed:16987810, ECO:0000269|PubMed:17197158, ECO:0000269|PubMed:17942896}. |
Q5BKX6 | SLC45A4 | S424 | ochoa | Solute carrier family 45 member 4 | Proton-associated sucrose transporter. May be able to transport also glucose and fructose. {ECO:0000250|UniProtKB:Q0P5V9}. |
Q5JTW2 | CEP78 | S654 | ochoa | Centrosomal protein of 78 kDa (Cep78) | Centriole wall protein that localizes to mature centrioles and regulates centriole and cilia biogenesis (PubMed:27246242, PubMed:27588451, PubMed:28242748, PubMed:34259627). Involved in centrosome duplication: required for efficient PLK4 centrosomal localization and PLK4-induced overduplication of centrioles (PubMed:27246242). Involved in cilium biogenesis and controls cilium length (PubMed:27588451). Acts as a regulator of protein stability by preventing ubiquitination of centrosomal proteins, such as CCP110 and tektins (PubMed:28242748, PubMed:34259627). Associates with the EDVP complex, preventing ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Promotes deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5) via its interaction with USP16 (By similarity). {ECO:0000250|UniProtKB:Q6IRU7, ECO:0000269|PubMed:27246242, ECO:0000269|PubMed:27588451, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}. |
Q5JWR5 | DOP1A | S1266 | ochoa | Protein DOP1A | May be involved in protein traffic between late Golgi and early endosomes. {ECO:0000250|UniProtKB:Q03921}. |
Q5R3F8 | ELFN2 | S619 | ochoa | Protein phosphatase 1 regulatory subunit 29 (Extracellular leucine-rich repeat and fibronectin type III domain-containing protein 2) (Leucine-rich repeat and fibronectin type-III domain-containing protein 6) (Leucine-rich repeat-containing protein 62) | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. {ECO:0000269|PubMed:19389623}. |
Q5SNT2 | TMEM201 | S477 | ochoa | Transmembrane protein 201 (Spindle-associated membrane protein 1) | Critical regulator of angiogenesis and endothelial cell (EC) migration (PubMed:35311970). Promotes the migration of endothelial cells, which is essential for angiogenesis (PubMed:35311970). Interacts with the linker of nucleoskeleton and cytoskeleton (LINC) complex, which plays a vital role in connecting the cell's cytoskeleton to the nuclear envelope (PubMed:35311970). This interaction is essential for maintaining cellular structure and facilitating the movement of endothelial cells, which is critical for proper vascular development (PubMed:35311970). Involved in nuclear movement during fibroblast polarization and migration (By similarity). Overexpression can recruit Ran GTPase to the nuclear periphery (PubMed:27541860). {ECO:0000250|UniProtKB:A2A8U2, ECO:0000269|PubMed:35311970, ECO:0000305|PubMed:27541860}.; FUNCTION: [Isoform 2]: May define a distinct membrane domain in the vicinity of the mitotic spindle (PubMed:19494128). Involved in the organization of the nuclear envelope implicating EMD, SUN1 and A-type lamina (PubMed:21610090). {ECO:0000269|PubMed:19494128, ECO:0000269|PubMed:21610090}. |
Q5SW79 | CEP170 | S1019 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SW79 | CEP170 | S1167 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T0N5 | FNBP1L | S295 | ochoa | Formin-binding protein 1-like (Transducer of Cdc42-dependent actin assembly protein 1) (Toca-1) | Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. May bind to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promote membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by activating the WASL/N-WASP-WASPIP/WIP complex, the predominant form of WASL/N-WASP in cells. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Essential for autophagy of intracellular bacterial pathogens. {ECO:0000269|PubMed:15260990, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:19342671}. |
Q5T1R4 | HIVEP3 | S933 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T200 | ZC3H13 | S25 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T200 | ZC3H13 | S1264 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T200 | ZC3H13 | S1279 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T3J3 | LRIF1 | S502 | ochoa | Ligand-dependent nuclear receptor-interacting factor 1 (HP1-binding protein enriched in inactive X chromosome protein 1) (HBiX1) (Receptor-interacting factor 1) | Together with SMCHD1, involved in chromosome X inactivation in females by promoting the compaction of heterochromatin (PubMed:23542155). Also able to repress the ligand-induced transcriptional activity of retinoic acid receptor alpha (RARA), possibly through direct recruitment of histone deacetylases (PubMed:17455211). Also required for silencing of the DUX4 locus in somatic cells (PubMed:32467133). {ECO:0000269|PubMed:17455211, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:32467133}. |
Q5TC79 | ZBTB37 | S328 | ochoa | Zinc finger and BTB domain-containing protein 37 | May be involved in transcriptional regulation. |
Q5TH69 | ARFGEF3 | S1956 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5TZA2 | CROCC | S488 | ochoa | Rootletin (Ciliary rootlet coiled-coil protein) | Major structural component of the ciliary rootlet, a cytoskeletal-like structure in ciliated cells which originates from the basal body at the proximal end of a cilium and extends proximally toward the cell nucleus (By similarity). Furthermore, is required for the correct positioning of the cilium basal body relative to the cell nucleus, to allow for ciliogenesis (PubMed:27623382). Contributes to centrosome cohesion before mitosis (PubMed:16203858). {ECO:0000250|UniProtKB:Q8CJ40, ECO:0000269|PubMed:16203858, ECO:0000269|PubMed:27623382}. |
Q5U5Q3 | MEX3C | S446 | ochoa | RNA-binding E3 ubiquitin-protein ligase MEX3C (EC 2.3.2.27) (RING finger and KH domain-containing protein 2) (RING finger protein 194) (RING-type E3 ubiquitin transferase MEX3C) | E3 ubiquitin ligase responsible for the post-transcriptional regulation of common HLA-A allotypes. Binds to the 3' UTR of HLA-A2 mRNA, and regulates its levels by promoting mRNA decay. RNA binding is sufficient to prevent translation, but ubiquitin ligase activity is required for mRNA degradation. {ECO:0000269|PubMed:22863774, ECO:0000269|PubMed:23446422}. |
Q5VT52 | RPRD2 | S512 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VT97 | SYDE2 | S1082 | ochoa | Rho GTPase-activating protein SYDE2 (Synapse defective protein 1 homolog 2) (Protein syd-1 homolog 2) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q5VUA4 | ZNF318 | S647 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUB5 | FAM171A1 | Y724 | ochoa | Protein FAM171A1 (Astroprincin) (APCN) | Involved in the regulation of the cytoskeletal dynamics, plays a role in actin stress fiber formation. {ECO:0000269|PubMed:30312582}. |
Q5VWN6 | TASOR2 | S1220 | ochoa | Protein TASOR 2 | None |
Q5VZ46 | KIAA1614 | S964 | ochoa | Uncharacterized protein KIAA1614 | None |
Q5VZ89 | DENND4C | S1099 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q63ZY6 | NSUN5P2 | S260 | ochoa | Putative methyltransferase NSUN5C (EC 2.1.1.-) (NOL1/NOP2/Sun domain family member 5C) (Williams-Beuren syndrome chromosomal region 20C protein) | May have S-adenosyl-L-methionine-dependent methyl-transferase activity. {ECO:0000305}. |
Q684P5 | RAP1GAP2 | S507 | ochoa | Rap1 GTPase-activating protein 2 (Rap1GAP2) (GTPase-activating Rap/Ran-GAP domain-like protein 4) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15632203}. |
Q68CZ2 | TNS3 | S571 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q68CZ2 | TNS3 | S602 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q69YN4 | VIRMA | S1651 | ochoa | Protein virilizer homolog | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:24981863, PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs in the 3'-UTR near the stop codon: recruits the catalytic core components METTL3 and METTL14, thereby guiding m6A methylation at specific sites (PubMed:29507755). Required for mRNA polyadenylation via its role in selective m6A methylation: m6A methylation of mRNAs in the 3'-UTR near the stop codon correlating with alternative polyadenylation (APA) (PubMed:29507755). {ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}. |
Q69YQ0 | SPECC1L | S156 | ochoa | Cytospin-A (Renal carcinoma antigen NY-REN-22) (Sperm antigen with calponin homology and coiled-coil domains 1-like) (SPECC1-like protein) | Involved in cytokinesis and spindle organization. May play a role in actin cytoskeleton organization and microtubule stabilization and hence required for proper cell adhesion and migration. {ECO:0000269|PubMed:21703590}. |
Q6BDS2 | BLTP3A | S1103 | ochoa | Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) | Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}. |
Q6H8Q1 | ABLIM2 | S476 | ochoa | Actin-binding LIM protein 2 (abLIM-2) (Actin-binding LIM protein family member 2) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
Q6IQ26 | DENND5A | S193 | ochoa | DENN domain-containing protein 5A (Rab6-interacting protein 1) (Rab6IP1) | Guanine nucleotide exchange factor (GEF) which may activate RAB6A and RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. Involved in the negative regulation of neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:G3V7Q0, ECO:0000269|PubMed:20937701}. |
Q6KC79 | NIPBL | S367 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6KC79 | NIPBL | S850 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6KC79 | NIPBL | S892 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6PCB6 | ABHD17C | S211 | ochoa | Alpha/beta hydrolase domain-containing protein 17C (Abhydrolase domain-containing protein 17C) (EC 3.1.2.22) | Hydrolyzes fatty acids from S-acylated cysteine residues in proteins. Has depalmitoylating activity towards NRAS and DLG4/PSD95. {ECO:0000269|PubMed:26701913}. |
Q6PFW1 | PPIP5K1 | S1006 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 1) (Histidine acid phosphatase domain-containing protein 2A) (IP6 kinase) (Inositol pyrophosphate synthase 1) (InsP6 and PP-IP5 kinase 1) (VIP1 homolog) (hsVIP1) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4. Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4. Activated when cells are exposed to hyperosmotic stress. {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752}. |
Q6PJT7 | ZC3H14 | S240 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6T4R5 | NHS | S292 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UUV9 | CRTC1 | S215 | psp | CREB-regulated transcription coactivator 1 (Mucoepidermoid carcinoma translocated protein 1) (Transducer of regulated cAMP response element-binding protein 1) (TORC-1) (Transducer of CREB protein 1) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PGC1alpha and inducer of mitochondrial biogenesis in muscle cells. In the hippocampus, involved in late-phase long-term potentiation (L-LTP) maintenance at the Schaffer collateral-CA1 synapses. May be required for dendritic growth of developing cortical neurons (By similarity). In concert with SIK1, regulates the light-induced entrainment of the circadian clock. In response to light stimulus, coactivates the CREB-mediated transcription of PER1 which plays an important role in the photic entrainment of the circadian clock. {ECO:0000250|UniProtKB:Q157S1, ECO:0000250|UniProtKB:Q68ED7, ECO:0000269|PubMed:23699513}.; FUNCTION: (Microbial infection) Plays a role of coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:16809310}. |
Q6UX73 | C16orf89 | S174 | ochoa | UPF0764 protein C16orf89 | None |
Q6UXY8 | TMC5 | S84 | ochoa | Transmembrane channel-like protein 5 | Probable component of an ion channel (Probable). Molecular function hasn't been characterized yet (Probable). {ECO:0000305}. |
Q6UXY8 | TMC5 | S111 | ochoa | Transmembrane channel-like protein 5 | Probable component of an ion channel (Probable). Molecular function hasn't been characterized yet (Probable). {ECO:0000305}. |
Q6ZN04 | MEX3B | S63 | ochoa | RNA-binding protein MEX3B (RING finger and KH domain-containing protein 3) (RING finger protein 195) | RNA-binding protein. May be involved in post-transcriptional regulatory mechanisms. |
Q6ZN18 | AEBP2 | S206 | ochoa | Zinc finger protein AEBP2 (Adipocyte enhancer-binding protein 2) (AE-binding protein 2) | Acts as an accessory subunit for the core Polycomb repressive complex 2 (PRC2), which mediates histone H3K27 (H3K27me3) trimethylation on chromatin leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:29499137, PubMed:31959557). Plays a role in nucleosome localization of the PRC2 complex (PubMed:29499137). {ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q6ZNJ1 | NBEAL2 | S2724 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZNL6 | FGD5 | S1323 | ochoa | FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}. |
Q6ZS30 | NBEAL1 | S2664 | ochoa | Neurobeachin-like protein 1 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 16 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 17 protein) | None |
Q6ZUT9 | DENND5B | S178 | ochoa | DENN domain-containing protein 5B (Rab6IP1-like protein) | Guanine nucleotide exchange factor (GEF) which may activate RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}. |
Q6ZV73 | FGD6 | S721 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q70CQ4 | USP31 | S803 | ochoa | Ubiquitin carboxyl-terminal hydrolase 31 (EC 3.4.19.12) (Deubiquitinating enzyme 31) (Ubiquitin thioesterase 31) (Ubiquitin-specific-processing protease 31) | Deubiquitinase that recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. May play a role in the regulation of NF-kappa-B signaling pathway by deubiquitinating TRAF2. {ECO:0000269|PubMed:34184746}.; FUNCTION: (Microbial infection) Plays a positive role in foot-and-mouth disease and classical swine fever viral infection. Mechanistically, associates with internal ribosomal entry site (IRES) element within the 5'-untranslated region of viral genomes to promote translation of the virus-encoded polyprotein. {ECO:0000269|PubMed:35468926}. |
Q70CQ4 | USP31 | S919 | ochoa | Ubiquitin carboxyl-terminal hydrolase 31 (EC 3.4.19.12) (Deubiquitinating enzyme 31) (Ubiquitin thioesterase 31) (Ubiquitin-specific-processing protease 31) | Deubiquitinase that recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. May play a role in the regulation of NF-kappa-B signaling pathway by deubiquitinating TRAF2. {ECO:0000269|PubMed:34184746}.; FUNCTION: (Microbial infection) Plays a positive role in foot-and-mouth disease and classical swine fever viral infection. Mechanistically, associates with internal ribosomal entry site (IRES) element within the 5'-untranslated region of viral genomes to promote translation of the virus-encoded polyprotein. {ECO:0000269|PubMed:35468926}. |
Q70EL2 | USP45 | S599 | ochoa | Ubiquitin carboxyl-terminal hydrolase 45 (EC 3.4.19.12) (Deubiquitinating enzyme 45) (Ubiquitin thioesterase 45) (Ubiquitin-specific-processing protease 45) | Catalyzes the deubiquitination of SPDL1 (PubMed:30258100). Plays a role in the repair of UV-induced DNA damage via deubiquitination of ERCC1, promoting its recruitment to DNA damage sites (PubMed:25538220). May be involved in the maintenance of photoreceptor function (PubMed:30573563). May play a role in normal retinal development (By similarity). Plays a role in cell migration (PubMed:30258100). {ECO:0000250|UniProtKB:E9QG68, ECO:0000269|PubMed:25538220, ECO:0000269|PubMed:30258100, ECO:0000269|PubMed:30573563}. |
Q75N03 | CBLL1 | S290 | ochoa | E3 ubiquitin-protein ligase Hakai (EC 2.3.2.27) (Casitas B-lineage lymphoma-transforming sequence-like protein 1) (c-Cbl-like protein 1) (RING finger protein 188) (RING-type E3 ubiquitin transferase Hakai) | E3 ubiquitin-protein ligase that mediates ubiquitination of several tyrosine-phosphorylated Src substrates, including CDH1, CTTN and DOK1 (By similarity). Targets CDH1 for endocytosis and degradation (By similarity). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Its function in the WMM complex is unknown (PubMed:29507755). {ECO:0000250|UniProtKB:Q9JIY2, ECO:0000269|PubMed:29507755}. |
Q76I76 | SSH2 | S708 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q7KZI7 | MARK2 | S409 | ochoa|psp | Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}. |
Q7L804 | RAB11FIP2 | S277 | ochoa | Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) | A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}. |
Q7LDG7 | RASGRP2 | S554 | ochoa | RAS guanyl-releasing protein 2 (Calcium and DAG-regulated guanine nucleotide exchange factor I) (CalDAG-GEFI) (Cdc25-like protein) (hCDC25L) (F25B3.3 kinase-like protein) | Functions as a calcium- and DAG-regulated nucleotide exchange factor specifically activating Rap through the exchange of bound GDP for GTP. May also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. Functions in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation. May function in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. {ECO:0000269|PubMed:10918068, ECO:0000269|PubMed:14702343, ECO:0000269|PubMed:17576779, ECO:0000269|PubMed:17702895, ECO:0000269|PubMed:24958846, ECO:0000269|PubMed:27235135}. |
Q7Z2W4 | ZC3HAV1 | S590 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z2Z1 | TICRR | S1026 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z3T8 | ZFYVE16 | S815 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q7Z3U7 | MON2 | S1214 | ochoa | Protein MON2 homolog (Protein SF21) | Plays a role in regulating membrane trafficking of cargo proteins. Together with ATP9A and DOP1B, regulates SNX3 retromer-mediated endosomal sorting of WLS away from lysosomal degradation. {ECO:0000269|PubMed:30213940}. |
Q7Z403 | TMC6 | S112 | ochoa | Transmembrane channel-like protein 6 (Epidermodysplasia verruciformis protein 1) (Protein LAK-4) | Acts as a regulatory protein involved in the regulation of numerous cellular processes (PubMed:18158319, PubMed:30068544, PubMed:32917726). Together with its homolog TMC8/EVER2, forms a complex with CIB1 in lymphocytes and keratynocytes where TMC6 and TMC8 stabilize CIB1 and reciprocally (PubMed:30068544, PubMed:32917726). Together with TMC8, also forms a complex with and activates zinc transporter ZNT1 at the ER membrane of keratynocytes, thereby facilitating zinc uptake into the ER (PubMed:18158319). Down-regulates the activity of transcription factors induced by zinc and cytokines (PubMed:18158319). Also plays a role in thermal sensation by inhibiting the M-channel (KCNQ2-KCNQ3 channel) current in primary sensory neurons (By similarity). {ECO:0000250|UniProtKB:Q7TN60, ECO:0000269|PubMed:18158319, ECO:0000269|PubMed:30068544, ECO:0000269|PubMed:32917726}. |
Q7Z460 | CLASP1 | S254 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q7Z5J4 | RAI1 | S546 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z6E9 | RBBP6 | S688 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6J6 | FRMD5 | S375 | ochoa | FERM domain-containing protein 5 | May be involved in regulation of cell migration (PubMed:22846708, PubMed:25448675). May regulate cell-matrix interactions via its interaction with ITGB5 and modifying ITGB5 cytoplasmic tail interactions such as with FERMT2 and TLN1. May regulate ROCK1 kinase activity possibly involved in regulation of actin stress fiber formation (PubMed:25448675). |
Q7Z6J6 | FRMD5 | S396 | ochoa | FERM domain-containing protein 5 | May be involved in regulation of cell migration (PubMed:22846708, PubMed:25448675). May regulate cell-matrix interactions via its interaction with ITGB5 and modifying ITGB5 cytoplasmic tail interactions such as with FERMT2 and TLN1. May regulate ROCK1 kinase activity possibly involved in regulation of actin stress fiber formation (PubMed:25448675). |
Q7Z6Z7 | HUWE1 | S2632 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q7Z7G8 | VPS13B | S1812 | ochoa | Intermembrane lipid transfer protein VPS13B (Cohen syndrome protein 1) (Vacuolar protein sorting-associated protein 13B) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phosphatidylinositol 3-phosphate (By similarity). Functions as a tethering factor in the slow endocytic recycling pathway, to assist traffic between early and recycling endosomes (PubMed:24334764, PubMed:30962439, PubMed:32375900). Involved in the transport of proacrosomal vesicles to the nuclear dense lamina (NDL) during spermatid development (By similarity). Plays a role in the assembly of the Golgi apparatus, possibly by mediating trafficking to the Golgi membrane (PubMed:21865173). Plays a role in the development of the nervous system, and may be required for neuron projection development (PubMed:25492866, PubMed:32560273). May also play a role during adipose tissue development (PubMed:26358774). Required for maintenance of the ocular lens (By similarity). {ECO:0000250|UniProtKB:Q07878, ECO:0000250|UniProtKB:Q80TY5, ECO:0000269|PubMed:21865173, ECO:0000269|PubMed:24334764, ECO:0000269|PubMed:26358774, ECO:0000269|PubMed:30962439, ECO:0000269|PubMed:32375900, ECO:0000269|PubMed:32560273, ECO:0000305|PubMed:25492866, ECO:0000305|PubMed:32560273}. |
Q86TL2 | STIMATE | S249 | ochoa | Store-operated calcium entry regulator STIMATE (STIM-activating enhancer encoded by TMEM110) (Transmembrane protein 110) | Acts as a regulator of store-operated Ca(2+) entry (SOCE) at junctional sites that connect the endoplasmic reticulum (ER) and plasma membrane (PM), called ER-plasma membrane (ER-PM) junction or cortical ER (PubMed:26322679, PubMed:26644574). SOCE is a Ca(2+) influx following depletion of intracellular Ca(2+) stores (PubMed:26322679). Acts by interacting with STIM1, promoting STIM1 conformational switch (PubMed:26322679). Involved in STIM1 relocalization to ER-PM junctions (PubMed:26644574). Contributes to the maintenance and reorganization of store-dependent ER-PM junctions (PubMed:26644574). {ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:26644574}. |
Q86UR5 | RIMS1 | T1254 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86UW6 | N4BP2 | S832 | ochoa | NEDD4-binding protein 2 (N4BP2) (EC 3.-.-.-) (BCL-3-binding protein) | Has 5'-polynucleotide kinase and nicking endonuclease activity. May play a role in DNA repair or recombination. {ECO:0000269|PubMed:12730195}. |
Q86VM9 | ZC3H18 | S893 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q86VY9 | TMEM200A | S350 | ochoa | Transmembrane protein 200A | None |
Q86WR7 | PROSER2 | S27 | ochoa | Proline and serine-rich protein 2 | None |
Q86X51 | EZHIP | S338 | ochoa | EZH inhibitory protein | Inhibits PRC2/EED-EZH1 and PRC2/EED-EZH2 complex function by inhibiting EZH1/EZH2 methyltransferase activity, thereby causing down-regulation of histone H3 trimethylation on 'Lys-27' (H3K27me3) (PubMed:29909548, PubMed:30923826, PubMed:31086175, PubMed:31451685). Probably inhibits methyltransferase activity by limiting the stimulatory effect of cofactors such as AEBP2 and JARID2 (PubMed:30923826). Inhibits H3K27me3 deposition during spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B1B0V2, ECO:0000269|PubMed:29909548, ECO:0000269|PubMed:30923826, ECO:0000269|PubMed:31086175, ECO:0000269|PubMed:31451685}. |
Q86XN8 | MEX3D | S176 | ochoa | RNA-binding protein MEX3D (RING finger and KH domain-containing protein 1) (RING finger protein 193) (TINO) | RNA binding protein, may be involved in post-transcriptional regulatory mechanisms. {ECO:0000250}. |
Q86YS3 | RAB11FIP4 | S304 | ochoa | Rab11 family-interacting protein 4 (FIP4-Rab11) (Rab11-FIP4) (Arfophilin-2) | Acts as a regulator of endocytic traffic by participating in membrane delivery. Required for the abscission step in cytokinesis, possibly by acting as an 'address tag' delivering recycling endosome membranes to the cleavage furrow during late cytokinesis. In case of infection by HCMV (human cytomegalovirus), may participate in egress of the virus out of nucleus; this function is independent of ARF6. {ECO:0000269|PubMed:12470645}. |
Q86YV0 | RASAL3 | S944 | ochoa | RAS protein activator like-3 | Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}. |
Q86YW9 | MED12L | S637 | ochoa | Mediator of RNA polymerase II transcription subunit 12-like protein (Mediator complex subunit 12-like protein) (Thyroid hormone receptor-associated-like protein) (Trinucleotide repeat-containing gene 11 protein-like) | May be a component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (By similarity). {ECO:0000250}. |
Q8IUW3 | SPATA2L | S317 | ochoa | Spermatogenesis-associated protein 2-like protein (SPATA2-like protein) | None |
Q8IVE3 | PLEKHH2 | S202 | ochoa | Pleckstrin homology domain-containing family H member 2 | In the kidney glomerulus may play a role in linking podocyte foot processes to the glomerular basement membrane. May be involved in stabilization of F-actin by attenuating its depolymerization. Can recruit TGFB1I1 from focal adhesions to podocyte lamellipodia. |
Q8IVL1 | NAV2 | S1121 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVL1 | NAV2 | S1611 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVL1 | NAV2 | S1800 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVL1 | NAV2 | S1970 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IWB9 | TEX2 | S295 | ochoa | Testis-expressed protein 2 (Transmembrane protein 96) | During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}. |
Q8IX01 | SUGP2 | S315 | ochoa | SURP and G-patch domain-containing protein 2 (Arginine/serine-rich-splicing factor 14) (Splicing factor, arginine/serine-rich 14) | May play a role in mRNA splicing. {ECO:0000305}. |
Q8IYD8 | FANCM | S661 | ochoa | Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) | DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}. |
Q8IYJ0 | PIANP | S213 | ochoa | PILR alpha-associated neural protein (PILR-associating neural protein) (Paired immunoglobin-like type 2 receptor-associating neural protein) | Acts as a ligand for PILRA in neural tissues, where it may be involved in immune regulation. {ECO:0000269|PubMed:21241660}. |
Q8IYM9 | TRIM22 | S384 | ochoa | E3 ubiquitin-protein ligase TRIM22 (EC 2.3.2.27) (50 kDa-stimulated trans-acting factor) (RING finger protein 94) (RING-type E3 ubiquitin transferase TRIM22) (Staf-50) (Tripartite motif-containing protein 22) | Interferon-induced E3 ubiquitin ligase that plays important roles in innate and adaptive immunity (PubMed:25683609, PubMed:35777501). Restricts the replication of many viruses including HIV-1, encephalomyocarditis virus (EMCV), hepatitis B virus (HBV), hepatitis C virus (HCV) or Zika virus (ZIKV) (PubMed:25683609, PubMed:35777501, PubMed:36042495). Mechanistically, negatively regulates HCV replication by promoting ubiquitination and subsequent degradation of viral NS5A (PubMed:25683609). Also acts by promoting the degradation of Zika virus NS1 and NS3 proteins through proteasomal degradation (PubMed:36042495). Acts as a suppressor of basal HIV-1 LTR-driven transcription by preventing Sp1 binding to the HIV-1 promoter (PubMed:26683615). Also plays a role in antiviral immunity by co-regulating together with NT5C2 the RIGI/NF-kappa-B pathway by promoting 'Lys-63'-linked ubiquitination of RIGI, while NT5C2 is responsible for 'Lys-48'-linked ubiquitination of RIGI (PubMed:36159777). Participates in adaptive immunity by suppressing the amount of MHC class II protein in a negative feedback manner in order to limit the extent of MHC class II induction (PubMed:35777501). {ECO:0000269|PubMed:18389079, ECO:0000269|PubMed:18656448, ECO:0000269|PubMed:19218198, ECO:0000269|PubMed:19585648, ECO:0000269|PubMed:25683609, ECO:0000269|PubMed:26683615, ECO:0000269|PubMed:35777501, ECO:0000269|PubMed:36042495, ECO:0000269|PubMed:36159777}. |
Q8IZ21 | PHACTR4 | S147 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8N122 | RPTOR | S792 | psp | Regulatory-associated protein of mTOR (Raptor) (p150 target of rapamycin (TOR)-scaffold protein) | Component of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:32561715, PubMed:37541260). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:32561715, PubMed:37541260). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:37541260). Within the mTORC1 complex, RPTOR acts both as a molecular adapter, which (1) mediates recruitment of mTORC1 to lysosomal membranes via interaction with small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD), and a (2) substrate-specific adapter, which promotes substrate specificity by binding to TOS motif-containing proteins and direct them towards the active site of the MTOR kinase domain for phosphorylation (PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). mTORC1 complex regulates many cellular processes, such as odontoblast and osteoclast differentiation or neuronal transmission (By similarity). mTORC1 complex in excitatory neuronal transmission is required for the prosocial behavior induced by the psychoactive substance lysergic acid diethylamide (LSD) (By similarity). {ECO:0000250|UniProtKB:Q8K4Q0, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12747827, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:26588989, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37541260}. |
Q8N264 | ARHGAP24 | S627 | ochoa | Rho GTPase-activating protein 24 (Filamin-A-associated RhoGAP) (FilGAP) (RAC1- and CDC42-specific GTPase-activating protein of 72 kDa) (RC-GAP72) (Rho-type GTPase-activating protein 24) (RhoGAP of 73 kDa) (Sarcoma antigen NY-SAR-88) (p73RhoGAP) | Rho GTPase-activating protein involved in cell polarity, cell morphology and cytoskeletal organization. Acts as a GTPase activator for the Rac-type GTPase by converting it to an inactive GDP-bound state. Controls actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity. Able to suppress RAC1 and CDC42 activity in vitro. Overexpression induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Isoform 2 is a vascular cell-specific GAP involved in modulation of angiogenesis. {ECO:0000269|PubMed:15302923, ECO:0000269|PubMed:15611138, ECO:0000269|PubMed:16862148}. |
Q8N3A8 | PARP8 | S291 | ochoa | Protein mono-ADP-ribosyltransferase PARP8 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 16) (ARTD16) (Poly [ADP-ribose] polymerase 8) (PARP-8) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}. |
Q8N3C7 | CLIP4 | S609 | ochoa | CAP-Gly domain-containing linker protein 4 (Restin-like protein 2) | None |
Q8N3J3 | HROB | S46 | ochoa | Homologous recombination OB-fold protein | DNA-binding protein involved in homologous recombination that acts by recruiting the MCM8-MCM9 helicase complex to sites of DNA damage to promote DNA repair synthesis. {ECO:0000269|PubMed:31467087}. |
Q8N4S9 | MARVELD2 | S173 | ochoa | MARVEL domain-containing protein 2 (Tricellulin) | Plays a role in the formation of tricellular tight junctions and of epithelial barriers (By similarity). Required for normal hearing via its role in the separation of the endolymphatic and perilymphatic spaces of the organ of Corti in the inner ear, and for normal survival of hair cells in the organ of Corti (PubMed:17186462). {ECO:0000250|UniProtKB:Q3UZP0, ECO:0000269|PubMed:17186462}. |
Q8N4X5 | AFAP1L2 | S484 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q8N5U6 | RNF10 | S70 | ochoa | E3 ubiquitin-protein ligase RNF10 (EC 2.3.2.27) (RING finger protein 10) | E3 ubiquitin-protein ligase that catalyzes monoubiquitination of 40S ribosomal proteins RPS2/us5 and RPS3/us3 in response to ribosome stalling (PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): RNF10 acts by mediating monoubiquitination of RPS2/us5 and RPS3/us3, promoting their degradation by the proteasome (PubMed:34348161, PubMed:34469731). Also promotes ubiquitination of 40S ribosomal proteins in response to ribosome stalling during translation elongation (PubMed:34348161). The action of RNF10 in iRQC is counteracted by USP10 (PubMed:34469731). May also act as a transcriptional factor involved in the regulation of MAG (Myelin-associated glycoprotein) expression (By similarity). Acts as a regulator of Schwann cell differentiation and myelination (By similarity). {ECO:0000250|UniProtKB:Q5XI59, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731}. |
Q8N6U8 | GPR161 | S360 | ochoa | G-protein coupled receptor 161 (G-protein coupled receptor RE2) | Key negative regulator of Shh signaling, which promotes the processing of GLI3 into GLI3R during neural tube development. Recruited by TULP3 and the IFT-A complex to primary cilia and acts as a regulator of the PKA-dependent basal repression machinery in Shh signaling by increasing cAMP levels, leading to promote the PKA-dependent processing of GLI3 into GLI3R and repress the Shh signaling. In presence of SHH, it is removed from primary cilia and is internalized into recycling endosomes, preventing its activity and allowing activation of the Shh signaling. Its ligand is unknown (By similarity). {ECO:0000250}. |
Q8NC74 | RBBP8NL | S262 | ochoa | RBBP8 N-terminal-like protein | None |
Q8ND04 | SMG8 | S742 | ochoa | Nonsense-mediated mRNA decay factor SMG8 (Amplified in breast cancer gene 2 protein) (Protein smg-8 homolog) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited by release factors to stalled ribosomes together with SMG1 and SMG9 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required to mediate the recruitment of SMG1 to the ribosome:SURF complex and to suppress SMG1 kinase activity until the ribosome:SURF complex locates the exon junction complex (EJC). Acts as a regulator of kinase activity. {ECO:0000269|PubMed:19417104}. |
Q8NEG4 | FAM83F | S480 | ochoa | Protein FAM83F | None |
Q8NEL9 | DDHD1 | S85 | ochoa | Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) | Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}. |
Q8NEV8 | EXPH5 | S318 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NEY1 | NAV1 | S460 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NEY1 | NAV1 | S1048 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NEY8 | PPHLN1 | S110 | ochoa | Periphilin-1 (CDC7 expression repressor) (CR) (Gastric cancer antigen Ga50) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression. The HUSH complex is recruited to genomic loci rich in H3K9me3 and is probably required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3. In the HUSH complex, contributes to the maintenance of the complex at chromatin (PubMed:26022416). Acts as a transcriptional corepressor and regulates the cell cycle, probably via the HUSH complex (PubMed:15474462, PubMed:17963697). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). May be involved in epithelial differentiation by contributing to epidermal integrity and barrier formation (PubMed:12853457). {ECO:0000269|PubMed:15474462, ECO:0000269|PubMed:17963697, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:30487602, ECO:0000305|PubMed:12853457}. |
Q8NEZ4 | KMT2C | S1225 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NEZ4 | KMT2C | S1919 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NFW9 | MYRIP | S534 | ochoa | Rab effector MyRIP (Exophilin-8) (Myosin-VIIa- and Rab-interacting protein) (Synaptotagmin-like protein lacking C2 domains C) (SlaC2-c) (Slp homolog lacking C2 domains c) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor proteins MYO5A and MYO7A. May link RAB27A-containing vesicles to actin filaments. Functions as a protein kinase A-anchoring protein (AKAP). May act as a scaffolding protein that links PKA to components of the exocytosis machinery, thus facilitating exocytosis, including insulin release (By similarity). {ECO:0000250}. |
Q8NI35 | PATJ | S1618 | ochoa | InaD-like protein (Inadl protein) (hINADL) (Channel-interacting PDZ domain-containing protein) (Pals1-associated tight junction protein) (Protein associated to tight junctions) | Scaffolding protein that facilitates the localization of proteins to the cell membrane (PubMed:11927608, PubMed:16678097, PubMed:22006950). Required for the correct formation of tight junctions and epithelial apico-basal polarity (PubMed:11927608, PubMed:16678097). Acts (via its L27 domain) as an apical connector and elongation factor for multistranded TJP1/ZO1 condensates that form a tight junction belt, thereby required for the formation of the tight junction-mediated cell barrier (By similarity). Positively regulates epithelial cell microtubule elongation and cell migration, possibly via facilitating localization of PRKCI/aPKC and PAR3D/PAR3 at the leading edge of migrating cells (By similarity). Plays a role in the correct reorientation of the microtubule-organizing center during epithelial migration (By similarity). May regulate the surface expression and/or function of ASIC3 in sensory neurons (By similarity). May recruit ARHGEF18 to apical cell-cell boundaries (PubMed:22006950). {ECO:0000250|UniProtKB:E2QYC9, ECO:0000250|UniProtKB:Q63ZW7, ECO:0000269|PubMed:11927608, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:22006950}. |
Q8TB72 | PUM2 | S587 | ochoa | Pumilio homolog 2 (Pumilio-2) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (, PubMed:21397187). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:22345517). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). May regulate DCUN1D3 mRNA levels (PubMed:25349211). May support proliferation and self-renewal of stem cells. Binds specifically to miRNA MIR199A precursor, with PUM1, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25349211, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233}. |
Q8TBB1 | LNX1 | S441 | ochoa | E3 ubiquitin-protein ligase LNX (EC 2.3.2.27) (Ligand of Numb-protein X 1) (Numb-binding protein 1) (PDZ domain-containing RING finger protein 2) (RING-type E3 ubiquitin transferase LNX) | E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of NUMB. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Mediates ubiquitination of isoform p66 and isoform p72 of NUMB, but not that of isoform p71 or isoform p65. {ECO:0000250|UniProtKB:O70263}.; FUNCTION: Isoform 2 provides an endocytic scaffold for IGSF5/JAM4. {ECO:0000250|UniProtKB:O70263}. |
Q8TC71 | SPATA18 | S276 | ochoa | Mitochondria-eating protein (Spermatogenesis-associated protein 18) | Key regulator of mitochondrial quality that mediates the repairing or degradation of unhealthy mitochondria in response to mitochondrial damage (PubMed:21264221, PubMed:21264228, PubMed:22292033, PubMed:22532927). Mediator of mitochondrial protein catabolic process (also named MALM) by mediating the degradation of damaged proteins inside mitochondria by promoting the accumulation in the mitochondrial matrix of hydrolases that are characteristic of the lysosomal lumen (PubMed:21264221, PubMed:21264228, PubMed:22292033, PubMed:22532927). Also involved in mitochondrion degradation of damaged mitochondria by promoting the formation of vacuole-like structures (named MIV), which engulf and degrade unhealthy mitochondria by accumulating lysosomes (PubMed:21264228). The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix (PubMed:22292033). Binds cardiolipin (PubMed:38322995). May form molecular condensates (non-membrane-bounded organelles) within mitochondria that compartmentalize and promote cardiolipin metabolism (PubMed:38322995). {ECO:0000269|PubMed:21264221, ECO:0000269|PubMed:21264228, ECO:0000269|PubMed:22292033, ECO:0000269|PubMed:38322995}. |
Q8TC76 | FAM110B | S301 | ochoa | Protein FAM110B | May be involved in tumor progression. |
Q8TD20 | SLC2A12 | S244 | ochoa | Solute carrier family 2, facilitated glucose transporter member 12 (Glucose transporter type 12) (GLUT-12) | Insulin-independent facilitative glucose transporter. {ECO:0000250|UniProtKB:Q8BFW9}. |
Q8TDN4 | CABLES1 | S242 | psp | CDK5 and ABL1 enzyme substrate 1 (Interactor with CDK3 1) (Ik3-1) | Cyclin-dependent kinase binding protein. Enhances cyclin-dependent kinase tyrosine phosphorylation by nonreceptor tyrosine kinases, such as that of CDK5 by activated ABL1, which leads to increased CDK5 activity and is critical for neuronal development, and that of CDK2 by WEE1, which leads to decreased CDK2 activity and growth inhibition. Positively affects neuronal outgrowth. Plays a role as a regulator for p53/p73-induced cell death (By similarity). {ECO:0000250}. |
Q8TDW5 | SYTL5 | S306 | ochoa | Synaptotagmin-like protein 5 | May act as Rab effector protein and play a role in vesicle trafficking. Binds phospholipids. |
Q8TDW5 | SYTL5 | S396 | ochoa | Synaptotagmin-like protein 5 | May act as Rab effector protein and play a role in vesicle trafficking. Binds phospholipids. |
Q8TEV9 | SMCR8 | S790 | ochoa | Guanine nucleotide exchange protein SMCR8 (Smith-Magenis syndrome chromosomal region candidate gene 8 protein) | Component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy (PubMed:20562859, PubMed:27103069, PubMed:27193190, PubMed:27559131, PubMed:27617292, PubMed:28195531, PubMed:32303654). In the complex, C9orf72 and SMCR8 probably constitute the catalytic subunits that promote the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation (PubMed:20562859, PubMed:27103069, PubMed:27617292, PubMed:28195531). The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ULK1/ATG1 kinase complex and inhibiting its protein kinase activity (PubMed:27617292, PubMed:28195531). As part of the C9orf72-SMCR8 complex, stimulates RAB8A and RAB11A GTPase activity in vitro (PubMed:32303654). Acts as a regulator of mTORC1 signaling by promoting phosphorylation of mTORC1 substrates (PubMed:27559131, PubMed:28195531). In addition to its activity in the cytoplasm within the C9orf72-SMCR8 complex, SMCR8 also localizes in the nucleus, where it associates with chromatin and negatively regulates expression of suppresses ULK1 and WIPI2 genes (PubMed:28195531). {ECO:0000269|PubMed:20562859, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27193190, ECO:0000269|PubMed:27559131, ECO:0000269|PubMed:27617292, ECO:0000269|PubMed:28195531, ECO:0000269|PubMed:32303654}. |
Q8TF40 | FNIP1 | S686 | ochoa | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8WU20 | FRS2 | S161 | ochoa | Fibroblast growth factor receptor substrate 2 (FGFR substrate 2) (FGFR-signaling adaptor SNT) (Suc1-associated neurotrophic factor target 1) (SNT-1) | Adapter protein that links activated FGR and NGF receptors to downstream signaling pathways. Plays an important role in the activation of MAP kinases and in the phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, in response to ligand-mediated activation of FGFR1. Modulates signaling via SHC1 by competing for a common binding site on NTRK1. {ECO:0000269|PubMed:12974390, ECO:0000269|PubMed:21765395}. |
Q8WWK9 | CKAP2 | S304 | ochoa | Cytoskeleton-associated protein 2 (CTCL tumor antigen se20-10) (Tumor- and microtubule-associated protein) | Possesses microtubule stabilizing properties. Involved in regulating aneuploidy, cell cycling, and cell death in a p53/TP53-dependent manner (By similarity). {ECO:0000250}. |
Q8WWN8 | ARAP3 | S1380 | ochoa | Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (Centaurin-delta-3) (Cnt-d3) | Phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members. Is activated by phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding. Can be activated by phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding, albeit with lower efficiency. Acts on ARF6, RAC1, RHOA and CDC42. Plays a role in the internalization of anthrax toxin. {ECO:0000269|PubMed:11804589, ECO:0000269|PubMed:15569923}. |
Q8WX93 | PALLD | S1333 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WXI7 | MUC16 | S5042 | ochoa | Mucin-16 (MUC-16) (Ovarian cancer-related tumor marker CA125) (CA-125) (Ovarian carcinoma antigen CA125) | Thought to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces. {ECO:0000250}. |
Q8WXI7 | MUC16 | S5045 | ochoa | Mucin-16 (MUC-16) (Ovarian cancer-related tumor marker CA125) (CA-125) (Ovarian carcinoma antigen CA125) | Thought to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces. {ECO:0000250}. |
Q8WY36 | BBX | S243 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q92502 | STARD8 | S498 | ochoa | StAR-related lipid transfer protein 8 (Deleted in liver cancer 3 protein) (DLC-3) (START domain-containing protein 8) (StARD8) (START-GAP3) | Accelerates GTPase activity of RHOA and CDC42, but not RAC1. Stimulates the hydrolysis of phosphatidylinositol 4,5-bisphosphate by PLCD1. {ECO:0000269|PubMed:17976533}. |
Q92538 | GBF1 | S1781 | ochoa | Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (BFA-resistant GEF 1) | Guanine-nucleotide exchange factor (GEF) for members of the Arf family of small GTPases involved in trafficking in the early secretory pathway; its GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs through replacement of GDP with GTP. Recruitment to cis-Golgi membranes requires membrane association of Arf-GDP and can be regulated by ARF1, ARF3, ARF4 and ARF5. Involved in the recruitment of the COPI coat complex to the endoplasmic reticulum exit sites (ERES), and the endoplasmic reticulum-Golgi intermediate (ERGIC) and cis-Golgi compartments which implicates ARF1 activation. Involved in COPI vesicle-dependent retrograde transport from the ERGIC and cis-Golgi compartments to the endoplasmic reticulum (ER) (PubMed:12047556, PubMed:12808027, PubMed:16926190, PubMed:17956946, PubMed:18003980, PubMed:19039328, PubMed:24213530). Involved in the trans-Golgi network recruitment of GGA1, GGA2, GGA3, BIG1, BIG2, and the AP-1 adaptor protein complex related to chlathrin-dependent transport; the function requires its GEF activity (probably at least in part on ARF4 and ARF5) (PubMed:23386609). Has GEF activity towards ARF1 (PubMed:15616190). Has in vitro GEF activity towards ARF5 (By similarity). Involved in the processing of PSAP (PubMed:17666033). Required for the assembly of the Golgi apparatus (PubMed:12808027, PubMed:18003980). The AMPK-phosphorylated form is involved in Golgi disassembly during mitotis and under stress conditions (PubMed:18063581, PubMed:23418352). May be involved in the COPI vesicle-dependent recruitment of PNPLA2 to lipid droplets; however, this function is under debate (PubMed:19461073, PubMed:22185782). In neutrophils, involved in G protein-coupled receptor (GPCR)-mediated chemotaxis und superoxide production. Proposed to be recruited by phosphatidylinositol-phosphates generated upon GPCR stimulation to the leading edge where it recruits and activates ARF1, and is involved in recruitment of GIT2 and the NADPH oxidase complex (PubMed:22573891). Plays a role in maintaining mitochondrial morphology (PubMed:25190516). {ECO:0000250|UniProtKB:Q9R1D7, ECO:0000269|PubMed:12047556, ECO:0000269|PubMed:12808027, ECO:0000269|PubMed:15616190, ECO:0000269|PubMed:16926190, ECO:0000269|PubMed:17666033, ECO:0000269|PubMed:17956946, ECO:0000269|PubMed:18003980, ECO:0000269|PubMed:18063581, ECO:0000269|PubMed:19461073, ECO:0000269|PubMed:22185782, ECO:0000269|PubMed:22573891, ECO:0000269|PubMed:23386609, ECO:0000269|PubMed:23418352, ECO:0000269|PubMed:24213530, ECO:0000269|PubMed:25190516, ECO:0000305|PubMed:19039328, ECO:0000305|PubMed:22573891}. |
Q92547 | TOPBP1 | S297 | ochoa | DNA topoisomerase 2-binding protein 1 (DNA topoisomerase II-beta-binding protein 1) (TopBP1) (DNA topoisomerase II-binding protein 1) | Scaffold protein that acts as a key protein-protein adapter in DNA replication and DNA repair (PubMed:10498869, PubMed:11395493, PubMed:11714696, PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:33592542, PubMed:35597237, PubMed:37674080). Composed of multiple BRCT domains, which specifically recognize and bind phosphorylated proteins, bringing proteins together into functional combinations (PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:35597237, PubMed:37674080). Required for DNA replication initiation but not for the formation of pre-replicative complexes or the elongation stages (By similarity). Necessary for the loading of replication factors onto chromatin, including GMNC, CDC45, DNA polymerases and components of the GINS complex (By similarity). Plays a central role in DNA repair by bridging proteins and promoting recruitment of proteins to DNA damage sites (PubMed:30898438, PubMed:35597237, PubMed:37674080). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the exchange between the DNA replication factor A (RPA) complex and RAD51 (PubMed:26811421, PubMed:35597237). Mechanistically, TOPBP1 is recruited to DNA damage sites in S-phase via interaction with phosphorylated HTATSF1, and promotes the loading of RAD51, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). Involved in microhomology-mediated end-joining (MMEJ) DNA repair by promoting recruitment of polymerase theta (POLQ) to DNA damage sites during mitosis (PubMed:37674080). MMEJ is an alternative non-homologous end-joining (NHEJ) machinery that takes place during mitosis to repair DSBs in DNA that originate in S-phase (PubMed:37674080). Recognizes and binds POLQ phosphorylated by PLK1, enabling its recruitment to DSBs for subsequent repair (PubMed:37674080). Involved in G1 DNA damage checkpoint by acting as a molecular adapter that couples TP53BP1 and the 9-1-1 complex (PubMed:31135337). In response to DNA damage, triggers the recruitment of checkpoint signaling proteins on chromatin, which activate the CHEK1 signaling pathway and block S-phase progression (PubMed:16530042, PubMed:21777809). Acts as an activator of the kinase activity of ATR (PubMed:16530042, PubMed:21777809). Also required for chromosomal stability when DSBs occur during mitosis by forming filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Together with CIP2A, plays an essential role in the response to genome instability generated by the presence of acentric chromosome fragments derived from shattered chromosomes within micronuclei (PubMed:35121901, PubMed:35842428, PubMed:37165191, PubMed:37316668). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, the CIP2A-TOPBP1 complex tethers chromosome fragments during mitosis to ensure clustered segregation of the fragments to a single daughter cell nucleus, facilitating re-ligation with limited chromosome scattering and loss (PubMed:37165191, PubMed:37316668). Recruits the SWI/SNF chromatin remodeling complex to E2F1-responsive promoters, thereby down-regulating E2F1 activity and inhibiting E2F1-dependent apoptosis during G1/S transition and after DNA damage (PubMed:12697828, PubMed:15075294). {ECO:0000250|UniProtKB:Q800K6, ECO:0000269|PubMed:10498869, ECO:0000269|PubMed:11395493, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:12697828, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:16530042, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21777809, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:30898438, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:33592542, ECO:0000269|PubMed:35121901, ECO:0000269|PubMed:35597237, ECO:0000269|PubMed:35842428, ECO:0000269|PubMed:37165191, ECO:0000269|PubMed:37316668, ECO:0000269|PubMed:37674080}. |
Q92609 | TBC1D5 | S43 | ochoa | TBC1 domain family member 5 | May act as a GTPase-activating protein (GAP) for Rab family protein(s). May act as a GAP for RAB7A. Can displace RAB7A and retromer CSC subcomplex from the endosomal membrane to the cytosol; at least retromer displacement seems to require its catalytic activity (PubMed:19531583, PubMed:20923837). Required for retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN); the function seems to require its catalytic activity. Involved in regulation of autophagy (PubMed:22354992). May act as a molecular switch between endosomal and autophagosomal transport and is involved in reprogramming vesicle trafficking upon autophagy induction. Involved in the trafficking of ATG9A upon activation of autophagy. May regulate the recruitment of ATG9A-AP2-containing vesicles to autophagic membranes (PubMed:24603492). {ECO:0000269|PubMed:19531583, ECO:0000269|PubMed:20923837, ECO:0000269|PubMed:22354992, ECO:0000269|PubMed:24603492, ECO:0000305|PubMed:19531583, ECO:0000305|PubMed:22354992, ECO:0000305|PubMed:24603492}. |
Q92610 | ZNF592 | S78 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92618 | ZNF516 | S1121 | ochoa | Zinc finger protein 516 | Transcriptional regulator that binds to the promoter and activates the transcription of genes promoting brown adipose tissue (BAT) differentiation. Among brown adipose tissue-specific genes, binds the proximal region of the promoter of the UCP1 gene to activate its transcription and thereby regulate thermogenesis (By similarity). May also play a role in the cellular response to replication stress (PubMed:23446422). {ECO:0000250|UniProtKB:Q7TSH3, ECO:0000269|PubMed:23446422}. |
Q92835 | INPP5D | S886 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (EC 3.1.3.86) (Inositol polyphosphate-5-phosphatase D) (EC 3.1.3.56) (Inositol polyphosphate-5-phosphatase of 145 kDa) (SIP-145) (Phosphatidylinositol 4,5-bisphosphate 5-phosphatase) (EC 3.1.3.36) (SH2 domain-containing inositol 5'-phosphatase 1) (SH2 domain-containing inositol phosphatase 1) (SHIP-1) (p150Ship) (hp51CN) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:10764818, PubMed:8723348, PubMed:8769125). Able also to hydrolyzes the 5-phosphate of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (PubMed:10764818, PubMed:8769125, PubMed:9108392). Acts as a negative regulator of B-cell antigen receptor signaling. Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Acts as a negative regulator of myeloid cell proliferation/survival and chemotaxis, mast cell degranulation, immune cells homeostasis, integrin alpha-IIb/beta-3 signaling in platelets and JNK signaling in B-cells. Regulates proliferation of osteoclast precursors, macrophage programming, phagocytosis and activation and is required for endotoxin tolerance. Involved in the control of cell-cell junctions, CD32a signaling in neutrophils and modulation of EGF-induced phospholipase C activity (PubMed:16682172). Key regulator of neutrophil migration, by governing the formation of the leading edge and polarization required for chemotaxis. Modulates FCGR3/CD16-mediated cytotoxicity in NK cells. Mediates the activin/TGF-beta-induced apoptosis through its Smad-dependent expression. {ECO:0000269|PubMed:10764818, ECO:0000269|PubMed:12421919, ECO:0000269|PubMed:16682172, ECO:0000269|PubMed:8723348, ECO:0000269|PubMed:8769125, ECO:0000269|PubMed:9108392}. |
Q92870 | APBB2 | S160 | ochoa | Amyloid beta precursor protein binding family B member 2 (Amyloid-beta (A4) precursor protein-binding family B member 2) (Protein Fe65-like 1) | Plays a role in the maintenance of lens transparency, and may also play a role in muscle cell strength (By similarity). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Activates transcription of APP (PubMed:14527950). {ECO:0000250|UniProtKB:Q9DBR4, ECO:0000269|PubMed:14527950}. |
Q92934 | BAD | S134 | ochoa|psp | Bcl2-associated agonist of cell death (BAD) (Bcl-2-binding component 6) (Bcl-2-like protein 8) (Bcl2-L-8) (Bcl-xL/Bcl-2-associated death promoter) (Bcl2 antagonist of cell death) | Promotes cell death. Successfully competes for the binding to Bcl-X(L), Bcl-2 and Bcl-W, thereby affecting the level of heterodimerization of these proteins with BAX. Can reverse the death repressor activity of Bcl-X(L), but not that of Bcl-2 (By similarity). Appears to act as a link between growth factor receptor signaling and the apoptotic pathways. {ECO:0000250}. |
Q96AY4 | TTC28 | S2307 | ochoa | Tetratricopeptide repeat protein 28 (TPR repeat protein 28) (TPR repeat-containing big gene cloned at Keio) | During mitosis, may be involved in the condensation of spindle midzone microtubules, leading to the formation of midbody. {ECO:0000269|PubMed:23036704}. |
Q96B01 | RAD51AP1 | S120 | ochoa | RAD51-associated protein 1 (HsRAD51AP1) (RAD51-interacting protein) | Structure-specific DNA-binding protein involved in DNA repair by promoting RAD51-mediated homologous recombination (PubMed:17996710, PubMed:17996711, PubMed:20871616, PubMed:25288561, PubMed:26323318). Acts by stimulating D-Loop formation by RAD51: specifically enhances joint molecule formation through its structure-specific DNA interaction and its interaction with RAD51 (PubMed:17996710, PubMed:17996711). Binds single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures: has a strong preference for branched-DNA structures that are obligatory intermediates during joint molecule formation (PubMed:17996710, PubMed:17996711, PubMed:22375013, PubMed:9396801). Cooperates with WDR48/UAF1 to stimulate RAD51-mediated homologous recombination: both WDR48/UAF1 and RAD51AP1 have coordinated role in DNA-binding during homologous recombination and DNA repair (PubMed:27239033, PubMed:27463890, PubMed:32350107). WDR48/UAF1 and RAD51AP1 also have a coordinated role in DNA-binding to promote USP1-mediated deubiquitination of FANCD2 (PubMed:31253762). Also involved in meiosis by promoting DMC1-mediated homologous meiotic recombination (PubMed:21307306). Key mediator of alternative lengthening of telomeres (ALT) pathway, a homology-directed repair mechanism of telomere elongation that controls proliferation in aggressive cancers, by stimulating homologous recombination (PubMed:31400850). May also bind RNA; additional evidences are however required to confirm RNA-binding in vivo (PubMed:9396801). {ECO:0000269|PubMed:17996710, ECO:0000269|PubMed:17996711, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:21307306, ECO:0000269|PubMed:22375013, ECO:0000269|PubMed:25288561, ECO:0000269|PubMed:26323318, ECO:0000269|PubMed:27239033, ECO:0000269|PubMed:27463890, ECO:0000269|PubMed:31253762, ECO:0000269|PubMed:31400850, ECO:0000269|PubMed:32350107, ECO:0000269|PubMed:9396801}. |
Q96DR7 | ARHGEF26 | S740 | ochoa | Rho guanine nucleotide exchange factor 26 (SH3 domain-containing guanine exchange factor) | Activates RhoG GTPase by promoting the exchange of GDP by GTP. Required for the formation of membrane ruffles during macropinocytosis. Required for the formation of cup-like structures during trans-endothelial migration of leukocytes. In case of Salmonella enterica infection, activated by SopB, which induces cytoskeleton rearrangements and promotes bacterial entry. {ECO:0000269|PubMed:15133129, ECO:0000269|PubMed:17074883, ECO:0000269|PubMed:17875742}. |
Q96DU7 | ITPKC | S348 | ochoa | Inositol-trisphosphate 3-kinase C (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase C) (IP3 3-kinase C) (IP3K C) (InsP 3-kinase C) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis (PubMed:11085927, PubMed:12747803). Can phosphorylate inositol 2,4,5-triphosphate to inositol 2,4,5,6-tetraphosphate (By similarity). {ECO:0000250|UniProtKB:Q80ZG2, ECO:0000269|PubMed:11085927, ECO:0000269|PubMed:12747803}. |
Q96DX4 | RSPRY1 | S55 | ochoa | RING finger and SPRY domain-containing protein 1 | None |
Q96EZ8 | MCRS1 | S36 | ochoa|psp | Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) | Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}. |
Q96FS4 | SIPA1 | S772 | ochoa | Signal-induced proliferation-associated protein 1 (Sipa-1) (GTPase-activating protein Spa-1) (p130 SPA-1) | GTPase activator for the nuclear Ras-related regulatory proteins Rap1 and Rap2 in vitro, converting them to the putatively inactive GDP-bound state (PubMed:9346962). Affects cell cycle progression (By similarity). {ECO:0000250|UniProtKB:P46062, ECO:0000269|PubMed:9346962}. |
Q96I25 | RBM17 | S169 | ochoa | Splicing factor 45 (45 kDa-splicing factor) (RNA-binding motif protein 17) | Splice factor that binds to the single-stranded 3'AG at the exon/intron border and promotes its utilization in the second catalytic step. Involved in the regulation of alternative splicing and the utilization of cryptic splice sites. Promotes the utilization of a cryptic splice site created by the beta-110 mutation in the HBB gene. The resulting frameshift leads to sickle cell anemia. {ECO:0000269|PubMed:12015979, ECO:0000269|PubMed:17589525}. |
Q96IZ0 | PAWR | S228 | ochoa | PRKC apoptosis WT1 regulator protein (Prostate apoptosis response 4 protein) (Par-4) | Pro-apoptotic protein capable of selectively inducing apoptosis in cancer cells, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. Induces apoptosis in certain cancer cells by activation of the Fas prodeath pathway and coparallel inhibition of NF-kappa-B transcriptional activity. Inhibits the transcriptional activation and augments the transcriptional repression mediated by WT1. Down-regulates the anti-apoptotic protein BCL2 via its interaction with WT1. Also seems to be a transcriptional repressor by itself. May be directly involved in regulating the amyloid precursor protein (APP) cleavage activity of BACE1. {ECO:0000269|PubMed:11585763}. |
Q96JA1 | LRIG1 | S1033 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 1 (LIG-1) | Acts as a feedback negative regulator of signaling by receptor tyrosine kinases, through a mechanism that involves enhancement of receptor ubiquitination and accelerated intracellular degradation. {ECO:0000269|PubMed:15282549}. |
Q96MK2 | RIPOR3 | S340 | ochoa | RIPOR family member 3 | None |
Q96MK2 | RIPOR3 | S348 | ochoa | RIPOR family member 3 | None |
Q96MK2 | RIPOR3 | S397 | ochoa | RIPOR family member 3 | None |
Q96PY6 | NEK1 | S959 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96Q15 | SMG1 | S34 | ochoa | Serine/threonine-protein kinase SMG1 (SMG-1) (hSMG-1) (EC 2.7.11.1) (Lambda/iota protein kinase C-interacting protein) (Lambda-interacting protein) (Nonsense mediated mRNA decay-associated PI3K-related kinase SMG1) | Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Also acts as a genotoxic stress-activated protein kinase that displays some functional overlap with ATM. Can phosphorylate p53/TP53 and is required for optimal p53/TP53 activation after cellular exposure to genotoxic stress. Its depletion leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). May activate PRKCI but not PRKCZ. {ECO:0000269|PubMed:11331269, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:15175154, ECO:0000269|PubMed:16452507}. |
Q96QB1 | DLC1 | S1004 | psp | Rho GTPase-activating protein 7 (Deleted in liver cancer 1 protein) (DLC-1) (HP protein) (Rho-type GTPase-activating protein 7) (START domain-containing protein 12) (StARD12) (StAR-related lipid transfer protein 12) | Functions as a GTPase-activating protein for the small GTPases RHOA, RHOB, RHOC and CDC42, terminating their downstream signaling. This induces morphological changes and detachment through cytoskeletal reorganization, playing a critical role in biological processes such as cell migration and proliferation. Also functions in vivo as an activator of the phospholipase PLCD1. Active DLC1 increases cell migration velocity but reduces directionality. Required for growth factor-induced epithelial cell migration; in resting cells, interacts with TNS3 while PTEN interacts with the p85 regulatory subunit of the PI3K kinase complex but growth factor stimulation induces phosphorylation of TNS3 and PTEN, causing them to change their binding preference so that PTEN interacts with DLC1 and TNS3 interacts with p85 (PubMed:26166433). The PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA while the TNS3-p85 complex translocates to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). {ECO:0000269|PubMed:18786931, ECO:0000269|PubMed:19170769, ECO:0000269|PubMed:19710422, ECO:0000269|PubMed:26166433}. |
Q96RG2 | PASK | S65 | ochoa | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96RV3 | PCNX1 | S904 | ochoa | Pecanex-like protein 1 (Pecanex homolog protein 1) | None |
Q96RV3 | PCNX1 | S2152 | ochoa | Pecanex-like protein 1 (Pecanex homolog protein 1) | None |
Q96SB4 | SRPK1 | S408 | psp | SRSF protein kinase 1 (EC 2.7.11.1) (SFRS protein kinase 1) (Serine/arginine-rich protein-specific kinase 1) (SR-protein-specific kinase 1) | Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Plays a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells and the reorganization of nuclear speckles during mitosis. Can influence additional steps of mRNA maturation, as well as other cellular activities, such as chromatin reorganization in somatic and sperm cells and cell cycle progression. Isoform 2 phosphorylates SFRS2, ZRSR2, LBR and PRM1. Isoform 2 phosphorylates SRSF1 using a directional (C-terminal to N-terminal) and a dual-track mechanism incorporating both processive phosphorylation (in which the kinase stays attached to the substrate after each round of phosphorylation) and distributive phosphorylation steps (in which the kinase and substrate dissociate after each phosphorylation event). The RS domain of SRSF1 binds first to a docking groove in the large lobe of the kinase domain of SRPK1. This induces certain structural changes in SRPK1 and/or RRM2 domain of SRSF1, allowing RRM2 to bind the kinase and initiate phosphorylation. The cycles continue for several phosphorylation steps in a processive manner (steps 1-8) until the last few phosphorylation steps (approximately steps 9-12). During that time, a mechanical stress induces the unfolding of the beta-4 motif in RRM2, which then docks at the docking groove of SRPK1. This also signals RRM2 to begin to dissociate, which facilitates SRSF1 dissociation after phosphorylation is completed. Isoform 2 can mediate hepatitis B virus (HBV) core protein phosphorylation. It plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles. Isoform 1 and isoform 2 can induce splicing of exon 10 in MAPT/TAU. The ratio of isoform 1/isoform 2 plays a decisive role in determining cell fate in K-562 leukaemic cell line: isoform 2 favors proliferation where as isoform 1 favors differentiation. {ECO:0000269|PubMed:10049757, ECO:0000269|PubMed:10390541, ECO:0000269|PubMed:11509566, ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:14555757, ECO:0000269|PubMed:15034300, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:16209947, ECO:0000269|PubMed:18155240, ECO:0000269|PubMed:18687337, ECO:0000269|PubMed:19240134, ECO:0000269|PubMed:19477182, ECO:0000269|PubMed:19886675, ECO:0000269|PubMed:20708644, ECO:0000269|PubMed:8208298, ECO:0000269|PubMed:9237760}. |
Q96T58 | SPEN | S1358 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99250 | SCN2A | S554 | ochoa | Sodium channel protein type 2 subunit alpha (HBSC II) (Sodium channel protein brain II subunit alpha) (Sodium channel protein type II subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.2) | Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient (PubMed:1325650, PubMed:17021166, PubMed:28256214, PubMed:29844171). Implicated in the regulation of hippocampal replay occurring within sharp wave ripples (SPW-R) important for memory (By similarity). {ECO:0000250|UniProtKB:B1AWN6, ECO:0000269|PubMed:1325650, ECO:0000269|PubMed:17021166, ECO:0000269|PubMed:28256214, ECO:0000269|PubMed:29844171}. |
Q99570 | PIK3R4 | S894 | ochoa | Phosphoinositide 3-kinase regulatory subunit 4 (PI3-kinase regulatory subunit 4) (EC 2.7.11.1) (PI3-kinase p150 subunit) (Phosphoinositide 3-kinase adaptor protein) | Regulatory subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). {ECO:0000269|PubMed:20643123}. |
Q99700 | ATXN2 | S530 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99708 | RBBP8 | S327 | ochoa|psp | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q9BQF6 | SENP7 | S373 | ochoa | Sentrin-specific protease 7 (EC 3.4.22.-) (SUMO-1-specific protease 2) (Sentrin/SUMO-specific protease SENP7) | Protease that acts as a positive regulator of the cGAS-STING pathway by catalyzing desumoylation of CGAS. Desumoylation of CGAS promotes DNA-binding activity of CGAS, subsequent oligomerization and activation (By similarity). Deconjugates SUMO2 and SUMO3 from targeted proteins, but not SUMO1 (PubMed:18799455). Catalyzes the deconjugation of poly-SUMO2 and poly-SUMO3 chains (PubMed:18799455). Has very low efficiency in processing full-length SUMO proteins to their mature forms (PubMed:18799455). {ECO:0000250|UniProtKB:Q8BUH8, ECO:0000269|PubMed:18799455}. |
Q9BU19 | ZNF692 | S470 | psp | Zinc finger protein 692 (AICAR responsive element binding protein) | May act as an transcriptional repressor for PCK1 gene expression, in turn may participate in the hepatic gluconeogenesis regulation through the activated AMPK signaling pathway. {ECO:0000269|PubMed:17097062, ECO:0000269|PubMed:21910974}. |
Q9BUR4 | WRAP53 | S149 | ochoa | Telomerase Cajal body protein 1 (WD repeat-containing protein 79) (WD40 repeat-containing protein antisense to TP53 gene) (WRAP53beta) | RNA chaperone that plays a key role in telomere maintenance and RNA localization to Cajal bodies (PubMed:29695869, PubMed:29804836). Specifically recognizes and binds the Cajal body box (CAB box) present in both small Cajal body RNAs (scaRNAs) and telomerase RNA template component (TERC) (PubMed:19285445, PubMed:20351177, PubMed:29695869, PubMed:29804836). Essential component of the telomerase holoenzyme complex, a ribonucleoprotein complex essential for the replication of chromosome termini that elongates telomeres in most eukaryotes (PubMed:19179534, PubMed:20351177, PubMed:26170453, PubMed:29695869). In the telomerase holoenzyme complex, required to stimulate the catalytic activity of the complex (PubMed:27525486, PubMed:29804836). Acts by specifically binding the CAB box of the TERC RNA and controlling the folding of the CR4/CR5 region of the TERC RNA, a critical step for telomerase activity (PubMed:29804836). In addition, also controls telomerase holoenzyme complex localization to Cajal body (PubMed:22547674). During S phase, required for delivery of TERC to telomeres during S phase and for telomerase activity (PubMed:29804836). In addition to its role in telomere maintenance, also required for Cajal body formation, probably by mediating localization of scaRNAs to Cajal bodies (PubMed:19285445, PubMed:21072240). Also plays a role in DNA repair: phosphorylated by ATM in response to DNA damage and relocalizes to sites of DNA double-strand breaks to promote the repair of DNA double-strand breaks (PubMed:25512560, PubMed:27715493). Acts by recruiting the ubiquitin ligase RNF8 to DNA breaks and promote both homologous recombination (HR) and non-homologous end joining (NHEJ) (PubMed:25512560, PubMed:27715493). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:19285445, ECO:0000269|PubMed:20351177, ECO:0000269|PubMed:21072240, ECO:0000269|PubMed:22547674, ECO:0000269|PubMed:25512560, ECO:0000269|PubMed:26170453, ECO:0000269|PubMed:27525486, ECO:0000269|PubMed:27715493, ECO:0000269|PubMed:29695869, ECO:0000269|PubMed:29804836}. |
Q9BV36 | MLPH | S318 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BV73 | CEP250 | S2229 | ochoa | Centrosome-associated protein CEP250 (250 kDa centrosomal protein) (Cep250) (Centrosomal Nek2-associated protein 1) (C-Nap1) (Centrosomal protein 2) | Plays an important role in centrosome cohesion during interphase (PubMed:30404835, PubMed:36282799). Recruits CCDC102B to the proximal ends of centrioles (PubMed:30404835). Maintains centrosome cohesion by forming intercentriolar linkages (PubMed:36282799). Accumulates at the proximal end of each centriole, forming supramolecular assemblies with viscous material properties that promote organelle cohesion (PubMed:36282799). May be involved in ciliogenesis (PubMed:28005958). {ECO:0000269|PubMed:28005958, ECO:0000269|PubMed:30404835, ECO:0000269|PubMed:36282799}. |
Q9BVS4 | RIOK2 | S483 | ochoa|psp | Serine/threonine-protein kinase RIO2 (EC 2.7.11.1) (RIO kinase 2) | Serine/threonine-protein kinase involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in export of the 40S pre-ribosome particles (pre-40S) from the nucleus to the cytoplasm. Its kinase activity is required for the release of NOB1, PNO1 and LTV1 from the late pre-40S and the processing of 18S-E pre-rRNA to the mature 18S rRNA (PubMed:19564402). Regulates the timing of the metaphase-anaphase transition during mitotic progression, and its phosphorylation, most likely by PLK1, regulates this function (PubMed:21880710). {ECO:0000269|PubMed:16037817, ECO:0000269|PubMed:19564402, ECO:0000269|PubMed:21880710}. |
Q9BX66 | SORBS1 | S116 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BXB5 | OSBPL10 | S326 | ochoa | Oxysterol-binding protein-related protein 10 (ORP-10) (OSBP-related protein 10) | Probable lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane. Its ability to bind phosphatidylserine, suggests that it specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P (Probable) (PubMed:23934110). Plays a role in negative regulation of lipid biosynthesis (PubMed:19554302). Negatively regulates APOB secretion from hepatocytes (PubMed:19554302, PubMed:22906437). Binds cholesterol and acidic phospholipids (PubMed:22906437). Also binds 25-hydroxycholesterol (PubMed:17428193). Binds phosphatidylserine (PubMed:23934110). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:19554302, ECO:0000269|PubMed:22906437, ECO:0000269|PubMed:23934110, ECO:0000305}. |
Q9BY84 | DUSP16 | S401 | ochoa | Dual specificity protein phosphatase 16 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 7) (MAP kinase phosphatase 7) (MKP-7) | Dual specificity protein phosphatase involved in the inactivation of MAP kinases. Dephosphorylates MAPK10 bound to ARRB2. {ECO:0000269|PubMed:11489891, ECO:0000269|PubMed:15888437}. |
Q9BYJ9 | YTHDF1 | S198 | ochoa | YTH domain-containing family protein 1 (DF1) (Dermatomyositis associated with cancer putative autoantigen 1) (DACA-1) | Specifically recognizes and binds N6-methyladenosine (m6A)-containing mRNAs, and regulates their stability (PubMed:24284625, PubMed:26318451, PubMed:32492408, PubMed:39900921). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (PubMed:24284625, PubMed:32492408). Acts as a regulator of mRNA stability by promoting degradation of m6A-containing mRNAs via interaction with the CCR4-NOT complex (PubMed:32492408). The YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3) shares m6A-containing mRNAs targets and act redundantly to mediate mRNA degradation and cellular differentiation (PubMed:28106072, PubMed:32492408). Required to facilitate learning and memory formation in the hippocampus by binding to m6A-containing neuronal mRNAs (By similarity). Acts as a regulator of axon guidance by binding to m6A-containing ROBO3 transcripts (By similarity). Acts as a negative regulator of antigen cross-presentation in myeloid dendritic cells (By similarity). In the context of tumorigenesis, negative regulation of antigen cross-presentation limits the anti-tumor response by reducing efficiency of tumor-antigen cross-presentation (By similarity). Promotes formation of phase-separated membraneless compartments, such as P-bodies or stress granules, by undergoing liquid-liquid phase separation upon binding to mRNAs containing multiple m6A-modified residues: polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their disordered regions and thereby leading to phase separation (PubMed:31292544, PubMed:31388144, PubMed:32451507). The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated membraneless compartments, such as P-bodies, stress granules or neuronal RNA granules (PubMed:31292544). {ECO:0000250|UniProtKB:P59326, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:28106072, ECO:0000269|PubMed:31292544, ECO:0000269|PubMed:31388144, ECO:0000269|PubMed:32451507, ECO:0000269|PubMed:32492408, ECO:0000269|PubMed:39900921}. |
Q9BYV8 | CEP41 | S344 | ochoa | Centrosomal protein of 41 kDa (Cep41) (Testis-specific gene A14 protein) | Required during ciliogenesis for tubulin glutamylation in cilium. Probably acts by participating in the transport of TTLL6, a tubulin polyglutamylase, between the basal body and the cilium. {ECO:0000269|PubMed:22246503}. |
Q9BYW2 | SETD2 | S532 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZ72 | PITPNM2 | S326 | ochoa | Membrane-associated phosphatidylinositol transfer protein 2 (Phosphatidylinositol transfer protein, membrane-associated 2) (PITPnm 2) (Pyk2 N-terminal domain-interacting receptor 3) (NIR-3) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro). Binds calcium ions. {ECO:0000269|PubMed:10022914}. |
Q9BZE4 | GTPBP4 | S558 | ochoa | GTP-binding protein 4 (Chronic renal failure gene protein) (GTP-binding protein NGB) (Nucleolar GTP-binding protein 1) | Involved in the biogenesis of the 60S ribosomal subunit (PubMed:32669547). Acts as a TP53 repressor, preventing TP53 stabilization and cell cycle arrest (PubMed:20308539). {ECO:0000269|PubMed:20308539, ECO:0000269|PubMed:32669547}. |
Q9C073 | FAM117A | S145 | ochoa | Protein FAM117A (C/EBP-induced protein) | None |
Q9C0D0 | PHACTR1 | S67 | ochoa | Phosphatase and actin regulator 1 | Binds actin monomers (G actin) and plays a role in multiple processes including the regulation of actin cytoskeleton dynamics, actin stress fibers formation, cell motility and survival, formation of tubules by endothelial cells, and regulation of PPP1CA activity (PubMed:21798305, PubMed:21939755). Involved in the regulation of cortical neuron migration and dendrite arborization (By similarity). {ECO:0000250|UniProtKB:Q2M3X8, ECO:0000269|PubMed:21798305, ECO:0000269|PubMed:21939755}. |
Q9C0D2 | CEP295 | S2110 | ochoa | Centrosomal protein of 295 kDa | Centriole-enriched microtubule-binding protein involved in centriole biogenesis (PubMed:20844083, PubMed:25131205, PubMed:27185865, PubMed:38154379). Essential for the generation of the distal portion of new-born centrioles in a CPAP- and CEP120-mediated elongation dependent manner during the cell cycle S/G2 phase after formation of the initiating cartwheel structure (PubMed:27185865). Required for the recruitment of centriolar proteins, such as POC1B, POC5 and CEP135, into the distal portion of centrioles (PubMed:27185865). Also required for centriole-to-centrosome conversion during mitotic progression, but is dispensable for cartwheel removal or centriole disengagement (PubMed:25131205). Binds to and stabilizes centriolar microtubule (PubMed:27185865). May be involved in ciliogenesis (PubMed:38154379). {ECO:0000269|PubMed:20844083, ECO:0000269|PubMed:25131205, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:38154379}. |
Q9C0D6 | FHDC1 | S546 | ochoa | FH2 domain-containing protein 1 (Inverted formin-1) | Microtubule-associated formin which regulates both actin and microtubule dynamics. Induces microtubule acetylation and stabilization and actin stress fiber formation (PubMed:18815276). Regulates Golgi ribbon formation (PubMed:26564798). Required for normal cilia assembly. Early in cilia assembly, may assist in the maturation and positioning of the centrosome/basal body, and once cilia assembly has initiated, may also promote cilia elongation by inhibiting disassembly (PubMed:29742020). {ECO:0000269|PubMed:18815276, ECO:0000269|PubMed:26564798, ECO:0000269|PubMed:29742020}. |
Q9C0H5 | ARHGAP39 | S190 | ochoa | Rho GTPase-activating protein 39 | None |
Q9C0K7 | STRADB | S304 | ochoa | STE20-related kinase adapter protein beta (STRAD beta) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 2 protein) (CALS-21) (ILP-interacting protein) (Pseudokinase ALS2CR2) | Pseudokinase which, in complex with CAB39/MO25 (CAB39/MO25alpha or CAB39L/MO25beta), binds to and activates STK11/LKB1. Adopts a closed conformation typical of active protein kinases and binds STK11/LKB1 as a pseudosubstrate, promoting conformational change of STK11/LKB1 in an active conformation (By similarity). {ECO:0000250, ECO:0000269|PubMed:14517248}. |
Q9GZV5 | WWTR1 | S311 | psp | WW domain-containing transcription regulator protein 1 (Transcriptional coactivator with PDZ-binding motif) | Transcriptional coactivator which acts as a downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:11118213, PubMed:18227151, PubMed:23911299). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18227151). WWTR1 enhances PAX8 and NKX2-1/TTF1-dependent gene activation (PubMed:19010321). In conjunction with YAP1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (PubMed:18568018). Plays a key role in coupling SMADs to the transcriptional machinery such as the mediator complex (PubMed:18568018). Regulates embryonic stem-cell self-renewal, promotes cell proliferation and epithelial-mesenchymal transition (PubMed:18227151, PubMed:18568018). {ECO:0000269|PubMed:11118213, ECO:0000269|PubMed:18227151, ECO:0000269|PubMed:18568018, ECO:0000269|PubMed:19010321, ECO:0000269|PubMed:23911299}. |
Q9H0H5 | RACGAP1 | S600 | ochoa | Rac GTPase-activating protein 1 (Male germ cell RacGap) (MgcRacGAP) (Protein CYK4 homolog) (CYK4) (HsCYK-4) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Required for proper attachment of the midbody to the cell membrane during cytokinesis. Sequentially binds to ECT2 and RAB11FIP3 which regulates cleavage furrow ingression and abscission during cytokinesis (PubMed:18511905). Plays key roles in controlling cell growth and differentiation of hematopoietic cells through mechanisms other than regulating Rac GTPase activity (PubMed:10979956). Has a critical role in erythropoiesis (PubMed:34818416). Also involved in the regulation of growth-related processes in adipocytes and myoblasts. May be involved in regulating spermatogenesis and in the RACGAP1 pathway in neuronal proliferation. Shows strong GAP (GTPase activation) activity towards CDC42 and RAC1 and less towards RHOA. Essential for the early stages of embryogenesis. May play a role in regulating cortical activity through RHOA during cytokinesis. May participate in the regulation of sulfate transport in male germ cells. {ECO:0000269|PubMed:10979956, ECO:0000269|PubMed:11085985, ECO:0000269|PubMed:11278976, ECO:0000269|PubMed:11782313, ECO:0000269|PubMed:14729465, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16129829, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:23235882, ECO:0000269|PubMed:9497316}. |
Q9H0J9 | PARP12 | S633 | ochoa | Protein mono-ADP-ribosyltransferase PARP12 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 12) (ARTD12) (Poly [ADP-ribose] polymerase 12) (PARP-12) (Zinc finger CCCH domain-containing protein 1) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins (PubMed:25043379, PubMed:34969853). Acts as an antiviral factor by cooperating with PARP11 to suppress Zika virus replication (PubMed:34187568). Displays anti-alphavirus activity during IFN-gamma immune activation by directly ADP-ribosylating the alphaviral non-structural proteins nsP3 and nsP4 (PubMed:39888989). Acts as a component of the PRKD1-driven regulatory cascade that selectively controls a major branch of the basolateral transport pathway by catalyzing the MARylation of GOLGA1 (PubMed:34969853). Acts also as a key regulator of mitochondrial function, protein translation, and inflammation. Inhibits PINK1/Parkin-dependent mitophagy and promotes cartilage degeneration by inhibiting the ubiquitination and SUMOylation of MFN1/2 by upregulating ISG15 and ISGylation (PubMed:39465252). {ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:34187568, ECO:0000269|PubMed:34969853, ECO:0000269|PubMed:39465252, ECO:0000269|PubMed:39888989}. |
Q9H1H9 | KIF13A | S848 | ochoa | Kinesin-like protein KIF13A (Kinesin-like protein RBKIN) | Plus end-directed microtubule-dependent motor protein involved in intracellular transport and regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis and cytokinesis. Mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. Also required for the abscission step in cytokinesis: mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. {ECO:0000269|PubMed:19841138, ECO:0000269|PubMed:20208530}. |
Q9H3Z4 | DNAJC5 | S177 | ochoa | DnaJ homolog subfamily C member 5 (Ceroid-lipofuscinosis neuronal protein 4) (Cysteine string protein) (CSP) | Acts as a general chaperone in regulated exocytosis (By similarity). Acts as a co-chaperone for the SNARE protein SNAP-25 (By similarity). Involved in the calcium-mediated control of a late stage of exocytosis (By similarity). May have an important role in presynaptic function. May be involved in calcium-dependent neurotransmitter release at nerve endings (By similarity). {ECO:0000250|UniProtKB:P60904, ECO:0000250|UniProtKB:Q29455}. |
Q9H582 | ZNF644 | S199 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H6A9 | PCNX3 | S443 | ochoa | Pecanex-like protein 3 (Pecanex homolog protein 3) | None |
Q9H992 | MARCHF7 | S32 | ochoa | E3 ubiquitin-protein ligase MARCHF7 (EC 2.3.2.27) (Axotrophin) (Membrane-associated RING finger protein 7) (Membrane-associated RING-CH protein VII) (MARCH-VII) (RING finger protein 177) (RING-type E3 ubiquitin transferase MARCHF7) | E3 ubiquitin-protein ligase which may specifically enhance the E2 activity of HIP2. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfer the ubiquitin to targeted substrates (PubMed:16868077). May be involved in T-cell proliferation by regulating LIF secretion (By similarity). May play a role in lysosome homeostasis (PubMed:31270356). Promotes 'Lys-6', 'Lys-11' and 'Lys-63'-linked mixed polyubiquitination on ATG14 leading to the inhibition of autophagy by impairing the interaction between ATG14 and STX7 (PubMed:37632749). Participates in the dopamine-mediated negative regulation of the NLRP3 inflammasome by promoting its uibiquitination and subsequent degradation (PubMed:25594175). {ECO:0000250|UniProtKB:Q9WV66, ECO:0000269|PubMed:16868077, ECO:0000269|PubMed:25594175, ECO:0000269|PubMed:31270356, ECO:0000269|PubMed:37632749}. |
Q9H992 | MARCHF7 | S300 | ochoa | E3 ubiquitin-protein ligase MARCHF7 (EC 2.3.2.27) (Axotrophin) (Membrane-associated RING finger protein 7) (Membrane-associated RING-CH protein VII) (MARCH-VII) (RING finger protein 177) (RING-type E3 ubiquitin transferase MARCHF7) | E3 ubiquitin-protein ligase which may specifically enhance the E2 activity of HIP2. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfer the ubiquitin to targeted substrates (PubMed:16868077). May be involved in T-cell proliferation by regulating LIF secretion (By similarity). May play a role in lysosome homeostasis (PubMed:31270356). Promotes 'Lys-6', 'Lys-11' and 'Lys-63'-linked mixed polyubiquitination on ATG14 leading to the inhibition of autophagy by impairing the interaction between ATG14 and STX7 (PubMed:37632749). Participates in the dopamine-mediated negative regulation of the NLRP3 inflammasome by promoting its uibiquitination and subsequent degradation (PubMed:25594175). {ECO:0000250|UniProtKB:Q9WV66, ECO:0000269|PubMed:16868077, ECO:0000269|PubMed:25594175, ECO:0000269|PubMed:31270356, ECO:0000269|PubMed:37632749}. |
Q9H9Q4 | NHEJ1 | S251 | psp | Non-homologous end-joining factor 1 (Protein cernunnos) (XRCC4-like factor) | DNA repair protein involved in DNA non-homologous end joining (NHEJ); it is required for double-strand break (DSB) repair and V(D)J recombination and is also involved in telomere maintenance (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781, PubMed:17717001, PubMed:18158905, PubMed:18644470, PubMed:20558749, PubMed:26100018, PubMed:28369633). Plays a key role in NHEJ by promoting the ligation of various mismatched and non-cohesive ends (PubMed:17470781, PubMed:17717001, PubMed:19056826). Together with PAXX, collaborates with DNA polymerase lambda (POLL) to promote joining of non-cohesive DNA ends (PubMed:25670504, PubMed:30250067). May act in concert with XRCC5-XRCC6 (Ku) to stimulate XRCC4-mediated joining of blunt ends and several types of mismatched ends that are non-complementary or partially complementary (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781). In some studies, has been shown to associate with XRCC4 to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired (PubMed:21768349, PubMed:21775435, PubMed:22228831, PubMed:22287571, PubMed:26100018, PubMed:27437582, PubMed:28500754). Alternatively, it has also been shown that rather than forming filaments, a single NHEJ1 dimer interacts through both head domains with XRCC4 to promote the close alignment of DNA ends (By similarity). The XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA molecules, holding the broken DNA fragments in close proximity to one other (PubMed:27437582, PubMed:28500754). The mobility of the bridges ensures that the ends remain accessible for further processing by other repair factors (PubMed:27437582). Binds DNA in a length-dependent manner (PubMed:17317666, PubMed:18158905). {ECO:0000250|UniProtKB:A0A1L8ENT6, ECO:0000269|PubMed:16439204, ECO:0000269|PubMed:16439205, ECO:0000269|PubMed:17317666, ECO:0000269|PubMed:17470781, ECO:0000269|PubMed:17717001, ECO:0000269|PubMed:18158905, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:19056826, ECO:0000269|PubMed:20558749, ECO:0000269|PubMed:21768349, ECO:0000269|PubMed:21775435, ECO:0000269|PubMed:22228831, ECO:0000269|PubMed:22287571, ECO:0000269|PubMed:25670504, ECO:0000269|PubMed:26100018, ECO:0000269|PubMed:27437582, ECO:0000269|PubMed:28369633, ECO:0000269|PubMed:28500754, ECO:0000269|PubMed:30250067}. |
Q9HA47 | UCK1 | S253 | ochoa | Uridine-cytidine kinase 1 (UCK 1) (EC 2.7.1.48) (Cytidine monophosphokinase 1) (Uridine monophosphokinase 1) | Phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate (PubMed:11306702). Does not phosphorylate deoxyribonucleosides or purine ribonucleosides (PubMed:11306702). Can use ATP or GTP as a phosphate donor (PubMed:11306702). Can also phosphorylate cytidine and uridine nucleoside analogs such as 6-azauridine, 5-fluorouridine, 4-thiouridine, 5-bromouridine, N(4)-acetylcytidine, N(4)-benzoylcytidine, 5-fluorocytidine, 2-thiocytidine, 5-methylcytidine, and N(4)-anisoylcytidine (PubMed:11306702). {ECO:0000269|PubMed:11306702}. |
Q9HB19 | PLEKHA2 | S314 | ochoa | Pleckstrin homology domain-containing family A member 2 (PH domain-containing family A member 2) (Tandem PH domain-containing protein 2) (TAPP-2) | Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane (By similarity). {ECO:0000250}. |
Q9HB21 | PLEKHA1 | S129 | ochoa | Pleckstrin homology domain-containing family A member 1 (PH domain-containing family A member 1) (Tandem PH domain-containing protein 1) (TAPP-1) | Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane. {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:11513726, ECO:0000269|PubMed:14516276}. |
Q9HBA9 | FOLH1B | S82 | ochoa | Putative N-acetylated-alpha-linked acidic dipeptidase (NAALADase) (EC 3.4.-.-) (Cell growth-inhibiting gene 26 protein) (Prostate-specific membrane antigen-like protein) (Putative folate hydrolase 1B) | Has both folate hydrolase and N-acetylated-alpha-linked-acidic dipeptidase (NAALADase) activity. {ECO:0000250}.; FUNCTION: Exhibits a dipeptidyl-peptidase IV type activity. {ECO:0000250}. |
Q9HDC5 | JPH1 | S238 | ochoa | Junctophilin-1 (JP-1) (Junctophilin type 1) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. |
Q9NP56 | PDE7B | S45 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 7B (EC 3.1.4.53) (cAMP-specific phosphodiesterase 7B) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:10814504, PubMed:10872825). May be involved in the control of cAMP-mediated neural activity and cAMP metabolism in the brain (PubMed:10814504). {ECO:0000269|PubMed:10814504, ECO:0000269|PubMed:10872825}. |
Q9NP61 | ARFGAP3 | Y341 | ochoa | ADP-ribosylation factor GTPase-activating protein 3 (ARF GAP 3) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:11172815}. |
Q9NQC3 | RTN4 | S993 | ochoa | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
Q9NRE2 | TSHZ2 | S332 | ochoa | Teashirt homolog 2 (Ovarian cancer-related protein 10-2) (OVC10-2) (Zinc finger protein 218) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q9NRR6 | INPP5E | S241 | ochoa | Phosphatidylinositol polyphosphate 5-phosphatase type IV (72 kDa inositol polyphosphate 5-phosphatase) (Inositol polyphosphate-5-phosphatase E) (Phosphatidylinositol 4,5-bisphosphate 5-phosphatase) (EC 3.1.3.36) (Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase) (EC 3.1.3.86) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (By similarity) (PubMed:10764818). Specific for lipid substrates, inactive towards water soluble inositol phosphates (PubMed:10764818). Plays an essential role in the primary cilium by controlling ciliary growth and phosphoinositide 3-kinase (PI3K) signaling and stability (By similarity). {ECO:0000250|UniProtKB:Q9JII1, ECO:0000269|PubMed:10764818}. |
Q9NUQ8 | ABCF3 | S83 | ochoa | ATP-binding cassette sub-family F member 3 | Displays an antiviral effect against flaviviruses such as west Nile virus (WNV) in the presence of OAS1B. {ECO:0000250}. |
Q9NV58 | RNF19A | S592 | ochoa | E3 ubiquitin-protein ligase RNF19A (EC 2.3.2.31) (Double ring-finger protein) (Dorfin) (RING finger protein 19A) (p38) | E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates, such as SNCAIP or CASR. Specifically ubiquitinates pathogenic SOD1 variants, which leads to their proteasomal degradation and to neuronal protection. {ECO:0000269|PubMed:11237715, ECO:0000269|PubMed:12145308, ECO:0000269|PubMed:12750386, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16513638}. |
Q9NVS9 | PNPO | S164 | ochoa | Pyridoxine-5'-phosphate oxidase (EC 1.4.3.5) (Pyridoxamine-phosphate oxidase) | Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP). {ECO:0000269|PubMed:12824491, ECO:0000269|PubMed:15182361, ECO:0000269|PubMed:15772097}. |
Q9NWH9 | SLTM | S962 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWQ8 | PAG1 | S50 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NX95 | SYBU | S73 | ochoa | Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) | Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}. |
Q9NXG0 | CNTLN | S861 | ochoa | Centlein (Centrosomal protein) | Required for centrosome cohesion and recruitment of CEP68 to centrosomes. {ECO:0000269|PubMed:24554434}. |
Q9NY61 | AATF | S510 | psp | Protein AATF (Apoptosis-antagonizing transcription factor) (Rb-binding protein Che-1) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). May function as a general inhibitor of the histone deacetylase HDAC1. Binding to the pocket region of RB1 may displace HDAC1 from RB1/E2F complexes, leading to activation of E2F target genes and cell cycle progression. Conversely, displacement of HDAC1 from SP1 bound to the CDKN1A promoter leads to increased expression of this CDK inhibitor and blocks cell cycle progression. Also antagonizes PAWR mediated induction of aberrant amyloid peptide production in Alzheimer disease (presenile and senile dementia), although the molecular basis for this phenomenon has not been described to date. {ECO:0000269|PubMed:12450794, ECO:0000269|PubMed:12847090, ECO:0000269|PubMed:14627703, ECO:0000269|PubMed:15207272, ECO:0000269|PubMed:34516797}. |
Q9NY74 | ETAA1 | S344 | ochoa | Ewing's tumor-associated antigen 1 (Ewing's tumor-associated antigen 16) | Replication stress response protein that accumulates at DNA damage sites and promotes replication fork progression and integrity (PubMed:27601467, PubMed:27723717, PubMed:27723720). Recruited to stalled replication forks via interaction with the RPA complex and directly stimulates ATR kinase activity independently of TOPBP1 (PubMed:27723717, PubMed:27723720, PubMed:30139873). Probably only regulates a subset of ATR targets (PubMed:27723717, PubMed:27723720). {ECO:0000269|PubMed:27601467, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873}. |
Q9NYF3 | FAM53C | S82 | ochoa | Protein FAM53C | None |
Q9NZM1 | MYOF | S731 | ochoa | Myoferlin (Fer-1-like protein 3) | Calcium/phospholipid-binding protein that plays a role in the plasmalemma repair mechanism of endothelial cells that permits rapid resealing of membranes disrupted by mechanical stress. Involved in endocytic recycling. Implicated in VEGF signal transduction by regulating the levels of the receptor KDR (By similarity). {ECO:0000250}. |
Q9NZU5 | LMCD1 | S42 | ochoa | LIM and cysteine-rich domains protein 1 (Dyxin) | Transcriptional cofactor that restricts GATA6 function by inhibiting DNA-binding, resulting in repression of GATA6 transcriptional activation of downstream target genes. Represses GATA6-mediated trans activation of lung- and cardiac tissue-specific promoters. Inhibits DNA-binding by GATA4 and GATA1 to the cTNC promoter (By similarity). Plays a critical role in the development of cardiac hypertrophy via activation of calcineurin/nuclear factor of activated T-cells signaling pathway. {ECO:0000250, ECO:0000269|PubMed:20026769}. |
Q9P0U3 | SENP1 | S126 | ochoa | Sentrin-specific protease 1 (EC 3.4.22.-) (Sentrin/SUMO-specific protease SENP1) | Protease that catalyzes two essential functions in the SUMO pathway (PubMed:10652325, PubMed:15199155, PubMed:15487983, PubMed:16253240, PubMed:16553580, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). The first is the hydrolysis of an alpha-linked peptide bond at the C-terminal end of the small ubiquitin-like modifier (SUMO) propeptides, SUMO1, SUMO2 and SUMO3 leading to the mature form of the proteins (PubMed:15487983). The second is the deconjugation of SUMO1, SUMO2 and SUMO3 from targeted proteins, by cleaving an epsilon-linked peptide bond between the C-terminal glycine of the mature SUMO and the lysine epsilon-amino group of the target protein (PubMed:15199155, PubMed:16253240, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). Deconjugates SUMO1 from HIPK2 (PubMed:16253240). Deconjugates SUMO1 from HDAC1 and BHLHE40/DEC1, which decreases its transcriptional repression activity (PubMed:15199155, PubMed:21829689). Deconjugates SUMO1 from CLOCK, which decreases its transcriptional activation activity (PubMed:23160374). Deconjugates SUMO2 from MTA1 (PubMed:21965678). Inhibits N(6)-methyladenosine (m6A) RNA methylation by mediating SUMO1 deconjugation from METTL3 and ALKBH5: METTL3 inhibits the m6A RNA methyltransferase activity, while ALKBH5 desumoylation promotes m6A demethylation (PubMed:29506078, PubMed:34048572, PubMed:37257451). Desumoylates CCAR2 which decreases its interaction with SIRT1 (PubMed:25406032). Deconjugates SUMO1 from GPS2 (PubMed:24943844). {ECO:0000269|PubMed:10652325, ECO:0000269|PubMed:15199155, ECO:0000269|PubMed:15487983, ECO:0000269|PubMed:16253240, ECO:0000269|PubMed:16553580, ECO:0000269|PubMed:21829689, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:23160374, ECO:0000269|PubMed:24943844, ECO:0000269|PubMed:25406032, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:37257451}. |
Q9P0W8 | SPATA7 | S194 | ochoa | Spermatogenesis-associated protein 7 (HSD-3.1) (Spermatogenesis-associated protein HSD3) | Involved in the maintenance of both rod and cone photoreceptor cells (By similarity). It is required for recruitment and proper localization of RPGRIP1 to the photoreceptor connecting cilium (CC), as well as photoreceptor-specific localization of proximal CC proteins at the distal CC (By similarity). Maintenance of protein localization at the photoreceptor-specific distal CC is essential for normal microtubule stability and to prevent photoreceptor degeneration (By similarity). {ECO:0000250|UniProtKB:Q80VP2}. |
Q9P1Y5 | CAMSAP3 | S814 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P206 | NHSL3 | S138 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P212 | PLCE1 | S1121 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1 (EC 3.1.4.11) (Pancreas-enriched phospholipase C) (Phosphoinositide phospholipase C-epsilon-1) (Phospholipase C-epsilon-1) (PLC-epsilon-1) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. PLCE1 is a bifunctional enzyme which also regulates small GTPases of the Ras superfamily through its Ras guanine-exchange factor (RasGEF) activity. As an effector of heterotrimeric and small G-protein, it may play a role in cell survival, cell growth, actin organization and T-cell activation. In podocytes, is involved in the regulation of lamellipodia formation. Acts downstream of AVIL to allow ARP2/3 complex assembly (PubMed:29058690). {ECO:0000269|PubMed:11022047, ECO:0000269|PubMed:11395506, ECO:0000269|PubMed:11715024, ECO:0000269|PubMed:11877431, ECO:0000269|PubMed:12721365, ECO:0000269|PubMed:16537651, ECO:0000269|PubMed:17086182, ECO:0000269|PubMed:29058690}. |
Q9P212 | PLCE1 | S1709 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1 (EC 3.1.4.11) (Pancreas-enriched phospholipase C) (Phosphoinositide phospholipase C-epsilon-1) (Phospholipase C-epsilon-1) (PLC-epsilon-1) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. PLCE1 is a bifunctional enzyme which also regulates small GTPases of the Ras superfamily through its Ras guanine-exchange factor (RasGEF) activity. As an effector of heterotrimeric and small G-protein, it may play a role in cell survival, cell growth, actin organization and T-cell activation. In podocytes, is involved in the regulation of lamellipodia formation. Acts downstream of AVIL to allow ARP2/3 complex assembly (PubMed:29058690). {ECO:0000269|PubMed:11022047, ECO:0000269|PubMed:11395506, ECO:0000269|PubMed:11715024, ECO:0000269|PubMed:11877431, ECO:0000269|PubMed:12721365, ECO:0000269|PubMed:16537651, ECO:0000269|PubMed:17086182, ECO:0000269|PubMed:29058690}. |
Q9P2D6 | FAM135A | S640 | ochoa | Protein FAM135A | None |
Q9P2E7 | PCDH10 | S897 | ochoa | Protocadherin-10 | Potential calcium-dependent cell-adhesion protein.; FUNCTION: (Microbial infection) Acts as a receptor for Western equine encephalitis virus. {ECO:0000269|PubMed:39048821}. |
Q9P2P5 | HECW2 | S390 | ochoa | E3 ubiquitin-protein ligase HECW2 (EC 2.3.2.26) (HECT, C2 and WW domain-containing protein 2) (HECT-type E3 ubiquitin transferase HECW2) (NEDD4-like E3 ubiquitin-protein ligase 2) | E3 ubiquitin-protein ligase that mediates ubiquitination of TP73. Acts to stabilize TP73 and enhance activation of transcription by TP73 (PubMed:12890487). Involved in the regulation of mitotic metaphase/anaphase transition (PubMed:24163370). {ECO:0000269|PubMed:12890487, ECO:0000269|PubMed:24163370}. |
Q9P2Q2 | FRMD4A | S727 | ochoa | FERM domain-containing protein 4A | Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}. |
Q9P2R6 | RERE | S679 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9UGI0 | ZRANB1 | S78 | psp | Ubiquitin thioesterase ZRANB1 (EC 3.4.19.12) (TRAF-binding domain-containing protein) (hTrabid) (Zinc finger Ran-binding domain-containing protein 1) | Ubiquitin thioesterase, which specifically hydrolyzes 'Lys-29'-linked and 'Lys-33'-linked diubiquitin (PubMed:22157957, PubMed:23827681, PubMed:25752573, PubMed:25752577). Also cleaves 'Lys-63'-linked chains, but with 40-fold less efficiency compared to 'Lys-29'-linked ones (PubMed:18281465). Positive regulator of the Wnt signaling pathway that deubiquitinates APC protein, a negative regulator of Wnt-mediated transcription (PubMed:18281465). Acts as a regulator of autophagy by mediating deubiquitination of PIK3C3/VPS34, thereby promoting autophagosome maturation (PubMed:33637724). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987). Required in the stress fiber dynamics and cell migration (PubMed:21834987). {ECO:0000269|PubMed:18281465, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22157957, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25752573, ECO:0000269|PubMed:25752577, ECO:0000269|PubMed:33637724}. |
Q9UGL1 | KDM5B | S1456 | ochoa|psp | Lysine-specific demethylase 5B (EC 1.14.11.67) (Cancer/testis antigen 31) (CT31) (Histone demethylase JARID1B) (Jumonji/ARID domain-containing protein 1B) (PLU-1) (Retinoblastoma-binding protein 2 homolog 1) (RBP2-H1) ([histone H3]-trimethyl-L-lysine(4) demethylase 5B) | Histone demethylase that demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code (PubMed:24952722, PubMed:27214403, PubMed:28262558). Does not demethylate histone H3 'Lys-9' or H3 'Lys-27'. Demethylates trimethylated, dimethylated and monomethylated H3 'Lys-4'. Acts as a transcriptional corepressor for FOXG1B and PAX9. Favors the proliferation of breast cancer cells by repressing tumor suppressor genes such as BRCA1 and HOXA5 (PubMed:24952722). In contrast, may act as a tumor suppressor for melanoma. Represses the CLOCK-BMAL1 heterodimer-mediated transcriptional activation of the core clock component PER2 (By similarity). {ECO:0000250|UniProtKB:Q80Y84, ECO:0000269|PubMed:12657635, ECO:0000269|PubMed:16645588, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17363312, ECO:0000269|PubMed:24952722, ECO:0000269|PubMed:26645689, ECO:0000269|PubMed:26741168, ECO:0000269|PubMed:27214403, ECO:0000269|PubMed:28262558}. |
Q9UGU0 | TCF20 | S640 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU0 | TCF20 | S1259 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU0 | TCF20 | S1792 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHF7 | TRPS1 | S70 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHQ4 | BCAP29 | S74 | ochoa | B-cell receptor-associated protein 29 (BCR-associated protein 29) (Bap29) | May play a role in anterograde transport of membrane proteins from the endoplasmic reticulum to the Golgi. May be involved in CASP8-mediated apoptosis (By similarity). {ECO:0000250}. |
Q9UIU6 | SIX4 | S640 | ochoa | Homeobox protein SIX4 (Sine oculis homeobox homolog 4) | Transcriptional regulator which can act as both a transcriptional repressor and activator by binding a DNA sequence on these target genes and is involved in processes like cell differentiation, cell migration and cell survival. Transactivates gene expression by binding a 5'-[CAT]A[CT][CT][CTG]GA[GAT]-3' motif present in the Trex site and a 5'-TCA[AG][AG]TTNC-3' motif present in the MEF3 site of the muscle-specific genes enhancer. Acts cooperatively with EYA proteins to transactivate their target genes through interaction and nuclear translocation of EYA protein. Acts synergistically with SIX1 to regulate target genes involved in formation of various organs, including muscle, kidney, gonad, ganglia, olfactory epithelium and cranial skeleton. Plays a role in several important steps of muscle development. Controls the genesis of hypaxial myogenic progenitors in the dermomyotome by transactivating PAX3 and the delamination and migration of the hypaxial precursors from the ventral lip to the limb buds through the transactivation of PAX3, MET and LBX1. Controls myoblast determination by transactivating MYF5, MYOD1 and MYF6. Controls somitic differentiation in myocyte through MYOG transactivation. Plays a role in synaptogenesis and sarcomere organization by participating in myofiber specialization during embryogenesis by activating fast muscle program in the primary myotome resulting in an up-regulation of fast muscle genes, including ATP2A1, MYL1 and TNNT3. Simultaneously, is also able to activate inhibitors of slow muscle genes, such as SOX6, HRASLS, and HDAC4, thereby restricting the activation of the slow muscle genes. During muscle regeneration, negatively regulates differentiation of muscle satellite cells through down-regulation of MYOG expression. During kidney development regulates the early stages of metanephros development and ureteric bud formation through regulation of GDNF, SALL1, PAX8 and PAX2 expression. Plays a role in gonad development by regulating both testis determination and size determination. In gonadal sex determination, transactivates ZFPM2 by binding a MEF3 consensus sequence, resulting in SRY up-regulation. In gonadal size determination, transactivates NR5A1 by binding a MEF3 consensus sequence resulting in gonadal precursor cell formation regulation. During olfactory development mediates the specification and patterning of olfactory placode through fibroblast growth factor and BMP4 signaling pathways and also regulates epithelial cell proliferation during placode formation. Promotes survival of sensory neurons during early trigeminal gangliogenesis. In the developing dorsal root ganglia, up-regulates SLC12A2 transcription. Regulates early thymus/parathyroid organogenesis through regulation of GCM2 and FOXN1 expression. Forms gustatory papillae during development of the tongue. Also plays a role during embryonic cranial skeleton morphogenesis. {ECO:0000250|UniProtKB:Q61321}. |
Q9UK59 | DBR1 | S474 | ochoa | Lariat debranching enzyme (EC 3.1.4.-) | Cleaves the 2'-5' phosphodiester linkage at the branch point of excised lariat intron RNA and converts them into linear molecules that can be subsequently degraded, thereby facilitating ribonucleotide turnover (PubMed:10982890, PubMed:16232320, PubMed:2435736). Linked to its role in pre-mRNA processing mechanism, may also participate in retrovirus replication via an RNA lariat intermediate in cDNA synthesis and have an antiviral cell-intrinsic defense function in the brainstem (PubMed:16232320, PubMed:29474921). {ECO:0000269|PubMed:10982890, ECO:0000269|PubMed:16232320, ECO:0000269|PubMed:2435736, ECO:0000269|PubMed:29474921}. |
Q9UKT9 | IKZF3 | S115 | ochoa | Zinc finger protein Aiolos (Ikaros family zinc finger protein 3) | Transcription factor that plays an important role in the regulation of lymphocyte differentiation. Plays an essential role in regulation of B-cell differentiation, proliferation and maturation to an effector state. Involved in regulating BCL2 expression and controlling apoptosis in T-cells in an IL2-dependent manner. {ECO:0000269|PubMed:10369681, ECO:0000269|PubMed:34155405}. |
Q9ULC8 | ZDHHC8 | S337 | ochoa | Palmitoyltransferase ZDHHC8 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 8) (DHHC-8) (Zinc finger protein 378) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates and therefore functions in several unrelated biological processes (Probable). Through the palmitoylation of ABCA1 regulates the localization of the transporter to the plasma membrane and thereby regulates its function in cholesterol and phospholipid efflux (Probable). Could also pamitoylate the D(2) dopamine receptor DRD2 and regulate its stability and localization to the plasma membrane (Probable). Could also play a role in glutamatergic transmission (By similarity). {ECO:0000250|UniProtKB:Q5Y5T5, ECO:0000305|PubMed:19556522, ECO:0000305|PubMed:23034182, ECO:0000305|PubMed:26535572}.; FUNCTION: (Microbial infection) Able to palmitoylate SARS coronavirus-2/SARS-CoV-2 spike protein following its synthesis in the endoplasmic reticulum (ER). In the infected cell, promotes spike biogenesis by protecting it from premature ER degradation, increases half-life and controls the lipid organization of its immediate membrane environment. Once the virus has formed, spike palmitoylation controls fusion with the target cell. {ECO:0000269|PubMed:34599882}. |
Q9ULD2 | MTUS1 | S199 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULI4 | KIF26A | S1571 | ochoa | Kinesin-like protein KIF26A | Atypical kinesin that plays a key role in enteric neuron development. Acts by repressing a cell growth signaling pathway in the enteric nervous system development, possibly via its interaction with GRB2 that prevents GRB2-binding to SHC, thereby attenating the GDNF-Ret signaling (By similarity). Binds to microtubules but lacks microtubule-based motility due to the absence of ATPase activity (By similarity). Plays a critical role in cerebral cortical development. It probably acts as a microtubule stabilizer that regulates neurite growth and radial migration of cortical excitatory neurons (PubMed:36228617). {ECO:0000250|UniProtKB:Q52KG5, ECO:0000269|PubMed:36228617}. |
Q9ULL1 | PLEKHG1 | S876 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9UMS5 | PHTF1 | S299 | ochoa | Protein PHTF1 | None |
Q9UPA5 | BSN | S1411 | ochoa | Protein bassoon (Zinc finger protein 231) | Scaffold protein of the presynaptic cytomatrix at the active zone (CAZ) which is the place in the synapse where neurotransmitter is released (PubMed:12812759). After synthesis, participates in the formation of Golgi-derived membranous organelles termed Piccolo-Bassoon transport vesicles (PTVs) that are transported along axons to sites of nascent synaptic contacts (PubMed:19380881). At the presynaptic active zone, regulates the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis (By similarity). Also functions in processes other than assembly such as the regulation of specific presynaptic protein ubiquitination by interacting with SIAH1 or the regulation of presynaptic autophagy by associating with ATG5 (By similarity). Also mediates synapse to nucleus communication leading to reconfiguration of gene expression by associating with the transcriptional corepressor CTBP1 and by subsequently reducing the size of its pool available for nuclear import (By similarity). Inhibits the activity of the proportion of DAO enzyme that localizes to the presynaptic active zone, which may modulate synaptic transmission (By similarity). {ECO:0000250|UniProtKB:O35078, ECO:0000250|UniProtKB:O88778, ECO:0000269|PubMed:12812759, ECO:0000269|PubMed:19380881}. |
Q9UPA5 | BSN | S2583 | ochoa | Protein bassoon (Zinc finger protein 231) | Scaffold protein of the presynaptic cytomatrix at the active zone (CAZ) which is the place in the synapse where neurotransmitter is released (PubMed:12812759). After synthesis, participates in the formation of Golgi-derived membranous organelles termed Piccolo-Bassoon transport vesicles (PTVs) that are transported along axons to sites of nascent synaptic contacts (PubMed:19380881). At the presynaptic active zone, regulates the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis (By similarity). Also functions in processes other than assembly such as the regulation of specific presynaptic protein ubiquitination by interacting with SIAH1 or the regulation of presynaptic autophagy by associating with ATG5 (By similarity). Also mediates synapse to nucleus communication leading to reconfiguration of gene expression by associating with the transcriptional corepressor CTBP1 and by subsequently reducing the size of its pool available for nuclear import (By similarity). Inhibits the activity of the proportion of DAO enzyme that localizes to the presynaptic active zone, which may modulate synaptic transmission (By similarity). {ECO:0000250|UniProtKB:O35078, ECO:0000250|UniProtKB:O88778, ECO:0000269|PubMed:12812759, ECO:0000269|PubMed:19380881}. |
Q9UPQ9 | TNRC6B | S421 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UPU5 | USP24 | S2536 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UPU7 | TBC1D2B | S317 | ochoa | TBC1 domain family member 2B | GTPase-activating protein that plays a role in the early steps of endocytosis (PubMed:32623794). {ECO:0000269|PubMed:32623794}. |
Q9UPV9 | TRAK1 | S543 | ochoa | Trafficking kinesin-binding protein 1 (106 kDa O-GlcNAc transferase-interacting protein) (Protein Milton) | Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity). {ECO:0000250|UniProtKB:Q960V3, ECO:0000269|PubMed:18675823, ECO:0000269|PubMed:24995978}. |
Q9UPV9 | TRAK1 | S719 | ochoa | Trafficking kinesin-binding protein 1 (106 kDa O-GlcNAc transferase-interacting protein) (Protein Milton) | Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity). {ECO:0000250|UniProtKB:Q960V3, ECO:0000269|PubMed:18675823, ECO:0000269|PubMed:24995978}. |
Q9UPZ3 | HPS5 | S461 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9UQ26 | RIMS2 | S1108 | ochoa | Regulating synaptic membrane exocytosis protein 2 (Rab-3-interacting molecule 2) (RIM 2) (Rab-3-interacting protein 3) | Rab effector involved in exocytosis. May act as scaffold protein. Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:23999003}. |
Q9UQ35 | SRRM2 | S745 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ84 | EXO1 | S510 | ochoa | Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) | 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}. |
Q9Y2D8 | SSX2IP | S591 | ochoa | Afadin- and alpha-actinin-binding protein (ADIP) (Afadin DIL domain-interacting protein) (SSX2-interacting protein) | Belongs to an adhesion system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs). May connect the nectin-afadin and E-cadherin-catenin system through alpha-actinin and may be involved in organization of the actin cytoskeleton at AJs through afadin and alpha-actinin (By similarity). Involved in cell movement: localizes at the leading edge of moving cells in response to PDGF and is required for the formation of the leading edge and the promotion of cell movement, possibly via activation of Rac signaling (By similarity). Acts as a centrosome maturation factor, probably by maintaining the integrity of the pericentriolar material and proper microtubule nucleation at mitotic spindle poles. The function seems to implicate at least in part WRAP73; the SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome (PubMed:23816619, PubMed:26545777). Involved in ciliogenesis (PubMed:24356449). It is required for targeted recruitment of the BBSome, CEP290, RAB8, and SSTR3 to the cilia (PubMed:24356449). {ECO:0000250|UniProtKB:Q8VC66, ECO:0000269|PubMed:23816619, ECO:0000269|PubMed:24356449, ECO:0000305|PubMed:26545777}. |
Q9Y485 | DMXL1 | S2403 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y4F4 | TOGARAM1 | S1078 | ochoa | TOG array regulator of axonemal microtubules protein 1 (Crescerin-1) (Protein FAM179B) | Involved in ciliogenesis (PubMed:32453716). It is required for appropriate acetylation and polyglutamylation of ciliary microtubules, and regulation of cilium length (PubMed:32453716). Interacts with microtubules and promotes microtubule polymerization via its HEAT repeat domains, especially those in TOG region 2 and 4 (By similarity). {ECO:0000250|UniProtKB:Q17423, ECO:0000250|UniProtKB:Q6A070, ECO:0000269|PubMed:32453716}. |
Q9Y4G2 | PLEKHM1 | S440 | ochoa | Pleckstrin homology domain-containing family M member 1 (PH domain-containing family M member 1) (162 kDa adapter protein) (AP162) | Acts as a multivalent adapter protein that regulates Rab7-dependent and HOPS complex-dependent fusion events in the endolysosomal system and couples autophagic and the endocytic trafficking pathways. Acts as a dual effector of RAB7A and ARL8B that simultaneously binds these GTPases, bringing about clustering and fusion of late endosomes and lysosomes (PubMed:25498145, PubMed:28325809). Required for late stages of endolysosomal maturation, facilitating both endocytosis-mediated degradation of growth factor receptors and autophagosome clearance. Interaction with Arl8b is a crucial factor in the terminal maturation of autophagosomes and to mediate autophagosome-lysosome fusion (PubMed:25498145). Positively regulates lysosome peripheral distribution and ruffled border formation in osteoclasts (By similarity). May be involved in negative regulation of endocytic transport from early endosome to late endosome/lysosome implicating its association with Rab7 (PubMed:20943950). May have a role in sialyl-lex-mediated transduction of apoptotic signals (PubMed:12820725). Involved in bone resorption (By similarity). {ECO:0000250|UniProtKB:Q5PQS0, ECO:0000250|UniProtKB:Q7TSI1, ECO:0000269|PubMed:12820725, ECO:0000269|PubMed:20943950, ECO:0000269|PubMed:25498145, ECO:0000269|PubMed:28325809}.; FUNCTION: (Microbial infection) In case of infection contributes to Salmonella typhimurium pathogenesis by supporting the integrity of the Salmonella-containing vacuole (SCV) probably in concert with the HOPS complex and Rab7. {ECO:0000269|PubMed:25500191}. |
Q9Y4I1 | MYO5A | S1652 | ochoa | Unconventional myosin-Va (Dilute myosin heavy chain, non-muscle) (Myosin heavy chain 12) (Myosin-12) (Myoxin) | Processive actin-based motor that can move in large steps approximating the 36-nm pseudo-repeat of the actin filament. Can hydrolyze ATP in the presence of actin, which is essential for its function as a motor protein (PubMed:10448864). Involved in melanosome transport. Also mediates the transport of vesicles to the plasma membrane (By similarity). May also be required for some polarization process involved in dendrite formation (By similarity). {ECO:0000250|UniProtKB:Q99104, ECO:0000250|UniProtKB:Q9QYF3, ECO:0000269|PubMed:10448864}. |
Q9Y5X1 | SNX9 | S183 | ochoa | Sorting nexin-9 (SH3 and PX domain-containing protein 1) (Protein SDP1) (SH3 and PX domain-containing protein 3A) | Involved in endocytosis and intracellular vesicle trafficking, both during interphase and at the end of mitosis. Required for efficient progress through mitosis and cytokinesis. Required for normal formation of the cleavage furrow at the end of mitosis. Plays a role in endocytosis via clathrin-coated pits, but also clathrin-independent, actin-dependent fluid-phase endocytosis. Plays a role in macropinocytosis. Promotes internalization of TNFR. Promotes degradation of EGFR after EGF signaling. Stimulates the GTPase activity of DNM1. Promotes DNM1 oligomerization. Promotes activation of the Arp2/3 complex by WASL, and thereby plays a role in the reorganization of the F-actin cytoskeleton. Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate and promotes membrane tubulation. Has lower affinity for membranes enriched in phosphatidylinositol 3-phosphate. {ECO:0000269|PubMed:11799118, ECO:0000269|PubMed:12952949, ECO:0000269|PubMed:15703209, ECO:0000269|PubMed:17609109, ECO:0000269|PubMed:17948057, ECO:0000269|PubMed:18388313, ECO:0000269|PubMed:20427313, ECO:0000269|PubMed:21048941, ECO:0000269|PubMed:22718350}. |
Q9Y608 | LRRFIP2 | S260 | ochoa | Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) | May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}. |
Q9Y6N7 | ROBO1 | S1149 | ochoa | Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) | Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}. |
Q9UPR3 | SMG5 | S475 | Sugiyama | Nonsense-mediated mRNA decay factor SMG5 (EST1-like protein B) (LPTS-RP1) (LPTS-interacting protein) (SMG-5 homolog) (hSMG-5) | Plays a role in nonsense-mediated mRNA decay. Does not have RNase activity by itself. Promotes dephosphorylation of UPF1. Together with SMG7 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation. Necessary for TERT activity. {ECO:0000269|PubMed:17053788}. |
Q8TF68 | ZNF384 | S114 | Sugiyama | Zinc finger protein 384 (CAG repeat protein 1) (CAS-interacting zinc finger protein) (Nuclear matrix transcription factor 4) (Nuclear matrix protein 4) (Trinucleotide repeat-containing gene 1 protein) | Transcription factor that binds the consensus DNA sequence [GC]AAAAA. Seems to bind and regulate the promoters of MMP1, MMP3, MMP7 and COL1A1 (By similarity). {ECO:0000250}. |
O75592 | MYCBP2 | S3478 | PSP | E3 ubiquitin-protein ligase MYCBP2 (EC 2.3.2.33) (Myc-binding protein 2) (Protein associated with Myc) | Atypical E3 ubiquitin-protein ligase which specifically mediates ubiquitination of threonine and serine residues on target proteins, instead of ubiquitinating lysine residues (PubMed:29643511). Shows esterification activity towards both threonine and serine, with a preference for threonine, and acts via two essential catalytic cysteine residues that relay ubiquitin to its substrate via thioester intermediates (PubMed:29643511). Interacts with the E2 enzymes UBE2D1, UBE2D3, UBE2E1 and UBE2L3 (PubMed:18308511, PubMed:29643511). Plays a key role in neural development, probably by mediating ubiquitination of threonine residues on target proteins (Probable). Involved in different processes such as regulation of neurite outgrowth, synaptic growth, synaptogenesis and axon degeneration (By similarity). Required for the formation of major central nervous system axon tracts (By similarity). Required for proper axon growth by regulating axon navigation and axon branching: acts by regulating the subcellular location and stability of MAP3K12/DLK (By similarity). Required for proper localization of retinogeniculate projections but not for eye-specific segregation (By similarity). Regulates axon guidance in the olfactory system (By similarity). Involved in Wallerian axon degeneration, an evolutionarily conserved process that drives the loss of damaged axons: acts by promoting destabilization of NMNAT2, probably via ubiquitination of NMNAT2 (By similarity). Catalyzes ubiquitination of threonine and/or serine residues on NMNAT2, consequences of threonine and/or serine ubiquitination are however unknown (PubMed:29643511). Regulates the internalization of TRPV1 in peripheral sensory neurons (By similarity). Mediates ubiquitination and subsequent proteasomal degradation of TSC2/tuberin (PubMed:18308511, PubMed:27278822). Independently of the E3 ubiquitin-protein ligase activity, also acts as a guanosine exchange factor (GEF) for RAN in neurons of dorsal root ganglia (PubMed:26304119). May function as a facilitator or regulator of transcriptional activation by MYC (PubMed:9689053). Acts in concert with HUWE1 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). {ECO:0000250|UniProtKB:Q7TPH6, ECO:0000269|PubMed:18308511, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26304119, ECO:0000269|PubMed:27278822, ECO:0000269|PubMed:29643511, ECO:0000269|PubMed:9689053}. |
O43172 | PRPF4 | S298 | Sugiyama | U4/U6 small nuclear ribonucleoprotein Prp4 (PRP4 homolog) (hPrp4) (U4/U6 snRNP 60 kDa protein) (WD splicing factor Prp4) | Plays a role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex). {ECO:0000269|PubMed:25383878, ECO:0000269|PubMed:28781166}. |
Q96ST3 | SIN3A | S158 | Sugiyama | Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) | Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}. |
O75122 | CLASP2 | S616 | Sugiyama | CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}. |
Q96CW6 | SLC7A6OS | S32 | Sugiyama | Probable RNA polymerase II nuclear localization protein SLC7A6OS (ADAMS proteinase-related protein) (Solute carrier family 7 member 6 opposite strand transcript) | Directs RNA polymerase II nuclear import. {ECO:0000250}. |
Q9UKJ3 | GPATCH8 | S890 | Sugiyama | G patch domain-containing protein 8 | None |
Q9P270 | SLAIN2 | Y293 | Sugiyama | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
P35368 | ADRA1B | S412 | SIGNOR|iPTMNet|EPSD | Alpha-1B adrenergic receptor (Alpha-1B adrenoreceptor) (Alpha-1B adrenoceptor) | This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine (PE)-stimulated ERK signaling in cardiac myocytes. {ECO:0000269|PubMed:18802028, ECO:0000269|PubMed:22120526}. |
O95819 | MAP4K4 | S800 | Sugiyama | Mitogen-activated protein kinase kinase kinase kinase 4 (EC 2.7.11.1) (HPK/GCK-like kinase HGK) (MAPK/ERK kinase kinase kinase 4) (MEK kinase kinase 4) (MEKKK 4) (Nck-interacting kinase) | Serine/threonine kinase that plays a role in the response to environmental stress and cytokines such as TNF-alpha. Appears to act upstream of the JUN N-terminal pathway (PubMed:9890973). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). Phosphorylates SMAD1 on Thr-322 (PubMed:21690388). {ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:9890973}. |
P13797 | PLS3 | S540 | Sugiyama | Plastin-3 (T-fimbrin) (T-plastin) | Actin-bundling protein. |
P28074 | PSMB5 | S175 | Sugiyama | Proteasome subunit beta type-5 (EC 3.4.25.1) (Macropain epsilon chain) (Multicatalytic endopeptidase complex epsilon chain) (Proteasome chain 6) (Proteasome epsilon chain) (Proteasome subunit MB1) (Proteasome subunit X) (Proteasome subunit beta-5) (beta-5) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). Within the 20S core complex, PSMB5 displays a chymotrypsin-like activity. {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:18502982, ECO:0000269|PubMed:18565852, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P48736 | PIK3CG | S504 | Sugiyama | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform (PI3-kinase subunit gamma) (PI3K-gamma) (PI3Kgamma) (PtdIns-3-kinase subunit gamma) (EC 2.7.1.137) (EC 2.7.1.153) (EC 2.7.1.154) (Phosphatidylinositol 4,5-bisphosphate 3-kinase 110 kDa catalytic subunit gamma) (PtdIns-3-kinase subunit p110-gamma) (p110gamma) (Phosphoinositide-3-kinase catalytic gamma polypeptide) (Serine/threonine protein kinase PIK3CG) (EC 2.7.11.1) (p120-PI3K) | Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Links G-protein coupled receptor activation to PIP3 production. Involved in immune, inflammatory and allergic responses. Modulates leukocyte chemotaxis to inflammatory sites and in response to chemoattractant agents. May control leukocyte polarization and migration by regulating the spatial accumulation of PIP3 and by regulating the organization of F-actin formation and integrin-based adhesion at the leading edge. Controls motility of dendritic cells. Together with PIK3CD is involved in natural killer (NK) cell development and migration towards the sites of inflammation. Participates in T-lymphocyte migration. Regulates T-lymphocyte proliferation, activation, and cytokine production. Together with PIK3CD participates in T-lymphocyte development. Required for B-lymphocyte development and signaling. Together with PIK3CD participates in neutrophil respiratory burst. Together with PIK3CD is involved in neutrophil chemotaxis and extravasation. Together with PIK3CB promotes platelet aggregation and thrombosis. Regulates alpha-IIb/beta-3 integrins (ITGA2B/ ITGB3) adhesive function in platelets downstream of P2Y12 through a lipid kinase activity-independent mechanism. May have also a lipid kinase activity-dependent function in platelet aggregation. Involved in endothelial progenitor cell migration. Negative regulator of cardiac contractility. Modulates cardiac contractility by anchoring protein kinase A (PKA) and PDE3B activation, reducing cAMP levels. Regulates cardiac contractility also by promoting beta-adrenergic receptor internalization by binding to GRK2 and by non-muscle tropomyosin phosphorylation. Also has serine/threonine protein kinase activity: both lipid and protein kinase activities are required for beta-adrenergic receptor endocytosis. May also have a scaffolding role in modulating cardiac contractility. Contributes to cardiac hypertrophy under pathological stress. Through simultaneous binding of PDE3B to RAPGEF3 and PIK3R6 is assembled in a signaling complex in which the PI3K gamma complex is activated by RAPGEF3 and which is involved in angiogenesis. In neutrophils, participates in a phospholipase C-activating N-formyl peptide-activated GPCR (G protein-coupled receptor) signaling pathway downstream of RASGRP4-mediated Ras-activation, to promote neutrophil functional responses (By similarity). {ECO:0000250|UniProtKB:Q9JHG7, ECO:0000269|PubMed:11277933, ECO:0000269|PubMed:12163475, ECO:0000269|PubMed:15135396, ECO:0000269|PubMed:15294162, ECO:0000269|PubMed:16094730, ECO:0000269|PubMed:16123124, ECO:0000269|PubMed:21393242, ECO:0000269|PubMed:31554793, ECO:0000269|PubMed:33054089, ECO:0000269|PubMed:7624799}. |
Q9UBK2 | PPARGC1A | S539 | SIGNOR | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1-alpha) (PPAR-gamma coactivator 1-alpha) (PPARGC-1-alpha) (Ligand effect modulator 6) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:10713165, PubMed:20005308, PubMed:21376232, PubMed:28363985, PubMed:32433991). Greatly increases the transcriptional activity of PPARG and thyroid hormone receptor on the uncoupling protein promoter (PubMed:10713165, PubMed:20005308, PubMed:21376232). Can regulate key mitochondrial genes that contribute to the program of adaptive thermogenesis (PubMed:10713165, PubMed:20005308, PubMed:21376232). Plays an essential role in metabolic reprogramming in response to dietary availability through coordination of the expression of a wide array of genes involved in glucose and fatty acid metabolism (PubMed:10713165, PubMed:20005308, PubMed:21376232). Acts as a key regulator of gluconeogenesis: stimulates hepatic gluconeogenesis by increasing the expression of gluconeogenic enzymes, and acting together with FOXO1 to promote the fasting gluconeogenic program (PubMed:16753578, PubMed:23142079). Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner (PubMed:23836911). Also involved in the integration of the circadian rhythms and energy metabolism (By similarity). Required for oscillatory expression of clock genes, such as BMAL1 and NR1D1, through the coactivation of RORA and RORC, and metabolic genes, such as PDK4 and PEPCK (By similarity). {ECO:0000250|UniProtKB:O70343, ECO:0000269|PubMed:10713165, ECO:0000269|PubMed:16753578, ECO:0000269|PubMed:20005308, ECO:0000269|PubMed:21376232, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:23836911, ECO:0000269|PubMed:28363985, ECO:0000269|PubMed:32433991}. |
P21860 | ERBB3 | S1123 | SIGNOR|iPTMNet | Receptor tyrosine-protein kinase erbB-3 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-3) (Tyrosine kinase-type cell surface receptor HER3) | Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins. Binds to neuregulin-1 (NRG1) and is activated by it; ligand-binding increases phosphorylation on tyrosine residues and promotes its association with the p85 subunit of phosphatidylinositol 3-kinase (PubMed:20682778). May also be activated by CSPG5 (PubMed:15358134). Involved in the regulation of myeloid cell differentiation (PubMed:27416908). {ECO:0000269|PubMed:15358134, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:27416908}. |
P48751 | SLC4A3 | S67 | GPS6|SIGNOR|ELM|iPTMNet | Anion exchange protein 3 (AE 3) (Anion exchanger 3) (CAE3/BAE3) (Cardiac/brain band 3-like protein) (Neuronal band 3-like protein) (Solute carrier family 4 member 3) | Sodium-independent anion exchanger which mediates the electroneutral exchange of chloride for bicarbonate ions across the cell membrane (PubMed:29167417, PubMed:7923606). May be involved in the regulation of intracellular pH, and the modulation of cardiac action potential (PubMed:29167417). {ECO:0000269|PubMed:29167417, ECO:0000269|PubMed:7923606}. |
Q06210 | GFPT1 | S242 | SIGNOR | Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase 1) (Glutamine:fructose-6-phosphate amidotransferase 1) (GFAT 1) (GFAT1) (Hexosephosphate aminotransferase 1) | Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. Regulates the circadian expression of clock genes BMAL1 and CRY1 (By similarity). Has a role in fine tuning the metabolic fluctuations of cytosolic UDP-GlcNAc and its effects on hyaluronan synthesis that occur during tissue remodeling (PubMed:26887390). {ECO:0000250|UniProtKB:P47856, ECO:0000269|PubMed:26887390}. |
P50991 | CCT4 | S166 | Sugiyama | T-complex protein 1 subunit delta (TCP-1-delta) (EC 3.6.1.-) (CCT-delta) (Chaperonin containing T-complex polypeptide 1 subunit 4) (Stimulator of TAR RNA-binding) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
Q01970 | PLCB3 | S26 | SIGNOR|ELM|iPTMNet|EPSD | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-3) (Phospholipase C-beta-3) (PLC-beta-3) | Catalyzes the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:20966218, PubMed:29122926, PubMed:37991948, PubMed:9188725). Key transducer of G protein-coupled receptor signaling: activated by G(q)/G(11) G alpha proteins downstream of G protein-coupled receptors activation (PubMed:20966218, PubMed:37991948). In neutrophils, participates in a phospholipase C-activating N-formyl peptide-activated GPCR (G protein-coupled receptor) signaling pathway by promoting RASGRP4 activation by DAG, to promote neutrophil functional responses (By similarity). {ECO:0000250|UniProtKB:P51432, ECO:0000269|PubMed:20966218, ECO:0000269|PubMed:29122926, ECO:0000269|PubMed:37991948, ECO:0000269|PubMed:9188725}. |
Q08289 | CACNB2 | T554 | SIGNOR | Voltage-dependent L-type calcium channel subunit beta-2 (CAB2) (Calcium channel voltage-dependent subunit beta 2) (Lambert-Eaton myasthenic syndrome antigen B) (MYSB) | Beta subunit of voltage-dependent calcium channels which contributes to the function of the calcium channel by increasing peak calcium current (By similarity). Plays a role in shifting voltage dependencies of activation and inactivation of the channel (By similarity). May modulate G protein inhibition (By similarity). May contribute to beta-adrenergic augmentation of Ca(2+) influx in cardiomyocytes, thereby regulating increases in heart rate and contractile force (PubMed:36424916). Involved in membrane targeting of the alpha-1 subunit CACNA1C (PubMed:17525370). {ECO:0000250|UniProtKB:Q8CC27, ECO:0000250|UniProtKB:Q8VGC3, ECO:0000269|PubMed:17525370, ECO:0000269|PubMed:36424916}. |
Q9GZL7 | WDR12 | S206 | Sugiyama | Ribosome biogenesis protein WDR12 (WD repeat-containing protein 12) | Component of the PeBoW complex, which is required for maturation of 28S and 5.8S ribosomal RNAs and formation of the 60S ribosome. {ECO:0000255|HAMAP-Rule:MF_03029, ECO:0000269|PubMed:16043514, ECO:0000269|PubMed:17353269}. |
O00562 | PITPNM1 | S331 | Sugiyama | Membrane-associated phosphatidylinositol transfer protein 1 (Drosophila retinal degeneration B homolog) (Phosphatidylinositol transfer protein, membrane-associated 1) (PITPnm 1) (Pyk2 N-terminal domain-interacting receptor 2) (NIR-2) | Catalyzes the transfer of phosphatidylinositol (PI) between membranes (PubMed:10531358, PubMed:22822086). Binds PI, phosphatidylcholine (PC) and phosphatidic acid (PA) with the binding affinity order of PI > PA > PC (PubMed:22822086). Regulates RHOA activity, and plays a role in cytoskeleton remodeling (PubMed:11909959). Necessary for normal completion of cytokinesis (PubMed:15125835). Plays a role in maintaining normal diacylglycerol levels in the Golgi apparatus (PubMed:15723057). Necessary for maintaining the normal structure of the endoplasmic reticulum and the Golgi apparatus (PubMed:15545272). Required for protein export from the endoplasmic reticulum and the Golgi (PubMed:15723057). Binds calcium ions (PubMed:10022914). {ECO:0000269|PubMed:10022914, ECO:0000269|PubMed:10531358, ECO:0000269|PubMed:11909959, ECO:0000269|PubMed:15545272, ECO:0000269|PubMed:15723057, ECO:0000269|PubMed:22822086}. |
Q8WUA4 | GTF3C2 | S379 | Sugiyama | General transcription factor 3C polypeptide 2 (TF3C-beta) (Transcription factor IIIC 110 kDa subunit) (TFIIIC 110 kDa subunit) (TFIIIC110) (Transcription factor IIIC subunit beta) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. May play a direct role in stabilizing interactions of TFIIIC2 with TFIIIC1. |
P57721 | PCBP3 | S139 | Sugiyama | Poly(rC)-binding protein 3 (Alpha-CP3) (PCBP3-overlapping transcript) (PCBP3-overlapping transcript 1) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC. {ECO:0000250}. |
P78356 | PIP4K2B | S120 | Sugiyama | Phosphatidylinositol 5-phosphate 4-kinase type-2 beta (EC 2.7.1.149) (1-phosphatidylinositol 5-phosphate 4-kinase 2-beta) (Diphosphoinositide kinase 2-beta) (Phosphatidylinositol 5-phosphate 4-kinase type II beta) (PI(5)P 4-kinase type II beta) (PIP4KII-beta) (PtdIns(5)P-4-kinase isoform 2-beta) | Participates in the biosynthesis of phosphatidylinositol 4,5-bisphosphate (PubMed:26774281, PubMed:9038203). Preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation and its activity reflects changes in direct proportion to the physiological GTP concentration (PubMed:26774281). Its GTP-sensing activity is critical for metabolic adaptation (PubMed:26774281). PIP4Ks negatively regulate insulin signaling through a catalytic-independent mechanism. They interact with PIP5Ks and suppress PIP5K-mediated PtdIns(4,5)P2 synthesis and insulin-dependent conversion to PtdIns(3,4,5)P3 (PubMed:31091439). {ECO:0000269|PubMed:26774281, ECO:0000269|PubMed:31091439, ECO:0000269|PubMed:9038203}. |
P05187 | ALPP | S153 | Sugiyama | Alkaline phosphatase, placental type (EC 3.1.3.1) (Alkaline phosphatase Regan isozyme) (Placental alkaline phosphatase 1) (PLAP-1) | Alkaline phosphatase that can hydrolyze various phosphate compounds. {ECO:0000269|PubMed:1939159, ECO:0000269|PubMed:25775211}. |
P09923 | ALPI | S150 | Sugiyama | Intestinal-type alkaline phosphatase (IAP) (Intestinal alkaline phosphatase) (EC 3.1.3.1) | Alkaline phosphatase that can hydrolyze various phosphate compounds. {ECO:0000250|UniProtKB:P15693}. |
P10696 | ALPG | S150 | Sugiyama | Alkaline phosphatase, germ cell type (EC 3.1.3.1) (ALP-1) (Alkaline phosphatase Nagao isozyme) (Alkaline phosphatase, placental-like) (Germ cell alkaline phosphatase) (GCAP) (Placental alkaline phosphatase-like) (PLAP-like) | Alkaline phosphatase that can hydrolyze various phosphate compounds. {ECO:0000269|PubMed:1939159}. |
A1L390 | PLEKHG3 | S741 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
K7ENP7 | None | S26 | ochoa | INO80 complex subunit C | None |
O00522 | KRIT1 | S109 | ochoa | Krev interaction trapped protein 1 (Krev interaction trapped 1) (Cerebral cavernous malformations 1 protein) | Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity (By similarity). Negative regulator of angiogenesis. Inhibits endothelial proliferation, apoptosis, migration, lumen formation and sprouting angiogenesis in primary endothelial cells. Promotes AKT phosphorylation in a NOTCH-dependent and independent manner, and inhibits ERK1/2 phosphorylation indirectly through activation of the DELTA-NOTCH cascade. Acts in concert with CDH5 to establish and maintain correct endothelial cell polarity and vascular lumen and these effects are mediated by recruitment and activation of the Par polarity complex and RAP1B. Required for the localization of phosphorylated PRKCZ, PARD3, TIAM1 and RAP1B to the cell junction, and cell junction stabilization. Plays a role in integrin signaling via its interaction with ITGB1BP1; this prevents the interaction between ITGB1 and ITGB1BP1. Microtubule-associated protein that binds to phosphatidylinositol 4,5-bisphosphate (PIP2)-containing membranes in a GTP-bound RAP1-dependent manner. Plays an important role in the maintenance of the intracellular reactive oxygen species (ROS) homeostasis to prevent oxidative cellular damage. Regulates the homeostasis of intracellular ROS through an antioxidant pathway involving FOXO1 and SOD2. Facilitates the down-regulation of cyclin-D1 (CCND1) levels required for cell transition from proliferative growth to quiescence by preventing the accumulation of intracellular ROS through the modulation of FOXO1 and SOD2 levels. May play a role in the regulation of macroautophagy through the down-regulation of the mTOR pathway (PubMed:26417067). {ECO:0000250|UniProtKB:Q6S5J6, ECO:0000269|PubMed:11741838, ECO:0000269|PubMed:17916086, ECO:0000269|PubMed:20332120, ECO:0000269|PubMed:20616044, ECO:0000269|PubMed:20668652, ECO:0000269|PubMed:21633110, ECO:0000269|PubMed:23317506, ECO:0000269|PubMed:26417067}. |
O00560 | SDCBP | S131 | ochoa|psp | Syntenin-1 (Melanoma differentiation-associated protein 9) (MDA-9) (Pro-TGF-alpha cytoplasmic domain-interacting protein 18) (TACIP18) (Scaffold protein Pbp1) (Syndecan-binding protein 1) | Multifunctional adapter protein involved in diverse array of functions including trafficking of transmembrane proteins, neuro and immunomodulation, exosome biogenesis, and tumorigenesis (PubMed:26291527). Positively regulates TGFB1-mediated SMAD2/3 activation and TGFB1-induced epithelial-to-mesenchymal transition (EMT) and cell migration in various cell types. May increase TGFB1 signaling by enhancing cell-surface expression of TGFR1 by preventing the interaction between TGFR1 and CAV1 and subsequent CAV1-dependent internalization and degradation of TGFR1 (PubMed:25893292). In concert with SDC1/4 and PDCD6IP, regulates exosome biogenesis (PubMed:22660413). Regulates migration, growth, proliferation, and cell cycle progression in a variety of cancer types (PubMed:26539120). In adherens junctions may function to couple syndecans to cytoskeletal proteins or signaling components. Seems to couple transcription factor SOX4 to the IL-5 receptor (IL5RA) (PubMed:11498591). May also play a role in vesicular trafficking (PubMed:11179419). Seems to be required for the targeting of TGFA to the cell surface in the early secretory pathway (PubMed:10230395). {ECO:0000269|PubMed:10230395, ECO:0000269|PubMed:11179419, ECO:0000269|PubMed:11498591, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:25893292, ECO:0000269|PubMed:26539120, ECO:0000303|PubMed:26291527}. |
O14641 | DVL2 | S169 | ochoa|psp | Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) | Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}. |
O15018 | PDZD2 | S2341 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15344 | MID1 | S524 | ochoa | E3 ubiquitin-protein ligase Midline-1 (EC 2.3.2.27) (Midin) (Putative transcription factor XPRF) (RING finger protein 59) (RING finger protein Midline-1) (RING-type E3 ubiquitin transferase Midline-1) (Tripartite motif-containing protein 18) | Has E3 ubiquitin ligase activity towards IGBP1, promoting its monoubiquitination, which results in deprotection of the catalytic subunit of protein phosphatase PP2A, and its subsequent degradation by polyubiquitination. {ECO:0000269|PubMed:10400985, ECO:0000269|PubMed:11685209, ECO:0000269|PubMed:22613722}. |
O60285 | NUAK1 | S413 | ochoa | NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) | Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}. |
O60381 | HBP1 | S380 | ochoa|psp | HMG box-containing protein 1 (HMG box transcription factor 1) (High mobility group box transcription factor 1) | Transcriptional repressor that binds to the promoter region of target genes. Plays a role in the regulation of the cell cycle and of the Wnt pathway. Binds preferentially to the sequence 5'-TTCATTCATTCA-3'. Binding to the histone H1.0 promoter is enhanced by interaction with RB1. Disrupts the interaction between DNA and TCF4. {ECO:0000269|PubMed:10562551, ECO:0000269|PubMed:10958660, ECO:0000269|PubMed:11500377}. |
O95171 | SCEL | S389 | ochoa | Sciellin | May function in the assembly or regulation of proteins in the cornified envelope. The LIM domain may be involved in homotypic or heterotypic associations and may function to localize sciellin to the cornified envelope. |
P00747 | PLG | S741 | ochoa | Plasminogen (EC 3.4.21.7) [Cleaved into: Plasmin heavy chain A; Activation peptide; Angiostatin; Plasmin heavy chain A, short form; Plasmin light chain B] | Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1, C4 and C5 (PubMed:6447255). Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells. {ECO:0000269|PubMed:14699093, ECO:0000269|PubMed:6447255}.; FUNCTION: Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo. {ECO:0000269|PubMed:14699093}.; FUNCTION: (Microbial infection) ENO/enoloase from parasite P.falciparum (strain NF54) interacts with PLG present in the mosquito blood meal to promote the invasion of the mosquito midgut by the parasite ookinete (PubMed:21949403). The catalytic active form, plasmin, is essential for the invasion of the mosquito midgut (PubMed:21949403). {ECO:0000269|PubMed:21949403}.; FUNCTION: (Microbial infection) Binds to OspC on the surface of B.burgdorferi cells, possibly conferring an extracellular protease activity on the bacteria that allows it to traverse host tissue. {ECO:0000269|PubMed:22433849}.; FUNCTION: (Microbial infection) Interacts with dengue virus type 2 particles (PubMed:31726374). Enhances dengue virus type 2 infection in Aedes aegypti mosquito midgut by increasing midgut internalization, resulting in higher infection rates and viral dissemination in mosquitoes (PubMed:31726374). {ECO:0000269|PubMed:31726374}. |
P00973 | OAS1 | S50 | ochoa | 2'-5'-oligoadenylate synthase 1 ((2-5')oligo(A) synthase 1) (2-5A synthase 1) (EC 2.7.7.84) (E18/E16) (p46/p42 OAS) | Interferon-induced, dsRNA-activated antiviral enzyme which plays a critical role in cellular innate antiviral response (PubMed:34581622). In addition, it may also play a role in other cellular processes such as apoptosis, cell growth, differentiation and gene regulation. Synthesizes higher oligomers of 2'-5'-oligoadenylates (2-5A) from ATP which then bind to the inactive monomeric form of ribonuclease L (RNase L) leading to its dimerization and subsequent activation. Activation of RNase L leads to degradation of cellular as well as viral RNA, resulting in the inhibition of protein synthesis, thus terminating viral replication (PubMed:34145065, PubMed:34581622). Can mediate the antiviral effect via the classical RNase L-dependent pathway or an alternative antiviral pathway independent of RNase L. The secreted form displays antiviral effect against vesicular stomatitis virus (VSV), herpes simplex virus type 2 (HSV-2), and encephalomyocarditis virus (EMCV) and stimulates the alternative antiviral pathway independent of RNase L. {ECO:0000269|PubMed:12799444, ECO:0000269|PubMed:18931074, ECO:0000269|PubMed:19923450, ECO:0000269|PubMed:23319625, ECO:0000269|PubMed:34145065, ECO:0000269|PubMed:34581622}.; FUNCTION: [Isoform p46]: When prenylated at C-terminal, acts as a double-stranded RNA (dsRNA) sensor specifically targeted to membranous replicative organelles in SARS coronavirus-2/SARS-CoV-2 infected cells where it binds to dsRNA structures in the SARS-CoV-2 5'-UTR and initiates a potent block to SARS-CoV-2 replication. Recognizes short stretches of dsRNA and activates RNase L. The binding is remarkably specific, with two conserved stem loops in the SARS-CoV-2 5'- untranslated region (UTR) constituting the principal viral target (PubMed:34581622). The same mechanism is necessary to initiate a block to cardiovirus EMCV (PubMed:34581622). {ECO:0000269|PubMed:34581622}.; FUNCTION: [Isoform p42]: Not prenylated at C-terminal, is diffusely localized and unable to initiate a detectable block to SARS-CoV-2 replication. {ECO:0000269|PubMed:34581622}. |
P05060 | CHGB | S617 | ochoa|psp | Secretogranin-1 (Chromogranin-B) (CgB) (Secretogranin I) (SgI) [Cleaved into: PE-11; GAWK peptide; CCB peptide] | Secretogranin-1 is a neuroendocrine secretory granule protein, which may be the precursor for other biologically active peptides. |
P06401 | PGR | S162 | ochoa|psp | Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) | The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone. |
P11940 | PABPC1 | S92 | ochoa | Polyadenylate-binding protein 1 (PABP-1) (Poly(A)-binding protein 1) | Binds the poly(A) tail of mRNA, including that of its own transcript, and regulates processes of mRNA metabolism such as pre-mRNA splicing and mRNA stability (PubMed:11051545, PubMed:17212783, PubMed:25480299). Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2 (PubMed:11051545, PubMed:20573744). Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Involved in translationally coupled mRNA turnover (PubMed:11051545). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545). Involved in regulation of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons; for the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed (PubMed:18447585). By binding to long poly(A) tails, may protect them from uridylation by ZCCHC6/ZCCHC11 and hence contribute to mRNA stability (PubMed:25480299). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:17212783, ECO:0000269|PubMed:18447585, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:32245947}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
P15924 | DSP | S2551 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P16144 | ITGB4 | S1325 | psp | Integrin beta-4 (GP150) (CD antigen CD104) | Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}. |
P17509 | HOXB6 | S136 | ochoa | Homeobox protein Hox-B6 (Homeobox protein Hox-2.2) (Homeobox protein Hox-2B) (Homeobox protein Hu-2) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P20839 | IMPDH1 | S432 | ochoa | Inosine-5'-monophosphate dehydrogenase 1 (IMP dehydrogenase 1) (IMPD 1) (IMPDH 1) (EC 1.1.1.205) (IMPDH-I) | Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors. |
P21397 | MAOA | S209 | psp | Amine oxidase [flavin-containing] A (EC 1.4.3.21) (EC 1.4.3.4) (Monoamine oxidase type A) (MAO-A) | Catalyzes the oxidative deamination of primary and some secondary amine such as neurotransmitters, with concomitant reduction of oxygen to hydrogen peroxide and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues (PubMed:18391214, PubMed:20493079, PubMed:24169519, PubMed:8316221). Preferentially oxidizes serotonin (PubMed:20493079, PubMed:24169519). Also catalyzes the oxidative deamination of kynuramine to 3-(2-aminophenyl)-3-oxopropanal that can spontaneously condense to 4-hydroxyquinoline (By similarity). {ECO:0000250|UniProtKB:P21396, ECO:0000269|PubMed:18391214, ECO:0000269|PubMed:20493079, ECO:0000269|PubMed:24169519, ECO:0000269|PubMed:8316221}. |
P21953 | BCKDHB | S328 | psp | 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial (EC 1.2.4.4) (Branched-chain alpha-keto acid dehydrogenase E1 component beta chain) (BCKDE1B) (BCKDH E1-beta) | Together with BCKDHA forms the heterotetrameric E1 subunit of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. The BCKD complex catalyzes the multi-step oxidative decarboxylation of alpha-ketoacids derived from the branched-chain amino-acids valine, leucine and isoleucine producing CO2 and acyl-CoA which is subsequently utilized to produce energy. The E1 subunit catalyzes the first step with the decarboxylation of the alpha-ketoacid forming an enzyme-product intermediate. A reductive acylation mediated by the lipoylamide cofactor of E2 extracts the acyl group from the E1 active site for the next step of the reaction. {ECO:0000269|PubMed:10745006, ECO:0000269|PubMed:9582350}. |
P27987 | ITPKB | S84 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P35711 | SOX5 | S21 | ochoa | Transcription factor SOX-5 | Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}. |
P38936 | CDKN1A | S146 | psp | Cyclin-dependent kinase inhibitor 1 (CDK-interacting protein 1) (Melanoma differentiation-associated protein 6) (MDA-6) (p21) | Plays an important role in controlling cell cycle progression and DNA damage-induced G2 arrest (PubMed:9106657). Involved in p53/TP53 mediated inhibition of cellular proliferation in response to DNA damage. Also involved in p53-independent DNA damage-induced G2 arrest mediated by CREB3L1 in astrocytes and osteoblasts (By similarity). Binds to and inhibits cyclin-dependent kinase activity, preventing phosphorylation of critical cyclin-dependent kinase substrates and blocking cell cycle progression. Functions in the nuclear localization and assembly of cyclin D-CDK4 complex and promotes its kinase activity towards RB1. At higher stoichiometric ratios, inhibits the kinase activity of the cyclin D-CDK4 complex. Inhibits DNA synthesis by DNA polymerase delta by competing with POLD3 for PCNA binding (PubMed:11595739). Negatively regulates the CDK4- and CDK6-driven phosphorylation of RB1 in keratinocytes, thereby resulting in the release of E2F1 and subsequent transcription of E2F1-driven G1/S phase promoting genes (By similarity). {ECO:0000250|UniProtKB:P39689, ECO:0000269|PubMed:11595739, ECO:0000269|PubMed:8242751, ECO:0000269|PubMed:9106657}. |
P42261 | GRIA1 | T858 | psp | Glutamate receptor 1 (GluR-1) (AMPA-selective glutamate receptor 1) (GluR-A) (GluR-K1) (Glutamate receptor ionotropic, AMPA 1) | Ionotropic glutamate receptor that functions as a ligand-gated cation channel, gated by L-glutamate and glutamatergic agonists such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid, and kainic acid (PubMed:1311100, PubMed:20805473, PubMed:21172611, PubMed:28628100, PubMed:35675825). L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse upon entry of monovalent and divalent cations such as sodium and calcium. The receptor then desensitizes rapidly and enters in a transient inactive state, characterized by the presence of bound agonist (By similarity). In the presence of CACNG2 or CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of L-glutamate (PubMed:21172611). Resensitization is blocked by CNIH2 through interaction with CACNG8 in the CACNG8-containing AMPA receptors complex (PubMed:21172611). Calcium (Ca(2+)) permeability depends on subunits composition and, heteromeric channels containing edited GRIA2 subunit are calcium-impermeable. Also permeable to other divalents cations such as strontium(2+) and magnesium(2+) and monovalent cations such as potassium(1+) and lithium(1+) (By similarity). {ECO:0000250|UniProtKB:P19490, ECO:0000269|PubMed:1311100, ECO:0000269|PubMed:20805473, ECO:0000269|PubMed:21172611, ECO:0000269|PubMed:28628100, ECO:0000269|PubMed:35675825}. |
P42695 | NCAPD3 | S517 | ochoa | Condensin-2 complex subunit D3 (Non-SMC condensin II complex subunit D3) (hCAP-D3) | Regulatory subunit of the condensin-2 complex, a complex which establishes mitotic chromosome architecture and is involved in physical rigidity of the chromatid axis (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Specifically required for decatenation of centromeric ultrafine DNA bridges during anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:14532007, ECO:0000269|PubMed:27737959}. |
P43355 | MAGEA1 | S77 | ochoa | Melanoma-associated antigen 1 (Antigen MZ2-E) (Cancer/testis antigen 1.1) (CT1.1) (MAGE-1 antigen) | May be involved in transcriptional regulation through interaction with SNW1 and recruiting histone deactelyase HDAC1. May inhibit notch intracellular domain (NICD) transactivation. May play a role in embryonal development and tumor transformation or aspects of tumor progression. Antigen recognized on a melanoma by autologous cytolytic T-lymphocytes. {ECO:0000269|PubMed:15316101}. |
P46736 | BRCC3 | S252 | ochoa | Lys-63-specific deubiquitinase BRCC36 (EC 3.4.19.-) (BRCA1-A complex subunit BRCC36) (BRCA1/BRCA2-containing complex subunit 3) (BRCA1/BRCA2-containing complex subunit 36) (BRISC complex subunit BRCC36) | Metalloprotease that specifically cleaves 'Lys-63'-linked polyubiquitin chains (PubMed:19214193, PubMed:20656690, PubMed:24075985, PubMed:26344097). Does not have activity toward 'Lys-48'-linked polyubiquitin chains (PubMed:19214193, PubMed:20656690, PubMed:24075985, PubMed:26344097). Component of the BRCA1-A complex, a complex that specifically recognizes 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs) (PubMed:14636569, PubMed:16707425, PubMed:17525341, PubMed:19202061, PubMed:19261746, PubMed:19261748, PubMed:19261749). In the BRCA1-A complex, it specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX, antagonizing the RNF8-dependent ubiquitination at double-strand breaks (DSBs) (PubMed:20656690). Catalytic subunit of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked ubiquitin in various substrates (PubMed:20656690, PubMed:24075985, PubMed:26195665, PubMed:26344097). Mediates the specific 'Lys-63'-specific deubiquitination associated with the COP9 signalosome complex (CSN), via the interaction of the BRISC complex with the CSN complex (PubMed:19214193). The BRISC complex is required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubiquitinating NUMA1 (PubMed:26195665). Plays a role in interferon signaling via its role in the deubiquitination of the interferon receptor IFNAR1; deubiquitination increases IFNAR1 activity by enhancing its stability and cell surface expression (PubMed:24075985, PubMed:26344097). Acts as a regulator of the NLRP3 inflammasome by mediating deubiquitination of NLRP3, leading to NLRP3 inflammasome assembly (By similarity). Down-regulates the response to bacterial lipopolysaccharide (LPS) via its role in IFNAR1 deubiquitination (PubMed:24075985). Deubiquitinates HDAC1 and PWWP2B leading to their stabilization (By similarity). {ECO:0000250|UniProtKB:P46737, ECO:0000269|PubMed:14636569, ECO:0000269|PubMed:16707425, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19214193, ECO:0000269|PubMed:19261746, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19261749, ECO:0000269|PubMed:20656690, ECO:0000269|PubMed:24075985, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26344097}. |
P48553 | TRAPPC10 | S1201 | ochoa | Trafficking protein particle complex subunit 10 (Epilepsy holoprosencephaly candidate 1 protein) (EHOC-1) (Protein GT334) (Trafficking protein particle complex subunit TMEM1) (Transport protein particle subunit TMEM1) (TRAPP subunit TMEM1) | Specific subunit of the TRAPP (transport protein particle) II complex, a highly conserved vesicle tethering complex that functions in late Golgi trafficking as a membrane tether. {ECO:0000269|PubMed:11805826, ECO:0000269|PubMed:31467083, ECO:0000269|PubMed:35298461}. |
P51587 | BRCA2 | S648 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P55196 | AFDN | S589 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P60468 | SEC61B | S49 | ochoa | Protein transport protein Sec61 subunit beta | Component of SEC61 channel-forming translocon complex that mediates transport of signal peptide-containing precursor polypeptides across the endoplasmic reticulum (ER) (PubMed:12475939). Forms a ribosome receptor and a gated pore in the ER membrane, both functions required for cotranslational translocation of nascent polypeptides (PubMed:12475939). The SEC61 channel is also involved in ER membrane insertion of transmembrane proteins: it mediates membrane insertion of the first few transmembrane segments of proteins, while insertion of subsequent transmembrane regions of multi-pass membrane proteins is mediated by the multi-pass translocon (MPT) complex (PubMed:32820719, PubMed:36261522). The SEC61 channel cooperates with the translocating protein TRAM1 to import nascent proteins into the ER (PubMed:19121997). {ECO:0000269|PubMed:12475939, ECO:0000269|PubMed:19121997, ECO:0000269|PubMed:32820719, ECO:0000269|PubMed:36261522}. |
P80192 | MAP3K9 | S917 | ochoa | Mitogen-activated protein kinase kinase kinase 9 (EC 2.7.11.25) (Mixed lineage kinase 1) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade through the phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7 which in turn activate the JNKs. The MKK/JNK signaling pathway regulates stress response via activator protein-1 (JUN) and GATA4 transcription factors. Also plays a role in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. {ECO:0000269|PubMed:11416147, ECO:0000269|PubMed:15610029}. |
P81274 | GPSM2 | S483 | ochoa | G-protein-signaling modulator 2 (Mosaic protein LGN) | Plays an important role in mitotic spindle pole organization via its interaction with NUMA1 (PubMed:11781568, PubMed:15632202, PubMed:21816348). Required for cortical dynein-dynactin complex recruitment during metaphase (PubMed:22327364). Plays a role in metaphase spindle orientation (PubMed:22327364). Also plays an important role in asymmetric cell divisions (PubMed:21816348). Has guanine nucleotide dissociation inhibitor (GDI) activity towards G(i) alpha proteins, such as GNAI1 and GNAI3, and thereby regulates their activity (By similarity). {ECO:0000250|UniProtKB:Q8VDU0, ECO:0000269|PubMed:11781568, ECO:0000269|PubMed:15632202, ECO:0000269|PubMed:21816348, ECO:0000269|PubMed:22327364}. |
Q02224 | CENPE | S2651 | ochoa | Centromere-associated protein E (Centromere protein E) (CENP-E) (Kinesin-7) (Kinesin-related protein CENPE) | Microtubule plus-end-directed kinetochore motor which plays an important role in chromosome congression, microtubule-kinetochore conjugation and spindle assembly checkpoint activation. Drives chromosome congression (alignment of chromosomes at the spindle equator resulting in the formation of the metaphase plate) by mediating the lateral sliding of polar chromosomes along spindle microtubules towards the spindle equator and by aiding the establishment and maintenance of connections between kinetochores and spindle microtubules (PubMed:23891108, PubMed:25395579, PubMed:7889940). The transport of pole-proximal chromosomes towards the spindle equator is favored by microtubule tracks that are detyrosinated (PubMed:25908662). Acts as a processive bi-directional tracker of dynamic microtubule tips; after chromosomes have congressed, continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends (PubMed:23955301). Suppresses chromosome congression in NDC80-depleted cells and contributes positively to congression only when microtubules are stabilized (PubMed:25743205). Plays an important role in the formation of stable attachments between kinetochores and spindle microtubules (PubMed:17535814) The stabilization of kinetochore-microtubule attachment also requires CENPE-dependent localization of other proteins to the kinetochore including BUB1B, MAD1 and MAD2. Plays a role in spindle assembly checkpoint activation (SAC) via its interaction with BUB1B resulting in the activation of its kinase activity, which is important for activating SAC. Necessary for the mitotic checkpoint signal at individual kinetochores to prevent aneuploidy due to single chromosome loss (By similarity). {ECO:0000250|UniProtKB:Q6RT24, ECO:0000269|PubMed:17535814, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:23955301, ECO:0000269|PubMed:25395579, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:25908662, ECO:0000269|PubMed:7889940}. |
Q04725 | TLE2 | S193 | ochoa | Transducin-like enhancer protein 2 (Enhancer of split groucho-like protein 2) (ESG2) | Transcriptional corepressor that binds to a number of transcription factors. Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling. The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250}. |
Q09019 | DMWD | S545 | ochoa | Dystrophia myotonica WD repeat-containing protein (Dystrophia myotonica-containing WD repeat motif protein) (Protein 59) (Protein DMR-N9) | Regulator of the deubiquitinating USP12/DMWD/WDR48 complex (PubMed:33844468). Functions as a cofactor that promotes USP12 enzymatic activity (PubMed:33844468). {ECO:0000269|PubMed:33844468}. |
Q12879 | GRIN2A | S1291 | psp | Glutamate receptor ionotropic, NMDA 2A (GluN2A) (Glutamate [NMDA] receptor subunit epsilon-1) (N-methyl D-aspartate receptor subtype 2A) (NMDAR2A) (NR2A) (hNR2A) | Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:20890276, PubMed:23933818, PubMed:23933819, PubMed:23933820, PubMed:24504326, PubMed:26875626, PubMed:26919761, PubMed:28242877, PubMed:36117210, PubMed:38538865, PubMed:8768735). NMDARs participate in synaptic plasticity for learning and memory formation by contributing to the slow phase of excitatory postsynaptic current, long-term synaptic potentiation, and learning (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:23933818, PubMed:23933819, PubMed:23933820, PubMed:24504326, PubMed:26875626, PubMed:26919761, PubMed:27288002, PubMed:28095420, PubMed:28105280, PubMed:28126851, PubMed:28182669, PubMed:29644724, PubMed:38307912, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:26919761). Participates in the synaptic plasticity regulation through activation by the L-glutamate releaseed by BEST1, into the synaptic cleft, upon F2R/PAR-1 activation in astrocyte (By similarity). {ECO:0000250|UniProtKB:P35436, ECO:0000250|UniProtKB:P35438, ECO:0000269|PubMed:20890276, ECO:0000269|PubMed:23933818, ECO:0000269|PubMed:23933819, ECO:0000269|PubMed:23933820, ECO:0000269|PubMed:24504326, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27288002, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28105280, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:28182669, ECO:0000269|PubMed:28242877, ECO:0000269|PubMed:29644724, ECO:0000269|PubMed:36117210, ECO:0000269|PubMed:38307912, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:8768735}. |
Q13009 | TIAM1 | S172 | ochoa|psp | Rho guanine nucleotide exchange factor TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) (TIAM-1) | Guanyl-nucleotide exchange factor that activates RHO-like proteins and connects extracellular signals to cytoskeletal activities. Activates RAC1, CDC42, and to a lesser extent RHOA and their downstream signaling to regulate processes like cell adhesion and cell migration. {ECO:0000269|PubMed:20361982, ECO:0000269|PubMed:25684205}. |
Q13310 | PABPC4 | S92 | ochoa | Polyadenylate-binding protein 4 (PABP-4) (Poly(A)-binding protein 4) (Activated-platelet protein 1) (APP-1) (Inducible poly(A)-binding protein) (iPABP) | Binds the poly(A) tail of mRNA (PubMed:8524242). Binds to SMIM26 mRNA and plays a role in its post-transcriptional regulation (PubMed:37009826). May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity). {ECO:0000250|UniProtKB:P11940, ECO:0000269|PubMed:37009826, ECO:0000269|PubMed:8524242}. |
Q14005 | IL16 | S177 | ochoa | Pro-interleukin-16 [Cleaved into: Interleukin-16 (IL-16) (Lymphocyte chemoattractant factor) (LCF)] | Interleukin-16 stimulates a migratory response in CD4+ lymphocytes, monocytes, and eosinophils. Primes CD4+ T-cells for IL-2 and IL-15 responsiveness. Also induces T-lymphocyte expression of interleukin 2 receptor. Ligand for CD4.; FUNCTION: [Isoform 1]: May act as a scaffolding protein that anchors ion channels in the membrane.; FUNCTION: Isoform 3 is involved in cell cycle progression in T-cells. Appears to be involved in transcriptional regulation of SKP2 and is probably part of a transcriptional repression complex on the core promoter of the SKP2 gene. May act as a scaffold for GABPB1 (the DNA-binding subunit the GABP transcription factor complex) and HDAC3 thus maintaining transcriptional repression and blocking cell cycle progression in resting T-cells. |
Q14161 | GIT2 | S514 | ochoa | ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}. |
Q14161 | GIT2 | S614 | ochoa | ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}. |
Q14207 | NPAT | S1348 | ochoa | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14457 | BECN1 | S90 | psp | Beclin-1 (Coiled-coil myosin-like BCL2-interacting protein) (Protein GT197) [Cleaved into: Beclin-1-C 35 kDa; Beclin-1-C 37 kDa] | Plays a central role in autophagy (PubMed:18570871, PubMed:21358617, PubMed:23184933, PubMed:23974797, PubMed:25484083, PubMed:28445460, PubMed:37776275). Acts as a core subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and required for the abscission step in cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20208530, PubMed:20643123, PubMed:23974797, PubMed:26783301). Essential for the formation of PI3KC3-C2 but not PI3KC3-C1 PI3K complex forms. Involved in endocytosis (PubMed:25275521). May play a role in antiviral host defense. {ECO:0000269|PubMed:18570871, ECO:0000269|PubMed:20208530, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:21358617, ECO:0000269|PubMed:23184933, ECO:0000269|PubMed:23974797, ECO:0000269|PubMed:25275521, ECO:0000269|PubMed:25484083, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:28445460, ECO:0000269|PubMed:37776275, ECO:0000269|PubMed:9765397}.; FUNCTION: Beclin-1-C 35 kDa localized to mitochondria can promote apoptosis; it induces the mitochondrial translocation of BAX and the release of proapoptotic factors. {ECO:0000269|PubMed:21364619, ECO:0000269|PubMed:26263979}.; FUNCTION: (Microbial infection) Protects against infection by a neurovirulent strain of Sindbis virus. {ECO:0000269|PubMed:9765397}. |
Q14789 | GOLGB1 | S539 | ochoa | Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) | May participate in forming intercisternal cross-bridges of the Golgi complex. |
Q14CS0 | UBXN2B | S66 | ochoa | UBX domain-containing protein 2B (NSFL1 cofactor p37) (p97 cofactor p37) | Adapter protein required for Golgi and endoplasmic reticulum biogenesis (PubMed:17141156). Involved in Golgi and endoplasmic reticulum maintenance during interphase and in their reassembly at the end of mitosis (PubMed:17141156). The complex formed with VCP has membrane fusion activity; membrane fusion activity requires USO1-GOLGA2 tethering and BET1L (PubMed:17141156). VCPIP1 is also required, but not its deubiquitinating activity (PubMed:17141156). Together with NSFL1C/p47, regulates the centrosomal levels of kinase AURKA/Aurora A during mitotic progression by promoting AURKA removal from centrosomes in prophase (PubMed:23649807). Also, regulates spindle orientation during mitosis (PubMed:23649807). {ECO:0000269|PubMed:17141156, ECO:0000269|PubMed:23649807}. |
Q15746 | MYLK | S1208 | ochoa | Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] | Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}. |
Q15785 | TOMM34 | S160 | ochoa | Mitochondrial import receptor subunit TOM34 (hTom34) (Translocase of outer membrane 34 kDa subunit) | Plays a role in the import of cytosolically synthesized preproteins into mitochondria. Binds the mature portion of precursor proteins. Interacts with cellular components, and possesses weak ATPase activity. May be a chaperone-like protein that helps to keep newly synthesized precursors in an unfolded import compatible state. {ECO:0000269|PubMed:10101285, ECO:0000269|PubMed:11913975, ECO:0000269|PubMed:9324309}. |
Q15911 | ZFHX3 | S2230 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q2KHR3 | QSER1 | S615 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q5H9R7 | PPP6R3 | S634 | ochoa | Serine/threonine-protein phosphatase 6 regulatory subunit 3 (SAPS domain family member 3) (Sporulation-induced transcript 4-associated protein SAPL) | Regulatory subunit of protein phosphatase 6 (PP6). May function as a scaffolding PP6 subunit. May have an important role in maintaining immune self-tolerance. {ECO:0000269|PubMed:11401438, ECO:0000269|PubMed:16769727}. |
Q5JQF8 | PABPC1L2A | S83 | ochoa | Polyadenylate-binding protein 1-like 2 (RNA-binding motif protein 32) (RNA-binding protein 32) | None |
Q5K651 | SAMD9 | S156 | ochoa | Sterile alpha motif domain-containing protein 9 (SAM domain-containing protein 9) | Double-stranded nucleic acid binding that acts as an antiviral factor by playing an essential role in the formation of cytoplasmic antiviral granules (PubMed:25428864, PubMed:28157624). May play a role in the inflammatory response to tissue injury and the control of extra-osseous calcification, acting as a downstream target of TNF-alpha signaling. Involved in the regulation of EGR1, in coordination with RGL2. May be involved in endosome fusion. {ECO:0000269|PubMed:16960814, ECO:0000269|PubMed:18094730, ECO:0000269|PubMed:21160498, ECO:0000269|PubMed:24029230, ECO:0000269|PubMed:25428864, ECO:0000269|PubMed:28157624}. |
Q5M775 | SPECC1 | S112 | ochoa | Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) | None |
Q5SRH9 | TTC39A | S100 | ochoa | Tetratricopeptide repeat protein 39A (TPR repeat protein 39A) (Differentially expressed in MCF-7 with estradiol protein 6) (DEME-6) | None |
Q5SYE7 | NHSL1 | S1495 | ochoa | NHS-like protein 1 | None |
Q5T5Y3 | CAMSAP1 | S1427 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T9C2 | EEIG1 | S262 | ochoa | Early estrogen-induced gene 1 protein (EEIG1) | Key component of TNFSF11/RANKL- and TNF-induced osteoclastogenesis pathways, thereby mediates bone resorption in pathological bone loss conditions (By similarity). Required for TNFSF11/RANKL-induced osteoclastogenesis via its interaction with TNFRSF11A/RANK, thereby facilitates the downsteam transcription of NFATC1 and activation of PLCG2 (By similarity). Facilitates recruitment of the transcriptional repressor PRDM1/BLIMP1 to the promoter of the anti-osteoclastogenesis gene IRF8, thereby resulting in transcription of osteoclast differentiation factors (By similarity). May play a role in estrogen action (PubMed:14605097). {ECO:0000250|UniProtKB:Q78T81, ECO:0000269|PubMed:14605097}. |
Q5VTQ0 | TTC39B | S120 | ochoa | Tetratricopeptide repeat protein 39B (TPR repeat protein 39B) | Regulates high density lipoprotein (HDL) cholesterol metabolism by promoting the ubiquitination and degradation of the oxysterols receptors LXR (NR1H2 and NR1H3). {ECO:0000250|UniProtKB:Q8BYY4}. |
Q5VUA4 | ZNF318 | S2101 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q68D10 | SPTY2D1 | S278 | ochoa | Protein SPT2 homolog (Protein KU002155) (SPT2 domain-containing protein 1) | Histone chaperone that stabilizes pre-existing histone tetramers and regulates replication-independent histone exchange on chromatin (PubMed:26109053). Required for normal chromatin refolding in the coding region of transcribed genes, and for the suppression of spurious transcription (PubMed:26109053). Binds DNA and histones and promotes nucleosome assembly (in vitro) (PubMed:23378026, PubMed:26109053). Facilitates formation of tetrameric histone complexes containing histone H3 and H4 (PubMed:26109053). Modulates RNA polymerase 1-mediated transcription (By similarity). Binds DNA, with a preference for branched DNA species, such as Y-form DNA and Holliday junction DNA (PubMed:23378026). {ECO:0000250|UniProtKB:E1BUG7, ECO:0000269|PubMed:23378026}. |
Q6AHZ1 | ZNF518A | S655 | ochoa | Zinc finger protein 518A | Through its association with the EHMT1-EHMT2/G9A and PRC2/EED-EZH2 histone methyltransferase complexes may function in gene silencing, regulating repressive post-translational methylation of histone tails at promoters of target genes. {ECO:0000250|UniProtKB:B2RRF6}. |
Q6P2Q9 | PRPF8 | S2079 | ochoa | Pre-mRNA-processing-splicing factor 8 (220 kDa U5 snRNP-specific protein) (PRP8 homolog) (Splicing factor Prp8) (p220) | Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes, both of the predominant U2-type spliceosome and the minor U12-type spliceosome (PubMed:10411133, PubMed:11971955, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30315277, PubMed:30705154, PubMed:30728453). Functions as a scaffold that mediates the ordered assembly of spliceosomal proteins and snRNAs. Required for the assembly of the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome. Functions as a scaffold that positions spliceosomal U2, U5 and U6 snRNAs at splice sites on pre-mRNA substrates, so that splicing can occur. Interacts with both the 5' and the 3' splice site. {ECO:0000269|PubMed:10411133, ECO:0000269|PubMed:11971955, ECO:0000269|PubMed:20595234, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000303|PubMed:15840809}. |
Q6PI98 | INO80C | S26 | ochoa | INO80 complex subunit C (IES6 homolog) (hIes6) | Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. |
Q6PJP8 | DCLRE1A | S490 | ochoa | DNA cross-link repair 1A protein (Beta-lactamase DCLRE1A) (EC 3.5.2.6) (SNM1 homolog A) (hSNM1) (hSNM1A) | May be required for DNA interstrand cross-link repair. Also required for checkpoint mediated cell cycle arrest in early prophase in response to mitotic spindle poisons. Possesses beta-lactamase activity, catalyzing the hydrolysis of penicillin G and nitrocefin (PubMed:31434986). Exhibits no activity towards other beta-lactam antibiotic classes including cephalosporins (cefotaxime) and carbapenems (imipenem) (PubMed:31434986). {ECO:0000269|PubMed:15542852}. |
Q6UN15 | FIP1L1 | S554 | ochoa | Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}. |
Q6UWH4 | GASK1B | S200 | ochoa | Golgi-associated kinase 1B (Expressed in nerve and epithelium during development) (Protein FAM198B) | None |
Q6UXY1 | BAIAP2L2 | S299 | ochoa | BAR/IMD domain-containing adapter protein 2-like 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 2) (BAI1-associated protein 2-like protein 2) (Planar intestinal- and kidney-specific BAR domain protein) (Pinkbar) | Phosphoinositides-binding protein that induces the formation of planar or gently curved membrane structures. Binds to phosphoinositides, including to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) headgroups. There seems to be no clear preference for a specific phosphoinositide (By similarity). {ECO:0000250}. |
Q6ZRV2 | FAM83H | S1098 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q7L8J4 | SH3BP5L | S358 | ochoa | SH3 domain-binding protein 5-like (SH3BP-5-like) | Functions as a guanine nucleotide exchange factor (GEF) for RAB11A. {ECO:0000269|PubMed:30217979}. |
Q7Z5H3 | ARHGAP22 | S476 | psp | Rho GTPase-activating protein 22 (Rho-type GTPase-activating protein 22) | Rho GTPase-activating protein involved in the signal transduction pathway that regulates endothelial cell capillary tube formation during angiogenesis. Acts as a GTPase activator for the RAC1 by converting it to an inactive GDP-bound state. Inhibits RAC1-dependent lamellipodia formation. May also play a role in transcription regulation via its interaction with VEZF1, by regulating activity of the endothelin-1 (EDN1) promoter (By similarity). {ECO:0000250}. |
Q7Z6J6 | FRMD5 | S306 | ochoa | FERM domain-containing protein 5 | May be involved in regulation of cell migration (PubMed:22846708, PubMed:25448675). May regulate cell-matrix interactions via its interaction with ITGB5 and modifying ITGB5 cytoplasmic tail interactions such as with FERMT2 and TLN1. May regulate ROCK1 kinase activity possibly involved in regulation of actin stress fiber formation (PubMed:25448675). |
Q86UR5 | RIMS1 | S1450 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86UU1 | PHLDB1 | S978 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86VM9 | ZC3H18 | S685 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q86YV0 | RASAL3 | S72 | ochoa | RAS protein activator like-3 | Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}. |
Q8IVT2 | MISP | S471 | ochoa|psp | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8IXK2 | GALNT12 | S555 | ochoa | Polypeptide N-acetylgalactosaminyltransferase 12 (EC 2.4.1.41) (Polypeptide GalNAc transferase 12) (GalNAc-T12) (pp-GaNTase 12) (Protein-UDP acetylgalactosaminyltransferase 12) (UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 12) | Catalyzes the initial reaction in O-linked oligosaccharide biosynthesis, the transfer of an N-acetyl-D-galactosamine residue to a serine or threonine residue on the protein receptor. Has activity toward non-glycosylated peptides such as Muc5AC, Muc1a and EA2, and no detectable activity with Muc2 and Muc7. Displays enzymatic activity toward the Gal-NAc-Muc5AC glycopeptide, but no detectable activity to mono-GalNAc-glycosylated Muc1a, Muc2, Muc7 and EA2. May play an important role in the initial step of mucin-type oligosaccharide biosynthesis in digestive organs. |
Q8IZ26 | ZNF34 | S113 | ochoa | Zinc finger protein 34 (Zinc finger protein KOX32) | May be involved in transcriptional regulation. |
Q8IZP0 | ABI1 | S88 | ochoa | Abl interactor 1 (Abelson interactor 1) (Abi-1) (Abl-binding protein 4) (AblBP4) (Eps8 SH3 domain-binding protein) (Eps8-binding protein) (Nap1-binding protein) (Nap1BP) (Spectrin SH3 domain-binding protein 1) (e3B1) | May act in negative regulation of cell growth and transformation by interacting with nonreceptor tyrosine kinases ABL1 and/or ABL2. May play a role in regulation of EGF-induced Erk pathway activation. Involved in cytoskeletal reorganization and EGFR signaling. Together with EPS8 participates in transduction of signals from Ras to Rac. In vitro, a trimeric complex of ABI1, EPS8 and SOS1 exhibits Rac specific guanine nucleotide exchange factor (GEF) activity and ABI1 seems to act as an adapter in the complex. Regulates ABL1/c-Abl-mediated phosphorylation of ENAH. Recruits WASF1 to lamellipodia and there seems to regulate WASF1 protein level. In brain, seems to regulate the dendritic outgrowth and branching as well as to determine the shape and number of synaptic contacts of developing neurons. {ECO:0000269|PubMed:11003655, ECO:0000269|PubMed:18328268}. |
Q8IZP0 | ABI1 | S240 | ochoa | Abl interactor 1 (Abelson interactor 1) (Abi-1) (Abl-binding protein 4) (AblBP4) (Eps8 SH3 domain-binding protein) (Eps8-binding protein) (Nap1-binding protein) (Nap1BP) (Spectrin SH3 domain-binding protein 1) (e3B1) | May act in negative regulation of cell growth and transformation by interacting with nonreceptor tyrosine kinases ABL1 and/or ABL2. May play a role in regulation of EGF-induced Erk pathway activation. Involved in cytoskeletal reorganization and EGFR signaling. Together with EPS8 participates in transduction of signals from Ras to Rac. In vitro, a trimeric complex of ABI1, EPS8 and SOS1 exhibits Rac specific guanine nucleotide exchange factor (GEF) activity and ABI1 seems to act as an adapter in the complex. Regulates ABL1/c-Abl-mediated phosphorylation of ENAH. Recruits WASF1 to lamellipodia and there seems to regulate WASF1 protein level. In brain, seems to regulate the dendritic outgrowth and branching as well as to determine the shape and number of synaptic contacts of developing neurons. {ECO:0000269|PubMed:11003655, ECO:0000269|PubMed:18328268}. |
Q8N1Q1 | CA13 | S49 | ochoa | Carbonic anhydrase 13 (EC 4.2.1.1) (Carbonate dehydratase XIII) (Carbonic anhydrase XIII) (CA-XIII) | Reversible hydration of carbon dioxide. |
Q8N3C7 | CLIP4 | S581 | ochoa | CAP-Gly domain-containing linker protein 4 (Restin-like protein 2) | None |
Q8N6H7 | ARFGAP2 | S400 | ochoa | ADP-ribosylation factor GTPase-activating protein 2 (ARF GAP 2) (GTPase-activating protein ZNF289) (Zinc finger protein 289) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:17760859}. |
Q8N8U9 | BMPER | S414 | ochoa | BMP-binding endothelial regulator protein (Bone morphogenetic protein-binding endothelial cell precursor-derived regulator) (Protein crossveinless-2) (hCV2) | Inhibitor of bone morphogenetic protein (BMP) function, it may regulate BMP responsiveness of osteoblasts and chondrocytes. {ECO:0000269|PubMed:14766204}. |
Q8NDX5 | PHC3 | S263 | ochoa | Polyhomeotic-like protein 3 (Early development regulatory protein 3) (Homolog of polyhomeotic 3) (hPH3) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:12167701}. |
Q8TBM8 | DNAJB14 | S67 | ochoa | DnaJ homolog subfamily B member 14 | Acts as a co-chaperone with HSPA8/Hsc70; required to promote protein folding and trafficking, prevent aggregation of client proteins, and promote unfolded proteins to endoplasmic reticulum-associated degradation (ERAD) pathway (PubMed:24732912). Acts by determining HSPA8/Hsc70's ATPase and polypeptide-binding activities (PubMed:24732912). Can also act independently of HSPA8/Hsc70: together with DNAJB12, acts as a chaperone that promotes maturation of potassium channels KCND2 and KCNH2 by stabilizing nascent channel subunits and assembling them into tetramers (PubMed:27916661). While stabilization of nascent channel proteins is dependent on HSPA8/Hsc70, the process of oligomerization of channel subunits is independent of HSPA8/Hsc70 (PubMed:27916661). When overexpressed, forms membranous structures together with DNAJB12 and HSPA8/Hsc70 within the nucleus; the role of these structures, named DJANGOs, is still unclear (PubMed:24732912). {ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27916661}.; FUNCTION: (Microbial infection) In case of infection by polyomavirus, involved in the virus endoplasmic reticulum membrane penetration and infection (PubMed:21673190, PubMed:24675744). {ECO:0000269|PubMed:21673190, ECO:0000269|PubMed:24675744}. |
Q8TF01 | PNISR | S726 | ochoa | Arginine/serine-rich protein PNISR (PNN-interacting serine/arginine-rich protein) (SR-related protein) (SR-rich protein) (Serine/arginine-rich-splicing regulatory protein 130) (SRrp130) (Splicing factor, arginine/serine-rich 130) (Splicing factor, arginine/serine-rich 18) | None |
Q8TF72 | SHROOM3 | S162 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WUY3 | PRUNE2 | S699 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WWQ0 | PHIP | S1405 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q92575 | UBXN4 | S173 | ochoa | UBX domain-containing protein 4 (Erasin) (UBX domain-containing protein 2) | Involved in endoplasmic reticulum-associated protein degradation (ERAD). Acts as a platform to recruit both UBQLN1 and VCP to the ER during ERAD (PubMed:19822669). {ECO:0000269|PubMed:16968747, ECO:0000269|PubMed:19822669}. |
Q92576 | PHF3 | S702 | ochoa | PHD finger protein 3 | None |
Q92608 | DOCK2 | S1644 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q92610 | ZNF592 | S298 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92904 | DAZL | S65 | psp | Deleted in azoospermia-like (DAZ homolog) (DAZ-like autosomal) (Deleted in azoospermia-like 1) (SPGY-like-autosomal) | RNA-binding protein, which is essential for gametogenesis in both males and females. Plays a central role during spermatogenesis. Acts by binding to the 3'-UTR of mRNA, specifically recognizing GUU triplets, and thereby regulating the translation of key transcripts (By similarity). {ECO:0000250}. |
Q96B01 | RAD51AP1 | S296 | ochoa | RAD51-associated protein 1 (HsRAD51AP1) (RAD51-interacting protein) | Structure-specific DNA-binding protein involved in DNA repair by promoting RAD51-mediated homologous recombination (PubMed:17996710, PubMed:17996711, PubMed:20871616, PubMed:25288561, PubMed:26323318). Acts by stimulating D-Loop formation by RAD51: specifically enhances joint molecule formation through its structure-specific DNA interaction and its interaction with RAD51 (PubMed:17996710, PubMed:17996711). Binds single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures: has a strong preference for branched-DNA structures that are obligatory intermediates during joint molecule formation (PubMed:17996710, PubMed:17996711, PubMed:22375013, PubMed:9396801). Cooperates with WDR48/UAF1 to stimulate RAD51-mediated homologous recombination: both WDR48/UAF1 and RAD51AP1 have coordinated role in DNA-binding during homologous recombination and DNA repair (PubMed:27239033, PubMed:27463890, PubMed:32350107). WDR48/UAF1 and RAD51AP1 also have a coordinated role in DNA-binding to promote USP1-mediated deubiquitination of FANCD2 (PubMed:31253762). Also involved in meiosis by promoting DMC1-mediated homologous meiotic recombination (PubMed:21307306). Key mediator of alternative lengthening of telomeres (ALT) pathway, a homology-directed repair mechanism of telomere elongation that controls proliferation in aggressive cancers, by stimulating homologous recombination (PubMed:31400850). May also bind RNA; additional evidences are however required to confirm RNA-binding in vivo (PubMed:9396801). {ECO:0000269|PubMed:17996710, ECO:0000269|PubMed:17996711, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:21307306, ECO:0000269|PubMed:22375013, ECO:0000269|PubMed:25288561, ECO:0000269|PubMed:26323318, ECO:0000269|PubMed:27239033, ECO:0000269|PubMed:27463890, ECO:0000269|PubMed:31253762, ECO:0000269|PubMed:31400850, ECO:0000269|PubMed:32350107, ECO:0000269|PubMed:9396801}. |
Q96FS4 | SIPA1 | S908 | ochoa | Signal-induced proliferation-associated protein 1 (Sipa-1) (GTPase-activating protein Spa-1) (p130 SPA-1) | GTPase activator for the nuclear Ras-related regulatory proteins Rap1 and Rap2 in vitro, converting them to the putatively inactive GDP-bound state (PubMed:9346962). Affects cell cycle progression (By similarity). {ECO:0000250|UniProtKB:P46062, ECO:0000269|PubMed:9346962}. |
Q96HA1 | POM121 | S80 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96L96 | ALPK3 | S1424 | ochoa | Alpha-protein kinase 3 (EC 2.7.11.1) (Muscle alpha-protein kinase) | Involved in cardiomyocyte differentiation. {ECO:0000305|PubMed:26846950, ECO:0000305|PubMed:27106955, ECO:0000305|PubMed:28630369, ECO:0000305|PubMed:30046096}. |
Q96QB1 | DLC1 | S842 | ochoa | Rho GTPase-activating protein 7 (Deleted in liver cancer 1 protein) (DLC-1) (HP protein) (Rho-type GTPase-activating protein 7) (START domain-containing protein 12) (StARD12) (StAR-related lipid transfer protein 12) | Functions as a GTPase-activating protein for the small GTPases RHOA, RHOB, RHOC and CDC42, terminating their downstream signaling. This induces morphological changes and detachment through cytoskeletal reorganization, playing a critical role in biological processes such as cell migration and proliferation. Also functions in vivo as an activator of the phospholipase PLCD1. Active DLC1 increases cell migration velocity but reduces directionality. Required for growth factor-induced epithelial cell migration; in resting cells, interacts with TNS3 while PTEN interacts with the p85 regulatory subunit of the PI3K kinase complex but growth factor stimulation induces phosphorylation of TNS3 and PTEN, causing them to change their binding preference so that PTEN interacts with DLC1 and TNS3 interacts with p85 (PubMed:26166433). The PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA while the TNS3-p85 complex translocates to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). {ECO:0000269|PubMed:18786931, ECO:0000269|PubMed:19170769, ECO:0000269|PubMed:19710422, ECO:0000269|PubMed:26166433}. |
Q96RG2 | PASK | S71 | ochoa | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96RR4 | CAMKK2 | S495 | ochoa|psp | Calcium/calmodulin-dependent protein kinase kinase 2 (CaM-KK 2) (CaM-kinase kinase 2) (CaMKK 2) (EC 2.7.11.17) (Calcium/calmodulin-dependent protein kinase kinase beta) (CaM-KK beta) (CaM-kinase kinase beta) (CaMKK beta) | Calcium/calmodulin-dependent protein kinase belonging to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Isoform 1, isoform 2 and isoform 3 phosphorylate CAMK1 and CAMK4. Isoform 3 phosphorylates CAMK1D. Isoform 4, isoform 5 and isoform 6 lacking part of the calmodulin-binding domain are inactive. Efficiently phosphorylates 5'-AMP-activated protein kinase (AMPK) trimer, including that consisting of PRKAA1, PRKAB1 and PRKAG1. This phosphorylation is stimulated in response to Ca(2+) signals (By similarity). Seems to be involved in hippocampal activation of CREB1 (By similarity). May play a role in neurite growth. Isoform 3 may promote neurite elongation, while isoform 1 may promoter neurite branching. {ECO:0000250, ECO:0000269|PubMed:11395482, ECO:0000269|PubMed:12935886, ECO:0000269|PubMed:21957496, ECO:0000269|PubMed:9662074}. |
Q96T17 | MAP7D2 | S290 | ochoa | MAP7 domain-containing protein 2 | Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}. |
Q99490 | AGAP2 | S648 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 2 (AGAP-2) (Centaurin-gamma-1) (Cnt-g1) (GTP-binding and GTPase-activating protein 2) (GGAP2) (Phosphatidylinositol 3-kinase enhancer) (PIKE) | GTPase-activating protein (GAP) for ARF1 and ARF5, which also shows strong GTPase activity. Isoform 1 participates in the prevention of neuronal apoptosis by enhancing PI3 kinase activity. It aids the coupling of metabotropic glutamate receptor 1 (GRM1) to cytoplasmic PI3 kinase by interacting with Homer scaffolding proteins, and also seems to mediate anti-apoptotic effects of NGF by activating nuclear PI3 kinase. Isoform 2 does not stimulate PI3 kinase but may protect cells from apoptosis by stimulating Akt. It also regulates the adapter protein 1 (AP-1)-dependent trafficking of proteins in the endosomal system. It seems to be oncogenic. It is overexpressed in cancer cells, prevents apoptosis and promotes cancer cell invasion. {ECO:0000269|PubMed:12640130, ECO:0000269|PubMed:14761976, ECO:0000269|PubMed:15118108, ECO:0000269|PubMed:16079295}. |
Q9BPZ7 | MAPKAP1 | S315 | psp | Target of rapamycin complex 2 subunit MAPKAP1 (TORC2 subunit MAPKAP1) (Mitogen-activated protein kinase 2-associated protein 1) (Stress-activated map kinase-interacting protein 1) (SAPK-interacting protein 1) (mSIN1) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15467718, PubMed:16919458, PubMed:16962653, PubMed:17043309, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:16919458, PubMed:16962653, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:16962653). Within the mTORC2 complex, MAPKAP1/SIN1 acts as a substrate adapter which recognizes and binds AGC protein kinase family members for phosphorylation by MTOR (PubMed:21806543, PubMed:28264193). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:28264193, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (PubMed:30837283, PubMed:35926713). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). MAPKAP1 inhibits MAP3K2 by preventing its dimerization and autophosphorylation (PubMed:15988011). Inhibits HRAS and KRAS independently of mTORC2 complex (PubMed:17303383, PubMed:34380736, PubMed:35522713). Enhances osmotic stress-induced phosphorylation of ATF2 and ATF2-mediated transcription (PubMed:17054722). Involved in ciliogenesis, regulates cilia length through its interaction with CCDC28B independently of mTORC2 complex (PubMed:23727834). {ECO:0000250|UniProtKB:Q8BKH7, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15988011, ECO:0000269|PubMed:16919458, ECO:0000269|PubMed:16962653, ECO:0000269|PubMed:17043309, ECO:0000269|PubMed:17054722, ECO:0000269|PubMed:17303383, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23727834, ECO:0000269|PubMed:28264193, ECO:0000269|PubMed:28968999, ECO:0000269|PubMed:30837283, ECO:0000269|PubMed:34380736, ECO:0000269|PubMed:35522713, ECO:0000269|PubMed:35926713}.; FUNCTION: [Isoform 4]: In contrast to isoform 1, isoform 2 and isoform 6, isoform 4 is not a component of the a mTORC2 complex. {ECO:0000269|PubMed:26263164}. |
Q9BXC1 | GPR174 | S304 | ochoa | Probable G-protein coupled receptor 174 | G-protein-coupled receptor of lysophosphatidylserine (LysoPS) that plays different roles in immune response (PubMed:36823105). Plays a negative role in regulatory T-cell accumulation and homeostasis. Under inflammatory conditions where LysoPS production increases, contributes to the down-regulation of regulatory T-cell activity to favor effector response. Mediates the suppression of IL-2 production in activated T-lymphocytes leading to inhibition of growth, proliferation and differentiation of T-cells. Mechanistically, acts via G(s)-containing heterotrimeric G proteins to trigger elevated cyclic AMP levels and protein kinase A/PKA activity, which may in turn act to antagonize proximal TCR signaling. Plays an important role in the initial period of sepsis through the regulation of macrophage polarization and pro- and anti-inflammatory cytokine secretions. Upon testosterone treatment, acts as a receptor for CCL21 and subsequently triggers through G(q)-alpha and G(12)/G(13) proteins a calcium flux leading to chemotactic effects on activated B-cells. Signals via GNA13 and PKA to promote CD86 up-regulation by follicular B-cells. {ECO:0000250|UniProtKB:Q3U507, ECO:0000269|PubMed:36823105}. |
Q9BZ72 | PITPNM2 | S834 | ochoa | Membrane-associated phosphatidylinositol transfer protein 2 (Phosphatidylinositol transfer protein, membrane-associated 2) (PITPnm 2) (Pyk2 N-terminal domain-interacting receptor 3) (NIR-3) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro). Binds calcium ions. {ECO:0000269|PubMed:10022914}. |
Q9H0G5 | NSRP1 | S293 | ochoa | Nuclear speckle splicing regulatory protein 1 (Coiled-coil domain-containing protein 55) (Nuclear speckle-related protein 70) (NSrp70) | RNA-binding protein that mediates pre-mRNA alternative splicing regulation. {ECO:0000269|PubMed:21296756}. |
Q9H361 | PABPC3 | S92 | ochoa | Polyadenylate-binding protein 3 (PABP-3) (Poly(A)-binding protein 3) (Testis-specific poly(A)-binding protein) | Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism. Binds poly(A) with a slightly lower affinity as compared to PABPC1. |
Q9H6E5 | TUT1 | S644 | ochoa | Speckle targeted PIP5K1A-regulated poly(A) polymerase (Star-PAP) (EC 2.7.7.19) (RNA-binding motif protein 21) (RNA-binding protein 21) (U6 snRNA-specific terminal uridylyltransferase 1) (U6-TUTase) (EC 2.7.7.52) | Poly(A) polymerase that creates the 3'-poly(A) tail of specific pre-mRNAs (PubMed:18288197, PubMed:21102410). Localizes to nuclear speckles together with PIP5K1A and mediates polyadenylation of a select set of mRNAs, such as HMOX1 (PubMed:18288197). In addition to polyadenylation, it is also required for the 3'-end cleavage of pre-mRNAs: binds to the 3'UTR of targeted pre-mRNAs and promotes the recruitment and assembly of the CPSF complex on the 3'UTR of pre-mRNAs (PubMed:21102410). In addition to adenylyltransferase activity, also has uridylyltransferase activity (PubMed:16790842, PubMed:18288197, PubMed:28589955). However, the ATP ratio is higher than UTP in cells, suggesting that it functions primarily as a poly(A) polymerase (PubMed:18288197). Acts as a specific terminal uridylyltransferase for U6 snRNA in vitro: responsible for a controlled elongation reaction that results in the restoration of the four 3'-terminal UMP-residues found in newly transcribed U6 snRNA (PubMed:16790842, PubMed:18288197, PubMed:28589955). Not involved in replication-dependent histone mRNA degradation. {ECO:0000269|PubMed:16790842, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:21102410, ECO:0000269|PubMed:28589955}. |
Q9HC35 | EML4 | S94 | ochoa | Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) | Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}. |
Q9HCH5 | SYTL2 | S390 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCM1 | RESF1 | S1708 | ochoa | Retroelement silencing factor 1 | Plays a role in the regulation of imprinted gene expression, regulates repressive epigenetic modifications associated with SETDB1. Required for the recruitment or accumulation of SETDB1 to the endogenous retroviruses (ERVs) and maintenance of repressive chromatin configuration, contributing to a subset of the SETDB1-dependent ERV silencing in embryonic stem cells. {ECO:0000250|UniProtKB:Q5DTW7}. |
Q9NP62 | GCM1 | S269 | psp | Chorion-specific transcription factor GCMa (hGCMa) (GCM motif protein 1) (Glial cells missing homolog 1) | Transcription factor involved in the control of expression of placental growth factor (PGF) and other placenta-specific genes (PubMed:10542267, PubMed:18160678). Binds to the trophoblast-specific element 2 (TSE2) of the aromatase gene enhancer (PubMed:10542267). Binds to the SYDE1 promoter (PubMed:27917469). Has a central role in mediating the differentiation of trophoblast cells along both the villous and extravillous pathways in placental development (PubMed:19219068). {ECO:0000269|PubMed:10542267, ECO:0000269|PubMed:18160678, ECO:0000269|PubMed:19219068, ECO:0000269|PubMed:27917469}. |
Q9NQW6 | ANLN | S658 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NRH2 | SNRK | S570 | ochoa | SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) | May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}. |
Q9NU19 | TBC1D22B | S116 | ochoa | TBC1 domain family member 22B | May act as a GTPase-activating protein for Rab family protein(s). {ECO:0000250}. |
Q9NX95 | SYBU | S70 | ochoa | Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) | Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}. |
Q9NYB9 | ABI2 | S88 | ochoa | Abl interactor 2 (Abelson interactor 2) (Abi-2) (Abl-binding protein 3) (AblBP3) (Arg-binding protein 1) (ArgBP1) | Regulator of actin cytoskeleton dynamics underlying cell motility and adhesion. Functions as a component of the WAVE complex, which activates actin nucleating machinery Arp2/3 to drive lamellipodia formation (PubMed:21107423). Acts as a regulator and substrate of nonreceptor tyrosine kinases ABL1 and ABL2 involved in processes linked to cell growth and differentiation. Positively regulates ABL1-mediated phosphorylation of ENAH, which is required for proper polymerization of nucleated actin filaments at the leading edge (PubMed:10498863, PubMed:7590236, PubMed:8649853). Contributes to the regulation of actin assembly at the tips of neuron projections. In particular, controls dendritic spine morphogenesis and may promote dendritic spine specification toward large mushroom-type spines known as repositories of memory in the brain (By similarity). In hippocampal neurons, may mediate actin-dependent BDNF-NTRK2 early endocytic trafficking that triggers dendrite outgrowth (By similarity). Participates in ocular lens morphogenesis, likely by regulating lamellipodia-driven adherens junction formation at the epithelial cell-secondary lens fiber interface (By similarity). Also required for nascent adherens junction assembly in epithelial cells (PubMed:15572692). {ECO:0000250|UniProtKB:P62484, ECO:0000269|PubMed:10498863, ECO:0000269|PubMed:15572692, ECO:0000269|PubMed:21107423, ECO:0000269|PubMed:7590236, ECO:0000269|PubMed:8649853}. |
Q9P275 | USP36 | S439 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P286 | PAK5 | S99 | psp | Serine/threonine-protein kinase PAK 5 (EC 2.7.11.1) (p21-activated kinase 5) (PAK-5) (p21-activated kinase 7) (PAK-7) | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, proliferation or cell survival. Activation by various effectors including growth factor receptors or active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates the proto-oncogene RAF1 and stimulates its kinase activity. Promotes cell survival by phosphorylating the BCL2 antagonist of cell death BAD. Phosphorylates CTNND1, probably to regulate cytoskeletal organization and cell morphology. Keeps microtubules stable through MARK2 inhibition and destabilizes the F-actin network leading to the disappearance of stress fibers and focal adhesions. {ECO:0000269|PubMed:12897128, ECO:0000269|PubMed:16014608, ECO:0000269|PubMed:16581795, ECO:0000269|PubMed:18465753, ECO:0000269|PubMed:20564219}. |
Q9P2M4 | TBC1D14 | S128 | ochoa | TBC1 domain family member 14 | Plays a role in the regulation of starvation-induced autophagosome formation (PubMed:22613832). Together with the TRAPPIII complex, regulates a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy. {ECO:0000269|PubMed:22613832, ECO:0000269|PubMed:26711178}. |
Q9UBP0 | SPAST | S268 | ochoa|psp | Spastin (EC 5.6.1.1) (Spastic paraplegia 4 protein) | ATP-dependent microtubule severing protein that specifically recognizes and cuts microtubules that are polyglutamylated (PubMed:11809724, PubMed:15716377, PubMed:16219033, PubMed:17389232, PubMed:20530212, PubMed:22637577, PubMed:26875866). Preferentially recognizes and acts on microtubules decorated with short polyglutamate tails: severing activity increases as the number of glutamates per tubulin rises from one to eight, but decreases beyond this glutamylation threshold (PubMed:26875866). Severing activity is not dependent on tubulin acetylation or detyrosination (PubMed:26875866). Microtubule severing promotes reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. It is critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. SPAST is involved in abscission step of cytokinesis and nuclear envelope reassembly during anaphase in cooperation with the ESCRT-III complex (PubMed:19000169, PubMed:21310966, PubMed:26040712). Recruited at the midbody, probably by IST1, and participates in membrane fission during abscission together with the ESCRT-III complex (PubMed:21310966). Recruited to the nuclear membrane by IST1 and mediates microtubule severing, promoting nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Required for membrane traffic from the endoplasmic reticulum (ER) to the Golgi and endosome recycling (PubMed:23897888). Recruited by IST1 to endosomes and regulates early endosomal tubulation and recycling by mediating microtubule severing (PubMed:23897888). Probably plays a role in axon growth and the formation of axonal branches (PubMed:15716377). {ECO:0000255|HAMAP-Rule:MF_03021, ECO:0000269|PubMed:11809724, ECO:0000269|PubMed:15716377, ECO:0000269|PubMed:16219033, ECO:0000269|PubMed:17389232, ECO:0000269|PubMed:19000169, ECO:0000269|PubMed:20530212, ECO:0000269|PubMed:21310966, ECO:0000269|PubMed:22637577, ECO:0000269|PubMed:23897888, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:26875866}.; FUNCTION: [Isoform 1]: Involved in lipid metabolism by regulating the size and distribution of lipid droplets. {ECO:0000269|PubMed:25875445}. |
Q9UGU5 | HMGXB4 | S79 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UHD1 | CHORDC1 | S200 | ochoa | Cysteine and histidine-rich domain-containing protein 1 (CHORD domain-containing protein 1) (CHORD-containing protein 1) (CHP-1) (Protein morgana) | Regulates centrosome duplication, probably by inhibiting the kinase activity of ROCK2 (PubMed:20230755). Proposed to act as co-chaperone for HSP90 (PubMed:20230755). May play a role in the regulation of NOD1 via a HSP90 chaperone complex (PubMed:20230755). In vitro, has intrinsic chaperone activity (PubMed:20230755). This function may be achieved by inhibiting association of ROCK2 with NPM1 (PubMed:20230755). Plays a role in ensuring the localization of the tyrosine kinase receptor EGFR to the plasma membrane, and thus ensures the subsequent regulation of EGFR activity and EGF-induced actin cytoskeleton remodeling (PubMed:32053105). Involved in stress response (PubMed:20230755). Prevents tumorigenesis (PubMed:20230755). {ECO:0000269|PubMed:20230755, ECO:0000269|PubMed:32053105}. |
Q9UKA4 | AKAP11 | S1611 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9ULH0 | KIDINS220 | S918 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULH0 | KIDINS220 | S1359 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULH0 | KIDINS220 | S1717 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULL0 | KIAA1210 | S1441 | ochoa | Acrosomal protein KIAA1210 | None |
Q9ULT8 | HECTD1 | S1384 | ochoa | E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (E3 ligase for inhibin receptor) (EULIR) (HECT domain-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:33711283). Mediates 'Lys-63'-linked polyubiquitination of HSP90AA1 which leads to its intracellular localization and reduced secretion (By similarity). Negatively regulating HSP90AA1 secretion in cranial mesenchyme cells may impair their emigration and may be essential for the correct development of the cranial neural folds and neural tube closure (By similarity). Catalyzes ubiquitination and degradation of ZNF622, an assembly factor for the ribosomal 60S subunit, in hematopoietic cells, thereby promoting hematopoietic stem cell renewal (PubMed:33711283). {ECO:0000250|UniProtKB:Q69ZR2, ECO:0000269|PubMed:33711283}. |
Q9UPC5 | GPR34 | S355 | ochoa | Probable G-protein coupled receptor 34 | G-protein-coupled receptor of lysophosphatidylserine (LysoPS) that plays different roles in immune response (PubMed:16460680). Acts a damage-sensing receptor that triggers tissue repair upon recognition of dying neutrophils (By similarity). Mechanistically, apoptotic neutrophils release lysophosphatydilserine that are recognized by type 3 innate lymphoid cells (ILC3s) via GPR34, which activates downstream PI3K-AKT and RAS-ERK signaling pathways leading to STAT3 activation and IL-22 production (By similarity). Plays an important role in microglial function, controlling morphology and phagocytosis (By similarity). {ECO:0000250|UniProtKB:Q9R1K6, ECO:0000269|PubMed:16460680}. |
Q9UPQ3 | AGAP1 | S415 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1 (AGAP-1) (Centaurin-gamma-2) (Cnt-g2) (GTP-binding and GTPase-activating protein 1) (GGAP1) | GTPase-activating protein for ARF1 and, to a lesser extent, ARF5. Directly and specifically regulates the adapter protein 3 (AP-3)-dependent trafficking of proteins in the endosomal-lysosomal system. {ECO:0000269|PubMed:12640130}. |
Q9Y2F5 | ICE1 | S1838 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y4B6 | DCAF1 | S255 | ochoa | DDB1- and CUL4-associated factor 1 (HIV-1 Vpr-binding protein) (VprBP) (Serine/threonine-protein kinase VPRBP) (EC 2.7.11.1) (Vpr-interacting protein) | Acts both as a substrate recognition component of E3 ubiquitin-protein ligase complexes and as an atypical serine/threonine-protein kinase, playing key roles in various processes such as cell cycle, telomerase regulation and histone modification. Probable substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex, named CUL4A-RBX1-DDB1-DCAF1/VPRBP complex, which mediates ubiquitination and proteasome-dependent degradation of proteins such as NF2 (PubMed:23063525). Involved in the turnover of methylated proteins: recognizes and binds methylated proteins via its chromo domain, leading to ubiquitination of target proteins by the RBX1-DDB1-DCAF1/VPRBP complex (PubMed:23063525). The CUL4A-RBX1-DDB1-DCAF1/VPRBP complex is also involved in B-cell development: DCAF1 is recruited by RAG1 to ubiquitinate proteins, leading to limit error-prone repair during V(D)J recombination (By similarity). Also part of the EDVP complex, an E3 ligase complex that mediates ubiquitination of proteins such as TERT, leading to TERT degradation and telomerase inhibition (PubMed:19287380, PubMed:23362280). The EDVP complex also mediates ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Also acts as an atypical serine/threonine-protein kinase that specifically mediates phosphorylation of 'Thr-120' of histone H2A (H2AT120ph) in a nucleosomal context, thereby repressing transcription (PubMed:24140421). H2AT120ph is present in the regulatory region of many tumor suppresor genes, down-regulates their transcription and is present at high level in a number of tumors (PubMed:24140421). Involved in JNK-mediated apoptosis during cell competition process via its interaction with LLGL1 and LLGL2 (PubMed:20644714). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). {ECO:0000250|UniProtKB:Q80TR8, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:18606781, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:20644714, ECO:0000269|PubMed:22184063, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:24140421, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, it is recruited by HIV-1 Vpr in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to arrest the cell cycle in G2 phase, and also to protect the viral protein from proteasomal degradation by another E3 ubiquitin ligase. The HIV-1 Vpr protein hijacks the CUL4A-RBX1-DDB1-DCAF1/VPRBP complex to promote ubiquitination and degradation of proteins such as TERT and ZIP/ZGPAT. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:17559673, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17620334, ECO:0000269|PubMed:17626091, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:24116224}.; FUNCTION: (Microbial infection) In case of infection by HIV-2 virus, it is recruited by HIV-2 Vpx in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to enhanced efficiency of macrophage infection and promotion of the replication of cognate primate lentiviruses in cells of monocyte/macrophage lineage. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:18464893, ECO:0000269|PubMed:19264781, ECO:0000269|PubMed:19923175, ECO:0000269|PubMed:24336198}. |
Q9Y698 | CACNG2 | S239 | psp | Voltage-dependent calcium channel gamma-2 subunit (Neuronal voltage-gated calcium channel gamma-2 subunit) (Transmembrane AMPAR regulatory protein gamma-2) (TARP gamma-2) | Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state. {ECO:0000269|PubMed:20805473}. |
P41091 | EIF2S3 | T41 | Sugiyama | Eukaryotic translation initiation factor 2 subunit 3 (EC 3.6.5.3) (Eukaryotic translation initiation factor 2 subunit gamma X) (eIF2-gamma X) (eIF2gX) | Member of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC) (By similarity). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex (By similarity). In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF-2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}. |
Q2VIR3 | EIF2S3B | T41 | Sugiyama | Eukaryotic translation initiation factor 2 subunit 3B (EC 3.6.5.3) (Eukaryotic translation initiation factor 2 subunit gamma A) (eIF-2-gamma A) (eIF-2gA) | Member of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF-2B (By similarity). {ECO:0000250|UniProtKB:P05198}. |
P33993 | MCM7 | S410 | Sugiyama | DNA replication licensing factor MCM7 (EC 3.6.4.12) (CDC47 homolog) (P1.1-MCM3) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for S-phase checkpoint activation upon UV-induced damage. {ECO:0000269|PubMed:15210935, ECO:0000269|PubMed:15538388, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
Q9UNE7 | STUB1 | S149 | Sugiyama | E3 ubiquitin-protein ligase CHIP (EC 2.3.2.27) (Antigen NY-CO-7) (CLL-associated antigen KW-8) (Carboxy terminus of Hsp70-interacting protein) (RING-type E3 ubiquitin transferase CHIP) (STIP1 homology and U box-containing protein 1) | E3 ubiquitin-protein ligase which targets misfolded chaperone substrates towards proteasomal degradation (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462, PubMed:26265139). Plays a role in the maintenance of mitochondrial morphology and promotes mitophagic removal of dysfunctional mitochondria; thereby acts as a protector against apoptosis in response to cellular stress (By similarity). Negatively regulates vascular smooth muscle contraction, via degradation of the transcriptional activator MYOCD and subsequent loss of transcription of genes involved in vascular smooth muscle contraction (By similarity). Promotes survival and proliferation of cardiac smooth muscle cells via ubiquitination and degradation of FOXO1, resulting in subsequent repression of FOXO1-mediated transcription of pro-apoptotic genes (PubMed:19483080). Ubiquitinates ICER-type isoforms of CREM and targets them for proteasomal degradation, thereby acts as a positive effector of MAPK/ERK-mediated inhibition of apoptosis in cardiomyocytes (PubMed:20724525). Inhibits lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes, via ubiquitination and subsequent proteasomal degradation of NFATC3 (PubMed:30980393). Collaborates with ATXN3 in the degradation of misfolded chaperone substrates: ATXN3 restricting the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462). Ubiquitinates NOS1 in concert with Hsp70 and Hsp40 (PubMed:15466472). Modulates the activity of several chaperone complexes, including Hsp70, Hsc70 and Hsp90 (PubMed:10330192, PubMed:11146632, PubMed:15466472). Ubiquitinates CHRNA3 targeting it for endoplasmic reticulum-associated degradation in cortical neurons, as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Ubiquitinates and promotes ESR1 proteasomal degradation in response to age-related circulating estradiol (17-beta-estradiol/E2) decline, thereby promotes neuronal apoptosis in response to ischemic reperfusion injury (By similarity). Mediates transfer of non-canonical short ubiquitin chains to HSPA8 that have no effect on HSPA8 degradation (PubMed:11557750, PubMed:23990462). Mediates polyubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair: catalyzes polyubiquitination by amplifying the HUWE1/ARF-BP1-dependent monoubiquitination and leading to POLB-degradation by the proteasome (PubMed:19713937). Mediates polyubiquitination of CYP3A4 (PubMed:19103148). Ubiquitinates EPHA2 and may regulate the receptor stability and activity through proteasomal degradation (PubMed:19567782). Acts as a co-chaperone for HSPA1A and HSPA1B chaperone proteins and promotes ubiquitin-mediated protein degradation (PubMed:27708256). Negatively regulates the suppressive function of regulatory T-cells (Treg) during inflammation by mediating the ubiquitination and degradation of FOXP3 in a HSPA1A/B-dependent manner (PubMed:23973223). Catalyzes monoubiquitination of SIRT6, preventing its degradation by the proteasome (PubMed:24043303). Likely mediates polyubiquitination and down-regulates plasma membrane expression of PD-L1/CD274, an immune inhibitory ligand critical for immune tolerance to self and antitumor immunity (PubMed:28813410). Negatively regulates TGF-beta signaling by modulating the basal level of SMAD3 via ubiquitin-mediated degradation (PubMed:24613385). Plays a role in the degradation of TP53 (PubMed:26634371). Mediates ubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation (PubMed:29883609). May regulate myosin assembly in striated muscles together with UBE4B and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). Ubiquitinates PPARG in macrophages playing a role in M2 macrophages polarization and angiogenesis (By similarity). {ECO:0000250|UniProtKB:A6HD62, ECO:0000250|UniProtKB:Q9WUD1, ECO:0000269|PubMed:10330192, ECO:0000269|PubMed:11146632, ECO:0000269|PubMed:11557750, ECO:0000269|PubMed:15466472, ECO:0000269|PubMed:17369820, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:19567782, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20724525, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24043303, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28813410, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30980393}. |
P61964 | WDR5 | S184 | Sugiyama | WD repeat-containing protein 5 (BMP2-induced 3-kb gene protein) | Contributes to histone modification (PubMed:16600877, PubMed:16829960, PubMed:19103755, PubMed:19131338, PubMed:19556245, PubMed:20018852). May position the N-terminus of histone H3 for efficient trimethylation at 'Lys-4' (PubMed:16829960). As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3 (PubMed:19556245). H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation (PubMed:18840606). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:19103755, PubMed:20018852). May regulate osteoblasts differentiation (By similarity). In association with RBBP5 and ASH2L, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000250|UniProtKB:P61965, ECO:0000269|PubMed:16600877, ECO:0000269|PubMed:16829960, ECO:0000269|PubMed:18840606, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}. |
Q9NVX2 | NLE1 | S331 | Sugiyama | Notchless protein homolog 1 | Plays a role in regulating Notch activity. Plays a role in regulating the expression of CDKN1A and several members of the Wnt pathway, probably via its effects on Notch activity. Required during embryogenesis for inner mass cell survival (By similarity). {ECO:0000250}. |
Q8WYL5 | SSH1 | S99 | SIGNOR | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q5S007 | LRRK2 | S2166 | Sugiyama | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q7LBC6 | KDM3B | S810 | Sugiyama | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
O43491 | EPB41L2 | S529 | Sugiyama | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
Q69YH5 | CDCA2 | S542 | SIGNOR | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.000014 | 4.840 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.000238 | 3.623 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.000317 | 3.498 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.000376 | 3.425 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.000593 | 3.227 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.000550 | 3.260 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.000679 | 3.168 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.000679 | 3.168 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.000679 | 3.168 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.000679 | 3.168 |
R-HSA-109704 | PI3K Cascade | 0.000809 | 3.092 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.000705 | 3.152 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.000792 | 3.102 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 0.001215 | 2.915 |
R-HSA-8866911 | TFAP2 (AP-2) family regulates transcription of cell cycle factors | 0.002082 | 2.681 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.002010 | 2.697 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.001771 | 2.752 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.001771 | 2.752 |
R-HSA-112399 | IRS-mediated signalling | 0.001756 | 2.755 |
R-HSA-69895 | Transcriptional activation of cell cycle inhibitor p21 | 0.002082 | 2.681 |
R-HSA-69560 | Transcriptional activation of p53 responsive genes | 0.002082 | 2.681 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.002020 | 2.695 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.002305 | 2.637 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.002607 | 2.584 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 0.003448 | 2.462 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.003331 | 2.477 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.003331 | 2.477 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.002957 | 2.529 |
R-HSA-2428924 | IGF1R signaling cascade | 0.003438 | 2.464 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.003438 | 2.464 |
R-HSA-1483255 | PI Metabolism | 0.003014 | 2.521 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.003331 | 2.477 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.003632 | 2.440 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.003756 | 2.425 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.004187 | 2.378 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.004766 | 2.322 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 0.004646 | 2.333 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.004536 | 2.343 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.004632 | 2.334 |
R-HSA-1640170 | Cell Cycle | 0.005257 | 2.279 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.005717 | 2.243 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.005819 | 2.235 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.006069 | 2.217 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.006069 | 2.217 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.006168 | 2.210 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 0.006418 | 2.193 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.006829 | 2.166 |
R-HSA-9675135 | Diseases of DNA repair | 0.007762 | 2.110 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 0.008542 | 2.068 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.008542 | 2.068 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.008374 | 2.077 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.008200 | 2.086 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.008552 | 2.068 |
R-HSA-429947 | Deadenylation of mRNA | 0.008627 | 2.064 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 0.009522 | 2.021 |
R-HSA-5654695 | PI-3K cascade:FGFR2 | 0.009834 | 2.007 |
R-HSA-5693538 | Homology Directed Repair | 0.009784 | 2.009 |
R-HSA-162582 | Signal Transduction | 0.009845 | 2.007 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 0.009953 | 2.002 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.010221 | 1.991 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.010221 | 1.991 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.011154 | 1.953 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.012586 | 1.900 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.012767 | 1.894 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.013698 | 1.863 |
R-HSA-2028269 | Signaling by Hippo | 0.013675 | 1.864 |
R-HSA-5654700 | FRS-mediated FGFR2 signaling | 0.014140 | 1.850 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.014188 | 1.848 |
R-HSA-2023837 | Signaling by FGFR2 amplification mutants | 0.018474 | 1.733 |
R-HSA-112308 | Presynaptic depolarization and calcium channel opening | 0.020792 | 1.682 |
R-HSA-5654221 | Phospholipase C-mediated cascade; FGFR2 | 0.020739 | 1.683 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.021942 | 1.659 |
R-HSA-2559583 | Cellular Senescence | 0.020075 | 1.697 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.021630 | 1.665 |
R-HSA-5688426 | Deubiquitination | 0.021858 | 1.660 |
R-HSA-190241 | FGFR2 ligand binding and activation | 0.023508 | 1.629 |
R-HSA-428540 | Activation of RAC1 | 0.024822 | 1.605 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.024822 | 1.605 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.026187 | 1.582 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.025826 | 1.588 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.025570 | 1.592 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.026492 | 1.577 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.027368 | 1.563 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.023838 | 1.623 |
R-HSA-74752 | Signaling by Insulin receptor | 0.027484 | 1.561 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.023854 | 1.622 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.026492 | 1.577 |
R-HSA-9707616 | Heme signaling | 0.027607 | 1.559 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.027974 | 1.553 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.028678 | 1.542 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.029470 | 1.531 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.029470 | 1.531 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 0.031315 | 1.504 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.031315 | 1.504 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.031315 | 1.504 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.029470 | 1.531 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.034916 | 1.457 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.035563 | 1.449 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.038533 | 1.414 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.035867 | 1.445 |
R-HSA-69481 | G2/M Checkpoints | 0.035919 | 1.445 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.040338 | 1.394 |
R-HSA-5467345 | Deletions in the AXIN1 gene destabilize the destruction complex | 0.040338 | 1.394 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.043645 | 1.360 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.043347 | 1.363 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.044903 | 1.348 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.043017 | 1.366 |
R-HSA-418885 | DCC mediated attractive signaling | 0.044808 | 1.349 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 0.044808 | 1.349 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.045524 | 1.342 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.048108 | 1.318 |
R-HSA-5654699 | SHC-mediated cascade:FGFR2 | 0.048996 | 1.310 |
R-HSA-9763198 | Impaired BRCA2 binding to SEM1 (DSS1) | 0.079050 | 1.102 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 0.079050 | 1.102 |
R-HSA-9709275 | Impaired BRCA2 translocation to the nucleus | 0.079050 | 1.102 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 0.079050 | 1.102 |
R-HSA-5624958 | ARL13B-mediated ciliary trafficking of INPP5E | 0.116204 | 0.935 |
R-HSA-352238 | Breakdown of the nuclear lamina | 0.116204 | 0.935 |
R-HSA-8853333 | Signaling by FGFR2 fusions | 0.116204 | 0.935 |
R-HSA-5609974 | Defective PGM1 causes PGM1-CDG | 0.116204 | 0.935 |
R-HSA-4085023 | Defective GFPT1 causes CMSTA1 | 0.116204 | 0.935 |
R-HSA-5619111 | Defective SLC20A2 causes idiopathic basal ganglia calcification 1 (IBGC1) | 0.116204 | 0.935 |
R-HSA-1299316 | TWIK-releated acid-sensitive K+ channel (TASK) | 0.116204 | 0.935 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 0.151861 | 0.819 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 0.186081 | 0.730 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.186081 | 0.730 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 0.186081 | 0.730 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 0.186081 | 0.730 |
R-HSA-5579012 | Defective MAOA causes BRUNS | 0.186081 | 0.730 |
R-HSA-77588 | SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs | 0.076218 | 1.118 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.088354 | 1.054 |
R-HSA-211163 | AKT-mediated inactivation of FOXO1A | 0.218922 | 0.660 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.218922 | 0.660 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 0.218922 | 0.660 |
R-HSA-3656532 | TGFBR1 KD Mutants in Cancer | 0.218922 | 0.660 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 0.050744 | 1.295 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 0.057042 | 1.244 |
R-HSA-4839744 | Signaling by APC mutants | 0.114138 | 0.943 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.114138 | 0.943 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.114138 | 0.943 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.114138 | 0.943 |
R-HSA-399710 | Activation of AMPA receptors | 0.250441 | 0.601 |
R-HSA-74713 | IRS activation | 0.250441 | 0.601 |
R-HSA-68911 | G2 Phase | 0.250441 | 0.601 |
R-HSA-3304356 | SMAD2/3 Phosphorylation Motif Mutants in Cancer | 0.250441 | 0.601 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.127666 | 0.894 |
R-HSA-4641265 | Repression of WNT target genes | 0.141546 | 0.849 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.141546 | 0.849 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.141546 | 0.849 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.141546 | 0.849 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.141546 | 0.849 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.141546 | 0.849 |
R-HSA-165160 | PDE3B signalling | 0.280689 | 0.552 |
R-HSA-109703 | PKB-mediated events | 0.280689 | 0.552 |
R-HSA-111957 | Cam-PDE 1 activation | 0.280689 | 0.552 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 0.280689 | 0.552 |
R-HSA-9865113 | Loss-of-function mutations in DBT cause MSUD2 | 0.280689 | 0.552 |
R-HSA-9907570 | Loss-of-function mutations in DLD cause MSUD3/DLDD | 0.280689 | 0.552 |
R-HSA-9652817 | Signaling by MAPK mutants | 0.280689 | 0.552 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.280689 | 0.552 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 0.053519 | 1.271 |
R-HSA-190375 | FGFR2c ligand binding and activation | 0.155726 | 0.808 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.093565 | 1.029 |
R-HSA-9865125 | Loss-of-function mutations in BCKDHA or BCKDHB cause MSUD | 0.309718 | 0.509 |
R-HSA-9912481 | Branched-chain ketoacid dehydrogenase kinase deficiency | 0.309718 | 0.509 |
R-HSA-9912529 | H139Hfs13* PPM1K causes a mild variant of MSUD | 0.309718 | 0.509 |
R-HSA-110312 | Translesion synthesis by REV1 | 0.184806 | 0.733 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.184806 | 0.733 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.079370 | 1.100 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.128070 | 0.893 |
R-HSA-5656121 | Translesion synthesis by POLI | 0.199621 | 0.700 |
R-HSA-176412 | Phosphorylation of the APC/C | 0.199621 | 0.700 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 0.199621 | 0.700 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 0.199621 | 0.700 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.337578 | 0.472 |
R-HSA-72731 | Recycling of eIF2:GDP | 0.337578 | 0.472 |
R-HSA-112412 | SOS-mediated signalling | 0.337578 | 0.472 |
R-HSA-111367 | SLBP independent Processing of Histone Pre-mRNAs | 0.337578 | 0.472 |
R-HSA-5655862 | Translesion synthesis by POLK | 0.214569 | 0.668 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 0.229615 | 0.639 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.364315 | 0.439 |
R-HSA-111995 | phospho-PLA2 pathway | 0.364315 | 0.439 |
R-HSA-8875656 | MET receptor recycling | 0.364315 | 0.439 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.364315 | 0.439 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.052855 | 1.277 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.052855 | 1.277 |
R-HSA-380287 | Centrosome maturation | 0.058617 | 1.232 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.104521 | 0.981 |
R-HSA-72187 | mRNA 3'-end processing | 0.104521 | 0.981 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.186556 | 0.729 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 0.259874 | 0.585 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 0.389974 | 0.409 |
R-HSA-170984 | ARMS-mediated activation | 0.389974 | 0.409 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 0.389974 | 0.409 |
R-HSA-201688 | WNT mediated activation of DVL | 0.389974 | 0.409 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.389974 | 0.409 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.109986 | 0.959 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.067960 | 1.168 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.196906 | 0.706 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.196906 | 0.706 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.196906 | 0.706 |
R-HSA-72649 | Translation initiation complex formation | 0.115587 | 0.937 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.153335 | 0.814 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.275031 | 0.561 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.121321 | 0.916 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.127186 | 0.896 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.217998 | 0.662 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.217998 | 0.662 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.414599 | 0.382 |
R-HSA-390450 | Folding of actin by CCT/TriC | 0.414599 | 0.382 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.414599 | 0.382 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.139294 | 0.856 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.228714 | 0.641 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.096986 | 1.013 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.096986 | 1.013 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.184992 | 0.733 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.305271 | 0.515 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.305271 | 0.515 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.305271 | 0.515 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.109391 | 0.961 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.250421 | 0.601 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.438231 | 0.358 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.335267 | 0.475 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 0.335267 | 0.475 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.271482 | 0.566 |
R-HSA-9865114 | Maple Syrup Urine Disease | 0.482676 | 0.316 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.298744 | 0.525 |
R-HSA-191859 | snRNP Assembly | 0.298744 | 0.525 |
R-HSA-170660 | Adenylate cyclase activating pathway | 0.503564 | 0.298 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 0.503564 | 0.298 |
R-HSA-72172 | mRNA Splicing | 0.139500 | 0.855 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.173871 | 0.760 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.383631 | 0.416 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.394642 | 0.404 |
R-HSA-390522 | Striated Muscle Contraction | 0.490339 | 0.310 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.459387 | 0.338 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.490645 | 0.309 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.078145 | 1.107 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.297681 | 0.526 |
R-HSA-2033519 | Activated point mutants of FGFR2 | 0.070679 | 1.151 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.053519 | 1.271 |
R-HSA-9766229 | Degradation of CDH1 | 0.416502 | 0.380 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.223523 | 0.651 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.223523 | 0.651 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.186556 | 0.729 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.118108 | 0.928 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.223523 | 0.651 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.135973 | 0.867 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.156454 | 0.806 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.109986 | 0.959 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.328054 | 0.484 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.176809 | 0.752 |
R-HSA-9664873 | Pexophagy | 0.414599 | 0.382 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.436384 | 0.360 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.156370 | 0.806 |
R-HSA-3371556 | Cellular response to heat stress | 0.481444 | 0.317 |
R-HSA-8939211 | ESR-mediated signaling | 0.370484 | 0.431 |
R-HSA-8983432 | Interleukin-15 signaling | 0.482676 | 0.316 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 0.503314 | 0.298 |
R-HSA-9020958 | Interleukin-21 signaling | 0.389974 | 0.409 |
R-HSA-198203 | PI3K/AKT activation | 0.414599 | 0.382 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.320309 | 0.494 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.130694 | 0.884 |
R-HSA-9614085 | FOXO-mediated transcription | 0.301748 | 0.520 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.228487 | 0.641 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.228487 | 0.641 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.280689 | 0.552 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 0.335267 | 0.475 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.253558 | 0.596 |
R-HSA-9839394 | TGFBR3 expression | 0.364869 | 0.438 |
R-HSA-69109 | Leading Strand Synthesis | 0.482676 | 0.316 |
R-HSA-69091 | Polymerase switching | 0.482676 | 0.316 |
R-HSA-9020558 | Interleukin-2 signaling | 0.438231 | 0.358 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.418452 | 0.378 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.450120 | 0.347 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.280673 | 0.552 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.146783 | 0.833 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.326310 | 0.486 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.186556 | 0.729 |
R-HSA-75205 | Dissolution of Fibrin Clot | 0.438231 | 0.358 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 0.350125 | 0.456 |
R-HSA-9028731 | Activated NTRK2 signals through FRS2 and FRS3 | 0.482676 | 0.316 |
R-HSA-202424 | Downstream TCR signaling | 0.386067 | 0.413 |
R-HSA-190704 | Oligomerization of connexins into connexons | 0.116204 | 0.935 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 0.057042 | 1.244 |
R-HSA-190377 | FGFR2b ligand binding and activation | 0.114138 | 0.943 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 0.250441 | 0.601 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 0.250441 | 0.601 |
R-HSA-165158 | Activation of AKT2 | 0.250441 | 0.601 |
R-HSA-8963901 | Chylomicron remodeling | 0.155726 | 0.808 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.063220 | 1.199 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.309718 | 0.509 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 0.199621 | 0.700 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.156454 | 0.806 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 0.229615 | 0.639 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.186556 | 0.729 |
R-HSA-69541 | Stabilization of p53 | 0.294601 | 0.531 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.186556 | 0.729 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.497002 | 0.304 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.315958 | 0.500 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.206516 | 0.685 |
R-HSA-5689603 | UCH proteinases | 0.266474 | 0.574 |
R-HSA-5654738 | Signaling by FGFR2 | 0.297800 | 0.526 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.207391 | 0.683 |
R-HSA-5610787 | Hedgehog 'off' state | 0.481527 | 0.317 |
R-HSA-8985947 | Interleukin-9 signaling | 0.364315 | 0.439 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.341823 | 0.466 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.268406 | 0.571 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.250441 | 0.601 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.337578 | 0.472 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.120853 | 0.918 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.438231 | 0.358 |
R-HSA-912446 | Meiotic recombination | 0.227176 | 0.644 |
R-HSA-5617833 | Cilium Assembly | 0.247310 | 0.607 |
R-HSA-169893 | Prolonged ERK activation events | 0.050744 | 1.295 |
R-HSA-392517 | Rap1 signalling | 0.077995 | 1.108 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.214569 | 0.668 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.482676 | 0.316 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.361480 | 0.442 |
R-HSA-6807070 | PTEN Regulation | 0.461626 | 0.336 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.148108 | 0.829 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.380845 | 0.419 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.500867 | 0.300 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 0.389974 | 0.409 |
R-HSA-165159 | MTOR signalling | 0.153335 | 0.814 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.477153 | 0.321 |
R-HSA-190236 | Signaling by FGFR | 0.465893 | 0.332 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.201557 | 0.696 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.079370 | 1.100 |
R-HSA-376176 | Signaling by ROBO receptors | 0.431195 | 0.365 |
R-HSA-73894 | DNA Repair | 0.072538 | 1.139 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.393952 | 0.405 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.170411 | 0.769 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.409312 | 0.388 |
R-HSA-112040 | G-protein mediated events | 0.092565 | 1.034 |
R-HSA-190827 | Transport of connexins along the secretory pathway | 0.116204 | 0.935 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.186081 | 0.730 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.186081 | 0.730 |
R-HSA-111446 | Activation of BIM and translocation to mitochondria | 0.186081 | 0.730 |
R-HSA-176974 | Unwinding of DNA | 0.088354 | 1.054 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.057042 | 1.244 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.250441 | 0.601 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 0.250441 | 0.601 |
R-HSA-9636569 | Suppression of autophagy | 0.250441 | 0.601 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.127666 | 0.894 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 0.280689 | 0.552 |
R-HSA-69478 | G2/M DNA replication checkpoint | 0.309718 | 0.509 |
R-HSA-9032845 | Activated NTRK2 signals through CDK5 | 0.337578 | 0.472 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.337578 | 0.472 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.091165 | 1.040 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 0.364315 | 0.439 |
R-HSA-9927354 | Co-stimulation by ICOS | 0.364315 | 0.439 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 0.389974 | 0.409 |
R-HSA-379398 | Enzymatic degradation of Dopamine by monoamine oxidase | 0.389974 | 0.409 |
R-HSA-380612 | Metabolism of serotonin | 0.414599 | 0.382 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 0.335267 | 0.475 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.272415 | 0.565 |
R-HSA-68949 | Orc1 removal from chromatin | 0.235894 | 0.627 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.350125 | 0.456 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 0.482676 | 0.316 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 0.503564 | 0.298 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.503564 | 0.298 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.372574 | 0.429 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.418452 | 0.378 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.351879 | 0.454 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.422413 | 0.374 |
R-HSA-6794361 | Neurexins and neuroligins | 0.235894 | 0.627 |
R-HSA-69242 | S Phase | 0.248846 | 0.604 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.147304 | 0.832 |
R-HSA-5358351 | Signaling by Hedgehog | 0.455065 | 0.342 |
R-HSA-111885 | Opioid Signalling | 0.337456 | 0.472 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.313687 | 0.504 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.296946 | 0.527 |
R-HSA-68877 | Mitotic Prometaphase | 0.103943 | 0.983 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.078145 | 1.107 |
R-HSA-68882 | Mitotic Anaphase | 0.114152 | 0.943 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.418239 | 0.379 |
R-HSA-5632684 | Hedgehog 'on' state | 0.409312 | 0.388 |
R-HSA-193648 | NRAGE signals death through JNK | 0.051298 | 1.290 |
R-HSA-74749 | Signal attenuation | 0.414599 | 0.382 |
R-HSA-180786 | Extension of Telomeres | 0.145531 | 0.837 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.164933 | 0.783 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.272415 | 0.565 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.381735 | 0.418 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.116905 | 0.932 |
R-HSA-392518 | Signal amplification | 0.503314 | 0.298 |
R-HSA-73886 | Chromosome Maintenance | 0.481444 | 0.317 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.228623 | 0.641 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.197294 | 0.705 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.238085 | 0.623 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.068892 | 1.162 |
R-HSA-69239 | Synthesis of DNA | 0.222691 | 0.652 |
R-HSA-202403 | TCR signaling | 0.240646 | 0.619 |
R-HSA-9005895 | Pervasive developmental disorders | 0.141546 | 0.849 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.141546 | 0.849 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.141546 | 0.849 |
R-HSA-5362798 | Release of Hh-Np from the secreting cell | 0.280689 | 0.552 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.337578 | 0.472 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 0.364315 | 0.439 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 0.364315 | 0.439 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 0.389974 | 0.409 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 0.389974 | 0.409 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.207391 | 0.683 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.228714 | 0.641 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.145531 | 0.837 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.438231 | 0.358 |
R-HSA-141333 | Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB | 0.460911 | 0.336 |
R-HSA-6811438 | Intra-Golgi traffic | 0.328054 | 0.484 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.400143 | 0.398 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.477153 | 0.321 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.503314 | 0.298 |
R-HSA-69275 | G2/M Transition | 0.228993 | 0.640 |
R-HSA-69306 | DNA Replication | 0.407350 | 0.390 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.138349 | 0.859 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.219363 | 0.659 |
R-HSA-170968 | Frs2-mediated activation | 0.155726 | 0.808 |
R-HSA-1266695 | Interleukin-7 signaling | 0.364869 | 0.438 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.131089 | 0.882 |
R-HSA-112043 | PLC beta mediated events | 0.068317 | 1.165 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.244727 | 0.611 |
R-HSA-193697 | p75NTR regulates axonogenesis | 0.389974 | 0.409 |
R-HSA-166208 | mTORC1-mediated signalling | 0.320309 | 0.494 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.364869 | 0.438 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 0.503564 | 0.298 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.323102 | 0.491 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.115868 | 0.936 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.425736 | 0.371 |
R-HSA-68886 | M Phase | 0.076088 | 1.119 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.337707 | 0.471 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.217998 | 0.662 |
R-HSA-199991 | Membrane Trafficking | 0.166604 | 0.778 |
R-HSA-1632852 | Macroautophagy | 0.122008 | 0.914 |
R-HSA-157579 | Telomere Maintenance | 0.458023 | 0.339 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.158354 | 0.800 |
R-HSA-187687 | Signalling to ERKs | 0.250421 | 0.601 |
R-HSA-397014 | Muscle contraction | 0.360697 | 0.443 |
R-HSA-74160 | Gene expression (Transcription) | 0.156014 | 0.807 |
R-HSA-9663891 | Selective autophagy | 0.369933 | 0.432 |
R-HSA-1483226 | Synthesis of PI | 0.114138 | 0.943 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.077995 | 1.108 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.309718 | 0.509 |
R-HSA-8963889 | Assembly of active LPL and LIPC lipase complexes | 0.128070 | 0.893 |
R-HSA-8847453 | Synthesis of PIPs in the nucleus | 0.337578 | 0.472 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.055690 | 1.254 |
R-HSA-111996 | Ca-dependent events | 0.153335 | 0.814 |
R-HSA-69190 | DNA strand elongation | 0.207391 | 0.683 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.290171 | 0.537 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.089172 | 1.050 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.192279 | 0.716 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 0.460911 | 0.336 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.460911 | 0.336 |
R-HSA-5689901 | Metalloprotease DUBs | 0.379482 | 0.421 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.482676 | 0.316 |
R-HSA-114452 | Activation of BH3-only proteins | 0.436384 | 0.360 |
R-HSA-389356 | Co-stimulation by CD28 | 0.405602 | 0.392 |
R-HSA-1236394 | Signaling by ERBB4 | 0.125941 | 0.900 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.322849 | 0.491 |
R-HSA-9659379 | Sensory processing of sound | 0.481290 | 0.318 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.191706 | 0.717 |
R-HSA-212436 | Generic Transcription Pathway | 0.354542 | 0.450 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 0.364315 | 0.439 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.379482 | 0.421 |
R-HSA-9842663 | Signaling by LTK | 0.482676 | 0.316 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.289615 | 0.538 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.329680 | 0.482 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.364240 | 0.439 |
R-HSA-9612973 | Autophagy | 0.185457 | 0.732 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 0.309718 | 0.509 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.110293 | 0.957 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.110314 | 0.957 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 0.229615 | 0.639 |
R-HSA-180746 | Nuclear import of Rev protein | 0.239526 | 0.621 |
R-HSA-9620244 | Long-term potentiation | 0.364869 | 0.438 |
R-HSA-9909396 | Circadian clock | 0.161630 | 0.791 |
R-HSA-422475 | Axon guidance | 0.244437 | 0.612 |
R-HSA-9033241 | Peroxisomal protein import | 0.298744 | 0.525 |
R-HSA-69206 | G1/S Transition | 0.355707 | 0.449 |
R-HSA-201556 | Signaling by ALK | 0.123992 | 0.907 |
R-HSA-111933 | Calmodulin induced events | 0.261388 | 0.583 |
R-HSA-9675108 | Nervous system development | 0.168567 | 0.773 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.243521 | 0.613 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.256662 | 0.591 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.064673 | 1.189 |
R-HSA-9854907 | Regulation of MITF-M dependent genes involved in metabolism | 0.186081 | 0.730 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.088354 | 1.054 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.218922 | 0.660 |
R-HSA-427652 | Sodium-coupled phosphate cotransporters | 0.280689 | 0.552 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.199621 | 0.700 |
R-HSA-8948747 | Regulation of PTEN localization | 0.337578 | 0.472 |
R-HSA-390696 | Adrenoceptors | 0.364315 | 0.439 |
R-HSA-444257 | RSK activation | 0.364315 | 0.439 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.389974 | 0.409 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.414599 | 0.382 |
R-HSA-379397 | Enzymatic degradation of dopamine by COMT | 0.414599 | 0.382 |
R-HSA-425381 | Bicarbonate transporters | 0.438231 | 0.358 |
R-HSA-9682385 | FLT3 signaling in disease | 0.261388 | 0.583 |
R-HSA-111997 | CaM pathway | 0.261388 | 0.583 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.227176 | 0.644 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.460911 | 0.336 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.294601 | 0.531 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.305739 | 0.515 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.305739 | 0.515 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.316893 | 0.499 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 0.482676 | 0.316 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.350356 | 0.455 |
R-HSA-1475029 | Reversible hydration of carbon dioxide | 0.503564 | 0.298 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.448785 | 0.348 |
R-HSA-190861 | Gap junction assembly | 0.503314 | 0.298 |
R-HSA-5576891 | Cardiac conduction | 0.402143 | 0.396 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.117047 | 0.932 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.394129 | 0.404 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.394129 | 0.404 |
R-HSA-201451 | Signaling by BMP | 0.156454 | 0.806 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.127186 | 0.896 |
R-HSA-3214842 | HDMs demethylate histones | 0.364869 | 0.438 |
R-HSA-1483166 | Synthesis of PA | 0.500867 | 0.300 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.161514 | 0.792 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.463579 | 0.334 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.075080 | 1.124 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.068393 | 1.165 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.146783 | 0.833 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 0.414599 | 0.382 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.316893 | 0.499 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.077647 | 1.110 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.161514 | 0.792 |
R-HSA-446728 | Cell junction organization | 0.455099 | 0.342 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.138349 | 0.859 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 0.405602 | 0.392 |
R-HSA-5689880 | Ub-specific processing proteases | 0.394129 | 0.404 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.392977 | 0.406 |
R-HSA-9006936 | Signaling by TGFB family members | 0.203307 | 0.692 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.217998 | 0.662 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.222691 | 0.652 |
R-HSA-1538133 | G0 and Early G1 | 0.463761 | 0.334 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.074713 | 1.127 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.176354 | 0.754 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 0.379482 | 0.421 |
R-HSA-1489509 | DAG and IP3 signaling | 0.372574 | 0.429 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.490339 | 0.310 |
R-HSA-418990 | Adherens junctions interactions | 0.391646 | 0.407 |
R-HSA-421270 | Cell-cell junction organization | 0.439714 | 0.357 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.222691 | 0.652 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.073778 | 1.132 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.393952 | 0.405 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.339211 | 0.470 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.394127 | 0.404 |
R-HSA-75893 | TNF signaling | 0.127186 | 0.896 |
R-HSA-373752 | Netrin-1 signaling | 0.065957 | 1.181 |
R-HSA-164944 | Nef and signal transduction | 0.309718 | 0.509 |
R-HSA-8963888 | Chylomicron assembly | 0.438231 | 0.358 |
R-HSA-5682910 | LGI-ADAM interactions | 0.438231 | 0.358 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.283489 | 0.547 |
R-HSA-8983711 | OAS antiviral response | 0.482676 | 0.316 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 0.503564 | 0.298 |
R-HSA-8949664 | Processing of SMDT1 | 0.503564 | 0.298 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.383631 | 0.416 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 0.436384 | 0.360 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.490339 | 0.310 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.102733 | 0.988 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.345750 | 0.461 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 0.393952 | 0.405 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.217998 | 0.662 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.379482 | 0.421 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.050744 | 1.295 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.120853 | 0.918 |
R-HSA-9007101 | Rab regulation of trafficking | 0.296946 | 0.527 |
R-HSA-1483257 | Phospholipid metabolism | 0.105688 | 0.976 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.214569 | 0.668 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.244727 | 0.611 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 0.389974 | 0.409 |
R-HSA-1296346 | Tandem pore domain potassium channels | 0.414599 | 0.382 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 0.335267 | 0.475 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.294601 | 0.531 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.408266 | 0.389 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.065957 | 1.181 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.056132 | 1.251 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.459387 | 0.338 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.500867 | 0.300 |
R-HSA-73887 | Death Receptor Signaling | 0.056132 | 1.251 |
R-HSA-1234174 | Cellular response to hypoxia | 0.354023 | 0.451 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.228714 | 0.641 |
R-HSA-447043 | Neurofascin interactions | 0.309718 | 0.509 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 0.214569 | 0.668 |
R-HSA-9694631 | Maturation of nucleoprotein | 0.259874 | 0.585 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.414599 | 0.382 |
R-HSA-210990 | PECAM1 interactions | 0.438231 | 0.358 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.280525 | 0.552 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.477153 | 0.321 |
R-HSA-75153 | Apoptotic execution phase | 0.184992 | 0.733 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 0.335267 | 0.475 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.104521 | 0.981 |
R-HSA-8851680 | Butyrophilin (BTN) family interactions | 0.389974 | 0.409 |
R-HSA-5609975 | Diseases associated with glycosylation precursor biosynthesis | 0.477153 | 0.321 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.172025 | 0.764 |
R-HSA-913531 | Interferon Signaling | 0.497441 | 0.303 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.335539 | 0.474 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.091165 | 1.040 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 0.101791 | 0.992 |
R-HSA-391908 | Prostanoid ligand receptors | 0.438231 | 0.358 |
R-HSA-9683610 | Maturation of nucleoprotein | 0.503564 | 0.298 |
R-HSA-9827857 | Specification of primordial germ cells | 0.229615 | 0.639 |
R-HSA-2586552 | Signaling by Leptin | 0.414599 | 0.382 |
R-HSA-8963898 | Plasma lipoprotein assembly | 0.350125 | 0.456 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.364315 | 0.439 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.389974 | 0.409 |
R-HSA-9762292 | Regulation of CDH11 function | 0.414599 | 0.382 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.481290 | 0.318 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.434228 | 0.362 |
R-HSA-373760 | L1CAM interactions | 0.445878 | 0.351 |
R-HSA-8963693 | Aspartate and asparagine metabolism | 0.450169 | 0.347 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 0.350125 | 0.456 |
R-HSA-354192 | Integrin signaling | 0.477153 | 0.321 |
R-HSA-9008059 | Interleukin-37 signaling | 0.063220 | 1.199 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.389974 | 0.409 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.408266 | 0.389 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.503314 | 0.298 |
R-HSA-264876 | Insulin processing | 0.393952 | 0.405 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.503314 | 0.298 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.176354 | 0.754 |
R-HSA-5205647 | Mitophagy | 0.503314 | 0.298 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.244727 | 0.611 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.320309 | 0.494 |
R-HSA-2262752 | Cellular responses to stress | 0.508367 | 0.294 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.510983 | 0.292 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.515987 | 0.287 |
R-HSA-1280218 | Adaptive Immune System | 0.517833 | 0.286 |
R-HSA-1500931 | Cell-Cell communication | 0.518796 | 0.285 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.520990 | 0.283 |
R-HSA-399956 | CRMPs in Sema3A signaling | 0.523610 | 0.281 |
R-HSA-9859138 | BCKDH synthesizes BCAA-CoA from KIC, KMVA, KIV | 0.523610 | 0.281 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 0.523610 | 0.281 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.523610 | 0.281 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.523610 | 0.281 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.523610 | 0.281 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 0.523610 | 0.281 |
R-HSA-1483115 | Hydrolysis of LPC | 0.523610 | 0.281 |
R-HSA-5578768 | Physiological factors | 0.523610 | 0.281 |
R-HSA-8963896 | HDL assembly | 0.523610 | 0.281 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.523610 | 0.281 |
R-HSA-1482798 | Acyl chain remodeling of CL | 0.523610 | 0.281 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.526028 | 0.279 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.527404 | 0.278 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.528613 | 0.277 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.528613 | 0.277 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.528613 | 0.277 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.528613 | 0.277 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.528613 | 0.277 |
R-HSA-1227986 | Signaling by ERBB2 | 0.530885 | 0.275 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.530885 | 0.275 |
R-HSA-983189 | Kinesins | 0.530885 | 0.275 |
R-HSA-1500620 | Meiosis | 0.532926 | 0.273 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.532926 | 0.273 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.540664 | 0.267 |
R-HSA-4641257 | Degradation of AXIN | 0.540931 | 0.267 |
R-HSA-4641258 | Degradation of DVL | 0.540931 | 0.267 |
R-HSA-419037 | NCAM1 interactions | 0.540931 | 0.267 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.542848 | 0.265 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.542848 | 0.265 |
R-HSA-170670 | Adenylate cyclase inhibitory pathway | 0.542848 | 0.265 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 0.542848 | 0.265 |
R-HSA-8964315 | G beta:gamma signalling through BTK | 0.542848 | 0.265 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.542848 | 0.265 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.542848 | 0.265 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 0.542848 | 0.265 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 0.542848 | 0.265 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 0.542848 | 0.265 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.542848 | 0.265 |
R-HSA-379401 | Dopamine clearance from the synaptic cleft | 0.542848 | 0.265 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.542848 | 0.265 |
R-HSA-416700 | Other semaphorin interactions | 0.542848 | 0.265 |
R-HSA-5683057 | MAPK family signaling cascades | 0.546905 | 0.262 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.549567 | 0.260 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.549664 | 0.260 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.550324 | 0.259 |
R-HSA-8875878 | MET promotes cell motility | 0.553023 | 0.257 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.553023 | 0.257 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.553023 | 0.257 |
R-HSA-1474165 | Reproduction | 0.556853 | 0.254 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.557769 | 0.254 |
R-HSA-438064 | Post NMDA receptor activation events | 0.557769 | 0.254 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 0.561309 | 0.251 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.561309 | 0.251 |
R-HSA-9664420 | Killing mechanisms | 0.561309 | 0.251 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.561309 | 0.251 |
R-HSA-5576886 | Phase 4 - resting membrane potential | 0.561309 | 0.251 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.561309 | 0.251 |
R-HSA-71262 | Carnitine synthesis | 0.561309 | 0.251 |
R-HSA-5635838 | Activation of SMO | 0.561309 | 0.251 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.564220 | 0.249 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.564220 | 0.249 |
R-HSA-451927 | Interleukin-2 family signaling | 0.576526 | 0.239 |
R-HSA-9646399 | Aggrephagy | 0.576526 | 0.239 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.576526 | 0.239 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.578533 | 0.238 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.578533 | 0.238 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.579027 | 0.237 |
R-HSA-5576893 | Phase 2 - plateau phase | 0.579027 | 0.237 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 0.579027 | 0.237 |
R-HSA-964975 | Vitamin B6 activation to pyridoxal phosphate | 0.579027 | 0.237 |
R-HSA-70370 | Galactose catabolism | 0.579027 | 0.237 |
R-HSA-5357801 | Programmed Cell Death | 0.579697 | 0.237 |
R-HSA-8953897 | Cellular responses to stimuli | 0.581369 | 0.236 |
R-HSA-73884 | Base Excision Repair | 0.581885 | 0.235 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.587934 | 0.231 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.587934 | 0.231 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.596029 | 0.225 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 0.596029 | 0.225 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 0.596029 | 0.225 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.596029 | 0.225 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.596772 | 0.224 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.597534 | 0.224 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.599113 | 0.222 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.599113 | 0.222 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.599113 | 0.222 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.599259 | 0.222 |
R-HSA-5653656 | Vesicle-mediated transport | 0.603497 | 0.219 |
R-HSA-391251 | Protein folding | 0.605227 | 0.218 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.605227 | 0.218 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.605227 | 0.218 |
R-HSA-913709 | O-linked glycosylation of mucins | 0.605677 | 0.218 |
R-HSA-109581 | Apoptosis | 0.610680 | 0.214 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 0.612346 | 0.213 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 0.612346 | 0.213 |
R-HSA-418217 | G beta:gamma signalling through PLC beta | 0.612346 | 0.213 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.612346 | 0.213 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.612346 | 0.213 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.612346 | 0.213 |
R-HSA-500657 | Presynaptic function of Kainate receptors | 0.612346 | 0.213 |
R-HSA-164378 | PKA activation in glucagon signalling | 0.612346 | 0.213 |
R-HSA-163615 | PKA activation | 0.612346 | 0.213 |
R-HSA-5358508 | Mismatch Repair | 0.612346 | 0.213 |
R-HSA-196791 | Vitamin D (calciferol) metabolism | 0.612346 | 0.213 |
R-HSA-432142 | Platelet sensitization by LDL | 0.612346 | 0.213 |
R-HSA-3928664 | Ephrin signaling | 0.612346 | 0.213 |
R-HSA-180292 | GAB1 signalosome | 0.612346 | 0.213 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.612729 | 0.213 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.619832 | 0.208 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.619917 | 0.208 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.619917 | 0.208 |
R-HSA-8854214 | TBC/RABGAPs | 0.620781 | 0.207 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.623092 | 0.205 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.623092 | 0.205 |
R-HSA-5654710 | PI-3K cascade:FGFR3 | 0.628005 | 0.202 |
R-HSA-110320 | Translesion Synthesis by POLH | 0.628005 | 0.202 |
R-HSA-912631 | Regulation of signaling by CBL | 0.628005 | 0.202 |
R-HSA-140179 | Amine Oxidase reactions | 0.628005 | 0.202 |
R-HSA-449836 | Other interleukin signaling | 0.628005 | 0.202 |
R-HSA-9834899 | Specification of the neural plate border | 0.628005 | 0.202 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.628005 | 0.202 |
R-HSA-8964058 | HDL remodeling | 0.628005 | 0.202 |
R-HSA-9907900 | Proteasome assembly | 0.631272 | 0.200 |
R-HSA-190828 | Gap junction trafficking | 0.631272 | 0.200 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.631272 | 0.200 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.631272 | 0.200 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.631601 | 0.200 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.631601 | 0.200 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.634440 | 0.198 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.639975 | 0.194 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.639975 | 0.194 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.641535 | 0.193 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.641535 | 0.193 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.641535 | 0.193 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.641535 | 0.193 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.642317 | 0.192 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.643033 | 0.192 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.643033 | 0.192 |
R-HSA-5654720 | PI-3K cascade:FGFR4 | 0.643033 | 0.192 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 0.643033 | 0.192 |
R-HSA-6807004 | Negative regulation of MET activity | 0.643033 | 0.192 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.643033 | 0.192 |
R-HSA-1482922 | Acyl chain remodelling of PI | 0.643033 | 0.192 |
R-HSA-391903 | Eicosanoid ligand-binding receptors | 0.643033 | 0.192 |
R-HSA-3322077 | Glycogen synthesis | 0.643033 | 0.192 |
R-HSA-4086398 | Ca2+ pathway | 0.648215 | 0.188 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.649921 | 0.187 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.651571 | 0.186 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.655670 | 0.183 |
R-HSA-202040 | G-protein activation | 0.657454 | 0.182 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 0.657454 | 0.182 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.657454 | 0.182 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.657454 | 0.182 |
R-HSA-69186 | Lagging Strand Synthesis | 0.657454 | 0.182 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 0.657454 | 0.182 |
R-HSA-1482925 | Acyl chain remodelling of PG | 0.657454 | 0.182 |
R-HSA-8951664 | Neddylation | 0.660053 | 0.180 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.661383 | 0.180 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.661383 | 0.180 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.664289 | 0.178 |
R-HSA-8852135 | Protein ubiquitination | 0.664289 | 0.178 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.664289 | 0.178 |
R-HSA-4839726 | Chromatin organization | 0.669488 | 0.174 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.671131 | 0.173 |
R-HSA-162909 | Host Interactions of HIV factors | 0.671170 | 0.173 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 0.671293 | 0.173 |
R-HSA-5654706 | FRS-mediated FGFR3 signaling | 0.671293 | 0.173 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.671293 | 0.173 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.671293 | 0.173 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.671293 | 0.173 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.671293 | 0.173 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.671293 | 0.173 |
R-HSA-2022377 | Metabolism of Angiotensinogen to Angiotensins | 0.671293 | 0.173 |
R-HSA-166520 | Signaling by NTRKs | 0.678946 | 0.168 |
R-HSA-9694635 | Translation of Structural Proteins | 0.679824 | 0.168 |
R-HSA-73893 | DNA Damage Bypass | 0.680338 | 0.167 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.680338 | 0.167 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.680338 | 0.167 |
R-HSA-380108 | Chemokine receptors bind chemokines | 0.680338 | 0.167 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.683706 | 0.165 |
R-HSA-5654689 | PI-3K cascade:FGFR1 | 0.684574 | 0.165 |
R-HSA-5654712 | FRS-mediated FGFR4 signaling | 0.684574 | 0.165 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.684574 | 0.165 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.684574 | 0.165 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.684574 | 0.165 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.684574 | 0.165 |
R-HSA-189200 | Cellular hexose transport | 0.684574 | 0.165 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.689487 | 0.161 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.693961 | 0.159 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.697320 | 0.157 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 0.697320 | 0.157 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 0.697320 | 0.157 |
R-HSA-446210 | Synthesis of UDP-N-acetyl-glucosamine | 0.697320 | 0.157 |
R-HSA-8854691 | Interleukin-20 family signaling | 0.697320 | 0.157 |
R-HSA-3000170 | Syndecan interactions | 0.697320 | 0.157 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.697320 | 0.157 |
R-HSA-982772 | Growth hormone receptor signaling | 0.697320 | 0.157 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.698418 | 0.156 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.698418 | 0.156 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.699680 | 0.155 |
R-HSA-446652 | Interleukin-1 family signaling | 0.700560 | 0.155 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.700794 | 0.154 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.702115 | 0.154 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.702115 | 0.154 |
R-HSA-6806834 | Signaling by MET | 0.702115 | 0.154 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.702115 | 0.154 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.703096 | 0.153 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.703096 | 0.153 |
R-HSA-9609507 | Protein localization | 0.705808 | 0.151 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.707136 | 0.150 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 0.709551 | 0.149 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.709551 | 0.149 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.709551 | 0.149 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.709551 | 0.149 |
R-HSA-428930 | Thromboxane signalling through TP receptor | 0.709551 | 0.149 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 0.709551 | 0.149 |
R-HSA-446199 | Synthesis of dolichyl-phosphate | 0.709551 | 0.149 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.715643 | 0.145 |
R-HSA-445355 | Smooth Muscle Contraction | 0.715643 | 0.145 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.715643 | 0.145 |
R-HSA-5654693 | FRS-mediated FGFR1 signaling | 0.721288 | 0.142 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.721288 | 0.142 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.721288 | 0.142 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.721288 | 0.142 |
R-HSA-420029 | Tight junction interactions | 0.721288 | 0.142 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.721288 | 0.142 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.721288 | 0.142 |
R-HSA-3000157 | Laminin interactions | 0.721288 | 0.142 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 0.721288 | 0.142 |
R-HSA-211000 | Gene Silencing by RNA | 0.721614 | 0.142 |
R-HSA-9843745 | Adipogenesis | 0.723127 | 0.141 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.723941 | 0.140 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.725417 | 0.139 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.727593 | 0.138 |
R-HSA-416476 | G alpha (q) signalling events | 0.732011 | 0.135 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.732033 | 0.135 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.732552 | 0.135 |
R-HSA-9865118 | Diseases of branched-chain amino acid catabolism | 0.732552 | 0.135 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.732552 | 0.135 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.732552 | 0.135 |
R-HSA-525793 | Myogenesis | 0.732552 | 0.135 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 0.732552 | 0.135 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.732552 | 0.135 |
R-HSA-877300 | Interferon gamma signaling | 0.735979 | 0.133 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.736605 | 0.133 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.738588 | 0.132 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.739924 | 0.131 |
R-HSA-177929 | Signaling by EGFR | 0.739924 | 0.131 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.743361 | 0.129 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 0.743361 | 0.129 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.743361 | 0.129 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.743361 | 0.129 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.743361 | 0.129 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.743361 | 0.129 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 0.743361 | 0.129 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 0.743361 | 0.129 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.743361 | 0.129 |
R-HSA-5621480 | Dectin-2 family | 0.747614 | 0.126 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.753734 | 0.123 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.753734 | 0.123 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.753734 | 0.123 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.753734 | 0.123 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 0.753734 | 0.123 |
R-HSA-73614 | Pyrimidine salvage | 0.753734 | 0.123 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.754345 | 0.122 |
R-HSA-6782135 | Dual incision in TC-NER | 0.755109 | 0.122 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.755109 | 0.122 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.756793 | 0.121 |
R-HSA-195721 | Signaling by WNT | 0.758797 | 0.120 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.761460 | 0.118 |
R-HSA-420499 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 0.761861 | 0.118 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 0.763688 | 0.117 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 0.763688 | 0.117 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.763688 | 0.117 |
R-HSA-210745 | Regulation of gene expression in beta cells | 0.763688 | 0.117 |
R-HSA-1592389 | Activation of Matrix Metalloproteinases | 0.763688 | 0.117 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.763688 | 0.117 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 0.763688 | 0.117 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.763688 | 0.117 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.766774 | 0.115 |
R-HSA-1236974 | ER-Phagosome pathway | 0.767860 | 0.115 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.768936 | 0.114 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.769523 | 0.114 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.771996 | 0.112 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.773241 | 0.112 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 0.773241 | 0.112 |
R-HSA-2424491 | DAP12 signaling | 0.773241 | 0.112 |
R-HSA-112311 | Neurotransmitter clearance | 0.773241 | 0.112 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.773241 | 0.112 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 0.773241 | 0.112 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.773241 | 0.112 |
R-HSA-112310 | Neurotransmitter release cycle | 0.773735 | 0.111 |
R-HSA-445717 | Aquaporin-mediated transport | 0.776450 | 0.110 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.777125 | 0.110 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 0.782408 | 0.107 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 0.782408 | 0.107 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.782408 | 0.107 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.782408 | 0.107 |
R-HSA-5694530 | Cargo concentration in the ER | 0.782408 | 0.107 |
R-HSA-186763 | Downstream signal transduction | 0.782408 | 0.107 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.783193 | 0.106 |
R-HSA-186797 | Signaling by PDGF | 0.783193 | 0.106 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.783193 | 0.106 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.787354 | 0.104 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.787354 | 0.104 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.789758 | 0.103 |
R-HSA-8848021 | Signaling by PTK6 | 0.789758 | 0.103 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.790632 | 0.102 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.791205 | 0.102 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.791205 | 0.102 |
R-HSA-112316 | Neuronal System | 0.791422 | 0.102 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.791776 | 0.101 |
R-HSA-8953854 | Metabolism of RNA | 0.791903 | 0.101 |
R-HSA-418555 | G alpha (s) signalling events | 0.793621 | 0.100 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.793621 | 0.100 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.796126 | 0.099 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.796146 | 0.099 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.796611 | 0.099 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.796734 | 0.099 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.796734 | 0.099 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.799647 | 0.097 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.799647 | 0.097 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.799647 | 0.097 |
R-HSA-9930044 | Nuclear RNA decay | 0.799647 | 0.097 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.799647 | 0.097 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.799647 | 0.097 |
R-HSA-9733709 | Cardiogenesis | 0.799647 | 0.097 |
R-HSA-159418 | Recycling of bile acids and salts | 0.799647 | 0.097 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.800270 | 0.097 |
R-HSA-68875 | Mitotic Prophase | 0.801414 | 0.096 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.802362 | 0.096 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.806467 | 0.093 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.807748 | 0.093 |
R-HSA-1482788 | Acyl chain remodelling of PC | 0.807748 | 0.093 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.807748 | 0.093 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.807748 | 0.093 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.809276 | 0.092 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.810511 | 0.091 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.810511 | 0.091 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.811516 | 0.091 |
R-HSA-2132295 | MHC class II antigen presentation | 0.814930 | 0.089 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.815522 | 0.089 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.815522 | 0.089 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.815522 | 0.089 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.815522 | 0.089 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.815522 | 0.089 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.820012 | 0.086 |
R-HSA-5218859 | Regulated Necrosis | 0.820012 | 0.086 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 0.822982 | 0.085 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.822982 | 0.085 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.822982 | 0.085 |
R-HSA-1482839 | Acyl chain remodelling of PE | 0.822982 | 0.085 |
R-HSA-169911 | Regulation of Apoptosis | 0.822982 | 0.085 |
R-HSA-381042 | PERK regulates gene expression | 0.822982 | 0.085 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.824603 | 0.084 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.826000 | 0.083 |
R-HSA-422356 | Regulation of insulin secretion | 0.826000 | 0.083 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.826000 | 0.083 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.826000 | 0.083 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.826000 | 0.083 |
R-HSA-194138 | Signaling by VEGF | 0.827683 | 0.082 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.828396 | 0.082 |
R-HSA-3371511 | HSF1 activation | 0.830140 | 0.081 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.830140 | 0.081 |
R-HSA-163560 | Triglyceride catabolism | 0.830140 | 0.081 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.830140 | 0.081 |
R-HSA-8853659 | RET signaling | 0.830140 | 0.081 |
R-HSA-3214847 | HATs acetylate histones | 0.830612 | 0.081 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.835119 | 0.078 |
R-HSA-70171 | Glycolysis | 0.835119 | 0.078 |
R-HSA-975634 | Retinoid metabolism and transport | 0.836236 | 0.078 |
R-HSA-110331 | Cleavage of the damaged purine | 0.837010 | 0.077 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.837010 | 0.077 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.837010 | 0.077 |
R-HSA-390247 | Beta-oxidation of very long chain fatty acids | 0.837010 | 0.077 |
R-HSA-196757 | Metabolism of folate and pterines | 0.837010 | 0.077 |
R-HSA-9711123 | Cellular response to chemical stress | 0.837808 | 0.077 |
R-HSA-73927 | Depurination | 0.843602 | 0.074 |
R-HSA-1266738 | Developmental Biology | 0.844187 | 0.074 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.846375 | 0.072 |
R-HSA-162587 | HIV Life Cycle | 0.846375 | 0.072 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.849928 | 0.071 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.849928 | 0.071 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.849928 | 0.071 |
R-HSA-9648002 | RAS processing | 0.849928 | 0.071 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.851126 | 0.070 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.852127 | 0.069 |
R-HSA-3371568 | Attenuation phase | 0.855999 | 0.068 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.855999 | 0.068 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.855999 | 0.068 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.855999 | 0.068 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.855999 | 0.068 |
R-HSA-167169 | HIV Transcription Elongation | 0.855999 | 0.068 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.855999 | 0.068 |
R-HSA-5260271 | Diseases of Immune System | 0.855999 | 0.068 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.855999 | 0.068 |
R-HSA-202433 | Generation of second messenger molecules | 0.855999 | 0.068 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.855999 | 0.068 |
R-HSA-8982491 | Glycogen metabolism | 0.855999 | 0.068 |
R-HSA-9833110 | RSV-host interactions | 0.856133 | 0.067 |
R-HSA-163125 | Post-translational modification: synthesis of GPI-anchored proteins | 0.856133 | 0.067 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.860357 | 0.065 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.861824 | 0.065 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.861824 | 0.065 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 0.861824 | 0.065 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.861824 | 0.065 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.861824 | 0.065 |
R-HSA-9694548 | Maturation of spike protein | 0.861824 | 0.065 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.867414 | 0.062 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.867414 | 0.062 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.867414 | 0.062 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.867414 | 0.062 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.867414 | 0.062 |
R-HSA-9683701 | Translation of Structural Proteins | 0.867414 | 0.062 |
R-HSA-4086400 | PCP/CE pathway | 0.869062 | 0.061 |
R-HSA-388396 | GPCR downstream signalling | 0.869868 | 0.061 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.871221 | 0.060 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.871221 | 0.060 |
R-HSA-991365 | Activation of GABAB receptors | 0.872778 | 0.059 |
R-HSA-977444 | GABA B receptor activation | 0.872778 | 0.059 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.872778 | 0.059 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.872778 | 0.059 |
R-HSA-73928 | Depyrimidination | 0.872778 | 0.059 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.874768 | 0.058 |
R-HSA-163685 | Integration of energy metabolism | 0.874782 | 0.058 |
R-HSA-9609690 | HCMV Early Events | 0.876700 | 0.057 |
R-HSA-9833482 | PKR-mediated signaling | 0.877266 | 0.057 |
R-HSA-5654743 | Signaling by FGFR4 | 0.877926 | 0.057 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.877926 | 0.057 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 0.877926 | 0.057 |
R-HSA-9948299 | Ribosome-associated quality control | 0.880944 | 0.055 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 0.881187 | 0.055 |
R-HSA-162906 | HIV Infection | 0.882085 | 0.054 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.882865 | 0.054 |
R-HSA-69236 | G1 Phase | 0.882865 | 0.054 |
R-HSA-2172127 | DAP12 interactions | 0.882865 | 0.054 |
R-HSA-375280 | Amine ligand-binding receptors | 0.882865 | 0.054 |
R-HSA-5683826 | Surfactant metabolism | 0.882865 | 0.054 |
R-HSA-9664417 | Leishmania phagocytosis | 0.886841 | 0.052 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.886841 | 0.052 |
R-HSA-9664407 | Parasite infection | 0.886841 | 0.052 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.887605 | 0.052 |
R-HSA-774815 | Nucleosome assembly | 0.887605 | 0.052 |
R-HSA-5654741 | Signaling by FGFR3 | 0.887605 | 0.052 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 0.887605 | 0.052 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.887605 | 0.052 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.887605 | 0.052 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.887605 | 0.052 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.887605 | 0.052 |
R-HSA-9824272 | Somitogenesis | 0.887605 | 0.052 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.888104 | 0.052 |
R-HSA-449147 | Signaling by Interleukins | 0.889503 | 0.051 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.889693 | 0.051 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.892154 | 0.050 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.892154 | 0.050 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.892154 | 0.050 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.892154 | 0.050 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.892268 | 0.050 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.893329 | 0.049 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.894199 | 0.049 |
R-HSA-9734767 | Developmental Cell Lineages | 0.896210 | 0.048 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.896518 | 0.047 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.897258 | 0.047 |
R-HSA-5620924 | Intraflagellar transport | 0.900707 | 0.045 |
R-HSA-9634597 | GPER1 signaling | 0.900707 | 0.045 |
R-HSA-9031628 | NGF-stimulated transcription | 0.900707 | 0.045 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.901034 | 0.045 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.902382 | 0.045 |
R-HSA-70326 | Glucose metabolism | 0.905733 | 0.043 |
R-HSA-2980736 | Peptide hormone metabolism | 0.905733 | 0.043 |
R-HSA-9748787 | Azathioprine ADME | 0.908582 | 0.042 |
R-HSA-70895 | Branched-chain amino acid catabolism | 0.912283 | 0.040 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.912283 | 0.040 |
R-HSA-9758941 | Gastrulation | 0.912652 | 0.040 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.914921 | 0.039 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.915834 | 0.038 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.915834 | 0.038 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.915834 | 0.038 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.916049 | 0.038 |
R-HSA-1221632 | Meiotic synapsis | 0.919241 | 0.037 |
R-HSA-8956320 | Nucleotide biosynthesis | 0.919241 | 0.037 |
R-HSA-3781865 | Diseases of glycosylation | 0.920423 | 0.036 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.922511 | 0.035 |
R-HSA-1989781 | PPARA activates gene expression | 0.925494 | 0.034 |
R-HSA-3214815 | HDACs deacetylate histones | 0.925649 | 0.034 |
R-HSA-418597 | G alpha (z) signalling events | 0.925649 | 0.034 |
R-HSA-9753281 | Paracetamol ADME | 0.925649 | 0.034 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.925649 | 0.034 |
R-HSA-5654736 | Signaling by FGFR1 | 0.928659 | 0.032 |
R-HSA-5578775 | Ion homeostasis | 0.928659 | 0.032 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.928659 | 0.032 |
R-HSA-8935690 | Digestion | 0.928659 | 0.032 |
R-HSA-9610379 | HCMV Late Events | 0.929382 | 0.032 |
R-HSA-372790 | Signaling by GPCR | 0.935088 | 0.029 |
R-HSA-8979227 | Triglyceride metabolism | 0.936980 | 0.028 |
R-HSA-186712 | Regulation of beta-cell development | 0.936980 | 0.028 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.936980 | 0.028 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.939533 | 0.027 |
R-HSA-977443 | GABA receptor activation | 0.939533 | 0.027 |
R-HSA-351202 | Metabolism of polyamines | 0.939533 | 0.027 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.939533 | 0.027 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.939533 | 0.027 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.939533 | 0.027 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.939533 | 0.027 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.939533 | 0.027 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.939533 | 0.027 |
R-HSA-450294 | MAP kinase activation | 0.941982 | 0.026 |
R-HSA-8956321 | Nucleotide salvage | 0.941982 | 0.026 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.941982 | 0.026 |
R-HSA-1268020 | Mitochondrial protein import | 0.944332 | 0.025 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.944332 | 0.025 |
R-HSA-9020702 | Interleukin-1 signaling | 0.944806 | 0.025 |
R-HSA-5619102 | SLC transporter disorders | 0.946205 | 0.024 |
R-HSA-373755 | Semaphorin interactions | 0.946587 | 0.024 |
R-HSA-8963743 | Digestion and absorption | 0.946587 | 0.024 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.946656 | 0.024 |
R-HSA-597592 | Post-translational protein modification | 0.949437 | 0.023 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.950180 | 0.022 |
R-HSA-5173105 | O-linked glycosylation | 0.952346 | 0.021 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.952346 | 0.021 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.952937 | 0.021 |
R-HSA-196807 | Nicotinate metabolism | 0.954732 | 0.020 |
R-HSA-418346 | Platelet homeostasis | 0.955053 | 0.020 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.955053 | 0.020 |
R-HSA-167172 | Transcription of the HIV genome | 0.956566 | 0.019 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.956933 | 0.019 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.958122 | 0.019 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.960015 | 0.018 |
R-HSA-448424 | Interleukin-17 signaling | 0.960015 | 0.018 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.963191 | 0.016 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.963466 | 0.016 |
R-HSA-9679506 | SARS-CoV Infections | 0.963739 | 0.016 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.964683 | 0.016 |
R-HSA-9749641 | Aspirin ADME | 0.964683 | 0.016 |
R-HSA-418594 | G alpha (i) signalling events | 0.965253 | 0.015 |
R-HSA-9609646 | HCMV Infection | 0.966087 | 0.015 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.966114 | 0.015 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 0.966114 | 0.015 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.967488 | 0.014 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.968806 | 0.014 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.969301 | 0.014 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.971285 | 0.013 |
R-HSA-5619084 | ABC transporter disorders | 0.971285 | 0.013 |
R-HSA-191273 | Cholesterol biosynthesis | 0.971285 | 0.013 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 0.972449 | 0.012 |
R-HSA-5579029 | Metabolic disorders of biological oxidation enzymes | 0.972449 | 0.012 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.973552 | 0.012 |
R-HSA-9711097 | Cellular response to starvation | 0.975944 | 0.011 |
R-HSA-6798695 | Neutrophil degranulation | 0.976539 | 0.010 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.976654 | 0.010 |
R-HSA-390918 | Peroxisomal lipid metabolism | 0.977601 | 0.010 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.979381 | 0.009 |
R-HSA-114608 | Platelet degranulation | 0.980573 | 0.009 |
R-HSA-70268 | Pyruvate metabolism | 0.981020 | 0.008 |
R-HSA-157118 | Signaling by NOTCH | 0.982249 | 0.008 |
R-HSA-446219 | Synthesis of substrates in N-glycan biosythesis | 0.983738 | 0.007 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.983918 | 0.007 |
R-HSA-168256 | Immune System | 0.983994 | 0.007 |
R-HSA-72306 | tRNA processing | 0.984126 | 0.007 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.984571 | 0.007 |
R-HSA-9658195 | Leishmania infection | 0.984822 | 0.007 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.984822 | 0.007 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.984858 | 0.007 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.985413 | 0.006 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.985798 | 0.006 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.986375 | 0.006 |
R-HSA-1474290 | Collagen formation | 0.986375 | 0.006 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.987968 | 0.005 |
R-HSA-1296071 | Potassium Channels | 0.987968 | 0.005 |
R-HSA-168255 | Influenza Infection | 0.988149 | 0.005 |
R-HSA-72766 | Translation | 0.989310 | 0.005 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.990581 | 0.004 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.991364 | 0.004 |
R-HSA-983712 | Ion channel transport | 0.991469 | 0.004 |
R-HSA-2187338 | Visual phototransduction | 0.991488 | 0.004 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.992684 | 0.003 |
R-HSA-2672351 | Stimuli-sensing channels | 0.992981 | 0.003 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.993540 | 0.003 |
R-HSA-446193 | Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... | 0.994085 | 0.003 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.994296 | 0.002 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.994297 | 0.002 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.995169 | 0.002 |
R-HSA-8957322 | Metabolism of steroids | 0.995368 | 0.002 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 0.996234 | 0.002 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.996463 | 0.002 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 0.996534 | 0.002 |
R-HSA-6809371 | Formation of the cornified envelope | 0.996675 | 0.001 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.997065 | 0.001 |
R-HSA-9717189 | Sensory perception of taste | 0.997712 | 0.001 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.997805 | 0.001 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.997937 | 0.001 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.998187 | 0.001 |
R-HSA-392499 | Metabolism of proteins | 0.999048 | 0.000 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.999121 | 0.000 |
R-HSA-2142753 | Arachidonate metabolism | 0.999121 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999322 | 0.000 |
R-HSA-9748784 | Drug ADME | 0.999435 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999436 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999585 | 0.000 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.999648 | 0.000 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.999648 | 0.000 |
R-HSA-72312 | rRNA processing | 0.999668 | 0.000 |
R-HSA-15869 | Metabolism of nucleotides | 0.999715 | 0.000 |
R-HSA-109582 | Hemostasis | 0.999889 | 0.000 |
R-HSA-428157 | Sphingolipid metabolism | 0.999891 | 0.000 |
R-HSA-9824446 | Viral Infection Pathways | 0.999908 | 0.000 |
R-HSA-6805567 | Keratinization | 0.999915 | 0.000 |
R-HSA-1643685 | Disease | 0.999934 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 0.999945 | 0.000 |
R-HSA-168249 | Innate Immune System | 0.999963 | 0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.999967 | 0.000 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.999977 | 0.000 |
R-HSA-1474244 | Extracellular matrix organization | 0.999993 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999995 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999996 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999996 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999999 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 0.999999 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.999999 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 1.000000 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 1.000000 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-5663205 | Infectious disease | 1.000000 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
SRPK2 |
0.908 | 0.765 | -3 | 0.945 |
RSK2 |
0.906 | 0.759 | -3 | 0.885 |
SRPK1 |
0.905 | 0.721 | -3 | 0.905 |
RSK3 |
0.905 | 0.759 | -3 | 0.883 |
PRKD2 |
0.904 | 0.708 | -3 | 0.838 |
P90RSK |
0.904 | 0.788 | -3 | 0.886 |
CDKL5 |
0.901 | 0.727 | -3 | 0.866 |
CDKL1 |
0.900 | 0.828 | -3 | 0.851 |
PIM1 |
0.899 | 0.751 | -3 | 0.862 |
AKT2 |
0.897 | 0.780 | -3 | 0.925 |
RSK4 |
0.897 | 0.725 | -3 | 0.902 |
PRKD3 |
0.897 | 0.758 | -3 | 0.865 |
MAPKAPK2 |
0.896 | 0.703 | -3 | 0.875 |
PIM3 |
0.896 | 0.670 | -3 | 0.800 |
NDR2 |
0.896 | 0.513 | -3 | 0.739 |
PRKD1 |
0.894 | 0.589 | -3 | 0.765 |
MSK2 |
0.894 | 0.721 | -3 | 0.885 |
MAPKAPK3 |
0.894 | 0.702 | -3 | 0.815 |
PRKX |
0.893 | 0.640 | -3 | 0.879 |
SRPK3 |
0.893 | 0.685 | -3 | 0.900 |
NDR1 |
0.892 | 0.575 | -3 | 0.768 |
P70S6KB |
0.891 | 0.690 | -3 | 0.838 |
MSK1 |
0.891 | 0.659 | -3 | 0.879 |
CLK1 |
0.890 | 0.656 | -3 | 0.872 |
PKACB |
0.890 | 0.585 | -2 | 0.762 |
SGK1 |
0.889 | 0.805 | -3 | 0.952 |
CLK4 |
0.888 | 0.649 | -3 | 0.876 |
HIPK4 |
0.888 | 0.536 | 1 | 0.847 |
ICK |
0.888 | 0.679 | -3 | 0.804 |
SBK |
0.888 | 0.840 | -3 | 0.949 |
PIM2 |
0.888 | 0.741 | -3 | 0.889 |
AKT3 |
0.888 | 0.755 | -3 | 0.945 |
PKACA |
0.887 | 0.614 | -2 | 0.717 |
PKACG |
0.887 | 0.528 | -2 | 0.830 |
PKN3 |
0.887 | 0.594 | -3 | 0.775 |
NUAK2 |
0.887 | 0.607 | -3 | 0.782 |
AKT1 |
0.886 | 0.702 | -3 | 0.899 |
AMPKA2 |
0.886 | 0.594 | -3 | 0.778 |
CAMK1B |
0.886 | 0.699 | -3 | 0.748 |
CAMK1D |
0.885 | 0.764 | -3 | 0.887 |
SGK3 |
0.885 | 0.669 | -3 | 0.837 |
LATS2 |
0.884 | 0.436 | -5 | 0.827 |
NUAK1 |
0.884 | 0.595 | -3 | 0.820 |
CLK2 |
0.884 | 0.629 | -3 | 0.902 |
P70S6K |
0.883 | 0.727 | -3 | 0.892 |
CLK3 |
0.883 | 0.406 | 1 | 0.871 |
SIK |
0.882 | 0.616 | -3 | 0.820 |
AMPKA1 |
0.881 | 0.530 | -3 | 0.734 |
DYRK1A |
0.881 | 0.614 | 1 | 0.818 |
CAMK1A |
0.881 | 0.763 | -3 | 0.904 |
CHK2 |
0.880 | 0.810 | -3 | 0.919 |
MELK |
0.880 | 0.614 | -3 | 0.784 |
AURC |
0.878 | 0.341 | -2 | 0.745 |
CAMK1G |
0.878 | 0.669 | -3 | 0.856 |
MYLK4 |
0.877 | 0.563 | -2 | 0.840 |
CAMK2D |
0.877 | 0.472 | -3 | 0.715 |
MAPKAPK5 |
0.876 | 0.698 | -3 | 0.858 |
CAMK4 |
0.876 | 0.512 | -3 | 0.744 |
PKG2 |
0.876 | 0.467 | -2 | 0.770 |
PKN2 |
0.875 | 0.477 | -3 | 0.727 |
CAMK2A |
0.875 | 0.513 | 2 | 0.847 |
TSSK1 |
0.874 | 0.448 | -3 | 0.722 |
CAMLCK |
0.874 | 0.544 | -2 | 0.903 |
HIPK1 |
0.874 | 0.517 | 1 | 0.788 |
DYRK3 |
0.874 | 0.580 | 1 | 0.792 |
SKMLCK |
0.873 | 0.451 | -2 | 0.912 |
BRSK1 |
0.873 | 0.533 | -3 | 0.813 |
HIPK2 |
0.873 | 0.445 | 1 | 0.687 |
DYRK2 |
0.872 | 0.415 | 1 | 0.772 |
DAPK2 |
0.872 | 0.611 | -3 | 0.719 |
PKCD |
0.871 | 0.418 | 2 | 0.798 |
QSK |
0.871 | 0.454 | 4 | 0.861 |
DCAMKL1 |
0.871 | 0.637 | -3 | 0.809 |
AURB |
0.870 | 0.339 | -2 | 0.741 |
WNK1 |
0.869 | 0.312 | -2 | 0.919 |
CAMK2B |
0.869 | 0.428 | 2 | 0.833 |
PHKG1 |
0.869 | 0.457 | -3 | 0.756 |
PKN1 |
0.869 | 0.649 | -3 | 0.869 |
HIPK3 |
0.869 | 0.507 | 1 | 0.808 |
MAK |
0.868 | 0.600 | -2 | 0.816 |
PAK1 |
0.868 | 0.374 | -2 | 0.855 |
COT |
0.867 | 0.042 | 2 | 0.882 |
CDC7 |
0.867 | 0.119 | 1 | 0.865 |
MNK2 |
0.867 | 0.308 | -2 | 0.863 |
BRSK2 |
0.867 | 0.417 | -3 | 0.747 |
NIK |
0.867 | 0.508 | -3 | 0.660 |
NLK |
0.866 | 0.211 | 1 | 0.902 |
CRIK |
0.866 | 0.743 | -3 | 0.914 |
PAK3 |
0.866 | 0.348 | -2 | 0.851 |
MRCKB |
0.865 | 0.645 | -3 | 0.859 |
LATS1 |
0.865 | 0.435 | -3 | 0.714 |
MARK4 |
0.864 | 0.255 | 4 | 0.882 |
MOK |
0.863 | 0.630 | 1 | 0.796 |
CHK1 |
0.863 | 0.423 | -3 | 0.711 |
QIK |
0.863 | 0.391 | -3 | 0.698 |
TSSK2 |
0.863 | 0.342 | -5 | 0.898 |
MST4 |
0.862 | 0.203 | 2 | 0.859 |
MNK1 |
0.862 | 0.327 | -2 | 0.877 |
MRCKA |
0.862 | 0.619 | -3 | 0.842 |
SMMLCK |
0.862 | 0.605 | -3 | 0.796 |
DYRK1B |
0.862 | 0.413 | 1 | 0.723 |
NIM1 |
0.861 | 0.314 | 3 | 0.817 |
MTOR |
0.861 | 0.023 | 1 | 0.862 |
RAF1 |
0.861 | 0.144 | 1 | 0.887 |
PAK6 |
0.860 | 0.270 | -2 | 0.770 |
PKCB |
0.860 | 0.361 | 2 | 0.737 |
MOS |
0.860 | 0.087 | 1 | 0.897 |
PRPK |
0.859 | -0.039 | -1 | 0.895 |
AURA |
0.859 | 0.297 | -2 | 0.708 |
DCAMKL2 |
0.859 | 0.490 | -3 | 0.790 |
PKCG |
0.858 | 0.321 | 2 | 0.736 |
PKG1 |
0.858 | 0.532 | -2 | 0.693 |
PKCA |
0.858 | 0.301 | 2 | 0.732 |
ATR |
0.857 | 0.105 | 1 | 0.876 |
PAK2 |
0.857 | 0.334 | -2 | 0.838 |
PHKG2 |
0.857 | 0.439 | -3 | 0.761 |
DYRK4 |
0.857 | 0.356 | 1 | 0.700 |
WNK3 |
0.856 | 0.148 | 1 | 0.871 |
PKCH |
0.856 | 0.362 | 2 | 0.729 |
DMPK1 |
0.856 | 0.642 | -3 | 0.848 |
DAPK3 |
0.856 | 0.601 | -3 | 0.826 |
PDHK4 |
0.855 | -0.113 | 1 | 0.903 |
TBK1 |
0.855 | -0.025 | 1 | 0.803 |
ROCK2 |
0.855 | 0.609 | -3 | 0.814 |
PKCT |
0.854 | 0.425 | 2 | 0.740 |
TGFBR2 |
0.854 | 0.076 | -2 | 0.780 |
ERK5 |
0.854 | 0.063 | 1 | 0.868 |
GCN2 |
0.854 | -0.093 | 2 | 0.839 |
RIPK3 |
0.854 | 0.070 | 3 | 0.785 |
RIPK1 |
0.854 | 0.206 | 1 | 0.867 |
IKKB |
0.853 | 0.014 | -2 | 0.757 |
CAMK2G |
0.852 | 0.010 | 2 | 0.859 |
PKCZ |
0.852 | 0.277 | 2 | 0.792 |
CDK7 |
0.852 | 0.138 | 1 | 0.751 |
MARK3 |
0.852 | 0.273 | 4 | 0.821 |
DAPK1 |
0.851 | 0.588 | -3 | 0.845 |
PAK5 |
0.851 | 0.315 | -2 | 0.715 |
SNRK |
0.851 | 0.328 | 2 | 0.709 |
PKCE |
0.850 | 0.451 | 2 | 0.720 |
PDHK1 |
0.850 | -0.104 | 1 | 0.892 |
MARK2 |
0.850 | 0.261 | 4 | 0.789 |
BMPR2 |
0.850 | -0.144 | -2 | 0.893 |
MARK1 |
0.849 | 0.301 | 4 | 0.844 |
ULK2 |
0.849 | -0.119 | 2 | 0.818 |
HUNK |
0.849 | 0.022 | 2 | 0.829 |
MASTL |
0.848 | 0.040 | -2 | 0.843 |
ROCK1 |
0.848 | 0.610 | -3 | 0.842 |
IKKE |
0.848 | -0.068 | 1 | 0.792 |
BCKDK |
0.847 | -0.037 | -1 | 0.866 |
CDK10 |
0.846 | 0.267 | 1 | 0.707 |
PAK4 |
0.846 | 0.296 | -2 | 0.723 |
PKCI |
0.844 | 0.331 | 2 | 0.754 |
CHAK2 |
0.843 | -0.014 | -1 | 0.894 |
SSTK |
0.843 | 0.270 | 4 | 0.855 |
DSTYK |
0.843 | -0.148 | 2 | 0.894 |
PASK |
0.843 | 0.457 | -3 | 0.744 |
ATM |
0.843 | 0.060 | 1 | 0.816 |
CDK8 |
0.842 | 0.047 | 1 | 0.743 |
DLK |
0.842 | 0.109 | 1 | 0.875 |
WNK4 |
0.842 | 0.261 | -2 | 0.900 |
IRE1 |
0.842 | 0.069 | 1 | 0.825 |
KIS |
0.841 | 0.031 | 1 | 0.776 |
CDK14 |
0.841 | 0.210 | 1 | 0.721 |
NEK6 |
0.841 | -0.117 | -2 | 0.850 |
NEK7 |
0.840 | -0.153 | -3 | 0.475 |
GRK5 |
0.840 | -0.118 | -3 | 0.508 |
NEK9 |
0.840 | -0.093 | 2 | 0.858 |
MLK1 |
0.840 | -0.093 | 2 | 0.819 |
CDK19 |
0.839 | 0.057 | 1 | 0.705 |
MLK2 |
0.839 | -0.063 | 2 | 0.835 |
ANKRD3 |
0.838 | 0.012 | 1 | 0.909 |
IRE2 |
0.838 | 0.052 | 2 | 0.759 |
CDK18 |
0.838 | 0.102 | 1 | 0.676 |
PKR |
0.838 | 0.107 | 1 | 0.873 |
DNAPK |
0.837 | 0.066 | 1 | 0.776 |
GRK6 |
0.837 | -0.015 | 1 | 0.860 |
ULK1 |
0.837 | -0.174 | -3 | 0.456 |
CDK9 |
0.836 | 0.101 | 1 | 0.737 |
P38A |
0.836 | 0.096 | 1 | 0.785 |
IKKA |
0.835 | -0.092 | -2 | 0.741 |
CDK13 |
0.835 | 0.065 | 1 | 0.726 |
GRK1 |
0.835 | -0.015 | -2 | 0.813 |
NEK2 |
0.834 | -0.041 | 2 | 0.831 |
CDK5 |
0.834 | 0.079 | 1 | 0.763 |
CDK12 |
0.834 | 0.102 | 1 | 0.702 |
JNK2 |
0.834 | 0.093 | 1 | 0.703 |
DRAK1 |
0.832 | 0.144 | 1 | 0.794 |
CHAK1 |
0.832 | 0.009 | 2 | 0.807 |
VRK2 |
0.832 | -0.021 | 1 | 0.922 |
TTBK2 |
0.832 | -0.098 | 2 | 0.728 |
MEK1 |
0.832 | -0.017 | 2 | 0.867 |
IRAK4 |
0.830 | 0.097 | 1 | 0.849 |
PDK1 |
0.830 | 0.369 | 1 | 0.868 |
SMG1 |
0.829 | -0.025 | 1 | 0.826 |
ALK4 |
0.829 | -0.057 | -2 | 0.816 |
GRK4 |
0.829 | -0.147 | -2 | 0.837 |
FAM20C |
0.828 | 0.020 | 2 | 0.642 |
CDK17 |
0.828 | 0.075 | 1 | 0.620 |
MLK3 |
0.827 | -0.062 | 2 | 0.743 |
YSK4 |
0.827 | -0.080 | 1 | 0.824 |
JNK3 |
0.827 | 0.057 | 1 | 0.734 |
P38B |
0.827 | 0.073 | 1 | 0.713 |
ERK1 |
0.826 | 0.061 | 1 | 0.710 |
ERK2 |
0.826 | 0.055 | 1 | 0.752 |
MST3 |
0.826 | 0.099 | 2 | 0.835 |
PLK1 |
0.826 | -0.071 | -2 | 0.803 |
MPSK1 |
0.826 | 0.076 | 1 | 0.817 |
TGFBR1 |
0.826 | -0.059 | -2 | 0.785 |
CDK1 |
0.825 | 0.051 | 1 | 0.695 |
PRP4 |
0.824 | -0.017 | -3 | 0.437 |
MEK5 |
0.824 | 0.013 | 2 | 0.850 |
BRAF |
0.824 | 0.034 | -4 | 0.815 |
P38G |
0.824 | 0.070 | 1 | 0.619 |
BMPR1B |
0.823 | -0.027 | 1 | 0.799 |
HRI |
0.823 | -0.078 | -2 | 0.846 |
CK1E |
0.823 | -0.075 | -3 | 0.300 |
GRK7 |
0.822 | 0.012 | 1 | 0.795 |
BUB1 |
0.822 | 0.208 | -5 | 0.863 |
MEKK1 |
0.821 | -0.079 | 1 | 0.871 |
PLK4 |
0.821 | -0.042 | 2 | 0.659 |
TAO3 |
0.821 | 0.075 | 1 | 0.847 |
PERK |
0.821 | -0.083 | -2 | 0.823 |
CDK4 |
0.821 | 0.157 | 1 | 0.684 |
CDK2 |
0.820 | 0.007 | 1 | 0.770 |
PLK3 |
0.820 | -0.100 | 2 | 0.807 |
ALK2 |
0.820 | -0.052 | -2 | 0.792 |
NEK5 |
0.820 | -0.065 | 1 | 0.882 |
IRAK1 |
0.819 | -0.023 | -1 | 0.812 |
MLK4 |
0.818 | -0.110 | 2 | 0.730 |
ZAK |
0.818 | -0.073 | 1 | 0.839 |
CDK16 |
0.817 | 0.072 | 1 | 0.638 |
TAO2 |
0.817 | 0.068 | 2 | 0.860 |
LOK |
0.817 | 0.147 | -2 | 0.826 |
ACVR2A |
0.817 | -0.086 | -2 | 0.768 |
PBK |
0.817 | 0.158 | 1 | 0.807 |
MEKK3 |
0.816 | -0.092 | 1 | 0.856 |
MEKK2 |
0.816 | -0.064 | 2 | 0.826 |
GAK |
0.816 | 0.079 | 1 | 0.876 |
PINK1 |
0.816 | -0.120 | 1 | 0.858 |
CDK3 |
0.815 | 0.061 | 1 | 0.638 |
ACVR2B |
0.815 | -0.099 | -2 | 0.779 |
MEKK6 |
0.815 | 0.093 | 1 | 0.854 |
TLK2 |
0.815 | -0.130 | 1 | 0.829 |
HPK1 |
0.815 | 0.143 | 1 | 0.830 |
CK1A2 |
0.814 | -0.074 | -3 | 0.279 |
LKB1 |
0.814 | -0.036 | -3 | 0.492 |
CK1D |
0.814 | -0.084 | -3 | 0.260 |
GCK |
0.814 | 0.084 | 1 | 0.843 |
GRK2 |
0.814 | -0.065 | -2 | 0.723 |
NEK11 |
0.814 | -0.035 | 1 | 0.852 |
LRRK2 |
0.814 | 0.166 | 2 | 0.867 |
TLK1 |
0.813 | -0.094 | -2 | 0.815 |
NEK8 |
0.813 | 0.036 | 2 | 0.831 |
KHS1 |
0.812 | 0.138 | 1 | 0.831 |
GSK3B |
0.811 | 0.019 | 4 | 0.461 |
CK1G1 |
0.811 | -0.106 | -3 | 0.294 |
MAP3K15 |
0.811 | 0.026 | 1 | 0.832 |
KHS2 |
0.810 | 0.157 | 1 | 0.838 |
NEK4 |
0.810 | -0.038 | 1 | 0.848 |
CDK6 |
0.810 | 0.077 | 1 | 0.709 |
TNIK |
0.810 | 0.058 | 3 | 0.877 |
HGK |
0.810 | 0.023 | 3 | 0.883 |
ERK7 |
0.809 | 0.021 | 2 | 0.542 |
CAMKK2 |
0.808 | -0.073 | -2 | 0.769 |
NEK1 |
0.808 | -0.006 | 1 | 0.860 |
P38D |
0.808 | 0.041 | 1 | 0.648 |
MINK |
0.807 | 0.011 | 1 | 0.843 |
GSK3A |
0.807 | 0.024 | 4 | 0.468 |
RIPK2 |
0.807 | 0.014 | 1 | 0.806 |
SLK |
0.806 | 0.049 | -2 | 0.762 |
TTBK1 |
0.806 | -0.118 | 2 | 0.648 |
BMPR1A |
0.805 | -0.055 | 1 | 0.780 |
CAMKK1 |
0.805 | -0.164 | -2 | 0.764 |
YSK1 |
0.804 | 0.045 | 2 | 0.825 |
TAK1 |
0.804 | 0.020 | 1 | 0.870 |
VRK1 |
0.802 | -0.002 | 2 | 0.844 |
EEF2K |
0.802 | -0.029 | 3 | 0.843 |
HASPIN |
0.802 | 0.121 | -1 | 0.740 |
NEK3 |
0.802 | -0.009 | 1 | 0.838 |
MST2 |
0.801 | -0.121 | 1 | 0.855 |
GRK3 |
0.799 | -0.075 | -2 | 0.674 |
STK33 |
0.798 | -0.037 | 2 | 0.643 |
MST1 |
0.798 | -0.080 | 1 | 0.836 |
JNK1 |
0.797 | 0.020 | 1 | 0.677 |
MEK2 |
0.796 | -0.136 | 2 | 0.841 |
BIKE |
0.792 | 0.051 | 1 | 0.754 |
PDHK3_TYR |
0.791 | 0.103 | 4 | 0.929 |
TAO1 |
0.791 | 0.057 | 1 | 0.792 |
LIMK2_TYR |
0.790 | 0.225 | -3 | 0.587 |
PLK2 |
0.790 | -0.105 | -3 | 0.435 |
CK2A2 |
0.788 | -0.040 | 1 | 0.695 |
MYO3B |
0.787 | 0.010 | 2 | 0.833 |
TTK |
0.787 | -0.014 | -2 | 0.815 |
TESK1_TYR |
0.787 | 0.118 | 3 | 0.908 |
PKMYT1_TYR |
0.785 | 0.097 | 3 | 0.880 |
MAP2K4_TYR |
0.785 | 0.127 | -1 | 0.912 |
ASK1 |
0.785 | -0.047 | 1 | 0.818 |
OSR1 |
0.783 | -0.081 | 2 | 0.823 |
YANK3 |
0.783 | 0.004 | 2 | 0.417 |
MAP2K7_TYR |
0.782 | 0.016 | 2 | 0.889 |
PINK1_TYR |
0.781 | 0.159 | 1 | 0.882 |
LIMK1_TYR |
0.780 | 0.085 | 2 | 0.879 |
MYO3A |
0.779 | -0.037 | 1 | 0.825 |
PDHK4_TYR |
0.779 | -0.037 | 2 | 0.909 |
MAP2K6_TYR |
0.779 | -0.005 | -1 | 0.915 |
RET |
0.778 | 0.047 | 1 | 0.864 |
AAK1 |
0.778 | 0.069 | 1 | 0.650 |
CK2A1 |
0.777 | -0.052 | 1 | 0.671 |
DDR1 |
0.775 | 0.071 | 4 | 0.848 |
BMPR2_TYR |
0.774 | -0.042 | -1 | 0.886 |
ALPHAK3 |
0.773 | -0.076 | -1 | 0.794 |
PDHK1_TYR |
0.772 | -0.087 | -1 | 0.909 |
TNK2 |
0.772 | 0.077 | 3 | 0.783 |
ROS1 |
0.772 | -0.008 | 3 | 0.814 |
MST1R |
0.772 | -0.013 | 3 | 0.835 |
TNK1 |
0.771 | 0.107 | 3 | 0.813 |
EPHA6 |
0.771 | 0.005 | -1 | 0.868 |
EPHB4 |
0.771 | -0.014 | -1 | 0.867 |
TYRO3 |
0.771 | -0.048 | 3 | 0.832 |
CK1A |
0.771 | -0.117 | -3 | 0.199 |
NEK10_TYR |
0.770 | 0.083 | 1 | 0.746 |
TYK2 |
0.770 | -0.087 | 1 | 0.863 |
TNNI3K_TYR |
0.769 | 0.051 | 1 | 0.877 |
DDR2 |
0.768 | 0.163 | 3 | 0.765 |
STLK3 |
0.766 | -0.145 | 1 | 0.805 |
JAK2 |
0.766 | -0.120 | 1 | 0.868 |
ABL2 |
0.766 | -0.028 | -1 | 0.832 |
JAK3 |
0.766 | -0.045 | 1 | 0.847 |
CSF1R |
0.763 | -0.106 | 3 | 0.820 |
TXK |
0.763 | -0.026 | 1 | 0.857 |
FGR |
0.763 | -0.082 | 1 | 0.889 |
ABL1 |
0.762 | -0.051 | -1 | 0.823 |
YES1 |
0.761 | -0.074 | -1 | 0.861 |
INSRR |
0.761 | -0.046 | 3 | 0.780 |
PDGFRB |
0.761 | -0.042 | 3 | 0.837 |
AXL |
0.761 | -0.020 | 3 | 0.802 |
JAK1 |
0.761 | -0.028 | 1 | 0.818 |
ITK |
0.760 | -0.052 | -1 | 0.831 |
FGFR2 |
0.758 | -0.074 | 3 | 0.814 |
FER |
0.758 | -0.145 | 1 | 0.901 |
EPHB3 |
0.757 | -0.075 | -1 | 0.854 |
EPHB1 |
0.757 | -0.098 | 1 | 0.882 |
KDR |
0.757 | -0.042 | 3 | 0.782 |
TEK |
0.756 | -0.086 | 3 | 0.763 |
LCK |
0.756 | -0.066 | -1 | 0.832 |
SRMS |
0.755 | -0.115 | 1 | 0.877 |
EPHA4 |
0.755 | -0.089 | 2 | 0.796 |
FGFR1 |
0.755 | -0.093 | 3 | 0.793 |
FLT3 |
0.755 | -0.075 | 3 | 0.823 |
EPHB2 |
0.754 | -0.088 | -1 | 0.837 |
HCK |
0.754 | -0.133 | -1 | 0.839 |
PDGFRA |
0.753 | -0.095 | 3 | 0.831 |
MERTK |
0.753 | -0.087 | 3 | 0.796 |
BLK |
0.753 | -0.053 | -1 | 0.835 |
EPHA1 |
0.752 | -0.033 | 3 | 0.782 |
BTK |
0.751 | -0.130 | -1 | 0.809 |
LTK |
0.751 | -0.037 | 3 | 0.771 |
ALK |
0.751 | -0.062 | 3 | 0.757 |
WEE1_TYR |
0.751 | -0.048 | -1 | 0.798 |
BMX |
0.751 | -0.058 | -1 | 0.745 |
KIT |
0.750 | -0.154 | 3 | 0.816 |
TEC |
0.750 | -0.082 | -1 | 0.769 |
MET |
0.749 | -0.104 | 3 | 0.810 |
CK1G3 |
0.749 | -0.128 | -3 | 0.170 |
EPHA7 |
0.748 | -0.075 | 2 | 0.800 |
NTRK1 |
0.745 | -0.159 | -1 | 0.852 |
EPHA3 |
0.745 | -0.109 | 2 | 0.773 |
PTK6 |
0.744 | -0.155 | -1 | 0.770 |
INSR |
0.743 | -0.120 | 3 | 0.757 |
NTRK2 |
0.743 | -0.157 | 3 | 0.782 |
FLT1 |
0.743 | -0.121 | -1 | 0.840 |
FGFR3 |
0.742 | -0.126 | 3 | 0.783 |
PTK2B |
0.742 | -0.066 | -1 | 0.797 |
FLT4 |
0.741 | -0.122 | 3 | 0.772 |
FYN |
0.741 | -0.098 | -1 | 0.800 |
YANK2 |
0.740 | -0.077 | 2 | 0.434 |
FRK |
0.739 | -0.139 | -1 | 0.848 |
ERBB2 |
0.739 | -0.172 | 1 | 0.799 |
EPHA5 |
0.738 | -0.092 | 2 | 0.783 |
NTRK3 |
0.737 | -0.148 | -1 | 0.805 |
LYN |
0.737 | -0.155 | 3 | 0.746 |
MATK |
0.734 | -0.130 | -1 | 0.752 |
EPHA8 |
0.733 | -0.119 | -1 | 0.822 |
CSK |
0.732 | -0.130 | 2 | 0.803 |
SRC |
0.731 | -0.139 | -1 | 0.802 |
EGFR |
0.726 | -0.143 | 1 | 0.709 |
PTK2 |
0.725 | -0.076 | -1 | 0.775 |
MUSK |
0.724 | -0.128 | 1 | 0.693 |
FGFR4 |
0.724 | -0.155 | -1 | 0.782 |
IGF1R |
0.723 | -0.142 | 3 | 0.696 |
EPHA2 |
0.722 | -0.126 | -1 | 0.785 |
CK1G2 |
0.720 | -0.130 | -3 | 0.236 |
SYK |
0.719 | -0.122 | -1 | 0.766 |
ERBB4 |
0.713 | -0.129 | 1 | 0.706 |
FES |
0.707 | -0.171 | -1 | 0.718 |
ZAP70 |
0.698 | -0.114 | -1 | 0.700 |