Motif 1179 (n=490)

Position-wise Probabilities

Download
uniprot genes site source protein function
A0A0U1RQV5 None S18 ochoa Eukaryotic translation initiation factor 6 None
A0A1B0GTI1 CCDC201 S19 ochoa Coiled-coil domain-containing protein 201 None
A0AVT1 UBA6 S18 ochoa Ubiquitin-like modifier-activating enzyme 6 (Ubiquitin-activating enzyme 6) (EC 6.2.1.45) (Monocyte protein 4) (MOP-4) (Ubiquitin-activating enzyme E1-like protein 2) (E1-L2) Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:35970836, PubMed:35986001). Specific for ubiquitin, does not activate ubiquitin-like peptides. Also activates UBD/FAT10 conjugation via adenylation of its C-terminal glycine (PubMed:17889673, PubMed:35970836, PubMed:35986001). Differs from UBE1 in its specificity for substrate E2 charging. Does not charge cell cycle E2s, such as CDC34. Essential for embryonic development. Isoform 2 may play a key role in ubiquitin system and may influence spermatogenesis and male fertility. {ECO:0000269|PubMed:15202508, ECO:0000269|PubMed:17597759, ECO:0000269|PubMed:17889673, ECO:0000269|PubMed:35970836, ECO:0000269|PubMed:35986001}.
A0AVT1 UBA6 S19 ochoa Ubiquitin-like modifier-activating enzyme 6 (Ubiquitin-activating enzyme 6) (EC 6.2.1.45) (Monocyte protein 4) (MOP-4) (Ubiquitin-activating enzyme E1-like protein 2) (E1-L2) Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:35970836, PubMed:35986001). Specific for ubiquitin, does not activate ubiquitin-like peptides. Also activates UBD/FAT10 conjugation via adenylation of its C-terminal glycine (PubMed:17889673, PubMed:35970836, PubMed:35986001). Differs from UBE1 in its specificity for substrate E2 charging. Does not charge cell cycle E2s, such as CDC34. Essential for embryonic development. Isoform 2 may play a key role in ubiquitin system and may influence spermatogenesis and male fertility. {ECO:0000269|PubMed:15202508, ECO:0000269|PubMed:17597759, ECO:0000269|PubMed:17889673, ECO:0000269|PubMed:35970836, ECO:0000269|PubMed:35986001}.
A1L170 C1orf226 S18 ochoa Uncharacterized protein C1orf226 None
A6NJG2 SOWAHD T19 ochoa Ankyrin repeat domain-containing protein SOWAHD (Ankyrin repeat domain-containing protein 58) (Protein sosondowah homolog D) None
A6NMY6 ANXA2P2 S18 ochoa Putative annexin A2-like protein (Annexin A2 pseudogene 2) (Lipocortin II pseudogene) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. {ECO:0000250}.
B2RBV5 MRFAP1L2 S18 ochoa MORF4 family associated protein 1 like 2 (MORF4 family-associated protein 1-like protein UPP) (Unnamed protein product) (UPP) May play a role in cell proliferation. {ECO:0000305|PubMed:24248101}.
B5ME19 EIF3CL S18 ochoa Eukaryotic translation initiation factor 3 subunit C-like protein Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression. {ECO:0000250|UniProtKB:Q99613}.
C9JLW8 MCRIP1 S18 ochoa Mapk-regulated corepressor-interacting protein 1 (Granulin-2) (Protein FAM195B) The phosphorylation status of MCRIP1 functions as a molecular switch to regulate epithelial-mesenchymal transition. Unphosphorylated MCRIP1 binds to and inhibits the transcriptional corepressor CTBP(s). When phosphorylated by MAPK/ERK, MCRIP1 releases CTBP(s) resulting in transcriptional silencing of the E-cadherin gene and induction of epithelial-mesenchymal transition (PubMed:25728771). {ECO:0000269|PubMed:25728771}.
E7ERA6 RNF223 S18 ochoa RING finger protein 223 None
O00194 RAB27B S18 ochoa Ras-related protein Rab-27B (EC 3.6.5.2) (C25KG) Small GTPase which cycles between active GTP-bound and inactive GDP-bound states. In its active state, binds to a variety of effector proteins to regulate homeostasis of late endocytic pathway, including endosomal positioning, maturation and secretion (PubMed:30771381). Plays a role in NTRK2/TRKB axonal anterograde transport by facilitating the association of NTRK2/TRKB with KLC1 (PubMed:21775604). May be involved in targeting uroplakins to urothelial apical membranes (By similarity). {ECO:0000250|UniProtKB:Q8HZJ5, ECO:0000269|PubMed:21775604, ECO:0000269|PubMed:30771381}.
O00231 PSMD11 T18 ochoa 26S proteasome non-ATPase regulatory subunit 11 (26S proteasome regulatory subunit RPN6) (26S proteasome regulatory subunit S9) (26S proteasome regulatory subunit p44.5) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. In the complex, PSMD11 is required for proteasome assembly. Plays a key role in increased proteasome activity in embryonic stem cells (ESCs): its high expression in ESCs promotes enhanced assembly of the 26S proteasome, followed by higher proteasome activity. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:22972301}.
O00267 SUPT5H S18 ochoa Transcription elongation factor SPT5 (hSPT5) (DRB sensitivity-inducing factor 160 kDa subunit) (DSIF p160) (DRB sensitivity-inducing factor large subunit) (DSIF large subunit) (Tat-cotransactivator 1 protein) (Tat-CT1 protein) Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A (PubMed:10075709, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter (PubMed:10075709, PubMed:10199401, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II (PubMed:16214896). TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme (PubMed:16214896). Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites (PubMed:16214896). Following phosphorylation by CDK9, DSIF can also positively regulate transcriptional elongation (PubMed:16427012). Required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat (PubMed:10393184, PubMed:10454543, PubMed:11809800, PubMed:9514752). DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences (PubMed:11112772, PubMed:14701750). {ECO:0000269|PubMed:10075709, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10421630, ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11553615, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:12653964, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15136722, ECO:0000269|PubMed:15380072, ECO:0000269|PubMed:16214896, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:9450929, ECO:0000269|PubMed:9514752, ECO:0000269|PubMed:9857195}.
O00418 EEF2K S18 ochoa Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}.
O14495 PLPP3 S19 ochoa Phospholipid phosphatase 3 (EC 3.1.3.-) (EC 3.1.3.4) (Lipid phosphate phosphohydrolase 3) (PAP2-beta) (Phosphatidate phosphohydrolase type 2b) (Phosphatidic acid phosphatase 2b) (PAP-2b) (PAP2b) (Vascular endothelial growth factor and type I collagen-inducible protein) (VCIP) Magnesium-independent phospholipid phosphatase of the plasma membrane that catalyzes the dephosphorylation of a variety of glycerolipid and sphingolipid phosphate esters including phosphatidate/PA, lysophosphatidate/LPA, diacylglycerol pyrophosphate/DGPP, sphingosine 1-phosphate/S1P and ceramide 1-phosphate/C1P (PubMed:27694435, PubMed:9607309, PubMed:9705349). Also acts on N-oleoyl ethanolamine phosphate/N-(9Z-octadecenoyl)-ethanolamine phosphate, a potential physiological compound (PubMed:9607309). Has both an extracellular and an intracellular phosphatase activity, allowing the hydrolysis and the cellular uptake of these bioactive lipid mediators from the milieu, regulating signal transduction in different cellular processes (PubMed:23591818, PubMed:27694435, PubMed:9607309). Through the dephosphorylation of extracellular sphingosine-1-phosphate and the regulation of its extra- and intracellular availability, plays a role in vascular homeostasis, regulating endothelial cell migration, adhesion, survival, proliferation and the production of pro-inflammatory cytokines (PubMed:27694435). By maintaining the appropriate levels of this lipid in the cerebellum, also ensure its proper development and function (By similarity). Through its intracellular lipid phosphatase activity may act in early compartments of the secretory pathway, regulating the formation of Golgi to endoplasmic reticulum retrograde transport carriers (PubMed:23591818). {ECO:0000250|UniProtKB:Q99JY8, ECO:0000269|PubMed:23591818, ECO:0000269|PubMed:27694435, ECO:0000269|PubMed:9607309, ECO:0000269|PubMed:9705349}.; FUNCTION: Independently of this phosphatase activity may also function in the Wnt signaling pathway and the stabilization of beta-catenin/CTNNB1, thereby regulating cell proliferation, migration and differentiation in angiogenesis or yet in tumor growth (PubMed:20123964, PubMed:21569306). Also plays a role in integrin-mediated cell-cell adhesion in angiogenesis (PubMed:12660161, PubMed:16099422). {ECO:0000269|PubMed:12660161, ECO:0000269|PubMed:16099422, ECO:0000269|PubMed:20123964, ECO:0000269|PubMed:21569306}.
O14544 SOCS6 S18 ochoa Suppressor of cytokine signaling 6 (SOCS-6) (Cytokine-inducible SH2 protein 4) (CIS-4) (Suppressor of cytokine signaling 4) (SOCS-4) SOCS family proteins form part of a classical negative feedback system that regulates cytokine signal transduction. May be a substrate recognition component of a SCF-like ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Regulates KIT degradation by ubiquitination of the tyrosine-phosphorylated receptor. {ECO:0000250, ECO:0000269|PubMed:21030588}.
O14641 DVL2 Y18 psp Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}.
O14715 RGPD8 T19 ochoa RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) None
O14949 UQCRQ S18 ochoa Cytochrome b-c1 complex subunit 8 (Complex III subunit 8) (Complex III subunit VIII) (Ubiquinol-cytochrome c reductase complex 9.5 kDa protein) (Ubiquinol-cytochrome c reductase complex ubiquinone-binding protein QP-C) Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. The cytochrome b-c1 complex catalyzes electron transfer from ubiquinol to cytochrome c, linking this redox reaction to translocation of protons across the mitochondrial inner membrane, with protons being carried across the membrane as hydrogens on the quinol. In the process called Q cycle, 2 protons are consumed from the matrix, 4 protons are released into the intermembrane space and 2 electrons are passed to cytochrome c. {ECO:0000250|UniProtKB:P08525}.
O15083 ERC2 S18 ochoa ERC protein 2 Thought to be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. Seems to act together with BSN. May recruit liprin-alpha proteins to the CAZ.
O15372 EIF3H T18 ochoa Eukaryotic translation initiation factor 3 subunit H (eIF3h) (Eukaryotic translation initiation factor 3 subunit 3) (eIF-3-gamma) (eIF3 p40 subunit) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03007, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
O15440 ABCC5 S19 ochoa ATP-binding cassette sub-family C member 5 (EC 7.6.2.-) (EC 7.6.2.2) (Multi-specific organic anion transporter C) (MOAT-C) (Multidrug resistance-associated protein 5) (SMRP) (pABC11) ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds, and xenobiotics from cells. Mediates ATP-dependent transport of endogenous metabolites such as cAMP and cGMP, folic acid and N-lactoyl-amino acids (in vitro) (PubMed:10893247, PubMed:12637526, PubMed:12695538, PubMed:15899835, PubMed:17229149, PubMed:25964343). Also acts as a general glutamate conjugate and analog transporter that can limit the brain levels of endogenous metabolites, drugs, and toxins (PubMed:26515061). Confers resistance to the antiviral agent PMEA (PubMed:12695538). Able to transport several anticancer drugs including methotrexate, and nucleotide analogs in vitro, however it does with low affinity, thus the exact role of ABCC5 in mediating resistance still needs to be elucidated (PubMed:10840050, PubMed:12435799, PubMed:12695538, PubMed:15899835). Acts as a heme transporter required for the translocation of cytosolic heme to the secretory pathway (PubMed:24836561). May play a role in energy metabolism by regulating the glucagon-like peptide 1 (GLP-1) secretion from enteroendocrine cells (By similarity). {ECO:0000250|UniProtKB:Q9R1X5, ECO:0000269|PubMed:10840050, ECO:0000269|PubMed:10893247, ECO:0000269|PubMed:12435799, ECO:0000269|PubMed:12637526, ECO:0000269|PubMed:12695538, ECO:0000269|PubMed:15899835, ECO:0000269|PubMed:17229149, ECO:0000269|PubMed:24836561, ECO:0000269|PubMed:25964343, ECO:0000269|PubMed:26515061}.
O43301 HSPA12A T18 ochoa Heat shock 70 kDa protein 12A (Heat shock protein family A member 12A) Adapter protein for SORL1, but not SORT1. Delays SORL1 internalization and affects SORL1 subcellular localization. {ECO:0000269|PubMed:30679749}.
O43310 CTIF S18 ochoa CBP80/20-dependent translation initiation factor Specifically required for the pioneer round of mRNA translation mediated by the cap-binding complex (CBC), that takes place during or right after mRNA export via the nuclear pore complex (NPC). Acts via its interaction with the NCBP1/CBP80 component of the CBC complex and recruits the 40S small subunit of the ribosome via eIF3. In contrast, it is not involved in steady state translation, that takes place when the CBC complex is replaced by cytoplasmic cap-binding protein eIF4E. Also required for nonsense-mediated mRNA decay (NMD), the pioneer round of mRNA translation mediated by the cap-binding complex playing a central role in nonsense-mediated mRNA decay (NMD). {ECO:0000269|PubMed:19648179}.
O43396 TXNL1 S18 ochoa Thioredoxin-like protein 1 (32 kDa thioredoxin-related protein) Active thioredoxin with a redox potential of about -250 mV. {ECO:0000269|PubMed:19349277}.
O43399 TPD52L2 S19 ochoa Tumor protein D54 (hD54) (Tumor protein D52-like 2) None
O43684 BUB3 S19 psp Mitotic checkpoint protein BUB3 Has a dual function in spindle-assembly checkpoint signaling and in promoting the establishment of correct kinetochore-microtubule (K-MT) attachments. Promotes the formation of stable end-on bipolar attachments. Necessary for kinetochore localization of BUB1. Regulates chromosome segregation during oocyte meiosis. The BUB1/BUB3 complex plays a role in the inhibition of anaphase-promoting complex or cyclosome (APC/C) when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:18199686}.
O60336 MAPKBP1 S18 ochoa Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}.
O60508 CDC40 S18 ochoa Pre-mRNA-processing factor 17 (Cell division cycle 40 homolog) (EH-binding protein 3) (Ehb3) (PRP17 homolog) (hPRP17) Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:33220177). Plays an important role in embryonic brain development; this function does not require proline isomerization (PubMed:33220177). {ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:33220177, ECO:0000269|PubMed:9830021}.
O60711 LPXN S19 ochoa Leupaxin Transcriptional coactivator for androgen receptor (AR) and serum response factor (SRF). Contributes to the regulation of cell adhesion, spreading and cell migration and acts as a negative regulator in integrin-mediated cell adhesion events. Suppresses the integrin-induced tyrosine phosphorylation of paxillin (PXN). May play a critical role as an adapter protein in the formation of the adhesion zone in osteoclasts. Negatively regulates B-cell antigen receptor (BCR) signaling. {ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:18451096, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:20543562}.
O75427 LRCH4 T19 ochoa Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}.
O75569 PRKRA S18 ochoa Interferon-inducible double-stranded RNA-dependent protein kinase activator A (PKR-associated protein X) (PKR-associating protein X) (Protein activator of the interferon-induced protein kinase) (Protein kinase, interferon-inducible double-stranded RNA-dependent activator) Activates EIF2AK2/PKR in the absence of double-stranded RNA (dsRNA), leading to phosphorylation of EIF2S1/EFI2-alpha and inhibition of translation and induction of apoptosis. Required for siRNA production by DICER1 and for subsequent siRNA-mediated post-transcriptional gene silencing. Does not seem to be required for processing of pre-miRNA to miRNA by DICER1. Promotes UBC9-p53/TP53 association and sumoylation and phosphorylation of p53/TP53 at 'Lys-386' at 'Ser-392' respectively and enhances its activity in a EIF2AK2/PKR-dependent manner (By similarity). {ECO:0000250, ECO:0000269|PubMed:10336432, ECO:0000269|PubMed:11238927, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:16982605, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:9687506}.
O75607 NPM3 T18 ochoa Nucleoplasmin-3 Plays a role in the regulation of diverse cellular processes such as ribosome biogenesis, chromatin remodeling or protein chaperoning (PubMed:20073534, PubMed:22362753). Modulates the histone chaperone function and the RNA-binding activity of nucleolar phosphoprotein B23/NPM (PubMed:22362753). Efficiently mediates chromatin remodeling when included in a pentamer containing NPM3 and NPM (PubMed:15596447). {ECO:0000269|PubMed:15596447, ECO:0000269|PubMed:20073534, ECO:0000269|PubMed:22362753}.
O75628 REM1 S18 ochoa|psp GTP-binding protein REM 1 (GTPase-regulating endothelial cell sprouting) (Rad and Gem-like GTP-binding protein 1) Promotes endothelial cell sprouting and actin cytoskeletal reorganization. May be involved in angiogenesis. May function in Ca(2+) signaling.
O75792 RNASEH2A S18 ochoa Ribonuclease H2 subunit A (RNase H2 subunit A) (EC 3.1.26.4) (Aicardi-Goutieres syndrome 4 protein) (AGS4) (RNase H(35)) (Ribonuclease HI large subunit) (RNase HI large subunit) (Ribonuclease HI subunit A) Catalytic subunit of RNase HII, an endonuclease that specifically degrades the RNA of RNA:DNA hybrids. Participates in DNA replication, possibly by mediating the removal of lagging-strand Okazaki fragment RNA primers during DNA replication. Mediates the excision of single ribonucleotides from DNA:RNA duplexes. {ECO:0000269|PubMed:16845400, ECO:0000269|PubMed:21177858}.
O75907 DGAT1 S18 ochoa Diacylglycerol O-acyltransferase 1 (EC 2.3.1.20) (ACAT-related gene product 1) (Acyl-CoA retinol O-fatty-acyltransferase) (ARAT) (Retinol O-fatty-acyltransferase) (EC 2.3.1.76) (Diglyceride acyltransferase) Catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates (PubMed:16214399, PubMed:18768481, PubMed:28420705, PubMed:32433610, PubMed:32433611, PubMed:9756920). Highly expressed in epithelial cells of the small intestine and its activity is essential for the absorption of dietary fats (PubMed:18768481). In liver, plays a role in esterifying exogenous fatty acids to glycerol, and is required to synthesize fat for storage (PubMed:16214399). Also present in female mammary glands, where it produces fat in the milk (By similarity). May be involved in VLDL (very low density lipoprotein) assembly (PubMed:18768481). In contrast to DGAT2 it is not essential for survival (By similarity). Functions as the major acyl-CoA retinol acyltransferase (ARAT) in the skin, where it acts to maintain retinoid homeostasis and prevent retinoid toxicity leading to skin and hair disorders (PubMed:16214399). Exhibits additional acyltransferase activities, includin acyl CoA:monoacylglycerol acyltransferase (MGAT), wax monoester and wax diester synthases (By similarity). Also able to use 1-monoalkylglycerol (1-MAkG) as an acyl acceptor for the synthesis of monoalkyl-monoacylglycerol (MAMAG) (PubMed:28420705). {ECO:0000250|UniProtKB:Q8MK44, ECO:0000250|UniProtKB:Q9Z2A7, ECO:0000269|PubMed:16214399, ECO:0000269|PubMed:18768481, ECO:0000269|PubMed:28420705, ECO:0000269|PubMed:32433610, ECO:0000269|PubMed:32433611, ECO:0000269|PubMed:9756920}.
O75955 FLOT1 S19 ochoa Flotillin-1 May act as a scaffolding protein within caveolar membranes, functionally participating in formation of caveolae or caveolae-like vesicles.
O76021 RSL1D1 S18 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O94782 USP1 S18 ochoa Ubiquitin carboxyl-terminal hydrolase 1 (EC 3.4.19.12) (Deubiquitinating enzyme 1) (hUBP) (Ubiquitin thioesterase 1) (Ubiquitin-specific-processing protease 1) [Cleaved into: Ubiquitin carboxyl-terminal hydrolase 1, N-terminal fragment] Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2 (PubMed:15694335). Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:16531995, PubMed:20147293). Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a high activity (PubMed:18082604, PubMed:26388029). {ECO:0000269|PubMed:15694335, ECO:0000269|PubMed:16531995, ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:26388029}.
O94811 TPPP S18 ochoa|psp Tubulin polymerization-promoting protein (TPPP) (EC 3.6.5.-) (25 kDa brain-specific protein) (TPPP/p25) (p24) (p25-alpha) Regulator of microtubule dynamics that plays a key role in myelination by promoting elongation of the myelin sheath (PubMed:31522887). Acts as a microtubule nucleation factor in oligodendrocytes: specifically localizes to the postsynaptic Golgi apparatus region, also named Golgi outpost, and promotes microtubule nucleation, an important step for elongation of the myelin sheath (PubMed:31522887, PubMed:33831707). Required for both uniform polarized growth of distal microtubules as well as directing the branching of proximal processes (PubMed:31522887). Shows magnesium-dependent GTPase activity; the role of the GTPase activity is unclear (PubMed:21316364, PubMed:21995432). In addition to microtubule nucleation activity, also involved in microtubule bundling and stabilization of existing microtubules, thereby maintaining the integrity of the microtubule network (PubMed:17105200, PubMed:17693641, PubMed:18028908, PubMed:26289831). Regulates microtubule dynamics by promoting tubulin acetylation: acts by inhibiting the tubulin deacetylase activity of HDAC6 (PubMed:20308065, PubMed:23093407). Also regulates cell migration: phosphorylation by ROCK1 inhibits interaction with HDAC6, resulting in decreased acetylation of tubulin and increased cell motility (PubMed:23093407). Plays a role in cell proliferation by regulating the G1/S-phase transition (PubMed:23355470). Involved in astral microtubule organization and mitotic spindle orientation during early stage of mitosis; this process is regulated by phosphorylation by LIMK2 (PubMed:22328514). {ECO:0000269|PubMed:17105200, ECO:0000269|PubMed:17693641, ECO:0000269|PubMed:18028908, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:21316364, ECO:0000269|PubMed:21995432, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:26289831, ECO:0000269|PubMed:31522887}.
O95067 CCNB2 T18 ochoa G2/mitotic-specific cyclin-B2 Essential for the control of the cell cycle at the G2/M (mitosis) transition.
O95428 PAPLN S18 ochoa Papilin None
O95456 PSMG1 T18 ochoa Proteasome assembly chaperone 1 (PAC-1) (Chromosome 21 leucine-rich protein) (C21-LRP) (Down syndrome critical region protein 2) (Proteasome chaperone homolog 1) (Pba1) Chaperone protein which promotes assembly of the 20S proteasome as part of a heterodimer with PSMG2. The PSMG1-PSMG2 heterodimer binds to the PSMA5 and PSMA7 proteasome subunits, promotes assembly of the proteasome alpha subunits into the heteroheptameric alpha ring and prevents alpha ring dimerization. {ECO:0000269|PubMed:16251969, ECO:0000269|PubMed:17707236}.
O95571 ETHE1 S19 ochoa Persulfide dioxygenase ETHE1, mitochondrial (EC 1.13.11.18) (Ethylmalonic encephalopathy protein 1) (Hepatoma subtracted clone one protein) (Sulfur dioxygenase ETHE1) Sulfur dioxygenase that plays an essential role in hydrogen sulfide catabolism in the mitochondrial matrix. Hydrogen sulfide (H(2)S) is first oxidized by SQRDL, giving rise to cysteine persulfide residues. ETHE1 consumes molecular oxygen to catalyze the oxidation of the persulfide, once it has been transferred to a thiophilic acceptor, such as glutathione (R-SSH). Plays an important role in metabolic homeostasis in mitochondria by metabolizing hydrogen sulfide and preventing the accumulation of supraphysiological H(2)S levels that have toxic effects, due to the inhibition of cytochrome c oxidase. First described as a protein that can shuttle between the nucleus and the cytoplasm and suppress p53-induced apoptosis by sequestering the transcription factor RELA/NFKB3 in the cytoplasm and preventing its accumulation in the nucleus (PubMed:12398897). {ECO:0000269|PubMed:12398897, ECO:0000269|PubMed:14732903, ECO:0000269|PubMed:19136963, ECO:0000269|PubMed:23144459}.
O95696 BRD1 S18 ochoa Bromodomain-containing protein 1 (BR140-like protein) (Bromodomain and PHD finger-containing protein 2) Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, that acts as a regulator of hematopoiesis (PubMed:16387653, PubMed:21753189, PubMed:21880731). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby promoting erythroid differentiation (PubMed:21753189). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21880731}.
O95772 STARD3NL S18 ochoa STARD3 N-terminal-like protein (MLN64 N-terminal domain homolog) Tethering protein that creates contact site between the endoplasmic reticulum and late endosomes: localizes to late endosome membranes and contacts the endoplasmic reticulum via interaction with VAPA and VAPB (PubMed:24105263). {ECO:0000269|PubMed:24105263}.
O95816 BAG2 S18 ochoa BAG family molecular chaperone regulator 2 (BAG-2) (Bcl-2-associated athanogene 2) Co-chaperone for HSP70 and HSC70 chaperone proteins. Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from the HSP70 and HSC70 proteins thereby triggering client/substrate protein release (PubMed:24318877, PubMed:9873016). {ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:9873016}.
O95816 BAG2 S19 ochoa BAG family molecular chaperone regulator 2 (BAG-2) (Bcl-2-associated athanogene 2) Co-chaperone for HSP70 and HSC70 chaperone proteins. Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from the HSP70 and HSC70 proteins thereby triggering client/substrate protein release (PubMed:24318877, PubMed:9873016). {ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:9873016}.
O95926 SYF2 S18 ochoa Pre-mRNA-splicing factor SYF2 (CCNDBP1-interactor) (p29) Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770}.
O96017 CHEK2 S19 psp Serine/threonine-protein kinase Chk2 (EC 2.7.11.1) (CHK2 checkpoint homolog) (Cds1 homolog) (Hucds1) (hCds1) (Checkpoint kinase 2) Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-strand breaks. May also negatively regulate cell cycle progression during unperturbed cell cycles. Following activation, phosphorylates numerous effectors preferentially at the consensus sequence [L-X-R-X-X-S/T] (PubMed:37943659). Regulates cell cycle checkpoint arrest through phosphorylation of CDC25A, CDC25B and CDC25C, inhibiting their activity. Inhibition of CDC25 phosphatase activity leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. May also phosphorylate NEK6 which is involved in G2/M cell cycle arrest. Regulates DNA repair through phosphorylation of BRCA2, enhancing the association of RAD51 with chromatin which promotes DNA repair by homologous recombination. Also stimulates the transcription of genes involved in DNA repair (including BRCA2) through the phosphorylation and activation of the transcription factor FOXM1. Regulates apoptosis through the phosphorylation of p53/TP53, MDM4 and PML. Phosphorylation of p53/TP53 at 'Ser-20' by CHEK2 may alleviate inhibition by MDM2, leading to accumulation of active p53/TP53. Phosphorylation of MDM4 may also reduce degradation of p53/TP53. Also controls the transcription of pro-apoptotic genes through phosphorylation of the transcription factor E2F1. Tumor suppressor, it may also have a DNA damage-independent function in mitotic spindle assembly by phosphorylating BRCA1. Its absence may be a cause of the chromosomal instability observed in some cancer cells. Promotes the CCAR2-SIRT1 association and is required for CCAR2-mediated SIRT1 inhibition (PubMed:25361978). Under oxidative stress, promotes ATG7 ubiquitination by phosphorylating the E3 ubiquitin ligase TRIM32 at 'Ser-55' leading to positive regulation of the autophagosme assembly (PubMed:37943659). {ECO:0000250|UniProtKB:Q9Z265, ECO:0000269|PubMed:10097108, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11298456, ECO:0000269|PubMed:12402044, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:17380128, ECO:0000269|PubMed:17715138, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:18644861, ECO:0000269|PubMed:18728393, ECO:0000269|PubMed:20364141, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25619829, ECO:0000269|PubMed:37943659, ECO:0000269|PubMed:9836640, ECO:0000269|PubMed:9889122}.; FUNCTION: (Microbial infection) Phosphorylates herpes simplex virus 1/HHV-1 protein ICP0 and thus activates its SUMO-targeted ubiquitin ligase activity. {ECO:0000269|PubMed:32001251}.
P00338 LDHA T18 ochoa L-lactate dehydrogenase A chain (LDH-A) (EC 1.1.1.27) (Cell proliferation-inducing gene 19 protein) (LDH muscle subunit) (LDH-M) (Renal carcinoma antigen NY-REN-59) Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:11276087}.
P01857 IGHG1 T18 ochoa Immunoglobulin heavy constant gamma 1 (Ig gamma-1 chain C region) (Ig gamma-1 chain C region EU) (Ig gamma-1 chain C region KOL) (Ig gamma-1 chain C region NIE) Constant region of immunoglobulin heavy chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:20176268, PubMed:22158414). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268). Mediates IgG effector functions on monocytes triggering ADCC of virus-infected cells. {ECO:0000269|PubMed:11711607, ECO:0000303|PubMed:17576170, ECO:0000303|PubMed:20176268, ECO:0000303|PubMed:22158414}.
P01860 IGHG3 T18 ochoa Immunoglobulin heavy constant gamma 3 (HDC) (Heavy chain disease protein) (Ig gamma-3 chain C region) Constant region of immunoglobulin heavy chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:20176268, PubMed:22158414). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268). {ECO:0000303|PubMed:17576170, ECO:0000303|PubMed:20176268, ECO:0000303|PubMed:22158414}.
P02511 CRYAB S19 ochoa|psp Alpha-crystallin B chain (Alpha(B)-crystallin) (Heat shock protein beta-5) (HspB5) (Heat shock protein family B member 5) (Renal carcinoma antigen NY-REN-27) (Rosenthal fiber component) May contribute to the transparency and refractive index of the lens. Has chaperone-like activity, preventing aggregation of various proteins under a wide range of stress conditions. In lens epithelial cells, stabilizes the ATP6V1A protein, preventing its degradation by the proteasome (By similarity). {ECO:0000250|UniProtKB:P23927}.
P02545 LMNA S18 ochoa Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}.
P02686 MBP S19 ochoa Myelin basic protein (MBP) (Myelin A1 protein) (Myelin membrane encephalitogenic protein) The classic group of MBP isoforms (isoform 4-isoform 14) are with PLP the most abundant protein components of the myelin membrane in the CNS. They have a role in both its formation and stabilization. The smaller isoforms might have an important role in remyelination of denuded axons in multiple sclerosis. The non-classic group of MBP isoforms (isoform 1-isoform 3/Golli-MBPs) may preferentially have a role in the early developing brain long before myelination, maybe as components of transcriptional complexes, and may also be involved in signaling pathways in T-cells and neural cells. Differential splicing events combined with optional post-translational modifications give a wide spectrum of isomers, with each of them potentially having a specialized function. Induces T-cell proliferation. {ECO:0000269|PubMed:8544862}.
P02786 TFRC S19 ochoa Transferrin receptor protein 1 (TR) (TfR) (TfR1) (Trfr) (T9) (p90) (CD antigen CD71) [Cleaved into: Transferrin receptor protein 1, serum form (sTfR)] Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes (PubMed:26214738). Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the hereditary hemochromatosis protein HFE, competes for binding with transferrin for an overlapping C-terminal binding site. Positively regulates T and B cell proliferation through iron uptake (PubMed:26642240). Acts as a lipid sensor that regulates mitochondrial fusion by regulating activation of the JNK pathway (PubMed:26214738). When dietary levels of stearate (C18:0) are low, promotes activation of the JNK pathway, resulting in HUWE1-mediated ubiquitination and subsequent degradation of the mitofusin MFN2 and inhibition of mitochondrial fusion (PubMed:26214738). When dietary levels of stearate (C18:0) are high, TFRC stearoylation inhibits activation of the JNK pathway and thus degradation of the mitofusin MFN2 (PubMed:26214738). Mediates uptake of NICOL1 into fibroblasts where it may regulate extracellular matrix production (By similarity). {ECO:0000250|UniProtKB:Q62351, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:26642240, ECO:0000269|PubMed:3568132}.; FUNCTION: (Microbial infection) Acts as a receptor for new-world arenaviruses: Guanarito, Junin and Machupo virus. {ECO:0000269|PubMed:17287727, ECO:0000269|PubMed:18268337}.; FUNCTION: (Microbial infection) Acts as a host entry factor for rabies virus that hijacks the endocytosis of TFRC to enter cells. {ECO:0000269|PubMed:36779762, ECO:0000269|PubMed:36779763}.; FUNCTION: (Microbial infection) Acts as a host entry factor for SARS-CoV, MERS-CoV and SARS-CoV-2 viruses that hijack the endocytosis of TFRC to enter cells. {ECO:0000269|PubMed:36779762}.
P04637 TP53 T18 psp Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}.
P05387 RPLP2 S19 ochoa Large ribosomal subunit protein P2 (60S acidic ribosomal protein P2) (Renal carcinoma antigen NY-REN-44) Plays an important role in the elongation step of protein synthesis.
P05783 KRT18 S18 ochoa Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}.
P05814 CSN2 T18 psp Beta-casein Important role in determination of the surface properties of the casein micelles.
P07101 TH S19 psp Tyrosine 3-monooxygenase (EC 1.14.16.2) (Tyrosine 3-hydroxylase) (TH) Catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-Dopa), the rate-limiting step in the biosynthesis of catecholamines, dopamine, noradrenaline, and adrenaline. Uses tetrahydrobiopterin and molecular oxygen to convert tyrosine to L-Dopa (PubMed:15287903, PubMed:1680128, PubMed:17391063, PubMed:24753243, PubMed:34922205, PubMed:8528210, Ref.18). In addition to tyrosine, is able to catalyze the hydroxylation of phenylalanine and tryptophan with lower specificity (By similarity). Positively regulates the regression of retinal hyaloid vessels during postnatal development (By similarity). {ECO:0000250|UniProtKB:P04177, ECO:0000250|UniProtKB:P24529, ECO:0000269|PubMed:15287903, ECO:0000269|PubMed:1680128, ECO:0000269|PubMed:17391063, ECO:0000269|PubMed:24753243, ECO:0000269|PubMed:34922205, ECO:0000269|PubMed:8528210, ECO:0000269|Ref.18}.; FUNCTION: [Isoform 5]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}.; FUNCTION: [Isoform 6]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}.
P07355 ANXA2 S18 ochoa|psp Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) (Protein I) (p36) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9 (PubMed:18799458, PubMed:22848640, PubMed:24808179). Binds to endosomes damaged by phagocytosis of particulate wear debris and participates in endosomal membrane stabilization, thereby limiting NLRP3 inflammasome activation (By similarity). Required for endothelial cell surface plasmin generation and may support fibrinolytic surveillance and neoangiogenesis (By similarity). {ECO:0000250|UniProtKB:P07356, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22848640, ECO:0000269|PubMed:24808179}.; FUNCTION: (Microbial infection) Binds M.pneumoniae CARDS toxin, probably serves as one receptor for this pathogen. When ANXA2 is down-regulated by siRNA, less toxin binds to human cells and less vacuolization (a symptom of M.pneumoniae infection) is seen. {ECO:0000269|PubMed:25139904}.
P09234 SNRPC S19 ochoa U1 small nuclear ribonucleoprotein C (U1 snRNP C) (U1-C) (U1C) Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5' splice-site and the subsequent assembly of the spliceosome. SNRPC/U1-C is directly involved in initial 5' splice-site recognition for both constitutive and regulated alternative splicing. The interaction with the 5' splice-site seems to precede base-pairing between the pre-mRNA and the U1 snRNA. Stimulates commitment or early (E) complex formation by stabilizing the base pairing of the 5' end of the U1 snRNA and the 5' splice-site region. {ECO:0000255|HAMAP-Rule:MF_03153, ECO:0000269|PubMed:1826349, ECO:0000269|PubMed:19325628, ECO:0000269|PubMed:2136774, ECO:0000269|PubMed:8798632}.
P0C0S8 H2AC11 S19 ochoa Histone H2A type 1 (H2A.1) (Histone H2A/ptl) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P10155 RO60 S19 ochoa RNA-binding protein RO60 (60 kDa SS-A/Ro ribonucleoprotein) (60 kDa Ro protein) (60 kDa ribonucleoprotein Ro) (RoRNP) (Ro 60 kDa autoantigen) (Ro60 autoantigen) (Sjoegren syndrome antigen A2) (Sjoegren syndrome type A antigen) (SS-A) (TROVE domain family member 2) RNA-binding protein that binds to misfolded non-coding RNAs, pre-5S rRNA, and several small cytoplasmic RNA molecules known as Y RNAs (PubMed:18056422, PubMed:26382853). Binds to endogenous Alu retroelements which are induced by type I interferon and stimulate porinflammatory cytokine secretion (PubMed:26382853). Regulates the expression of Alu retroelements as well as inflammatory genes (PubMed:26382853). May play roles in cilia formation and/or maintenance (By similarity). {ECO:0000250|UniProtKB:O08848, ECO:0000269|PubMed:18056422, ECO:0000269|PubMed:26382853}.
P10244 MYBL2 T18 ochoa|psp Myb-related protein B (B-Myb) (Myb-like protein 2) Transcription factor involved in the regulation of cell survival, proliferation, and differentiation. Transactivates the expression of the CLU gene. {ECO:0000269|PubMed:10770937}.
P10412 H1-4 T18 ochoa|psp Histone H1.4 (Histone H1b) (Histone H1s-4) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P10636 MAPT Y18 psp Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}.
P10827 THRA S18 ochoa Thyroid hormone receptor alpha (Nuclear receptor subfamily 1 group A member 1) (V-erbA-related protein 7) (EAR-7) (c-erbA-1) (c-erbA-alpha) [Isoform Alpha-1]: Nuclear hormone receptor that can act as a repressor or activator of transcription. High affinity receptor for thyroid hormones, including triiodothyronine and thyroxine. {ECO:0000269|PubMed:12699376, ECO:0000269|PubMed:14673100, ECO:0000269|PubMed:18237438, ECO:0000269|PubMed:19926848}.; FUNCTION: [Isoform Alpha-2]: Does not bind thyroid hormone and functions as a weak dominant negative inhibitor of thyroid hormone action. {ECO:0000269|PubMed:8910441}.
P10916 MYL2 S19 ochoa|psp Myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC-2) (MLC-2v) (Cardiac myosin light chain 2) (Myosin light chain 2, slow skeletal/ventricular muscle isoform) (MLC-2s/v) (Ventricular myosin light chain 2) Contractile protein that plays a role in heart development and function (PubMed:23365102, PubMed:32453731). Following phosphorylation, plays a role in cross-bridge cycling kinetics and cardiac muscle contraction by increasing myosin lever arm stiffness and promoting myosin head diffusion; as a consequence of the increase in maximum contraction force and calcium sensitivity of contraction force. These events altogether slow down myosin kinetics and prolong duty cycle resulting in accumulated myosins being cooperatively recruited to actin binding sites to sustain thin filament activation as a means to fine-tune myofilament calcium sensitivity to force (By similarity). During cardiogenesis plays an early role in cardiac contractility by promoting cardiac myofibril assembly (By similarity). {ECO:0000250|UniProtKB:P08733, ECO:0000269|PubMed:23365102, ECO:0000269|PubMed:32453731}.
P11474 ESRRA S19 ochoa Steroid hormone receptor ERR1 (Estrogen receptor-like 1) (Estrogen-related receptor alpha) (ERR-alpha) (Nuclear receptor subfamily 3 group B member 1) Binds to an ERR-alpha response element (ERRE) containing a single consensus half-site, 5'-TNAAGGTCA-3'. Can bind to the medium-chain acyl coenzyme A dehydrogenase (MCAD) response element NRRE-1 and may act as an important regulator of MCAD promoter. Binds to the C1 region of the lactoferrin gene promoter. Requires dimerization and the coactivator, PGC-1A, for full activity. The ERRalpha/PGC1alpha complex is a regulator of energy metabolism. Induces the expression of PERM1 in the skeletal muscle. {ECO:0000269|PubMed:12522104, ECO:0000269|PubMed:16150865, ECO:0000269|PubMed:17676930, ECO:0000269|PubMed:18063693, ECO:0000269|PubMed:23836911, ECO:0000269|PubMed:9271417}.
P12429 ANXA3 S19 ochoa Annexin A3 (35-alpha calcimedin) (Annexin III) (Annexin-3) (Inositol 1,2-cyclic phosphate 2-phosphohydrolase) (Lipocortin III) (Placental anticoagulant protein III) (PAP-III) Inhibitor of phospholipase A2, also possesses anti-coagulant properties. Also cleaves the cyclic bond of inositol 1,2-cyclic phosphate to form inositol 1-phosphate.
P12883 MYH7 S19 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P13929 ENO3 T19 ochoa Beta-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Enolase 3) (Muscle-specific enolase) (MSE) (Skeletal muscle enolase) Glycolytic enzyme that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate. Appears to have a function in striated muscle development and regeneration. {ECO:0000250|UniProtKB:P15429}.
P14649 MYL6B S18 ochoa Myosin light chain 6B (Myosin light chain 1 slow-twitch muscle A isoform) (MLC1sa) (Smooth muscle and nonmuscle myosin light chain alkali 6B) Regulatory light chain of myosin. Does not bind calcium.
P15036 ETS2 S18 ochoa Protein C-ets-2 Transcription factor activating transcription. Binds specifically the DNA GGAA/T core motif (Ets-binding site or EBS) in gene promoters and stimulates transcription. {ECO:0000269|PubMed:11909962}.
P15408 FOSL2 S19 ochoa Fos-related antigen 2 (FRA-2) Controls osteoclast survival and size (By similarity). As a dimer with JUN, activates LIF transcription (By similarity). Activates CEBPB transcription in PGE2-activated osteoblasts (By similarity). {ECO:0000250|UniProtKB:P47930, ECO:0000250|UniProtKB:P51145}.
P16104 H2AX S19 ochoa Histone H2AX (H2a/x) (Histone H2A.X) Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Required for checkpoint-mediated arrest of cell cycle progression in response to low doses of ionizing radiation and for efficient repair of DNA double strand breaks (DSBs) specifically when modified by C-terminal phosphorylation. {ECO:0000269|PubMed:10959836, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:17709392, ECO:0000269|PubMed:26438602}.
P16383 GCFC2 S19 ochoa Intron Large complex component GCFC2 (GC-rich sequence DNA-binding factor) (GC-rich sequence DNA-binding factor 2) (Transcription factor 9) (TCF-9) Involved in pre-mRNA splicing through regulating spliceosome C complex formation (PubMed:24304693). May play a role during late-stage splicing events and turnover of excised introns (PubMed:24304693). {ECO:0000269|PubMed:24304693}.
P16401 H1-5 S18 ochoa|psp Histone H1.5 (Histone H1a) (Histone H1b) (Histone H1s-3) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16402 H1-3 T18 ochoa Histone H1.3 (Histone H1c) (Histone H1s-2) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P19105 MYL12A T18 ochoa|psp Myosin regulatory light chain 12A (Epididymis secretory protein Li 24) (HEL-S-24) (MLC-2B) (Myosin RLC) (Myosin regulatory light chain 2, nonsarcomeric) (Myosin regulatory light chain MRLC3) Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Implicated in cytokinesis, receptor capping, and cell locomotion (By similarity). {ECO:0000250}.
P19784 CSNK2A2 S18 ochoa Casein kinase II subunit alpha' (CK II alpha') (EC 2.7.11.1) Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine (PubMed:11239457, PubMed:11704824, PubMed:16193064, PubMed:30898438). Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection (PubMed:11704824, PubMed:16193064, PubMed:30898438). May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response (PubMed:12631575, PubMed:19387551, PubMed:19387552). During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage (PubMed:12631575, PubMed:19387551, PubMed:19387552). Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation (PubMed:11239457). Phosphorylates a number of DNA repair proteins in response to DNA damage, such as MDC1, RAD9A, RAD51 and HTATSF1, promoting their recruitment to DNA damage sites (PubMed:20545769, PubMed:21482717, PubMed:22325354, PubMed:26811421, PubMed:30898438, PubMed:35597237). Can also negatively regulate apoptosis (PubMed:19387551, PubMed:19387552). Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3 (PubMed:12631575, PubMed:19387551, PubMed:19387552). Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8 (PubMed:12631575, PubMed:19387551, PubMed:19387552). Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV (PubMed:12631575, PubMed:19387551, PubMed:19387552). Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, SRF, MAX, JUN, FOS, MYC and MYB (PubMed:12631575, PubMed:19387551, PubMed:19387552). Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function (PubMed:19387550). Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1 (PubMed:19387549). Acts as an ectokinase that phosphorylates several extracellular proteins (PubMed:12631575, PubMed:19387551, PubMed:19387552). During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV (PubMed:12631575, PubMed:19387551, PubMed:19387552). May phosphorylate histone H2A on 'Ser-1' (PubMed:38334665). {ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:11704824, ECO:0000269|PubMed:16193064, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21482717, ECO:0000269|PubMed:22325354, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:30898438, ECO:0000269|PubMed:35597237, ECO:0000269|PubMed:38334665, ECO:0000303|PubMed:12631575, ECO:0000303|PubMed:19387549, ECO:0000303|PubMed:19387550, ECO:0000303|PubMed:19387551, ECO:0000303|PubMed:19387552}.
P19971 TYMP S19 ochoa Thymidine phosphorylase (TP) (EC 2.4.2.4) (Gliostatin) (Platelet-derived endothelial cell growth factor) (PD-ECGF) (TdRPase) May have a role in maintaining the integrity of the blood vessels. Has growth promoting activity on endothelial cells, angiogenic activity in vivo and chemotactic activity on endothelial cells in vitro. {ECO:0000269|PubMed:1590793}.; FUNCTION: Catalyzes the reversible phosphorolysis of thymidine. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis. {ECO:0000269|PubMed:1590793}.
P20671 H2AC7 S19 ochoa Histone H2A type 1-D (Histone H2A.3) (Histone H2A/g) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P23497 SP100 S18 ochoa Nuclear autoantigen Sp-100 (Nuclear dot-associated Sp100 protein) (Speckled 100 kDa) Together with PML, this tumor suppressor is a major constituent of the PML bodies, a subnuclear organelle involved in a large number of physiological processes including cell growth, differentiation and apoptosis. Functions as a transcriptional coactivator of ETS1 and ETS2 according to PubMed:11909962. Under certain conditions, it may also act as a corepressor of ETS1 preventing its binding to DNA according to PubMed:15247905. Through the regulation of ETS1 it may play a role in angiogenesis, controlling endothelial cell motility and invasion. Through interaction with the MRN complex it may be involved in the regulation of telomeres lengthening. May also regulate TP53-mediated transcription and through CASP8AP2, regulate FAS-mediated apoptosis. Also plays a role in infection by viruses, including human cytomegalovirus and Epstein-Barr virus, through mechanisms that may involve chromatin and/or transcriptional regulation. {ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:14647468, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000269|PubMed:15767676, ECO:0000269|PubMed:16177824, ECO:0000269|PubMed:17245429, ECO:0000269|PubMed:21274506, ECO:0000269|PubMed:21880768}.
P23588 EIF4B T18 ochoa Eukaryotic translation initiation factor 4B (eIF-4B) Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F.
P24588 AKAP5 S18 ochoa A-kinase anchor protein 5 (AKAP-5) (A-kinase anchor protein 79 kDa) (AKAP 79) (H21) (cAMP-dependent protein kinase regulatory subunit II high affinity-binding protein) Multivalent scaffold protein that anchors the cAMP-dependent protein kinase/PKA to cytoskeletal and/or organelle-associated proteins, targeting the signal carried by cAMP to specific intracellular effectors (PubMed:1512224). Association with the beta2-adrenergic receptor (beta2-AR) not only regulates beta2-AR signaling pathway, but also the activation by PKA by switching off the beta2-AR signaling cascade. Plays a role in long term synaptic potentiation by regulating protein trafficking from the dendritic recycling endosomes to the plasma membrane and controlling both structural and functional plasticity at excitatory synapses (PubMed:25589740). In hippocampal pyramidal neurons, recruits KCNK2/TREK-1 channel at postsynaptic dense bodies microdomains and converts it to a leak channel no longer sensitive to stimulation by arachidonic acid, acidic pH or mechanical stress, nor inhibited by Gq-coupled receptors but still under the negative control of Gs-coupled receptors (By similarity). Associates with ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where it recruits NFATC2/NFAT1 and couples store-operated Ca(2+) influx to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses (PubMed:33941685). {ECO:0000250|UniProtKB:D3YVF0, ECO:0000269|PubMed:1512224, ECO:0000269|PubMed:25589740, ECO:0000269|PubMed:33941685}.
P27105 STOM S18 ochoa Stomatin (Erythrocyte band 7 integral membrane protein) (Erythrocyte membrane protein band 7.2) (Protein 7.2b) Regulates ion channel activity and transmembrane ion transport. Regulates ASIC2 and ASIC3 channel activity.
P30304 CDC25A S18 ochoa|psp M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}.
P32119 PRDX2 T18 ochoa Peroxiredoxin-2 (EC 1.11.1.24) (Natural killer cell-enhancing factor B) (NKEF-B) (PRP) (Thiol-specific antioxidant protein) (TSA) (Thioredoxin peroxidase 1) (Thioredoxin-dependent peroxide reductase 1) (Thioredoxin-dependent peroxiredoxin 2) Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides and as sensor of hydrogen peroxide-mediated signaling events. Might participate in the signaling cascades of growth factors and tumor necrosis factor-alpha by regulating the intracellular concentrations of H(2)O(2). {ECO:0000269|PubMed:9497357}.
P35558 PCK1 S19 ochoa Phosphoenolpyruvate carboxykinase, cytosolic [GTP] (PEPCK-C) (EC 4.1.1.32) (Serine-protein kinase PCK1) (EC 2.7.11.-) Cytosolic phosphoenolpyruvate carboxykinase that catalyzes the reversible decarboxylation and phosphorylation of oxaloacetate (OAA) and acts as the rate-limiting enzyme in gluconeogenesis (PubMed:24863970, PubMed:26971250, PubMed:28216384, PubMed:30193097). Regulates cataplerosis and anaplerosis, the processes that control the levels of metabolic intermediates in the citric acid cycle (PubMed:24863970, PubMed:26971250, PubMed:28216384, PubMed:30193097). At low glucose levels, it catalyzes the cataplerotic conversion of oxaloacetate to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle (PubMed:30193097). At high glucose levels, it catalyzes the anaplerotic conversion of phosphoenolpyruvate to oxaloacetate (PubMed:30193097). Acts as a regulator of formation and maintenance of memory CD8(+) T-cells: up-regulated in these cells, where it generates phosphoenolpyruvate, via gluconeogenesis (By similarity). The resultant phosphoenolpyruvate flows to glycogen and pentose phosphate pathway, which is essential for memory CD8(+) T-cells homeostasis (By similarity). In addition to the phosphoenolpyruvate carboxykinase activity, also acts as a protein kinase when phosphorylated at Ser-90: phosphorylation at Ser-90 by AKT1 reduces the binding affinity to oxaloacetate and promotes an atypical serine protein kinase activity using GTP as donor (PubMed:32322062). The protein kinase activity regulates lipogenesis: upon phosphorylation at Ser-90, translocates to the endoplasmic reticulum and catalyzes phosphorylation of INSIG proteins (INSIG1 and INSIG2), thereby disrupting the interaction between INSIG proteins and SCAP and promoting nuclear translocation of SREBP proteins (SREBF1/SREBP1 or SREBF2/SREBP2) and subsequent transcription of downstream lipogenesis-related genes (PubMed:32322062). {ECO:0000250|UniProtKB:Q9Z2V4, ECO:0000269|PubMed:24863970, ECO:0000269|PubMed:26971250, ECO:0000269|PubMed:28216384, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:32322062}.
P35637 FUS T19 psp RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}.
P40222 TXLNA S18 ochoa Alpha-taxilin May be involved in intracellular vesicle traffic and potentially in calcium-dependent exocytosis in neuroendocrine cells.
P40222 TXLNA S19 ochoa Alpha-taxilin May be involved in intracellular vesicle traffic and potentially in calcium-dependent exocytosis in neuroendocrine cells.
P41212 ETV6 T18 ochoa Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}.
P41236 PPP1R2 T19 ochoa Protein phosphatase inhibitor 2 (IPP-2) Inhibitor of protein-phosphatase 1.
P41743 PRKCI S19 ochoa Protein kinase C iota type (EC 2.7.11.13) (Atypical protein kinase C-lambda/iota) (PRKC-lambda/iota) (aPKC-lambda/iota) (nPKC-iota) Calcium- and diacylglycerol-independent serine/ threonine-protein kinase that plays a general protective role against apoptotic stimuli, is involved in NF-kappa-B activation, cell survival, differentiation and polarity, and contributes to the regulation of microtubule dynamics in the early secretory pathway. Is necessary for BCR-ABL oncogene-mediated resistance to apoptotic drug in leukemia cells, protecting leukemia cells against drug-induced apoptosis. In cultured neurons, prevents amyloid beta protein-induced apoptosis by interrupting cell death process at a very early step. In glioblastoma cells, may function downstream of phosphatidylinositol 3-kinase (PI(3)K) and PDPK1 in the promotion of cell survival by phosphorylating and inhibiting the pro-apoptotic factor BAD. Can form a protein complex in non-small cell lung cancer (NSCLC) cells with PARD6A and ECT2 and regulate ECT2 oncogenic activity by phosphorylation, which in turn promotes transformed growth and invasion. In response to nerve growth factor (NGF), acts downstream of SRC to phosphorylate and activate IRAK1, allowing the subsequent activation of NF-kappa-B and neuronal cell survival. Functions in the organization of the apical domain in epithelial cells by phosphorylating EZR. This step is crucial for activation and normal distribution of EZR at the early stages of intestinal epithelial cell differentiation. Forms a protein complex with LLGL1 and PARD6B independently of PARD3 to regulate epithelial cell polarity. Plays a role in microtubule dynamics in the early secretory pathway through interaction with RAB2A and GAPDH and recruitment to vesicular tubular clusters (VTCs). In human coronary artery endothelial cells (HCAEC), is activated by saturated fatty acids and mediates lipid-induced apoptosis. Involved in early synaptic long term potentiation phase in CA1 hippocampal cells and short term memory formation (By similarity). {ECO:0000250|UniProtKB:F1M7Y5, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10467349, ECO:0000269|PubMed:10906326, ECO:0000269|PubMed:11042363, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:12871960, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15994303, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19327373, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21419810, ECO:0000269|PubMed:8226978, ECO:0000269|PubMed:9346882}.
P42679 MATK S18 ochoa Megakaryocyte-associated tyrosine-protein kinase (EC 2.7.10.2) (CSK homologous kinase) (CHK) (Hematopoietic consensus tyrosine-lacking kinase) (Protein kinase HYL) (Tyrosine-protein kinase CTK) Could play a significant role in the signal transduction of hematopoietic cells. May regulate tyrosine kinase activity of SRC-family members in brain by specifically phosphorylating their C-terminal regulatory tyrosine residue which acts as a negative regulatory site. It may play an inhibitory role in the control of T-cell proliferation. {ECO:0000269|PubMed:9171348}.
P43268 ETV4 S19 ochoa ETS translocation variant 4 (Adenovirus E1A enhancer-binding protein) (E1A-F) (Polyomavirus enhancer activator 3 homolog) (Protein PEA3) Transcriptional activator (PubMed:19307308, PubMed:31552090). May play a role in keratinocyte differentiation (PubMed:31552090). {ECO:0000269|PubMed:19307308, ECO:0000269|PubMed:31552090}.; FUNCTION: (Microbial infection) Binds to the enhancer of the adenovirus E1A gene and acts as a transcriptional activator; the core-binding sequence is 5'-[AC]GGA[AT]GT-3'. {ECO:0000269|PubMed:8441666}.
P43487 RANBP1 T18 ochoa Ran-specific GTPase-activating protein (Ran-binding protein 1) (RanBP1) Plays a role in RAN-dependent nucleocytoplasmic transport. Alleviates the TNPO1-dependent inhibition of RAN GTPase activity and mediates the dissociation of RAN from proteins involved in transport into the nucleus (By similarity). Induces a conformation change in the complex formed by XPO1 and RAN that triggers the release of the nuclear export signal of cargo proteins (PubMed:20485264). Promotes the disassembly of the complex formed by RAN and importin beta. Promotes dissociation of RAN from a complex with KPNA2 and CSE1L (By similarity). Required for normal mitotic spindle assembly and normal progress through mitosis via its effect on RAN (PubMed:17671426). Does not increase the RAN GTPase activity by itself, but increases GTP hydrolysis mediated by RANGAP1 (PubMed:7882974). Inhibits RCC1-dependent exchange of RAN-bound GDP by GTP (PubMed:7616957, PubMed:7882974). {ECO:0000250|UniProtKB:P34022, ECO:0000269|PubMed:17671426, ECO:0000269|PubMed:20485264, ECO:0000269|PubMed:7616957, ECO:0000269|PubMed:7882974}.
P43686 PSMC4 S19 ochoa 26S proteasome regulatory subunit 6B (26S proteasome AAA-ATPase subunit RPT3) (MB67-interacting protein) (MIP224) (Proteasome 26S subunit ATPase 4) (Tat-binding protein 7) (TBP-7) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC4 belongs to the heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitinated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:8060531}.
P45985 MAP2K4 S18 ochoa Dual specificity mitogen-activated protein kinase kinase 4 (MAP kinase kinase 4) (MAPKK 4) (EC 2.7.12.2) (JNK-activating kinase 1) (MAPK/ERK kinase 4) (MEK 4) (SAPK/ERK kinase 1) (SEK1) (Stress-activated protein kinase kinase 1) (SAPK kinase 1) (SAPKK-1) (SAPKK1) (c-Jun N-terminal kinase kinase 1) (JNKK) Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K7/MKK7, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The phosphorylation of the Thr residue by MAP2K7/MKK7 seems to be the prerequisite for JNK activation at least in response to pro-inflammatory cytokines, while other stimuli activate both MAP2K4/MKK4 and MAP2K7/MKK7 which synergistically phosphorylate JNKs. MAP2K4 is required for maintaining peripheral lymphoid homeostasis. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Whereas MAP2K7/MKK7 exclusively activates JNKs, MAP2K4/MKK4 additionally activates the p38 MAPKs MAPK11, MAPK12, MAPK13 and MAPK14. {ECO:0000269|PubMed:7716521}.
P46695 IER3 T18 psp Radiation-inducible immediate-early gene IEX-1 (Differentiation-dependent gene 2 protein) (Protein DIF-2) (Immediate early protein GLY96) (Immediate early response 3 protein) (PACAP-responsive gene 1 protein) (Protein PRG1) May play a role in the ERK signaling pathway by inhibiting the dephosphorylation of ERK by phosphatase PP2A-PPP2R5C holoenzyme. Also acts as an ERK downstream effector mediating survival. As a member of the NUPR1/RELB/IER3 survival pathway, may provide pancreatic ductal adenocarcinoma with remarkable resistance to cell stress, such as starvation or gemcitabine treatment. {ECO:0000269|PubMed:12356731, ECO:0000269|PubMed:16456541, ECO:0000269|PubMed:22565310}.
P46940 IQGAP1 S19 ochoa Ras GTPase-activating-like protein IQGAP1 (p195) Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}.
P48634 PRRC2A S18 ochoa Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}.
P48634 PRRC2A S19 ochoa Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}.
P49116 NR2C2 S19 ochoa Nuclear receptor subfamily 2 group C member 2 (Orphan nuclear receptor TAK1) (Orphan nuclear receptor TR4) (Testicular receptor 4) Orphan nuclear receptor that can act as a repressor or activator of transcription. An important repressor of nuclear receptor signaling pathways such as retinoic acid receptor, retinoid X, vitamin D3 receptor, thyroid hormone receptor and estrogen receptor pathways. May regulate gene expression during the late phase of spermatogenesis. Together with NR2C1, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription including that of GATA1. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Plays a fundamental role in early embryonic development and embryonic stem cells. Required for normal spermatogenesis and cerebellum development. Appears to be important for neurodevelopmentally regulated behavior (By similarity). Activates transcriptional activity of LHCG. Antagonist of PPARA-mediated transactivation. {ECO:0000250, ECO:0000269|PubMed:10347174, ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:17974920, ECO:0000269|PubMed:7779113, ECO:0000269|PubMed:9556573}.
P49589 CARS1 S19 ochoa Cysteine--tRNA ligase, cytoplasmic (EC 6.1.1.16) (Cysteinyl-tRNA synthetase) (CysRS) Catalyzes the ATP-dependent ligation of cysteine to tRNA(Cys). {ECO:0000269|PubMed:11347887, ECO:0000269|PubMed:30824121}.
P49792 RANBP2 S18 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 T19 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49810 PSEN2 T18 ochoa Presenilin-2 (PS-2) (EC 3.4.23.-) (AD3LP) (AD5) (E5-1) (STM-2) [Cleaved into: Presenilin-2 NTF subunit; Presenilin-2 CTF subunit] Probable catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein). Requires the other members of the gamma-secretase complex to have a protease activity. May play a role in intracellular signaling and gene expression or in linking chromatin to the nuclear membrane. May function in the cytoplasmic partitioning of proteins. The holoprotein functions as a calcium-leak channel that allows the passive movement of calcium from endoplasmic reticulum to cytosol and is involved in calcium homeostasis (PubMed:16959576). Is a regulator of mitochondrion-endoplasmic reticulum membrane tethering and modulates calcium ions shuttling between ER and mitochondria (PubMed:21285369). {ECO:0000269|PubMed:10497236, ECO:0000269|PubMed:10652302, ECO:0000269|PubMed:16959576, ECO:0000269|PubMed:21285369}.
P50402 EMD Y19 psp Emerin Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}.
P51636 CAV2 S18 ochoa Caveolin-2 May act as a scaffolding protein within caveolar membranes. Interacts directly with G-protein alpha subunits and can functionally regulate their activity. Acts as an accessory protein in conjunction with CAV1 in targeting to lipid rafts and driving caveolae formation. The Ser-36 phosphorylated form has a role in modulating mitosis in endothelial cells. Positive regulator of cellular mitogenesis of the MAPK signaling pathway. Required for the insulin-stimulated nuclear translocation and activation of MAPK1 and STAT3, and the subsequent regulation of cell cycle progression (By similarity). {ECO:0000250, ECO:0000269|PubMed:15504032, ECO:0000269|PubMed:18081315}.
P51812 RPS6KA3 S19 ochoa|psp Ribosomal protein S6 kinase alpha-3 (S6K-alpha-3) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 3) (p90-RSK 3) (p90RSK3) (Insulin-stimulated protein kinase 1) (ISPK-1) (MAP kinase-activated protein kinase 1b) (MAPK-activated protein kinase 1b) (MAPKAP kinase 1b) (MAPKAPK-1b) (Ribosomal S6 kinase 2) (RSK-2) (pp90RSK2) Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:16213824, PubMed:16223362, PubMed:17360704, PubMed:9770464). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:10436156, PubMed:9770464). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:8250835). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:18508509, PubMed:18813292). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:18722121). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (By similarity). In LPS-stimulated dendritic cells, is involved in TLR4-induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3 (By similarity). Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1 (By similarity). Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation (By similarity). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity (By similarity). {ECO:0000250|UniProtKB:P18654, ECO:0000269|PubMed:10436156, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:8250835, ECO:0000269|PubMed:9770464, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}.
P52701 MSH6 S18 ochoa DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}.
P52756 RBM5 S18 ochoa RNA-binding protein 5 (Protein G15) (Putative tumor suppressor LUCA15) (RNA-binding motif protein 5) (Renal carcinoma antigen NY-REN-9) Component of the spliceosome A complex. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Regulates alternative splicing of a number of mRNAs. May modulate splice site pairing after recruitment of the U1 and U2 snRNPs to the 5' and 3' splice sites of the intron. May both positively and negatively regulate apoptosis by regulating the alternative splicing of several genes involved in this process, including FAS and CASP2/caspase-2. In the case of FAS, promotes exclusion of exon 6 thereby producing a soluble form of FAS that inhibits apoptosis. In the case of CASP2/caspase-2, promotes exclusion of exon 9 thereby producing a catalytically active form of CASP2/Caspase-2 that induces apoptosis. {ECO:0000269|PubMed:10949932, ECO:0000269|PubMed:12207175, ECO:0000269|PubMed:12581154, ECO:0000269|PubMed:15192330, ECO:0000269|PubMed:16585163, ECO:0000269|PubMed:18840686, ECO:0000269|PubMed:18851835, ECO:0000269|PubMed:21256132}.
P56945 BCAR1 S18 ochoa Breast cancer anti-estrogen resistance protein 1 (CRK-associated substrate) (Cas scaffolding protein family member 1) (p130cas) Docking protein which plays a central coordinating role for tyrosine kinase-based signaling related to cell adhesion (PubMed:12432078, PubMed:12832404). Implicated in induction of cell migration and cell branching (PubMed:12432078, PubMed:12832404, PubMed:17038317). Involved in the BCAR3-mediated inhibition of TGFB signaling (By similarity). {ECO:0000250|UniProtKB:Q61140, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:17038317}.
P61011 SRP54 S18 ochoa Signal recognition particle subunit SRP54 (EC 3.6.5.4) (Signal recognition particle 54 kDa protein) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). As part of the SRP complex, associates with the SRP receptor (SR) component SRPRA to target secretory proteins to the endoplasmic reticulum membrane (PubMed:34020957). Binds to the signal sequence of presecretory proteins when they emerge from the ribosomes (PubMed:34020957). Displays basal GTPase activity, and stimulates reciprocal GTPase activation of the SR subunit SRPRA (PubMed:28972538, PubMed:34020957). Forms a guanosine 5'-triphosphate (GTP)-dependent complex with the SR subunit SRPRA (PubMed:34020957). SR compaction and GTPase mediated rearrangement of SR drive SRP-mediated cotranslational protein translocation into the ER (PubMed:34020957). Requires the presence of SRP9/SRP14 and/or SRP19 to stably interact with RNA (By similarity). Plays a role in proliferation and differentiation of granulocytic cells, neutrophils migration capacity and exocrine pancreas development (PubMed:28972538, PubMed:29914977). {ECO:0000250|UniProtKB:P61010, ECO:0000269|PubMed:28972538, ECO:0000269|PubMed:29914977, ECO:0000269|PubMed:34020957}.
P61964 WDR5 T18 ochoa WD repeat-containing protein 5 (BMP2-induced 3-kb gene protein) Contributes to histone modification (PubMed:16600877, PubMed:16829960, PubMed:19103755, PubMed:19131338, PubMed:19556245, PubMed:20018852). May position the N-terminus of histone H3 for efficient trimethylation at 'Lys-4' (PubMed:16829960). As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3 (PubMed:19556245). H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation (PubMed:18840606). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:19103755, PubMed:20018852). May regulate osteoblasts differentiation (By similarity). In association with RBBP5 and ASH2L, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000250|UniProtKB:P61965, ECO:0000269|PubMed:16600877, ECO:0000269|PubMed:16829960, ECO:0000269|PubMed:18840606, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}.
P62993 GRB2 S18 ochoa Growth factor receptor-bound protein 2 (Adapter protein GRB2) (Protein Ash) (SH2/SH3 adapter GRB2) Non-enzymatic adapter protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression (PubMed:11726515, PubMed:37626338). Thus, participates in many biological processes including regulation of innate and adaptive immunity, autophagy, DNA repair or necroptosis (PubMed:35831301, PubMed:37626338, PubMed:38182563). Controls signaling complexes at the T-cell antigen receptor to facilitate the activation, differentiation, and function of T-cells (PubMed:36864087, PubMed:9489702). Mechanistically, engagement of the TCR leads to phosphorylation of the adapter protein LAT, which serves as docking site for GRB2 (PubMed:9489702). In turn, GRB2 establishes a a connection with SOS1 that acts as a guanine nucleotide exchange factor and serves as a critical regulator of KRAS/RAF1 leading to MAPKs translocation to the nucleus and activation (PubMed:12171928, PubMed:25870599). Functions also a role in B-cell activation by amplifying Ca(2+) mobilization and activation of the ERK MAP kinase pathway upon recruitment to the phosphorylated B-cell antigen receptor (BCR) (PubMed:25413232, PubMed:29523808). Plays a role in switching between autophagy and programmed necrosis upstream of EGFR by interacting with components of necrosomes including RIPK1 and with autophagy regulators SQSTM1 and BECN1 (PubMed:35831301, PubMed:38182563). Regulates miRNA biogenesis by forming a functional ternary complex with AGO2 and DICER1 (PubMed:37328606). Functions in the replication stress response by protecting DNA at stalled replication forks from MRE11-mediated degradation. Mechanistically, inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks (PubMed:38459011). Additionally, directly recruits and later releases MRE11 at DNA damage sites during the homology-directed repair (HDR) process (PubMed:34348893). {ECO:0000269|PubMed:11726515, ECO:0000269|PubMed:12171928, ECO:0000269|PubMed:1322798, ECO:0000269|PubMed:19815557, ECO:0000269|PubMed:25413232, ECO:0000269|PubMed:25870599, ECO:0000269|PubMed:29523808, ECO:0000269|PubMed:34348893, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:36864087, ECO:0000269|PubMed:37328606, ECO:0000269|PubMed:37626338, ECO:0000269|PubMed:38182563, ECO:0000269|PubMed:38459011, ECO:0000269|PubMed:9489702}.; FUNCTION: [Isoform 2]: Does not bind to phosphorylated epidermal growth factor receptor (EGFR) but inhibits EGF-induced transactivation of a RAS-responsive element. Acts as a dominant negative protein over GRB2 and by suppressing proliferative signals, may trigger active programmed cell death. Mechanistically, inhibits RAS-ERK signaling and downstream cell proliferation by competing with GRB2 for SOS1 binding and thus by regulating SOS1 membrane recruitment (PubMed:36171279). {ECO:0000269|PubMed:36171279, ECO:0000269|PubMed:8178156}.
P62995 TRA2B S18 ochoa Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:9546399}.
P68104 EEF1A1 S18 ochoa Elongation factor 1-alpha 1 (EF-1-alpha-1) (EC 3.6.5.-) (Elongation factor Tu) (EF-Tu) (Eukaryotic elongation factor 1 A-1) (eEF1A-1) (Leukocyte receptor cluster member 7) Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623). Also plays a role in the positive regulation of IFNG transcription in T-helper 1 cells as part of an IFNG promoter-binding complex with TXK and PARP1 (PubMed:17177976). Also plays a role in cytoskeleton organization by promoting actin bundling (By similarity). {ECO:0000250|UniProtKB:P68105, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:26593721, ECO:0000269|PubMed:26651998, ECO:0000269|PubMed:36123449, ECO:0000269|PubMed:36264623, ECO:0000269|PubMed:36638793}.; FUNCTION: (Microbial infection) Required for the translation of viral proteins and viral replication during human coronavirus SARS-CoV-2 infection. {ECO:0000269|PubMed:33495306}.
P78347 GTF2I S19 ochoa General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}.
P78356 PIP4K2B S19 ochoa Phosphatidylinositol 5-phosphate 4-kinase type-2 beta (EC 2.7.1.149) (1-phosphatidylinositol 5-phosphate 4-kinase 2-beta) (Diphosphoinositide kinase 2-beta) (Phosphatidylinositol 5-phosphate 4-kinase type II beta) (PI(5)P 4-kinase type II beta) (PIP4KII-beta) (PtdIns(5)P-4-kinase isoform 2-beta) Participates in the biosynthesis of phosphatidylinositol 4,5-bisphosphate (PubMed:26774281, PubMed:9038203). Preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation and its activity reflects changes in direct proportion to the physiological GTP concentration (PubMed:26774281). Its GTP-sensing activity is critical for metabolic adaptation (PubMed:26774281). PIP4Ks negatively regulate insulin signaling through a catalytic-independent mechanism. They interact with PIP5Ks and suppress PIP5K-mediated PtdIns(4,5)P2 synthesis and insulin-dependent conversion to PtdIns(3,4,5)P3 (PubMed:31091439). {ECO:0000269|PubMed:26774281, ECO:0000269|PubMed:31091439, ECO:0000269|PubMed:9038203}.
P78380 OLR1 S19 ochoa Oxidized low-density lipoprotein receptor 1 (Ox-LDL receptor 1) (C-type lectin domain family 8 member A) (Lectin-like oxidized LDL receptor 1) (LOX-1) (Lectin-like oxLDL receptor 1) (hLOX-1) (Lectin-type oxidized LDL receptor 1) [Cleaved into: Oxidized low-density lipoprotein receptor 1, soluble form] Receptor that mediates the recognition, internalization and degradation of oxidatively modified low density lipoprotein (oxLDL) by vascular endothelial cells. OxLDL is a marker of atherosclerosis that induces vascular endothelial cell activation and dysfunction, resulting in pro-inflammatory responses, pro-oxidative conditions and apoptosis. Its association with oxLDL induces the activation of NF-kappa-B through an increased production of intracellular reactive oxygen and a variety of pro-atherogenic cellular responses including a reduction of nitric oxide (NO) release, monocyte adhesion and apoptosis. In addition to binding oxLDL, it acts as a receptor for the HSP70 protein involved in antigen cross-presentation to naive T-cells in dendritic cells, thereby participating in cell-mediated antigen cross-presentation. Also involved in inflammatory process, by acting as a leukocyte-adhesion molecule at the vascular interface in endotoxin-induced inflammation. Also acts as a receptor for advanced glycation end (AGE) products, activated platelets, monocytes, apoptotic cells and both Gram-negative and Gram-positive bacteria. {ECO:0000269|PubMed:11821063, ECO:0000269|PubMed:12354387, ECO:0000269|PubMed:9052782}.; FUNCTION: (Microbial infection) May serve as a receptor for adhesin A variant 3 (nadA) of N.meningitidis. {ECO:0000305|PubMed:27302108}.
P82251 SLC7A9 S18 ochoa b(0,+)-type amino acid transporter 1 (b(0,+)AT1) (Glycoprotein-associated amino acid transporter b0,+AT1) (Solute carrier family 7 member 9) Associates with SLC3A1 to form a functional transporter complex that mediates the electrogenic exchange between cationic amino acids and neutral amino acids, with a stoichiometry of 1:1 (PubMed:16825196, PubMed:32494597, PubMed:32817565, PubMed:8663357). Has system b(0,+)-like activity with high affinity for extracellular cationic amino acids and L-cystine and lower affinity for intracellular neutral amino acids (PubMed:16825196, PubMed:32494597, PubMed:8663357). Substrate exchange is driven by high concentration of intracellular neutral amino acids and the intracellular reduction of L-cystine to L-cysteine (PubMed:8663357). Required for reabsorption of L-cystine and dibasic amino acids across the brush border membrane in renal proximal tubules. {ECO:0000269|PubMed:10471498, ECO:0000269|PubMed:10588648, ECO:0000269|PubMed:16609684, ECO:0000269|PubMed:16825196, ECO:0000269|PubMed:32494597, ECO:0000269|PubMed:32817565, ECO:0000269|PubMed:8663357}.
Q00013 MPP1 S19 ochoa 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}.
Q00587 CDC42EP1 S19 ochoa Cdc42 effector protein 1 (Binder of Rho GTPases 5) (Serum protein MSE55) Probably involved in the organization of the actin cytoskeleton. Induced membrane extensions in fibroblasts. {ECO:0000269|PubMed:10430899}.
Q01196 RUNX1 T18 ochoa Runt-related transcription factor 1 (Acute myeloid leukemia 1 protein) (Core-binding factor subunit alpha-2) (CBF-alpha-2) (Oncogene AML-1) (Polyomavirus enhancer-binding protein 2 alpha B subunit) (PEA2-alpha B) (PEBP2-alpha B) (SL3-3 enhancer factor 1 alpha B subunit) (SL3/AKV core-binding factor alpha B subunit) Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (Probable). Essential for the development of normal hematopoiesis (PubMed:17431401). Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the BLK promoter (PubMed:10207087, PubMed:14970218). Inhibits KAT6B-dependent transcriptional activation (By similarity). Involved in lineage commitment of immature T cell precursors. CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Controls the anergy and suppressive function of regulatory T-cells (Treg) by associating with FOXP3. Activates the expression of IL2 and IFNG and down-regulates the expression of TNFRSF18, IL2RA and CTLA4, in conventional T-cells (PubMed:17377532). Positively regulates the expression of RORC in T-helper 17 cells (By similarity). {ECO:0000250|UniProtKB:Q03347, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:14970218, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:17431401, ECO:0000305}.; FUNCTION: Isoform AML-1G shows higher binding activities for target genes and binds TCR-beta-E2 and RAG-1 target site with threefold higher affinity than other isoforms. It is less effective in the context of neutrophil terminal differentiation. {ECO:0000250|UniProtKB:Q03347}.; FUNCTION: Isoform AML-1L interferes with the transactivation activity of RUNX1. {ECO:0000269|PubMed:9199349}.
Q01362 MS4A2 S18 ochoa High affinity immunoglobulin epsilon receptor subunit beta (FcERI) (Fc epsilon receptor I beta-chain) (IgE Fc receptor subunit beta) (Membrane-spanning 4-domains subfamily A member 2) High affinity receptor that binds to the Fc region of immunoglobulins epsilon. Aggregation of FCER1 by multivalent antigens is required for the full mast cell response, including the release of preformed mediators (such as histamine) by degranulation and de novo production of lipid mediators and cytokines. Also mediates the secretion of important lymphokines. Binding of allergen to receptor-bound IgE leads to cell activation and the release of mediators responsible for the manifestations of allergy.
Q01362 MS4A2 S19 ochoa High affinity immunoglobulin epsilon receptor subunit beta (FcERI) (Fc epsilon receptor I beta-chain) (IgE Fc receptor subunit beta) (Membrane-spanning 4-domains subfamily A member 2) High affinity receptor that binds to the Fc region of immunoglobulins epsilon. Aggregation of FCER1 by multivalent antigens is required for the full mast cell response, including the release of preformed mediators (such as histamine) by degranulation and de novo production of lipid mediators and cytokines. Also mediates the secretion of important lymphokines. Binding of allergen to receptor-bound IgE leads to cell activation and the release of mediators responsible for the manifestations of allergy.
Q02086 SP2 Y19 ochoa Transcription factor Sp2 Binds to GC box promoters elements and selectively activates mRNA synthesis from genes that contain functional recognition sites.
Q02241 KIF23 S18 ochoa Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}.
Q02535 ID3 S18 ochoa|psp DNA-binding protein inhibitor ID-3 (Class B basic helix-loop-helix protein 25) (bHLHb25) (Helix-loop-helix protein HEIR-1) (ID-like protein inhibitor HLH 1R21) (Inhibitor of DNA binding 3) (Inhibitor of differentiation 3) Transcriptional regulator (lacking a basic DNA binding domain) which negatively regulates the basic helix-loop-helix (bHLH) transcription factors by forming heterodimers and inhibiting their DNA binding and transcriptional activity. Implicated in regulating a variety of cellular processes, including cellular growth, senescence, differentiation, apoptosis, angiogenesis, and neoplastic transformation. Involved in myogenesis by inhibiting skeletal muscle and cardiac myocyte differentiation and promoting muscle precursor cells proliferation. Inhibits the binding of E2A-containing protein complexes to muscle creatine kinase E-box enhancer. Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:8437843}.
Q02952 AKAP12 S19 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q02978 SLC25A11 T18 ochoa Mitochondrial 2-oxoglutarate/malate carrier protein (OGCP) (alpha-oxoglutarate carrier) (Solute carrier family 25 member 11) (SLC25A11) Catalyzes the transport of 2-oxoglutarate (alpha-oxoglutarate) across the inner mitochondrial membrane in an electroneutral exchange for malate. Can also exchange 2-oxoglutarate for other dicarboxylic acids such as malonate, succinate, maleate and oxaloacetate, although with lower affinity. Contributes to several metabolic processes, including the malate-aspartate shuttle, the oxoglutarate/isocitrate shuttle, in gluconeogenesis from lactate, and in nitrogen metabolism (By similarity). Maintains mitochondrial fusion and fission events, and the organization and morphology of cristae (PubMed:21448454). Involved in the regulation of apoptosis (By similarity). Helps protect from cytotoxic-induced apoptosis by modulating glutathione levels in mitochondria (By similarity). {ECO:0000250|UniProtKB:P22292, ECO:0000250|UniProtKB:P97700, ECO:0000250|UniProtKB:Q9CR62, ECO:0000269|PubMed:21448454}.
Q02978 SLC25A11 S19 ochoa Mitochondrial 2-oxoglutarate/malate carrier protein (OGCP) (alpha-oxoglutarate carrier) (Solute carrier family 25 member 11) (SLC25A11) Catalyzes the transport of 2-oxoglutarate (alpha-oxoglutarate) across the inner mitochondrial membrane in an electroneutral exchange for malate. Can also exchange 2-oxoglutarate for other dicarboxylic acids such as malonate, succinate, maleate and oxaloacetate, although with lower affinity. Contributes to several metabolic processes, including the malate-aspartate shuttle, the oxoglutarate/isocitrate shuttle, in gluconeogenesis from lactate, and in nitrogen metabolism (By similarity). Maintains mitochondrial fusion and fission events, and the organization and morphology of cristae (PubMed:21448454). Involved in the regulation of apoptosis (By similarity). Helps protect from cytotoxic-induced apoptosis by modulating glutathione levels in mitochondria (By similarity). {ECO:0000250|UniProtKB:P22292, ECO:0000250|UniProtKB:P97700, ECO:0000250|UniProtKB:Q9CR62, ECO:0000269|PubMed:21448454}.
Q05209 PTPN12 S19 ochoa|psp Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}.
Q05397 PTK2 T18 ochoa Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}.
Q05639 EEF1A2 S18 ochoa Elongation factor 1-alpha 2 (EF-1-alpha-2) (EC 3.6.5.-) (Eukaryotic elongation factor 1 A-2) (eEF1A-2) (Statin-S1) Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis. Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (By similarity). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (By similarity). {ECO:0000250|UniProtKB:P68104, ECO:0000250|UniProtKB:Q71V39}.
Q05940 SLC18A2 S18 psp Synaptic vesicular amine transporter (Solute carrier family 18 member 2) (Vesicular amine transporter 2) (VAT2) (Vesicular monoamine transporter 2) Electrogenic antiporter that exchanges one cationic monoamine with two intravesicular protons across the membrane of secretory and synaptic vesicles. Uses the electrochemical proton gradient established by the V-type proton-pump ATPase to accumulate high concentrations of monoamines inside the vesicles prior to their release via exocytosis. Transports a variety of catecholamines such as dopamine, adrenaline and noradrenaline, histamine, and indolamines such as serotonin (PubMed:23363473, PubMed:37914936, PubMed:38081299, PubMed:38517752, PubMed:8643547). Regulates the transvesicular monoaminergic gradient that determines the quantal size. Mediates somatodendritic dopamine release in hippocampal neurons, likely as part of a regulated secretory pathway that integrates retrograde synaptic signals (By similarity). Acts as a primary transporter for striatal dopamine loading ensuring impulse-dependent release of dopamine at the synaptic cleft (By similarity). Responsible for histamine and serotonin storage and subsequent corelease from mast cell granules (PubMed:8860238). {ECO:0000250|UniProtKB:Q01827, ECO:0000250|UniProtKB:Q8BRU6, ECO:0000269|PubMed:23363473, ECO:0000269|PubMed:37914936, ECO:0000269|PubMed:38081299, ECO:0000269|PubMed:38517752, ECO:0000269|PubMed:8643547, ECO:0000269|PubMed:8860238}.
Q06330 RBPJ S18 ochoa Recombining binding protein suppressor of hairless (CBF-1) (J kappa-recombination signal-binding protein) (RBP-J kappa) (RBP-J) (RBP-JK) (Renal carcinoma antigen NY-REN-30) Transcriptional regulator that plays a central role in Notch signaling, a signaling pathway involved in cell-cell communication that regulates a broad spectrum of cell-fate determinations. Acts as a transcriptional repressor when it is not associated with Notch proteins. When associated with some NICD product of Notch proteins (Notch intracellular domain), it acts as a transcriptional activator that activates transcription of Notch target genes. Probably represses or activates transcription via the recruitment of chromatin remodeling complexes containing histone deacetylase or histone acetylase proteins, respectively. Specifically binds to the immunoglobulin kappa-type J segment recombination signal sequence. Binds specifically to methylated DNA (PubMed:21991380). Binds to the oxygen responsive element of COX4I2 and activates its transcription under hypoxia conditions (4% oxygen) (PubMed:23303788). Negatively regulates the phagocyte oxidative burst in response to bacterial infection by repressing transcription of NADPH oxidase subunits (By similarity). {ECO:0000250|UniProtKB:P31266, ECO:0000269|PubMed:21991380, ECO:0000269|PubMed:23303788}.
Q06830 PRDX1 T18 ochoa Peroxiredoxin-1 (EC 1.11.1.24) (Natural killer cell-enhancing factor A) (NKEF-A) (Proliferation-associated gene protein) (PAG) (Thioredoxin peroxidase 2) (Thioredoxin-dependent peroxide reductase 2) (Thioredoxin-dependent peroxiredoxin 1) Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides and as sensor of hydrogen peroxide-mediated signaling events. Might participate in the signaling cascades of growth factors and tumor necrosis factor-alpha by regulating the intracellular concentrations of H(2)O(2) (PubMed:9497357). Reduces an intramolecular disulfide bond in GDPD5 that gates the ability to GDPD5 to drive postmitotic motor neuron differentiation (By similarity). {ECO:0000250|UniProtKB:P0CB50, ECO:0000269|PubMed:9497357}.
Q07065 CKAP4 S19 ochoa|psp Cytoskeleton-associated protein 4 (63-kDa cytoskeleton-linking membrane protein) (Climp-63) (p63) Mediates the anchoring of the endoplasmic reticulum to microtubules. {ECO:0000269|PubMed:15703217}.; FUNCTION: High-affinity epithelial cell surface receptor for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF antiproliferative signaling within cells. {ECO:0000269|PubMed:17030514, ECO:0000269|PubMed:19144824}.
Q07666 KHDRBS1 S18 ochoa KH domain-containing, RNA-binding, signal transduction-associated protein 1 (GAP-associated tyrosine phosphoprotein p62) (Src-associated in mitosis 68 kDa protein) (Sam68) (p21 Ras GTPase-activating protein-associated p62) (p68) Recruited and tyrosine phosphorylated by several receptor systems, for example the T-cell, leptin and insulin receptors. Once phosphorylated, functions as an adapter protein in signal transduction cascades by binding to SH2 and SH3 domain-containing proteins. Role in G2-M progression in the cell cycle. Represses CBP-dependent transcriptional activation apparently by competing with other nuclear factors for binding to CBP. Also acts as a putative regulator of mRNA stability and/or translation rates and mediates mRNA nuclear export. Positively regulates the association of constitutive transport element (CTE)-containing mRNA with large polyribosomes and translation initiation. According to some authors, is not involved in the nucleocytoplasmic export of unspliced (CTE)-containing RNA species according to (PubMed:22253824). RNA-binding protein that plays a role in the regulation of alternative splicing and influences mRNA splice site selection and exon inclusion. Binds to RNA containing 5'-[AU]UAA-3' as a bipartite motif spaced by more than 15 nucleotides. Binds poly(A). Can regulate CD44 alternative splicing in a Ras pathway-dependent manner (PubMed:26080397). In cooperation with HNRNPA1 modulates alternative splicing of BCL2L1 by promoting splicing toward isoform Bcl-X(S), and of SMN1 (PubMed:17371836, PubMed:20186123). Can regulate alternative splicing of NRXN1 and NRXN3 in the laminin G-like domain 6 containing the evolutionary conserved neurexin alternative spliced segment 4 (AS4) involved in neurexin selective targeting to postsynaptic partners. In a neuronal activity-dependent manner cooperates synergistically with KHDRBS2/SLIM-1 in regulation of NRXN1 exon skipping at AS4. The cooperation with KHDRBS2/SLIM-1 is antagonistic for regulation of NXRN3 alternative splicing at AS4 (By similarity). {ECO:0000250|UniProtKB:Q60749, ECO:0000269|PubMed:15021911, ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20186123, ECO:0000269|PubMed:20610388, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:26080397, ECO:0000269|PubMed:26758068}.; FUNCTION: Isoform 3, which is expressed in growth-arrested cells only, inhibits S phase. {ECO:0000269|PubMed:9013542}.
Q07955 SRSF1 Y19 psp Serine/arginine-rich splicing factor 1 (Alternative-splicing factor 1) (ASF-1) (Splicing factor, arginine/serine-rich 1) (pre-mRNA-splicing factor SF2, P33 subunit) Plays a role in preventing exon skipping, ensuring the accuracy of splicing and regulating alternative splicing. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5'- and 3'-splice site binding components, U1 snRNP and U2AF. Can stimulate binding of U1 snRNP to a 5'-splice site-containing pre-mRNA. Binds to purine-rich RNA sequences, either the octamer, 5'-RGAAGAAC-3' (r=A or G) or the decamers, AGGACAGAGC/AGGACGAAGC. Binds preferentially to the 5'-CGAGGCG-3' motif in vitro. Three copies of the octamer constitute a powerful splicing enhancer in vitro, the ASF/SF2 splicing enhancer (ASE) which can specifically activate ASE-dependent splicing. Isoform ASF-2 and isoform ASF-3 act as splicing repressors. May function as export adapter involved in mRNA nuclear export through the TAP/NXF1 pathway. {ECO:0000269|PubMed:8139654}.
Q08378 GOLGA3 S18 ochoa Golgin subfamily A member 3 (Golgi complex-associated protein of 170 kDa) (GCP170) (Golgin-160) Golgi auto-antigen; probably involved in maintaining Golgi structure.
Q08495 DMTN S18 ochoa Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}.
Q09472 EP300 S19 psp Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}.
Q09666 AHNAK S18 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12797 ASPH S18 ochoa Aspartyl/asparaginyl beta-hydroxylase (EC 1.14.11.16) (Aspartate beta-hydroxylase) (ASP beta-hydroxylase) (Peptide-aspartate beta-dioxygenase) [Isoform 1]: Specifically hydroxylates an Asp or Asn residue in certain epidermal growth factor-like (EGF) domains of a number of proteins. {ECO:0000269|PubMed:11773073}.; FUNCTION: [Isoform 8]: Membrane-bound Ca(2+)-sensing protein, which is a structural component of the ER-plasma membrane junctions. Isoform 8 regulates the activity of Ca(+2) released-activated Ca(+2) (CRAC) channels in T-cells. {ECO:0000269|PubMed:22586105}.
Q12815 TROAP T18 ochoa Tastin (Trophinin-assisting protein) (Trophinin-associated protein) Could be involved with bystin and trophinin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation.
Q12891 HYAL2 S18 ochoa Hyaluronidase-2 (Hyal-2) (EC 3.2.1.35) (Hyaluronoglucosaminidase-2) (Lung carcinoma protein 2) (LuCa-2) Catalyzes hyaluronan degradation into small fragments that are endocytosed and degraded in lysosomes by HYAL1 and exoglycosidases (PubMed:9712871). Essential for the breakdown of extracellular matrix hyaluronan (PubMed:28081210). {ECO:0000269|PubMed:28081210, ECO:0000269|PubMed:9712871}.
Q13151 HNRNPA0 S19 ochoa Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}.
Q13188 STK3 S18 psp Serine/threonine-protein kinase 3 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 2) (MST-2) (STE20-like kinase MST2) (Serine/threonine-protein kinase Krs-1) [Cleaved into: Serine/threonine-protein kinase 3 36kDa subunit (MST2/N); Serine/threonine-protein kinase 3 20kDa subunit (MST2/C)] Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation (PubMed:11278283, PubMed:8566796, PubMed:8816758). Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714, PubMed:29063833, PubMed:30622739). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714). STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation. Phosphorylates NKX2-1 (By similarity). Phosphorylates NEK2 and plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosome, and its ability to phosphorylate CROCC and CEP250 (PubMed:21076410, PubMed:21723128). In conjunction with SAV1, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation (PubMed:21104395). Positively regulates RAF1 activation via suppression of the inhibitory phosphorylation of RAF1 on 'Ser-259' (PubMed:20212043). Phosphorylates MOBKL1A and RASSF2 (PubMed:19525978). Phosphorylates MOBKL1B on 'Thr-74'. Acts cooperatively with MOBKL1B to activate STK38 (PubMed:18328708, PubMed:18362890). {ECO:0000250|UniProtKB:Q9JI10, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:15688006, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18362890, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:20212043, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:21723128, ECO:0000269|PubMed:23972470, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:29063833, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:8566796, ECO:0000269|PubMed:8816758}.
Q13303 KCNAB2 T18 psp Voltage-gated potassium channel subunit beta-2 (EC 1.1.1.-) (K(+) channel subunit beta-2) (Kv-beta-2) (hKvbeta2) Regulatory subunit of the voltage-gated potassium (Kv) Shaker channels composed of pore-forming and potassium-conducting alpha subunits and of regulatory beta subunits (PubMed:11825900, PubMed:7649300). The beta-2/KCNAB2 cytoplasmic subunit promotes potassium channel closure via a mechanism that does not involve physical obstruction of the channel pore (PubMed:11825900, PubMed:7649300). Promotes the inactivation of Kv1.4/KCNA4 and Kv1.5/KCNA5 alpha subunit-containing channels (PubMed:11825900, PubMed:7649300). Displays nicotinamide adenine dinucleotide phosphate (NADPH)-dependent aldoketoreductase activity by catalyzing the NADPH-dependent reduction of a wide range of aldehyde and ketone substrates (By similarity). Substrate specificity includes methylglyoxal, 9,10-phenanthrenequinone, prostaglandin J2, 4-nitrobenzaldehyde, 4-nitroacetophenone and 4-oxo-trans-2-nonenal (in vitro, no physiological substrate identified yet) (By similarity). The binding of oxidized and reduced nucleotide alters Kv channel gating and may contribute to dynamic fine tuning of cell excitability (By similarity). Contributes to the regulation of nerve signaling, and prevents neuronal hyperexcitability (By similarity). {ECO:0000250|UniProtKB:P62482, ECO:0000250|UniProtKB:P62483, ECO:0000269|PubMed:11825900, ECO:0000269|PubMed:7649300}.
Q13371 PDCL S18 psp Phosducin-like protein (PHLP) Acts as a positive regulator of hedgehog signaling and regulates ciliary function. {ECO:0000250|UniProtKB:Q9DBX2}.; FUNCTION: [Isoform 1]: Functions as a co-chaperone for CCT in the assembly of heterotrimeric G protein complexes, facilitates the assembly of both Gbeta-Ggamma and RGS-Gbeta5 heterodimers.; FUNCTION: [Isoform 2]: Acts as a negative regulator of heterotrimeric G proteins assembly by trapping the preloaded G beta subunits inside the CCT chaperonin.
Q13371 PDCL S19 psp Phosducin-like protein (PHLP) Acts as a positive regulator of hedgehog signaling and regulates ciliary function. {ECO:0000250|UniProtKB:Q9DBX2}.; FUNCTION: [Isoform 1]: Functions as a co-chaperone for CCT in the assembly of heterotrimeric G protein complexes, facilitates the assembly of both Gbeta-Ggamma and RGS-Gbeta5 heterodimers.; FUNCTION: [Isoform 2]: Acts as a negative regulator of heterotrimeric G proteins assembly by trapping the preloaded G beta subunits inside the CCT chaperonin.
Q13442 PDAP1 T18 ochoa 28 kDa heat- and acid-stable phosphoprotein (PDGF-associated protein) (PAP) (PDGFA-associated protein 1) (PAP1) Enhances PDGFA-stimulated cell growth in fibroblasts, but inhibits the mitogenic effect of PDGFB. {ECO:0000250}.
Q13492 PICALM T18 ochoa Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia protein) Cytoplasmic adapter protein that plays a critical role in clathrin-mediated endocytosis which is important in processes such as internalization of cell receptors, synaptic transmission or removal of apoptotic cells. Recruits AP-2 and attaches clathrin triskelions to the cytoplasmic side of plasma membrane leading to clathrin-coated vesicles (CCVs) assembly (PubMed:10436022, PubMed:16262731, PubMed:27574975). Furthermore, regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature (PubMed:25898166). In addition to binding to clathrin, mediates the endocytosis of small R-SNARES (Soluble NSF Attachment Protein REceptors) between plasma membranes and endosomes including VAMP2, VAMP3, VAMP4, VAMP7 or VAMP8 (PubMed:21808019, PubMed:22118466, PubMed:23741335). In turn, PICALM-dependent SNARE endocytosis is required for the formation and maturation of autophagic precursors (PubMed:25241929). Modulates thereby autophagy and the turnover of autophagy substrates such as MAPT/TAU or amyloid precursor protein cleaved C-terminal fragment (APP-CTF) (PubMed:24067654, PubMed:25241929). {ECO:0000269|PubMed:10436022, ECO:0000269|PubMed:16262731, ECO:0000269|PubMed:21808019, ECO:0000269|PubMed:22118466, ECO:0000269|PubMed:23741335, ECO:0000269|PubMed:24067654, ECO:0000269|PubMed:25241929, ECO:0000269|PubMed:25898166, ECO:0000269|PubMed:27574975}.
Q13496 MTM1 S18 ochoa Myotubularin (EC 3.1.3.95) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Phosphatidylinositol-3-phosphate phosphatase) Lipid phosphatase which dephosphorylates phosphatidylinositol 3-monophosphate (PI3P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) (PubMed:10900271, PubMed:11001925, PubMed:12646134, PubMed:14722070). Has also been shown to dephosphorylate phosphotyrosine- and phosphoserine-containing peptides (PubMed:9537414). Negatively regulates EGFR degradation through regulation of EGFR trafficking from the late endosome to the lysosome (PubMed:14722070). Plays a role in vacuolar formation and morphology. Regulates desmin intermediate filament assembly and architecture (PubMed:21135508). Plays a role in mitochondrial morphology and positioning (PubMed:21135508). Required for skeletal muscle maintenance but not for myogenesis (PubMed:21135508). In skeletal muscles, stabilizes MTMR12 protein levels (PubMed:23818870). {ECO:0000269|PubMed:10900271, ECO:0000269|PubMed:11001925, ECO:0000269|PubMed:12646134, ECO:0000269|PubMed:14722070, ECO:0000269|PubMed:21135508, ECO:0000269|PubMed:23818870, ECO:0000269|PubMed:9537414}.
Q14203 DCTN1 S19 psp Dynactin subunit 1 (150 kDa dynein-associated polypeptide) (DAP-150) (DP-150) (p135) (p150-glued) Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Plays a key role in dynein-mediated retrograde transport of vesicles and organelles along microtubules by recruiting and tethering dynein to microtubules. Binds to both dynein and microtubules providing a link between specific cargos, microtubules and dynein. Essential for targeting dynein to microtubule plus ends, recruiting dynein to membranous cargos and enhancing dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Can also act as a brake to slow the dynein motor during motility along the microtubule (PubMed:25185702). Can regulate microtubule stability by promoting microtubule formation, nucleation and polymerization and by inhibiting microtubule catastrophe in neurons. Inhibits microtubule catastrophe by binding both to microtubules and to tubulin, leading to enhanced microtubule stability along the axon (PubMed:23874158). Plays a role in metaphase spindle orientation (PubMed:22327364). Plays a role in centriole cohesion and subdistal appendage organization and function. Its recruitment to the centriole in a KIF3A-dependent manner is essential for the maintenance of centriole cohesion and the formation of subdistal appendage. Also required for microtubule anchoring at the mother centriole (PubMed:23386061). Plays a role in primary cilia formation (PubMed:25774020). {ECO:0000250|UniProtKB:A0A287B8J2, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23386061, ECO:0000269|PubMed:23874158, ECO:0000269|PubMed:25185702, ECO:0000269|PubMed:25774020}.
Q15005 SPCS2 S18 ochoa Signal peptidase complex subunit 2 (Microsomal signal peptidase 25 kDa subunit) (SPase 25 kDa subunit) Component of the signal peptidase complex (SPC) which catalyzes the cleavage of N-terminal signal sequences from nascent proteins as they are translocated into the lumen of the endoplasmic reticulum (PubMed:34388369). Enhances the enzymatic activity of SPC and facilitates the interactions between different components of the translocation site (By similarity). {ECO:0000250|UniProtKB:Q04969, ECO:0000269|PubMed:34388369}.
Q15075 EEA1 S18 ochoa Early endosome antigen 1 (Endosome-associated protein p162) (Zinc finger FYVE domain-containing protein 2) Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate and participates in endosomal trafficking.
Q15464 SHB S18 ochoa SH2 domain-containing adapter protein B Adapter protein which regulates several signal transduction cascades by linking activated receptors to downstream signaling components. May play a role in angiogenesis by regulating FGFR1, VEGFR2 and PDGFR signaling. May also play a role in T-cell antigen receptor/TCR signaling, interleukin-2 signaling, apoptosis and neuronal cells differentiation by mediating basic-FGF and NGF-induced signaling cascades. May also regulate IRS1 and IRS2 signaling in insulin-producing cells. {ECO:0000269|PubMed:10828022, ECO:0000269|PubMed:10837138, ECO:0000269|PubMed:12084069, ECO:0000269|PubMed:12464388, ECO:0000269|PubMed:12520086, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15919073, ECO:0000269|PubMed:8806685, ECO:0000269|PubMed:9484780, ECO:0000269|PubMed:9751119}.
Q15645 TRIP13 S18 ochoa Pachytene checkpoint protein 2 homolog (Human papillomavirus type 16 E1 protein-binding protein) (16E1-BP) (HPV16 E1 protein-binding protein) (Thyroid hormone receptor interactor 13) (Thyroid receptor-interacting protein 13) (TR-interacting protein 13) (TRIP-13) Plays a key role in chromosome recombination and chromosome structure development during meiosis. Required at early steps in meiotic recombination that leads to non-crossovers pathways. Also needed for efficient completion of homologous synapsis by influencing crossover distribution along the chromosomes affecting both crossovers and non-crossovers pathways. Also required for development of higher-order chromosome structures and is needed for synaptonemal-complex formation. In males, required for efficient synapsis of the sex chromosomes and for sex body formation. Promotes early steps of the DNA double-strand breaks (DSBs) repair process upstream of the assembly of RAD51 complexes. Required for depletion of HORMAD1 and HORMAD2 from synapsed chromosomes (By similarity). Plays a role in mitotic spindle assembly checkpoint (SAC) activation (PubMed:28553959). {ECO:0000250|UniProtKB:Q3UA06, ECO:0000269|PubMed:28553959}.
Q15653 NFKBIB S19 psp NF-kappa-B inhibitor beta (NF-kappa-BIB) (I-kappa-B-beta) (IkB-B) (IkB-beta) (IkappaBbeta) (Thyroid receptor-interacting protein 9) (TR-interacting protein 9) (TRIP-9) Inhibits NF-kappa-B by complexing with and trapping it in the cytoplasm. However, the unphosphorylated form resynthesized after cell stimulation is able to bind NF-kappa-B allowing its transport to the nucleus and protecting it to further NFKBIA-dependent inactivation. Association with inhibitor kappa B-interacting NKIRAS1 and NKIRAS2 prevent its phosphorylation rendering it more resistant to degradation, explaining its slower degradation.
Q15672 TWIST1 S18 psp Twist-related protein 1 (Class A basic helix-loop-helix protein 38) (bHLHa38) (H-twist) Acts as a transcriptional regulator. Inhibits myogenesis by sequestrating E proteins, inhibiting trans-activation by MEF2, and inhibiting DNA-binding by MYOD1 through physical interaction. This interaction probably involves the basic domains of both proteins. Also represses expression of pro-inflammatory cytokines such as TNFA and IL1B. Regulates cranial suture patterning and fusion. Activates transcription as a heterodimer with E proteins. Regulates gene expression differentially, depending on dimer composition. Homodimers induce expression of FGFR2 and POSTN while heterodimers repress FGFR2 and POSTN expression and induce THBS1 expression. Heterodimerization is also required for osteoblast differentiation. Represses the activity of the circadian transcriptional activator: NPAS2-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:P26687, ECO:0000269|PubMed:12553906, ECO:0000269|PubMed:25981568}.
Q15742 NAB2 S18 ochoa NGFI-A-binding protein 2 (EGR-1-binding protein 2) (Melanoma-associated delayed early response protein) (Protein MADER) Acts as a transcriptional repressor for zinc finger transcription factors EGR1 and EGR2. Isoform 2 lacks repression ability (By similarity). {ECO:0000250}.
Q15750 TAB1 T18 ochoa TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 1) (TGF-beta-activated kinase 1-binding protein 1) (TAK1-binding protein 1) Key adapter protein that plays an essential role in JNK and NF-kappa-B activation and proinflammatory cytokines production in response to stimulation with TLRs and cytokines (PubMed:22307082, PubMed:24403530). Mechanistically, associates with the catalytic domain of MAP3K7/TAK1 to trigger MAP3K7/TAK1 autophosphorylation leading to its full activation (PubMed:10838074, PubMed:25260751, PubMed:37832545). Similarly, associates with MAPK14 and triggers its autophosphorylation and subsequent activation (PubMed:11847341, PubMed:29229647). In turn, MAPK14 phosphorylates TAB1 and inhibits MAP3K7/TAK1 activation in a feedback control mechanism (PubMed:14592977). Also plays a role in recruiting MAPK14 to the TAK1 complex for the phosphorylation of the TAB2 and TAB3 regulatory subunits (PubMed:18021073). {ECO:0000269|PubMed:10838074, ECO:0000269|PubMed:11847341, ECO:0000269|PubMed:14592977, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:22307082, ECO:0000269|PubMed:24403530, ECO:0000269|PubMed:25260751, ECO:0000269|PubMed:29229647, ECO:0000269|PubMed:37832545}.
Q15772 SPEG S19 ochoa Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells.
Q16513 PKN2 S19 ochoa Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}.
Q16637 SMN1 S18 ochoa|psp Survival motor neuron protein (Component of gems 1) (Gemin-1) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9845364). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Within the SMN complex, SMN1 acts as a structural backbone and together with GEMIN2 it gathers the Sm complex subunits (PubMed:17178713, PubMed:21816274, PubMed:22101937). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development (PubMed:23063131). Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:17178713, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:22101937, ECO:0000269|PubMed:23063131, ECO:0000269|PubMed:26700805, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9845364}.
Q16649 NFIL3 S19 ochoa Nuclear factor interleukin-3-regulated protein (E4 promoter-binding protein 4) (Interleukin-3 promoter transcriptional activator) (Interleukin-3-binding protein 1) (Transcriptional activator NF-IL3A) Acts as a transcriptional regulator that recognizes and binds to the sequence 5'-[GA]TTA[CT]GTAA[CT]-3', a sequence present in many cellular and viral promoters. Represses transcription from promoters with activating transcription factor (ATF) sites. Represses promoter activity in osteoblasts (By similarity). Represses transcriptional activity of PER1 (By similarity). Represses transcriptional activity of PER2 via the B-site on the promoter (By similarity). Activates transcription from the interleukin-3 promoter in T-cells. Competes for the same consensus-binding site with PAR DNA-binding factors (DBP, HLF and TEF) (By similarity). Component of the circadian clock that acts as a negative regulator for the circadian expression of PER2 oscillation in the cell-autonomous core clock (By similarity). Protects pro-B cells from programmed cell death (By similarity). Represses the transcription of CYP2A5 (By similarity). Positively regulates the expression and activity of CES2 by antagonizing the repressive action of NR1D1 on CES2 (By similarity). Required for the development of natural killer cell precursors (By similarity). {ECO:0000250|UniProtKB:O08750, ECO:0000269|PubMed:1620116, ECO:0000269|PubMed:7565758, ECO:0000269|PubMed:8836190}.
Q16777 H2AC20 S19 ochoa Histone H2A type 2-C (H2A-clustered histone 20) (Histone H2A-GL101) (Histone H2A/q) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q1RMZ1 SAMTOR S18 ochoa S-adenosylmethionine sensor upstream of mTORC1 (Probable methyltransferase BMT2 homolog) (EC 2.1.1.-) S-adenosyl-L-methionine-binding protein that acts as an inhibitor of mTORC1 signaling via interaction with the GATOR1 and KICSTOR complexes (PubMed:29123071, PubMed:35776786). Acts as a sensor of S-adenosyl-L-methionine to signal methionine sufficiency to mTORC1: in presence of methionine, binds S-adenosyl-L-methionine, leading to disrupt interaction with the GATOR1 and KICSTOR complexes and promote mTORC1 signaling (PubMed:29123071, PubMed:35776786). Upon methionine starvation, S-adenosyl-L-methionine levels are reduced, thereby promoting the association with GATOR1 and KICSTOR, leading to inhibit mTORC1 signaling (PubMed:29123071, PubMed:35776786). Probably also acts as a S-adenosyl-L-methionine-dependent methyltransferase (Potential). {ECO:0000255|HAMAP-Rule:MF_03044, ECO:0000269|PubMed:29123071, ECO:0000269|PubMed:35776786}.
Q29RF7 PDS5A S18 ochoa Sister chromatid cohesion protein PDS5 homolog A (Cell proliferation-inducing gene 54 protein) (Sister chromatid cohesion protein 112) (SCC-112) Probable regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19907496}.
Q2M2I8 AAK1 S18 ochoa AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}.
Q2M389 WASHC4 S19 ochoa WASH complex subunit 4 (Strumpellin and WASH-interacting protein) (SWIP) (WASH complex subunit SWIP) Acts as a component of the WASH core complex that functions as a nucleation-promoting factor (NPF) at the surface of endosomes, where it recruits and activates the Arp2/3 complex to induce actin polymerization, playing a key role in the fission of tubules that serve as transport intermediates during endosome sorting. {ECO:0000269|PubMed:19922875, ECO:0000269|PubMed:20498093, ECO:0000303|PubMed:21498477}.
Q3YBR2 TBRG1 S18 ochoa Transforming growth factor beta regulator 1 (Nuclear interactor of ARF and Mdm2) Acts as a growth inhibitor. Can activate p53/TP53, causes G1 arrest and collaborates with CDKN2A to restrict proliferation, but does not require either protein to inhibit DNA synthesis. Redistributes CDKN2A into the nucleoplasm. Involved in maintaining chromosomal stability. {ECO:0000269|PubMed:17110379}.
Q504U0 C4orf46 S18 ochoa Renal cancer differentiation gene 1 protein None
Q53GG5 PDLIM3 S18 ochoa PDZ and LIM domain protein 3 (Actinin-associated LIM protein) (Alpha-actinin-2-associated LIM protein) May play a role in the organization of actin filament arrays within muscle cells. {ECO:0000250}.
Q53H80 AKIRIN2 S18 ochoa|psp Akirin-2 Molecular adapter that acts as a bridge between a variety of multiprotein complexes, and which is involved in embryonic development, immunity, myogenesis and brain development (PubMed:34711951). Plays a key role in nuclear protein degradation by promoting import of proteasomes into the nucleus: directly binds to fully assembled 20S proteasomes at one end and to nuclear import receptor IPO9 at the other end, bridging them together and mediating the import of pre-assembled proteasome complexes through the nuclear pore (PubMed:34711951). Involved in innate immunity by regulating the production of interleukin-6 (IL6) downstream of Toll-like receptor (TLR): acts by bridging the NF-kappa-B inhibitor NFKBIZ and the SWI/SNF complex, leading to promote induction of IL6 (By similarity). Also involved in adaptive immunity by promoting B-cell activation (By similarity). Involved in brain development: required for the survival and proliferation of cerebral cortical progenitor cells (By similarity). Involved in myogenesis: required for skeletal muscle formation and skeletal development, possibly by regulating expression of muscle differentiation factors (By similarity). Also plays a role in facilitating interdigital tissue regression during limb development (By similarity). {ECO:0000250|UniProtKB:B1AXD8, ECO:0000269|PubMed:34711951}.
Q53T59 HS1BP3 T18 ochoa HCLS1-binding protein 3 (HS1-binding protein 3) (HSP1BP-3) May be a modulator of IL-2 signaling. {ECO:0000250}.
Q5BJD5 TMEM41B T18 ochoa Transmembrane protein 41B (Protein stasimon) Phospholipid scramblase involved in lipid homeostasis and membrane dynamics processes (PubMed:33850023, PubMed:33929485, PubMed:34015269). Has phospholipid scramblase activity toward cholesterol and phosphatidylserine, as well as phosphatidylethanolamine and phosphatidylcholine (PubMed:33850023, PubMed:33929485, PubMed:34015269). Required for autophagosome formation: participates in early stages of autophagosome biogenesis at the endoplasmic reticulum (ER) membrane by reequilibrating the leaflets of the ER as lipids are extracted by ATG2 (ATG2A or ATG2B) to mediate autophagosome assembly (PubMed:30093494, PubMed:30126924, PubMed:30933966, PubMed:33850023, PubMed:33929485, PubMed:34015269, PubMed:34043740). In addition to autophagy, involved in other processes in which phospholipid scramblase activity is required (PubMed:33850023). Required for normal motor neuron development (By similarity). {ECO:0000250|UniProtKB:A1A5V7, ECO:0000269|PubMed:30093494, ECO:0000269|PubMed:30126924, ECO:0000269|PubMed:30933966, ECO:0000269|PubMed:33850023, ECO:0000269|PubMed:33929485, ECO:0000269|PubMed:34015269, ECO:0000269|PubMed:34043740}.; FUNCTION: (Microbial infection) Critical host factor required for infection by human coronaviruses SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E, as well as all flaviviruses tested such as Zika virus and Yellow fever virus (PubMed:33338421, PubMed:33382968). Required post-entry of the virus to facilitate the ER membrane remodeling necessary to form replication organelles (PubMed:33382968). {ECO:0000269|PubMed:33338421, ECO:0000269|PubMed:33382968, ECO:0000269|PubMed:34043740}.
Q5JTC6 AMER1 S19 ochoa APC membrane recruitment protein 1 (Amer1) (Protein FAM123B) (Wilms tumor gene on the X chromosome protein) Regulator of the canonical Wnt signaling pathway. Acts by specifically binding phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), translocating to the cell membrane and interacting with key regulators of the canonical Wnt signaling pathway, such as components of the beta-catenin destruction complex. Acts both as a positive and negative regulator of the Wnt signaling pathway, depending on the context: acts as a positive regulator by promoting LRP6 phosphorylation. Also acts as a negative regulator by acting as a scaffold protein for the beta-catenin destruction complex and promoting stabilization of Axin at the cell membrane. Promotes CTNNB1 ubiquitination and degradation. Involved in kidney development. {ECO:0000269|PubMed:17510365, ECO:0000269|PubMed:17925383, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:21304492, ECO:0000269|PubMed:21498506}.
Q5T4S7 UBR4 T18 ochoa E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}.
Q5TAQ9 DCAF8 S18 ochoa DDB1- and CUL4-associated factor 8 (WD repeat-containing protein 42A) May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240}.
Q5TGY3 AHDC1 S18 ochoa Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}.
Q5VTE0 EEF1A1P5 S18 ochoa Putative elongation factor 1-alpha-like 3 (EF-1-alpha-like 3) (Eukaryotic elongation factor 1 A-like 3) (eEF1A-like 3) (Eukaryotic translation elongation factor 1 alpha-1 pseudogene 5) This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. {ECO:0000250}.
Q5VWN6 TASOR2 S19 ochoa Protein TASOR 2 None
Q5VYS4 MEDAG S18 ochoa Mesenteric estrogen-dependent adipogenesis protein (Activated in W/Wv mouse stomach 3 homolog) (hAWMS3) (Mesenteric estrogen-dependent adipose 4) (MEDA-4) Involved in processes that promote adipocyte differentiation, lipid accumulation, and glucose uptake in mature adipocytes. {ECO:0000250}.
Q5XPI4 RNF123 S19 ochoa E3 ubiquitin-protein ligase RNF123 (EC 2.3.2.27) (Kip1 ubiquitination-promoting complex protein 1) (RING finger protein 123) Catalytic subunit of the KPC complex that acts as E3 ubiquitin-protein ligase (PubMed:15531880, PubMed:16227581, PubMed:25860612). Promotes the ubiquitination and proteasome-mediated degradation of CDKN1B which is the cyclin-dependent kinase inhibitor at the G0-G1 transition of the cell cycle (PubMed:15531880, PubMed:16227581). Also acts as a key regulator of the NF-kappa-B signaling by promoting maturation of the NFKB1 component of NF-kappa-B: acts by catalyzing ubiquitination of the NFKB1 p105 precursor, leading to limited proteasomal degradation of NFKB1 p105 and generation of the active NFKB1 p50 subunit (PubMed:25860612, PubMed:33168738, PubMed:34873064). Also functions as an inhibitor of innate antiviral signaling mediated by RIGI and IFIH1 independently of its E3 ligase activity (PubMed:27312109). Interacts with the N-terminal CARD domains of RIGI and IFIH1 and competes with the downstream adapter MAVS (PubMed:27312109). {ECO:0000269|PubMed:15531880, ECO:0000269|PubMed:16227581, ECO:0000269|PubMed:25860612, ECO:0000269|PubMed:27312109, ECO:0000269|PubMed:33168738, ECO:0000269|PubMed:34873064}.
Q5XUX1 FBXW9 S18 ochoa F-box/WD repeat-containing protein 9 (F-box and WD-40 domain-containing protein 9) Substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. {ECO:0000250}.
Q658P3 STEAP3 S19 ochoa Metalloreductase STEAP3 (EC 1.16.1.-) (Dudulin-2) (Six-transmembrane epithelial antigen of prostate 3) (Tumor suppressor-activated pathway protein 6) (hTSAP6) (pHyde) (hpHyde) Integral membrane protein that functions as a NADPH-dependent ferric-chelate reductase, using NADPH from one side of the membrane to reduce a Fe(3+) chelate that is bound on the other side of the membrane (PubMed:26205815). Mediates sequential transmembrane electron transfer from NADPH to FAD and onto heme, and finally to the Fe(3+) chelate (By similarity). Can also reduce Cu(2+) to Cu(1+) (By similarity). Mediates efficient transferrin-dependent iron uptake in erythroid cells (By similarity). May play a role downstream of p53/TP53 to interface apoptosis and cell cycle progression (By similarity). Indirectly involved in exosome secretion by facilitating the secretion of proteins such as TCTP (PubMed:15319436, PubMed:16651434). {ECO:0000250|UniProtKB:Q5RKL5, ECO:0000250|UniProtKB:Q687X5, ECO:0000250|UniProtKB:Q8CI59, ECO:0000269|PubMed:15319436, ECO:0000269|PubMed:16651434, ECO:0000269|PubMed:26205815}.
Q68D20 PMS2CL S19 ochoa Protein PMS2CL (PMS2-C terminal-like protein) None
Q6FI13 H2AC18 S19 ochoa Histone H2A type 2-A (H2A-clustered histone 18) (H2A-clustered histone 19) (Histone H2A.2) (Histone H2A/o) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6IE81 JADE1 S18 psp Protein Jade-1 (Jade family PHD finger protein 1) (PHD finger protein 17) Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity (PubMed:16387653, PubMed:19187766, PubMed:20129055, PubMed:24065767). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:20129055, PubMed:24065767). May also promote acetylation of nucleosomal histone H4 by KAT5 (PubMed:15502158). Promotes apoptosis (PubMed:16046545). May act as a renal tumor suppressor (PubMed:16046545). Negatively regulates canonical Wnt signaling; at least in part, cooperates with NPHP4 in this function (PubMed:22654112). {ECO:0000269|PubMed:15502158, ECO:0000269|PubMed:16046545, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22654112, ECO:0000269|PubMed:24065767}.
Q6JBY9 RCSD1 S19 ochoa CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}.
Q6NUQ1 RINT1 S19 ochoa RAD50-interacting protein 1 (RAD50 interactor 1) (HsRINT-1) (RINT-1) Involved in regulation of membrane traffic between the Golgi and the endoplasmic reticulum (ER); the function is proposed to depend on its association in the NRZ complex which is believed to play a role in SNARE assembly at the ER. May play a role in cell cycle checkpoint control (PubMed:11096100). Essential for telomere length control (PubMed:16600870). {ECO:0000269|PubMed:11096100, ECO:0000269|PubMed:16600870, ECO:0000305}.
Q6NXE6 ARMC6 T18 ochoa Armadillo repeat-containing protein 6 None
Q6NXS1 PPP1R2B T19 ochoa Protein phosphatase inhibitor 2 family member B (PPP1R2 family member B) (Protein phosphatase 1, regulatory subunit 2 pseudogene 3) (Protein phosphatase inhibitor 2-like protein 3) Inhibitor of protein-phosphatase 1. {ECO:0000269|PubMed:23506001}.
Q6P0N0 MIS18BP1 S18 ochoa Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}.
Q6P0N0 MIS18BP1 S19 ochoa Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}.
Q6P2H3 CEP85 S19 ochoa Centrosomal protein of 85 kDa (Cep85) (Coiled-coil domain-containing protein 21) Acts as a regulator of centriole duplication through a direct interaction with STIL, a key factor involved in the early steps of centriole formation. The CEP85-STIL protein complex acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). Acts as a negative regulator of NEK2 to maintain the centrosome integrity in interphase. Suppresses centrosome disjunction by inhibiting NEK2 kinase activity (PubMed:26220856). {ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292}.
Q6PJE2 POMZP3 S18 ochoa POM121 and ZP3 fusion protein (POM-ZP3) None
Q6PK04 CCDC137 S19 ochoa Coiled-coil domain-containing protein 137 None
Q6SPF0 SAMD1 T18 ochoa Sterile alpha motif domain-containing protein 1 (SAM domain-containing protein 1) (Atherin) Unmethylated CpG islands (CGIs)-binding protein which localizes to H3K4me3-decorated CGIs, where it acts as a transcriptional repressor (PubMed:33980486). Tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs (PubMed:33980486). Plays a role in atherogenesis by binding with LDL on cell surface and promoting LDL oxidation which leads to the formation of foam cell (PubMed:16159594, PubMed:34006929). {ECO:0000269|PubMed:16159594, ECO:0000269|PubMed:33980486, ECO:0000269|PubMed:34006929}.
Q6UB98 ANKRD12 S19 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6VY07 PACS1 S18 ochoa Phosphofurin acidic cluster sorting protein 1 (PACS-1) Coat protein that is involved in the localization of trans-Golgi network (TGN) membrane proteins that contain acidic cluster sorting motifs. Controls the endosome-to-Golgi trafficking of furin and mannose-6-phosphate receptor by connecting the acidic-cluster-containing cytoplasmic domain of these molecules with the adapter-protein complex-1 (AP-1) of endosomal clathrin-coated membrane pits. Involved in HIV-1 nef-mediated removal of MHC-I from the cell surface to the TGN. Required for normal ER Ca2+ handling in lymphocytes. Together with WDR37, it plays an essential role in lymphocyte development, quiescence and survival. Required for stabilizing peripheral lymphocyte populations (By similarity). {ECO:0000250|UniProtKB:Q8K212, ECO:0000269|PubMed:11331585, ECO:0000269|PubMed:15692563}.
Q6Y7W6 GIGYF2 S19 ochoa GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}.
Q6ZMT1 STAC2 S18 ochoa SH3 and cysteine-rich domain-containing protein 2 (24b2/STAC2) (Src homology 3 and cysteine-rich domain-containing protein 2) Plays a redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. Slows down the inactivation rate of the calcium channel CACNA1C. {ECO:0000250|UniProtKB:Q8R1B0}.
Q6ZN18 AEBP2 S18 ochoa Zinc finger protein AEBP2 (Adipocyte enhancer-binding protein 2) (AE-binding protein 2) Acts as an accessory subunit for the core Polycomb repressive complex 2 (PRC2), which mediates histone H3K27 (H3K27me3) trimethylation on chromatin leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:29499137, PubMed:31959557). Plays a role in nucleosome localization of the PRC2 complex (PubMed:29499137). {ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}.
Q6ZN28 MACC1 S19 ochoa Metastasis-associated in colon cancer protein 1 (SH3 domain-containing protein 7a5) Acts as a transcription activator for MET and as a key regulator of HGF-MET signaling. Promotes cell motility, proliferation and hepatocyte growth factor (HGF)-dependent scattering in vitro and tumor growth and metastasis in vivo. {ECO:0000269|PubMed:19098908}.
Q6ZSY5 PPP1R3F S18 ochoa|psp Protein phosphatase 1 regulatory subunit 3F (R3F) Glycogen-targeting subunit for protein phosphatase 1 (PP1). {ECO:0000269|PubMed:21668450}.
Q6ZU80 CEP128 S18 ochoa Centrosomal protein of 128 kDa (Cep128) None
Q75QN2 INTS8 T18 ochoa Integrator complex subunit 8 (Int8) (Protein kaonashi-1) Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:28542170, PubMed:33243860, PubMed:34004147, PubMed:37080207, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860, PubMed:34004147, PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Within the integrator complex, INTS8 is required for the recruitment of protein phosphatase 2A (PP2A) to transcription pause-release checkpoint (PubMed:32966759, PubMed:33243860, PubMed:34004147, PubMed:37080207). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:28542170, ECO:0000269|PubMed:32966759, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:34004147, ECO:0000269|PubMed:37080207, ECO:0000269|PubMed:38570683}.
Q7L9B9 EEPD1 S19 ochoa Endonuclease/exonuclease/phosphatase family domain-containing protein 1 None
Q7LFL8 CXXC5 S18 ochoa CXXC-type zinc finger protein 5 (CF5) (Putative MAPK-activating protein PM08) (Putative NF-kappa-B-activating protein 102) (Retinoid-inducible nuclear factor) (RINF) May indirectly participate in activation of the NF-kappa-B and MAPK pathways. Acts as a mediator of BMP4-mediated modulation of canonical Wnt signaling activity in neural stem cells (By similarity). Required for DNA damage-induced ATM phosphorylation, p53 activation and cell cycle arrest. Involved in myelopoiesis. Transcription factor. Binds to the oxygen responsive element of COX4I2 and represses its transcription under hypoxia conditions (4% oxygen), as well as normoxia conditions (20% oxygen) (PubMed:23303788). May repress COX4I2 transactivation induced by CHCHD2 and RBPJ (PubMed:23303788). Binds preferentially to DNA containing cytidine-phosphate-guanosine (CpG) dinucleotides over CpH (H=A, T, and C), hemimethylated-CpG and hemimethylated-hydroxymethyl-CpG (PubMed:29276034). {ECO:0000250|UniProtKB:Q5XIQ3, ECO:0000269|PubMed:19182210, ECO:0000269|PubMed:19557330, ECO:0000269|PubMed:23303788, ECO:0000269|PubMed:29276034}.
Q7LG56 RRM2B S18 ochoa Ribonucleoside-diphosphate reductase subunit M2 B (EC 1.17.4.1) (TP53-inducible ribonucleotide reductase M2 B) (p53-inducible ribonucleotide reductase small subunit 2-like protein) (p53R2) Plays a pivotal role in cell survival by repairing damaged DNA in a p53/TP53-dependent manner. Supplies deoxyribonucleotides for DNA repair in cells arrested at G1 or G2. Contains an iron-tyrosyl free radical center required for catalysis. Forms an active ribonucleotide reductase (RNR) complex with RRM1 which is expressed both in resting and proliferating cells in response to DNA damage. {ECO:0000269|PubMed:10716435, ECO:0000269|PubMed:11517226, ECO:0000269|PubMed:11719458}.
Q7LG56 RRM2B S19 ochoa Ribonucleoside-diphosphate reductase subunit M2 B (EC 1.17.4.1) (TP53-inducible ribonucleotide reductase M2 B) (p53-inducible ribonucleotide reductase small subunit 2-like protein) (p53R2) Plays a pivotal role in cell survival by repairing damaged DNA in a p53/TP53-dependent manner. Supplies deoxyribonucleotides for DNA repair in cells arrested at G1 or G2. Contains an iron-tyrosyl free radical center required for catalysis. Forms an active ribonucleotide reductase (RNR) complex with RRM1 which is expressed both in resting and proliferating cells in response to DNA damage. {ECO:0000269|PubMed:10716435, ECO:0000269|PubMed:11517226, ECO:0000269|PubMed:11719458}.
Q7Z2K8 GPRIN1 S18 ochoa G protein-regulated inducer of neurite outgrowth 1 (GRIN1) May be involved in neurite outgrowth. {ECO:0000250}.
Q7Z3C6 ATG9A S18 ochoa Autophagy-related protein 9A (APG9-like 1) (mATG9) Phospholipid scramblase involved in autophagy by mediating autophagosomal membrane expansion (PubMed:22456507, PubMed:27510922, PubMed:29437695, PubMed:32513819, PubMed:32610138, PubMed:33106659, PubMed:33468622, PubMed:33850023). Cycles between the preautophagosomal structure/phagophore assembly site (PAS) and the cytoplasmic vesicle pool and supplies membrane for the growing autophagosome (PubMed:16940348, PubMed:22456507, PubMed:33106659). Lipid scramblase activity plays a key role in preautophagosomal structure/phagophore assembly by distributing the phospholipids that arrive through ATG2 (ATG2A or ATG2B) from the cytoplasmic to the luminal leaflet of the bilayer, thereby driving autophagosomal membrane expansion (PubMed:33106659). Also required to supply phosphatidylinositol 4-phosphate to the autophagosome initiation site by recruiting the phosphatidylinositol 4-kinase beta (PI4KB) in a process dependent on ARFIP2, but not ARFIP1 (PubMed:30917996). In addition to autophagy, also plays a role in necrotic cell death (By similarity). {ECO:0000250|UniProtKB:Q68FE2, ECO:0000269|PubMed:16940348, ECO:0000269|PubMed:22456507, ECO:0000269|PubMed:27510922, ECO:0000269|PubMed:29437695, ECO:0000269|PubMed:30917996, ECO:0000269|PubMed:32513819, ECO:0000269|PubMed:32610138, ECO:0000269|PubMed:33106659, ECO:0000269|PubMed:33468622, ECO:0000269|PubMed:33850023}.
Q7Z3D4 LYSMD3 S18 ochoa LysM and putative peptidoglycan-binding domain-containing protein 3 Essential for Golgi structural integrity. {ECO:0000269|PubMed:29851555}.
Q7Z7C8 TAF8 S19 ochoa Transcription initiation factor TFIID subunit 8 (Protein taube nuss) (TBP-associated factor 43 kDa) (TBP-associated factor 8) (Transcription initiation factor TFIID 43 kDa subunit) (TAFII-43) (TAFII43) (hTAFII43) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF8 is involved in forming the TFIID-B module, together with TAF5 (PubMed:33795473). Mediates both basal and activator-dependent transcription (PubMed:14580349). Plays a role in the differentiation of preadipocyte fibroblasts to adipocytes, however, does not seem to play a role in differentiation of myoblasts (PubMed:14580349). Required for the integration of TAF10 in the TAF complex (PubMed:14580349). May be important for survival of cells of the inner cell mass which constitute the pluripotent cell population of the early embryo (By similarity). {ECO:0000250|UniProtKB:Q9EQH4, ECO:0000269|PubMed:14580349, ECO:0000269|PubMed:33795473}.
Q7Z7K6 CENPV S18 ochoa Centromere protein V (CENP-V) (Nuclear protein p30) (Proline-rich protein 6) Required for distribution of pericentromeric heterochromatin in interphase nuclei and for centromere formation and organization, chromosome alignment and cytokinesis. {ECO:0000269|PubMed:18772885}.
Q86UA6 RPAIN S18 ochoa RPA-interacting protein (hRIP) Mediates the import of RPA complex into the nucleus, possibly via some interaction with importin beta. Isoform 2 is sumoylated and mediates the localization of RPA complex into the PML body of the nucleus, thereby participating in RPA function in DNA metabolism. {ECO:0000269|PubMed:16135809}.
Q86UX6 STK32C S18 ochoa Serine/threonine-protein kinase 32C (EC 2.7.11.1) (PKE) (Yet another novel kinase 3) None
Q86VY9 TMEM200A S19 ochoa Transmembrane protein 200A None
Q86WR7 PROSER2 S18 ochoa Proline and serine-rich protein 2 None
Q86YV0 RASAL3 S18 ochoa RAS protein activator like-3 Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}.
Q8IUE0 TGIF2LY S19 ochoa Homeobox protein TGIF2LY (TGF-beta-induced transcription factor 2-like protein) (TGFB-induced factor 2-like protein, Y-linked) (TGIF-like on the Y) May have a transcription role in testis. May act as a competitor/regulator of TGIF2LX.
Q8IUE1 TGIF2LX S19 ochoa Homeobox protein TGIF2LX (TGF-beta-induced transcription factor 2-like protein) (TGFB-induced factor 2-like protein, X-linked) (TGIF-like on the X) May have a transcription role in testis.
Q8IUE6 H2AC21 S19 ochoa Histone H2A type 2-B (H2A-clustered histone 21) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q8IUQ4 SIAH1 S19 psp E3 ubiquitin-protein ligase SIAH1 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase SIAH1) (Seven in absentia homolog 1) (Siah-1) (Siah-1a) E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14506261, PubMed:14645235, PubMed:14654780, PubMed:15064394, PubMed:16085652, PubMed:19224863, PubMed:20508617, PubMed:22483617, PubMed:28546513, PubMed:32430360, PubMed:33591310, PubMed:9334332, PubMed:9858595). E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:14506261, PubMed:14645235, PubMed:14654780, PubMed:15064394, PubMed:16085652, PubMed:19224863, PubMed:20508617, PubMed:22483617, PubMed:9334332, PubMed:9858595). Mediates E3 ubiquitin ligase activity either through direct binding to substrates or by functioning as the essential RING domain subunit of larger E3 complexes (PubMed:14506261, PubMed:14645235, PubMed:14654780, PubMed:15064394, PubMed:16085652, PubMed:19224863, PubMed:20508617, PubMed:22483617, PubMed:9334332, PubMed:9858595). Triggers the ubiquitin-mediated degradation of many substrates, including proteins involved in transcription regulation (ELL2, MYB, POU2AF1, PML and RBBP8), a cell surface receptor (DCC), the cell-surface receptor-type tyrosine kinase FLT3, the cytoplasmic signal transduction molecules (KLF10/TIEG1 and NUMB), an antiapoptotic protein (BAG1), a microtubule motor protein (KIF22), a protein involved in synaptic vesicle function in neurons (SYP), a structural protein (CTNNB1) and SNCAIP (PubMed:10747903, PubMed:11146551, PubMed:11389839, PubMed:11389840, PubMed:11483517, PubMed:11483518, PubMed:11752454, PubMed:12072443). Confers constitutive instability to HIPK2 through proteasomal degradation (PubMed:18536714, PubMed:33591310). It is thereby involved in many cellular processes such as apoptosis, tumor suppression, cell cycle, axon guidance, transcription regulation, spermatogenesis and TNF-alpha signaling (PubMed:14506261, PubMed:14645235, PubMed:14654780, PubMed:15064394, PubMed:16085652, PubMed:19224863, PubMed:20508617, PubMed:22483617, PubMed:9334332, PubMed:9858595). Has some overlapping function with SIAH2 (PubMed:14506261, PubMed:14645235, PubMed:14654780, PubMed:15064394, PubMed:16085652, PubMed:19224863, PubMed:20508617, PubMed:22483617, PubMed:9334332, PubMed:9858595). Induces apoptosis in cooperation with PEG3 (By similarity). Upon nitric oxid (NO) generation that follows apoptotic stimulation, interacts with S-nitrosylated GAPDH, mediating the translocation of GAPDH to the nucleus (By similarity). GAPDH acts as a stabilizer of SIAH1, facilitating the degradation of nuclear proteins (By similarity). Mediates ubiquitination and degradation of EGLN2 and EGLN3 in response to the unfolded protein response (UPR), leading to their degradation and subsequent stabilization of ATF4 (By similarity). Also part of the Wnt signaling pathway in which it mediates the Wnt-induced ubiquitin-mediated proteasomal degradation of AXIN1 (PubMed:28546513, PubMed:32430360). {ECO:0000250|UniProtKB:P61092, ECO:0000250|UniProtKB:Q920M9, ECO:0000269|PubMed:10747903, ECO:0000269|PubMed:11146551, ECO:0000269|PubMed:11389839, ECO:0000269|PubMed:11389840, ECO:0000269|PubMed:11483517, ECO:0000269|PubMed:11483518, ECO:0000269|PubMed:11752454, ECO:0000269|PubMed:12072443, ECO:0000269|PubMed:14506261, ECO:0000269|PubMed:14645235, ECO:0000269|PubMed:14654780, ECO:0000269|PubMed:15064394, ECO:0000269|PubMed:16085652, ECO:0000269|PubMed:18536714, ECO:0000269|PubMed:19224863, ECO:0000269|PubMed:20508617, ECO:0000269|PubMed:22483617, ECO:0000269|PubMed:28546513, ECO:0000269|PubMed:32430360, ECO:0000269|PubMed:9334332, ECO:0000269|PubMed:9858595}.
Q8IV04 TBC1D10C S19 ochoa Carabin (TBC1 domain family member 10C) Inhibits the Ras signaling pathway through its intrinsic Ras GTPase-activating protein (GAP) activity. Acts as a negative feedback inhibitor of the calcineurin signaling pathway that also mediates crosstalk between calcineurin and Ras. {ECO:0000269|PubMed:17230191}.
Q8IV56 PRR15 T18 ochoa Proline-rich protein 15 May have a role in proliferation and/or differentiation. {ECO:0000250}.
Q8IVP5 FUNDC1 Y18 ochoa|psp FUN14 domain-containing protein 1 Integral mitochondrial outer-membrane protein that mediates the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs) (PubMed:33972548). In turn, mediates angiogenesis and neoangiogenesis through interference with intracellular Ca(2+) communication and regulation of the vascular endothelial growth factor receptor KDR/VEGFR2 expression at both mRNA and protein levels (PubMed:33972548). Also acts as an activator of hypoxia-induced mitophagy, an important mechanism for mitochondrial quality and homeostasis, by interacting with and recruiting LC3 protein family to mitochondria (PubMed:22267086, PubMed:24671035, PubMed:24746696, PubMed:27653272). Mechanistically, recruits DRP1 at ER-mitochondria contact sites leading to DRP1 oligomerization and GTPase activity to facilitate mitochondrial fission during hypoxia (PubMed:27145933, PubMed:33978709). Additionally, plays a role in hepatic ferroptosis by interacting directly with glutathione peroxidase/GPX4 to facilitate its recruitment into mitochondria through TOM/TIM complex where it is degraded by mitophagy (PubMed:36828120). {ECO:0000269|PubMed:22267086, ECO:0000269|PubMed:24671035, ECO:0000269|PubMed:24746696, ECO:0000269|PubMed:27145933, ECO:0000269|PubMed:27653272, ECO:0000269|PubMed:33972548, ECO:0000269|PubMed:33978709, ECO:0000269|PubMed:36828120}.
Q8IWU9 TPH2 S19 psp Tryptophan 5-hydroxylase 2 (EC 1.14.16.4) (Neuronal tryptophan hydroxylase) (Tryptophan 5-monooxygenase 2) None
Q8IY26 PLPP6 S18 ochoa Polyisoprenoid diphosphate/phosphate phosphohydrolase PLPP6 (EC 3.1.3.-) (EC 3.6.1.-) (EC 3.6.1.68) (Lipid phosphatase-related protein-B) (LPRP-B) (PA-PSP) (Phosphatidic acid phosphatase type 2 domain-containing protein 2) (PPAP2 domain-containing protein 2) (Phospholipid phosphatase 6) (Presqualene diphosphate phosphatase) (Type 1 polyisoprenoid diphosphate phosphatase) Magnesium-independent polyisoprenoid diphosphatase that catalyzes the sequential dephosphorylation of presqualene, farnesyl, geranyl and geranylgeranyl diphosphates (PubMed:16464866, PubMed:19220020, PubMed:20110354). Functions in the innate immune response through the dephosphorylation of presqualene diphosphate which acts as a potent inhibitor of the signaling pathways contributing to polymorphonuclear neutrophils activation (PubMed:16464866, PubMed:23568778). May regulate the biosynthesis of cholesterol and related sterols by dephosphorylating presqualene and farnesyl diphosphate, two key intermediates in this biosynthetic pathway (PubMed:20110354). May also play a role in protein prenylation by acting on farnesyl diphosphate and its derivative geranylgeranyl diphosphate, two precursors for the addition of isoprenoid anchors to membrane proteins (PubMed:20110354). Has a lower activity towards phosphatidic acid (PA), but through phosphatidic acid dephosphorylation may participate in the biosynthesis of phospholipids and triacylglycerols (PubMed:18930839). May also act on ceramide-1-P, lysophosphatidic acid (LPA) and sphing-4-enine 1-phosphate/sphingosine-1-phosphate (PubMed:18930839, PubMed:20110354). {ECO:0000269|PubMed:16464866, ECO:0000269|PubMed:18930839, ECO:0000269|PubMed:19220020, ECO:0000269|PubMed:20110354, ECO:0000269|PubMed:23568778}.
Q8IYB3 SRRM1 S18 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IYI6 EXOC8 S19 ochoa Exocyst complex component 8 (Exocyst complex 84 kDa subunit) Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane.
Q8IZV2 CMTM8 S18 ochoa CKLF-like MARVEL transmembrane domain-containing protein 8 (Chemokine-like factor superfamily member 8) None
Q8N163 CCAR2 S19 ochoa Cell cycle and apoptosis regulator protein 2 (Cell division cycle and apoptosis regulator protein 2) (DBIRD complex subunit KIAA1967) (Deleted in breast cancer gene 1 protein) (DBC-1) (DBC.1) (NET35) (p30 DBC) Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions (PubMed:22446626). Inhibits SIRT1 deacetylase activity leading to increasing levels of p53/TP53 acetylation and p53-mediated apoptosis (PubMed:18235501, PubMed:18235502, PubMed:23352644). Inhibits SUV39H1 methyltransferase activity (PubMed:19218236). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). Plays a critical role in maintaining genomic stability and cellular integrity following UV-induced genotoxic stress (PubMed:23398316). Regulates the circadian expression of the core clock components NR1D1 and BMAL1 (PubMed:23398316). Enhances the transcriptional repressor activity of NR1D1 through stabilization of NR1D1 protein levels by preventing its ubiquitination and subsequent degradation (PubMed:23398316). Represses the ligand-dependent transcriptional activation function of ESR2 (PubMed:20074560). Acts as a regulator of PCK1 expression and gluconeogenesis by a mechanism that involves, at least in part, both NR1D1 and SIRT1 (PubMed:24415752). Negatively regulates the deacetylase activity of HDAC3 and can alter its subcellular localization (PubMed:21030595). Positively regulates the beta-catenin pathway (canonical Wnt signaling pathway) and is required for MCC-mediated repression of the beta-catenin pathway (PubMed:24824780). Represses ligand-dependent transcriptional activation function of NR1H2 and NR1H3 and inhibits the interaction of SIRT1 with NR1H3 (PubMed:25661920). Plays an important role in tumor suppression through p53/TP53 regulation; stabilizes p53/TP53 by affecting its interaction with ubiquitin ligase MDM2 (PubMed:25732823). Represses the transcriptional activator activity of BRCA1 (PubMed:20160719). Inhibits SIRT1 in a CHEK2 and PSEM3-dependent manner and inhibits the activity of CHEK2 in vitro (PubMed:25361978). {ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18235502, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19218236, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:22446626, ECO:0000269|PubMed:23352644, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25661920, ECO:0000269|PubMed:25732823}.
Q8N201 INTS1 S19 ochoa Integrator complex subunit 1 (Int1) Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:25201415, PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:26308897, PubMed:30737432). Within the integrator complex, INTS1 is involved in the post-termination step: INTS1 displaces INTS3 and the SOSS factors, allowing the integrator complex to return to the closed conformation, ready to bind to the paused elongation complex for another termination cycle (PubMed:38570683). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:25201415, ECO:0000269|PubMed:26308897, ECO:0000269|PubMed:30737432, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}.
Q8N2W9 PIAS4 S18 psp E3 SUMO-protein ligase PIAS4 (EC 2.3.2.27) (PIASy) (Protein inhibitor of activated STAT protein 4) (Protein inhibitor of activated STAT protein gamma) (PIAS-gamma) Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor (PubMed:12511558, PubMed:12631292, PubMed:12727872, PubMed:15831457, PubMed:15976810, PubMed:22508508, PubMed:32832608). Mediates sumoylation of ALKBH5, AXIN1, CEBPA, KLF8, GATA2, PARK7, HERC2, MYB, TCF4 and RNF168 (PubMed:12223491, PubMed:12511558, PubMed:12631292, PubMed:12727872, PubMed:12750312, PubMed:15831457, PubMed:15976810, PubMed:16617055, PubMed:22508508, PubMed:34048572). Plays a crucial role as a transcriptional coregulation in various cellular pathways, including the STAT pathway, the p53/TP53 pathway, the Wnt pathway and the steroid hormone signaling pathway (PubMed:11388671). Involved in gene silencing (PubMed:11248056). In Wnt signaling, represses LEF1 and enhances TCF4 transcriptional activities through promoting their sumoylations (PubMed:12727872, PubMed:15831457). Enhances the sumoylation of MTA1 and may participate in its paralog-selective sumoylation (PubMed:21965678). Binds to AT-rich DNA sequences, known as matrix or scaffold attachment regions (MARs/SARs) (By similarity). Catalyzes conjugation of SUMO2 to KAT5 in response to DNA damage, facilitating repair of DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:32832608). Mediates sumoylation of PARP1 in response to PARP1 trapping to chromatin (PubMed:35013556). Mediates sumoylation of KLF8, repressiing KLF8 transcriptional activity and cell cycle progression into G(1) phase (PubMed:16617055). Sumoylates ALKBH5 downstream of MAPK8/JNK1 and MAPK9/JNK2 in response to reactive oxygen species (ROS), inhibiting ALKBH5 RNA demethylase activity (PubMed:34048572). {ECO:0000250|UniProtKB:Q9JM05, ECO:0000269|PubMed:11248056, ECO:0000269|PubMed:11388671, ECO:0000269|PubMed:12223491, ECO:0000269|PubMed:12511558, ECO:0000269|PubMed:12631292, ECO:0000269|PubMed:12727872, ECO:0000269|PubMed:12750312, ECO:0000269|PubMed:15831457, ECO:0000269|PubMed:15976810, ECO:0000269|PubMed:16617055, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:35013556}.
Q8N3P4 VPS8 T18 ochoa Vacuolar protein sorting-associated protein 8 homolog Plays a role in vesicle-mediated protein trafficking of the endocytic membrane transport pathway. Believed to act as a component of the putative CORVET endosomal tethering complexes which is proposed to be involved in the Rab5-to-Rab7 endosome conversion probably implicating MON1A/B, and via binding SNAREs and SNARE complexes to mediate tethering and docking events during SNARE-mediated membrane fusion. The CORVET complex is proposed to function as a Rab5 effector to mediate early endosome fusion probably in specific endosome subpopulations (PubMed:25266290). Functions predominantly in APPL1-containing endosomes (PubMed:25266290). {ECO:0000269|PubMed:25266290, ECO:0000305|PubMed:25266290}.
Q8N3X1 FNBP4 S18 ochoa Formin-binding protein 4 (Formin-binding protein 30) None
Q8N4L2 PIP4P2 S18 ochoa Type 2 phosphatidylinositol 4,5-bisphosphate 4-phosphatase (Type 2 PtdIns-4,5-P2 4-Ptase) (EC 3.1.3.78) (PtdIns-4,5-P2 4-Ptase II) (Transmembrane protein 55A) Catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) to phosphatidylinositol-4-phosphate (PtdIns-4-P) (PubMed:16365287). Does not hydrolyze phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3,4-bisphosphate, inositol 3,5-bisphosphate, inositol 3,4-bisphosphate, phosphatidylinositol 5-monophosphate, phosphatidylinositol 4-monophosphate and phosphatidylinositol 3-monophosphate (PubMed:16365287). Negatively regulates the phagocytosis of large particles by reducing phagosomal phosphatidylinositol 4,5-bisphosphate accumulation during cup formation (By similarity). {ECO:0000250|UniProtKB:Q9CZX7, ECO:0000269|PubMed:16365287}.
Q8N5P1 ZC3H8 T18 ochoa Zinc finger CCCH domain-containing protein 8 Acts as a transcriptional repressor of the GATA3 promoter. Sequence-specific DNA-binding factor that binds to the 5'-AGGTCTC-3' sequence within the negative cis-acting element intronic regulatory region (IRR) of the GATA3 gene (By similarity). Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:23932780). Induces thymocyte apoptosis when overexpressed, which may indicate a role in regulation of thymocyte homeostasis. {ECO:0000250, ECO:0000269|PubMed:12077251, ECO:0000269|PubMed:12153508, ECO:0000269|PubMed:23932780}.
Q8N5V2 NGEF S18 psp Ephexin-1 (Eph-interacting exchange protein) (Neuronal guanine nucleotide exchange factor) Acts as a guanine nucleotide exchange factor (GEF) which differentially activates the GTPases RHOA, RAC1 and CDC42. Plays a role in axon guidance regulating ephrin-induced growth cone collapse and dendritic spine morphogenesis. Upon activation by ephrin through EPHA4, the GEF activity switches toward RHOA resulting in its activation. Activated RHOA promotes cone retraction at the expense of RAC1- and CDC42-stimulated growth cone extension (By similarity). {ECO:0000250}.
Q8N6N3 C1orf52 S18 ochoa UPF0690 protein C1orf52 (BCL10-associated gene protein) None
Q8N6N3 C1orf52 S19 ochoa UPF0690 protein C1orf52 (BCL10-associated gene protein) None
Q8NBA8 DTWD2 S18 ochoa tRNA-uridine aminocarboxypropyltransferase 2 (EC 2.5.1.25) (DTW domain-containing protein 2) Catalyzes the formation of 3-(3-amino-3-carboxypropyl)uridine (acp3U) at position 20a in the D-loop of several cytoplasmic tRNAs (acp3U(20a)) (PubMed:31804502, PubMed:39173631). Also has a weak activity to form acp3U at position 20 in the D-loop of tRNAs (acp3U(20)) (PubMed:31804502). Involved in glycoRNA biosynthesis by mediating formation of acp3U, which acts as an attachment site for N-glycans on tRNAs (PubMed:39173631). GlycoRNAs consist of RNAs modified with secretory N-glycans that are presented on the cell surface (PubMed:39173631). {ECO:0000269|PubMed:31804502, ECO:0000269|PubMed:39173631}.
Q8ND24 RNF214 S19 ochoa RING finger protein 214 None
Q8NEZ2 VPS37A S18 ochoa Vacuolar protein sorting-associated protein 37A (hVps37A) (ESCRT-I complex subunit VPS37A) (Hepatocellular carcinoma-related protein 1) Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies. May be involved in cell growth and differentiation. {ECO:0000269|PubMed:15240819}.
Q8NHG8 ZNRF2 Y18 ochoa E3 ubiquitin-protein ligase ZNRF2 (EC 2.3.2.27) (Protein Ells2) (RING finger protein 202) (RING-type E3 ubiquitin transferase ZNRF2) (Zinc/RING finger protein 2) E3 ubiquitin-protein ligase that plays a role in the establishment and maintenance of neuronal transmission and plasticity. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Acts also as a positive regulator of mTORC1 activation by amino acids, which functions upstream of the V-ATPase and of Rag-GTPases (PubMed:27244671). In turn, phosphorylation by mTOR leads to its inhibition via targeting to the cytosol allowing a self-regulating feedback mechanism (PubMed:27244671). {ECO:0000269|PubMed:14561866, ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:27244671}.
Q8TB45 DEPTOR S19 ochoa DEP domain-containing mTOR-interacting protein (hDEPTOR) (DEP domain-containing protein 6) Negative regulator of the mTORC1 and mTORC2 complexes: inhibits the protein kinase activity of MTOR, thereby inactivating both complexes (PubMed:19446321, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:25936805, PubMed:29382726, PubMed:34519268, PubMed:34519269). DEPTOR inhibits mTORC1 and mTORC2 to induce autophagy (PubMed:22017875, PubMed:22017876, PubMed:22017877). In contrast to AKT1S1/PRAS40, only partially inhibits mTORC1 activity (PubMed:34519268, PubMed:34519269). {ECO:0000269|PubMed:19446321, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:29382726, ECO:0000269|PubMed:34519268, ECO:0000269|PubMed:34519269}.
Q8TCJ2 STT3B S18 ochoa Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit STT3B (Oligosaccharyl transferase subunit STT3B) (STT3-B) (EC 2.4.99.18) (Source of immunodominant MHC-associated peptides homolog) Catalytic subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation (PubMed:19167329, PubMed:31296534, PubMed:31831667, PubMed:39509507). N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER) (PubMed:19167329, PubMed:31296534, PubMed:31831667, PubMed:39509507). All subunits are required for a maximal enzyme activity. This subunit contains the active site and the acceptor peptide and donor lipid-linked oligosaccharide (LLO) binding pockets (PubMed:19167329, PubMed:31296534, PubMed:31831667, PubMed:39509507). STT3B is present in a small subset of OST complexes (OST-B) and mediates both cotranslational and post-translational N-glycosylation of target proteins: STT3B-containing complexes are required for efficient post-translational glycosylation and while they are less competent than STT3A-containing complexes for cotranslational glycosylation, they have the ability to mediate glycosylation of some nascent sites that are not accessible for STT3A (PubMed:19167329, PubMed:22607976, PubMed:31296534, PubMed:39509507). STT3B-containing complexes also act post-translationally and mediate modification of skipped glycosylation sites in unfolded proteins (PubMed:19167329, PubMed:22607976, PubMed:39509507). Plays a role in ER-associated degradation (ERAD) pathway that mediates ubiquitin-dependent degradation of misfolded endoplasmic reticulum proteins by mediating N-glycosylation of unfolded proteins, which are then recognized by the ERAD pathway and targeted for degradation (PubMed:19167329, PubMed:22607976). Mediates glycosylation of the disease variant AMYL-TTR 'Asp-38' of TTR at 'Asn-118', leading to its degradation (PubMed:19167329, PubMed:22607976). {ECO:0000269|PubMed:19167329, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:31296534, ECO:0000269|PubMed:31831667, ECO:0000269|PubMed:39509507}.
Q8TF42 UBASH3B Y19 ochoa Ubiquitin-associated and SH3 domain-containing protein B (EC 3.1.3.48) (Cbl-interacting protein p70) (Suppressor of T-cell receptor signaling 1) (STS-1) (T-cell ubiquitin ligand 2) (TULA-2) (Tyrosine-protein phosphatase STS1/TULA2) Interferes with CBL-mediated down-regulation and degradation of receptor-type tyrosine kinases. Promotes accumulation of activated target receptors, such as T-cell receptors and EGFR, on the cell surface. Exhibits tyrosine phosphatase activity toward several substrates including EGFR, FAK, SYK, and ZAP70. Down-regulates proteins that are dually modified by both protein tyrosine phosphorylation and ubiquitination. {ECO:0000269|PubMed:15159412, ECO:0000269|PubMed:17880946}.
Q8WUB8 PHF10 S18 ochoa PHD finger protein 10 (BRG1-associated factor 45a) (BAF45a) (XAP135) Involved in transcription activity regulation by chromatin remodeling. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250}.
Q8WW22 DNAJA4 S18 ochoa DnaJ homolog subfamily A member 4 None
Q8WWH5 TRUB1 T18 ochoa Pseudouridylate synthase TRUB1 (EC 5.4.99.-) (TruB pseudouridine synthase homolog 1) (tRNA pseudouridine 55 synthase TRUB1) (Psi55 synthase TRUB1) (EC 5.4.99.25) Pseudouridine synthase that catalyzes pseudouridylation of mRNAs and tRNAs (PubMed:28073919, PubMed:31477916, PubMed:32926445). Mediates pseudouridylation of mRNAs with the consensus sequence 5'-GUUCNANNC-3', harboring a stem-loop structure (PubMed:28073919, PubMed:31477916). Constitutes the major pseudouridine synthase acting on mRNAs (PubMed:28073919). Also catalyzes pseudouridylation of some tRNAs, including synthesis of pseudouridine(55) from uracil-55, in the psi GC loop of a subset of tRNAs (PubMed:32926445, PubMed:33023933). Promotes the processing of pri-let-7 microRNAs (pri-miRNAs) independently of its RNA pseudouridylate synthase activity (PubMed:32926445). Acts by binding to the stem-loop structure on pri-let-7, preventing LIN28-binding (LIN28A and/or LIN28B), thereby enhancing the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation (PubMed:32926445). {ECO:0000269|PubMed:28073919, ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:32926445, ECO:0000269|PubMed:33023933}.
Q92556 ELMO1 Y18 psp Engulfment and cell motility protein 1 (Protein ced-12 homolog) Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Acts in association with DOCK1 and CRK. Was initially proposed to be required in complex with DOCK1 to activate Rac Rho small GTPases. May enhance the guanine nucleotide exchange factor (GEF) activity of DOCK1. {ECO:0000269|PubMed:11595183, ECO:0000269|PubMed:12134158}.
Q92599 SEPTIN8 S18 ochoa Septin-8 Filament-forming cytoskeletal GTPase (By similarity). May play a role in platelet secretion (PubMed:15116257). Seems to participate in the process of SNARE complex formation in synaptic vesicles (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:B0BNF1, ECO:0000269|PubMed:15116257}.; FUNCTION: [Isoform 4]: Stabilizes BACE1 protein levels and promotes the sorting and accumulation of BACE1 to the recycling or endosomal compartments, modulating the beta-amyloidogenic processing of APP. {ECO:0000269|PubMed:27084579}.
Q93009 USP7 S18 ochoa|psp Ubiquitin carboxyl-terminal hydrolase 7 (EC 3.4.19.12) (Deubiquitinating enzyme 7) (Herpesvirus-associated ubiquitin-specific protease) (Ubiquitin thioesterase 7) (Ubiquitin-specific-processing protease 7) Hydrolase that deubiquitinates target proteins such as ARMC5, FOXO4, DEPTOR, KAT5, p53/TP53, MDM2, ERCC6, DNMT1, UHRF1, PTEN, KMT2E/MLL5 and DAXX (PubMed:11923872, PubMed:15053880, PubMed:16964248, PubMed:18716620, PubMed:25283148, PubMed:25865756, PubMed:26678539, PubMed:28655758, PubMed:33544460, PubMed:35216969). Together with DAXX, prevents MDM2 self-ubiquitination and enhances the E3 ligase activity of MDM2 towards p53/TP53, thereby promoting p53/TP53 ubiquitination and proteasomal degradation (PubMed:15053880, PubMed:16845383, PubMed:18566590, PubMed:20153724). Deubiquitinates p53/TP53, preventing degradation of p53/TP53, and enhances p53/TP53-dependent transcription regulation, cell growth repression and apoptosis (PubMed:25283148). Deubiquitinates p53/TP53 and MDM2 and strongly stabilizes p53/TP53 even in the presence of excess MDM2, and also induces p53/TP53-dependent cell growth repression and apoptosis (PubMed:11923872, PubMed:26786098). Deubiquitination of FOXO4 in presence of hydrogen peroxide is not dependent on p53/TP53 and inhibits FOXO4-induced transcriptional activity (PubMed:16964248). In association with DAXX, is involved in the deubiquitination and translocation of PTEN from the nucleus to the cytoplasm, both processes that are counteracted by PML (PubMed:18716620). Deubiquitinates KMT2E/MLL5 preventing KMT2E/MLL5 proteasomal-mediated degradation (PubMed:26678539). Involved in cell proliferation during early embryonic development. Involved in transcription-coupled nucleotide excision repair (TC-NER) in response to UV damage: recruited to DNA damage sites following interaction with KIAA1530/UVSSA and promotes deubiquitination of ERCC6, preventing UV-induced degradation of ERCC6 (PubMed:22466611, PubMed:22466612). Involved in maintenance of DNA methylation via its interaction with UHRF1 and DNMT1: acts by mediating deubiquitination of UHRF1 and DNMT1, preventing their degradation and promoting DNA methylation by DNMT1 (PubMed:21745816, PubMed:22411829). Deubiquitinates alkylation repair enzyme ALKBH3. OTUD4 recruits USP7 and USP9X to stabilize ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). Acts as a chromatin regulator via its association with the Polycomb group (PcG) multiprotein PRC1-like complex; may act by deubiquitinating components of the PRC1-like complex (PubMed:20601937). Able to mediate deubiquitination of histone H2B; it is however unsure whether this activity takes place in vivo (PubMed:20601937). Exhibits a preference towards 'Lys-48'-linked ubiquitin chains (PubMed:22689415). Increases regulatory T-cells (Treg) suppressive capacity by deubiquitinating and stabilizing the transcription factor FOXP3 which is crucial for Treg cell function (PubMed:23973222). Plays a role in the maintenance of the circadian clock periodicity via deubiquitination and stabilization of the CRY1 and CRY2 proteins (PubMed:27123980). Deubiquitinates REST, thereby stabilizing REST and promoting the maintenance of neural progenitor cells (PubMed:21258371). Deubiquitinates SIRT7, inhibiting SIRT7 histone deacetylase activity and regulating gluconeogenesis (PubMed:28655758). Involved in the regulation of WASH-dependent actin polymerization at the surface of endosomes and the regulation of endosomal protein recycling (PubMed:26365382). It maintains optimal WASH complex activity and precise F-actin levels via deubiquitination of TRIM27 and WASHC1 (PubMed:26365382). Mediates the deubiquitination of phosphorylated DEPTOR, promoting its stability and leading to decreased mTORC1 signaling (PubMed:35216969). {ECO:0000269|PubMed:11923872, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:16964248, ECO:0000269|PubMed:18566590, ECO:0000269|PubMed:18716620, ECO:0000269|PubMed:20153724, ECO:0000269|PubMed:20601937, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:22411829, ECO:0000269|PubMed:22466611, ECO:0000269|PubMed:22466612, ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:23973222, ECO:0000269|PubMed:25283148, ECO:0000269|PubMed:25865756, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:26365382, ECO:0000269|PubMed:26678539, ECO:0000269|PubMed:26786098, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28655758, ECO:0000269|PubMed:33544460, ECO:0000269|PubMed:35216969}.; FUNCTION: (Microbial infection) Contributes to the overall stabilization and trans-activation capability of the herpesvirus 1 trans-acting transcriptional protein ICP0/VMW110 during HSV-1 infection. {ECO:0000269|PubMed:14506283, ECO:0000269|PubMed:16160161, ECO:0000269|PubMed:18590780}.; FUNCTION: (Microbial infection) Upon infection with Epstein-Barr virus, the interaction with viral EBNA1 increases the association of USP7 with PML proteins, which is required for the polyubiquitylation and degradation of PML. {ECO:0000269|PubMed:20719947, ECO:0000269|PubMed:24216761}.
Q93077 H2AC6 S19 ochoa Histone H2A type 1-C (H2A-clustered histone 6) (Histone H2A/l) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q969H0 FBXW7 S18 psp F-box/WD repeat-containing protein 7 (Archipelago homolog) (hAgo) (F-box and WD-40 domain-containing protein 7) (F-box protein FBX30) (SEL-10) (hCdc4) Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:17434132, PubMed:22748924, PubMed:26976582, PubMed:28727686, PubMed:34741373, PubMed:35395208). Recognizes and binds phosphorylated sites/phosphodegrons within target proteins and thereafter brings them to the SCF complex for ubiquitination (PubMed:17434132, PubMed:22748924, PubMed:26774286, PubMed:26976582, PubMed:28727686, PubMed:34741373). Identified substrates include cyclin-E (CCNE1 or CCNE2), DISC1, JUN, MYC, NOTCH1 released notch intracellular domain (NICD), NFE2L1, NOTCH2, MCL1, MLST8, RICTOR, and probably PSEN1 (PubMed:11565034, PubMed:11585921, PubMed:12354302, PubMed:14739463, PubMed:15103331, PubMed:17558397, PubMed:17873522, PubMed:22608923, PubMed:22748924, PubMed:25775507, PubMed:25897075, PubMed:26976582, PubMed:28007894, PubMed:28727686, PubMed:29149593, PubMed:34102342). Acts as a negative regulator of JNK signaling by binding to phosphorylated JUN and promoting its ubiquitination and subsequent degradation (PubMed:14739463). Involved in bone homeostasis and negative regulation of osteoclast differentiation (PubMed:29149593). Regulates the amplitude of the cyclic expression of hepatic core clock genes and genes involved in lipid and glucose metabolism via ubiquitination and proteasomal degradation of their transcriptional repressor NR1D1; CDK1-dependent phosphorylation of NR1D1 is necessary for SCF(FBXW7)-mediated ubiquitination (PubMed:27238018). Also able to promote 'Lys-63'-linked ubiquitination in response to DNA damage (PubMed:26774286). The SCF(FBXW7) complex facilitates double-strand break repair following phosphorylation by ATM: phosphorylation promotes localization to sites of double-strand breaks and 'Lys-63'-linked ubiquitination of phosphorylated XRCC4, enhancing DNA non-homologous end joining (PubMed:26774286). {ECO:0000269|PubMed:11565034, ECO:0000269|PubMed:11585921, ECO:0000269|PubMed:14739463, ECO:0000269|PubMed:15103331, ECO:0000269|PubMed:17434132, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:22608923, ECO:0000269|PubMed:22748924, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:26976582, ECO:0000269|PubMed:27238018, ECO:0000269|PubMed:28007894, ECO:0000269|PubMed:28727686, ECO:0000269|PubMed:29149593, ECO:0000269|PubMed:34102342, ECO:0000269|PubMed:34741373, ECO:0000269|PubMed:35395208, ECO:0000305|PubMed:12354302}.
Q969I6 SLC38A4 S18 ochoa Sodium-coupled neutral amino acid transporter 4 (Amino acid transporter A3) (Na(+)-coupled neutral amino acid transporter 4) (Solute carrier family 38 member 4) (System A amino acid transporter 3) (System N amino acid transporter 3) Symporter that cotransports neutral amino acids and sodium ions from the extraccellular to the intracellular side of the cell membrane (PubMed:11342143, PubMed:19015196, PubMed:33928121). The transport is electrogenic, pH dependent and partially tolerates substitution of Na(+) by Li(+) (PubMed:11414754). Preferentially transports smaller amino acids, such as glycine, L-alanine, L-serine, L-asparagine and L-threonine, followed by L-cysteine, L-histidine, L-proline and L-glutamine and L-methionine (PubMed:11414754, PubMed:33928121). {ECO:0000269|PubMed:11342143, ECO:0000269|PubMed:11414754, ECO:0000269|PubMed:19015196, ECO:0000269|PubMed:33928121}.
Q969I6 SLC38A4 S19 ochoa Sodium-coupled neutral amino acid transporter 4 (Amino acid transporter A3) (Na(+)-coupled neutral amino acid transporter 4) (Solute carrier family 38 member 4) (System A amino acid transporter 3) (System N amino acid transporter 3) Symporter that cotransports neutral amino acids and sodium ions from the extraccellular to the intracellular side of the cell membrane (PubMed:11342143, PubMed:19015196, PubMed:33928121). The transport is electrogenic, pH dependent and partially tolerates substitution of Na(+) by Li(+) (PubMed:11414754). Preferentially transports smaller amino acids, such as glycine, L-alanine, L-serine, L-asparagine and L-threonine, followed by L-cysteine, L-histidine, L-proline and L-glutamine and L-methionine (PubMed:11414754, PubMed:33928121). {ECO:0000269|PubMed:11342143, ECO:0000269|PubMed:11414754, ECO:0000269|PubMed:19015196, ECO:0000269|PubMed:33928121}.
Q96A57 TMEM230 Y19 ochoa Transmembrane protein 230 Involved in trafficking and recycling of synaptic vesicles. {ECO:0000269|PubMed:27270108}.
Q96BD0 SLCO4A1 S18 ochoa Solute carrier organic anion transporter family member 4A1 (OATP4A1) (Colon organic anion transporter) (Organic anion transporter polypeptide-related protein 1) (OATP-RP1) (OATPRP1) (POAT) (Organic anion-transporting polypeptide E) (OATP-E) (Sodium-independent organic anion transporter E) (Solute carrier family 21 member 12) Organic anion antiporter with apparent broad substrate specificity. Recognizes various substrates including thyroid hormones 3,3',5-triiodo-L-thyronine (T3), L-thyroxine (T4) and 3,3',5'-triiodo-L-thyronine (rT3), conjugated steroids such as estrone 3-sulfate and estradiol 17-beta glucuronide, bile acids such as taurocholate and prostanoids such as prostaglandin E2, likely operating in a tissue-specific manner (PubMed:10873595, PubMed:19129463, PubMed:30343886). May be involved in uptake of metabolites from the circulation into organs such as kidney, liver or placenta. Possibly drives the selective transport of thyroid hormones and estrogens coupled to an outward glutamate gradient across the microvillous membrane of the placenta (PubMed:30343886). The transport mechanism, its electrogenicity and potential tissue-specific counterions remain to be elucidated (Probable). {ECO:0000269|PubMed:10873595, ECO:0000269|PubMed:19129463, ECO:0000269|PubMed:30343886, ECO:0000305}.
Q96C01 FAM136A S19 ochoa Protein FAM136A None
Q96DE5 ANAPC16 T19 ochoa Anaphase-promoting complex subunit 16 (APC16) (Cyclosome subunit 16) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:20360068). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:20360068). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:20360068, ECO:0000269|PubMed:29033132}.
Q96E09 PABIR1 S19 ochoa PPP2R1A-PPP2R2A-interacting phosphatase regulator 1 (PABIR family member 1) Acts as an inhibitor of serine/threonine-protein phosphatase 2A (PP2A) activity (PubMed:27588481, PubMed:33108758, PubMed:38123684). Inhibits PP2A activity by blocking the substrate binding site on PPP2R2A and the active site of PPP2CA (PubMed:38123684). Potentiates ubiquitin-mediated proteasomal degradation of serine/threonine-protein phosphatase 2A catalytic subunit alpha (PPP2CA) (PubMed:27588481). Inhibits PP2A-mediated dephosphorylation of WEE1, promoting ubiquitin-mediated proteolysis of WEE1, thereby releasing G2/M checkpoint (PubMed:33108758). {ECO:0000269|PubMed:27588481, ECO:0000269|PubMed:33108758, ECO:0000269|PubMed:38123684}.
Q96EY9 ADAT3 S18 ochoa Probable inactive tRNA-specific adenosine deaminase-like protein 3 (tRNA-specific adenosine-34 deaminase subunit ADAT3) None
Q96EZ8 MCRS1 T18 ochoa Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}.
Q96FF7 MISP3 S18 ochoa Uncharacterized protein MISP3 (MISP family member 3) None
Q96FW1 OTUB1 S18 ochoa|psp Ubiquitin thioesterase OTUB1 (EC 3.4.19.12) (Deubiquitinating enzyme OTUB1) (OTU domain-containing ubiquitin aldehyde-binding protein 1) (Otubain-1) (hOTU1) (Ubiquitin-specific-processing protease OTUB1) Hydrolase that can specifically remove 'Lys-48'-linked conjugated ubiquitin from proteins and plays an important regulatory role at the level of protein turnover by preventing degradation (PubMed:12401499, PubMed:12704427, PubMed:14661020, PubMed:23827681). Regulator of T-cell anergy, a phenomenon that occurs when T-cells are rendered unresponsive to antigen rechallenge and no longer respond to their cognate antigen (PubMed:14661020). Acts via its interaction with RNF128/GRAIL, a crucial inductor of CD4 T-cell anergy (PubMed:14661020). Isoform 1 destabilizes RNF128, leading to prevent anergy (PubMed:14661020). In contrast, isoform 2 stabilizes RNF128 and promotes anergy (PubMed:14661020). Surprisingly, it regulates RNF128-mediated ubiquitination, but does not deubiquitinate polyubiquitinated RNF128 (PubMed:14661020). Deubiquitinates estrogen receptor alpha (ESR1) (PubMed:19383985). Mediates deubiquitination of 'Lys-48'-linked polyubiquitin chains, but not 'Lys-63'-linked polyubiquitin chains (PubMed:18954305, PubMed:19211026, PubMed:23827681). Not able to cleave di-ubiquitin (PubMed:18954305, PubMed:23827681). Also capable of removing NEDD8 from NEDD8 conjugates, but with a much lower preference compared to 'Lys-48'-linked ubiquitin (PubMed:18954305, PubMed:23827681). {ECO:0000269|PubMed:12401499, ECO:0000269|PubMed:12704427, ECO:0000269|PubMed:14661020, ECO:0000269|PubMed:18954305, ECO:0000269|PubMed:19211026, ECO:0000269|PubMed:19383985, ECO:0000269|PubMed:23827681}.; FUNCTION: Plays a key non-catalytic role in DNA repair regulation by inhibiting activity of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites (PubMed:20725033, PubMed:22325355). Inhibits RNF168 independently of ubiquitin thioesterase activity by binding and inhibiting UBE2N/UBC13, the E2 partner of RNF168, thereby limiting spreading of 'Lys-63'-linked histone H2A and H2AX marks (PubMed:20725033, PubMed:22325355). Inhibition occurs by binding to free ubiquitin: free ubiquitin acts as an allosteric regulator that increases affinity for UBE2N/UBC13 and disrupts interaction with UBE2V1 (PubMed:20725033, PubMed:22325355). The OTUB1-UBE2N/UBC13-free ubiquitin complex adopts a configuration that mimics a cleaved 'Lys48'-linked di-ubiquitin chain (PubMed:20725033, PubMed:22325355). Acts as a regulator of mTORC1 and mTORC2 complexes (PubMed:29382726, PubMed:35927303). When phosphorylated at Tyr-26, acts as an activator of the mTORC1 complex by mediating deubiquitination of RPTOR via a non-catalytic process: acts by binding and inhibiting the activity of the ubiquitin-conjugating enzyme E2 (UBE2D1/UBCH5A, UBE2W/UBC16 and UBE2N/UBC13), thereby preventing ubiquitination of RPTOR (PubMed:35927303). Can also act as an inhibitor of the mTORC1 and mTORC2 complexes in response to amino acids by mediating non-catalytic deubiquitination of DEPTOR (PubMed:29382726). {ECO:0000269|PubMed:20725033, ECO:0000269|PubMed:22325355, ECO:0000269|PubMed:29382726, ECO:0000269|PubMed:35927303}.
Q96GX8 C16orf74 S18 ochoa Uncharacterized protein C16orf74 None
Q96JG6 VPS50 S19 ochoa Syndetin (Coiled-coil domain-containing protein 132) (EARP/GARPII complex subunit VPS50) Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane. Within the EARP complex, required to tether the complex to recycling endosomes. Not involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). {ECO:0000269|PubMed:25799061}.
Q96KB5 PBK S19 ochoa Lymphokine-activated killer T-cell-originated protein kinase (EC 2.7.12.2) (Cancer/testis antigen 84) (CT84) (MAPKK-like protein kinase) (Nori-3) (PDZ-binding kinase) (Spermatogenesis-related protein kinase) (SPK) (T-LAK cell-originated protein kinase) Phosphorylates MAP kinase p38. Seems to be active only in mitosis. May also play a role in the activation of lymphoid cells. When phosphorylated, forms a complex with TP53, leading to TP53 destabilization and attenuation of G2/M checkpoint during doxorubicin-induced DNA damage. {ECO:0000269|PubMed:10781613, ECO:0000269|PubMed:17482142}.
Q96KK5 H2AC12 S19 ochoa Histone H2A type 1-H (H2A-clustered histone 12) (Histone H2A/s) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q96L94 SNX22 S19 ochoa Sorting nexin-22 May be involved in several stages of intracellular trafficking (By similarity). Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) (PubMed:17400918). {ECO:0000250|UniProtKB:Q9D2Y5, ECO:0000269|PubMed:17400918}.
Q96LR5 UBE2E2 S18 ochoa Ubiquitin-conjugating enzyme E2 E2 (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme E2) (UbcH8) (Ubiquitin carrier protein E2) (Ubiquitin-protein ligase E2) Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes 'Lys-11'- and 'Lys-48'-, as well as 'Lys-63'-linked polyubiquitination. Catalyzes the ISGylation of influenza A virus NS1 protein. {ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20133869, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:9371400}.
Q96LT9 RNPC3 S18 ochoa RNA-binding region-containing protein 3 (RNA-binding motif protein 40) (RNA-binding protein 40) (U11/U12 small nuclear ribonucleoprotein 65 kDa protein) (U11/U12 snRNP 65 kDa protein) (U11/U12-65K) Participates in pre-mRNA U12-dependent splicing, performed by the minor spliceosome which removes U12-type introns. U12-type introns comprises less than 1% of all non-coding sequences. Binds to the 3'-stem-loop of m(7)G-capped U12 snRNA. {ECO:0000269|PubMed:16096647, ECO:0000269|PubMed:19447915, ECO:0000269|PubMed:24480542, ECO:0000269|PubMed:29255062}.
Q96LT9 RNPC3 S19 ochoa RNA-binding region-containing protein 3 (RNA-binding motif protein 40) (RNA-binding protein 40) (U11/U12 small nuclear ribonucleoprotein 65 kDa protein) (U11/U12 snRNP 65 kDa protein) (U11/U12-65K) Participates in pre-mRNA U12-dependent splicing, performed by the minor spliceosome which removes U12-type introns. U12-type introns comprises less than 1% of all non-coding sequences. Binds to the 3'-stem-loop of m(7)G-capped U12 snRNA. {ECO:0000269|PubMed:16096647, ECO:0000269|PubMed:19447915, ECO:0000269|PubMed:24480542, ECO:0000269|PubMed:29255062}.
Q96MF2 STAC3 T18 ochoa SH3 and cysteine-rich domain-containing protein 3 Required for normal excitation-contraction coupling in skeletal muscle and for normal muscle contraction in response to membrane depolarization. Required for normal Ca(2+) release from the sarcplasmic reticulum, which ultimately leads to muscle contraction. Probably functions via its effects on muscle calcium channels (PubMed:23736855, PubMed:29078335). Increases CACNA1S channel activity, in addition to its role in enhancing the expression of CACNA1S at the cell membrane. Has a redundant role in promoting the expression of the calcium channel CACNA1S at the cell membrane (By similarity). Slows down the inactivation rate of the calcium channel CACNA1C (PubMed:29078335). {ECO:0000250|UniProtKB:Q8BZ71, ECO:0000269|PubMed:23736855, ECO:0000269|PubMed:29078335}.
Q96MY1 NOL4L S18 ochoa Nucleolar protein 4-like None
Q96NL8 CFAP418 T18 ochoa Cilia- and flagella-associated protein 418 May be involved in photoreceptor outer segment disk morphogenesis (By similarity). {ECO:0000250|UniProtKB:Q3UJP5}.
Q96QD5 DEPDC7 S18 ochoa DEP domain-containing protein 7 (Protein TR2/D15) None
Q96QD8 SLC38A2 S18 ochoa Sodium-coupled neutral amino acid symporter 2 (Amino acid transporter A2) (Protein 40-9-1) (Solute carrier family 38 member 2) (System A amino acid transporter 2) (System A transporter 1) (System N amino acid transporter 2) Symporter that cotransports neutral amino acids and sodium ions from the extracellular to the intracellular side of the cell membrane (PubMed:10930503, PubMed:15774260, PubMed:15922329, PubMed:16621798). The transport is pH-sensitive, Li(+)-intolerant, electrogenic, driven by the Na(+) electrochemical gradient and cotransports of neutral amino acids and sodium ions with a stoichiometry of 1:1. May function in the transport of amino acids at the blood-brain barrier (PubMed:10930503, PubMed:15774260). May function in the transport of amino acids in the supply of maternal nutrients to the fetus through the placenta (By similarity). Maintains a key metabolic glutamine/glutamate balance underpinning retrograde signaling by dendritic release of the neurotransmitter glutamate (By similarity). Transports L-proline in differentiating osteoblasts for the efficient synthesis of proline-enriched proteins and provides proline essential for osteoblast differentiation and bone formation during bone development (By similarity). {ECO:0000250|UniProtKB:Q8CFE6, ECO:0000250|UniProtKB:Q9JHE5, ECO:0000269|PubMed:10930503, ECO:0000269|PubMed:15774260, ECO:0000269|PubMed:15922329, ECO:0000269|PubMed:16621798}.
Q96QE2 SLC2A13 S18 ochoa Proton myo-inositol cotransporter (H(+)-myo-inositol cotransporter) (Hmit) (H(+)-myo-inositol symporter) (Solute carrier family 2 member 13) H(+)-myo-inositol cotransporter (PubMed:11500374). Can also transport related stereoisomers (PubMed:11500374). {ECO:0000269|PubMed:11500374}.
Q96QS3 ARX S18 ochoa Homeobox protein ARX (Aristaless-related homeobox) Transcription factor (PubMed:22194193, PubMed:31691806). Binds to specific sequence motif 5'-TAATTA-3' in regulatory elements of target genes, such as histone demethylase KDM5C (PubMed:22194193, PubMed:31691806). Positively modulates transcription of KDM5C (PubMed:31691806). Activates expression of KDM5C synergistically with histone lysine demethylase PHF8 and perhaps in competition with transcription regulator ZNF711; synergy may be related to enrichment of histone H3K4me3 in regulatory elements (PubMed:31691806). Required for normal brain development (PubMed:11889467, PubMed:12379852, PubMed:14722918). Plays a role in neuronal proliferation, interneuronal migration and differentiation in the embryonic forebrain (By similarity). May also be involved in axonal guidance in the floor plate (By similarity). {ECO:0000250|UniProtKB:O35085, ECO:0000269|PubMed:11889467, ECO:0000269|PubMed:12379852, ECO:0000269|PubMed:14722918, ECO:0000269|PubMed:22194193, ECO:0000269|PubMed:31691806}.
Q96RG2 PASK S19 ochoa PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}.
Q96S97 MYADM S18 ochoa Myeloid-associated differentiation marker (Protein SB135) None
Q99536 VAT1 S18 ochoa Synaptic vesicle membrane protein VAT-1 homolog (EC 1.-.-.-) Possesses ATPase activity (By similarity). Plays a part in calcium-regulated keratinocyte activation in epidermal repair mechanisms. Has no effect on cell proliferation. Negatively regulates mitochondrial fusion in cooperation with mitofusin proteins (MFN1-2). {ECO:0000250, ECO:0000269|PubMed:12898150, ECO:0000269|PubMed:17105775, ECO:0000269|PubMed:19508442}.
Q99613 EIF3C S18 ochoa Eukaryotic translation initiation factor 3 subunit C (eIF3c) (Eukaryotic translation initiation factor 3 subunit 8) (eIF3 p110) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03002, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
Q99666 RGPD5 T19 ochoa RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) None
Q99878 H2AC14 S19 ochoa Histone H2A type 1-J (Histone H2A/e) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q9BQG0 MYBBP1A S18 ochoa Myb-binding protein 1A May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}.
Q9BRA0 NAA38 S18 ochoa N-alpha-acetyltransferase 38, NatC auxiliary subunit (LSM domain-containing protein 1) (Phosphonoformate immuno-associated protein 2) Auxillary component of the N-terminal acetyltransferase C (NatC) complex which catalyzes acetylation of N-terminal methionine residues (PubMed:19398576, PubMed:37891180). N-terminal acetylation protects proteins from ubiquitination and degradation by the N-end rule pathway (PubMed:37891180). {ECO:0000269|PubMed:19398576, ECO:0000269|PubMed:37891180}.
Q9BRD0 BUD13 S18 ochoa BUD13 homolog Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9BRP8 PYM1 S18 ochoa Partner of Y14 and mago (PYM homolog 1 exon junction complex-associated factor) (Protein wibg homolog) Key regulator of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. Acts as an EJC disassembly factor, allowing translation-dependent EJC removal and recycling by disrupting mature EJC from spliced mRNAs. Its association with the 40S ribosomal subunit probably prevents a translation-independent disassembly of the EJC from spliced mRNAs, by restricting its activity to mRNAs that have been translated. Interferes with NMD and enhances translation of spliced mRNAs, probably by antagonizing EJC functions. May bind RNA; the relevance of RNA-binding remains unclear in vivo, RNA-binding was detected by PubMed:14968132, while PubMed:19410547 did not detect RNA-binding activity independently of the EJC. {ECO:0000269|PubMed:18026120, ECO:0000269|PubMed:19410547}.
Q9BRP8 PYM1 T19 ochoa Partner of Y14 and mago (PYM homolog 1 exon junction complex-associated factor) (Protein wibg homolog) Key regulator of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. Acts as an EJC disassembly factor, allowing translation-dependent EJC removal and recycling by disrupting mature EJC from spliced mRNAs. Its association with the 40S ribosomal subunit probably prevents a translation-independent disassembly of the EJC from spliced mRNAs, by restricting its activity to mRNAs that have been translated. Interferes with NMD and enhances translation of spliced mRNAs, probably by antagonizing EJC functions. May bind RNA; the relevance of RNA-binding remains unclear in vivo, RNA-binding was detected by PubMed:14968132, while PubMed:19410547 did not detect RNA-binding activity independently of the EJC. {ECO:0000269|PubMed:18026120, ECO:0000269|PubMed:19410547}.
Q9BT25 HAUS8 S19 ochoa|psp HAUS augmin-like complex subunit 8 (HEC1/NDC80-interacting centrosome-associated protein 1) (Sarcoma antigen NY-SAR-48) Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. {ECO:0000269|PubMed:18362163, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}.
Q9BTK6 PAGR1 S19 ochoa PAXIP1-associated glutamate-rich protein 1 (Glutamate-rich coactivator interacting with SRC1) (GAS) (PAXIP1-associated protein 1) (PTIP-associated protein 1) Its association with the histone methyltransferase MLL2/MLL3 complex is suggesting a role in epigenetic transcriptional activation. However, in association with PAXIP1/PTIP is proposed to function at least in part independently of the MLL2/MLL3 complex. Proposed to be recruited by PAXIP1 to sites of DNA damage where the PAGR1:PAXIP1 complex is required for cell survival in response to DNA damage independently of the MLL2/MLL3 complex (PubMed:19124460). However, its function in DNA damage has been questioned (By similarity). During immunoglobulin class switching in activated B-cells is involved in transcription regulation of downstream switch regions at the immunoglobulin heavy-chain (Igh) locus independently of the MLL2/MLL3 complex (By similarity). Involved in both estrogen receptor-regulated gene transcription and estrogen-stimulated G1/S cell-cycle transition (PubMed:19039327). Acts as a transcriptional cofactor for nuclear hormone receptors. Inhibits the induction properties of several steroid receptors such as NR3C1, AR and PPARG; the mechanism of inhibition appears to be gene-dependent (PubMed:23161582). {ECO:0000250|UniProtKB:Q99L02, ECO:0000269|PubMed:19039327, ECO:0000269|PubMed:19124460, ECO:0000269|PubMed:23161582, ECO:0000305}.
Q9BTU6 PI4K2A Y18 ochoa Phosphatidylinositol 4-kinase type 2-alpha (EC 2.7.1.67) (Phosphatidylinositol 4-kinase type II-alpha) Membrane-bound phosphatidylinositol-4 kinase (PI4-kinase) that catalyzes the phosphorylation of phosphatidylinositol (PI) to phosphatidylinositol 4-phosphate (PI4P), a lipid that plays important roles in endocytosis, Golgi function, protein sorting and membrane trafficking and is required for prolonged survival of neurons. Besides, phosphorylation of phosphatidylinositol (PI) to phosphatidylinositol 4-phosphate (PI4P) is the first committed step in the generation of phosphatidylinositol 4,5-bisphosphate (PIP2), a precursor of the second messenger inositol 1,4,5-trisphosphate (InsP3). {ECO:0000269|PubMed:11279162, ECO:0000269|PubMed:16443754, ECO:0000269|PubMed:20388919, ECO:0000269|PubMed:23146885, ECO:0000269|PubMed:24675427, ECO:0000269|PubMed:25168678, ECO:0000305}.
Q9BV40 VAMP8 S18 ochoa Vesicle-associated membrane protein 8 (VAMP-8) (Endobrevin) (EDB) SNAREs, soluble N-ethylmaleimide-sensitive factor-attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion. VAMP8 is a SNARE involved in autophagy through the direct control of autophagosome membrane fusion with the lysososome membrane via its interaction with the STX17-SNAP29 binary t-SNARE complex (PubMed:23217709, PubMed:25686604). Also required for dense-granule secretion in platelets (PubMed:12130530). Also plays a role in regulated enzyme secretion in pancreatic acinar cells (By similarity). Involved in the abscission of the midbody during cell division, which leads to completely separate daughter cells (By similarity). Involved in the homotypic fusion of early and late endosomes (By similarity). Also participates in the activation of type I interferon antiviral response through a TRIM6-dependent mechanism (PubMed:31694946). {ECO:0000250|UniProtKB:Q9WUF4, ECO:0000269|PubMed:12130530, ECO:0000269|PubMed:23217709, ECO:0000269|PubMed:25686604, ECO:0000269|PubMed:31694946}.
Q9BWT7 CARD10 S18 ochoa Caspase recruitment domain-containing protein 10 (CARD-containing MAGUK protein 3) (Carma 3) Scaffold protein that plays an important role in mediating the activation of NF-kappa-B via BCL10 or EGFR. {ECO:0000269|PubMed:27991920}.
Q9BXI6 TBC1D10A S18 ochoa TBC1 domain family member 10A (EBP50-PDX interactor of 64 kDa) (EPI64 protein) (Rab27A-GAP-alpha) GTPase-activating protein (GAP) specific for RAB27A and RAB35 (PubMed:16923811, PubMed:30905672). Does not show GAP activity for RAB2A, RAB3A and RAB4A (PubMed:16923811). {ECO:0000269|PubMed:16923811, ECO:0000269|PubMed:30905672}.
Q9BZF1 OSBPL8 S19 ochoa Oxysterol-binding protein-related protein 8 (ORP-8) (OSBP-related protein 8) Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:26206935). Binds oxysterol, 25-hydroxycholesterol and cholesterol (PubMed:17428193, PubMed:17991739, PubMed:21698267). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:17991739, ECO:0000269|PubMed:21698267, ECO:0000269|PubMed:26206935}.
Q9BZI7 UPF3B T18 ochoa Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q9C005 DPY30 S19 ochoa Protein dpy-30 homolog (Dpy-30-like protein) (Dpy-30L) As part of the MLL1/MLL complex, involved in the methylation of histone H3 at 'Lys-4', particularly trimethylation. Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. May play some role in histone H3 acetylation. In a teratocarcinoma cell, plays a crucial role in retinoic acid-induced differentiation along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci. May also play an indirect or direct role in endosomal transport. {ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:19651892, ECO:0000269|PubMed:21335234}.
Q9GZX9 TWSG1 T18 ochoa Twisted gastrulation protein homolog 1 May be involved in dorsoventral axis formation. Seems to antagonize BMP signaling by forming ternary complexes with CHRD and BMPs, thereby preventing BMPs from binding to their receptors. In addition to the anti-BMP function, also has pro-BMP activity, partly mediated by cleavage and degradation of CHRD, which releases BMPs from ternary complexes. May be an important modulator of BMP-regulated cartilage development and chondrocyte differentiation. May play a role in thymocyte development (By similarity). {ECO:0000250}.
Q9H2J7 SLC6A15 S19 ochoa Sodium-dependent neutral amino acid transporter B(0)AT2 (Sodium- and chloride-dependent neurotransmitter transporter NTT73) (Sodium-coupled branched-chain amino-acid transporter 1) (Solute carrier family 6 member 15) (Transporter v7-3) Functions as a sodium-dependent neutral amino acid transporter. Exhibits preference for the branched-chain amino acids, particularly leucine, valine and isoleucine and methionine. Can also transport low-affinity substrates such as alanine, phenylalanine, glutamine and pipecolic acid. Mediates the saturable, pH-sensitive and electrogenic cotransport of proline and sodium ions with a stoichiometry of 1:1. May have a role as transporter for neurotransmitter precursors into neurons. In contrast to other members of the neurotransmitter transporter family, does not appear to be chloride-dependent. {ECO:0000269|PubMed:16226721}.
Q9H2X9 SLC12A5 S18 ochoa Solute carrier family 12 member 5 (Electroneutral potassium-chloride cotransporter 2) (K-Cl cotransporter 2) (hKCC2) (Neuronal K-Cl cotransporter) Mediates electroneutral potassium-chloride cotransport in mature neurons and is required for neuronal Cl(-) homeostasis (PubMed:12106695). As major extruder of intracellular chloride, it establishes the low neuronal Cl(-) levels required for chloride influx after binding of GABA-A and glycine to their receptors, with subsequent hyperpolarization and neuronal inhibition (By similarity). Involved in the regulation of dendritic spine formation and maturation (PubMed:24668262). {ECO:0000250|UniProtKB:Q63633, ECO:0000269|PubMed:12106695, ECO:0000269|PubMed:24668262}.
Q9H3P7 ACBD3 T18 ochoa Golgi resident protein GCP60 (Acyl-CoA-binding domain-containing protein 3) (Golgi complex-associated protein 1) (GOCAP1) (Golgi phosphoprotein 1) (GOLPH1) (PBR- and PKA-associated protein 7) (Peripheral benzodiazepine receptor-associated protein PAP7) [Cleaved into: Golgi resident protein GCP60, N-terminally processed] Involved in the maintenance of Golgi structure by interacting with giantin, affecting protein transport between the endoplasmic reticulum and Golgi (PubMed:11590181). Involved in hormone-induced steroid biosynthesis in testicular Leydig cells (By similarity). Recruits PI4KB to the Golgi apparatus membrane; enhances the enzyme activity of PI4KB activity via its membrane recruitment thereby increasing the local concentration of the substrate in the vicinity of the kinase (PubMed:27009356). {ECO:0000250|UniProtKB:Q8BMP6, ECO:0000269|PubMed:11590181, ECO:0000269|PubMed:27009356}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication by recruiting PI4KB at the viral replication sites. {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}.
Q9H3Q1 CDC42EP4 S18 ochoa|psp Cdc42 effector protein 4 (Binder of Rho GTPases 4) Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation, when overexpressed in fibroblasts.
Q9H4A4 RNPEP S19 ochoa Aminopeptidase B (AP-B) (EC 3.4.11.6) (Arginine aminopeptidase) (Arginyl aminopeptidase) Exopeptidase which selectively removes arginine and/or lysine residues from the N-terminus of several peptide substrates including Arg(0)-Leu-enkephalin, Arg(0)-Met-enkephalin and Arg(-1)-Lys(0)-somatostatin-14. Can hydrolyze leukotriene A4 (LTA-4) into leukotriene B4 (LTB-4) (By similarity). {ECO:0000250}.
Q9H4L5 OSBPL3 S18 ochoa Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}.
Q9H583 HEATR1 S19 ochoa HEAT repeat-containing protein 1 (Protein BAP28) (U3 small nucleolar RNA-associated protein 10 homolog) [Cleaved into: HEAT repeat-containing protein 1, N-terminally processed] Ribosome biogenesis factor; required for recruitment of Myc to nucleoli (PubMed:38225354). Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I (PubMed:17699751). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Involved in neuronal-lineage cell proliferation (PubMed:38225354). {ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:38225354}.
Q9H5H4 ZNF768 S18 ochoa Zinc finger protein 768 Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}.
Q9H6F5 CCDC86 S18 ochoa Coiled-coil domain-containing protein 86 (Cytokine-induced protein with coiled-coil domain) Required for proper chromosome segregation during mitosis and error-free mitotic progression. {ECO:0000269|PubMed:36695333}.
Q9H6Q3 SLA2 S18 ochoa Src-like-adapter 2 (Modulator of antigen receptor signaling) (MARS) (Src-like adapter protein 2) (SLAP-2) Adapter protein, which negatively regulates T-cell receptor (TCR) signaling. Inhibits T-cell antigen-receptor induced activation of nuclear factor of activated T-cells. May act by linking signaling proteins such as ZAP70 with CBL, leading to a CBL dependent degradation of signaling proteins. {ECO:0000269|PubMed:11696592}.
Q9H6Q3 SLA2 S19 ochoa Src-like-adapter 2 (Modulator of antigen receptor signaling) (MARS) (Src-like adapter protein 2) (SLAP-2) Adapter protein, which negatively regulates T-cell receptor (TCR) signaling. Inhibits T-cell antigen-receptor induced activation of nuclear factor of activated T-cells. May act by linking signaling proteins such as ZAP70 with CBL, leading to a CBL dependent degradation of signaling proteins. {ECO:0000269|PubMed:11696592}.
Q9H814 PHAX S18 ochoa Phosphorylated adapter RNA export protein (RNA U small nuclear RNA export adapter protein) A phosphoprotein adapter involved in the XPO1-mediated U snRNA export from the nucleus (PubMed:39011894). Bridge components required for U snRNA export, the cap binding complex (CBC)-bound snRNA on the one hand and the GTPase Ran in its active GTP-bound form together with the export receptor XPO1 on the other. Its phosphorylation in the nucleus is required for U snRNA export complex assembly and export, while its dephosphorylation in the cytoplasm causes export complex disassembly. It is recycled back to the nucleus via the importin alpha/beta heterodimeric import receptor. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Its compartmentalized phosphorylation cycle may also contribute to the directionality of export. Binds strongly to m7G-capped U1 and U5 small nuclear RNAs (snRNAs) in a sequence-unspecific manner and phosphorylation-independent manner (By similarity). Also plays a role in the biogenesis of U3 small nucleolar RNA (snoRNA). Involved in the U3 snoRNA transport from nucleoplasm to Cajal bodies. Binds strongly to m7G-capped U3, U8 and U13 precursor snoRNAs and weakly to trimethylated (TMG)-capped U3, U8 and U13 snoRNAs. Also binds to telomerase RNA. {ECO:0000250, ECO:0000269|PubMed:15574332, ECO:0000269|PubMed:15574333}.
Q9H8M7 MINDY3 S18 ochoa Ubiquitin carboxyl-terminal hydrolase MINDY-3 (EC 3.4.19.12) (Dermal papilla-derived protein 5) (Deubiquitinating enzyme MINDY-3) (Protein CARP) Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins. {ECO:0000269|PubMed:27292798}.
Q9H8V3 ECT2 S19 ochoa Protein ECT2 (Epithelial cell-transforming sequence 2 oncogene) Guanine nucleotide exchange factor (GEF) that catalyzes the exchange of GDP for GTP. Promotes guanine nucleotide exchange on the Rho family members of small GTPases, like RHOA, RHOC, RAC1 and CDC42. Required for signal transduction pathways involved in the regulation of cytokinesis. Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Regulates the translocation of RHOA from the central spindle to the equatorial region. Plays a role in the control of mitotic spindle assembly; regulates the activation of CDC42 in metaphase for the process of spindle fibers attachment to kinetochores before chromosome congression. Involved in the regulation of epithelial cell polarity; participates in the formation of epithelial tight junctions in a polarity complex PARD3-PARD6-protein kinase PRKCQ-dependent manner. Plays a role in the regulation of neurite outgrowth. Inhibits phenobarbital (PB)-induced NR1I3 nuclear translocation. Stimulates the activity of RAC1 through its association with the oncogenic PARD6A-PRKCI complex in cancer cells, thereby acting to coordinately drive tumor cell proliferation and invasion. Also stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:10579713, ECO:0000269|PubMed:14645260, ECO:0000269|PubMed:15254234, ECO:0000269|PubMed:15545273, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16170345, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16495035, ECO:0000269|PubMed:19129481, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19617897, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21373644, ECO:0000269|PubMed:25068414, ECO:0000269|PubMed:31888991}.
Q9H9L7 AKIRIN1 S19 ochoa Akirin-1 Molecular adapter that acts as a bridge between proteins, and which is involved skeletal muscle development (By similarity). Functions as a signal transducer for MSTN during skeletal muscle regeneration and myogenesis (By similarity). May regulate chemotaxis of both macrophages and myoblasts by reorganising actin cytoskeleton, leading to more efficient lamellipodia formation via a PI3 kinase dependent pathway (By similarity). In contrast to AKIRIN2, not involved in nuclear import of proteasomes (PubMed:34711951). {ECO:0000250|UniProtKB:Q99LF1, ECO:0000269|PubMed:34711951}.
Q9HAD4 WDR41 S19 ochoa WD repeat-containing protein 41 Non-catalytic component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy (PubMed:27103069, PubMed:27193190, PubMed:27617292, PubMed:28195531). The C9orf72-SMCR8 complex promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation (PubMed:27103069). As part of the C9orf72-SMCR8 complex, stimulates RAB8A and RAB11A GTPase activity in vitro, however WDR42 is shown not be an essential complex component for this function (PubMed:32303654). The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ULK1/ATG1 kinase complex and inhibiting its protein kinase activity (PubMed:27103069, PubMed:27617292). {ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27193190, ECO:0000269|PubMed:27617292, ECO:0000269|PubMed:28195531, ECO:0000269|PubMed:32303654}.
Q9HAS0 C17orf75 S18 ochoa Protein Njmu-R1 As component of the WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). May have a role in spermatogenesis. {ECO:0000269|PubMed:29426865}.
Q9HAS0 C17orf75 S19 ochoa Protein Njmu-R1 As component of the WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). May have a role in spermatogenesis. {ECO:0000269|PubMed:29426865}.
Q9HBT8 ZNF286A S19 ochoa Zinc finger protein 286A May be involved in transcriptional regulation.
Q9HC35 EML4 S18 ochoa Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}.
Q9HC44 GPBP1L1 S18 ochoa Vasculin-like protein 1 (GC-rich promoter-binding protein 1-like 1) Possible transcription factor. {ECO:0000305}.
Q9HDC9 APMAP T19 ochoa Adipocyte plasma membrane-associated protein (Protein BSCv) Exhibits strong arylesterase activity with beta-naphthyl acetate and phenyl acetate. May play a role in adipocyte differentiation. {ECO:0000269|PubMed:18513186}.
Q9NP77 SSU72 S19 psp RNA polymerase II subunit A C-terminal domain phosphatase SSU72 (CTD phosphatase SSU72) (EC 3.1.3.16) Protein phosphatase that catalyzes the dephosphorylation of the C-terminal domain of RNA polymerase II. Plays a role in RNA processing and termination. Plays a role in pre-mRNA polyadenylation via its interaction with SYMPK. {ECO:0000269|PubMed:15659578, ECO:0000269|PubMed:20861839, ECO:0000269|PubMed:23070812}.
Q9NQT4 EXOSC5 S19 ochoa Exosome complex component RRP46 (Chronic myelogenous leukemia tumor antigen 28) (Exosome component 5) (Ribosomal RNA-processing protein 46) (p12B) Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes (PubMed:11782436, PubMed:21269460). In vitro, EXOSC5 does not bind or digest single-stranded RNA and binds to double-stranded DNA without detectable DNase activity (PubMed:20660080). {ECO:0000269|PubMed:11782436, ECO:0000269|PubMed:20660080, ECO:0000269|PubMed:21269460}.
Q9NS37 CREBZF T18 ochoa CREB/ATF bZIP transcription factor (Host cell factor-binding transcription factor Zhangfei) (HCF-binding transcription factor Zhangfei) Strongly activates transcription when bound to HCFC1. Suppresses the expression of HSV proteins in cells infected with the virus in a HCFC1-dependent manner. Also suppresses the HCFC1-dependent transcriptional activation by CREB3 and reduces the amount of CREB3 in the cell. Able to down-regulate expression of some cellular genes in CREBZF-expressing cells. {ECO:0000269|PubMed:10871379, ECO:0000269|PubMed:15705566}.
Q9NSK0 KLC4 S18 ochoa Kinesin light chain 4 (KLC 4) (Kinesin-like protein 8) Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport. The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250}.
Q9NSV4 DIAPH3 T19 psp Protein diaphanous homolog 3 (Diaphanous-related formin-3) (DRF3) (MDia2) Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers. Required for cytokinesis, stress fiber formation and transcriptional activation of the serum response factor. Binds to GTP-bound form of Rho and to profilin: acts in a Rho-dependent manner to recruit profilin to the membrane, where it promotes actin polymerization. DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics. Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity. {ECO:0000250|UniProtKB:Q9Z207}.
Q9NT62 ATG3 Y18 ochoa Ubiquitin-like-conjugating enzyme ATG3 (EC 2.3.2.-) (Autophagy-related protein 3) (APG3-like) (hApg3) (Protein PC3-96) E2 conjugating enzyme that catalyzes the covalent conjugation of the C-terminal Gly of ATG8-like proteins (GABARAP, GABARAPL1, GABARAPL2 or MAP1LC3A) to the amino group of phosphatidylethanolamine (PE)-containing lipids in the membrane resulting in membrane-bound ATG8-like proteins which is one of the key steps in the development of autophagic isolation membranes during autophagosome formation (PubMed:24191030, PubMed:33446636, PubMed:37252361). Cycles back and forth between binding to ATG7 for loading with the ATG8-like proteins and binding to E3 enzyme, composed of ATG12, ATG5 and ATG16L1 to promote ATG8-like proteins lipidation (PubMed:11825910, PubMed:12207896, PubMed:12890687, PubMed:16704426, PubMed:24186333). Also plays a role as a membrane curvature sensor that facilitates LC3/GABARAP lipidation by sensing local membrane stress associated with lipid-packing defects as occurs with high molar proportions of conical lipids or strident membrane curvature (By similarity). Interacts with negatively-charged membranes promoting membrane tethering and enhancing LC3/GABARAP lipidation (PubMed:29142222). Also acts as an autocatalytic E2-like enzyme by catalyzing the conjugation of ATG12 to itself in an ATG7-dependent manner, this complex thus formed, plays a role in mitochondrial homeostasis but not in autophagy (By similarity). ATG12-ATG3 conjugation promotes late endosome to lysosome trafficking and basal autophagosome maturation via its interaction with PDCD6IP (By similarity). ATG12-ATG3 conjugate is also formed upon viccina virus infection, leading to the disruption the cellular autophagy which is not necessary for vaccinia survival and proliferation (By similarity). Promotes primary ciliogenesis by removing OFD1 from centriolar satellites via the autophagic pathway (By similarity). {ECO:0000250|UniProtKB:Q9CPX6, ECO:0000269|PubMed:11825910, ECO:0000269|PubMed:12207896, ECO:0000269|PubMed:12890687, ECO:0000269|PubMed:16704426, ECO:0000269|PubMed:24186333, ECO:0000269|PubMed:24191030, ECO:0000269|PubMed:29142222, ECO:0000269|PubMed:33446636, ECO:0000269|PubMed:37252361}.
Q9NUJ3 TCP11L1 S18 ochoa T-complex protein 11-like protein 1 None
Q9NUM4 TMEM106B Y18 ochoa Transmembrane protein 106B In neurons, involved in the transport of late endosomes/lysosomes (PubMed:25066864). May be involved in dendrite morphogenesis and maintenance by regulating lysosomal trafficking (PubMed:25066864). May act as a molecular brake for retrograde transport of late endosomes/lysosomes, possibly via its interaction with MAP6 (By similarity). In motoneurons, may mediate the axonal transport of lysosomes and axonal sorting at the initial segment (By similarity). It remains unclear whether TMEM106B affects the transport of moving lysosomes in the anterograde or retrograde direction in neurites and whether it is important in the sorting of lysosomes in axons or in dendrites (By similarity). In neurons, may also play a role in the regulation of lysosomal size and responsiveness to stress (PubMed:25066864). Required for proper lysosomal acidification (By similarity). {ECO:0000250|UniProtKB:Q6AYA5, ECO:0000250|UniProtKB:Q80X71, ECO:0000269|PubMed:25066864}.; FUNCTION: (Microbial infection) Plays a role in human coronavirus SARS-CoV-2 infection, but not in common cold coronaviruses HCoV-229E and HCoV-OC43 infections. Involved in ACE2-independent SARS-CoV-2 cell entry. Required for post-endocytic stage of virus entry, facilitates spike-mediated membrane fusion. Virus attachment and endocytosis can also be mediated by other cell surface receptors. {ECO:0000269|PubMed:33333024, ECO:0000269|PubMed:33686287, ECO:0000269|PubMed:37421949}.
Q9NVA2 SEPTIN11 S19 ochoa Septin-11 Filament-forming cytoskeletal GTPase. May play a role in cytokinesis (Potential). May play a role in the cytoarchitecture of neurons, including dendritic arborization and dendritic spines, and in GABAergic synaptic connectivity (By similarity). During Listeria monocytogenes infection, not required for the bacterial entry process, but restricts its efficacy. {ECO:0000250, ECO:0000269|PubMed:15196925, ECO:0000269|PubMed:19234302, ECO:0000305}.
Q9NVE7 PANK4 S19 ochoa 4'-phosphopantetheine phosphatase (EC 3.1.3.-) (Inactive pantothenic acid kinase 4) (hPanK4) Phosphatase which shows a preference for 4'-phosphopantetheine and its oxidatively damaged forms (sulfonate or S-sulfonate), providing strong indirect evidence that the phosphatase activity pre-empts damage in the coenzyme A (CoA) pathway (PubMed:27322068). Hydrolyzing excess 4'-phosphopantetheine could constitute a directed overflow mechanism to prevent its oxidation to the S-sulfonate, sulfonate, or other forms (PubMed:27322068). Hydrolyzing 4'-phosphopantetheine sulfonate or S-sulfonate would forestall their conversion to inactive forms of CoA and acyl carrier protein (PubMed:27322068). May play a role in the physiological regulation of CoA intracellular levels (Probable). {ECO:0000269|PubMed:27322068, ECO:0000305|PubMed:27322068}.
Q9NWS9 ZNF446 T18 ochoa Zinc finger protein 446 (Zinc finger protein with KRAB and SCAN domains 20) May be involved in transcriptional regulation.
Q9NX24 NHP2 S19 ochoa H/ACA ribonucleoprotein complex subunit 2 (Nucleolar protein family A member 2) (snoRNP protein NHP2) Required for ribosome biogenesis and telomere maintenance. Part of the H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA. This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1. Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. May also be required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme. {ECO:0000269|PubMed:15044956}.
Q9NYV6 RRN3 S18 ochoa RNA polymerase I-specific transcription initiation factor RRN3 (Transcription initiation factor IA) (TIF-IA) Required for efficient transcription initiation by RNA polymerase I (Pol I). Required for the formation of the competent pre-initiation complex (PIC). {ECO:0000250, ECO:0000269|PubMed:10758157, ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11265758, ECO:0000269|PubMed:15805466}.
Q9NYV6 RRN3 S19 ochoa RNA polymerase I-specific transcription initiation factor RRN3 (Transcription initiation factor IA) (TIF-IA) Required for efficient transcription initiation by RNA polymerase I (Pol I). Required for the formation of the competent pre-initiation complex (PIC). {ECO:0000250, ECO:0000269|PubMed:10758157, ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11265758, ECO:0000269|PubMed:15805466}.
Q9P0M2 AKAP7 S18 ochoa A-kinase anchor protein 7 isoform gamma (AKAP-7 isoform gamma) (A-kinase anchor protein 18 kDa) (AKAP 18) (Protein kinase A-anchoring protein 7 isoform gamma) (PRKA7 isoform gamma) Probably targets cAMP-dependent protein kinase (PKA) to the cellular membrane or cytoskeletal structures. The membrane-associated form reduces epithelial sodium channel (ENaC) activity, whereas the free cytoplasmic form may negatively regulate ENaC channel feedback inhibition by intracellular sodium. {ECO:0000269|PubMed:10613906, ECO:0000269|PubMed:17244820}.
Q9P0U4 CXXC1 S19 ochoa CXXC-type zinc finger protein 1 (CpG-binding protein) (PHD finger and CXXC domain-containing protein 1) Transcriptional activator that exhibits a unique DNA binding specificity for CpG unmethylated motifs with a preference for CpGG. {ECO:0000269|PubMed:21407193}.
Q9P107 GMIP S19 ochoa GEM-interacting protein (GMIP) Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}.
Q9P275 USP36 S18 ochoa Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}.
Q9UBC2 EPS15L1 Y19 ochoa Epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) Seems to be a constitutive component of clathrin-coated pits that is required for receptor-mediated endocytosis. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:9407958}.
Q9UBF6 RNF7 S19 ochoa RING-box protein 2 (Rbx2) (EC 2.3.2.27) (EC 2.3.2.32) (CKII beta-binding protein 1) (CKBBP1) (RING finger protein 7) (Regulator of cullins 2) (Sensitive to apoptosis gene protein) Catalytic component of multiple cullin-5-RING E3 ubiquitin-protein ligase complexes (ECS complexes), which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:21980433, PubMed:33268465, PubMed:38418882, PubMed:38574733, PubMed:35512830). It is thereby involved in various biological processes, such as cell cycle progression, signal transduction and transcription (PubMed:21980433, PubMed:33268465, PubMed:38418882, PubMed:38574733). The functional specificity of the E3 ubiquitin-protein ligase ECS complexes depend on the variable SOCS box-containing substrate recognition component (PubMed:21980433, PubMed:33268465). Within ECS complexes, RNF7/RBX2 recruits the E2 ubiquitination enzyme to the complex via its RING-type and brings it into close proximity to the substrate (PubMed:34518685). Catalytic subunit of various SOCS-containing ECS complexes, such as the ECS(SOCS7) complex, that regulate reelin signaling by mediating ubiquitination and degradation of DAB1 (By similarity). The ECS(SOCS2) complex mediates the ubiquitination and subsequent proteasomal degradation of phosphorylated EPOR and GHR (PubMed:21980433, PubMed:25505247). Promotes ubiquitination and degradation of NF1, thereby regulating Ras protein signal transduction (By similarity). As part of the ECS(ASB9) complex, catalyzes ubiquitination and degradation of CKB (PubMed:33268465). The ECS(SPSB3) complex catalyzes ubiquitination of nuclear CGAS (PubMed:38418882). As part of the ECS(RAB40C) complex, mediates ANKRD28 ubiquitination and degradation, thereby inhibiting protein phosphatase 6 (PP6) complex activity and focal adhesion assembly during cell migration (PubMed:35512830). As part of some ECS complex, catalyzes 'Lys-11'-linked ubiquitination and degradation of BTRC (PubMed:27910872). ECS complexes and ARIH2 collaborate in tandem to mediate ubiquitination of target proteins; ARIH2 mediating addition of the first ubiquitin on CRLs targets (PubMed:34518685, PubMed:38418882). Specifically catalyzes the neddylation of CUL5 via its interaction with UBE2F (PubMed:19250909). Does not catalyze neddylation of other cullins (CUL1, CUL2, CUL3, CUL4A or CUL4B) (PubMed:19250909). May play a role in protecting cells from apoptosis induced by redox agents (PubMed:10082581). {ECO:0000250|UniProtKB:Q9WTZ1, ECO:0000269|PubMed:10082581, ECO:0000269|PubMed:19250909, ECO:0000269|PubMed:21980433, ECO:0000269|PubMed:25505247, ECO:0000269|PubMed:27910872, ECO:0000269|PubMed:33268465, ECO:0000269|PubMed:34518685, ECO:0000269|PubMed:35512830, ECO:0000269|PubMed:38418882, ECO:0000269|PubMed:38574733}.; FUNCTION: [Isoform 2]: Inactive. {ECO:0000269|PubMed:11506706}.; FUNCTION: (Microbial infection) Following infection by HIV-1 virus, catalytic component of a cullin-5-RING E3 ubiquitin-protein ligase complex (ECS complex) hijacked by the HIV-1 Vif protein, which catalyzes ubiquitination and degradation of APOBEC3F and APOBEC3G. {ECO:0000269|PubMed:22190037, ECO:0000269|PubMed:23300442}.
Q9UBM7 DHCR7 T19 ochoa 7-dehydrocholesterol reductase (7-DHC reductase) (EC 1.3.1.21) (Cholesterol-5,6-epoxide hydrolase subunit DHCR7) (EC 3.3.2.11) (Delta7-sterol reductase) (Sterol Delta(7)-reductase) (Sterol reductase SR-2) Oxidoreductase that catalyzes the last step of the cholesterol synthesis pathway, which transforms cholesta-5,7-dien-3beta-ol (7-dehydrocholesterol,7-DHC) into cholesterol by reducing the C7-C8 double bond of its sterol core (PubMed:25637936, PubMed:38297129, PubMed:38297130, PubMed:9465114, PubMed:9634533). Can also metabolize cholesta-5,7,24-trien-3beta-ol (7-dehydrodemosterol, 7-DHD) to desmosterol, which is then metabolized by the Delta(24)-sterol reductase (DHCR24) to cholesterol (By similarity). Modulates ferroptosis (a form of regulated cell death driven by iron-dependent lipid peroxidation) through the metabolic breakdown of the anti-ferroptotic metabolites 7-DHC and 7-DHD which, when accumulated, divert the propagation of peroxyl radical-mediated damage from phospholipid components to its sterol core, protecting plasma and mitochondrial membranes from phospholipid autoxidation (PubMed:38297129, PubMed:38297130). {ECO:0000250|UniProtKB:O88455, ECO:0000269|PubMed:25637936, ECO:0000269|PubMed:38297129, ECO:0000269|PubMed:38297130, ECO:0000269|PubMed:9465114, ECO:0000269|PubMed:9634533}.; FUNCTION: Component of the microsomal antiestrogen binding site (AEBS), a multiproteic complex at the ER membrane that consists of an association between cholestenol Delta-isomerase/EBP and DHCR7 (PubMed:15175332, PubMed:20615952). This complex is responsible for cholesterol-5,6-epoxide hydrolase (ChEH) activity, which consists in the hydration of cholesterol-5,6-epoxides (5,6-EC) into cholestane-3beta,5alpha,6beta-triol (CT) (PubMed:20615952). The precise role of each component of this complex has not been described yet (PubMed:20615952). {ECO:0000269|PubMed:15175332, ECO:0000269|PubMed:20615952}.
Q9UEG4 ZNF629 S18 ochoa Zinc finger protein 629 (Zinc finger protein 65) May be involved in transcriptional regulation.
Q9UH99 SUN2 S19 ochoa SUN domain-containing protein 2 (Protein unc-84 homolog B) (Rab5-interacting protein) (Rab5IP) (Sad1/unc-84 protein-like 2) As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. Required for interkinetic nuclear migration (INM) and essential for nucleokinesis and centrosome-nucleus coupling during radial neuronal migration in the cerebral cortex and during glial migration. Required for nuclear migration in retinal photoreceptor progenitors implicating association with cytoplasmic dynein-dynactin and kinesin motor complexes, and probably B-type lamins; SUN1 and SUN2 seem to act redundantly. The SUN1/2:KASH5 LINC complex couples telomeres to microtubules during meiosis; SUN1 and SUN2 seem to act at least partial redundantly. Anchors chromosome movement in the prophase of meiosis and is involved in selective gene expression of coding and non-coding RNAs needed for gametogenesis. Required for telomere attachment to nuclear envelope and gametogenesis. May also function on endocytic vesicles as a receptor for RAB5-GDP and participate in the activation of RAB5. {ECO:0000250|UniProtKB:Q8BJS4, ECO:0000269|PubMed:18396275, ECO:0000305}.
Q9UHR5 SAP30BP S18 ochoa SAP30-binding protein (Transcriptional regulator protein HCNGP) Plays a role in transcriptional repression by promoting histone deacetylase activity, leading to deacetylation of histone H3 (PubMed:21221920). May be involved in the regulation of beta-2-microglobulin genes (By similarity). {ECO:0000250|UniProtKB:Q02614, ECO:0000269|PubMed:21221920}.; FUNCTION: (Microbial infection) Involved in transcriptional repression of HHV-1 genes TK and gC. {ECO:0000269|PubMed:21221920}.
Q9UID3 VPS51 S18 ochoa Vacuolar protein sorting-associated protein 51 homolog (Another new gene 2 protein) (Protein fat-free homolog) Acts as a component of the GARP complex that is involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). The GARP complex is required for the maintenance of protein retrieval from endosomes to the TGN, acid hydrolase sorting, lysosome function, endosomal cholesterol traffic and autophagy. VPS51 participates in retrograde transport of acid hydrolase receptors, likely by promoting tethering and SNARE-dependent fusion of endosome-derived carriers to the TGN (PubMed:20685960). Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane (PubMed:25799061). {ECO:0000269|PubMed:20685960, ECO:0000269|PubMed:25799061}.
Q9UID6 ZNF639 S19 ochoa Zinc finger protein 639 (Zinc finger protein ANC_2H01) (Zinc finger protein ZASC1) Binds DNA and may function as a transcriptional repressor. {ECO:0000269|PubMed:16182284}.
Q9UJF2 RASAL2 S18 ochoa Ras GTPase-activating protein nGAP (RAS protein activator-like 2) Inhibitory regulator of the Ras-cyclic AMP pathway.
Q9UK76 JPT1 S18 ochoa Jupiter microtubule associated homolog 1 (Androgen-regulated protein 2) (Hematological and neurological expressed 1 protein) [Cleaved into: Jupiter microtubule associated homolog 1, N-terminally processed] Modulates negatively AKT-mediated GSK3B signaling (PubMed:21323578, PubMed:22155408). Induces CTNNB1 'Ser-33' phosphorylation and degradation through the suppression of the inhibitory 'Ser-9' phosphorylation of GSK3B, which represses the function of the APC:CTNNB1:GSK3B complex and the interaction with CDH1/E-cadherin in adherent junctions (PubMed:25169422). Plays a role in the regulation of cell cycle and cell adhesion (PubMed:25169422, PubMed:25450365). Has an inhibitory role on AR-signaling pathway through the induction of receptor proteasomal degradation (PubMed:22155408). {ECO:0000269|PubMed:21323578, ECO:0000269|PubMed:22155408, ECO:0000269|PubMed:25169422, ECO:0000269|PubMed:25450365}.
Q9UKA4 AKAP11 S18 ochoa A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) Binds to type II regulatory subunits of protein kinase A and anchors/targets them.
Q9UKL3 CASP8AP2 S18 ochoa CASP8-associated protein 2 (FLICE-associated huge protein) Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}.
Q9ULX9 MAFF S18 ochoa Transcription factor MafF (U-Maf) (V-maf musculoaponeurotic fibrosarcoma oncogene homolog F) Since they lack a putative transactivation domain, the small Mafs behave as transcriptional repressors when they dimerize among themselves (PubMed:8932385). However, they seem to serve as transcriptional activators by dimerizing with other (usually larger) basic-zipper proteins, such as NFE2L1/NRF1, and recruiting them to specific DNA-binding sites. Interacts with the upstream promoter region of the oxytocin receptor gene (PubMed:16549056, PubMed:8932385). May be a transcriptional enhancer in the up-regulation of the oxytocin receptor gene at parturition (PubMed:10527846). {ECO:0000269|PubMed:10527846, ECO:0000269|PubMed:16549056, ECO:0000269|PubMed:8932385}.
Q9UMS4 PRPF19 S18 ochoa Pre-mRNA-processing factor 19 (EC 2.3.2.27) (Nuclear matrix protein 200) (PRP19/PSO4 homolog) (hPso4) (RING-type E3 ubiquitin transferase PRP19) (Senescence evasion factor) Ubiquitin-protein ligase which is a core component of several complexes mainly involved pre-mRNA splicing and DNA repair. Required for pre-mRNA splicing as component of the spliceosome (PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:30705154). Core component of the PRP19C/Prp19 complex/NTC/Nineteen complex which is part of the spliceosome and participates in its assembly, its remodeling and is required for its activity. During assembly of the spliceosome, mediates 'Lys-63'-linked polyubiquitination of the U4 spliceosomal protein PRPF3. Ubiquitination of PRPF3 allows its recognition by the U5 component PRPF8 and stabilizes the U4/U5/U6 tri-snRNP spliceosomal complex (PubMed:20595234). Recruited to RNA polymerase II C-terminal domain (CTD) and the pre-mRNA, it may also couple the transcriptional and spliceosomal machineries (PubMed:21536736). The XAB2 complex, which contains PRPF19, is also involved in pre-mRNA splicing, transcription and transcription-coupled repair (PubMed:17981804). Beside its role in pre-mRNA splicing PRPF19, as part of the PRP19-CDC5L complex, plays a role in the DNA damage response/DDR. It is recruited to the sites of DNA damage by the RPA complex where PRPF19 directly ubiquitinates RPA1 and RPA2. 'Lys-63'-linked polyubiquitination of the RPA complex allows the recruitment of the ATR-ATRIP complex and the activation of ATR, a master regulator of the DNA damage response (PubMed:24332808). May also play a role in DNA double-strand break (DSB) repair by recruiting the repair factor SETMAR to altered DNA (PubMed:18263876). As part of the PSO4 complex may also be involved in the DNA interstrand cross-links/ICLs repair process (PubMed:16223718). In addition, may also mediate 'Lys-48'-linked polyubiquitination of substrates and play a role in proteasomal degradation (PubMed:11435423). May play a role in the biogenesis of lipid droplets (By similarity). May play a role in neural differentiation possibly through its function as part of the spliceosome (By similarity). {ECO:0000250|UniProtKB:Q99KP6, ECO:0000250|UniProtKB:Q9JMJ4, ECO:0000269|PubMed:11082287, ECO:0000269|PubMed:11435423, ECO:0000269|PubMed:12960389, ECO:0000269|PubMed:15660529, ECO:0000269|PubMed:16223718, ECO:0000269|PubMed:16332694, ECO:0000269|PubMed:16388800, ECO:0000269|PubMed:17349974, ECO:0000269|PubMed:18263876, ECO:0000269|PubMed:21536736, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30705154, ECO:0000303|PubMed:17981804, ECO:0000303|PubMed:20595234}.
Q9UN76 SLC6A14 S19 ochoa Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) (Amino acid transporter ATB0+) (Solute carrier family 6 member 14) Amino acid transporter that plays an important role in the absorption of amino acids in the intestinal tract. Mediates the uptake of a broad range of neutral and cationic amino acids (with the exception of proline) in a Na(+)/Cl(-)-dependent manner (PubMed:10446133). Transports non-alpha-amino acids such as beta-alanine with low affinity, and has a higher affinity for dipolar and cationic amino acids such as leucine and lysine (PubMed:18599538). Can also transport carnitine, butirylcarnitine and propionylcarnitine coupled to the transmembrane gradients of Na(+) and Cl(-) (PubMed:17855766). {ECO:0000250|UniProtKB:Q9JMA9, ECO:0000269|PubMed:10446133, ECO:0000269|PubMed:17855766, ECO:0000269|PubMed:18599538}.
Q9UN81 L1RE1 S18 ochoa LINE-1 retrotransposable element ORF1 protein (L1ORF1p) (LINE retrotransposable element 1) (LINE1 retrotransposable element 1) Nucleic acid-binding protein which is essential for retrotransposition of LINE-1 elements in the genome. Functions as a nucleic acid chaperone binding its own transcript and therefore preferentially mobilizing the transcript from which they are encoded. {ECO:0000269|PubMed:11158327, ECO:0000269|PubMed:21937507, ECO:0000269|PubMed:28806172, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:8945518}.
Q9UNE7 STUB1 S19 ochoa E3 ubiquitin-protein ligase CHIP (EC 2.3.2.27) (Antigen NY-CO-7) (CLL-associated antigen KW-8) (Carboxy terminus of Hsp70-interacting protein) (RING-type E3 ubiquitin transferase CHIP) (STIP1 homology and U box-containing protein 1) E3 ubiquitin-protein ligase which targets misfolded chaperone substrates towards proteasomal degradation (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462, PubMed:26265139). Plays a role in the maintenance of mitochondrial morphology and promotes mitophagic removal of dysfunctional mitochondria; thereby acts as a protector against apoptosis in response to cellular stress (By similarity). Negatively regulates vascular smooth muscle contraction, via degradation of the transcriptional activator MYOCD and subsequent loss of transcription of genes involved in vascular smooth muscle contraction (By similarity). Promotes survival and proliferation of cardiac smooth muscle cells via ubiquitination and degradation of FOXO1, resulting in subsequent repression of FOXO1-mediated transcription of pro-apoptotic genes (PubMed:19483080). Ubiquitinates ICER-type isoforms of CREM and targets them for proteasomal degradation, thereby acts as a positive effector of MAPK/ERK-mediated inhibition of apoptosis in cardiomyocytes (PubMed:20724525). Inhibits lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes, via ubiquitination and subsequent proteasomal degradation of NFATC3 (PubMed:30980393). Collaborates with ATXN3 in the degradation of misfolded chaperone substrates: ATXN3 restricting the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462). Ubiquitinates NOS1 in concert with Hsp70 and Hsp40 (PubMed:15466472). Modulates the activity of several chaperone complexes, including Hsp70, Hsc70 and Hsp90 (PubMed:10330192, PubMed:11146632, PubMed:15466472). Ubiquitinates CHRNA3 targeting it for endoplasmic reticulum-associated degradation in cortical neurons, as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Ubiquitinates and promotes ESR1 proteasomal degradation in response to age-related circulating estradiol (17-beta-estradiol/E2) decline, thereby promotes neuronal apoptosis in response to ischemic reperfusion injury (By similarity). Mediates transfer of non-canonical short ubiquitin chains to HSPA8 that have no effect on HSPA8 degradation (PubMed:11557750, PubMed:23990462). Mediates polyubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair: catalyzes polyubiquitination by amplifying the HUWE1/ARF-BP1-dependent monoubiquitination and leading to POLB-degradation by the proteasome (PubMed:19713937). Mediates polyubiquitination of CYP3A4 (PubMed:19103148). Ubiquitinates EPHA2 and may regulate the receptor stability and activity through proteasomal degradation (PubMed:19567782). Acts as a co-chaperone for HSPA1A and HSPA1B chaperone proteins and promotes ubiquitin-mediated protein degradation (PubMed:27708256). Negatively regulates the suppressive function of regulatory T-cells (Treg) during inflammation by mediating the ubiquitination and degradation of FOXP3 in a HSPA1A/B-dependent manner (PubMed:23973223). Catalyzes monoubiquitination of SIRT6, preventing its degradation by the proteasome (PubMed:24043303). Likely mediates polyubiquitination and down-regulates plasma membrane expression of PD-L1/CD274, an immune inhibitory ligand critical for immune tolerance to self and antitumor immunity (PubMed:28813410). Negatively regulates TGF-beta signaling by modulating the basal level of SMAD3 via ubiquitin-mediated degradation (PubMed:24613385). Plays a role in the degradation of TP53 (PubMed:26634371). Mediates ubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation (PubMed:29883609). May regulate myosin assembly in striated muscles together with UBE4B and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). Ubiquitinates PPARG in macrophages playing a role in M2 macrophages polarization and angiogenesis (By similarity). {ECO:0000250|UniProtKB:A6HD62, ECO:0000250|UniProtKB:Q9WUD1, ECO:0000269|PubMed:10330192, ECO:0000269|PubMed:11146632, ECO:0000269|PubMed:11557750, ECO:0000269|PubMed:15466472, ECO:0000269|PubMed:17369820, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:19567782, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20724525, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24043303, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28813410, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30980393}.
Q9UPW6 SATB2 S18 ochoa DNA-binding protein SATB2 (Special AT-rich sequence-binding protein 2) Binds to DNA, at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcription factor controlling nuclear gene expression, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Required for the initiation of the upper-layer neurons (UL1) specific genetic program and for the inactivation of deep-layer neurons (DL) and UL2 specific genes, probably by modulating BCL11B expression. Repressor of Ctip2 and regulatory determinant of corticocortical connections in the developing cerebral cortex. May play an important role in palate formation. Acts as a molecular node in a transcriptional network regulating skeletal development and osteoblast differentiation. {ECO:0000269|PubMed:14701874}.
Q9Y2U8 LEMD3 S19 ochoa Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}.
Q9Y383 LUC7L2 S18 ochoa Putative RNA-binding protein Luc7-like 2 May bind to RNA via its Arg/Ser-rich domain.
Q9Y3A4 RRP7A S19 ochoa Ribosomal RNA-processing protein 7 homolog A (Gastric cancer antigen Zg14) Nucleolar protein that is involved in ribosomal RNA (rRNA) processing (PubMed:33199730). Also plays a role in primary cilia resorption, and cell cycle progression in neurogenesis and neocortex development (PubMed:33199730). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:33199730, ECO:0000269|PubMed:34516797}.
Q9Y3B9 RRP15 T19 ochoa RRP15-like protein (Ribosomal RNA-processing protein 15) None
Q9Y3C5 RNF11 S19 ochoa RING finger protein 11 Essential component of a ubiquitin-editing protein complex, comprising also TNFAIP3, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. Promotes the association of TNFAIP3 to RIPK1 after TNF stimulation. TNFAIP3 deubiquitinates 'Lys-63' polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Recruits STAMBP to the E3 ubiquitin-ligase SMURF2 for ubiquitination, leading to its degradation by the 26S proteasome. {ECO:0000269|PubMed:14755250}.
Q9Y3M2 CBY1 S18 ochoa Protein chibby homolog 1 (ARPP-binding protein) (Cytosolic leucine-rich protein) (PIGEA-14) (PKD2 interactor, Golgi and endoplasmic reticulum-associated 1) Inhibits the Wnt/Wingless pathway by binding to CTNNB1/beta-catenin and inhibiting beta-catenin-mediated transcriptional activation through competition with TCF/LEF transcription factors (PubMed:12712206, PubMed:19435523). Has also been shown to play a role in regulating the intracellular trafficking of polycystin-2/PKD2 and possibly of other intracellular proteins (PubMed:15194699). Promotes adipocyte and cardiomyocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q9D1C2, ECO:0000269|PubMed:12712206, ECO:0000269|PubMed:15194699, ECO:0000269|PubMed:19435523}.
Q9Y3Z3 SAMHD1 S18 ochoa|psp Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 (dNTPase) (EC 3.1.5.-) (Dendritic cell-derived IFNG-induced protein) (DCIP) (Monocyte protein 5) (MOP-5) (SAM domain and HD domain-containing protein 1) (hSAMHD1) Protein that acts both as a host restriction factor involved in defense response to virus and as a regulator of DNA end resection at stalled replication forks (PubMed:19525956, PubMed:21613998, PubMed:21720370, PubMed:22056990, PubMed:23601106, PubMed:23602554, PubMed:24336198, PubMed:26294762, PubMed:26431200, PubMed:28229507, PubMed:28834754, PubMed:29670289). Has deoxynucleoside triphosphate (dNTPase) activity, which is required to restrict infection by viruses, such as HIV-1: dNTPase activity reduces cellular dNTP levels to levels too low for retroviral reverse transcription to occur, blocking early-stage virus replication in dendritic and other myeloid cells (PubMed:19525956, PubMed:21613998, PubMed:21720370, PubMed:22056990, PubMed:23364794, PubMed:23601106, PubMed:23602554, PubMed:24336198, PubMed:25038827, PubMed:26101257, PubMed:26294762, PubMed:26431200, PubMed:28229507). Likewise, suppresses LINE-1 retrotransposon activity (PubMed:24035396, PubMed:24217394, PubMed:29610582). Not able to restrict infection by HIV-2 virus; because restriction activity is counteracted by HIV-2 viral protein Vpx (PubMed:21613998, PubMed:21720370). In addition to virus restriction, dNTPase activity acts as a regulator of DNA precursor pools by regulating dNTP pools (PubMed:23858451). Phosphorylation at Thr-592 acts as a switch to control dNTPase-dependent and -independent functions: it inhibits dNTPase activity and ability to restrict infection by viruses, while it promotes DNA end resection at stalled replication forks (PubMed:23601106, PubMed:23602554, PubMed:29610582, PubMed:29670289). Functions during S phase at stalled DNA replication forks to promote the resection of gapped or reversed forks: acts by stimulating the exonuclease activity of MRE11, activating the ATR-CHK1 pathway and allowing the forks to restart replication (PubMed:29670289). Its ability to promote degradation of nascent DNA at stalled replication forks is required to prevent induction of type I interferons, thereby preventing chronic inflammation (PubMed:27477283, PubMed:29670289). Ability to promote DNA end resection at stalled replication forks is independent of dNTPase activity (PubMed:29670289). Enhances immunoglobulin hypermutation in B-lymphocytes by promoting transversion mutation (By similarity). {ECO:0000250|UniProtKB:Q60710, ECO:0000269|PubMed:19525956, ECO:0000269|PubMed:21613998, ECO:0000269|PubMed:21720370, ECO:0000269|PubMed:22056990, ECO:0000269|PubMed:23364794, ECO:0000269|PubMed:23601106, ECO:0000269|PubMed:23602554, ECO:0000269|PubMed:23858451, ECO:0000269|PubMed:24035396, ECO:0000269|PubMed:24217394, ECO:0000269|PubMed:24336198, ECO:0000269|PubMed:25038827, ECO:0000269|PubMed:26101257, ECO:0000269|PubMed:26294762, ECO:0000269|PubMed:26431200, ECO:0000269|PubMed:27477283, ECO:0000269|PubMed:28229507, ECO:0000269|PubMed:28834754, ECO:0000269|PubMed:29610582, ECO:0000269|PubMed:29670289}.
Q9Y5B9 SUPT16H S19 ochoa FACT complex subunit SPT16 (Chromatin-specific transcription elongation factor 140 kDa subunit) (FACT 140 kDa subunit) (FACTp140) (Facilitates chromatin transcription complex subunit SPT16) (hSPT16) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9836642}.
Q9Y608 LRRFIP2 S18 ochoa Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}.
Q9Y6E0 STK24 T18 psp Serine/threonine-protein kinase 24 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 3) (MST-3) (STE20-like kinase MST3) [Cleaved into: Serine/threonine-protein kinase 24 36 kDa subunit (Mammalian STE20-like protein kinase 3 N-terminal) (MST3/N); Serine/threonine-protein kinase 24 12 kDa subunit (Mammalian STE20-like protein kinase 3 C-terminal) (MST3/C)] Serine/threonine-protein kinase that acts on both serine and threonine residues and promotes apoptosis in response to stress stimuli and caspase activation. Mediates oxidative-stress-induced cell death by modulating phosphorylation of JNK1-JNK2 (MAPK8 and MAPK9), p38 (MAPK11, MAPK12, MAPK13 and MAPK14) during oxidative stress. Plays a role in a staurosporine-induced caspase-independent apoptotic pathway by regulating the nuclear translocation of AIFM1 and ENDOG and the DNase activity associated with ENDOG. Phosphorylates STK38L on 'Thr-442' and stimulates its kinase activity. In association with STK26 negatively regulates Golgi reorientation in polarized cell migration upon RHO activation (PubMed:27807006). Also regulates cellular migration with alteration of PTPN12 activity and PXN phosphorylation: phosphorylates PTPN12 and inhibits its activity and may regulate PXN phosphorylation through PTPN12. May act as a key regulator of axon regeneration in the optic nerve and radial nerve. Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:16314523, ECO:0000269|PubMed:17046825, ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:19604147, ECO:0000269|PubMed:19782762, ECO:0000269|PubMed:19855390, ECO:0000269|PubMed:27807006}.
Q9Y6K0 CEPT1 S18 ochoa Choline/ethanolaminephosphotransferase 1 (hCEPT1) (EC 2.7.8.1) (EC 2.7.8.2) (1-alkenyl-2-acylglycerol choline phosphotransferase) (EC 2.7.8.22) Catalyzes both phosphatidylcholine and phosphatidylethanolamine biosynthesis from CDP-choline and CDP-ethanolamine, respectively (PubMed:10191259, PubMed:10893425, PubMed:12216837, PubMed:37137909). Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl choline to the lumenal surface (PubMed:10191259, PubMed:10893425, PubMed:12216837). Has a higher cholinephosphotransferase activity than ethanolaminephosphotransferase activity (PubMed:10191259, PubMed:12216837). {ECO:0000269|PubMed:10191259, ECO:0000269|PubMed:10893425, ECO:0000269|PubMed:12216837, ECO:0000269|PubMed:37137909}.
P07195 LDHB T18 Sugiyama L-lactate dehydrogenase B chain (LDH-B) (EC 1.1.1.27) (LDH heart subunit) (LDH-H) (Renal carcinoma antigen NY-REN-46) Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:27618187}.
P52294 KPNA1 S18 EPSD|PSP Importin subunit alpha-5 (Karyopherin subunit alpha-1) (Nucleoprotein interactor 1) (NPI-1) (RAG cohort protein 2) (SRP1-beta) [Cleaved into: Importin subunit alpha-5, N-terminally processed] Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1 (PubMed:27713473, PubMed:7892216, PubMed:8692858). Binds specifically and directly to substrates containing either a simple or bipartite NLS motif (PubMed:27713473, PubMed:7892216, PubMed:8692858). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:27713473, PubMed:7892216). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin (PubMed:7892216). The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (PubMed:7892216). Mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with KPNA2 and Transportin-1/TNPO1 (PubMed:35446349). {ECO:0000269|PubMed:27713473, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:7892216, ECO:0000269|PubMed:8692858}.; FUNCTION: (Microbial infection) In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS. {ECO:0000269|PubMed:12610148}.
P30050 RPL12 T18 Sugiyama Large ribosomal subunit protein uL11 (60S ribosomal protein L12) Component of the large ribosomal subunit (PubMed:25901680). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25901680). Binds directly to 26S ribosomal RNA (PubMed:25901680). {ECO:0000269|PubMed:25901680}.
P24534 EEF1B2 Y18 Sugiyama Elongation factor 1-beta (EF-1-beta) (eEF-1B alpha) Catalytic subunit of the guanine nucleotide exchange factor (GEF) (eEF1B subcomplex) of the eukaryotic elongation factor 1 complex (eEF1) (By similarity). Stimulates the exchange of GDP for GTP on elongation factor 1A (eEF1A), probably by displacing GDP from the nucleotide binding pocket in eEF1A (By similarity). {ECO:0000250|UniProtKB:P32471}.
P49458 SRP9 Y18 Sugiyama Signal recognition particle 9 kDa protein (SRP9) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (By similarity). SRP9 together with SRP14 and the Alu portion of the SRP RNA, constitutes the elongation arrest domain of SRP (PubMed:11089964). The complex of SRP9 and SRP14 is required for SRP RNA binding (By similarity). {ECO:0000250|UniProtKB:P21262, ECO:0000269|PubMed:11089964}.
P62277 RPS13 Y18 Sugiyama Small ribosomal subunit protein uS15 (40S ribosomal protein S13) Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
Q15369 ELOC Y18 Sugiyama Elongin-C (EloC) (Elongin 15 kDa subunit) (RNA polymerase II transcription factor SIII subunit C) (SIII p15) (Transcription elongation factor B polypeptide 1) SIII, also known as elongin, is a general transcription elongation factor that increases the RNA polymerase II transcription elongation past template-encoded arresting sites. Subunit A is transcriptionally active and its transcription activity is strongly enhanced by binding to the dimeric complex of the SIII regulatory subunits B and C (elongin BC complex) (PubMed:7821821). In embryonic stem cells, the elongin BC complex is recruited by EPOP to Polycomb group (PcG) target genes in order generate genomic region that display both active and repressive chromatin properties, an important feature of pluripotent stem cells (By similarity). {ECO:0000250|UniProtKB:P83940, ECO:0000269|PubMed:7821821}.; FUNCTION: Core component of multiple cullin-RING-based ECS (ElonginB/C-CUL2/5-SOCS-box protein) E3 ubiquitin-protein ligase complexes, which mediate the ubiquitination of target proteins (PubMed:10205047, PubMed:12004076, PubMed:12050673, PubMed:15590694, PubMed:21199876, PubMed:26138980, PubMed:29775578, PubMed:29779948, PubMed:30166453, PubMed:33268465, PubMed:38326650, PubMed:35512830). By binding to BC-box motifs it seems to link target recruitment subunits, like VHL and members of the SOCS box family, to Cullin/RBX1 modules that activate E2 ubiquitination enzymes (PubMed:10205047, PubMed:12004076, PubMed:12050673, PubMed:15590694). Component the von Hippel-Lindau ubiquitination complex CBC(VHL) (PubMed:10205047, PubMed:12004076, PubMed:12050673, PubMed:15590694). A number of ECS complexes (containing either KLHDC2, KLHDC3, KLHDC10, APPBP2, FEM1A, FEM1B or FEM1C as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:26138980, PubMed:29775578, PubMed:29779948, PubMed:36805027, PubMed:38177675). The ECS(ASB9) complex mediates ubiquitination and degradation of CKB (PubMed:33268465). As part of a multisubunit ubiquitin ligase complex, polyubiquitinates monoubiquitinated POLR2A (PubMed:19920177). ECS(LRR1) ubiquitinates MCM7 and promotes CMG replisome disassembly by VCP and chromatin extraction during S-phase (By similarity). As part of the ECS(RAB40C) complex, mediates ANKRD28 ubiquitination and degradation, thereby inhibiting protein phosphatase 6 (PP6) complex activity and focal adhesion assembly during cell migration (PubMed:35512830). {ECO:0000250|UniProtKB:P83940, ECO:0000269|PubMed:10205047, ECO:0000269|PubMed:12004076, ECO:0000269|PubMed:12050673, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:19920177, ECO:0000269|PubMed:21199876, ECO:0000269|PubMed:26138980, ECO:0000269|PubMed:29775578, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33268465, ECO:0000269|PubMed:35512830, ECO:0000269|PubMed:36805027, ECO:0000269|PubMed:38177675, ECO:0000269|PubMed:38326650}.; FUNCTION: (Microbial infection) Following infection by HIV-1 virus, component of a cullin-5-RING E3 ubiquitin-protein ligase complex (ECS complex) hijacked by the HIV-1 Vif protein, which catalyzes ubiquitination and degradation of APOBEC3F and APOBEC3G (PubMed:18562529, PubMed:20532212, PubMed:22190037, PubMed:24225024, PubMed:24402281, PubMed:36754086). The complex can also ubiquitinate APOBEC3H to some extent (PubMed:37640699). {ECO:0000269|PubMed:18562529, ECO:0000269|PubMed:20532212, ECO:0000269|PubMed:22190037, ECO:0000269|PubMed:24225024, ECO:0000269|PubMed:24402281, ECO:0000269|PubMed:36754086, ECO:0000269|PubMed:37640699}.
P46459 NSF T19 Sugiyama Vesicle-fusing ATPase (EC 3.6.4.6) (N-ethylmaleimide-sensitive fusion protein) (NEM-sensitive fusion protein) (Vesicular-fusion protein NSF) Required for vesicle-mediated transport. Catalyzes the fusion of transport vesicles within the Golgi cisternae. Is also required for transport from the endoplasmic reticulum to the Golgi stack. Seems to function as a fusion protein required for the delivery of cargo proteins to all compartments of the Golgi stack independent of vesicle origin. Interaction with AMPAR subunit GRIA2 leads to influence GRIA2 membrane cycling (By similarity). {ECO:0000250}.
O75475 PSIP1 Y18 Sugiyama PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
P25205 MCM3 Y19 Sugiyama DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}.
Q7Z4V5 HDGFL2 Y18 Sugiyama Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}.
Q12906 ILF3 S19 Sugiyama Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}.
O60427 FADS1 Y19 Sugiyama Acyl-CoA (8-3)-desaturase (EC 1.14.19.44) (Delta(5) fatty acid desaturase) (D5D) (Delta(5) desaturase) (Delta-5 desaturase) (Fatty acid desaturase 1) [Isoform 1]: Acts as a front-end fatty acyl-coenzyme A (CoA) desaturase that introduces a cis double bond at carbon 5 located between a preexisting double bond and the carboxyl end of the fatty acyl chain. Involved in biosynthesis of highly unsaturated fatty acids (HUFA) from the essential polyunsaturated fatty acids (PUFA) linoleic acid (LA) (18:2n-6) and alpha-linolenic acid (ALA) (18:3n-3) precursors. Specifically, desaturates dihomo-gamma-linoleoate (DGLA) (20:3n-6) and eicosatetraenoate (ETA) (20:4n-3) to generate arachidonate (AA) (20:4n-6) and eicosapentaenoate (EPA) (20:5n-3), respectively (PubMed:10601301, PubMed:10769175). As a rate limiting enzyme for DGLA (20:3n-6) and AA (20:4n-6)-derived eicosanoid biosynthesis, controls the metabolism of inflammatory lipids like prostaglandin E2, critical for efficient acute inflammatory response and maintenance of epithelium homeostasis. Contributes to membrane phospholipid biosynthesis by providing AA (20:4n-6) as a major acyl chain esterified into phospholipids. In particular, regulates phosphatidylinositol-4,5-bisphosphate levels, modulating inflammatory cytokine production in T-cells (By similarity). Also desaturates (11E)-octadecenoate (trans-vaccenoate)(18:1n-9), a metabolite in the biohydrogenation pathway of LA (18:2n-6) (By similarity). {ECO:0000250|UniProtKB:Q920L1, ECO:0000250|UniProtKB:Q920R3, ECO:0000269|PubMed:10601301, ECO:0000269|PubMed:10769175}.; FUNCTION: [Isoform 2]: Does not exhibit any catalytic activity toward 20:3n-6, but it may enhance FADS2 activity. {ECO:0000250|UniProtKB:A4UVI1}.
P13693 TPT1 Y18 Sugiyama Translationally-controlled tumor protein (TCTP) (Fortilin) (Histamine-releasing factor) (HRF) (p23) Involved in calcium binding and microtubule stabilization (PubMed:12167714, PubMed:15162379, PubMed:15958728). Acts as a negative regulator of TSC22D1-mediated apoptosis, via interaction with and destabilization of TSC22D1 protein (PubMed:18325344). {ECO:0000269|PubMed:12167714, ECO:0000269|PubMed:15162379, ECO:0000269|PubMed:15958728, ECO:0000269|PubMed:18325344}.
P43034 PAFAH1B1 Y18 Sugiyama Platelet-activating factor acetylhydrolase IB subunit beta (Lissencephaly-1 protein) (LIS-1) (PAF acetylhydrolase 45 kDa subunit) (PAF-AH 45 kDa subunit) (PAF-AH alpha) (PAFAH alpha) Regulatory subunit (beta subunit) of the cytosolic type I platelet-activating factor (PAF) acetylhydrolase (PAF-AH (I)), an enzyme that catalyzes the hydrolyze of the acetyl group at the sn-2 position of PAF and its analogs and participates in PAF inactivation. Regulates the PAF-AH (I) activity in a catalytic dimer composition-dependent manner (By similarity). Required for proper activation of Rho GTPases and actin polymerization at the leading edge of locomoting cerebellar neurons and postmigratory hippocampal neurons in response to calcium influx triggered via NMDA receptors (By similarity). Positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus end. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the peripheral transport of microtubule fragments and the coupling of the nucleus and centrosome. Required during brain development for the proliferation of neuronal precursors and the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Neuronal migration involves a process called nucleokinesis, whereby migrating cells extend an anterior process into which the nucleus subsequently translocates. During nucleokinesis dynein at the nuclear surface may translocate the nucleus towards the centrosome by exerting force on centrosomal microtubules. May also play a role in other forms of cell locomotion including the migration of fibroblasts during wound healing. Required for dynein recruitment to microtubule plus ends and BICD2-bound cargos (PubMed:22956769). May modulate the Reelin pathway through interaction of the PAF-AH (I) catalytic dimer with VLDLR (By similarity). {ECO:0000250|UniProtKB:P43033, ECO:0000250|UniProtKB:P63005, ECO:0000269|PubMed:15173193, ECO:0000269|PubMed:22956769}.
Q6NW29 RWDD4 Y18 Sugiyama RWD domain-containing protein 4 (Protein FAM28A) None
Q9UBE0 SAE1 Y19 Sugiyama SUMO-activating enzyme subunit 1 (Ubiquitin-like 1-activating enzyme E1A) [Cleaved into: SUMO-activating enzyme subunit 1, N-terminally processed] The heterodimer acts as an E1 ligase for SUMO1, SUMO2, SUMO3, and probably SUMO4. It mediates ATP-dependent activation of SUMO proteins followed by formation of a thioester bond between a SUMO protein and a conserved active site cysteine residue on UBA2/SAE2. {ECO:0000269|PubMed:10187858, ECO:0000269|PubMed:10217437, ECO:0000269|PubMed:11451954, ECO:0000269|PubMed:11481243, ECO:0000269|PubMed:15660128, ECO:0000269|PubMed:20164921, ECO:0000269|PubMed:9920803}.
P22234 PAICS T18 Sugiyama Bifunctional phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) [Includes: Phosphoribosylaminoimidazole carboxylase (EC 4.1.1.21) (AIR carboxylase) (AIRC); Phosphoribosylaminoimidazole succinocarboxamide synthetase (EC 6.3.2.6) (SAICAR synthetase)] Bifunctional phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazole succinocarboxamide synthetase catalyzing two reactions of the de novo purine biosynthetic pathway. {ECO:0000269|PubMed:17224163, ECO:0000269|PubMed:2183217, ECO:0000269|PubMed:31600779}.
P84090 ERH T18 iPTMNet Enhancer of rudimentary homolog May have a role in the cell cycle.
Q6PID6 TTC33 S19 Sugiyama Tetratricopeptide repeat protein 33 (TPR repeat protein 33) (Osmosis-responsive factor) None
P84090 ERH Y19 Sugiyama Enhancer of rudimentary homolog May have a role in the cell cycle.
Q9NZZ3 CHMP5 T18 Sugiyama Charged multivesicular body protein 5 (Chromatin-modifying protein 5) (SNF7 domain-containing protein 2) (Vacuolar protein sorting-associated protein 60) (Vps60) (hVps60) Probable peripherally associated component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses) (PubMed:14519844). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. Involved in HIV-1 p6- and p9-dependent virus release (PubMed:14519844). {ECO:0000269|PubMed:14519844}.
Q9NPI1 BRD7 Y18 Sugiyama Bromodomain-containing protein 7 (75 kDa bromodomain protein) (Protein CELTIX-1) Acts both as coactivator and as corepressor. May play a role in chromatin remodeling. Activator of the Wnt signaling pathway in a DVL1-dependent manner by negatively regulating the GSK3B phosphotransferase activity. Induces dephosphorylation of GSK3B at 'Tyr-216'. Down-regulates TRIM24-mediated activation of transcriptional activation by AR (By similarity). Transcriptional corepressor that down-regulates the expression of target genes. Binds to target promoters, leading to increased histone H3 acetylation at 'Lys-9' (H3K9ac). Binds to the ESR1 promoter. Recruits BRCA1 and POU2F1 to the ESR1 promoter. Coactivator for TP53-mediated activation of transcription of a set of target genes. Required for TP53-mediated cell-cycle arrest in response to oncogene activation. Promotes acetylation of TP53 at 'Lys-382', and thereby promotes efficient recruitment of TP53 to target promoters. Inhibits cell cycle progression from G1 to S phase. {ECO:0000250, ECO:0000269|PubMed:16265664, ECO:0000269|PubMed:16475162, ECO:0000269|PubMed:20215511, ECO:0000269|PubMed:20228809, ECO:0000269|PubMed:20660729}.
P17987 TCP1 S19 Sugiyama T-complex protein 1 subunit alpha (TCP-1-alpha) (EC 3.6.1.-) (CCT-alpha) (Chaperonin containing T-complex polypeptide 1 subunit 1) Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}.
Q9BT78 COPS4 S18 Sugiyama COP9 signalosome complex subunit 4 (SGN4) (Signalosome subunit 4) (JAB1-containing signalosome subunit 4) Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. Also involved in the deneddylation of non-cullin subunits such as STON2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1, IRF8/ICSBP and SNAPIN, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:21102408, ECO:0000269|PubMed:9535219}.
Q13237 PRKG2 S18 Sugiyama cGMP-dependent protein kinase 2 (cGK 2) (cGK2) (EC 2.7.11.12) (cGMP-dependent protein kinase II) (cGKII) Crucial regulator of intestinal secretion and bone growth. Phosphorylates and activates CFTR on the plasma membrane. Plays a key role in intestinal secretion by regulating cGMP-dependent translocation of CFTR in jejunum (PubMed:33106379). Acts downstream of NMDAR to activate the plasma membrane accumulation of GRIA1/GLUR1 in synapse and increase synaptic plasticity. Phosphorylates GRIA1/GLUR1 at Ser-863 (By similarity). Acts as a regulator of gene expression and activator of the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2 in mechanically stimulated osteoblasts. Under fluid shear stress, mediates ERK activation and subsequent induction of FOS, FOSL1/FRA1, FOSL2/FRA2 and FOSB that play a key role in the osteoblast anabolic response to mechanical stimulation (By similarity). {ECO:0000250|UniProtKB:Q61410, ECO:0000250|UniProtKB:Q64595, ECO:0000269|PubMed:33106379}.
P27482 CALML3 S18 Sugiyama Calmodulin-like protein 3 (CaM-like protein) (CLP) (Calmodulin-related protein NB-1) May function as a specific light chain of unconventional myosin-10 (MYO10), also enhances MYO10 translation, possibly by acting as a chaperone for the emerging MYO10 heavy chain protein. May compete with calmodulin by binding, with different affinities, to cellular substrates. {ECO:0000269|PubMed:11278607, ECO:0000269|PubMed:18295593}.
Q15746 MYLK S18 EPSD Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}.
O95208 EPN2 S18 Sugiyama Epsin-2 (EPS-15-interacting protein 2) Plays a role in the formation of clathrin-coated invaginations and endocytosis. {ECO:0000269|PubMed:10567358}.
O60831 PRAF2 S19 Sugiyama PRA1 family protein 2 May be involved in ER/Golgi transport and vesicular traffic. Plays a proapoptotic role in cerulenin-induced neuroblastoma apoptosis. {ECO:0000269|PubMed:17975142, ECO:0000269|PubMed:18395978}.
Q96GD4 AURKB S19 Sugiyama Aurora kinase B (EC 2.7.11.1) (Aurora 1) (Aurora- and IPL1-like midbody-associated protein 1) (AIM-1) (Aurora/IPL1-related kinase 2) (ARK-2) (Aurora-related kinase 2) (STK-1) (Serine/threonine-protein kinase 12) (Serine/threonine-protein kinase 5) (Serine/threonine-protein kinase aurora-B) Serine/threonine-protein kinase component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis (PubMed:11516652, PubMed:12925766, PubMed:14610074, PubMed:14722118, PubMed:29449677). The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly (PubMed:11516652, PubMed:12925766, PubMed:14610074, PubMed:14722118, PubMed:26829474). Involved in the bipolar attachment of spindle microtubules to kinetochores and is a key regulator for the onset of cytokinesis during mitosis (PubMed:15249581). Required for central/midzone spindle assembly and cleavage furrow formation (PubMed:12458200, PubMed:12686604). Key component of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage: phosphorylates CHMP4C, leading to retain abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis (PubMed:22422861, PubMed:24814515). AURKB phosphorylates the CPC complex subunits BIRC5/survivin, CDCA8/borealin and INCENP (PubMed:11516652, PubMed:12925766, PubMed:14610074). Phosphorylation of INCENP leads to increased AURKB activity (PubMed:11516652, PubMed:12925766, PubMed:14610074). Other known AURKB substrates involved in centromeric functions and mitosis are CENPA, DES/desmin, GPAF, KIF2C, NSUN2, RACGAP1, SEPTIN1, VIM/vimentin, HASPIN, and histone H3 (PubMed:11756469, PubMed:11784863, PubMed:11856369, PubMed:12689593, PubMed:14602875, PubMed:16103226, PubMed:21658950). A positive feedback loop involving HASPIN and AURKB contributes to localization of CPC to centromeres (PubMed:21658950). Phosphorylation of VIM controls vimentin filament segregation in cytokinetic process, whereas histone H3 is phosphorylated at 'Ser-10' and 'Ser-28' during mitosis (H3S10ph and H3S28ph, respectively) (PubMed:11784863, PubMed:11856369). AURKB is also required for kinetochore localization of BUB1 and SGO1 (PubMed:15020684, PubMed:17617734). Phosphorylation of p53/TP53 negatively regulates its transcriptional activity (PubMed:20959462). Key regulator of active promoters in resting B- and T-lymphocytes: acts by mediating phosphorylation of H3S28ph at active promoters in resting B-cells, inhibiting RNF2/RING1B-mediated ubiquitination of histone H2A and enhancing binding and activity of the USP16 deubiquitinase at transcribed genes (By similarity). Acts as an inhibitor of CGAS during mitosis: catalyzes phosphorylation of the N-terminus of CGAS during the G2-M transition, blocking CGAS liquid phase separation and activation, and thereby preventing CGAS-induced autoimmunity (PubMed:33542149). Phosphorylates KRT5 during anaphase and telophase (By similarity). Phosphorylates ATXN10 which promotes phosphorylation of ATXN10 by PLK1 and may play a role in the regulation of cytokinesis and stimulating the proteasomal degradation of ATXN10 (PubMed:25666058). {ECO:0000250|UniProtKB:O70126, ECO:0000269|PubMed:11516652, ECO:0000269|PubMed:11756469, ECO:0000269|PubMed:11784863, ECO:0000269|PubMed:11856369, ECO:0000269|PubMed:12458200, ECO:0000269|PubMed:12686604, ECO:0000269|PubMed:12689593, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:14602875, ECO:0000269|PubMed:14610074, ECO:0000269|PubMed:14722118, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15249581, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:21658950, ECO:0000269|PubMed:22422861, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:25666058, ECO:0000269|PubMed:26829474, ECO:0000269|PubMed:29449677, ECO:0000269|PubMed:33542149}.
Q9BUK0 CHCHD7 S18 Sugiyama Coiled-coil-helix-coiled-coil-helix domain-containing protein 7 None
Q01081 U2AF1 S19 Sugiyama Splicing factor U2AF 35 kDa subunit (U2 auxiliary factor 35 kDa subunit) (U2 small nuclear RNA auxiliary factor 1) (U2 snRNP auxiliary factor small subunit) Plays a critical role in both constitutive and enhancer-dependent splicing by mediating protein-protein interactions and protein-RNA interactions required for accurate 3'-splice site selection. Recruits U2 snRNP to the branch point. Directly mediates interactions between U2AF2 and proteins bound to the enhancers and thus may function as a bridge between U2AF2 and the enhancer complex to recruit it to the adjacent intron. {ECO:0000269|PubMed:22158538, ECO:0000269|PubMed:25311244, ECO:0000269|PubMed:8647433}.
Q8WU68 U2AF1L4 S19 Sugiyama Splicing factor U2AF 26 kDa subunit (U2 auxiliary factor 26) (U2 small nuclear RNA auxiliary factor 1-like protein 4) (U2AF1-like 4) (U2(RNU2) small nuclear RNA auxiliary factor 1-like protein 3) (U2 small nuclear RNA auxiliary factor 1-like protein 3) (U2AF1-like protein 3) RNA-binding protein that function as a pre-mRNA splicing factor. Plays a critical role in both constitutive and enhancer-dependent splicing by mediating protein-protein interactions and protein-RNA interactions required for accurate 3'-splice site selection. Acts by enhancing the binding of U2AF2 to weak pyrimidine tracts. Also participates in the regulation of alternative pre-mRNA splicing. Activates exon 5 skipping of PTPRC during T-cell activation; an event reversed by GFI1. Binds to RNA at the AG dinucleotide at the 3'-splice site (By similarity). Shows a preference for AGC or AGA (By similarity). {ECO:0000250|UniProtKB:Q8BGJ9}.
Q9UK32 RPS6KA6 S19 Sugiyama Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}.
A1L390 PLEKHG3 S18 ochoa Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}.
A6NF01 POM121B S18 ochoa Putative nuclear envelope pore membrane protein POM 121B Putative component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane (By similarity). {ECO:0000250}.
P29084 GTF2E2 S18 ochoa Transcription initiation factor IIE subunit beta (TFIIE-beta) (General transcription factor IIE subunit 2) Recruits TFIIH to the initiation complex and stimulates the RNA polymerase II C-terminal domain kinase and DNA-dependent ATPase activities of TFIIH. Both TFIIH and TFIIE are required for promoter clearance by RNA polymerase. {ECO:0000269|PubMed:1956398, ECO:0000269|PubMed:1956404}.
Q13595 TRA2A S18 ochoa Transformer-2 protein homolog alpha (TRA-2 alpha) (TRA2-alpha) (Transformer-2 protein homolog A) Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. {ECO:0000269|PubMed:9546399}.
Q9H2G4 TSPYL2 S18 ochoa Testis-specific Y-encoded-like protein 2 (TSPY-like protein 2) (Cell division autoantigen 1) (Cutaneous T-cell lymphoma-associated antigen se20-4) (CTCL-associated antigen se20-4) (Differentially-expressed nucleolar TGF-beta1 target protein) (Nuclear protein of 79 kDa) (NP79) Part of the CASK/TBR1/TSPYL2 transcriptional complex which modulates gene expression in response to neuronal synaptic activity, probably by facilitating nucleosome assembly. May inhibit cell proliferation by inducing p53-dependent CDKN1A expression. {ECO:0000269|PubMed:11395479, ECO:0000269|PubMed:17317670}.
O00401 WASL S19 ochoa Actin nucleation-promoting factor WASL (Neural Wiskott-Aldrich syndrome protein) (N-WASP) Regulates actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex (PubMed:16767080, PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Involved in various processes, such as mitosis and cytokinesis, via its role in the regulation of actin polymerization (PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Together with CDC42, involved in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia (PubMed:9422512). In addition to its role in the cytoplasm, also plays a role in the nucleus by regulating gene transcription, probably by promoting nuclear actin polymerization (PubMed:16767080). Binds to HSF1/HSTF1 and forms a complex on heat shock promoter elements (HSE) that negatively regulates HSP90 expression (By similarity). Plays a role in dendrite spine morphogenesis (By similarity). Decreasing levels of DNMBP (using antisense RNA) alters apical junction morphology in cultured enterocytes, junctions curve instead of being nearly linear (PubMed:19767742). {ECO:0000250|UniProtKB:Q91YD9, ECO:0000269|PubMed:16767080, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:22847007, ECO:0000269|PubMed:22921828, ECO:0000269|PubMed:9422512}.
O00512 BCL9 S19 ochoa B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}.
O14950 MYL12B T19 ochoa|psp Myosin regulatory light chain 12B (MLC-2A) (MLC-2) (Myosin regulatory light chain 2-B, smooth muscle isoform) (Myosin regulatory light chain 20 kDa) (MLC20) (Myosin regulatory light chain MRLC2) (SHUJUN-1) Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Phosphorylation triggers actin polymerization in vascular smooth muscle. Implicated in cytokinesis, receptor capping, and cell locomotion. {ECO:0000269|PubMed:10965042}.
O43301 HSPA12A S19 ochoa Heat shock 70 kDa protein 12A (Heat shock protein family A member 12A) Adapter protein for SORL1, but not SORT1. Delays SORL1 internalization and affects SORL1 subcellular localization. {ECO:0000269|PubMed:30679749}.
O76021 RSL1D1 T19 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
P11498 PC T19 ochoa Pyruvate carboxylase, mitochondrial (EC 6.4.1.1) (Pyruvic carboxylase) (PCB) Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. Catalyzes in a tissue specific manner, the initial reactions of glucose (liver, kidney) and lipid (adipose tissue, liver, brain) synthesis from pyruvate. {ECO:0000269|PubMed:9585002}.
P19105 MYL12A S19 ochoa|psp Myosin regulatory light chain 12A (Epididymis secretory protein Li 24) (HEL-S-24) (MLC-2B) (Myosin RLC) (Myosin regulatory light chain 2, nonsarcomeric) (Myosin regulatory light chain MRLC3) Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Implicated in cytokinesis, receptor capping, and cell locomotion (By similarity). {ECO:0000250}.
P24844 MYL9 T19 ochoa|psp Myosin regulatory light polypeptide 9 (20 kDa myosin light chain) (LC20) (MLC-2C) (Myosin RLC) (Myosin regulatory light chain 2, smooth muscle isoform) (Myosin regulatory light chain 9) (Myosin regulatory light chain MRLC1) Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Implicated in cytokinesis, receptor capping, and cell locomotion (PubMed:11942626, PubMed:2526655). In myoblasts, may regulate PIEZO1-dependent cortical actomyosin assembly involved in myotube formation (By similarity). {ECO:0000250|UniProtKB:Q9CQ19, ECO:0000269|PubMed:11942626, ECO:0000269|PubMed:2526655}.
P33991 MCM4 T19 ochoa|psp DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}.
P55316 FOXG1 S19 psp Forkhead box protein G1 (Brain factor 1) (BF-1) (BF1) (Brain factor 2) (BF-2) (BF2) (hBF-2) (Forkhead box protein G1A) (Forkhead box protein G1B) (Forkhead box protein G1C) (Forkhead-related protein FKHL1) (HFK1) (Forkhead-related protein FKHL2) (HFK2) (Forkhead-related protein FKHL3) (HFK3) Transcription repression factor which plays an important role in the establishment of the regional subdivision of the developing brain and in the development of the telencephalon. {ECO:0000269|PubMed:12657635}.
P60468 SEC61B S19 ochoa Protein transport protein Sec61 subunit beta Component of SEC61 channel-forming translocon complex that mediates transport of signal peptide-containing precursor polypeptides across the endoplasmic reticulum (ER) (PubMed:12475939). Forms a ribosome receptor and a gated pore in the ER membrane, both functions required for cotranslational translocation of nascent polypeptides (PubMed:12475939). The SEC61 channel is also involved in ER membrane insertion of transmembrane proteins: it mediates membrane insertion of the first few transmembrane segments of proteins, while insertion of subsequent transmembrane regions of multi-pass membrane proteins is mediated by the multi-pass translocon (MPT) complex (PubMed:32820719, PubMed:36261522). The SEC61 channel cooperates with the translocating protein TRAM1 to import nascent proteins into the ER (PubMed:19121997). {ECO:0000269|PubMed:12475939, ECO:0000269|PubMed:19121997, ECO:0000269|PubMed:32820719, ECO:0000269|PubMed:36261522}.
Q13177 PAK2 S19 ochoa Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}.
Q14671 PUM1 S19 ochoa Pumilio homolog 1 (HsPUM) (Pumilio-1) Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (PubMed:18328718, PubMed:21397187, PubMed:21572425, PubMed:21653694). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:20818387, PubMed:20860814, PubMed:22345517). Following growth factor stimulation, phosphorylated and binds to the 3'-UTR of CDKN1B/p27 mRNA, inducing a local conformational change that exposes miRNA-binding sites, promoting association of miR-221 and miR-222, efficient suppression of CDKN1B/p27 expression, and rapid entry to the cell cycle (PubMed:20818387). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517, PubMed:29474920). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). Involved in neuronal functions by regulating ATXN1 mRNA levels: acts by binding to the 3'-UTR of ATXN1 transcripts, leading to their down-regulation independently of the miRNA machinery (PubMed:25768905, PubMed:29474920). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). In testis, acts as a post-transcriptional regulator of spermatogenesis by binding to the 3'-UTR of mRNAs coding for regulators of p53/TP53. Involved in embryonic stem cell renewal by facilitating the exit from the ground state: acts by targeting mRNAs coding for naive pluripotency transcription factors and accelerates their down-regulation at the onset of differentiation (By similarity). Binds specifically to miRNA MIR199A precursor, with PUM2, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000250|UniProtKB:Q80U78, ECO:0000269|PubMed:18328718, ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:20818387, ECO:0000269|PubMed:20860814, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:21572425, ECO:0000269|PubMed:21653694, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25768905, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:29474920}.
Q16543 CDC37 T19 ochoa Hsp90 co-chaperone Cdc37 (Hsp90 chaperone protein kinase-targeting subunit) (p50Cdc37) [Cleaved into: Hsp90 co-chaperone Cdc37, N-terminally processed] Co-chaperone that binds to numerous kinases and promotes their interaction with the Hsp90 complex, resulting in stabilization and promotion of their activity (PubMed:8666233). Inhibits HSP90AA1 ATPase activity (PubMed:23569206). {ECO:0000269|PubMed:23569206, ECO:0000269|PubMed:8666233}.
Q53GA4 PHLDA2 S19 ochoa Pleckstrin homology-like domain family A member 2 (Beckwith-Wiedemann syndrome chromosomal region 1 candidate gene C protein) (Imprinted in placenta and liver protein) (Tumor-suppressing STF cDNA 3 protein) (Tumor-suppressing subchromosomal transferable fragment candidate gene 3 protein) (p17-Beckwith-Wiedemann region 1 C) (p17-BWR1C) Plays a role in regulating placenta growth. May act via its PH domain that competes with other PH domain-containing proteins, thereby preventing their binding to membrane lipids (By similarity). {ECO:0000250}.
Q6TFL4 KLHL24 S19 ochoa Kelch-like protein 24 (Kainate receptor-interacting protein for GluR6) (KRIP6) (Protein DRE1) Necessary to maintain the balance between intermediate filament stability and degradation, a process that is essential for skin integrity (PubMed:27889062). As part of the BCR(KLHL24) E3 ubiquitin ligase complex, mediates ubiquitination of KRT14 and controls its levels during keratinocytes differentiation (PubMed:27798626). Specifically reduces kainate receptor-mediated currents in hippocampal neurons, most probably by modulating channel properties (By similarity). Has a crucial role in cardiac development and function (PubMed:30715372). {ECO:0000250|UniProtKB:Q56A24, ECO:0000269|PubMed:27798626, ECO:0000269|PubMed:27889062, ECO:0000269|PubMed:30715372}.
Q8N0T1 RBIS S19 ochoa Ribosomal biogenesis factor Trans-acting factor in ribosome biogenesis required for efficient 40S and 60S subunit production. {ECO:0000269|PubMed:26711351}.
Q8TBP0 TBC1D16 T19 ochoa TBC1 domain family member 16 May act as a GTPase-activating protein for Rab family protein(s).
Q8WV19 SFT2D1 T19 ochoa Vesicle transport protein SFT2A (SFT2 domain-containing protein 1) (pRGR1) May be involved in fusion of retrograde transport vesicles derived from an endocytic compartment with the Golgi complex. {ECO:0000250|UniProtKB:P38166}.
Q8WWH5 TRUB1 S19 ochoa Pseudouridylate synthase TRUB1 (EC 5.4.99.-) (TruB pseudouridine synthase homolog 1) (tRNA pseudouridine 55 synthase TRUB1) (Psi55 synthase TRUB1) (EC 5.4.99.25) Pseudouridine synthase that catalyzes pseudouridylation of mRNAs and tRNAs (PubMed:28073919, PubMed:31477916, PubMed:32926445). Mediates pseudouridylation of mRNAs with the consensus sequence 5'-GUUCNANNC-3', harboring a stem-loop structure (PubMed:28073919, PubMed:31477916). Constitutes the major pseudouridine synthase acting on mRNAs (PubMed:28073919). Also catalyzes pseudouridylation of some tRNAs, including synthesis of pseudouridine(55) from uracil-55, in the psi GC loop of a subset of tRNAs (PubMed:32926445, PubMed:33023933). Promotes the processing of pri-let-7 microRNAs (pri-miRNAs) independently of its RNA pseudouridylate synthase activity (PubMed:32926445). Acts by binding to the stem-loop structure on pri-let-7, preventing LIN28-binding (LIN28A and/or LIN28B), thereby enhancing the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation (PubMed:32926445). {ECO:0000269|PubMed:28073919, ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:32926445, ECO:0000269|PubMed:33023933}.
Q96EX2 RNFT2 S19 ochoa E3 ubiquitin-protein ligase RNFT2 (RING finger and transmembrane domain-containing protein 2) (Transmembrane protein 118) E3 ubiquitin-protein ligase that negatively regulates IL3-dependent cellular responses through IL3RA ubiquitination and degradation by the proteasome, having an anti-inflammatory effect. {ECO:0000269|PubMed:31990690}.
Q96QD8 SLC38A2 S19 ochoa Sodium-coupled neutral amino acid symporter 2 (Amino acid transporter A2) (Protein 40-9-1) (Solute carrier family 38 member 2) (System A amino acid transporter 2) (System A transporter 1) (System N amino acid transporter 2) Symporter that cotransports neutral amino acids and sodium ions from the extracellular to the intracellular side of the cell membrane (PubMed:10930503, PubMed:15774260, PubMed:15922329, PubMed:16621798). The transport is pH-sensitive, Li(+)-intolerant, electrogenic, driven by the Na(+) electrochemical gradient and cotransports of neutral amino acids and sodium ions with a stoichiometry of 1:1. May function in the transport of amino acids at the blood-brain barrier (PubMed:10930503, PubMed:15774260). May function in the transport of amino acids in the supply of maternal nutrients to the fetus through the placenta (By similarity). Maintains a key metabolic glutamine/glutamate balance underpinning retrograde signaling by dendritic release of the neurotransmitter glutamate (By similarity). Transports L-proline in differentiating osteoblasts for the efficient synthesis of proline-enriched proteins and provides proline essential for osteoblast differentiation and bone formation during bone development (By similarity). {ECO:0000250|UniProtKB:Q8CFE6, ECO:0000250|UniProtKB:Q9JHE5, ECO:0000269|PubMed:10930503, ECO:0000269|PubMed:15774260, ECO:0000269|PubMed:15922329, ECO:0000269|PubMed:16621798}.
Q9H1E3 NUCKS1 S19 ochoa Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9H4A3 WNK1 S19 ochoa Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}.
Q9NS61 KCNIP2 S19 ochoa A-type potassium channel modulatory protein KCNIP2 (Cardiac voltage-gated potassium channel modulatory subunit) (Kv channel-interacting protein 2) (KChIP2) (Potassium channel-interacting protein 2) Regulatory subunit of Kv4/D (Shal)-type voltage-gated rapidly inactivating A-type potassium channels (PubMed:10676964, PubMed:11287421, PubMed:11684073, PubMed:12297301, PubMed:14623880, PubMed:34997220). Modulates channel density, inactivation kinetics and rate of recovery from inactivation in a calcium-dependent and isoform-specific manner (PubMed:10676964, PubMed:11287421, PubMed:11684073, PubMed:12297301, PubMed:14623880, PubMed:34997220). Involved in KCND2 and KCND3 trafficking to the cell surface (PubMed:12829703). May be required for the expression of I(To) currents in the heart (By similarity). {ECO:0000250|UniProtKB:Q9JJ69, ECO:0000269|PubMed:10676964, ECO:0000269|PubMed:11287421, ECO:0000269|PubMed:11684073, ECO:0000269|PubMed:12297301, ECO:0000269|PubMed:12829703, ECO:0000269|PubMed:14623880, ECO:0000269|PubMed:34997220}.
Q9UKN8 GTF3C4 S19 ochoa General transcription factor 3C polypeptide 4 (EC 2.3.1.48) (TF3C-delta) (Transcription factor IIIC 90 kDa subunit) (TFIIIC 90 kDa subunit) (TFIIIC90) (Transcription factor IIIC subunit delta) Essential for RNA polymerase III to make a number of small nuclear and cytoplasmic RNAs, including 5S RNA, tRNA, and adenovirus-associated (VA) RNA of both cellular and viral origin (PubMed:10523658). Has histone acetyltransferase activity (HAT) with unique specificity for free and nucleosomal H3 (PubMed:10523658). May cooperate with GTF3C5 in facilitating the recruitment of TFIIIB and RNA polymerase through direct interactions with BRF1, POLR3C and POLR3F (PubMed:10523658). May be localized close to the A box (PubMed:10523658). {ECO:0000269|PubMed:10523658}.
Q9ULD4 BRPF3 S19 ochoa Bromodomain and PHD finger-containing protein 3 Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}.
Q9Y237 PIN4 S19 psp Peptidyl-prolyl cis-trans isomerase NIMA-interacting 4 (EC 5.2.1.8) (Parvulin-14) (Par14) (hPar14) (Parvulin-17) (Par17) (hPar17) (Peptidyl-prolyl cis-trans isomerase Pin4) (PPIase Pin4) (Peptidyl-prolyl cis/trans isomerase EPVH) (hEPVH) (Rotamase Pin4) Isoform 1 is involved as a ribosomal RNA processing factor in ribosome biogenesis. Binds to tightly bent AT-rich stretches of double-stranded DNA. {ECO:0000269|PubMed:19369196}.; FUNCTION: Isoform 2 binds to double-stranded DNA. {ECO:0000269|PubMed:19369196}.
Q9Y520 PRRC2C T19 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
P06733 ENO1 T19 Sugiyama Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}.
Q14CX7 NAA25 Y19 Sugiyama N-alpha-acetyltransferase 25, NatB auxiliary subunit (Mitochondrial distribution and morphology protein 20) (N-terminal acetyltransferase B complex subunit MDM20) (NatB complex subunit MDM20) (N-terminal acetyltransferase B complex subunit NAA25) (p120) Non-catalytic subunit of the NatB complex which catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Asp, Met-Glu, Met-Asn and Met-Gln. May play a role in normal cell-cycle progression. {ECO:0000269|PubMed:18570629}.
O15511 ARPC5 Y19 Sugiyama Actin-related protein 2/3 complex subunit 5 (Arp2/3 complex 16 kDa subunit) (p16-ARC) Component of the Arp2/3 complex, a multiprotein complex that mediates actin polymerization upon stimulation by nucleation-promoting factor (NPF) (PubMed:9230079). The Arp2/3 complex mediates the formation of branched actin networks in the cytoplasm, providing the force for cell motility (PubMed:9230079). In addition to its role in the cytoplasmic cytoskeleton, the Arp2/3 complex also promotes actin polymerization in the nucleus, thereby regulating gene transcription and repair of damaged DNA (PubMed:29925947). The Arp2/3 complex promotes homologous recombination (HR) repair in response to DNA damage by promoting nuclear actin polymerization, leading to drive motility of double-strand breaks (DSBs) (PubMed:29925947). {ECO:0000269|PubMed:29925947, ECO:0000269|PubMed:9230079}.
P04406 GAPDH T19 Sugiyama Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) (Peptidyl-cysteine S-nitrosylase GAPDH) (EC 2.6.99.-) Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively (PubMed:11724794, PubMed:3170585). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate (PubMed:11724794, PubMed:3170585). Modulates the organization and assembly of the cytoskeleton (By similarity). Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes (PubMed:23071094). Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation (PubMed:23071094). Also plays a role in innate immunity by promoting TNF-induced NF-kappa-B activation and type I interferon production, via interaction with TRAF2 and TRAF3, respectively (PubMed:23332158, PubMed:27387501). Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis (By similarity). Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC (By similarity). {ECO:0000250|UniProtKB:P04797, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23332158, ECO:0000269|PubMed:27387501, ECO:0000269|PubMed:3170585}.
Q8NG66 NEK11 T19 Sugiyama Serine/threonine-protein kinase Nek11 (EC 2.7.11.1) (Never in mitosis A-related kinase 11) (NimA-related protein kinase 11) Protein kinase which plays an important role in the G2/M checkpoint response to DNA damage. Controls degradation of CDC25A by directly phosphorylating it on residues whose phosphorylation is required for BTRC-mediated polyubiquitination and degradation. {ECO:0000269|PubMed:12154088, ECO:0000269|PubMed:19734889, ECO:0000269|PubMed:20090422}.
P51965 UBE2E1 S18 ochoa Ubiquitin-conjugating enzyme E2 E1 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme E1) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme E1) (UbcH6) (Ubiquitin carrier protein E1) (Ubiquitin-protein ligase E1) Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. Catalyzes the covalent attachment of ISG15 to other proteins. Mediates the selective degradation of short-lived and abnormal proteins. In vitro also catalyzes 'Lys-48'-linked polyubiquitination. Catalyzes monoubiquitination of other proteins in both an E3-dependent and E3-independent manner (PubMed:27237050). {ECO:0000269|PubMed:16428300, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:27237050}.
A6NMY6 ANXA2P2 T19 ochoa Putative annexin A2-like protein (Annexin A2 pseudogene 2) (Lipocortin II pseudogene) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. {ECO:0000250}.
E7ERA6 RNF223 S19 ochoa RING finger protein 223 None
O00515 LAD1 T19 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O75179 ANKRD17 S19 ochoa Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16) Could play pivotal roles in cell cycle and DNA regulation (PubMed:19150984). Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways (PubMed:22328336). Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too (PubMed:23711367). Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) (PubMed:17276651). Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). {ECO:0000250|UniProtKB:Q99NH0, ECO:0000269|PubMed:17276651, ECO:0000269|PubMed:19150984, ECO:0000269|PubMed:22328336, ECO:0000269|PubMed:23711367}.
P02538 KRT6A S19 psp Keratin, type II cytoskeletal 6A (Cytokeratin-6A) (CK-6A) (Cytokeratin-6D) (CK-6D) (Keratin-6A) (K6A) (Type-II keratin Kb6) (allergen Hom s 5) Epidermis-specific type I keratin involved in wound healing. Involved in the activation of follicular keratinocytes after wounding, while it does not play a major role in keratinocyte proliferation or migration. Participates in the regulation of epithelial migration by inhibiting the activity of SRC during wound repair. {ECO:0000250|UniProtKB:P50446}.
P06493 CDK1 Y19 ochoa Cyclin-dependent kinase 1 (CDK1) (EC 2.7.11.22) (EC 2.7.11.23) (Cell division control protein 2 homolog) (Cell division protein kinase 1) (p34 protein kinase) Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition via association with multiple interphase cyclins (PubMed:16407259, PubMed:16933150, PubMed:17459720, PubMed:18356527, PubMed:19509060, PubMed:19917720, PubMed:20171170, PubMed:20935635, PubMed:20937773, PubMed:21063390, PubMed:2188730, PubMed:23355470, PubMed:2344612, PubMed:23601106, PubMed:23602554, PubMed:25556658, PubMed:26829474, PubMed:27814491, PubMed:30139873, PubMed:30704899). Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CENPA, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, KAT5, LMNA, LMNB, LBR, MKI67, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MLST8, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, TPPP, UL40/R2, RAB4A, RAP1GAP, RBBP8/CtIP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SAMHD1, SIRT2, CGAS and RUNX2 (PubMed:16407259, PubMed:16933150, PubMed:17459720, PubMed:18356527, PubMed:19202191, PubMed:19509060, PubMed:19917720, PubMed:20171170, PubMed:20935635, PubMed:20937773, PubMed:21063390, PubMed:2188730, PubMed:23355470, PubMed:2344612, PubMed:23601106, PubMed:23602554, PubMed:25012651, PubMed:25556658, PubMed:26829474, PubMed:27814491, PubMed:30704899, PubMed:32351706, PubMed:34741373). CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs (PubMed:18480403, PubMed:20360007). Essential for early stages of embryonic development (PubMed:18480403, PubMed:20360007). During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation (PubMed:18480403, PubMed:20360007, PubMed:2188730, PubMed:2344612, PubMed:30139873). Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis (PubMed:18480403, PubMed:20360007). Phosphorylates KRT5 during prometaphase and metaphase (By similarity). Inactivated by PKR/EIF2AK2- and WEE1-mediated phosphorylation upon DNA damage to stop cell cycle and genome replication at the G2 checkpoint thus facilitating DNA repair (PubMed:20360007). Reactivated after successful DNA repair through WIP1-dependent signaling leading to CDC25A/B/C-mediated dephosphorylation and restoring cell cycle progression (PubMed:20395957). Catalyzes lamin (LMNA, LMNB1 and LMNB2) phosphorylation at the onset of mitosis, promoting nuclear envelope breakdown (PubMed:2188730, PubMed:2344612, PubMed:37788673). In proliferating cells, CDK1-mediated FOXO1 phosphorylation at the G2-M phase represses FOXO1 interaction with 14-3-3 proteins and thereby promotes FOXO1 nuclear accumulation and transcription factor activity, leading to cell death of postmitotic neurons (PubMed:18356527). The phosphorylation of beta-tubulins regulates microtubule dynamics during mitosis (PubMed:16371510). NEDD1 phosphorylation promotes PLK1-mediated NEDD1 phosphorylation and subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation (PubMed:19509060). In addition, CC2D1A phosphorylation regulates CC2D1A spindle pole localization and association with SCC1/RAD21 and centriole cohesion during mitosis (PubMed:20171170). The phosphorylation of Bcl-xL/BCL2L1 after prolongated G2 arrest upon DNA damage triggers apoptosis (PubMed:19917720). In contrast, CASP8 phosphorylation during mitosis prevents its activation by proteolysis and subsequent apoptosis (PubMed:20937773). This phosphorylation occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes (PubMed:20937773). EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing (PubMed:20935635). CALD1 phosphorylation promotes Schwann cell migration during peripheral nerve regeneration (By similarity). CDK1-cyclin-B complex phosphorylates NCKAP5L and mediates its dissociation from centrosomes during mitosis (PubMed:26549230). Regulates the amplitude of the cyclic expression of the core clock gene BMAL1 by phosphorylating its transcriptional repressor NR1D1, and this phosphorylation is necessary for SCF(FBXW7)-mediated ubiquitination and proteasomal degradation of NR1D1 (PubMed:27238018). Phosphorylates EML3 at 'Thr-881' which is essential for its interaction with HAUS augmin-like complex and TUBG1 (PubMed:30723163). Phosphorylates CGAS during mitosis, leading to its inhibition, thereby preventing CGAS activation by self DNA during mitosis (PubMed:32351706). Phosphorylates SKA3 on multiple sites during mitosis which promotes SKA3 binding to the NDC80 complex and anchoring of the SKA complex to kinetochores, to enable stable attachment of mitotic spindle microtubules to kinetochores (PubMed:28479321, PubMed:31804178, PubMed:32491969). {ECO:0000250|UniProtKB:P11440, ECO:0000250|UniProtKB:P39951, ECO:0000269|PubMed:16371510, ECO:0000269|PubMed:16407259, ECO:0000269|PubMed:16933150, ECO:0000269|PubMed:17459720, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:18480403, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19509060, ECO:0000269|PubMed:19917720, ECO:0000269|PubMed:20171170, ECO:0000269|PubMed:20360007, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:20937773, ECO:0000269|PubMed:21063390, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23601106, ECO:0000269|PubMed:23602554, ECO:0000269|PubMed:25012651, ECO:0000269|PubMed:25556658, ECO:0000269|PubMed:26549230, ECO:0000269|PubMed:26829474, ECO:0000269|PubMed:27238018, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:28479321, ECO:0000269|PubMed:30139873, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:30723163, ECO:0000269|PubMed:31804178, ECO:0000269|PubMed:32351706, ECO:0000269|PubMed:32491969, ECO:0000269|PubMed:34741373, ECO:0000269|PubMed:37788673}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. {ECO:0000269|PubMed:21516087}.
P07355 ANXA2 T19 ochoa|psp Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) (Protein I) (p36) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9 (PubMed:18799458, PubMed:22848640, PubMed:24808179). Binds to endosomes damaged by phagocytosis of particulate wear debris and participates in endosomal membrane stabilization, thereby limiting NLRP3 inflammasome activation (By similarity). Required for endothelial cell surface plasmin generation and may support fibrinolytic surveillance and neoangiogenesis (By similarity). {ECO:0000250|UniProtKB:P07356, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22848640, ECO:0000269|PubMed:24808179}.; FUNCTION: (Microbial infection) Binds M.pneumoniae CARDS toxin, probably serves as one receptor for this pathogen. When ANXA2 is down-regulated by siRNA, less toxin binds to human cells and less vacuolization (a symptom of M.pneumoniae infection) is seen. {ECO:0000269|PubMed:25139904}.
P14923 JUP T19 ochoa Junction plakoglobin (Catenin gamma) (Desmoplakin III) (Desmoplakin-3) Common junctional plaque protein. The membrane-associated plaques are architectural elements in an important strategic position to influence the arrangement and function of both the cytoskeleton and the cells within the tissue. The presence of plakoglobin in both the desmosomes and in the intermediate junctions suggests that it plays a central role in the structure and function of submembranous plaques. Acts as a substrate for VE-PTP and is required by it to stimulate VE-cadherin function in endothelial cells. Can replace beta-catenin in E-cadherin/catenin adhesion complexes which are proposed to couple cadherins to the actin cytoskeleton (By similarity). {ECO:0000250}.
P20807 CAPN3 S19 ochoa Calpain-3 (EC 3.4.22.54) (Calcium-activated neutral proteinase 3) (CANP 3) (Calpain L3) (Calpain p94) (Muscle-specific calcium-activated neutral protease 3) (New calpain 1) (nCL-1) Calcium-regulated non-lysosomal thiol-protease. Proteolytically cleaves CTBP1 at 'His-409'. Mediates, with UTP25, the proteasome-independent degradation of p53/TP53 (PubMed:23357851, PubMed:27657329). {ECO:0000269|PubMed:23357851, ECO:0000269|PubMed:23707407, ECO:0000269|PubMed:27657329}.
P24941 CDK2 Y19 ochoa Cyclin-dependent kinase 2 (EC 2.7.11.22) (Cell division protein kinase 2) (p33 protein kinase) Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis (PubMed:10499802, PubMed:10884347, PubMed:10995386, PubMed:10995387, PubMed:11051553, PubMed:11113184, PubMed:12944431, PubMed:15800615, PubMed:17495531, PubMed:19966300, PubMed:20935635, PubMed:21262353, PubMed:21596315, PubMed:28216226, PubMed:28666995). Phosphorylates CABLES1, CTNNB1, CDK2AP2, ERCC6, NBN, USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2 (PubMed:10499802, PubMed:10995386, PubMed:10995387, PubMed:11051553, PubMed:11113184, PubMed:12944431, PubMed:15800615, PubMed:19966300, PubMed:20935635, PubMed:21262353, PubMed:21596315, PubMed:28216226). Triggers duplication of centrosomes and DNA (PubMed:11051553). Acts at the G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis, and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of cyclin B/CDK1 at the centrosome and in the nucleus (PubMed:18372919, PubMed:19238148, PubMed:19561645). Crucial role in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in embryonic stem cells (ESCs) (PubMed:18372919, PubMed:19238148, PubMed:19561645). Activity of CDK2 is maximal during S phase and G2; activated by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA replication to drive the transition from S phase to mitosis, the G2 phase (PubMed:18372919, PubMed:19238148, PubMed:19561645). EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing (PubMed:20935635). Cyclin E/CDK2 prevents oxidative stress-mediated Ras-induced senescence by phosphorylating MYC (PubMed:19966300). Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells progress towards mitosis (PubMed:15800615, PubMed:20195506, PubMed:21319273). In response to DNA damage, double-strand break repair by homologous recombination a reduction of CDK2-mediated BRCA2 phosphorylation (PubMed:15800615). Involved in regulation of telomere repair by mediating phosphorylation of NBN (PubMed:28216226). Phosphorylation of RB1 disturbs its interaction with E2F1 (PubMed:10499802). NPM1 phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication (PubMed:11051553). Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase (PubMed:10995386, PubMed:10995387). Required for vitamin D-mediated growth inhibition by being itself inactivated (PubMed:20147522). Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner (PubMed:20079829). USP37 is activated by phosphorylation and thus triggers G1-S transition (PubMed:21596315). CTNNB1 phosphorylation regulates insulin internalization (PubMed:21262353). Phosphorylates FOXP3 and negatively regulates its transcriptional activity and protein stability (By similarity). Phosphorylates ERCC6 which is essential for its chromatin remodeling activity at DNA double-strand breaks (PubMed:29203878). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of the C-terminus of protein kinase B (PKB/AKT1 and PKB/AKT2), promoting its activation (PubMed:24670654). {ECO:0000250|UniProtKB:P97377, ECO:0000269|PubMed:10499802, ECO:0000269|PubMed:10884347, ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:11051553, ECO:0000269|PubMed:11113184, ECO:0000269|PubMed:12944431, ECO:0000269|PubMed:15800615, ECO:0000269|PubMed:17495531, ECO:0000269|PubMed:18372919, ECO:0000269|PubMed:19966300, ECO:0000269|PubMed:20079829, ECO:0000269|PubMed:20147522, ECO:0000269|PubMed:20195506, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:21319273, ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:24670654, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28666995, ECO:0000269|PubMed:29203878, ECO:0000303|PubMed:19238148, ECO:0000303|PubMed:19561645}.
P29536 LMOD1 S19 ochoa Leiomodin-1 (64 kDa autoantigen 1D) (64 kDa autoantigen 1D3) (64 kDa autoantigen D1) (Leiomodin, muscle form) (Smooth muscle leiomodin) (SM-Lmod) (Thyroid-associated ophthalmopathy autoantigen) Required for proper contractility of visceral smooth muscle cells (PubMed:28292896). Mediates nucleation of actin filaments. {ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:28292896}.
P36871 PGM1 T19 ochoa Phosphoglucomutase-1 (PGM 1) (EC 5.4.2.2) (Glucose phosphomutase 1) Catalyzes the reversible isomerization of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate (PubMed:15378030, PubMed:25288802). The mechanism proceeds via the intermediate compound alpha-D-glucose 1,6-bisphosphate (Probable) (PubMed:25288802). This enzyme participates in both the breakdown and synthesis of glucose (PubMed:17924679, PubMed:25288802). {ECO:0000269|PubMed:15378030, ECO:0000269|PubMed:17924679, ECO:0000269|PubMed:25288802, ECO:0000305|PubMed:15378030}.
P49593 PPM1F T19 ochoa Protein phosphatase 1F (EC 3.1.3.16) (Ca(2+)/calmodulin-dependent protein kinase phosphatase) (CaM-kinase phosphatase) (CaMKPase) (Partner of PIX 2) (Protein fem-2 homolog) (hFem-2) Dephosphorylates and concomitantly deactivates CaM-kinase II activated upon autophosphorylation, and CaM-kinases IV and I activated upon phosphorylation by CaM-kinase kinase. Promotes apoptosis.
P51636 CAV2 Y19 ochoa|psp Caveolin-2 May act as a scaffolding protein within caveolar membranes. Interacts directly with G-protein alpha subunits and can functionally regulate their activity. Acts as an accessory protein in conjunction with CAV1 in targeting to lipid rafts and driving caveolae formation. The Ser-36 phosphorylated form has a role in modulating mitosis in endothelial cells. Positive regulator of cellular mitogenesis of the MAPK signaling pathway. Required for the insulin-stimulated nuclear translocation and activation of MAPK1 and STAT3, and the subsequent regulation of cell cycle progression (By similarity). {ECO:0000250, ECO:0000269|PubMed:15504032, ECO:0000269|PubMed:18081315}.
Q00526 CDK3 Y19 ochoa Cyclin-dependent kinase 3 (EC 2.7.11.22) (Cell division protein kinase 3) Serine/threonine-protein kinase that plays a critical role in the control of the eukaryotic cell cycle; involved in G0-G1 and G1-S cell cycle transitions. Interacts with CCNC/cyclin-C during interphase. Phosphorylates histone H1, ATF1, RB1 and CABLES1. ATF1 phosphorylation triggers ATF1 transactivation and transcriptional activities, and promotes cell proliferation and transformation. CDK3/cyclin-C mediated RB1 phosphorylation is required for G0-G1 transition. Promotes G1-S transition probably by contributing to the activation of E2F1, E2F2 and E2F3 in a RB1-independent manner. {ECO:0000269|PubMed:15084261, ECO:0000269|PubMed:18794154, ECO:0000269|PubMed:8846921}.
Q03393 PTS S19 ochoa|psp 6-pyruvoyl tetrahydrobiopterin synthase (PTP synthase) (PTPS) (EC 4.2.3.12) Involved in the biosynthesis of tetrahydrobiopterin, an essential cofactor of aromatic amino acid hydroxylases. Catalyzes the transformation of 7,8-dihydroneopterin triphosphate into 6-pyruvoyl tetrahydropterin. {ECO:0000269|PubMed:1282802}.
Q13286 CLN3 T19 ochoa Battenin (Batten disease protein) (Protein CLN3) Mediates microtubule-dependent, anterograde transport connecting the Golgi network, endosomes, autophagosomes, lysosomes and plasma membrane, and participates in several cellular processes such as regulation of lysosomal pH, lysosome protein degradation, receptor-mediated endocytosis, autophagy, transport of proteins and lipids from the TGN, apoptosis and synaptic transmission (PubMed:10924275, PubMed:15471887, PubMed:18317235, PubMed:18817525, PubMed:20850431, PubMed:22261744). Facilitates the proteins transport from trans-Golgi network (TGN)-to other membrane compartments such as transport of microdomain-associated proteins to the plasma membrane, IGF2R transport to the lysosome where it regulates the CTSD release leading to regulation of CTSD maturation and thereby APP intracellular processing (PubMed:10924275, PubMed:18817525). Moreover regulates CTSD activity in response to osmotic stress (PubMed:23840424, PubMed:28390177). Also binds galactosylceramide and transports it from the trans Golgi to the rafts, which may have immediate and downstream effects on cell survival by modulating ceramide synthesis (PubMed:18317235). At the plasma membrane, regulates actin-dependent events including filopodia formation, cell migration, and pinocytosis through ARF1-CDC42 pathway and also the cytoskeleton organization through interaction with MYH10 and fodrin leading to the regulation of the plasma membrane association of Na+, K+ ATPase complex (PubMed:20850431). Regulates synaptic transmission in the amygdala, hippocampus, and cerebellum through regulation of synaptic vesicles density and their proximity to active zones leading to modulation of short-term plasticity and age-dependent anxious behavior, learning and memory (By similarity). Regulates autophagic vacuoles (AVs) maturation by modulating the trafficking between endocytic and autophagolysosomal/lysosomal compartments, which involves vesicle fusion leading to regulation of degradation process (By similarity). Also participates in cellular homeostasis of compounds such as, water, ions, amino acids, proteins and lipids in several tissue namely in brain and kidney through regulation of their transport and synthesis (PubMed:17482562). {ECO:0000250|UniProtKB:Q61124, ECO:0000269|PubMed:10924275, ECO:0000269|PubMed:15471887, ECO:0000269|PubMed:17482562, ECO:0000269|PubMed:18317235, ECO:0000269|PubMed:18817525, ECO:0000269|PubMed:20850431, ECO:0000269|PubMed:22261744, ECO:0000269|PubMed:23840424, ECO:0000269|PubMed:28390177}.
Q13671 RIN1 S19 ochoa Ras and Rab interactor 1 (Ras inhibitor JC99) (Ras interaction/interference protein 1) Ras effector protein, which may serve as an inhibitory modulator of neuronal plasticity in aversive memory formation. Can affect Ras signaling at different levels. First, by competing with RAF1 protein for binding to activated Ras. Second, by enhancing signaling from ABL1 and ABL2, which regulate cytoskeletal remodeling. Third, by activating RAB5A, possibly by functioning as a guanine nucleotide exchange factor (GEF) for RAB5A, by exchanging bound GDP for free GTP, and facilitating Ras-activated receptor endocytosis. {ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9208849}.
Q8N3U4 STAG2 T19 ochoa Cohesin subunit SA-2 (SCC3 homolog 2) (Stromal antigen 2) Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. {ECO:0000269|PubMed:12034751}.
Q96CG3 TIFA T19 psp TRAF-interacting protein with FHA domain-containing protein A (Putative MAPK-activating protein PM14) (Putative NF-kappa-B-activating protein 20) (TRAF2-binding protein) Adapter molecule that plays a key role in the activation of pro-inflammatory NF-kappa-B signaling following detection of bacterial pathogen-associated molecular pattern metabolites (PAMPs) (PubMed:12566447, PubMed:15492226, PubMed:26068852, PubMed:28222186, PubMed:28877472, PubMed:30111836). Promotes activation of an innate immune response by inducing the oligomerization and polyubiquitination of TRAF6, which leads to the activation of TAK1 and IKK through a proteasome-independent mechanism (PubMed:15492226, PubMed:26068852). TIFA-dependent innate immune response is triggered by ADP-D-glycero-beta-D-manno-heptose (ADP-Heptose), a potent PAMP present in all Gram-negative and some Gram-positive bacteria: ADP-Heptose is recognized by ALPK1, which phosphorylates TIFA at Thr-9, leading to TIFA homooligomerization and subsequent activation of pro-inflammatory NF-kappa-B signaling (PubMed:30111836). {ECO:0000269|PubMed:12566447, ECO:0000269|PubMed:15492226, ECO:0000269|PubMed:26068852, ECO:0000269|PubMed:28222186, ECO:0000269|PubMed:28877472, ECO:0000269|PubMed:30111836}.
Q96LR5 UBE2E2 S19 ochoa Ubiquitin-conjugating enzyme E2 E2 (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme E2) (UbcH8) (Ubiquitin carrier protein E2) (Ubiquitin-protein ligase E2) Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes 'Lys-11'- and 'Lys-48'-, as well as 'Lys-63'-linked polyubiquitination. Catalyzes the ISGylation of influenza A virus NS1 protein. {ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20133869, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:9371400}.
Q99502 EYA1 S19 ochoa Protein phosphatase EYA1 (EC 3.1.3.16) (EC 3.1.3.48) (Eyes absent homolog 1) Functions both as protein phosphatase and as transcriptional coactivator for SIX1, and probably also for SIX2, SIX4 and SIX5 (By similarity). Tyrosine phosphatase that dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph) and promotes efficient DNA repair via the recruitment of DNA repair complexes containing MDC1. 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19234442). Its function as histone phosphatase may contribute to its function in transcription regulation during organogenesis (By similarity). Also has phosphatase activity with proteins phosphorylated on Ser and Thr residues (in vitro) (By similarity). Required for normal embryonic development of the craniofacial and trunk skeleton, kidneys and ears (By similarity). Together with SIX1, it plays an important role in hypaxial muscle development; in this it is functionally redundant with EYA2 (By similarity). {ECO:0000250|UniProtKB:P97767, ECO:0000269|PubMed:19234442}.
Q9Y4F9 RIPOR2 S19 ochoa Rho family-interacting cell polarization regulator 2 Acts as an inhibitor of the small GTPase RHOA and plays several roles in the regulation of myoblast and hair cell differentiation, lymphocyte T proliferation and neutrophil polarization (PubMed:17150207, PubMed:23241886, PubMed:24687993, PubMed:24958875, PubMed:25588844, PubMed:27556504). Inhibits chemokine-induced T lymphocyte responses, such as cell adhesion, polarization and migration (PubMed:23241886). Involved also in the regulation of neutrophil polarization, chemotaxis and adhesion (By similarity). Required for normal development of inner and outer hair cell stereocilia within the cochlea of the inner ear (By similarity). Plays a role for maintaining the structural organization of the basal domain of stereocilia (By similarity). Involved in mechanosensory hair cell function (By similarity). Required for normal hearing (PubMed:24958875). {ECO:0000250|UniProtKB:Q80U16, ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:23241886, ECO:0000269|PubMed:24687993, ECO:0000269|PubMed:24958875, ECO:0000269|PubMed:27556504}.; FUNCTION: [Isoform 2]: Acts as an inhibitor of the small GTPase RHOA (PubMed:25588844). Plays a role in fetal mononuclear myoblast differentiation by promoting filopodia and myotube formation (PubMed:17150207). Maintains naive T lymphocytes in a quiescent state (PubMed:27556504). {ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:25588844, ECO:0000269|PubMed:27556504}.
P27695 APEX1 T19 Sugiyama DNA repair nuclease/redox regulator APEX1 (EC 3.1.11.2) (EC 3.1.21.-) (APEX nuclease) (APEN) (Apurinic-apyrimidinic endonuclease 1) (AP endonuclease 1) (APE-1) (DNA-(apurinic or apyrimidinic site) endonuclease) (Redox factor-1) (REF-1) [Cleaved into: DNA repair nuclease/redox regulator APEX1, mitochondrial] Multifunctional protein that plays a central role in the cellular response to oxidative stress. The two major activities of APEX1 are DNA repair and redox regulation of transcriptional factors (PubMed:11118054, PubMed:11452037, PubMed:15831793, PubMed:18439621, PubMed:18579163, PubMed:21762700, PubMed:24079850, PubMed:8355688, PubMed:9108029, PubMed:9560228). Functions as an apurinic/apyrimidinic (AP) endodeoxyribonuclease in the base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents. Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5'-deoxyribose phosphate and 3'-hydroxyl ends. Also incises at AP sites in the DNA strand of DNA/RNA hybrids, single-stranded DNA regions of R-loop structures, and single-stranded RNA molecules (PubMed:15380100, PubMed:16617147, PubMed:18439621, PubMed:19123919, PubMed:19188445, PubMed:19934257, PubMed:20699270, PubMed:21762700, PubMed:24079850, PubMed:8932375, PubMed:8995436, PubMed:9804799). Operates at switch sites of immunoglobulin (Ig) constant regions where it mediates Ig isotype class switch recombination. Processes AP sites induced by successive action of AICDA and UNG. Generates staggered nicks in opposite DNA strands resulting in the formation of double-strand DNA breaks that are finally resolved via non-homologous end joining repair pathway (By similarity). Has 3'-5' exodeoxyribonuclease activity on mismatched deoxyribonucleotides at the 3' termini of nicked or gapped DNA molecules during short-patch BER (PubMed:11832948, PubMed:1719477). Possesses DNA 3' phosphodiesterase activity capable of removing lesions (such as phosphoglycolate and 8-oxoguanine) blocking the 3' side of DNA strand breaks (PubMed:15831793, PubMed:7516064). Also acts as an endoribonuclease involved in the control of single-stranded RNA metabolism. Plays a role in regulating MYC mRNA turnover by preferentially cleaving in between UA and CA dinucleotides of the MYC coding region determinant (CRD). In association with NMD1, plays a role in the rRNA quality control process during cell cycle progression (PubMed:19188445, PubMed:19401441, PubMed:21762700). Acts as a loading factor for POLB onto non-incised AP sites in DNA and stimulates the 5'-terminal deoxyribose 5'-phosphate (dRp) excision activity of POLB (PubMed:9207062). Exerts reversible nuclear redox activity to regulate DNA binding affinity and transcriptional activity of transcriptional factors by controlling the redox status of their DNA-binding domain, such as the FOS/JUN AP-1 complex after exposure to IR (PubMed:10023679, PubMed:11118054, PubMed:11452037, PubMed:18579163, PubMed:8355688, PubMed:9108029). Involved in calcium-dependent down-regulation of parathyroid hormone (PTH) expression by binding to negative calcium response elements (nCaREs). Together with HNRNPL or the dimer XRCC5/XRCC6, associates with nCaRE, acting as an activator of transcriptional repression (PubMed:11809897, PubMed:14633989, PubMed:8621488). May also play a role in the epigenetic regulation of gene expression by participating in DNA demethylation (PubMed:21496894). Stimulates the YBX1-mediated MDR1 promoter activity, when acetylated at Lys-6 and Lys-7, leading to drug resistance (PubMed:18809583). Plays a role in protection from granzyme-mediated cellular repair leading to cell death (PubMed:18179823). Binds DNA and RNA. Associates, together with YBX1, on the MDR1 promoter. Together with NPM1, associates with rRNA (PubMed:19188445, PubMed:19401441, PubMed:20699270). {ECO:0000250|UniProtKB:P28352, ECO:0000269|PubMed:10023679, ECO:0000269|PubMed:11118054, ECO:0000269|PubMed:11452037, ECO:0000269|PubMed:11809897, ECO:0000269|PubMed:11832948, ECO:0000269|PubMed:12524539, ECO:0000269|PubMed:14633989, ECO:0000269|PubMed:15380100, ECO:0000269|PubMed:15831793, ECO:0000269|PubMed:16617147, ECO:0000269|PubMed:1719477, ECO:0000269|PubMed:18179823, ECO:0000269|PubMed:18439621, ECO:0000269|PubMed:18579163, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19123919, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:19401441, ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:20699270, ECO:0000269|PubMed:21496894, ECO:0000269|PubMed:21762700, ECO:0000269|PubMed:24079850, ECO:0000269|PubMed:7516064, ECO:0000269|PubMed:8355688, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:8932375, ECO:0000269|PubMed:8995436, ECO:0000269|PubMed:9108029, ECO:0000269|PubMed:9207062, ECO:0000269|PubMed:9560228, ECO:0000269|PubMed:9804799}.
Q9UN86 G3BP2 Y19 Sugiyama Ras GTPase-activating protein-binding protein 2 (G3BP-2) (GAP SH3 domain-binding protein 2) Scaffold protein that plays an essential role in cytoplasmic stress granule formation which acts as a platform for antiviral signaling (PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572). Plays an essential role in stress granule formation (PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:35977029). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:32302570, PubMed:32302571, PubMed:32302572). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (By similarity). {ECO:0000250|UniProtKB:Q13283, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:35977029}.
Q13283 G3BP1 Y19 Sugiyama Ras GTPase-activating protein-binding protein 1 (G3BP-1) (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent DNA helicase VIII) (hDH VIII) (GAP SH3 domain-binding protein 1) Protein involved in various processes, such as stress granule formation and innate immunity (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:30510222, PubMed:30804210). Plays an essential role in stress granule formation (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:35977029, PubMed:36183834, PubMed:36279435, PubMed:36692217, PubMed:37379838). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:36279435, PubMed:37379838). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:36279435, PubMed:36692217). Also acts as an ATP- and magnesium-dependent helicase: unwinds DNA/DNA, RNA/DNA, and RNA/RNA substrates with comparable efficiency (PubMed:9889278). Acts unidirectionally by moving in the 5' to 3' direction along the bound single-stranded DNA (PubMed:9889278). Unwinds preferentially partial DNA and RNA duplexes having a 17 bp annealed portion and either a hanging 3' tail or hanging tails at both 5'- and 3'-ends (PubMed:9889278). Plays an essential role in innate immunity by promoting CGAS and RIGI activity (PubMed:30510222, PubMed:30804210). Participates in the DNA-triggered cGAS/STING pathway by promoting the DNA binding and activation of CGAS (PubMed:30510222). Triggers the condensation of cGAS, a process probably linked to the formation of membrane-less organelles (PubMed:34779554). Also enhances RIGI-induced type I interferon production probably by helping RIGI at sensing pathogenic RNA (PubMed:30804210). May also act as a phosphorylation-dependent sequence-specific endoribonuclease in vitro: Cleaves exclusively between cytosine and adenine and cleaves MYC mRNA preferentially at the 3'-UTR (PubMed:11604510). {ECO:0000269|PubMed:11604510, ECO:0000269|PubMed:12642610, ECO:0000269|PubMed:20180778, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:30510222, ECO:0000269|PubMed:30804210, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:34779554, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:36183834, ECO:0000269|PubMed:36279435, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:37379838, ECO:0000269|PubMed:9889278}.
P62318 SNRPD3 T19 Sugiyama Small nuclear ribonucleoprotein Sm D3 (Sm-D3) (snRNP core protein D3) Plays a role in pre-mRNA splicing as a core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome (PubMed:11991638, PubMed:18984161, PubMed:19325628, PubMed:25555158, PubMed:26912367, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:32494006). Component of both the pre-catalytic spliceosome B complex and activated spliceosome C complexes (PubMed:11991638, PubMed:28076346, PubMed:28502770, PubMed:28781166). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). As part of the U7 snRNP it is involved in histone pre-mRNA 3'-end processing (By similarity). {ECO:0000250|UniProtKB:P62320, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19325628, ECO:0000269|PubMed:25555158, ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932}.
P09104 ENO2 T19 Sugiyama Gamma-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Enolase 2) (Neural enolase) (Neuron-specific enolase) (NSE) Has neurotrophic and neuroprotective properties on a broad spectrum of central nervous system (CNS) neurons. Binds, in a calcium-dependent manner, to cultured neocortical neurons and promotes cell survival (By similarity). {ECO:0000250}.
Download
reactome_id name p -log10_p
R-HSA-5689901 Metalloprotease DUBs 0.000002 5.803
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 0.000011 4.948
R-HSA-3214858 RMTs methylate histone arginines 0.000012 4.937
R-HSA-3214847 HATs acetylate histones 0.000023 4.632
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 0.000027 4.567
R-HSA-69278 Cell Cycle, Mitotic 0.000034 4.468
R-HSA-68867 Assembly of the pre-replicative complex 0.000049 4.308
R-HSA-2559583 Cellular Senescence 0.000046 4.337
R-HSA-69002 DNA Replication Pre-Initiation 0.000064 4.193
R-HSA-1640170 Cell Cycle 0.000097 4.011
R-HSA-75153 Apoptotic execution phase 0.000093 4.032
R-HSA-156711 Polo-like kinase mediated events 0.000132 3.881
R-HSA-5689603 UCH proteinases 0.000134 3.872
R-HSA-1221632 Meiotic synapsis 0.000228 3.642
R-HSA-5689880 Ub-specific processing proteases 0.000272 3.566
R-HSA-1538133 G0 and Early G1 0.000306 3.515
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 0.000309 3.511
R-HSA-68616 Assembly of the ORC complex at the origin of replication 0.000357 3.448
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 0.000402 3.396
R-HSA-9645723 Diseases of programmed cell death 0.000449 3.348
R-HSA-68886 M Phase 0.000478 3.320
R-HSA-68875 Mitotic Prophase 0.000608 3.216
R-HSA-1912408 Pre-NOTCH Transcription and Translation 0.000575 3.240
R-HSA-9616222 Transcriptional regulation of granulopoiesis 0.000609 3.216
R-HSA-212300 PRC2 methylates histones and DNA 0.000632 3.199
R-HSA-4839726 Chromatin organization 0.000741 3.130
R-HSA-171306 Packaging Of Telomere Ends 0.000873 3.059
R-HSA-73772 RNA Polymerase I Promoter Escape 0.000960 3.018
R-HSA-73728 RNA Polymerase I Promoter Opening 0.000873 3.059
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 0.000936 3.029
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 0.000896 3.048
R-HSA-5688426 Deubiquitination 0.000964 3.016
R-HSA-140342 Apoptosis induced DNA fragmentation 0.000972 3.012
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 0.001065 2.973
R-HSA-4419969 Depolymerization of the Nuclear Lamina 0.001076 2.968
R-HSA-445355 Smooth Muscle Contraction 0.001065 2.973
R-HSA-5334118 DNA methylation 0.001177 2.929
R-HSA-1500620 Meiosis 0.001192 2.924
R-HSA-3214815 HDACs deacetylate histones 0.001303 2.885
R-HSA-201681 TCF dependent signaling in response to WNT 0.001292 2.889
R-HSA-72172 mRNA Splicing 0.001452 2.838
R-HSA-110330 Recognition and association of DNA glycosylase with site containing an affected ... 0.001777 2.750
R-HSA-69306 DNA Replication 0.001880 2.726
R-HSA-774815 Nucleosome assembly 0.002071 2.684
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 0.002071 2.684
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 0.002021 2.694
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 0.002087 2.680
R-HSA-72163 mRNA Splicing - Major Pathway 0.002185 2.661
R-HSA-3247509 Chromatin modifying enzymes 0.002231 2.652
R-HSA-73856 RNA Polymerase II Transcription Termination 0.002281 2.642
R-HSA-2299718 Condensation of Prophase Chromosomes 0.002296 2.639
R-HSA-69620 Cell Cycle Checkpoints 0.002537 2.596
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 0.002585 2.588
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 0.002565 2.591
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 0.002585 2.588
R-HSA-5633007 Regulation of TP53 Activity 0.002689 2.570
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 0.002907 2.537
R-HSA-69481 G2/M Checkpoints 0.003002 2.523
R-HSA-1912422 Pre-NOTCH Expression and Processing 0.003263 2.486
R-HSA-8878171 Transcriptional regulation by RUNX1 0.003739 2.427
R-HSA-69275 G2/M Transition 0.003757 2.425
R-HSA-427359 SIRT1 negatively regulates rRNA expression 0.003640 2.439
R-HSA-912446 Meiotic recombination 0.003719 2.430
R-HSA-5357801 Programmed Cell Death 0.003695 2.432
R-HSA-110331 Cleavage of the damaged purine 0.003640 2.439
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 0.003821 2.418
R-HSA-73927 Depurination 0.004054 2.392
R-HSA-72187 mRNA 3'-end processing 0.004069 2.390
R-HSA-453274 Mitotic G2-G2/M phases 0.004100 2.387
R-HSA-6806003 Regulation of TP53 Expression and Degradation 0.004503 2.347
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 0.005184 2.285
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 0.005095 2.293
R-HSA-453276 Regulation of mitotic cell cycle 0.005095 2.293
R-HSA-9670095 Inhibition of DNA recombination at telomere 0.004986 2.302
R-HSA-427413 NoRC negatively regulates rRNA expression 0.005095 2.293
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 0.005095 2.293
R-HSA-1362300 Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... 0.004552 2.342
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 0.004986 2.302
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 0.005021 2.299
R-HSA-9764560 Regulation of CDH1 Gene Transcription 0.004731 2.325
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 0.005326 2.274
R-HSA-5625886 Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... 0.005507 2.259
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 0.005645 2.248
R-HSA-5619507 Activation of HOX genes during differentiation 0.005645 2.248
R-HSA-9821002 Chromatin modifications during the maternal to zygotic transition (MZT) 0.005507 2.259
R-HSA-68882 Mitotic Anaphase 0.005750 2.240
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 0.005886 2.230
R-HSA-2555396 Mitotic Metaphase and Anaphase 0.005976 2.224
R-HSA-2980766 Nuclear Envelope Breakdown 0.006212 2.207
R-HSA-110329 Cleavage of the damaged pyrimidine 0.006666 2.176
R-HSA-73928 Depyrimidination 0.006666 2.176
R-HSA-73854 RNA Polymerase I Promoter Clearance 0.007244 2.140
R-HSA-9710421 Defective pyroptosis 0.007308 2.136
R-HSA-2682334 EPH-Ephrin signaling 0.007301 2.137
R-HSA-2262752 Cellular responses to stress 0.007403 2.131
R-HSA-109581 Apoptosis 0.007432 2.129
R-HSA-8856828 Clathrin-mediated endocytosis 0.007846 2.105
R-HSA-6804754 Regulation of TP53 Expression 0.007872 2.104
R-HSA-8951911 RUNX3 regulates RUNX1-mediated transcription 0.007872 2.104
R-HSA-73864 RNA Polymerase I Transcription 0.008272 2.082
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 0.009100 2.041
R-HSA-162906 HIV Infection 0.008647 2.063
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 0.009406 2.027
R-HSA-74160 Gene expression (Transcription) 0.009572 2.019
R-HSA-69615 G1/S DNA Damage Checkpoints 0.009778 2.010
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 0.009887 2.005
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 0.010652 1.973
R-HSA-9944971 Loss of Function of KMT2D in Kabuki Syndrome 0.012039 1.919
R-HSA-9944997 Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome 0.012039 1.919
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 0.011207 1.951
R-HSA-70263 Gluconeogenesis 0.011198 1.951
R-HSA-9909648 Regulation of PD-L1(CD274) expression 0.011708 1.932
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 0.012175 1.915
R-HSA-9764265 Regulation of CDH1 Expression and Function 0.012175 1.915
R-HSA-68884 Mitotic Telophase/Cytokinesis 0.013724 1.863
R-HSA-9018519 Estrogen-dependent gene expression 0.013566 1.868
R-HSA-2514853 Condensation of Prometaphase Chromosomes 0.013724 1.863
R-HSA-73857 RNA Polymerase II Transcription 0.013022 1.885
R-HSA-157118 Signaling by NOTCH 0.013458 1.871
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 0.012946 1.888
R-HSA-2559580 Oxidative Stress Induced Senescence 0.013488 1.870
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 0.014297 1.845
R-HSA-381038 XBP1(S) activates chaperone genes 0.014297 1.845
R-HSA-6804757 Regulation of TP53 Degradation 0.014510 1.838
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 0.015220 1.818
R-HSA-2644607 Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling 0.016968 1.770
R-HSA-2644605 FBXW7 Mutants and NOTCH1 in Cancer 0.016968 1.770
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 0.016363 1.786
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 0.016264 1.789
R-HSA-9816359 Maternal to zygotic transition (MZT) 0.016470 1.783
R-HSA-162909 Host Interactions of HIV factors 0.017222 1.764
R-HSA-8953897 Cellular responses to stimuli 0.015914 1.798
R-HSA-1500931 Cell-Cell communication 0.016874 1.773
R-HSA-73929 Base-Excision Repair, AP Site Formation 0.017565 1.755
R-HSA-5578749 Transcriptional regulation by small RNAs 0.017643 1.753
R-HSA-8863678 Neurodegenerative Diseases 0.017892 1.747
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 0.017892 1.747
R-HSA-69052 Switching of origins to a post-replicative state 0.018730 1.727
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 0.018800 1.726
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 0.018800 1.726
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 0.018800 1.726
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 0.018825 1.725
R-HSA-6811555 PI5P Regulates TP53 Acetylation 0.019049 1.720
R-HSA-195721 Signaling by WNT 0.019498 1.710
R-HSA-381070 IRE1alpha activates chaperones 0.019779 1.704
R-HSA-9013694 Signaling by NOTCH4 0.019863 1.702
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 0.020146 1.696
R-HSA-453279 Mitotic G1 phase and G1/S transition 0.021321 1.671
R-HSA-69242 S Phase 0.023023 1.638
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 0.026058 1.584
R-HSA-1474165 Reproduction 0.024171 1.617
R-HSA-418990 Adherens junctions interactions 0.027716 1.557
R-HSA-157579 Telomere Maintenance 0.027894 1.554
R-HSA-8878159 Transcriptional regulation by RUNX3 0.027894 1.554
R-HSA-73894 DNA Repair 0.028143 1.551
R-HSA-176412 Phosphorylation of the APC/C 0.028890 1.539
R-HSA-977225 Amyloid fiber formation 0.029158 1.535
R-HSA-5467343 Deletions in the AMER1 gene destabilize the destruction complex 0.032258 1.491
R-HSA-9723907 Loss of Function of TP53 in Cancer 0.032258 1.491
R-HSA-9723905 Loss of function of TP53 in cancer due to loss of tetramerization ability 0.032258 1.491
R-HSA-69478 G2/M DNA replication checkpoint 0.035810 1.446
R-HSA-141430 Inactivation of APC/C via direct inhibition of the APC/C complex 0.032664 1.486
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 0.031831 1.497
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 0.031831 1.497
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 0.034058 1.468
R-HSA-141405 Inhibition of the proteolytic activity of APC/C required for the onset of anapha... 0.032664 1.486
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 0.032664 1.486
R-HSA-162587 HIV Life Cycle 0.031929 1.496
R-HSA-164944 Nef and signal transduction 0.035810 1.446
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 0.035810 1.446
R-HSA-8863795 Downregulation of ERBB2 signaling 0.031922 1.496
R-HSA-2980767 Activation of NIMA Kinases NEK9, NEK6, NEK7 0.035810 1.446
R-HSA-389948 Co-inhibition by PD-1 0.031098 1.507
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 0.034934 1.457
R-HSA-73886 Chromosome Maintenance 0.036293 1.440
R-HSA-421270 Cell-cell junction organization 0.036575 1.437
R-HSA-111465 Apoptotic cleavage of cellular proteins 0.037703 1.424
R-HSA-9031628 NGF-stimulated transcription 0.038796 1.411
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 0.040804 1.389
R-HSA-176187 Activation of ATR in response to replication stress 0.040804 1.389
R-HSA-5675482 Regulation of necroptotic cell death 0.040804 1.389
R-HSA-6804760 Regulation of TP53 Activity through Methylation 0.040939 1.388
R-HSA-69563 p53-Dependent G1 DNA Damage Response 0.041308 1.384
R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 0.041308 1.384
R-HSA-388841 Regulation of T cell activation by CD28 family 0.041683 1.380
R-HSA-9632974 NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis 0.043282 1.364
R-HSA-2470946 Cohesin Loading onto Chromatin 0.043282 1.364
R-HSA-444257 RSK activation 0.051276 1.290
R-HSA-174048 APC/C:Cdc20 mediated degradation of Cyclin B 0.045435 1.343
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 0.044045 1.356
R-HSA-9927426 Developmental Lineage of Mammary Gland Alveolar Cells 0.047426 1.324
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 0.045557 1.341
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 0.043845 1.358
R-HSA-68877 Mitotic Prometaphase 0.050003 1.301
R-HSA-8948747 Regulation of PTEN localization 0.043282 1.364
R-HSA-68949 Orc1 removal from chromatin 0.049423 1.306
R-HSA-2559585 Oncogene Induced Senescence 0.050948 1.293
R-HSA-69206 G1/S Transition 0.043859 1.358
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 0.050311 1.298
R-HSA-73884 Base Excision Repair 0.046942 1.328
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 0.044872 1.348
R-HSA-211000 Gene Silencing by RNA 0.044872 1.348
R-HSA-9700206 Signaling by ALK in cancer 0.044872 1.348
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 0.052322 1.281
R-HSA-432722 Golgi Associated Vesicle Biogenesis 0.052322 1.281
R-HSA-8948751 Regulation of PTEN stability and activity 0.052322 1.281
R-HSA-156842 Eukaryotic Translation Elongation 0.053383 1.273
R-HSA-3700989 Transcriptional Regulation by TP53 0.053477 1.272
R-HSA-199991 Membrane Trafficking 0.054610 1.263
R-HSA-179409 APC-Cdc20 mediated degradation of Nek2A 0.055124 1.259
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 0.055318 1.257
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 0.058407 1.234
R-HSA-201688 WNT mediated activation of DVL 0.059749 1.224
R-HSA-176974 Unwinding of DNA 0.059749 1.224
R-HSA-9020591 Interleukin-12 signaling 0.060700 1.217
R-HSA-5213460 RIPK1-mediated regulated necrosis 0.062344 1.205
R-HSA-211728 Regulation of PAK-2p34 activity by PS-GAP/RHG10 0.063478 1.197
R-HSA-5632968 Defective Mismatch Repair Associated With MSH6 0.063478 1.197
R-HSA-2468052 Establishment of Sister Chromatid Cohesion 0.068663 1.163
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 0.070625 1.151
R-HSA-9645460 Alpha-protein kinase 1 signaling pathway 0.077980 1.108
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 0.070625 1.151
R-HSA-167169 HIV Transcription Elongation 0.070625 1.151
R-HSA-8934903 Receptor Mediated Mitophagy 0.068663 1.163
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 0.071751 1.144
R-HSA-212165 Epigenetic regulation of gene expression 0.063399 1.198
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 0.066417 1.178
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 0.075326 1.123
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 0.075326 1.123
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 0.075326 1.123
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 0.075326 1.123
R-HSA-69541 Stabilization of p53 0.066417 1.178
R-HSA-1227986 Signaling by ERBB2 0.075326 1.123
R-HSA-2644603 Signaling by NOTCH1 in Cancer 0.075326 1.123
R-HSA-9604323 Negative regulation of NOTCH4 signaling 0.070625 1.151
R-HSA-9610379 HCMV Late Events 0.066005 1.180
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 0.071326 1.147
R-HSA-446728 Cell junction organization 0.070215 1.154
R-HSA-8853884 Transcriptional Regulation by VENTX 0.074966 1.125
R-HSA-9020702 Interleukin-1 signaling 0.078691 1.104
R-HSA-8878166 Transcriptional regulation by RUNX2 0.074744 1.126
R-HSA-352230 Amino acid transport across the plasma membrane 0.071751 1.144
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 0.072271 1.141
R-HSA-381119 Unfolded Protein Response (UPR) 0.074885 1.126
R-HSA-8939902 Regulation of RUNX2 expression and activity 0.078996 1.102
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 0.079801 1.098
R-HSA-2467813 Separation of Sister Chromatids 0.080544 1.094
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 0.082761 1.082
R-HSA-162599 Late Phase of HIV Life Cycle 0.084327 1.074
R-HSA-8939211 ESR-mediated signaling 0.084875 1.071
R-HSA-4839748 Signaling by AMER1 mutants 0.087666 1.057
R-HSA-162592 Integration of provirus 0.087666 1.057
R-HSA-73930 Abasic sugar-phosphate removal via the single-nucleotide replacement pathway 0.093692 1.028
R-HSA-5609974 Defective PGM1 causes PGM1-CDG 0.093692 1.028
R-HSA-9665230 Drug resistance in ERBB2 KD mutants 0.122933 0.910
R-HSA-211736 Stimulation of the cell death response by PAK-2p34 0.122933 0.910
R-HSA-9652282 Drug-mediated inhibition of ERBB2 signaling 0.122933 0.910
R-HSA-9665251 Resistance of ERBB2 KD mutants to lapatinib 0.122933 0.910
R-HSA-9665233 Resistance of ERBB2 KD mutants to trastuzumab 0.122933 0.910
R-HSA-9665250 Resistance of ERBB2 KD mutants to AEE788 0.122933 0.910
R-HSA-9665249 Resistance of ERBB2 KD mutants to afatinib 0.122933 0.910
R-HSA-9665737 Drug resistance in ERBB2 TMD/JMD mutants 0.122933 0.910
R-HSA-9665246 Resistance of ERBB2 KD mutants to neratinib 0.122933 0.910
R-HSA-9665244 Resistance of ERBB2 KD mutants to sapitinib 0.122933 0.910
R-HSA-9665245 Resistance of ERBB2 KD mutants to tesevatinib 0.122933 0.910
R-HSA-9665247 Resistance of ERBB2 KD mutants to osimertinib 0.122933 0.910
R-HSA-5368598 Negative regulation of TCF-dependent signaling by DVL-interacting proteins 0.151233 0.820
R-HSA-8865999 MET activates PTPN11 0.151233 0.820
R-HSA-9818035 NFE2L2 regulating ER-stress associated genes 0.178621 0.748
R-HSA-5619113 Defective SLC3A1 causes cystinuria (CSNU) 0.178621 0.748
R-HSA-5660883 Defective SLC7A9 causes cystinuria (CSNU) 0.178621 0.748
R-HSA-69200 Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 ... 0.178621 0.748
R-HSA-8939247 RUNX1 regulates transcription of genes involved in interleukin signaling 0.205127 0.688
R-HSA-8939245 RUNX1 regulates transcription of genes involved in BCR signaling 0.205127 0.688
R-HSA-111463 SMAC (DIABLO) binds to IAPs 0.205127 0.688
R-HSA-9818026 NFE2L2 regulating inflammation associated genes 0.205127 0.688
R-HSA-111464 SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes 0.205127 0.688
R-HSA-9673768 Signaling by membrane-tethered fusions of PDGFRA or PDGFRB 0.205127 0.688
R-HSA-68911 G2 Phase 0.205127 0.688
R-HSA-2197563 NOTCH2 intracellular domain regulates transcription 0.097688 1.010
R-HSA-111469 SMAC, XIAP-regulated apoptotic response 0.230779 0.637
R-HSA-8935964 RUNX1 regulates expression of components of tight junctions 0.230779 0.637
R-HSA-9833576 CDH11 homotypic and heterotypic interactions 0.230779 0.637
R-HSA-111459 Activation of caspases through apoptosome-mediated cleavage 0.230779 0.637
R-HSA-8849470 PTK6 Regulates Cell Cycle 0.230779 0.637
R-HSA-5576894 Phase 1 - inactivation of fast Na+ channels 0.230779 0.637
R-HSA-389359 CD28 dependent Vav1 pathway 0.108012 0.967
R-HSA-8939256 RUNX1 regulates transcription of genes involved in WNT signaling 0.255604 0.592
R-HSA-9645135 STAT5 Activation 0.255604 0.592
R-HSA-177539 Autointegration results in viral DNA circles 0.255604 0.592
R-HSA-113507 E2F-enabled inhibition of pre-replication complex formation 0.255604 0.592
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 0.140515 0.852
R-HSA-9687136 Aberrant regulation of mitotic exit in cancer due to RB1 defects 0.140515 0.852
R-HSA-110357 Displacement of DNA glycosylase by APEX1 0.279631 0.553
R-HSA-112412 SOS-mediated signalling 0.279631 0.553
R-HSA-111367 SLBP independent Processing of Histone Pre-mRNAs 0.279631 0.553
R-HSA-3928663 EPHA-mediated growth cone collapse 0.095805 1.019
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 0.095805 1.019
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 0.095805 1.019
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 0.163195 0.787
R-HSA-8939246 RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... 0.302883 0.519
R-HSA-9010642 ROBO receptors bind AKAP5 0.302883 0.519
R-HSA-8875656 MET receptor recycling 0.302883 0.519
R-HSA-9028335 Activated NTRK2 signals through PI3K 0.302883 0.519
R-HSA-167287 HIV elongation arrest and recovery 0.102396 0.990
R-HSA-167290 Pausing and recovery of HIV elongation 0.102396 0.990
R-HSA-9818032 NFE2L2 regulating MDR associated enzymes 0.325385 0.488
R-HSA-9700645 ALK mutants bind TKIs 0.325385 0.488
R-HSA-211733 Regulation of activated PAK-2p34 by proteasome mediated degradation 0.123188 0.909
R-HSA-8875555 MET activates RAP1 and RAC1 0.347163 0.459
R-HSA-390450 Folding of actin by CCT/TriC 0.347163 0.459
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 0.103706 0.984
R-HSA-6814122 Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding 0.153022 0.815
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 0.108924 0.963
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 0.160809 0.794
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 0.368239 0.434
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 0.368239 0.434
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 0.368239 0.434
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 0.246161 0.609
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE during HIV infection 0.246161 0.609
R-HSA-180910 Vpr-mediated nuclear import of PICs 0.176728 0.753
R-HSA-112382 Formation of RNA Pol II elongation complex 0.136688 0.864
R-HSA-75955 RNA Polymerase II Transcription Elongation 0.142556 0.846
R-HSA-72649 Translation initiation complex formation 0.148521 0.828
R-HSA-72702 Ribosomal scanning and start codon recognition 0.160732 0.794
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 0.294418 0.531
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 0.139808 0.854
R-HSA-194441 Metabolism of non-coding RNA 0.179701 0.745
R-HSA-191859 snRNP Assembly 0.179701 0.745
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 0.099932 1.000
R-HSA-113418 Formation of the Early Elongation Complex 0.306439 0.514
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 0.206067 0.686
R-HSA-380259 Loss of Nlp from mitotic centrosomes 0.206067 0.686
R-HSA-72165 mRNA Splicing - Minor Pathway 0.261417 0.583
R-HSA-8854518 AURKA Activation by TPX2 0.226530 0.645
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 0.204130 0.690
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 0.276020 0.559
R-HSA-380287 Centrosome maturation 0.290489 0.537
R-HSA-72689 Formation of a pool of free 40S subunits 0.269634 0.569
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 0.350014 0.456
R-HSA-6782135 Dual incision in TC-NER 0.367727 0.434
R-HSA-6798695 Neutrophil degranulation 0.308633 0.511
R-HSA-167172 Transcription of the HIV genome 0.107275 0.970
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 0.210152 0.677
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 0.210152 0.677
R-HSA-390466 Chaperonin-mediated protein folding 0.098926 1.005
R-HSA-8934593 Regulation of RUNX1 Expression and Activity 0.282368 0.549
R-HSA-5637812 Signaling by EGFRvIII in Cancer 0.163195 0.787
R-HSA-5637810 Constitutive Signaling by EGFRvIII 0.163195 0.787
R-HSA-1643713 Signaling by EGFR in Cancer 0.282368 0.549
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 0.095342 1.021
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 0.269634 0.569
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 0.330351 0.481
R-HSA-68962 Activation of the pre-replicative complex 0.116094 0.935
R-HSA-9013695 NOTCH4 Intracellular Domain Regulates Transcription 0.210152 0.677
R-HSA-674695 RNA Polymerase II Pre-transcription Events 0.134918 0.870
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 0.154931 0.810
R-HSA-8931987 RUNX1 regulates estrogen receptor mediated transcription 0.279631 0.553
R-HSA-187577 SCF(Skp2)-mediated degradation of p27/p21 0.243977 0.613
R-HSA-69618 Mitotic Spindle Checkpoint 0.160712 0.794
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 0.095805 1.019
R-HSA-418885 DCC mediated attractive signaling 0.129454 0.888
R-HSA-72086 mRNA Capping 0.318420 0.497
R-HSA-9664417 Leishmania phagocytosis 0.259111 0.587
R-HSA-9664422 FCGR3A-mediated phagocytosis 0.259111 0.587
R-HSA-9664407 Parasite infection 0.259111 0.587
R-HSA-8851907 MET activates PI3K/AKT signaling 0.279631 0.553
R-HSA-169911 Regulation of Apoptosis 0.160809 0.794
R-HSA-69202 Cyclin E associated events during G1/S transition 0.116156 0.935
R-HSA-171319 Telomere Extension By Telomerase 0.306439 0.514
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 0.306439 0.514
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 0.364781 0.438
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 0.125374 0.902
R-HSA-5696398 Nucleotide Excision Repair 0.189201 0.723
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 0.119703 0.922
R-HSA-9842860 Regulation of endogenous retroelements 0.169994 0.770
R-HSA-8951936 RUNX3 regulates p14-ARF 0.097688 1.010
R-HSA-8939242 RUNX1 regulates transcription of genes involved in differentiation of keratinocy... 0.302883 0.519
R-HSA-164940 Nef mediated downregulation of MHC class I complex cell surface expression 0.302883 0.519
R-HSA-180585 Vif-mediated degradation of APOBEC3G 0.168714 0.773
R-HSA-917729 Endosomal Sorting Complex Required For Transport (ESCRT) 0.318420 0.497
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 0.305581 0.515
R-HSA-1227990 Signaling by ERBB2 in Cancer 0.116094 0.935
R-HSA-9665348 Signaling by ERBB2 ECD mutants 0.174766 0.758
R-HSA-8941856 RUNX3 regulates NOTCH signaling 0.097688 1.010
R-HSA-9609523 Insertion of tail-anchored proteins into the endoplasmic reticulum membrane 0.198264 0.703
R-HSA-9818027 NFE2L2 regulating anti-oxidant/detoxification enzymes 0.145359 0.838
R-HSA-4641258 Degradation of DVL 0.176728 0.753
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 0.294418 0.531
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 0.365757 0.437
R-HSA-182971 EGFR downregulation 0.123188 0.909
R-HSA-176407 Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase 0.163195 0.787
R-HSA-77588 SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs 0.302883 0.519
R-HSA-9687139 Aberrant regulation of mitotic cell cycle due to RB1 defects 0.116094 0.935
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 0.210152 0.677
R-HSA-5693606 DNA Double Strand Break Response 0.102965 0.987
R-HSA-69473 G2/M DNA damage checkpoint 0.134918 0.870
R-HSA-1250196 SHC1 events in ERBB2 signaling 0.330351 0.481
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 0.204130 0.690
R-HSA-1234174 Cellular response to hypoxia 0.219650 0.658
R-HSA-9664565 Signaling by ERBB2 KD Mutants 0.318420 0.497
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 0.166971 0.777
R-HSA-391251 Protein folding 0.121885 0.914
R-HSA-9924644 Developmental Lineages of the Mammary Gland 0.268830 0.571
R-HSA-177929 Signaling by EGFR 0.350014 0.456
R-HSA-72613 Eukaryotic Translation Initiation 0.256638 0.591
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 0.258227 0.588
R-HSA-9703465 Signaling by FLT3 fusion proteins 0.282368 0.549
R-HSA-72737 Cap-dependent Translation Initiation 0.256638 0.591
R-HSA-9636249 Inhibition of nitric oxide production 0.151233 0.820
R-HSA-69895 Transcriptional activation of cell cycle inhibitor p21 0.178621 0.748
R-HSA-69560 Transcriptional activation of p53 responsive genes 0.178621 0.748
R-HSA-426486 Small interfering RNA (siRNA) biogenesis 0.255604 0.592
R-HSA-5658442 Regulation of RAS by GAPs 0.125259 0.902
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 0.356493 0.448
R-HSA-9012852 Signaling by NOTCH3 0.341135 0.467
R-HSA-6804116 TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest 0.140515 0.852
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 0.264067 0.578
R-HSA-9609690 HCMV Early Events 0.276557 0.558
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 0.358353 0.446
R-HSA-199992 trans-Golgi Network Vesicle Budding 0.125374 0.902
R-HSA-74749 Signal attenuation 0.347163 0.459
R-HSA-9768727 Regulation of CDH1 posttranslational processing and trafficking to plasma membra... 0.145359 0.838
R-HSA-4608870 Asymmetric localization of PCP proteins 0.252675 0.597
R-HSA-195253 Degradation of beta-catenin by the destruction complex 0.254558 0.594
R-HSA-4791275 Signaling by WNT in cancer 0.354028 0.451
R-HSA-9764561 Regulation of CDH1 Function 0.358879 0.445
R-HSA-8951664 Neddylation 0.103363 0.986
R-HSA-9907900 Proteasome assembly 0.243977 0.613
R-HSA-9755511 KEAP1-NFE2L2 pathway 0.194681 0.711
R-HSA-9636667 Manipulation of host energy metabolism 0.093692 1.028
R-HSA-5632928 Defective Mismatch Repair Associated With MSH2 0.093692 1.028
R-HSA-8941333 RUNX2 regulates genes involved in differentiation of myeloid cells 0.178621 0.748
R-HSA-9017802 Noncanonical activation of NOTCH3 0.230779 0.637
R-HSA-176417 Phosphorylation of Emi1 0.230779 0.637
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 0.118610 0.926
R-HSA-203641 NOSTRIN mediated eNOS trafficking 0.279631 0.553
R-HSA-9762292 Regulation of CDH11 function 0.347163 0.459
R-HSA-9014325 TICAM1,TRAF6-dependent induction of TAK1 complex 0.347163 0.459
R-HSA-1980145 Signaling by NOTCH2 0.153022 0.815
R-HSA-9034864 Activated NTRK3 signals through RAS 0.368239 0.434
R-HSA-4839744 Signaling by APC mutants 0.368239 0.434
R-HSA-176033 Interactions of Vpr with host cellular proteins 0.201362 0.696
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 0.173295 0.761
R-HSA-399719 Trafficking of AMPA receptors 0.342223 0.466
R-HSA-162588 Budding and maturation of HIV virion 0.342223 0.466
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 0.247481 0.606
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 0.270197 0.568
R-HSA-881907 Gastrin-CREB signalling pathway via PKC and MAPK 0.186462 0.729
R-HSA-8856688 Golgi-to-ER retrograde transport 0.358102 0.446
R-HSA-9682385 FLT3 signaling in disease 0.168714 0.773
R-HSA-8866652 Synthesis of active ubiquitin: roles of E1 and E2 enzymes 0.095805 1.019
R-HSA-1980143 Signaling by NOTCH1 0.144774 0.839
R-HSA-8849468 PTK6 Regulates Proteins Involved in RNA Processing 0.205127 0.688
R-HSA-9830674 Formation of the ureteric bud 0.246161 0.609
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 0.187053 0.728
R-HSA-212436 Generic Transcription Pathway 0.191235 0.718
R-HSA-111448 Activation of NOXA and translocation to mitochondria 0.178621 0.748
R-HSA-75035 Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 0.108012 0.967
R-HSA-139915 Activation of PUMA and translocation to mitochondria 0.279631 0.553
R-HSA-937042 IRAK2 mediated activation of TAK1 complex 0.325385 0.488
R-HSA-9675126 Diseases of mitotic cell cycle 0.130434 0.885
R-HSA-349425 Autodegradation of the E3 ubiquitin ligase COP1 0.153022 0.815
R-HSA-1169091 Activation of NF-kappaB in B cells 0.305581 0.515
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 0.118457 0.926
R-HSA-72766 Translation 0.228110 0.642
R-HSA-1660516 Synthesis of PIPs at the early endosome membrane 0.270301 0.568
R-HSA-3371556 Cellular response to heat stress 0.158821 0.799
R-HSA-75893 TNF signaling 0.350014 0.456
R-HSA-8953854 Metabolism of RNA 0.192695 0.715
R-HSA-9824272 Somitogenesis 0.252675 0.597
R-HSA-4420097 VEGFA-VEGFR2 Pathway 0.251222 0.600
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 0.108924 0.963
R-HSA-9932444 ATP-dependent chromatin remodelers 0.270301 0.568
R-HSA-9932451 SWI/SNF chromatin remodelers 0.270301 0.568
R-HSA-9607240 FLT3 Signaling 0.209747 0.678
R-HSA-352238 Breakdown of the nuclear lamina 0.093692 1.028
R-HSA-5423599 Diseases of Mismatch Repair (MMR) 0.151233 0.820
R-HSA-110381 Resolution of AP sites via the single-nucleotide replacement pathway 0.205127 0.688
R-HSA-429593 Inositol transporters 0.205127 0.688
R-HSA-175567 Integration of viral DNA into host genomic DNA 0.255604 0.592
R-HSA-9706369 Negative regulation of FLT3 0.140515 0.852
R-HSA-8847453 Synthesis of PIPs in the nucleus 0.279631 0.553
R-HSA-9839383 TGFBR3 PTM regulation 0.302883 0.519
R-HSA-354192 Integrin signaling 0.137827 0.861
R-HSA-2179392 EGFR Transactivation by Gastrin 0.347163 0.459
R-HSA-164843 2-LTR circle formation 0.347163 0.459
R-HSA-9929491 SPOP-mediated proteasomal degradation of PD-L1(CD274) 0.209747 0.678
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 0.261417 0.583
R-HSA-350562 Regulation of ornithine decarboxylase (ODC) 0.354028 0.451
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 0.332248 0.479
R-HSA-194138 Signaling by VEGF 0.312283 0.505
R-HSA-373752 Netrin-1 signaling 0.243977 0.613
R-HSA-9759475 Regulation of CDH11 Expression and Function 0.318420 0.497
R-HSA-8852135 Protein ubiquitination 0.290489 0.537
R-HSA-9793380 Formation of paraxial mesoderm 0.192741 0.715
R-HSA-3928662 EPHB-mediated forward signaling 0.243977 0.613
R-HSA-5205647 Mitophagy 0.153022 0.815
R-HSA-9764260 Regulation of Expression and Function of Type II Classical Cadherins 0.365757 0.437
R-HSA-9766229 Degradation of CDH1 0.287847 0.541
R-HSA-69239 Synthesis of DNA 0.099932 1.000
R-HSA-76009 Platelet Aggregation (Plug Formation) 0.252675 0.597
R-HSA-9818749 Regulation of NFE2L2 gene expression 0.255604 0.592
R-HSA-9762293 Regulation of CDH11 gene transcription 0.325385 0.488
R-HSA-8854214 TBC/RABGAPs 0.235329 0.628
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 0.340083 0.468
R-HSA-5653656 Vesicle-mediated transport 0.315723 0.501
R-HSA-3928664 Ephrin signaling 0.174766 0.758
R-HSA-5621575 CD209 (DC-SIGN) signaling 0.258227 0.588
R-HSA-162594 Early Phase of HIV Life Cycle 0.210152 0.677
R-HSA-9927353 Co-inhibition by BTLA 0.205127 0.688
R-HSA-1433559 Regulation of KIT signaling 0.118610 0.926
R-HSA-199920 CREB phosphorylation 0.255604 0.592
R-HSA-210744 Regulation of gene expression in late stage (branching morphogenesis) pancreatic... 0.140515 0.852
R-HSA-426117 Cation-coupled Chloride cotransporters 0.279631 0.553
R-HSA-3371599 Defective HLCS causes multiple carboxylase deficiency 0.279631 0.553
R-HSA-8866907 Activation of the TFAP2 (AP-2) family of transcription factors 0.325385 0.488
R-HSA-2465910 MASTL Facilitates Mitotic Progression 0.325385 0.488
R-HSA-110056 MAPK3 (ERK1) activation 0.347163 0.459
R-HSA-9671555 Signaling by PDGFR in disease 0.222108 0.653
R-HSA-166208 mTORC1-mediated signalling 0.234117 0.631
R-HSA-6807047 Cholesterol biosynthesis via desmosterol 0.368239 0.434
R-HSA-9833109 Evasion by RSV of host interferon responses 0.342223 0.466
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 0.325286 0.488
R-HSA-9006931 Signaling by Nuclear Receptors 0.131732 0.880
R-HSA-397014 Muscle contraction 0.145564 0.837
R-HSA-9819196 Zygotic genome activation (ZGA) 0.210152 0.677
R-HSA-2028269 Signaling by Hippo 0.163195 0.787
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 0.204130 0.690
R-HSA-9705462 Inactivation of CSF3 (G-CSF) signaling 0.222108 0.653
R-HSA-8941858 Regulation of RUNX3 expression and activity 0.201362 0.696
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 0.365757 0.437
R-HSA-73887 Death Receptor Signaling 0.335729 0.474
R-HSA-376176 Signaling by ROBO receptors 0.307281 0.512
R-HSA-5689896 Ovarian tumor domain proteases 0.176728 0.753
R-HSA-983169 Class I MHC mediated antigen processing & presentation 0.120788 0.918
R-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production 0.205127 0.688
R-HSA-9764302 Regulation of CDH19 Expression and Function 0.230779 0.637
R-HSA-391160 Signal regulatory protein family interactions 0.118610 0.926
R-HSA-9013700 NOTCH4 Activation and Transmission of Signal to the Nucleus 0.325385 0.488
R-HSA-193692 Regulated proteolysis of p75NTR 0.325385 0.488
R-HSA-5696394 DNA Damage Recognition in GG-NER 0.145359 0.838
R-HSA-975871 MyD88 cascade initiated on plasma membrane 0.151658 0.819
R-HSA-70326 Glucose metabolism 0.142827 0.845
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 0.214312 0.669
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 0.151658 0.819
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 0.151658 0.819
R-HSA-422475 Axon guidance 0.237504 0.624
R-HSA-166166 MyD88-independent TLR4 cascade 0.214312 0.669
R-HSA-9674555 Signaling by CSF3 (G-CSF) 0.109161 0.962
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 0.189201 0.723
R-HSA-9675108 Nervous system development 0.193501 0.713
R-HSA-5218859 Regulated Necrosis 0.107275 0.970
R-HSA-1474151 Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation 0.330351 0.481
R-HSA-186763 Downstream signal transduction 0.342223 0.466
R-HSA-975155 MyD88 dependent cascade initiated on endosome 0.209199 0.679
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 0.131368 0.882
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 0.273067 0.564
R-HSA-3214841 PKMTs methylate histone lysines 0.209747 0.678
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 0.273067 0.564
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 0.289740 0.538
R-HSA-187037 Signaling by NTRK1 (TRKA) 0.193078 0.714
R-HSA-9833482 PKR-mediated signaling 0.165373 0.782
R-HSA-5687128 MAPK6/MAPK4 signaling 0.192628 0.715
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 0.289740 0.538
R-HSA-70171 Glycolysis 0.300904 0.522
R-HSA-8848021 Signaling by PTK6 0.206067 0.686
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 0.206067 0.686
R-HSA-8941855 RUNX3 regulates CDKN1A transcription 0.230779 0.637
R-HSA-162658 Golgi Cisternae Pericentriolar Stack Reorganization 0.108012 0.967
R-HSA-9675151 Disorders of Developmental Biology 0.151770 0.819
R-HSA-3323169 Defects in biotin (Btn) metabolism 0.325385 0.488
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 0.198264 0.703
R-HSA-9627069 Regulation of the apoptosome activity 0.347163 0.459
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 0.229902 0.638
R-HSA-166520 Signaling by NTRKs 0.304573 0.516
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 0.207141 0.684
R-HSA-373753 Nephrin family interactions 0.198264 0.703
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 0.198264 0.703
R-HSA-6807070 PTEN Regulation 0.144660 0.840
R-HSA-9022692 Regulation of MECP2 expression and activity 0.365757 0.437
R-HSA-9958863 SLC-mediated transport of amino acids 0.102965 0.987
R-HSA-69190 DNA strand elongation 0.354028 0.451
R-HSA-446652 Interleukin-1 family signaling 0.110909 0.955
R-HSA-9828806 Maturation of hRSV A proteins 0.294418 0.531
R-HSA-1280215 Cytokine Signaling in Immune system 0.262082 0.582
R-HSA-69205 G1/S-Specific Transcription 0.168714 0.773
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 0.325385 0.488
R-HSA-111458 Formation of apoptosome 0.347163 0.459
R-HSA-9825892 Regulation of MITF-M-dependent genes involved in cell cycle and proliferation 0.222108 0.653
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 0.149816 0.824
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 0.367727 0.434
R-HSA-1236394 Signaling by ERBB4 0.283241 0.548
R-HSA-9926550 Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... 0.174766 0.758
R-HSA-1251985 Nuclear signaling by ERBB4 0.201362 0.696
R-HSA-449147 Signaling by Interleukins 0.226060 0.646
R-HSA-400685 Sema4D in semaphorin signaling 0.270301 0.568
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 0.282368 0.549
R-HSA-9008059 Interleukin-37 signaling 0.330351 0.481
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 0.243977 0.613
R-HSA-75205 Dissolution of Fibrin Clot 0.368239 0.434
R-HSA-447115 Interleukin-12 family signaling 0.098926 1.005
R-HSA-141424 Amplification of signal from the kinetochores 0.371222 0.430
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 0.371222 0.430
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 0.371222 0.430
R-HSA-180534 Vpu mediated degradation of CD4 0.377403 0.423
R-HSA-9619665 EGR2 and SOX10-mediated initiation of Schwann cell myelination 0.377403 0.423
R-HSA-162582 Signal Transduction 0.385450 0.414
R-HSA-5339716 Signaling by GSK3beta mutants 0.388636 0.410
R-HSA-1234158 Regulation of gene expression by Hypoxia-inducible Factor 0.388636 0.410
R-HSA-9818028 NFE2L2 regulates pentose phosphate pathway genes 0.388636 0.410
R-HSA-9026519 Activated NTRK2 signals through RAS 0.388636 0.410
R-HSA-4839735 Signaling by AXIN mutants 0.388636 0.410
R-HSA-180689 APOBEC3G mediated resistance to HIV-1 infection 0.388636 0.410
R-HSA-111461 Cytochrome c-mediated apoptotic response 0.388636 0.410
R-HSA-428540 Activation of RAC1 0.388636 0.410
R-HSA-110362 POLB-Dependent Long Patch Base Excision Repair 0.388636 0.410
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 0.388959 0.410
R-HSA-2142845 Hyaluronan metabolism 0.388959 0.410
R-HSA-75815 Ubiquitin-dependent degradation of Cyclin D 0.388959 0.410
R-HSA-9609646 HCMV Infection 0.393065 0.406
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 0.393263 0.405
R-HSA-156902 Peptide chain elongation 0.393263 0.405
R-HSA-450294 MAP kinase activation 0.394126 0.404
R-HSA-9948299 Ribosome-associated quality control 0.398543 0.400
R-HSA-917977 Transferrin endocytosis and recycling 0.400419 0.397
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 0.400419 0.397
R-HSA-8854050 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 0.400419 0.397
R-HSA-174113 SCF-beta-TrCP mediated degradation of Emi1 0.400419 0.397
R-HSA-1236974 ER-Phagosome pathway 0.400587 0.397
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 0.402865 0.395
R-HSA-186797 Signaling by PDGF 0.402865 0.395
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 0.407896 0.389
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 0.408376 0.389
R-HSA-9820865 Z-decay: degradation of maternal mRNAs by zygotically expressed factors 0.408376 0.389
R-HSA-179812 GRB2 events in EGFR signaling 0.408376 0.389
R-HSA-5619094 Variant SLC6A14 may confer susceptibility towards obesity 0.408376 0.389
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 0.408376 0.389
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 0.408376 0.389
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 0.408376 0.389
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 0.408376 0.389
R-HSA-9617629 Regulation of FOXO transcriptional activity by acetylation 0.408376 0.389
R-HSA-8851805 MET activates RAS signaling 0.408376 0.389
R-HSA-2428933 SHC-related events triggered by IGF1R 0.408376 0.389
R-HSA-9842663 Signaling by LTK 0.408376 0.389
R-HSA-9028731 Activated NTRK2 signals through FRS2 and FRS3 0.408376 0.389
R-HSA-9931530 Phosphorylation and nuclear translocation of the CRY:PER:kinase complex 0.408376 0.389
R-HSA-8983432 Interleukin-15 signaling 0.408376 0.389
R-HSA-209543 p75NTR recruits signalling complexes 0.408376 0.389
R-HSA-5628897 TP53 Regulates Metabolic Genes 0.409738 0.387
R-HSA-6790901 rRNA modification in the nucleus and cytosol 0.411567 0.386
R-HSA-373755 Semaphorin interactions 0.411567 0.386
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 0.411777 0.385
R-HSA-8986944 Transcriptional Regulation by MECP2 0.415186 0.382
R-HSA-4641257 Degradation of AXIN 0.423028 0.374
R-HSA-9762114 GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 0.423028 0.374
R-HSA-8877330 RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) 0.427479 0.369
R-HSA-9661069 Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) 0.427479 0.369
R-HSA-9818030 NFE2L2 regulating tumorigenic genes 0.427479 0.369
R-HSA-6804759 Regulation of TP53 Activity through Association with Co-factors 0.427479 0.369
R-HSA-174490 Membrane binding and targetting of GAG proteins 0.427479 0.369
R-HSA-9659787 Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects 0.427479 0.369
R-HSA-1482883 Acyl chain remodeling of DAG and TAG 0.427479 0.369
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 0.428384 0.368
R-HSA-9007101 Rab regulation of trafficking 0.428895 0.368
R-HSA-9824446 Viral Infection Pathways 0.432975 0.364
R-HSA-8875878 MET promotes cell motility 0.434166 0.362
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 0.434166 0.362
R-HSA-168276 NS1 Mediated Effects on Host Pathways 0.445188 0.351
R-HSA-9929356 GSK3B-mediated proteasomal degradation of PD-L1(CD274) 0.445188 0.351
R-HSA-1236978 Cross-presentation of soluble exogenous antigens (endosomes) 0.445188 0.351
R-HSA-9820965 Respiratory syncytial virus (RSV) genome replication, transcription and translat... 0.445188 0.351
R-HSA-6803211 TP53 Regulates Transcription of Death Receptors and Ligands 0.445967 0.351
R-HSA-418457 cGMP effects 0.445967 0.351
R-HSA-975163 IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation 0.445967 0.351
R-HSA-174495 Synthesis And Processing Of GAG, GAGPOL Polyproteins 0.445967 0.351
R-HSA-5655291 Signaling by FGFR4 in disease 0.445967 0.351
R-HSA-9856872 Malate-aspartate shuttle 0.445967 0.351
R-HSA-205043 NRIF signals cell death from the nucleus 0.445967 0.351
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 0.445967 0.351
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 0.446585 0.350
R-HSA-9734767 Developmental Cell Lineages 0.449657 0.347
R-HSA-9759194 Nuclear events mediated by NFE2L2 0.454235 0.343
R-HSA-177243 Interactions of Rev with host cellular proteins 0.456089 0.341
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 0.456089 0.341
R-HSA-451927 Interleukin-2 family signaling 0.456089 0.341
R-HSA-1257604 PIP3 activates AKT signaling 0.458389 0.339
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 0.461675 0.336
R-HSA-196299 Beta-catenin phosphorylation cascade 0.463859 0.334
R-HSA-8875360 InlB-mediated entry of Listeria monocytogenes into host cell 0.463859 0.334
R-HSA-9027284 Erythropoietin activates RAS 0.463859 0.334
R-HSA-937072 TRAF6-mediated induction of TAK1 complex within TLR4 complex 0.463859 0.334
R-HSA-399954 Sema3A PAK dependent Axon repulsion 0.463859 0.334
R-HSA-180336 SHC1 events in EGFR signaling 0.463859 0.334
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 0.463859 0.334
R-HSA-9673767 Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants 0.463859 0.334
R-HSA-9673770 Signaling by PDGFRA extracellular domain mutants 0.463859 0.334
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 0.463859 0.334
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 0.463859 0.334
R-HSA-196780 Biotin transport and metabolism 0.463859 0.334
R-HSA-8876725 Protein methylation 0.463859 0.334
R-HSA-1295596 Spry regulation of FGF signaling 0.463859 0.334
R-HSA-450385 Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA 0.463859 0.334
R-HSA-9735871 SARS-CoV-1 targets host intracellular signalling and regulatory pathways 0.463859 0.334
R-HSA-9701898 STAT3 nuclear events downstream of ALK signaling 0.463859 0.334
R-HSA-193639 p75NTR signals via NF-kB 0.463859 0.334
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 0.465547 0.332
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 0.466866 0.331
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 0.466866 0.331
R-HSA-5218920 VEGFR2 mediated vascular permeability 0.466866 0.331
R-HSA-5362768 Hh mutants are degraded by ERAD 0.466866 0.331
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 0.466866 0.331
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 0.471202 0.327
R-HSA-448424 Interleukin-17 signaling 0.471202 0.327
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 0.477515 0.321
R-HSA-167161 HIV Transcription Initiation 0.477515 0.321
R-HSA-75953 RNA Polymerase II Transcription Initiation 0.477515 0.321
R-HSA-9932298 Degradation of CRY and PER proteins 0.477515 0.321
R-HSA-5610780 Degradation of GLI1 by the proteasome 0.477515 0.321
R-HSA-5610785 GLI3 is processed to GLI3R by the proteasome 0.477515 0.321
R-HSA-5610783 Degradation of GLI2 by the proteasome 0.477515 0.321
R-HSA-442660 SLC-mediated transport of neurotransmitters 0.477515 0.321
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 0.477515 0.321
R-HSA-5632684 Hedgehog 'on' state 0.479504 0.319
R-HSA-5099900 WNT5A-dependent internalization of FZD4 0.481174 0.318
R-HSA-6803207 TP53 Regulates Transcription of Caspase Activators and Caspases 0.481174 0.318
R-HSA-9673324 WNT5:FZD7-mediated leishmania damping 0.481174 0.318
R-HSA-9664420 Killing mechanisms 0.481174 0.318
R-HSA-209931 Serotonin and melatonin biosynthesis 0.481174 0.318
R-HSA-450604 KSRP (KHSRP) binds and destabilizes mRNA 0.481174 0.318
R-HSA-9758274 Regulation of NF-kappa B signaling 0.481174 0.318
R-HSA-5635838 Activation of SMO 0.481174 0.318
R-HSA-9945266 Differentiation of T cells 0.481174 0.318
R-HSA-9942503 Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) 0.481174 0.318
R-HSA-9614085 FOXO-mediated transcription 0.486665 0.313
R-HSA-193704 p75 NTR receptor-mediated signalling 0.486665 0.313
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 0.487745 0.312
R-HSA-9927418 Developmental Lineage of Mammary Gland Luminal Epithelial Cells 0.488033 0.312
R-HSA-73762 RNA Polymerase I Transcription Initiation 0.488033 0.312
R-HSA-381676 Glucagon-like Peptide-1 (GLP1) regulates insulin secretion 0.488033 0.312
R-HSA-165159 MTOR signalling 0.488033 0.312
R-HSA-5693532 DNA Double-Strand Break Repair 0.489860 0.310
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 0.495922 0.305
R-HSA-1963640 GRB2 events in ERBB2 signaling 0.497930 0.303
R-HSA-1250347 SHC1 events in ERBB4 signaling 0.497930 0.303
R-HSA-9702518 STAT5 activation downstream of FLT3 ITD mutants 0.497930 0.303
R-HSA-918233 TRAF3-dependent IRF activation pathway 0.497930 0.303
R-HSA-70370 Galactose catabolism 0.497930 0.303
R-HSA-400511 Synthesis, secretion, and inactivation of Glucose-dependent Insulinotropic Polyp... 0.497930 0.303
R-HSA-73776 RNA Polymerase II Promoter Escape 0.498418 0.302
R-HSA-1433557 Signaling by SCF-KIT 0.498418 0.302
R-HSA-5387390 Hh mutants abrogate ligand secretion 0.498418 0.302
R-HSA-9637690 Response of Mtb to phagocytosis 0.498418 0.302
R-HSA-9612973 Autophagy 0.506542 0.295
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 0.507438 0.295
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 0.507438 0.295
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 0.512077 0.291
R-HSA-1169408 ISG15 antiviral mechanism 0.512077 0.291
R-HSA-917937 Iron uptake and transport 0.512077 0.291
R-HSA-5358565 Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) 0.514147 0.289
R-HSA-1963642 PI3K events in ERBB2 signaling 0.514147 0.289
R-HSA-1660517 Synthesis of PIPs at the late endosome membrane 0.514147 0.289
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to cla... 0.514147 0.289
R-HSA-209905 Catecholamine biosynthesis 0.514147 0.289
R-HSA-1614517 Sulfide oxidation to sulfate 0.514147 0.289
R-HSA-5210891 Uptake and function of anthrax toxins 0.514147 0.289
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 0.518778 0.285
R-HSA-5678895 Defective CFTR causes cystic fibrosis 0.518778 0.285
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 0.518778 0.285
R-HSA-8868773 rRNA processing in the nucleus and cytosol 0.518921 0.285
R-HSA-1280218 Adaptive Immune System 0.523811 0.281
R-HSA-5357905 Regulation of TNFR1 signaling 0.528749 0.277
R-HSA-9839373 Signaling by TGFBR3 0.528749 0.277
R-HSA-180292 GAB1 signalosome 0.529841 0.276
R-HSA-5651801 PCNA-Dependent Long Patch Base Excision Repair 0.529841 0.276
R-HSA-181429 Serotonin Neurotransmitter Release Cycle 0.529841 0.276
R-HSA-111471 Apoptotic factor-mediated response 0.529841 0.276
R-HSA-5358508 Mismatch Repair 0.529841 0.276
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 0.529841 0.276
R-HSA-2564830 Cytosolic iron-sulfur cluster assembly 0.529841 0.276
R-HSA-416993 Trafficking of GluR2-containing AMPA receptors 0.529841 0.276
R-HSA-210993 Tie2 Signaling 0.529841 0.276
R-HSA-9613829 Chaperone Mediated Autophagy 0.529841 0.276
R-HSA-9614657 FOXO-mediated transcription of cell death genes 0.529841 0.276
R-HSA-428643 Organic anion transport by SLC5/17/25 transporters 0.529841 0.276
R-HSA-8849932 Synaptic adhesion-like molecules 0.529841 0.276
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 0.529841 0.276
R-HSA-196791 Vitamin D (calciferol) metabolism 0.529841 0.276
R-HSA-168898 Toll-like Receptor Cascades 0.533999 0.272
R-HSA-383280 Nuclear Receptor transcription pathway 0.535784 0.271
R-HSA-4086400 PCP/CE pathway 0.535784 0.271
R-HSA-1483191 Synthesis of PC 0.538580 0.269
R-HSA-437239 Recycling pathway of L1 0.538580 0.269
R-HSA-9692914 SARS-CoV-1-host interactions 0.541190 0.267
R-HSA-5654710 PI-3K cascade:FGFR3 0.545029 0.264
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 0.545029 0.264
R-HSA-912631 Regulation of signaling by CBL 0.545029 0.264
R-HSA-429958 mRNA decay by 3' to 5' exoribonuclease 0.545029 0.264
R-HSA-113510 E2F mediated regulation of DNA replication 0.545029 0.264
R-HSA-449836 Other interleukin signaling 0.545029 0.264
R-HSA-389356 Co-stimulation by CD28 0.548267 0.261
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 0.548267 0.261
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 0.548267 0.261
R-HSA-1236975 Antigen processing-Cross presentation 0.554358 0.256
R-HSA-5693607 Processing of DNA double-strand break ends 0.558825 0.253
R-HSA-5654720 PI-3K cascade:FGFR4 0.559727 0.252
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 0.559727 0.252
R-HSA-6807004 Negative regulation of MET activity 0.559727 0.252
R-HSA-5620916 VxPx cargo-targeting to cilium 0.559727 0.252
R-HSA-5620922 BBSome-mediated cargo-targeting to cilium 0.559727 0.252
R-HSA-196108 Pregnenolone biosynthesis 0.559727 0.252
R-HSA-9629569 Protein hydroxylation 0.559727 0.252
R-HSA-445144 Signal transduction by L1 0.559727 0.252
R-HSA-3322077 Glycogen synthesis 0.559727 0.252
R-HSA-5654704 SHC-mediated cascade:FGFR3 0.573951 0.241
R-HSA-5357786 TNFR1-induced proapoptotic signaling 0.573951 0.241
R-HSA-167044 Signalling to RAS 0.573951 0.241
R-HSA-2979096 NOTCH2 Activation and Transmission of Signal to the Nucleus 0.573951 0.241
R-HSA-198753 ERK/MAPK targets 0.573951 0.241
R-HSA-9931295 PD-L1(CD274) glycosylation and translocation to plasma membrane 0.573951 0.241
R-HSA-2161541 Abacavir metabolism 0.573951 0.241
R-HSA-422085 Synthesis, secretion, and deacylation of Ghrelin 0.573951 0.241
R-HSA-210991 Basigin interactions 0.573951 0.241
R-HSA-3371571 HSF1-dependent transactivation 0.576467 0.239
R-HSA-5358346 Hedgehog ligand biogenesis 0.576467 0.239
R-HSA-927802 Nonsense-Mediated Decay (NMD) 0.580075 0.237
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 0.580075 0.237
R-HSA-2871796 FCERI mediated MAPK activation 0.580075 0.237
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 0.585577 0.232
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 0.585577 0.232
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 0.586535 0.232
R-HSA-76066 RNA Polymerase III Transcription Initiation From Type 2 Promoter 0.587716 0.231
R-HSA-5654719 SHC-mediated cascade:FGFR4 0.587716 0.231
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 0.587716 0.231
R-HSA-8876384 Listeria monocytogenes entry into host cells 0.587716 0.231
R-HSA-5654706 FRS-mediated FGFR3 signaling 0.587716 0.231
R-HSA-450302 activated TAK1 mediates p38 MAPK activation 0.587716 0.231
R-HSA-175474 Assembly Of The HIV Virion 0.587716 0.231
R-HSA-9034015 Signaling by NTRK3 (TRKC) 0.587716 0.231
R-HSA-9617828 FOXO-mediated transcription of cell cycle genes 0.587716 0.231
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 0.592267 0.227
R-HSA-5654689 PI-3K cascade:FGFR1 0.601038 0.221
R-HSA-350054 Notch-HLH transcription pathway 0.601038 0.221
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter 0.601038 0.221
R-HSA-6803205 TP53 regulates transcription of several additional cell death genes whose specif... 0.601038 0.221
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 0.601038 0.221
R-HSA-212676 Dopamine Neurotransmitter Release Cycle 0.601038 0.221
R-HSA-5654712 FRS-mediated FGFR4 signaling 0.601038 0.221
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 0.601038 0.221
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 0.601038 0.221
R-HSA-6807062 Cholesterol biosynthesis via lathosterol 0.601038 0.221
R-HSA-112409 RAF-independent MAPK1/3 activation 0.601038 0.221
R-HSA-9669938 Signaling by KIT in disease 0.601038 0.221
R-HSA-2173788 Downregulation of TGF-beta receptor signaling 0.601038 0.221
R-HSA-9711123 Cellular response to chemical stress 0.602772 0.220
R-HSA-438064 Post NMDA receptor activation events 0.609812 0.215
R-HSA-70268 Pyruvate metabolism 0.609812 0.215
R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic 0.612033 0.213
R-HSA-912526 Interleukin receptor SHC signaling 0.613930 0.212
R-HSA-389957 Prefoldin mediated transfer of substrate to CCT/TriC 0.613930 0.212
R-HSA-879518 Organic anion transport by SLCO transporters 0.613930 0.212
R-HSA-9634638 Estrogen-dependent nuclear events downstream of ESR-membrane signaling 0.613930 0.212
R-HSA-9663891 Selective autophagy 0.616767 0.210
R-HSA-109606 Intrinsic Pathway for Apoptosis 0.620560 0.207
R-HSA-193648 NRAGE signals death through JNK 0.620560 0.207
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 0.620560 0.207
R-HSA-209776 Metabolism of amine-derived hormones 0.620560 0.207
R-HSA-3299685 Detoxification of Reactive Oxygen Species 0.620560 0.207
R-HSA-429947 Deadenylation of mRNA 0.626406 0.203
R-HSA-389960 Formation of tubulin folding intermediates by CCT/TriC 0.626406 0.203
R-HSA-9865881 Complex III assembly 0.626406 0.203
R-HSA-9703648 Signaling by FLT3 ITD and TKD mutants 0.626406 0.203
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 0.626406 0.203
R-HSA-181430 Norepinephrine Neurotransmitter Release Cycle 0.626406 0.203
R-HSA-5654688 SHC-mediated cascade:FGFR1 0.626406 0.203
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 0.626406 0.203
R-HSA-933542 TRAF6 mediated NF-kB activation 0.626406 0.203
R-HSA-9821993 Replacement of protamines by nucleosomes in the male pronucleus 0.626406 0.203
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 0.637124 0.196
R-HSA-5654695 PI-3K cascade:FGFR2 0.638479 0.195
R-HSA-203927 MicroRNA (miRNA) biogenesis 0.638479 0.195
R-HSA-420029 Tight junction interactions 0.638479 0.195
R-HSA-5654693 FRS-mediated FGFR1 signaling 0.638479 0.195
R-HSA-2160916 Hyaluronan degradation 0.638479 0.195
R-HSA-1266695 Interleukin-7 signaling 0.638479 0.195
R-HSA-9839394 TGFBR3 expression 0.638479 0.195
R-HSA-1482801 Acyl chain remodelling of PS 0.638479 0.195
R-HSA-70221 Glycogen breakdown (glycogenolysis) 0.638479 0.195
R-HSA-9006925 Intracellular signaling by second messengers 0.641232 0.193
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 0.643739 0.191
R-HSA-429914 Deadenylation-dependent mRNA decay 0.645272 0.190
R-HSA-180786 Extension of Telomeres 0.645272 0.190
R-HSA-186712 Regulation of beta-cell development 0.645272 0.190
R-HSA-8874081 MET activates PTK2 signaling 0.650164 0.187
R-HSA-110373 Resolution of AP sites via the multiple-nucleotide patch replacement pathway 0.650164 0.187
R-HSA-9637687 Suppression of phagosomal maturation 0.650164 0.187
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 0.650164 0.187
R-HSA-210500 Glutamate Neurotransmitter Release Cycle 0.650164 0.187
R-HSA-2161522 Abacavir ADME 0.650164 0.187
R-HSA-2046105 Linoleic acid (LA) metabolism 0.650164 0.187
R-HSA-9845614 Sphingolipid catabolism 0.650164 0.187
R-HSA-1660514 Synthesis of PIPs at the Golgi membrane 0.650164 0.187
R-HSA-983189 Kinesins 0.653222 0.185
R-HSA-8943724 Regulation of PTEN gene transcription 0.653222 0.185
R-HSA-351202 Metabolism of polyamines 0.653222 0.185
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 0.655189 0.184
R-HSA-5683057 MAPK family signaling cascades 0.658725 0.181
R-HSA-73863 RNA Polymerase I Transcription Termination 0.661471 0.179
R-HSA-5654699 SHC-mediated cascade:FGFR2 0.661471 0.179
R-HSA-5655332 Signaling by FGFR3 in disease 0.661471 0.179
R-HSA-9006115 Signaling by NTRK2 (TRKB) 0.661471 0.179
R-HSA-75109 Triglyceride biosynthesis 0.661471 0.179
R-HSA-1483213 Synthesis of PE 0.661471 0.179
R-HSA-264876 Insulin processing 0.661471 0.179
R-HSA-6809371 Formation of the cornified envelope 0.662981 0.178
R-HSA-375165 NCAM signaling for neurite out-growth 0.668695 0.175
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 0.669345 0.174
R-HSA-9619483 Activation of AMPK downstream of NMDARs 0.672413 0.172
R-HSA-5654732 Negative regulation of FGFR3 signaling 0.672413 0.172
R-HSA-5654700 FRS-mediated FGFR2 signaling 0.672413 0.172
R-HSA-380994 ATF4 activates genes in response to endoplasmic reticulum stress 0.672413 0.172
R-HSA-73614 Pyrimidine salvage 0.672413 0.172
R-HSA-5620971 Pyroptosis 0.672413 0.172
R-HSA-5205685 PINK1-PRKN Mediated Mitophagy 0.672413 0.172
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 0.672413 0.172
R-HSA-913531 Interferon Signaling 0.674177 0.171
R-HSA-72764 Eukaryotic Translation Termination 0.675532 0.170
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 0.676220 0.170
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 0.681633 0.166
R-HSA-5607764 CLEC7A (Dectin-1) signaling 0.681633 0.166
R-HSA-5617833 Cilium Assembly 0.681720 0.166
R-HSA-5654708 Downstream signaling of activated FGFR3 0.683002 0.166
R-HSA-392154 Nitric oxide stimulates guanylate cyclase 0.683002 0.166
R-HSA-9615710 Late endosomal microautophagy 0.683002 0.166
R-HSA-5654733 Negative regulation of FGFR4 signaling 0.683002 0.166
R-HSA-9006335 Signaling by Erythropoietin 0.683002 0.166
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 0.683002 0.166
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 0.690411 0.161
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 0.690853 0.161
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 0.693250 0.159
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 0.693250 0.159
R-HSA-2424491 DAP12 signaling 0.693250 0.159
R-HSA-76046 RNA Polymerase III Transcription Initiation 0.693250 0.159
R-HSA-5654716 Downstream signaling of activated FGFR4 0.693250 0.159
R-HSA-114452 Activation of BH3-only proteins 0.693250 0.159
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 0.703167 0.153
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 0.703167 0.153
R-HSA-389958 Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 0.703167 0.153
R-HSA-9705683 SARS-CoV-2-host interactions 0.704394 0.152
R-HSA-9830369 Kidney development 0.704936 0.152
R-HSA-382556 ABC-family proteins mediated transport 0.705184 0.152
R-HSA-5684996 MAPK1/MAPK3 signaling 0.708802 0.149
R-HSA-2408557 Selenocysteine synthesis 0.710859 0.148
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 0.711776 0.148
R-HSA-9909396 Circadian clock 0.714966 0.146
R-HSA-1483255 PI Metabolism 0.716450 0.145
R-HSA-168256 Immune System 0.717518 0.144
R-HSA-72312 rRNA processing 0.719696 0.143
R-HSA-192823 Viral mRNA Translation 0.721958 0.141
R-HSA-1855170 IPs transport between nucleus and cytosol 0.722051 0.141
R-HSA-159227 Transport of the SLBP independent Mature mRNA 0.722051 0.141
R-HSA-9930044 Nuclear RNA decay 0.722051 0.141
R-HSA-5654726 Negative regulation of FGFR1 signaling 0.722051 0.141
R-HSA-1839124 FGFR1 mutant receptor activation 0.722051 0.141
R-HSA-9733709 Cardiogenesis 0.722051 0.141
R-HSA-5609975 Diseases associated with glycosylation precursor biosynthesis 0.722051 0.141
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 0.725056 0.140
R-HSA-9860931 Response of endothelial cells to shear stress 0.727381 0.138
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 0.727381 0.138
R-HSA-390522 Striated Muscle Contraction 0.731039 0.136
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 0.731039 0.136
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 0.731039 0.136
R-HSA-5223345 Miscellaneous transport and binding events 0.731039 0.136
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 0.731039 0.136
R-HSA-5620920 Cargo trafficking to the periciliary membrane 0.731501 0.136
R-HSA-8978934 Metabolism of cofactors 0.731501 0.136
R-HSA-3858494 Beta-catenin independent WNT signaling 0.738653 0.132
R-HSA-5696400 Dual Incision in GG-NER 0.739736 0.131
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 0.739736 0.131
R-HSA-5654727 Negative regulation of FGFR2 signaling 0.739736 0.131
R-HSA-180746 Nuclear import of Rev protein 0.739736 0.131
R-HSA-168638 NOD1/2 Signaling Pathway 0.739736 0.131
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 0.743208 0.129
R-HSA-1266738 Developmental Biology 0.744994 0.128
R-HSA-5621481 C-type lectin receptors (CLRs) 0.746174 0.127
R-HSA-5654696 Downstream signaling of activated FGFR2 0.748153 0.126
R-HSA-5654687 Downstream signaling of activated FGFR1 0.748153 0.126
R-HSA-381042 PERK regulates gene expression 0.748153 0.126
R-HSA-187687 Signalling to ERKs 0.748153 0.126
R-HSA-3296482 Defects in vitamin and cofactor metabolism 0.748153 0.126
R-HSA-2672351 Stimuli-sensing channels 0.753262 0.123
R-HSA-432720 Lysosome Vesicle Biogenesis 0.756298 0.121
R-HSA-74158 RNA Polymerase III Transcription 0.756298 0.121
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 0.756298 0.121
R-HSA-8853659 RET signaling 0.756298 0.121
R-HSA-9845576 Glycosphingolipid transport 0.756298 0.121
R-HSA-3371511 HSF1 activation 0.756298 0.121
R-HSA-8941326 RUNX2 regulates bone development 0.756298 0.121
R-HSA-1632852 Macroautophagy 0.760823 0.119
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 0.762058 0.118
R-HSA-202403 TCR signaling 0.763047 0.117
R-HSA-1296072 Voltage gated Potassium channels 0.764180 0.117
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 0.764180 0.117
R-HSA-933541 TRAF6 mediated IRF7 activation 0.764180 0.117
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 0.764180 0.117
R-HSA-549127 SLC-mediated transport of organic cations 0.764180 0.117
R-HSA-196757 Metabolism of folate and pterines 0.764180 0.117
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 0.769273 0.114
R-HSA-9658195 Leishmania infection 0.770323 0.113
R-HSA-9824443 Parasitic Infection Pathways 0.770323 0.113
R-HSA-202131 Metabolism of nitric oxide: NOS3 activation and regulation 0.771808 0.112
R-HSA-2046106 alpha-linolenic acid (ALA) metabolism 0.771808 0.112
R-HSA-9958790 SLC-mediated transport of inorganic anions 0.771808 0.112
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 0.772056 0.112
R-HSA-191273 Cholesterol biosynthesis 0.773098 0.112
R-HSA-9955298 SLC-mediated transport of organic anions 0.773098 0.112
R-HSA-416482 G alpha (12/13) signalling events 0.773098 0.112
R-HSA-5619084 ABC transporter disorders 0.773098 0.112
R-HSA-168255 Influenza Infection 0.777183 0.109
R-HSA-2871837 FCERI mediated NF-kB activation 0.777488 0.109
R-HSA-9659379 Sensory processing of sound 0.778559 0.109
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 0.778559 0.109
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 0.779189 0.108
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 0.779189 0.108
R-HSA-9725554 Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin 0.779189 0.108
R-HSA-381771 Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) 0.779189 0.108
R-HSA-9648002 RAS processing 0.779189 0.108
R-HSA-201556 Signaling by ALK 0.779189 0.108
R-HSA-9855142 Cellular responses to mechanical stimuli 0.781672 0.107
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 0.781672 0.107
R-HSA-6806834 Signaling by MET 0.783904 0.106
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 0.786332 0.104
R-HSA-5696395 Formation of Incision Complex in GG-NER 0.786332 0.104
R-HSA-3371568 Attenuation phase 0.786332 0.104
R-HSA-202433 Generation of second messenger molecules 0.786332 0.104
R-HSA-8982491 Glycogen metabolism 0.786332 0.104
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 0.789136 0.103
R-HSA-73933 Resolution of Abasic Sites (AP sites) 0.793245 0.101
R-HSA-73817 Purine ribonucleoside monophosphate biosynthesis 0.793245 0.101
R-HSA-9694548 Maturation of spike protein 0.793245 0.101
R-HSA-5673001 RAF/MAP kinase cascade 0.794038 0.100
R-HSA-909733 Interferon alpha/beta signaling 0.794835 0.100
R-HSA-9758941 Gastrulation 0.797014 0.099
R-HSA-373760 L1CAM interactions 0.799074 0.097
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 0.799266 0.097
R-HSA-5674135 MAP2K and MAPK activation 0.799934 0.097
R-HSA-9656223 Signaling by RAF1 mutants 0.799934 0.097
R-HSA-5655302 Signaling by FGFR1 in disease 0.799934 0.097
R-HSA-6811438 Intra-Golgi traffic 0.799934 0.097
R-HSA-9856651 MITF-M-dependent gene expression 0.800750 0.097
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 0.806407 0.093
R-HSA-400508 Incretin synthesis, secretion, and inactivation 0.806407 0.093
R-HSA-379716 Cytosolic tRNA aminoacylation 0.806407 0.093
R-HSA-5693538 Homology Directed Repair 0.807331 0.093
R-HSA-6802957 Oncogenic MAPK signaling 0.808962 0.092
R-HSA-5654743 Signaling by FGFR4 0.812671 0.090
R-HSA-73621 Pyrimidine catabolism 0.812671 0.090
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 0.812671 0.090
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 0.813652 0.090
R-HSA-168273 Influenza Viral RNA Transcription and Replication 0.818599 0.087
R-HSA-1989781 PPARA activates gene expression 0.818599 0.087
R-HSA-2172127 DAP12 interactions 0.818733 0.087
R-HSA-5683826 Surfactant metabolism 0.818733 0.087
R-HSA-69236 G1 Phase 0.818733 0.087
R-HSA-69231 Cyclin D associated events in G1 0.818733 0.087
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 0.824599 0.084
R-HSA-5654741 Signaling by FGFR3 0.824599 0.084
R-HSA-6783310 Fanconi Anemia Pathway 0.824599 0.084
R-HSA-1614558 Degradation of cysteine and homocysteine 0.824599 0.084
R-HSA-597592 Post-translational protein modification 0.825267 0.083
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 0.825362 0.083
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 0.826730 0.083
R-HSA-2132295 MHC class II antigen presentation 0.826730 0.083
R-HSA-173623 Classical antibody-mediated complement activation 0.827111 0.082
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 0.828665 0.082
R-HSA-9711097 Cellular response to starvation 0.828665 0.082
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 0.830275 0.081
R-HSA-9649948 Signaling downstream of RAS mutants 0.830275 0.081
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 0.830275 0.081
R-HSA-6802949 Signaling by RAS mutants 0.830275 0.081
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 0.830275 0.081
R-HSA-9861718 Regulation of pyruvate metabolism 0.830275 0.081
R-HSA-9675135 Diseases of DNA repair 0.830275 0.081
R-HSA-112310 Neurotransmitter release cycle 0.835592 0.078
R-HSA-202424 Downstream TCR signaling 0.835592 0.078
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 0.835768 0.078
R-HSA-2046104 alpha-linolenic (omega3) and linoleic (omega6) acid metabolism 0.835768 0.078
R-HSA-73893 DNA Damage Bypass 0.846228 0.073
R-HSA-5655253 Signaling by FGFR2 in disease 0.851206 0.070
R-HSA-109704 PI3K Cascade 0.851206 0.070
R-HSA-9748787 Azathioprine ADME 0.851206 0.070
R-HSA-2029481 FCGR activation 0.851434 0.070
R-HSA-199418 Negative regulation of the PI3K/AKT network 0.854289 0.068
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 0.858823 0.066
R-HSA-9843745 Adipogenesis 0.860552 0.065
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 0.860684 0.065
R-HSA-5339562 Uptake and actions of bacterial toxins 0.860684 0.065
R-HSA-9639288 Amino acids regulate mTORC1 0.865194 0.063
R-HSA-8956320 Nucleotide biosynthesis 0.865194 0.063
R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 0.865875 0.063
R-HSA-6807878 COPI-mediated anterograde transport 0.865875 0.063
R-HSA-1852241 Organelle biogenesis and maintenance 0.868821 0.061
R-HSA-170834 Signaling by TGF-beta Receptor Complex 0.869279 0.061
R-HSA-422356 Regulation of insulin secretion 0.872603 0.059
R-HSA-9753281 Paracetamol ADME 0.873783 0.059
R-HSA-112315 Transmission across Chemical Synapses 0.874714 0.058
R-HSA-5654736 Signaling by FGFR1 0.877870 0.057
R-HSA-5578775 Ion homeostasis 0.877870 0.057
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 0.877870 0.057
R-HSA-5610787 Hedgehog 'off' state 0.879019 0.056
R-HSA-425407 SLC-mediated transmembrane transport 0.879152 0.056
R-HSA-9730414 MITF-M-regulated melanocyte development 0.879610 0.056
R-HSA-9678108 SARS-CoV-1 Infection 0.879729 0.056
R-HSA-112399 IRS-mediated signalling 0.881826 0.055
R-HSA-9009391 Extra-nuclear estrogen signaling 0.882114 0.054
R-HSA-5358351 Signaling by Hedgehog 0.883301 0.054
R-HSA-8979227 Triglyceride metabolism 0.889356 0.051
R-HSA-1483257 Phospholipid metabolism 0.891594 0.050
R-HSA-8873719 RAB geranylgeranylation 0.892940 0.049
R-HSA-379724 tRNA Aminoacylation 0.892940 0.049
R-HSA-392499 Metabolism of proteins 0.893556 0.049
R-HSA-9833110 RSV-host interactions 0.893776 0.049
R-HSA-168325 Viral Messenger RNA Synthesis 0.896408 0.047
R-HSA-2428928 IRS-related events triggered by IGF1R 0.896408 0.047
R-HSA-8956321 Nucleotide salvage 0.896408 0.047
R-HSA-166786 Creation of C4 and C2 activators 0.899196 0.046
R-HSA-6784531 tRNA processing in the nucleus 0.899764 0.046
R-HSA-9707616 Heme signaling 0.899764 0.046
R-HSA-1268020 Mitochondrial protein import 0.899764 0.046
R-HSA-74751 Insulin receptor signalling cascade 0.906154 0.043
R-HSA-2428924 IGF1R signaling cascade 0.906154 0.043
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 0.906154 0.043
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 0.909194 0.041
R-HSA-6782315 tRNA modification in the nucleus and cytosol 0.912137 0.040
R-HSA-196071 Metabolism of steroid hormones 0.914984 0.039
R-HSA-5663205 Infectious disease 0.915910 0.038
R-HSA-9694516 SARS-CoV-2 Infection 0.917193 0.038
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 0.917739 0.037
R-HSA-9609507 Protein localization 0.919118 0.037
R-HSA-166663 Initial triggering of complement 0.920545 0.036
R-HSA-204005 COPII-mediated vesicle transport 0.922985 0.035
R-HSA-2871809 FCERI mediated Ca+2 mobilization 0.924674 0.034
R-HSA-2029485 Role of phospholipids in phagocytosis 0.924674 0.034
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 0.925481 0.034
R-HSA-499943 Interconversion of nucleotide di- and triphosphates 0.927896 0.033
R-HSA-1592230 Mitochondrial biogenesis 0.928600 0.032
R-HSA-2980736 Peptide hormone metabolism 0.928600 0.032
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 0.930234 0.031
R-HSA-4086398 Ca2+ pathway 0.930234 0.031
R-HSA-9006936 Signaling by TGFB family members 0.931377 0.031
R-HSA-1226099 Signaling by FGFR in disease 0.932495 0.030
R-HSA-1483206 Glycerophospholipid biosynthesis 0.932984 0.030
R-HSA-9635486 Infection with Mycobacterium tuberculosis 0.935880 0.029
R-HSA-2408522 Selenoamino acid metabolism 0.937592 0.028
R-HSA-5619115 Disorders of transmembrane transporters 0.937695 0.028
R-HSA-6805567 Keratinization 0.938541 0.028
R-HSA-9694635 Translation of Structural Proteins 0.938851 0.027
R-HSA-168249 Innate Immune System 0.941468 0.026
R-HSA-5619102 SLC transporter disorders 0.941907 0.026
R-HSA-977606 Regulation of Complement cascade 0.942453 0.026
R-HSA-9925561 Developmental Lineage of Pancreatic Acinar Cells 0.942752 0.026
R-HSA-5654738 Signaling by FGFR2 0.944609 0.025
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 0.944609 0.025
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 0.945495 0.024
R-HSA-114608 Platelet degranulation 0.946957 0.024
R-HSA-1643685 Disease 0.947998 0.023
R-HSA-8956319 Nucleotide catabolism 0.949772 0.022
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 0.950049 0.022
R-HSA-6794362 Protein-protein interactions at synapses 0.953028 0.021
R-HSA-5576891 Cardiac conduction 0.953728 0.021
R-HSA-1614635 Sulfur amino acid metabolism 0.956027 0.020
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 0.956027 0.020
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 0.956198 0.019
R-HSA-112316 Neuronal System 0.959654 0.018
R-HSA-163685 Integration of energy metabolism 0.960765 0.017
R-HSA-76002 Platelet activation, signaling and aggregation 0.964354 0.016
R-HSA-74752 Signaling by Insulin receptor 0.965094 0.015
R-HSA-9772573 Late SARS-CoV-2 Infection Events 0.965094 0.015
R-HSA-9679506 SARS-CoV Infections 0.965833 0.015
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 0.966227 0.015
R-HSA-983712 Ion channel transport 0.966864 0.015
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 0.967324 0.014
R-HSA-9837999 Mitochondrial protein degradation 0.967324 0.014
R-HSA-15869 Metabolism of nucleotides 0.968559 0.014
R-HSA-8957322 Metabolism of steroids 0.969570 0.013
R-HSA-166658 Complement cascade 0.970271 0.013
R-HSA-1296071 Potassium Channels 0.970404 0.013
R-HSA-199977 ER to Golgi Anterograde Transport 0.971886 0.012
R-HSA-8957275 Post-translational protein phosphorylation 0.972295 0.012
R-HSA-190236 Signaling by FGFR 0.972295 0.012
R-HSA-192105 Synthesis of bile acids and bile salts 0.973195 0.012
R-HSA-418346 Platelet homeostasis 0.979418 0.009
R-HSA-877300 Interferon gamma signaling 0.979937 0.009
R-HSA-194068 Bile acid and bile salt metabolism 0.981966 0.008
R-HSA-1483249 Inositol phosphate metabolism 0.983119 0.007
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 0.984712 0.007
R-HSA-72306 tRNA processing 0.985734 0.006
R-HSA-9664433 Leishmania parasite growth and survival 0.986907 0.006
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 0.986907 0.006
R-HSA-2219528 PI3K/AKT Signaling in Cancer 0.987041 0.006
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 0.988655 0.005
R-HSA-611105 Respiratory electron transport 0.988656 0.005
R-HSA-202733 Cell surface interactions at the vascular wall 0.990558 0.004
R-HSA-382551 Transport of small molecules 0.990709 0.004
R-HSA-1428517 Aerobic respiration and respiratory electron transport 0.991997 0.003
R-HSA-1474228 Degradation of the extracellular matrix 0.992366 0.003
R-HSA-1630316 Glycosaminoglycan metabolism 0.992646 0.003
R-HSA-948021 Transport to the Golgi and subsequent modification 0.994342 0.002
R-HSA-196854 Metabolism of vitamins and cofactors 0.995347 0.002
R-HSA-9679191 Potential therapeutics for SARS 0.996064 0.002
R-HSA-9748784 Drug ADME 0.996565 0.001
R-HSA-109582 Hemostasis 0.997424 0.001
R-HSA-3781865 Diseases of glycosylation 0.998767 0.001
R-HSA-416476 G alpha (q) signalling events 0.999129 0.000
R-HSA-428157 Sphingolipid metabolism 0.999299 0.000
R-HSA-9824439 Bacterial Infection Pathways 0.999353 0.000
R-HSA-71291 Metabolism of amino acids and derivatives 0.999665 0.000
R-HSA-446203 Asparagine N-linked glycosylation 0.999949 0.000
R-HSA-1474244 Extracellular matrix organization 0.999991 0.000
R-HSA-5668914 Diseases of metabolism 0.999995 0.000
R-HSA-8978868 Fatty acid metabolism 0.999999 0.000
R-HSA-556833 Metabolism of lipids 1.000000 0.000
R-HSA-388396 GPCR downstream signalling 1.000000 0.000
R-HSA-372790 Signaling by GPCR 1.000000 0.000
R-HSA-1430728 Metabolism 1.000000 0.000
R-HSA-9709957 Sensory Perception 1.000000 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
CLK3CLK3 0.910 0.470 1 0.881
MOSMOS 0.895 0.262 1 0.826
COTCOT 0.894 0.220 2 0.875
NLKNLK 0.891 0.333 1 0.875
HIPK4HIPK4 0.888 0.340 1 0.841
DYRK2DYRK2 0.887 0.399 1 0.831
SRPK1SRPK1 0.887 0.297 -3 0.818
CDKL1CDKL1 0.887 0.196 -3 0.858
PIM3PIM3 0.887 0.191 -3 0.892
JNK2JNK2 0.887 0.413 1 0.783
HIPK1HIPK1 0.885 0.408 1 0.843
HIPK2HIPK2 0.885 0.431 1 0.779
ERK5ERK5 0.884 0.223 1 0.852
ICKICK 0.884 0.264 -3 0.888
JNK3JNK3 0.884 0.389 1 0.810
CDC7CDC7 0.883 0.107 1 0.790
PRPKPRPK 0.883 -0.046 -1 0.864
CDK1CDK1 0.883 0.381 1 0.805
SKMLCKSKMLCK 0.883 0.189 -2 0.881
CLK2CLK2 0.882 0.400 -3 0.815
CAMK1BCAMK1B 0.881 0.095 -3 0.900
BMPR1BBMPR1B 0.881 0.230 1 0.759
CDKL5CDKL5 0.881 0.206 -3 0.850
MTORMTOR 0.880 0.117 1 0.772
P38BP38B 0.880 0.381 1 0.800
CDK18CDK18 0.880 0.396 1 0.786
P38GP38G 0.880 0.385 1 0.739
PIM1PIM1 0.880 0.197 -3 0.840
BMPR2BMPR2 0.879 -0.077 -2 0.867
P38AP38A 0.879 0.362 1 0.839
KISKIS 0.879 0.399 1 0.826
CLK4CLK4 0.879 0.311 -3 0.825
CAMLCKCAMLCK 0.878 0.110 -2 0.854
CDK5CDK5 0.878 0.360 1 0.838
NIKNIK 0.878 0.053 -3 0.908
ATRATR 0.877 -0.002 1 0.752
DAPK2DAPK2 0.876 0.104 -3 0.902
CDK8CDK8 0.876 0.330 1 0.812
ERK1ERK1 0.876 0.363 1 0.791
RAF1RAF1 0.876 -0.044 1 0.751
RSK2RSK2 0.876 0.181 -3 0.834
GRK1GRK1 0.875 0.199 -2 0.795
CDK7CDK7 0.874 0.331 1 0.826
DSTYKDSTYK 0.874 0.035 2 0.911
DYRK4DYRK4 0.874 0.401 1 0.793
GRK7GRK7 0.874 0.191 1 0.729
LATS1LATS1 0.873 0.160 -3 0.903
CLK1CLK1 0.873 0.317 -3 0.804
NDR2NDR2 0.873 0.130 -3 0.890
CDK17CDK17 0.873 0.363 1 0.747
PKN3PKN3 0.872 0.067 -3 0.872
CDK3CDK3 0.872 0.350 1 0.764
NUAK2NUAK2 0.872 0.101 -3 0.885
CDK19CDK19 0.872 0.339 1 0.789
CAMK2GCAMK2G 0.871 -0.042 2 0.819
P38DP38D 0.871 0.378 1 0.749
CDK13CDK13 0.871 0.318 1 0.808
MST4MST4 0.871 0.085 2 0.876
PRKD1PRKD1 0.871 0.157 -3 0.872
TGFBR1TGFBR1 0.870 0.122 -2 0.814
DYRK1BDYRK1B 0.870 0.361 1 0.809
SRPK3SRPK3 0.870 0.201 -3 0.788
SRPK2SRPK2 0.870 0.238 -3 0.744
CHAK2CHAK2 0.870 0.028 -1 0.857
GRK5GRK5 0.870 -0.048 -3 0.872
DYRK1ADYRK1A 0.870 0.319 1 0.841
WNK1WNK1 0.870 0.038 -2 0.876
PKCDPKCD 0.870 0.113 2 0.811
MAKMAK 0.870 0.372 -2 0.771
ALK4ALK4 0.870 0.066 -2 0.835
PDHK4PDHK4 0.870 -0.239 1 0.785
CDK14CDK14 0.869 0.366 1 0.812
P90RSKP90RSK 0.868 0.127 -3 0.837
AURCAURC 0.868 0.190 -2 0.696
IKKBIKKB 0.868 -0.039 -2 0.722
HIPK3HIPK3 0.868 0.339 1 0.816
PKRPKR 0.868 0.031 1 0.759
ERK2ERK2 0.868 0.305 1 0.815
CDK16CDK16 0.867 0.366 1 0.762
MLK1MLK1 0.867 -0.056 2 0.836
NDR1NDR1 0.867 0.070 -3 0.881
NEK6NEK6 0.867 0.003 -2 0.848
GRK6GRK6 0.867 0.029 1 0.768
CDK12CDK12 0.867 0.326 1 0.786
PRKD2PRKD2 0.867 0.162 -3 0.826
P70S6KBP70S6KB 0.866 0.095 -3 0.846
PRP4PRP4 0.866 0.229 -3 0.800
PKN2PKN2 0.866 0.067 -3 0.875
AMPKA1AMPKA1 0.866 0.044 -3 0.891
DYRK3DYRK3 0.865 0.324 1 0.829
CDK10CDK10 0.865 0.372 1 0.803
TGFBR2TGFBR2 0.865 -0.011 -2 0.808
TBK1TBK1 0.865 -0.119 1 0.645
MARK4MARK4 0.864 0.022 4 0.836
ALK2ALK2 0.864 0.094 -2 0.816
DLKDLK 0.864 -0.135 1 0.744
RIPK3RIPK3 0.864 -0.064 3 0.752
RSK3RSK3 0.863 0.117 -3 0.829
RSK4RSK4 0.863 0.174 -3 0.810
ACVR2BACVR2B 0.863 0.085 -2 0.802
ANKRD3ANKRD3 0.863 -0.119 1 0.757
MLK3MLK3 0.863 0.035 2 0.779
MLK2MLK2 0.863 -0.077 2 0.839
VRK2VRK2 0.862 -0.117 1 0.809
JNK1JNK1 0.862 0.329 1 0.785
PDHK1PDHK1 0.862 -0.260 1 0.758
HUNKHUNK 0.861 -0.086 2 0.812
CDK9CDK9 0.861 0.293 1 0.810
TSSK2TSSK2 0.861 0.009 -5 0.846
ACVR2AACVR2A 0.861 0.057 -2 0.792
ULK2ULK2 0.861 -0.189 2 0.788
GCN2GCN2 0.861 -0.147 2 0.815
NEK7NEK7 0.861 -0.137 -3 0.850
PKACGPKACG 0.861 0.099 -2 0.757
PKACBPKACB 0.861 0.184 -2 0.708
CAMK2DCAMK2D 0.861 0.008 -3 0.872
IKKEIKKE 0.861 -0.126 1 0.639
PAK1PAK1 0.860 0.077 -2 0.802
MAPKAPK2MAPKAPK2 0.860 0.124 -3 0.794
MAPKAPK3MAPKAPK3 0.860 0.056 -3 0.826
BMPR1ABMPR1A 0.860 0.143 1 0.733
PASKPASK 0.860 0.137 -3 0.902
CAMK2ACAMK2A 0.860 0.114 2 0.816
CAMK2BCAMK2B 0.860 0.091 2 0.793
AMPKA2AMPKA2 0.860 0.053 -3 0.865
GSK3AGSK3A 0.860 0.199 4 0.524
IKKAIKKA 0.859 0.015 -2 0.717
CDK2CDK2 0.859 0.220 1 0.844
TSSK1TSSK1 0.859 0.047 -3 0.907
GAKGAK 0.859 0.167 1 0.821
PKCBPKCB 0.859 0.099 2 0.772
MPSK1MPSK1 0.859 0.164 1 0.767
MASTLMASTL 0.859 -0.230 -2 0.788
AKT2AKT2 0.859 0.152 -3 0.754
MEK1MEK1 0.859 -0.156 2 0.841
LATS2LATS2 0.859 0.037 -5 0.748
PIM2PIM2 0.858 0.136 -3 0.804
YSK4YSK4 0.858 -0.085 1 0.683
PKCAPKCA 0.858 0.097 2 0.763
NEK9NEK9 0.858 -0.165 2 0.848
PLK1PLK1 0.857 -0.051 -2 0.796
MST3MST3 0.857 0.081 2 0.869
AURBAURB 0.857 0.118 -2 0.690
SGK3SGK3 0.857 0.124 -3 0.819
MSK1MSK1 0.857 0.136 -3 0.807
ATMATM 0.856 -0.031 1 0.683
MYLK4MYLK4 0.856 0.094 -2 0.794
MOKMOK 0.856 0.306 1 0.834
PRKD3PRKD3 0.856 0.093 -3 0.802
PKCGPKCG 0.855 0.073 2 0.768
MSK2MSK2 0.855 0.077 -3 0.803
PRKXPRKX 0.855 0.209 -3 0.749
TLK2TLK2 0.855 -0.054 1 0.697
TAO3TAO3 0.854 0.031 1 0.717
GRK4GRK4 0.854 -0.071 -2 0.829
RIPK1RIPK1 0.854 -0.184 1 0.713
PKCZPKCZ 0.854 0.038 2 0.802
IRE1IRE1 0.853 -0.076 1 0.711
MLK4MLK4 0.853 -0.039 2 0.753
DCAMKL1DCAMKL1 0.853 0.057 -3 0.840
PAK3PAK3 0.853 0.012 -2 0.792
MNK2MNK2 0.852 0.073 -2 0.808
ERK7ERK7 0.852 0.167 2 0.597
FAM20CFAM20C 0.852 0.108 2 0.645
MEKK2MEKK2 0.852 -0.076 2 0.814
NEK5NEK5 0.852 -0.072 1 0.734
BRAFBRAF 0.852 -0.108 -4 0.847
GRK2GRK2 0.851 0.003 -2 0.724
DNAPKDNAPK 0.851 -0.002 1 0.621
AURAAURA 0.851 0.103 -2 0.672
WNK3WNK3 0.851 -0.269 1 0.718
MNK1MNK1 0.851 0.074 -2 0.814
CDK6CDK6 0.851 0.304 1 0.794
PKG2PKG2 0.851 0.104 -2 0.702
QSKQSK 0.850 0.044 4 0.812
MEK5MEK5 0.850 -0.215 2 0.832
PKCHPKCH 0.850 0.026 2 0.749
DAPK3DAPK3 0.850 0.112 -3 0.852
TTBK2TTBK2 0.850 -0.165 2 0.712
NIM1NIM1 0.850 -0.060 3 0.791
DRAK1DRAK1 0.850 -0.009 1 0.704
NEK2NEK2 0.849 -0.106 2 0.833
MEKK3MEKK3 0.849 -0.115 1 0.712
SMMLCKSMMLCK 0.849 0.043 -3 0.860
CDK4CDK4 0.849 0.306 1 0.781
PAK2PAK2 0.849 -0.003 -2 0.783
CAMK4CAMK4 0.849 -0.068 -3 0.856
GCKGCK 0.849 0.056 1 0.722
MELKMELK 0.849 -0.018 -3 0.848
GSK3BGSK3B 0.848 0.093 4 0.516
PERKPERK 0.848 -0.128 -2 0.819
SMG1SMG1 0.848 -0.069 1 0.703
MEKK1MEKK1 0.848 -0.159 1 0.709
BCKDKBCKDK 0.847 -0.198 -1 0.792
IRE2IRE2 0.847 -0.092 2 0.756
CHK1CHK1 0.847 -0.037 -3 0.864
PINK1PINK1 0.847 -0.069 1 0.831
PLK3PLK3 0.847 -0.080 2 0.774
ULK1ULK1 0.846 -0.246 -3 0.817
QIKQIK 0.846 -0.075 -3 0.864
TNIKTNIK 0.845 0.043 3 0.861
CHAK1CHAK1 0.845 -0.152 2 0.789
LKB1LKB1 0.845 -0.038 -3 0.843
ZAKZAK 0.845 -0.163 1 0.678
NUAK1NUAK1 0.845 -0.008 -3 0.838
MARK3MARK3 0.845 0.031 4 0.771
AKT1AKT1 0.844 0.122 -3 0.770
PDK1PDK1 0.844 -0.051 1 0.712
PHKG1PHKG1 0.844 -0.024 -3 0.867
PKACAPKACA 0.844 0.140 -2 0.661
SIKSIK 0.844 0.026 -3 0.811
PAK6PAK6 0.843 0.100 -2 0.715
TAO2TAO2 0.843 -0.079 2 0.865
WNK4WNK4 0.843 -0.108 -2 0.856
ROCK2ROCK2 0.843 0.137 -3 0.840
DAPK1DAPK1 0.843 0.109 -3 0.835
TLK1TLK1 0.843 -0.120 -2 0.839
CAMK1GCAMK1G 0.842 0.019 -3 0.809
NEK8NEK8 0.842 -0.136 2 0.832
HRIHRI 0.842 -0.220 -2 0.835
HPK1HPK1 0.842 0.035 1 0.705
MARK2MARK2 0.841 -0.016 4 0.731
MST2MST2 0.841 -0.064 1 0.717
BRSK1BRSK1 0.841 0.003 -3 0.841
EEF2KEEF2K 0.841 -0.035 3 0.825
NEK11NEK11 0.841 -0.147 1 0.703
TAK1TAK1 0.840 -0.052 1 0.724
SGK1SGK1 0.840 0.144 -3 0.683
DCAMKL2DCAMKL2 0.840 -0.025 -3 0.856
LRRK2LRRK2 0.840 -0.086 2 0.859
MINKMINK 0.840 -0.041 1 0.696
KHS2KHS2 0.840 0.079 1 0.709
HGKHGK 0.840 -0.044 3 0.858
BUB1BUB1 0.840 0.135 -5 0.795
KHS1KHS1 0.839 0.043 1 0.692
IRAK4IRAK4 0.839 -0.132 1 0.700
CK2A2CK2A2 0.839 0.131 1 0.700
PKCEPKCE 0.839 0.097 2 0.757
PKCTPKCT 0.838 0.025 2 0.755
MAP3K15MAP3K15 0.838 -0.088 1 0.669
PBKPBK 0.838 0.085 1 0.755
DMPK1DMPK1 0.838 0.152 -3 0.815
CK1ECK1E 0.838 0.033 -3 0.563
CAMKK2CAMKK2 0.838 -0.157 -2 0.709
CAMKK1CAMKK1 0.838 -0.208 -2 0.709
MEKK6MEKK6 0.837 -0.098 1 0.702
MRCKBMRCKB 0.837 0.109 -3 0.792
SSTKSSTK 0.836 -0.010 4 0.795
CAMK1DCAMK1D 0.836 0.048 -3 0.745
PLK4PLK4 0.836 -0.133 2 0.612
GRK3GRK3 0.836 0.009 -2 0.691
MARK1MARK1 0.836 -0.045 4 0.785
NEK4NEK4 0.835 -0.147 1 0.691
CK1DCK1D 0.835 0.040 -3 0.509
NEK1NEK1 0.835 -0.111 1 0.700
PKCIPKCI 0.834 0.022 2 0.772
MRCKAMRCKA 0.834 0.084 -3 0.807
AKT3AKT3 0.834 0.138 -3 0.700
VRK1VRK1 0.834 -0.168 2 0.826
LOKLOK 0.833 -0.050 -2 0.743
BRSK2BRSK2 0.833 -0.082 -3 0.852
P70S6KP70S6K 0.833 0.026 -3 0.763
MST1MST1 0.831 -0.116 1 0.697
MAPKAPK5MAPKAPK5 0.831 -0.075 -3 0.767
TTKTTK 0.830 -0.012 -2 0.827
CK2A1CK2A1 0.830 0.116 1 0.680
SLKSLK 0.829 -0.068 -2 0.693
SBKSBK 0.829 0.127 -3 0.642
CK1A2CK1A2 0.829 0.015 -3 0.510
OSR1OSR1 0.828 -0.039 2 0.810
HASPINHASPIN 0.828 0.064 -1 0.744
CHK2CHK2 0.828 0.052 -3 0.702
SNRKSNRK 0.828 -0.209 2 0.674
YSK1YSK1 0.828 -0.087 2 0.832
BIKEBIKE 0.828 0.087 1 0.738
PLK2PLK2 0.827 -0.013 -3 0.817
ROCK1ROCK1 0.827 0.097 -3 0.805
CRIKCRIK 0.825 0.107 -3 0.771
PDHK3_TYRPDHK3_TYR 0.824 0.341 4 0.900
PAK5PAK5 0.824 0.040 -2 0.659
CAMK1ACAMK1A 0.823 0.049 -3 0.722
MYO3BMYO3B 0.822 -0.031 2 0.848
PKN1PKN1 0.822 0.019 -3 0.777
PHKG2PHKG2 0.821 -0.072 -3 0.838
MEK2MEK2 0.821 -0.308 2 0.806
PAK4PAK4 0.820 0.057 -2 0.672
ASK1ASK1 0.819 -0.157 1 0.660
ALPHAK3ALPHAK3 0.819 -0.064 -1 0.787
IRAK1IRAK1 0.818 -0.358 -1 0.759
CK1G1CK1G1 0.818 -0.034 -3 0.563
TTBK1TTBK1 0.818 -0.234 2 0.625
AAK1AAK1 0.816 0.138 1 0.664
MYO3AMYO3A 0.816 -0.084 1 0.691
PDHK4_TYRPDHK4_TYR 0.816 0.182 2 0.890
STK33STK33 0.814 -0.189 2 0.619
MAP2K4_TYRMAP2K4_TYR 0.814 0.141 -1 0.887
MAP2K6_TYRMAP2K6_TYR 0.814 0.153 -1 0.885
TESK1_TYRTESK1_TYR 0.812 0.053 3 0.888
NEK3NEK3 0.811 -0.213 1 0.658
TAO1TAO1 0.811 -0.125 1 0.630
BMPR2_TYRBMPR2_TYR 0.810 0.115 -1 0.885
PDHK1_TYRPDHK1_TYR 0.809 0.077 -1 0.891
PKMYT1_TYRPKMYT1_TYR 0.809 0.061 3 0.863
LIMK2_TYRLIMK2_TYR 0.809 0.105 -3 0.909
MAP2K7_TYRMAP2K7_TYR 0.806 -0.107 2 0.866
RIPK2RIPK2 0.806 -0.353 1 0.632
PINK1_TYRPINK1_TYR 0.803 -0.138 1 0.777
YANK3YANK3 0.803 -0.079 2 0.409
PKG1PKG1 0.802 0.025 -2 0.621
TXKTXK 0.801 0.139 1 0.773
EPHA6EPHA6 0.801 0.042 -1 0.860
STLK3STLK3 0.800 -0.265 1 0.644
EPHB4EPHB4 0.799 0.017 -1 0.831
LIMK1_TYRLIMK1_TYR 0.797 -0.126 2 0.858
RETRET 0.797 -0.126 1 0.714
ABL2ABL2 0.795 0.003 -1 0.800
FGRFGR 0.794 -0.033 1 0.783
YES1YES1 0.794 -0.017 -1 0.833
MST1RMST1R 0.793 -0.151 3 0.818
LCKLCK 0.793 0.064 -1 0.825
BLKBLK 0.792 0.093 -1 0.828
TYRO3TYRO3 0.792 -0.152 3 0.803
ROS1ROS1 0.791 -0.141 3 0.776
TNK2TNK2 0.791 -0.016 3 0.766
CSF1RCSF1R 0.791 -0.106 3 0.798
ABL1ABL1 0.790 -0.033 -1 0.792
EPHA4EPHA4 0.789 -0.024 2 0.782
TYK2TYK2 0.789 -0.258 1 0.706
JAK2JAK2 0.789 -0.191 1 0.704
HCKHCK 0.788 -0.046 -1 0.823
FERFER 0.788 -0.134 1 0.791
DDR1DDR1 0.788 -0.191 4 0.804
JAK3JAK3 0.788 -0.123 1 0.695
CK1ACK1A 0.788 0.004 -3 0.419
INSRRINSRR 0.787 -0.095 3 0.753
SRMSSRMS 0.787 -0.057 1 0.766
FYNFYN 0.787 0.076 -1 0.807
ITKITK 0.787 -0.037 -1 0.796
KDRKDR 0.786 -0.083 3 0.759
FGFR2FGFR2 0.784 -0.137 3 0.798
EPHB1EPHB1 0.784 -0.089 1 0.749
EPHB2EPHB2 0.784 -0.045 -1 0.806
EPHB3EPHB3 0.783 -0.082 -1 0.808
TNK1TNK1 0.783 -0.096 3 0.792
KITKIT 0.782 -0.141 3 0.798
MERTKMERTK 0.782 -0.080 3 0.785
METMET 0.781 -0.082 3 0.791
BMXBMX 0.781 -0.035 -1 0.722
NEK10_TYRNEK10_TYR 0.781 -0.141 1 0.607
TNNI3K_TYRTNNI3K_TYR 0.781 -0.077 1 0.722
JAK1JAK1 0.780 -0.108 1 0.645
FLT1FLT1 0.779 -0.081 -1 0.839
PDGFRBPDGFRB 0.778 -0.246 3 0.805
TECTEC 0.778 -0.094 -1 0.734
FLT3FLT3 0.778 -0.219 3 0.801
WEE1_TYRWEE1_TYR 0.777 -0.115 -1 0.754
TEKTEK 0.776 -0.181 3 0.742
EPHA7EPHA7 0.776 -0.076 2 0.781
AXLAXL 0.776 -0.181 3 0.779
FGFR1FGFR1 0.776 -0.197 3 0.769
PTK2PTK2 0.775 0.075 -1 0.811
CK1G3CK1G3 0.775 -0.036 -3 0.372
FGFR3FGFR3 0.774 -0.136 3 0.769
LYNLYN 0.773 -0.083 3 0.725
EPHA3EPHA3 0.773 -0.139 2 0.753
DDR2DDR2 0.773 -0.055 3 0.733
BTKBTK 0.772 -0.228 -1 0.760
SRCSRC 0.772 -0.041 -1 0.797
SYKSYK 0.772 0.062 -1 0.787
LTKLTK 0.772 -0.187 3 0.745
YANK2YANK2 0.772 -0.118 2 0.425
FRKFRK 0.771 -0.120 -1 0.829
ERBB2ERBB2 0.771 -0.182 1 0.688
PTK2BPTK2B 0.771 -0.063 -1 0.758
ALKALK 0.771 -0.206 3 0.721
EPHA1EPHA1 0.770 -0.151 3 0.770
EPHA5EPHA5 0.770 -0.071 2 0.766
PTK6PTK6 0.770 -0.254 -1 0.720
NTRK1NTRK1 0.769 -0.251 -1 0.808
PDGFRAPDGFRA 0.769 -0.329 3 0.803
MATKMATK 0.769 -0.134 -1 0.724
EPHA8EPHA8 0.769 -0.077 -1 0.794
EGFREGFR 0.768 -0.083 1 0.605
FLT4FLT4 0.766 -0.229 3 0.757
INSRINSR 0.766 -0.212 3 0.735
NTRK3NTRK3 0.766 -0.176 -1 0.757
FGFR4FGFR4 0.763 -0.115 -1 0.765
NTRK2NTRK2 0.763 -0.294 3 0.757
CSKCSK 0.763 -0.180 2 0.780
CK1G2CK1G2 0.760 -0.025 -3 0.473
EPHA2EPHA2 0.759 -0.079 -1 0.774
ERBB4ERBB4 0.758 -0.049 1 0.638
ZAP70ZAP70 0.754 0.008 -1 0.710
IGF1RIGF1R 0.753 -0.185 3 0.675
MUSKMUSK 0.750 -0.206 1 0.599
FESFES 0.738 -0.187 -1 0.695