Motif 1134 (n=657)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0G2JKD1 | MUC21 | S583 | ochoa | Mucin 21, cell surface associated | None |
A0A140T8X8 | MUC21 | S613 | ochoa | Mucin 21, cell surface associated | None |
A1L170 | C1orf226 | S258 | ochoa | Uncharacterized protein C1orf226 | None |
A4D2B0 | MBLAC1 | S252 | ochoa | Metallo-beta-lactamase domain-containing protein 1 (EC 3.1.27.-) (Endoribonuclease MBLAC1) | Endoribonuclease that catalyzes the hydrolysis of histone-coding pre-mRNA 3'-end. Involved in histone pre-mRNA processing during the S-phase of the cell cycle, which is required for entering/progressing through S-phase (PubMed:30507380). Cleaves histone pre-mRNA at a major and a minor cleavage site after the 5'-ACCCA-3' and the 5'-ACCCACA-3' sequence, respectively, and located downstream of the stem-loop (PubMed:30507380). May require the presence of the HDE element located at the histone pre-RNA 3'-end to avoid non-specific cleavage (PubMed:30507380). {ECO:0000269|PubMed:30507380}. |
A5A3E0 | POTEF | Y1062 | ochoa | POTE ankyrin domain family member F (ANKRD26-like family C member 1B) (Chimeric POTE-actin protein) | None |
A6NDB9 | PALM3 | S660 | ochoa | Paralemmin-3 | ATP-binding protein, which may act as a adapter in the Toll-like receptor (TLR) signaling. {ECO:0000269|PubMed:21187075}. |
A8K4G0 | CD300LB | Y188 | psp | CMRF35-like molecule 7 (CLM-7) (CD300 antigen-like family member B) (CMRF35-A2) (Immune receptor expressed on myeloid cells 3) (IREM-3) (Leukocyte mono-Ig-like receptor 5) (Triggering receptor expressed on myeloid cells 5) (TREM-5) (CD antigen CD300b) | Acts as an activating immune receptor through its interaction with ITAM-bearing adapter TYROBP, and also independently by recruitment of GRB2. {ECO:0000269|PubMed:16920917, ECO:0000269|PubMed:17928527}. |
A8MVS5 | HIDE1 | S216 | ochoa | Protein HIDE1 | None |
A8MVS5 | HIDE1 | S217 | ochoa | Protein HIDE1 | None |
C9J798 | RASA4B | S790 | ochoa | Ras GTPase-activating protein 4B | Ca(2+)-dependent Ras GTPase-activating protein, that may play a role in the Ras-MAPK pathway. {ECO:0000250|UniProtKB:O43374}. |
E9PAM4 | None | Y435 | ochoa | Phosphatidylinositol 4-kinase type 2 (EC 2.7.1.67) | None |
G5E9Z4 | PI4K2B | T372 | ochoa | Phosphatidylinositol 4-kinase type 2 (EC 2.7.1.67) | None |
O00116 | AGPS | Y645 | ochoa | Alkyldihydroxyacetonephosphate synthase, peroxisomal (Alkyl-DHAP synthase) (EC 2.5.1.26) (Aging-associated gene 5 protein) (Alkylglycerone-phosphate synthase) | Catalyzes the exchange of the acyl chain in acyl-dihydroxyacetonephosphate (acyl-DHAP) for a long chain fatty alcohol, yielding the first ether linked intermediate, i.e. alkyl-dihydroxyacetonephosphate (alkyl-DHAP), in the pathway of ether lipid biosynthesis. {ECO:0000269|PubMed:8399344, ECO:0000269|PubMed:9553082}. |
O00151 | PDLIM1 | T316 | ochoa | PDZ and LIM domain protein 1 (C-terminal LIM domain protein 1) (Elfin) (LIM domain protein CLP-36) | Cytoskeletal protein that may act as an adapter that brings other proteins (like kinases) to the cytoskeleton (PubMed:10861853). Involved in assembly, disassembly and directioning of stress fibers in fibroblasts. Required for the localization of ACTN1 and PALLD to stress fibers. Required for cell migration and in maintaining cell polarity of fibroblasts (By similarity). {ECO:0000250|UniProtKB:P52944, ECO:0000269|PubMed:10861853}. |
O00168 | FXYD1 | T79 | ochoa | Phospholemman (FXYD domain-containing ion transport regulator 1) (Sodium/potassium-transporting ATPase subunit FXYD1) | Associates with and regulates the activity of the sodium/potassium-transporting ATPase (NKA) which transports Na(+) out of the cell and K(+) into the cell. Inhibits NKA activity in its unphosphorylated state and stimulates activity when phosphorylated. Reduces glutathionylation of the NKA beta-1 subunit ATP1B1, thus reversing glutathionylation-mediated inhibition of ATP1B1. Contributes to female sexual development by maintaining the excitability of neurons which secrete gonadotropin-releasing hormone. {ECO:0000250|UniProtKB:O08589, ECO:0000250|UniProtKB:P56513, ECO:0000250|UniProtKB:Q9Z239}. |
O00204 | SULT2B1 | S352 | ochoa | Sulfotransferase 2B1 (EC 2.8.2.2) (Alcohol sulfotransferase) (Hydroxysteroid sulfotransferase 2) (Sulfotransferase family 2B member 1) (Sulfotransferase family cytosolic 2B member 1) (ST2B1) | Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation. Responsible for the sulfation of cholesterol (PubMed:12145317, PubMed:19589875). Catalyzes sulfation of the 3beta-hydroxyl groups of steroids, such as, pregnenolone and dehydroepiandrosterone (DHEA) (PubMed:12145317, PubMed:16855051, PubMed:21855633, PubMed:9799594). Preferentially sulfonates cholesterol, while it also has significant activity with pregnenolone and DHEA (PubMed:12145317, PubMed:21855633). Plays a role in epidermal cholesterol metabolism and in the regulation of epidermal proliferation and differentiation (PubMed:28575648). {ECO:0000269|PubMed:12145317, ECO:0000269|PubMed:16855051, ECO:0000269|PubMed:19589875, ECO:0000269|PubMed:21855633, ECO:0000269|PubMed:28575648, ECO:0000269|PubMed:9799594}.; FUNCTION: [Isoform 2]: Sulfonates pregnenolone but not cholesterol. {ECO:0000269|PubMed:12145317}. |
O00264 | PGRMC1 | S181 | ochoa|psp | Membrane-associated progesterone receptor component 1 (mPR) (Dap1) (IZA) | Component of a progesterone-binding protein complex (PubMed:28396637). Binds progesterone (PubMed:25675345). Has many reported cellular functions (heme homeostasis, interaction with CYPs). Required for the maintenance of uterine histoarchitecture and normal female reproductive lifespan (By similarity). Intracellular heme chaperone. Regulates heme synthesis via interactions with FECH and acts as a heme donor for at least some hemoproteins (PubMed:27599036). Forms a ternary complex with TMEM97 receptor and low density lipid receptor/LDLR, which increases LDLR-mediated LDL lipoprotein internalization (PubMed:30443021). {ECO:0000250|UniProtKB:O55022, ECO:0000269|PubMed:25675345, ECO:0000269|PubMed:27599036, ECO:0000269|PubMed:30443021, ECO:0000303|PubMed:28396637}. |
O14494 | PLPP1 | T271 | ochoa | Phospholipid phosphatase 1 (EC 3.1.3.-) (EC 3.1.3.106) (EC 3.1.3.4) (EC 3.6.1.75) (Lipid phosphate phosphohydrolase 1) (PAP2-alpha) (Phosphatidate phosphohydrolase type 2a) (Phosphatidic acid phosphatase 2a) (PAP-2a) (PAP2a) | Magnesium-independent phospholipid phosphatase of the plasma membrane that catalyzes the dephosphorylation of a variety of glycerolipid and sphingolipid phosphate esters including phosphatidate/PA, lysophosphatidate/LPA, diacylglycerol pyrophosphate/DGPP, sphingosine 1-phosphate/S1P and ceramide 1-phosphate/C1P (PubMed:10962286, PubMed:17379599, PubMed:9305923, PubMed:9607309, PubMed:9705349). Also acts on N-oleoyl ethanolamine phosphate/N-(9Z-octadecenoyl)-ethanolamine phosphate, a potential physiological compound (PubMed:9607309). Through its extracellular phosphatase activity allows both the hydrolysis and the cellular uptake of these bioactive lipid mediators from the milieu, regulating signal transduction in different cellular processes (PubMed:10962286, PubMed:12909631, PubMed:15461590, PubMed:17379599). It is for instance essential for the extracellular hydrolysis of S1P and subsequent conversion into intracellular S1P (PubMed:17379599). Involved in the regulation of inflammation, platelets activation, cell proliferation and migration among other processes (PubMed:12909631, PubMed:15461590). May also have an intracellular activity to regulate phospholipid-mediated signaling pathways (By similarity). {ECO:0000250|UniProtKB:O08564, ECO:0000269|PubMed:10962286, ECO:0000269|PubMed:12909631, ECO:0000269|PubMed:15461590, ECO:0000269|PubMed:17379599, ECO:0000269|PubMed:9305923, ECO:0000269|PubMed:9607309, ECO:0000269|PubMed:9705349}. |
O14495 | PLPP3 | S297 | ochoa | Phospholipid phosphatase 3 (EC 3.1.3.-) (EC 3.1.3.4) (Lipid phosphate phosphohydrolase 3) (PAP2-beta) (Phosphatidate phosphohydrolase type 2b) (Phosphatidic acid phosphatase 2b) (PAP-2b) (PAP2b) (Vascular endothelial growth factor and type I collagen-inducible protein) (VCIP) | Magnesium-independent phospholipid phosphatase of the plasma membrane that catalyzes the dephosphorylation of a variety of glycerolipid and sphingolipid phosphate esters including phosphatidate/PA, lysophosphatidate/LPA, diacylglycerol pyrophosphate/DGPP, sphingosine 1-phosphate/S1P and ceramide 1-phosphate/C1P (PubMed:27694435, PubMed:9607309, PubMed:9705349). Also acts on N-oleoyl ethanolamine phosphate/N-(9Z-octadecenoyl)-ethanolamine phosphate, a potential physiological compound (PubMed:9607309). Has both an extracellular and an intracellular phosphatase activity, allowing the hydrolysis and the cellular uptake of these bioactive lipid mediators from the milieu, regulating signal transduction in different cellular processes (PubMed:23591818, PubMed:27694435, PubMed:9607309). Through the dephosphorylation of extracellular sphingosine-1-phosphate and the regulation of its extra- and intracellular availability, plays a role in vascular homeostasis, regulating endothelial cell migration, adhesion, survival, proliferation and the production of pro-inflammatory cytokines (PubMed:27694435). By maintaining the appropriate levels of this lipid in the cerebellum, also ensure its proper development and function (By similarity). Through its intracellular lipid phosphatase activity may act in early compartments of the secretory pathway, regulating the formation of Golgi to endoplasmic reticulum retrograde transport carriers (PubMed:23591818). {ECO:0000250|UniProtKB:Q99JY8, ECO:0000269|PubMed:23591818, ECO:0000269|PubMed:27694435, ECO:0000269|PubMed:9607309, ECO:0000269|PubMed:9705349}.; FUNCTION: Independently of this phosphatase activity may also function in the Wnt signaling pathway and the stabilization of beta-catenin/CTNNB1, thereby regulating cell proliferation, migration and differentiation in angiogenesis or yet in tumor growth (PubMed:20123964, PubMed:21569306). Also plays a role in integrin-mediated cell-cell adhesion in angiogenesis (PubMed:12660161, PubMed:16099422). {ECO:0000269|PubMed:12660161, ECO:0000269|PubMed:16099422, ECO:0000269|PubMed:20123964, ECO:0000269|PubMed:21569306}. |
O14578 | CIT | T2013 | ochoa | Citron Rho-interacting kinase (CRIK) (EC 2.7.11.1) (Serine/threonine-protein kinase 21) | Plays a role in cytokinesis. Required for KIF14 localization to the central spindle and midbody. Putative RHO/RAC effector that binds to the GTP-bound forms of RHO and RAC1. It probably binds p21 with a tighter specificity in vivo. Displays serine/threonine protein kinase activity. Plays an important role in the regulation of cytokinesis and the development of the central nervous system. Phosphorylates MYL9/MLC2. {ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:27453578}. |
O14668 | PRRG1 | S204 | ochoa | Transmembrane gamma-carboxyglutamic acid protein 1 (Proline-rich gamma-carboxyglutamic acid protein 1) (Proline-rich Gla protein 1) | None |
O14681 | EI24 | S326 | ochoa | Etoposide-induced protein 2.4 homolog (p53-induced gene 8 protein) | Acts as a negative growth regulator via p53-mediated apoptosis pathway. Regulates formation of degradative autolysosomes during autophagy (By similarity). {ECO:0000250}. |
O14733 | MAP2K7 | T406 | ochoa | Dual specificity mitogen-activated protein kinase kinase 7 (MAP kinase kinase 7) (MAPKK 7) (EC 2.7.12.2) (JNK-activating kinase 2) (MAPK/ERK kinase 7) (MEK 7) (Stress-activated protein kinase kinase 4) (SAPK kinase 4) (SAPKK-4) (SAPKK4) (c-Jun N-terminal kinase kinase 2) (JNK kinase 2) (JNKK 2) | Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K4/MKK4, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4/MKK4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The monophosphorylation of JNKs on the Thr residue is sufficient to increase JNK activity indicating that MAP2K7/MKK7 is important to trigger JNK activity, while the additional phosphorylation of the Tyr residue by MAP2K4/MKK4 ensures optimal JNK activation. Has a specific role in JNK signal transduction pathway activated by pro-inflammatory cytokines. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Part of a non-canonical MAPK signaling pathway, composed of the upstream MAP3K12 kinase and downstream MAP kinases MAPK1/ERK2 and MAPK3/ERK1, that enhances the AP-1-mediated transcription of APP in response to APOE (PubMed:28111074). {ECO:0000269|PubMed:28111074, ECO:0000269|PubMed:9312068, ECO:0000269|PubMed:9372971, ECO:0000269|PubMed:9535930, ECO:0000269|Ref.5}. |
O14879 | IFIT3 | S476 | ochoa | Interferon-induced protein with tetratricopeptide repeats 3 (IFIT-3) (CIG49) (ISG-60) (Interferon-induced 60 kDa protein) (IFI-60K) (Interferon-induced protein with tetratricopeptide repeats 4) (IFIT-4) (Retinoic acid-induced gene G protein) (P60) (RIG-G) | IFN-induced antiviral protein which acts as an inhibitor of cellular as well as viral processes, cell migration, proliferation, signaling, and viral replication. Enhances MAVS-mediated host antiviral responses by serving as an adapter bridging TBK1 to MAVS which leads to the activation of TBK1 and phosphorylation of IRF3 and phosphorylated IRF3 translocates into nucleus to promote antiviral gene transcription. Exhibits an antiproliferative activity via the up-regulation of cell cycle negative regulators CDKN1A/p21 and CDKN1B/p27. Normally, CDKN1B/p27 turnover is regulated by COPS5, which binds CDKN1B/p27 in the nucleus and exports it to the cytoplasm for ubiquitin-dependent degradation. IFIT3 sequesters COPS5 in the cytoplasm, thereby increasing nuclear CDKN1B/p27 protein levels. Up-regulates CDKN1A/p21 by down-regulating MYC, a repressor of CDKN1A/p21. Can negatively regulate the apoptotic effects of IFIT2. {ECO:0000269|PubMed:17050680, ECO:0000269|PubMed:20686046, ECO:0000269|PubMed:21190939, ECO:0000269|PubMed:21642987, ECO:0000269|PubMed:21813773}. |
O14879 | IFIT3 | S477 | ochoa | Interferon-induced protein with tetratricopeptide repeats 3 (IFIT-3) (CIG49) (ISG-60) (Interferon-induced 60 kDa protein) (IFI-60K) (Interferon-induced protein with tetratricopeptide repeats 4) (IFIT-4) (Retinoic acid-induced gene G protein) (P60) (RIG-G) | IFN-induced antiviral protein which acts as an inhibitor of cellular as well as viral processes, cell migration, proliferation, signaling, and viral replication. Enhances MAVS-mediated host antiviral responses by serving as an adapter bridging TBK1 to MAVS which leads to the activation of TBK1 and phosphorylation of IRF3 and phosphorylated IRF3 translocates into nucleus to promote antiviral gene transcription. Exhibits an antiproliferative activity via the up-regulation of cell cycle negative regulators CDKN1A/p21 and CDKN1B/p27. Normally, CDKN1B/p27 turnover is regulated by COPS5, which binds CDKN1B/p27 in the nucleus and exports it to the cytoplasm for ubiquitin-dependent degradation. IFIT3 sequesters COPS5 in the cytoplasm, thereby increasing nuclear CDKN1B/p27 protein levels. Up-regulates CDKN1A/p21 by down-regulating MYC, a repressor of CDKN1A/p21. Can negatively regulate the apoptotic effects of IFIT2. {ECO:0000269|PubMed:17050680, ECO:0000269|PubMed:20686046, ECO:0000269|PubMed:21190939, ECO:0000269|PubMed:21642987, ECO:0000269|PubMed:21813773}. |
O15075 | DCLK1 | S726 | ochoa | Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) | Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system. |
O15173 | PGRMC2 | Y210 | ochoa | Membrane-associated progesterone receptor component 2 (Progesterone membrane-binding protein) (Steroid receptor protein DG6) | Required for the maintenance of uterine histoarchitecture and normal female reproductive lifespan (By similarity). May serve as a universal non-classical progesterone receptor in the uterus (Probable). Intracellular heme chaperone required for delivery of labile, or signaling heme, to the nucleus (By similarity). Plays a role in adipocyte function and systemic glucose homeostasis (PubMed:28111073). In brown fat, which has a high demand for heme, delivery of labile heme in the nucleus regulates the activity of heme-responsive transcriptional repressors such as NR1D1 and BACH1 (By similarity). {ECO:0000250|UniProtKB:Q80UU9, ECO:0000269|PubMed:28111073, ECO:0000305|PubMed:28396637}. |
O15304 | SIVA1 | Y162 | psp | Apoptosis regulatory protein Siva (CD27-binding protein) (CD27BP) | Induces CD27-mediated apoptosis. Inhibits BCL2L1 isoform Bcl-x(L) anti-apoptotic activity. Inhibits activation of NF-kappa-B and promotes T-cell receptor-mediated apoptosis. {ECO:0000269|PubMed:12011449, ECO:0000269|PubMed:14739602, ECO:0000269|PubMed:15034012, ECO:0000269|PubMed:15958577, ECO:0000269|PubMed:16491128}. |
O15446 | POLR1G | T496 | ochoa | DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}. |
O15541 | RNF113A | S329 | ochoa | E3 ubiquitin-protein ligase RNF113A (EC 2.3.2.27) (Cwc24 homolog) (RING finger protein 113A) (Zinc finger protein 183) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:29360106, PubMed:29361316). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). E3 ubiquitin-protein ligase that catalyzes the transfer of ubiquitin onto target proteins (PubMed:28978524, PubMed:29144457). Catalyzes polyubiquitination of SNRNP200/BRR2 with non-canonical 'Lys-63'-linked polyubiquitin chains (PubMed:29144457). Plays a role in DNA repair via its role in the synthesis of 'Lys-63'-linked polyubiquitin chains that recruit ALKBH3 and the ASCC complex to sites of DNA damage by alkylating agents (PubMed:29144457). Ubiquitinates CXCR4, leading to its degradation, and thereby contributes to the termination of CXCR4 signaling (PubMed:28978524). {ECO:0000269|PubMed:28978524, ECO:0000269|PubMed:29144457, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
O43155 | FLRT2 | Y647 | ochoa | Leucine-rich repeat transmembrane protein FLRT2 (Fibronectin-like domain-containing leucine-rich transmembrane protein 2) | Functions in cell-cell adhesion, cell migration and axon guidance. Mediates cell-cell adhesion via its interactions with ADGRL3 and probably also other latrophilins that are expressed at the surface of adjacent cells. May play a role in the migration of cortical neurons during brain development via its interaction with UNC5D. Mediates axon growth cone collapse and plays a repulsive role in neuron guidance via its interaction with UNC5D, and possibly also other UNC-5 family members. Plays a role in fibroblast growth factor-mediated signaling cascades. Required for normal organization of the cardiac basement membrane during embryogenesis, and for normal embryonic epicardium and heart morphogenesis. {ECO:0000250|UniProtKB:Q8BLU0}. |
O43290 | SART1 | S787 | ochoa | U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) | Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}. |
O43291 | SPINT2 | S238 | ochoa | Kunitz-type protease inhibitor 2 (Hepatocyte growth factor activator inhibitor type 2) (HAI-2) (Placental bikunin) | Inhibitor of HGFAC (PubMed:9346890). Also inhibits plasmin, and plasma and tissue kallikrein (PubMed:9115294). Inhibits serine protease activity of TMPRSS13 (PubMed:20977675, PubMed:28710277). Inhibits serine protease activity of ST14/matriptase and PRSS8/prostasin in vitro (PubMed:28710277, PubMed:30445423). {ECO:0000269|PubMed:20977675, ECO:0000269|PubMed:28710277, ECO:0000269|PubMed:30445423, ECO:0000269|PubMed:9115294, ECO:0000269|PubMed:9346890}. |
O43303 | CCP110 | Y998 | ochoa | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43353 | RIPK2 | S527 | ochoa | Receptor-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (CARD-containing interleukin-1 beta-converting enzyme-associated kinase) (CARD-containing IL-1 beta ICE-kinase) (RIP-like-interacting CLARP kinase) (Receptor-interacting protein 2) (RIP-2) (Tyrosine-protein kinase RIPK2) (EC 2.7.10.2) | Serine/threonine/tyrosine-protein kinase that plays an essential role in modulation of innate and adaptive immune responses (PubMed:14638696, PubMed:17054981, PubMed:21123652, PubMed:28656966, PubMed:9575181, PubMed:9642260). Acts as a key effector of NOD1 and NOD2 signaling pathways: upon activation by bacterial peptidoglycans, NOD1 and NOD2 oligomerize and recruit RIPK2 via CARD-CARD domains, leading to the formation of RIPK2 filaments (PubMed:17054981, PubMed:17562858, PubMed:21123652, PubMed:22607974, PubMed:28656966, PubMed:29452636, PubMed:30026309). Once recruited, RIPK2 autophosphorylates and undergoes 'Lys-63'-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3, as well as 'Met-1'-linked (linear) polyubiquitination by the LUBAC complex, becoming a scaffolding protein for downstream effectors (PubMed:22607974, PubMed:28545134, PubMed:29452636, PubMed:30026309, PubMed:30279485, PubMed:30478312). 'Met-1'-linked polyubiquitin chains attached to RIPK2 recruit IKBKG/NEMO, which undergoes 'Lys-63'-linked polyubiquitination in a RIPK2-dependent process (PubMed:17562858, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitin chains attached to RIPK2 serve as docking sites for TAB2 and TAB3 and mediate the recruitment of MAP3K7/TAK1 to IKBKG/NEMO, inducing subsequent activation of IKBKB/IKKB (PubMed:18079694). In turn, NF-kappa-B is released from NF-kappa-B inhibitors and translocates into the nucleus where it activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18079694). The protein kinase activity is dispensable for the NOD1 and NOD2 signaling pathways (PubMed:29452636, PubMed:30026309). Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappa-B activation by NOD2 (PubMed:21887730). Also involved in adaptive immunity: plays a role during engagement of the T-cell receptor (TCR) in promoting BCL10 phosphorylation and subsequent NF-kappa-B activation (PubMed:14638696). Plays a role in the inactivation of RHOA in response to NGFR signaling (PubMed:26646181). {ECO:0000269|PubMed:14638696, ECO:0000269|PubMed:17054981, ECO:0000269|PubMed:17562858, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:21123652, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:28545134, ECO:0000269|PubMed:28656966, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:30279485, ECO:0000269|PubMed:30478312, ECO:0000269|PubMed:9575181, ECO:0000269|PubMed:9642260}. |
O43374 | RASA4 | S790 | ochoa | Ras GTPase-activating protein 4 (Calcium-promoted Ras inactivator) (Ras p21 protein activator 4) (RasGAP-activating-like protein 2) | Ca(2+)-dependent Ras GTPase-activating protein, that switches off the Ras-MAPK pathway following a stimulus that elevates intracellular calcium. Functions as an adaptor for Cdc42 and Rac1 during FcR-mediated phagocytosis. {ECO:0000269|PubMed:11448776}. |
O43399 | TPD52L2 | S192 | ochoa | Tumor protein D54 (hD54) (Tumor protein D52-like 2) | None |
O43439 | CBFA2T2 | S590 | ochoa | Protein CBFA2T2 (ETO homologous on chromosome 20) (MTG8-like protein) (MTG8-related protein 1) (Myeloid translocation-related protein 1) (p85) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:12559562, PubMed:15203199). Via association with PRDM14 is involved in regulation of embryonic stem cell (ESC) pluripotency (PubMed:27281218). Involved in primordial germ cell (PCG) formation. Stabilizes PRDM14 and OCT4 on chromatin in a homooligomerization-dependent manner (By similarity). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). May function as a complex with the chimeric protein RUNX1/AML1-CBFA2T1/MTG8 (AML1-MTG8/ETO fusion protein) which is produced in acute myeloid leukemia with the chromosomal translocation t(8;21). May thus be involved in the repression of AML1-dependent transcription and the induction of G-CSF/CSF3-dependent cell growth. May be a tumor suppressor gene candidate involved in myeloid tumors with the deletion of the 20q11 region. Through heteromerization with CBFA2T3/MTG16 may be involved in regulation of the proliferation and the differentiation of erythroid progenitors by repressing the expression of TAL1 target genes (By similarity). Required for the maintenance of the secretory cell lineage in the small intestine. Can inhibit Notch signaling probably by association with RBPJ and may be involved in GFI1-mediated Paneth cell differentiation (By similarity). {ECO:0000250|UniProtKB:O70374, ECO:0000269|PubMed:23251453, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}. |
O43439 | CBFA2T2 | S591 | ochoa | Protein CBFA2T2 (ETO homologous on chromosome 20) (MTG8-like protein) (MTG8-related protein 1) (Myeloid translocation-related protein 1) (p85) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:12559562, PubMed:15203199). Via association with PRDM14 is involved in regulation of embryonic stem cell (ESC) pluripotency (PubMed:27281218). Involved in primordial germ cell (PCG) formation. Stabilizes PRDM14 and OCT4 on chromatin in a homooligomerization-dependent manner (By similarity). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). May function as a complex with the chimeric protein RUNX1/AML1-CBFA2T1/MTG8 (AML1-MTG8/ETO fusion protein) which is produced in acute myeloid leukemia with the chromosomal translocation t(8;21). May thus be involved in the repression of AML1-dependent transcription and the induction of G-CSF/CSF3-dependent cell growth. May be a tumor suppressor gene candidate involved in myeloid tumors with the deletion of the 20q11 region. Through heteromerization with CBFA2T3/MTG16 may be involved in regulation of the proliferation and the differentiation of erythroid progenitors by repressing the expression of TAL1 target genes (By similarity). Required for the maintenance of the secretory cell lineage in the small intestine. Can inhibit Notch signaling probably by association with RBPJ and may be involved in GFI1-mediated Paneth cell differentiation (By similarity). {ECO:0000250|UniProtKB:O70374, ECO:0000269|PubMed:23251453, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}. |
O43490 | PROM1 | Y852 | ochoa|psp | Prominin-1 (Antigen AC133) (Prominin-like protein 1) (CD antigen CD133) | May play a role in cell differentiation, proliferation and apoptosis (PubMed:24556617). Binds cholesterol in cholesterol-containing plasma membrane microdomains and may play a role in the organization of the apical plasma membrane in epithelial cells. During early retinal development acts as a key regulator of disk morphogenesis. Involved in regulation of MAPK and Akt signaling pathways. In neuroblastoma cells suppresses cell differentiation such as neurite outgrowth in a RET-dependent manner (PubMed:20818439). {ECO:0000269|PubMed:20818439, ECO:0000269|PubMed:24556617}. |
O43623 | SNAI2 | S254 | psp | Zinc finger protein SNAI2 (Neural crest transcription factor Slug) (Protein snail homolog 2) | Transcriptional repressor that modulates both activator-dependent and basal transcription. Involved in the generation and migration of neural crest cells. Plays a role in mediating RAF1-induced transcriptional repression of the TJ protein, occludin (OCLN) and subsequent oncogenic transformation of epithelial cells (By similarity). Represses BRCA2 expression by binding to its E2-box-containing silencer and recruiting CTBP1 and HDAC1 in breast cells. In epidermal keratinocytes, binds to the E-box in ITGA3 promoter and represses its transcription. Involved in the regulation of ITGB1 and ITGB4 expression and cell adhesion and proliferation in epidermal keratinocytes. Binds to E-box2 domain of BSG and activates its expression during TGFB1-induced epithelial-mesenchymal transition (EMT) in hepatocytes. Represses E-Cadherin/CDH1 transcription via E-box elements. Involved in osteoblast maturation. Binds to RUNX2 and SOC9 promoters and may act as a positive and negative transcription regulator, respectively, in osteoblasts. Binds to CXCL12 promoter via E-box regions in mesenchymal stem cells and osteoblasts. Plays an essential role in TWIST1-induced EMT and its ability to promote invasion and metastasis. {ECO:0000250, ECO:0000269|PubMed:10866665, ECO:0000269|PubMed:11912130, ECO:0000269|PubMed:15734731, ECO:0000269|PubMed:16707493, ECO:0000269|PubMed:19756381, ECO:0000269|PubMed:21182836}. |
O43768 | ENSA | S108 | ochoa | Alpha-endosulfine (ARPP-19e) | Protein phosphatase inhibitor that specifically inhibits protein phosphatase 2A (PP2A) during mitosis. When phosphorylated at Ser-67 during mitosis, specifically interacts with PPP2R2D (PR55-delta) and inhibits its activity, leading to inactivation of PP2A, an essential condition to keep cyclin-B1-CDK1 activity high during M phase (By similarity). Also acts as a stimulator of insulin secretion by interacting with sulfonylurea receptor (ABCC8), thereby preventing sulfonylurea from binding to its receptor and reducing K(ATP) channel currents. {ECO:0000250, ECO:0000269|PubMed:9653196}. |
O43914 | TYROBP | S99 | ochoa | TYRO protein tyrosine kinase-binding protein (DNAX-activation protein 12) (Killer-activating receptor-associated protein) (KAR-associated protein) | Adapter protein which non-covalently associates with activating receptors found on the surface of a variety of immune cells to mediate signaling and cell activation following ligand binding by the receptors (PubMed:10604985, PubMed:9490415, PubMed:9655483). TYROBP is tyrosine-phosphorylated in the ITAM domain following ligand binding by the associated receptors which leads to activation of additional tyrosine kinases and subsequent cell activation (PubMed:9490415). Also has an inhibitory role in some cells (PubMed:21727189). Non-covalently associates with activating receptors of the CD300 family to mediate cell activation (PubMed:15557162, PubMed:16920917, PubMed:17928527, PubMed:26221034). Also mediates cell activation through association with activating receptors of the CD200R family (By similarity). Required for neutrophil activation mediated by integrin (By similarity). Required for the activation of myeloid cells mediated by the CLEC5A/MDL1 receptor (PubMed:10449773). Associates with natural killer (NK) cell receptors such as KIR2DS2 and the KLRD1/KLRC2 heterodimer to mediate NK cell activation (PubMed:23715743, PubMed:9490415, PubMed:9655483). Also enhances trafficking and cell surface expression of NK cell receptors KIR2DS1, KIR2DS2 and KIR2DS4 and ensures their stability at the cell surface (PubMed:23715743). Associates with SIRPB1 to mediate activation of myeloid cells such as monocytes and dendritic cells (PubMed:10604985). Associates with TREM1 to mediate activation of neutrophils and monocytes (PubMed:10799849). Associates with TREM2 on monocyte-derived dendritic cells to mediate up-regulation of chemokine receptor CCR7 and dendritic cell maturation and survival (PubMed:11602640). Association with TREM2 mediates cytokine-induced formation of multinucleated giant cells which are formed by the fusion of macrophages (PubMed:18957693). Stabilizes the TREM2 C-terminal fragment (TREM2-CTF) produced by TREM2 ectodomain shedding which suppresses the release of pro-inflammatory cytokines (PubMed:25957402). In microglia, required with TREM2 for phagocytosis of apoptotic neurons (By similarity). Required with ITGAM/CD11B in microglia to control production of microglial superoxide ions which promote the neuronal apoptosis that occurs during brain development (By similarity). Promotes pro-inflammatory responses in microglia following nerve injury which accelerates degeneration of injured neurons (By similarity). Positively regulates the expression of the IRAK3/IRAK-M kinase and IL10 production by liver dendritic cells and inhibits their T cell allostimulatory ability (By similarity). Negatively regulates B cell proliferation (PubMed:21727189). Required for CSF1-mediated osteoclast cytoskeletal organization (By similarity). Positively regulates multinucleation during osteoclast development (By similarity). {ECO:0000250|UniProtKB:O54885, ECO:0000269|PubMed:10449773, ECO:0000269|PubMed:10604985, ECO:0000269|PubMed:10799849, ECO:0000269|PubMed:11602640, ECO:0000269|PubMed:15557162, ECO:0000269|PubMed:16920917, ECO:0000269|PubMed:17928527, ECO:0000269|PubMed:18957693, ECO:0000269|PubMed:21727189, ECO:0000269|PubMed:23715743, ECO:0000269|PubMed:25957402, ECO:0000269|PubMed:26221034, ECO:0000269|PubMed:9490415, ECO:0000269|PubMed:9655483}. |
O43920 | NDUFS5 | T93 | ochoa | NADH dehydrogenase [ubiquinone] iron-sulfur protein 5 (Complex I-15 kDa) (CI-15 kDa) (NADH-ubiquinone oxidoreductase 15 kDa subunit) | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. {ECO:0000269|PubMed:27626371}. |
O43933 | PEX1 | S1270 | ochoa | Peroxisomal ATPase PEX1 (EC 3.6.4.-) (Peroxin-1) (Peroxisome biogenesis disorder protein 1) (Peroxisome biogenesis factor 1) | Component of the PEX1-PEX6 AAA ATPase complex, a protein dislocase complex that mediates the ATP-dependent extraction of the PEX5 receptor from peroxisomal membranes, an essential step for PEX5 recycling (PubMed:11439091, PubMed:16314507, PubMed:16854980, PubMed:21362118, PubMed:29884772). Specifically recognizes PEX5 monoubiquitinated at 'Cys-11', and pulls it out of the peroxisome lumen through the PEX2-PEX10-PEX12 retrotranslocation channel (PubMed:29884772). Extraction by the PEX1-PEX6 AAA ATPase complex is accompanied by unfolding of the TPR repeats and release of bound cargo from PEX5 (PubMed:29884772). {ECO:0000269|PubMed:11439091, ECO:0000269|PubMed:16314507, ECO:0000269|PubMed:16854980, ECO:0000269|PubMed:21362118, ECO:0000269|PubMed:29884772}. |
O60356 | NUPR1 | T68 | psp | Nuclear protein 1 (Candidate of metastasis 1) (Protein p8) | Transcription regulator that converts stress signals into a program of gene expression that empowers cells with resistance to the stress induced by a change in their microenvironment. Thereby participates in the regulation of many processes namely cell-cycle, apoptosis, autophagy and DNA repair responses (PubMed:11056169, PubMed:11940591, PubMed:16300740, PubMed:16478804, PubMed:18690848, PubMed:19650074, PubMed:19723804, PubMed:20181828, PubMed:22565310, PubMed:22858377, PubMed:30451898). Controls cell cycle progression and protects cells from genotoxic stress induced by doxorubicin through the complex formation with TP53 and EP300 that binds CDKN1A promoter leading to transcriptional induction of CDKN1A (PubMed:18690848). Protects pancreatic cancer cells from stress-induced cell death by binding the RELB promoter and activating its transcription, leading to IER3 transactivation (PubMed:22565310). Negatively regulates apoptosis through interaction with PTMA (PubMed:16478804). Inhibits autophagy-induced apoptosis in cardiac cells through FOXO3 interaction, inducing cytoplasmic translocation of FOXO3 thereby preventing the FOXO3 association with the pro-autophagic BNIP3 promoter (PubMed:20181828). Inhibits cell growth and facilitates programmed cell death by apoptosis after adriamycin-induced DNA damage through transactivation of TP53 (By similarity). Regulates methamphetamine-induced apoptosis and autophagy through DDIT3-mediated endoplasmic reticulum stress pathway (By similarity). Participates in DNA repair following gamma-irradiation by facilitating DNA access of the transcription machinery through interaction with MSL1 leading to inhibition of histone H4' Lys-16' acetylation (H4K16ac) (PubMed:19650074). Coactivator of PAX2 transcription factor activity, both by recruiting EP300 to increase PAX2 transcription factor activity and by binding PAXIP1 to suppress PAXIP1-induced inhibition on PAX2 (PubMed:11940591). Positively regulates cell cycle progression through interaction with COPS5 inducing cytoplasmic translocation of CDKN1B leading to the CDKN1B degradation (PubMed:16300740). Coordinates, through its interaction with EP300, the assiociation of MYOD1, EP300 and DDX5 to the MYOG promoter, leading to inhibition of cell-cycle progression and myogenic differentiation promotion (PubMed:19723804). Negatively regulates beta cell proliferation via inhibition of cell-cycle regulatory genes expression through the suppression of their promoter activities (By similarity). Also required for LHB expression and ovarian maturation (By similarity). Exacerbates CNS inflammation and demyelination upon cuprizone treatment (By similarity). {ECO:0000250|UniProtKB:O54842, ECO:0000250|UniProtKB:Q9WTK0, ECO:0000269|PubMed:11056169, ECO:0000269|PubMed:11940591, ECO:0000269|PubMed:16300740, ECO:0000269|PubMed:16478804, ECO:0000269|PubMed:18690848, ECO:0000269|PubMed:19650074, ECO:0000269|PubMed:19723804, ECO:0000269|PubMed:20181828, ECO:0000269|PubMed:22565310, ECO:0000269|PubMed:22858377, ECO:0000269|PubMed:30451898}. |
O60814 | H2BC12 | S113 | ochoa | Histone H2B type 1-K (H2B K) (HIRA-interacting protein 1) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
O75044 | SRGAP2 | S1058 | ochoa | SLIT-ROBO Rho GTPase-activating protein 2 (srGAP2) (Formin-binding protein 2) (Rho GTPase-activating protein 34) | Postsynaptic RAC1 GTPase activating protein (GAP) that plays a key role in neuronal morphogenesis and migration mainly during development of the cerebral cortex (PubMed:20810653, PubMed:27373832, PubMed:28333212). Regulates excitatory and inhibitory synapse maturation and density in cortical pyramidal neurons (PubMed:22559944, PubMed:27373832). SRGAP2/SRGAP2A limits excitatory and inhibitory synapse density through its RAC1-specific GTPase activating activity, while it promotes maturation of both excitatory and inhibitory synapses through its ability to bind to the postsynaptic scaffolding protein HOMER1 at excitatory synapses, and the postsynaptic protein GPHN at inhibitory synapses (By similarity). Mechanistically, acts by binding and deforming membranes, thereby regulating actin dynamics to regulate cell migration and differentiation (PubMed:27373832). Promotes cell repulsion and contact inhibition of locomotion: localizes to protrusions with curved edges and controls the duration of RAC1 activity in contact protrusions (By similarity). In non-neuronal cells, may also play a role in cell migration by regulating the formation of lamellipodia and filopodia (PubMed:20810653, PubMed:21148482). {ECO:0000250|UniProtKB:Q91Z67, ECO:0000269|PubMed:20810653, ECO:0000269|PubMed:21148482, ECO:0000269|PubMed:22559944, ECO:0000269|PubMed:27373832, ECO:0000269|PubMed:28333212}. |
O75056 | SDC3 | S428 | ochoa | Syndecan-3 (SYND3) | Cell surface proteoglycan that may bear heparan sulfate (By similarity). May have a role in the organization of cell shape by affecting the actin cytoskeleton, possibly by transferring signals from the cell surface in a sugar-dependent mechanism. {ECO:0000250, ECO:0000269|PubMed:11527150}. |
O75116 | ROCK2 | S1374 | ochoa|psp | Rho-associated protein kinase 2 (EC 2.7.11.1) (Rho kinase 2) (Rho-associated, coiled-coil-containing protein kinase 2) (Rho-associated, coiled-coil-containing protein kinase II) (ROCK-II) (p164 ROCK-2) | Protein kinase which is a key regulator of actin cytoskeleton and cell polarity. Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of ADD1, BRCA2, CNN1, EZR, DPYSL2, EP300, MSN, MYL9/MLC2, NPM1, RDX, PPP1R12A and VIM. Phosphorylates SORL1 and IRF4. Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation. Positively regulates the activation of p42/MAPK1-p44/MAPK3 and of p90RSK/RPS6KA1 during myogenic differentiation. Plays an important role in the timely initiation of centrosome duplication. Inhibits keratinocyte terminal differentiation. May regulate closure of the eyelids and ventral body wall through organization of actomyosin bundles. Plays a critical role in the regulation of spine and synaptic properties in the hippocampus. Plays an important role in generating the circadian rhythm of the aortic myofilament Ca(2+) sensitivity and vascular contractility by modulating the myosin light chain phosphorylation. {ECO:0000269|PubMed:10579722, ECO:0000269|PubMed:15699075, ECO:0000269|PubMed:16574662, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21147781}. |
O75122 | CLASP2 | S1281 | ochoa | CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}. |
O75153 | CLUH | S1295 | ochoa | Clustered mitochondria protein homolog | mRNA-binding protein involved in proper cytoplasmic distribution of mitochondria. Specifically binds mRNAs of nuclear-encoded mitochondrial proteins in the cytoplasm and regulates transport or translation of these transcripts close to mitochondria, playing a role in mitochondrial biogenesis. {ECO:0000255|HAMAP-Rule:MF_03013, ECO:0000269|PubMed:25349259}. |
O75347 | TBCA | Y94 | ochoa | Tubulin-specific chaperone A (TCP1-chaperonin cofactor A) (Tubulin-folding cofactor A) (CFA) | Tubulin-folding protein; involved in the early step of the tubulin folding pathway. |
O75746 | SLC25A12 | S664 | ochoa | Electrogenic aspartate/glutamate antiporter SLC25A12, mitochondrial (Araceli hiperlarga) (Aralar) (Aralar1) (Mitochondrial aspartate glutamate carrier 1) (Solute carrier family 25 member 12) | Mitochondrial electrogenic aspartate/glutamate antiporter that favors efflux of aspartate and entry of glutamate and proton within the mitochondria as part of the malate-aspartate shuttle (PubMed:11566871, PubMed:19641205, PubMed:24515575, PubMed:38945283). Also mediates the uptake of L-cysteinesulfinate (3-sulfino-L-alanine) by mitochondria in exchange of L-glutamate and proton (PubMed:11566871). Can also exchange L-cysteinesulfinate with aspartate in their anionic form without any proton translocation (PubMed:11566871). Lacks transport activity towards L-glutamine or gamma-aminobutyric acid (GABA) (PubMed:38945283). {ECO:0000269|PubMed:11566871, ECO:0000269|PubMed:19641205, ECO:0000269|PubMed:24515575, ECO:0000269|PubMed:38945283}. |
O75971 | SNAPC5 | T85 | ochoa | snRNA-activating protein complex subunit 5 (SNAPc subunit 5) (Small nuclear RNA-activating complex polypeptide 5) (snRNA-activating protein complex 19 kDa subunit) (SNAPc 19 kDa subunit) | Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. |
O76061 | STC2 | S288 | ochoa|psp | Stanniocalcin-2 (STC-2) (Stanniocalcin-related protein) (STC-related protein) (STCRP) | Has an anti-hypocalcemic action on calcium and phosphate homeostasis. |
O94782 | USP1 | T771 | ochoa | Ubiquitin carboxyl-terminal hydrolase 1 (EC 3.4.19.12) (Deubiquitinating enzyme 1) (hUBP) (Ubiquitin thioesterase 1) (Ubiquitin-specific-processing protease 1) [Cleaved into: Ubiquitin carboxyl-terminal hydrolase 1, N-terminal fragment] | Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2 (PubMed:15694335). Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:16531995, PubMed:20147293). Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a high activity (PubMed:18082604, PubMed:26388029). {ECO:0000269|PubMed:15694335, ECO:0000269|PubMed:16531995, ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:26388029}. |
O94782 | USP1 | S772 | ochoa | Ubiquitin carboxyl-terminal hydrolase 1 (EC 3.4.19.12) (Deubiquitinating enzyme 1) (hUBP) (Ubiquitin thioesterase 1) (Ubiquitin-specific-processing protease 1) [Cleaved into: Ubiquitin carboxyl-terminal hydrolase 1, N-terminal fragment] | Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2 (PubMed:15694335). Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:16531995, PubMed:20147293). Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a high activity (PubMed:18082604, PubMed:26388029). {ECO:0000269|PubMed:15694335, ECO:0000269|PubMed:16531995, ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:26388029}. |
O94804 | STK10 | S954 | ochoa | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
O94913 | PCF11 | T1541 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O95049 | TJP3 | S905 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95049 | TJP3 | S906 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95081 | AGFG2 | S467 | ochoa | Arf-GAP domain and FG repeat-containing protein 2 (HIV-1 Rev-binding protein-like protein) (Rev/Rex activation domain-binding protein related) (RAB-R) | None |
O95081 | AGFG2 | S468 | ochoa | Arf-GAP domain and FG repeat-containing protein 2 (HIV-1 Rev-binding protein-like protein) (Rev/Rex activation domain-binding protein related) (RAB-R) | None |
O95149 | SNUPN | S347 | ochoa | Snurportin-1 (RNA U transporter 1) | Functions as an U snRNP-specific nuclear import adapter. Involved in the trimethylguanosine (m3G)-cap-dependent nuclear import of U snRNPs. Binds specifically to the terminal m3G-cap U snRNAs. {ECO:0000269|PubMed:10209022, ECO:0000269|PubMed:15920472, ECO:0000269|PubMed:16030253, ECO:0000269|PubMed:38413582, ECO:0000269|PubMed:9670026}. |
O95232 | LUC7L3 | T419 | ochoa | Luc7-like protein 3 (Cisplatin resistance-associated-overexpressed protein) (Luc7A) (Okadaic acid-inducible phosphoprotein OA48-18) (cAMP regulatory element-associated protein 1) (CRE-associated protein 1) (CREAP-1) | Binds cAMP regulatory element DNA sequence. May play a role in RNA splicing. {ECO:0000269|PubMed:16462885}. |
O95239 | KIF4A | T1218 | ochoa | Chromosome-associated kinesin KIF4A (Chromokinesin-A) | Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}. |
O95239 | KIF4A | S1219 | ochoa | Chromosome-associated kinesin KIF4A (Chromokinesin-A) | Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}. |
O95453 | PARN | S625 | ochoa | Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) | 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}. |
O95484 | CLDN9 | S204 | ochoa | Claudin-9 | Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell-adhesion activity. {ECO:0000250|UniProtKB:O95832}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) entry into hepatic cells. {ECO:0000269|PubMed:17804490, ECO:0000269|PubMed:20375010}. |
O95528 | SLC2A10 | S527 | ochoa | Solute carrier family 2, facilitated glucose transporter member 10 (Glucose transporter type 10) (GLUT-10) | Facilitative glucose transporter required for the development of the cardiovascular system. {ECO:0000269|PubMed:11592815, ECO:0000269|PubMed:16550171}. |
O95866 | MPIG6B | T227 | ochoa | Megakaryocyte and platelet inhibitory receptor G6b (Protein G6b) | Inhibitory receptor that acts as a critical regulator of hematopoietic lineage differentiation, megakaryocyte function and platelet production (PubMed:12665801, PubMed:17311996, PubMed:27743390). Inhibits platelet aggregation and activation by agonists such as ADP and collagen-related peptide (PubMed:12665801). This regulation of megakaryocate function as well as platelet production ann activation is done through the inhibition (via the 2 ITIM motifs) of the receptors CLEC1B and GP6:FcRgamma signaling (PubMed:17311996). Appears to operate in a calcium-independent manner (PubMed:12665801). {ECO:0000269|PubMed:12665801, ECO:0000269|PubMed:17311996, ECO:0000269|PubMed:27743390}.; FUNCTION: Isoform B, displayed in this entry, is the only isoform to contain both a transmembrane region and 2 immunoreceptor tyrosine-based inhibitor motifs (ITIMs) and, thus, the only one which probably has a role of inhibitory receptor. Isoform A may be the activating counterpart of isoform B. {ECO:0000305|PubMed:11544253}. |
P00338 | LDHA | S319 | ochoa|psp | L-lactate dehydrogenase A chain (LDH-A) (EC 1.1.1.27) (Cell proliferation-inducing gene 19 protein) (LDH muscle subunit) (LDH-M) (Renal carcinoma antigen NY-REN-59) | Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:11276087}. |
P00505 | GOT2 | S416 | ochoa | Aspartate aminotransferase, mitochondrial (mAspAT) (EC 2.6.1.1) (EC 2.6.1.7) (Fatty acid-binding protein) (FABP-1) (Glutamate oxaloacetate transaminase 2) (Kynurenine aminotransferase 4) (Kynurenine aminotransferase IV) (Kynurenine--oxoglutarate transaminase 4) (Kynurenine--oxoglutarate transaminase IV) (Plasma membrane-associated fatty acid-binding protein) (FABPpm) (Transaminase A) | Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). As a member of the malate-aspartate shuttle, it has a key role in the intracellular NAD(H) redox balance. Is important for metabolite exchange between mitochondria and cytosol, and for amino acid metabolism. Facilitates cellular uptake of long-chain free fatty acids. {ECO:0000269|PubMed:31422819, ECO:0000269|PubMed:9537447}. |
P00533 | EGFR | Y1197 | ochoa|psp | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P00568 | AK1 | S181 | ochoa | Adenylate kinase isoenzyme 1 (AK 1) (EC 2.7.4.3) (EC 2.7.4.4) (EC 2.7.4.6) (ATP-AMP transphosphorylase 1) (ATP:AMP phosphotransferase) (Adenylate monophosphate kinase) (Myokinase) | Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Also displays broad nucleoside diphosphate kinase activity. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism (By similarity) (PubMed:21080915, PubMed:23416111, PubMed:2542324). Also catalyzes at a very low rate the synthesis of thiamine triphosphate (ThTP) from thiamine diphosphate (ThDP) and ADP (By similarity). {ECO:0000250|UniProtKB:P05081, ECO:0000255|HAMAP-Rule:MF_03171, ECO:0000269|PubMed:21080915, ECO:0000269|PubMed:23416111, ECO:0000269|PubMed:2542324}. |
P01130 | LDLR | S846 | ochoa | Low-density lipoprotein receptor (LDL receptor) | Binds low density lipoprotein /LDL, the major cholesterol-carrying lipoprotein of plasma, and transports it into cells by endocytosis. In order to be internalized, the receptor-ligand complexes must first cluster into clathrin-coated pits. Forms a ternary complex with PGRMC1 and TMEM97 receptors which increases LDLR-mediated LDL internalization (PubMed:30443021). {ECO:0000269|PubMed:3005267, ECO:0000269|PubMed:30443021, ECO:0000269|PubMed:6091915}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus in hepatocytes, but not through a direct interaction with viral proteins. {ECO:0000269|PubMed:10535997, ECO:0000269|PubMed:12615904}.; FUNCTION: (Microbial infection) Acts as a receptor for Vesicular stomatitis virus. {ECO:0000269|PubMed:23589850}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, may function as a receptor for extracellular Tat in neurons, mediating its internalization in uninfected cells. {ECO:0000269|PubMed:11100124}.; FUNCTION: (Microbial infection) Acts as a receptor for Crimean-Congo hemorrhagic fever virus (CCHFV). {ECO:0000269|PubMed:38182887}.; FUNCTION: (Microbial infection) Acts as a receptor for many Alphavirus, including Getah virus (GETV), Ross river virus (RRV) and Semliki Forest virus. {ECO:0000269|PubMed:38245515}. |
P01130 | LDLR | Y847 | ochoa | Low-density lipoprotein receptor (LDL receptor) | Binds low density lipoprotein /LDL, the major cholesterol-carrying lipoprotein of plasma, and transports it into cells by endocytosis. In order to be internalized, the receptor-ligand complexes must first cluster into clathrin-coated pits. Forms a ternary complex with PGRMC1 and TMEM97 receptors which increases LDLR-mediated LDL internalization (PubMed:30443021). {ECO:0000269|PubMed:3005267, ECO:0000269|PubMed:30443021, ECO:0000269|PubMed:6091915}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus in hepatocytes, but not through a direct interaction with viral proteins. {ECO:0000269|PubMed:10535997, ECO:0000269|PubMed:12615904}.; FUNCTION: (Microbial infection) Acts as a receptor for Vesicular stomatitis virus. {ECO:0000269|PubMed:23589850}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, may function as a receptor for extracellular Tat in neurons, mediating its internalization in uninfected cells. {ECO:0000269|PubMed:11100124}.; FUNCTION: (Microbial infection) Acts as a receptor for Crimean-Congo hemorrhagic fever virus (CCHFV). {ECO:0000269|PubMed:38182887}.; FUNCTION: (Microbial infection) Acts as a receptor for many Alphavirus, including Getah virus (GETV), Ross river virus (RRV) and Semliki Forest virus. {ECO:0000269|PubMed:38245515}. |
P02545 | LMNA | S651 | ochoa | Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] | [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}. |
P02787 | TF | S685 | ochoa | Serotransferrin (Transferrin) (Beta-1 metal-binding globulin) (Siderophilin) | Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation.; FUNCTION: (Microbial infection) Serves as an iron source for Neisseria species, which capture the protein and extract its iron for their own use. {ECO:0000269|PubMed:22327295, ECO:0000269|PubMed:22343719}.; FUNCTION: (Microbial infection) Serves as an iron source for parasite T.brucei (strain 427), which capture TF via its own transferrin receptor ESAG6:ESAG7 and extract its iron for its own use. {ECO:0000269|PubMed:31636418}. |
P02794 | FTH1 | Y169 | ochoa | Ferritin heavy chain (Ferritin H subunit) (EC 1.16.3.1) (Cell proliferation-inducing gene 15 protein) [Cleaved into: Ferritin heavy chain, N-terminally processed] | Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Has ferroxidase activity (PubMed:9003196). Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation (PubMed:9003196). Also plays a role in delivery of iron to cells (By similarity). Mediates iron uptake in capsule cells of the developing kidney (By similarity). Delivery to lysosomes is mediated by the cargo receptor NCOA4 for autophagic degradation and release of iron (PubMed:24695223, PubMed:26436293). {ECO:0000250|UniProtKB:P09528, ECO:0000269|PubMed:24695223, ECO:0000269|PubMed:26436293, ECO:0000269|PubMed:9003196}. |
P04626 | ERBB2 | T1242 | ochoa | Receptor tyrosine-protein kinase erbB-2 (EC 2.7.10.1) (Metastatic lymph node gene 19 protein) (MLN 19) (Proto-oncogene Neu) (Proto-oncogene c-ErbB-2) (Tyrosine kinase-type cell surface receptor HER2) (p185erbB2) (CD antigen CD340) | Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. {ECO:0000305}.; FUNCTION: In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth. {ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:15380516, ECO:0000269|PubMed:21555369}. |
P05067 | APP | Y757 | ochoa|psp | Amyloid-beta precursor protein (APP) (ABPP) (APPI) (Alzheimer disease amyloid A4 protein homolog) (Alzheimer disease amyloid protein) (Amyloid precursor protein) (Amyloid-beta (A4) precursor protein) (Amyloid-beta A4 protein) (Cerebral vascular amyloid peptide) (CVAP) (PreA4) (Protease nexin-II) (PN-II) [Cleaved into: N-APP; Soluble APP-alpha (S-APP-alpha); Soluble APP-beta (S-APP-beta); C99 (Beta-secretase C-terminal fragment) (Beta-CTF); Amyloid-beta protein 42 (Abeta42) (Beta-APP42); Amyloid-beta protein 40 (Abeta40) (Beta-APP40); C83 (Alpha-secretase C-terminal fragment) (Alpha-CTF); P3(42); P3(40); C80; Gamma-secretase C-terminal fragment 59 (Amyloid intracellular domain 59) (AICD-59) (AID(59)) (Gamma-CTF(59)); Gamma-secretase C-terminal fragment 57 (Amyloid intracellular domain 57) (AICD-57) (AID(57)) (Gamma-CTF(57)); Gamma-secretase C-terminal fragment 50 (Amyloid intracellular domain 50) (AICD-50) (AID(50)) (Gamma-CTF(50)); C31] | Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Interaction between APP molecules on neighboring cells promotes synaptogenesis (PubMed:25122912). Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(o) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1 (By similarity). By acting as a kinesin I membrane receptor, plays a role in axonal anterograde transport of cargo towards synapses in axons (PubMed:17062754, PubMed:23011729). Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1. {ECO:0000250, ECO:0000250|UniProtKB:P12023, ECO:0000269|PubMed:17062754, ECO:0000269|PubMed:23011729, ECO:0000269|PubMed:25122912}.; FUNCTION: Amyloid-beta peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Amyloid-beta peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.; FUNCTION: [Amyloid-beta protein 42]: More effective reductant than amyloid-beta protein 40. May activate mononuclear phagocytes in the brain and elicit inflammatory responses.; FUNCTION: Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain. {ECO:0000250}.; FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis. |
P05107 | ITGB2 | S756 | ochoa|psp | Integrin beta-2 (Cell surface adhesion glycoproteins LFA-1/CR3/p150,95 subunit beta) (Complement receptor C3 subunit beta) (CD antigen CD18) | Integrin ITGAL/ITGB2 is a receptor for ICAM1, ICAM2, ICAM3 and ICAM4. Integrin ITGAL/ITGB2 is also a receptor for the secreted form of ubiquitin-like protein ISG15; the interaction is mediated by ITGAL (PubMed:29100055). Integrins ITGAM/ITGB2 and ITGAX/ITGB2 are receptors for the iC3b fragment of the third complement component and for fibrinogen. Integrin ITGAX/ITGB2 recognizes the sequence G-P-R in fibrinogen alpha-chain. Integrin ITGAM/ITGB2 recognizes P1 and P2 peptides of fibrinogen gamma chain. Integrin ITGAM/ITGB2 is also a receptor for factor X. Integrin ITGAD/ITGB2 is a receptor for ICAM3 and VCAM1. Contributes to natural killer cell cytotoxicity (PubMed:15356110). Involved in leukocyte adhesion and transmigration of leukocytes including T-cells and neutrophils (PubMed:11812992, PubMed:28807980). Triggers neutrophil transmigration during lung injury through PTK2B/PYK2-mediated activation (PubMed:18587400). Integrin ITGAL/ITGB2 in association with ICAM3, contributes to apoptotic neutrophil phagocytosis by macrophages (PubMed:23775590). In association with alpha subunit ITGAM/CD11b, required for CD177-PRTN3-mediated activation of TNF primed neutrophils (PubMed:21193407). {ECO:0000269|PubMed:11812992, ECO:0000269|PubMed:15356110, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:21193407, ECO:0000269|PubMed:23775590, ECO:0000269|PubMed:28807980, ECO:0000269|PubMed:29100055}. |
P05114 | HMGN1 | S86 | ochoa|psp | Non-histone chromosomal protein HMG-14 (High mobility group nucleosome-binding domain-containing protein 1) | Binds to the inner side of the nucleosomal DNA thus altering the interaction between the DNA and the histone octamer. May be involved in the process which maintains transcribable genes in a unique chromatin conformation. Inhibits the phosphorylation of nucleosomal histones H3 and H2A by RPS6KA5/MSK1 and RPS6KA3/RSK2 (By similarity). {ECO:0000250}. |
P05386 | RPLP1 | S101 | ochoa|psp | Large ribosomal subunit protein P1 (60S acidic ribosomal protein P1) | Plays an important role in the elongation step of protein synthesis. |
P05387 | RPLP2 | S102 | ochoa|psp | Large ribosomal subunit protein P2 (60S acidic ribosomal protein P2) (Renal carcinoma antigen NY-REN-44) | Plays an important role in the elongation step of protein synthesis. |
P05388 | RPLP0 | S304 | ochoa|psp | Large ribosomal subunit protein uL10 (60S acidic ribosomal protein P0) (60S ribosomal protein L10E) | Ribosomal protein P0 is the functional equivalent of E.coli protein L10. |
P05556 | ITGB1 | S785 | ochoa|psp | Integrin beta-1 (Fibronectin receptor subunit beta) (Glycoprotein IIa) (GPIIA) (VLA-4 subunit beta) (CD antigen CD29) | Integrins alpha-1/beta-1, alpha-2/beta-1, alpha-10/beta-1 and alpha-11/beta-1 are receptors for collagen. Integrins alpha-1/beta-1 and alpha-2/beta-2 recognize the proline-hydroxylated sequence G-F-P-G-E-R in collagen. Integrins alpha-2/beta-1, alpha-3/beta-1, alpha-4/beta-1, alpha-5/beta-1, alpha-8/beta-1, alpha-10/beta-1, alpha-11/beta-1 and alpha-V/beta-1 are receptors for fibronectin. Alpha-4/beta-1 recognizes one or more domains within the alternatively spliced CS-1 and CS-5 regions of fibronectin. Integrin alpha-5/beta-1 is a receptor for fibrinogen. Integrin alpha-1/beta-1, alpha-2/beta-1, alpha-6/beta-1 and alpha-7/beta-1 are receptors for lamimin. Integrin alpha-6/beta-1 (ITGA6:ITGB1) is present in oocytes and is involved in sperm-egg fusion (By similarity). Integrin alpha-4/beta-1 is a receptor for VCAM1. It recognizes the sequence Q-I-D-S in VCAM1. Integrin alpha-9/beta-1 is a receptor for VCAM1, cytotactin and osteopontin. It recognizes the sequence A-E-I-D-G-I-E-L in cytotactin. Integrin alpha-3/beta-1 is a receptor for epiligrin, thrombospondin and CSPG4. Alpha-3/beta-1 may mediate with LGALS3 the stimulation by CSPG4 of endothelial cells migration. Integrin alpha-V/beta-1 is a receptor for vitronectin. Beta-1 integrins recognize the sequence R-G-D in a wide array of ligands. When associated with alpha-7 integrin, regulates cell adhesion and laminin matrix deposition. Involved in promoting endothelial cell motility and angiogenesis. Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process and the formation of mineralized bone nodules. May be involved in up-regulation of the activity of kinases such as PKC via binding to KRT1. Together with KRT1 and RACK1, serves as a platform for SRC activation or inactivation. Plays a mechanistic adhesive role during telophase, required for the successful completion of cytokinesis. Integrin alpha-3/beta-1 provides a docking site for FAP (seprase) at invadopodia plasma membranes in a collagen-dependent manner and hence may participate in the adhesion, formation of invadopodia and matrix degradation processes, promoting cell invasion. ITGA4:ITGB1 binds to fractalkine (CX3CL1) and may act as its coreceptor in CX3CR1-dependent fractalkine signaling (PubMed:23125415, PubMed:24789099). ITGA4:ITGB1 and ITGA5:ITGB1 bind to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1 (PubMed:18635536, PubMed:25398877). ITGA5:ITGB1 acts as a receptor for fibrillin-1 (FBN1) and mediates R-G-D-dependent cell adhesion to FBN1 (PubMed:12807887, PubMed:17158881). ITGA5:ITGB1 acts as a receptor for fibronectin FN1 and mediates R-G-D-dependent cell adhesion to FN1 (PubMed:33962943). ITGA5:ITGB1 is a receptor for IL1B and binding is essential for IL1B signaling (PubMed:29030430). ITGA5:ITGB3 is a receptor for soluble CD40LG and is required for CD40/CD40LG signaling (PubMed:31331973). Plays an important role in myoblast differentiation and fusion during skeletal myogenesis (By similarity). ITGA9:ITGB1 may play a crucial role in SVEP1/polydom-mediated myoblast cell adhesion (By similarity). Integrins ITGA9:ITGB1 and ITGA4:ITGB1 repress PRKCA-mediated L-type voltage-gated channel Ca(2+) influx and ROCK-mediated calcium sensitivity in vascular smooth muscle cells via their interaction with SVEP1, thereby inhibit vasocontraction (PubMed:35802072). {ECO:0000250|UniProtKB:P07228, ECO:0000250|UniProtKB:P09055, ECO:0000269|PubMed:10455171, ECO:0000269|PubMed:12473654, ECO:0000269|PubMed:12807887, ECO:0000269|PubMed:16256741, ECO:0000269|PubMed:17158881, ECO:0000269|PubMed:18635536, ECO:0000269|PubMed:18804435, ECO:0000269|PubMed:19064666, ECO:0000269|PubMed:21768292, ECO:0000269|PubMed:23125415, ECO:0000269|PubMed:24789099, ECO:0000269|PubMed:25398877, ECO:0000269|PubMed:29030430, ECO:0000269|PubMed:31331973, ECO:0000269|PubMed:33962943, ECO:0000269|PubMed:35802072, ECO:0000269|PubMed:7523423}.; FUNCTION: [Isoform 2]: Interferes with isoform 1 resulting in a dominant negative effect on cell adhesion and migration (in vitro). {ECO:0000305|PubMed:2249781}.; FUNCTION: [Isoform 5]: Isoform 5 displaces isoform 1 in striated muscles. {ECO:0000250|UniProtKB:P09055}.; FUNCTION: (Microbial infection) Integrin ITGA2:ITGB1 acts as a receptor for Human echoviruses 1 and 8. {ECO:0000269|PubMed:8411387}.; FUNCTION: (Microbial infection) Acts as a receptor for Cytomegalovirus/HHV-5. {ECO:0000269|PubMed:20660204}.; FUNCTION: (Microbial infection) Acts as a receptor for Epstein-Barr virus/HHV-4. {ECO:0000269|PubMed:17945327}.; FUNCTION: (Microbial infection) Integrin ITGA5:ITGB1 acts as a receptor for Human parvovirus B19. {ECO:0000269|PubMed:12907437}.; FUNCTION: (Microbial infection) Integrin ITGA2:ITGB1 acts as a receptor for Human rotavirus. {ECO:0000269|PubMed:12941907}.; FUNCTION: (Microbial infection) Acts as a receptor for Mammalian reovirus. {ECO:0000269|PubMed:16501085}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, integrin ITGA5:ITGB1 binding to extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. {ECO:0000269|PubMed:10397733}.; FUNCTION: (Microbial infection) Interacts with CotH proteins expressed by fungi of the order mucorales, the causative agent of mucormycosis, which plays an important role in epithelial cell invasion by the fungi (PubMed:32487760). Integrin ITGA3:ITGB1 may act as a receptor for R.delemar CotH7 in alveolar epithelial cells, which may be an early step in pulmonary mucormycosis disease progression (PubMed:32487760). {ECO:0000269|PubMed:32487760}.; FUNCTION: (Microbial infection) May serve as a receptor for adhesin A (nadA) of N.meningitidis. {ECO:0000305|PubMed:21471204}.; FUNCTION: (Microbial infection) Facilitates rabies infection in a fibronectin-dependent manner and participates in rabies virus traffic after internalization. {ECO:0000269|PubMed:31666383}. |
P06127 | CD5 | S482 | ochoa|psp | T-cell surface glycoprotein CD5 (Lymphocyte antigen T1/Leu-1) (CD antigen CD5) | Lymphoid-specific receptor expressed by all T-cells and in a subset of B-cells known as B1a cells. Plays a role in the regulation of TCR and BCR signaling, thymocyte selection, T-cell effector differentiation and immune tolerance. Acts by interacting with several ligands expressed on B-cells such as CD5L or CD72 and thereby plays an important role in contact-mediated, T-dependent B-cell activation and in the maintenance of regulatory T and B-cell homeostasis. Functions as a negative regulator of TCR signaling during thymocyte development by associating with several signaling proteins including LCK, CD3Z chain, PI3K or CBL (PubMed:1384049, PubMed:1385158). Mechanistically, co-engagement of CD3 with CD5 enhances phosphorylated CBL recruitment leading to increased VAV1 phosphorylation and degradation (PubMed:23376399). Modulates B-cell biology through ERK1/2 activation in a Ca(2+)-dependent pathway via the non-selective Ca(2+) channel TRPC1, leading to IL-10 production (PubMed:27499044). {ECO:0000250|UniProtKB:P13379, ECO:0000269|PubMed:1384049, ECO:0000269|PubMed:1385158, ECO:0000269|PubMed:23376399, ECO:0000269|PubMed:27499044}. |
P07195 | LDHB | S320 | ochoa | L-lactate dehydrogenase B chain (LDH-B) (EC 1.1.1.27) (LDH heart subunit) (LDH-H) (Renal carcinoma antigen NY-REN-46) | Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:27618187}. |
P07951 | TPM2 | S271 | ochoa | Tropomyosin beta chain (Beta-tropomyosin) (Tropomyosin-2) | Binds to actin filaments in muscle and non-muscle cells. Plays a central role, in association with the troponin complex, in the calcium dependent regulation of vertebrate striated muscle contraction. Smooth muscle contraction is regulated by interaction with caldesmon. In non-muscle cells is implicated in stabilizing cytoskeleton actin filaments. The non-muscle isoform may have a role in agonist-mediated receptor internalization. {ECO:0000250|UniProtKB:P58774, ECO:0000250|UniProtKB:P58775}. |
P08100 | RHO | S334 | psp | Rhodopsin (Opsin-2) | Photoreceptor required for image-forming vision at low light intensity (PubMed:7846071, PubMed:8107847). Required for photoreceptor cell viability after birth (PubMed:12566452, PubMed:2215617). Light-induced isomerization of the chromophore 11-cis-retinal to all-trans-retinal triggers a conformational change that activates signaling via G-proteins (PubMed:26200343, PubMed:28524165, PubMed:28753425, PubMed:8107847). Subsequent receptor phosphorylation mediates displacement of the bound G-protein alpha subunit by the arrestin SAG and terminates signaling (PubMed:26200343, PubMed:28524165). {ECO:0000269|PubMed:12566452, ECO:0000269|PubMed:2215617, ECO:0000269|PubMed:26200343, ECO:0000269|PubMed:28753425, ECO:0000269|PubMed:7846071, ECO:0000269|PubMed:8107847, ECO:0000305|PubMed:28524165}. |
P08887 | IL6R | S455 | ochoa | Interleukin-6 receptor subunit alpha (IL-6 receptor subunit alpha) (IL-6R subunit alpha) (IL-6R-alpha) (IL-6RA) (IL-6R 1) (Membrane glycoprotein 80) (gp80) (CD antigen CD126) [Cleaved into: Soluble interleukin-6 receptor subunit alpha (sIL6R)] | Part of the receptor for interleukin 6. Binds to IL6 with low affinity, but does not transduce a signal (PubMed:28265003). Signal activation necessitate an association with IL6ST. Activation leads to the regulation of the immune response, acute-phase reactions and hematopoiesis (PubMed:30995492, PubMed:31235509). The interaction with membrane-bound IL6R and IL6ST stimulates 'classic signaling', the restricted expression of the IL6R limits classic IL6 signaling to only a few tissues such as the liver and some cells of the immune system. Whereas the binding of IL6 and soluble IL6R to IL6ST stimulates 'trans-signaling'. Alternatively, 'cluster signaling' occurs when membrane-bound IL6:IL6R complexes on transmitter cells activate IL6ST receptors on neighboring receiver cells (Probable). {ECO:0000269|PubMed:28265003, ECO:0000269|PubMed:31235509, ECO:0000305|PubMed:30995492}.; FUNCTION: [Isoform 1]: Signaling via the membrane-bound IL6R is mostly regenerative and anti-inflammatory (Probable). Drives naive CD4(+) T cells to the Th17 lineage, through 'cluster signaling' by dendritic cells (By similarity). {ECO:0000250|UniProtKB:P22272, ECO:0000305|PubMed:30995492}.; FUNCTION: [Isoform 2]: Soluble form of IL6 receptor (sIL6R) that acts as an agonist of IL6 activity (PubMed:21990364). The IL6:sIL6R complex (hyper-IL6) binds to IL6ST/gp130 on cell surfaces and induces signaling also on cells that do not express membrane-bound IL6R in a process called IL6 'trans-signaling'. sIL6R is causative for the pro-inflammatory properties of IL6 and an important player in the development of chronic inflammatory diseases (PubMed:21990364). In complex with IL6, is required for induction of VEGF production (PubMed:12794819). Plays a protective role during liver injury, being required for maintenance of tissue regeneration (By similarity). 'Trans-signaling' in central nervous system regulates energy and glucose homeostasis (By similarity). {ECO:0000250|UniProtKB:P22272, ECO:0000269|PubMed:12794819, ECO:0000269|PubMed:21990364}.; FUNCTION: [Soluble interleukin-6 receptor subunit alpha]: Soluble form of IL6 receptor (sIL6R) that acts as an agonist of IL6 activity (PubMed:21990364). The IL6:sIL6R complex (hyper-IL6) binds to IL6ST/gp130 on cell surfaces and induces signaling also on cells that do not express membrane-bound IL6R in a process called IL6 'trans-signaling'. sIL6R is causative for the pro-inflammatory properties of IL6 and an important player in the development of chronic inflammatory diseases (PubMed:21990364). In complex with IL6, is required for induction of VEGF production (PubMed:12794819). Plays a protective role during liver injury, being required for maintenance of tissue regeneration (By similarity). 'Trans-signaling' in central nervous system regulates energy and glucose homeostasis (By similarity). {ECO:0000250|UniProtKB:P22272, ECO:0000269|PubMed:12794819, ECO:0000269|PubMed:21990364}. |
P08922 | ROS1 | Y2334 | psp | Proto-oncogene tyrosine-protein kinase ROS (EC 2.7.10.1) (Proto-oncogene c-Ros) (Proto-oncogene c-Ros-1) (Receptor tyrosine kinase c-ros oncogene 1) (c-Ros receptor tyrosine kinase) | Receptor tyrosine kinase (RTK) that plays a role in epithelial cell differentiation and regionalization of the proximal epididymal epithelium. NELL2 is an endogenous ligand for ROS1. Upon endogenous stimulation by NELL2, ROS1 activates the intracellular signaling pathway and triggers epididymal epithelial differentiation and subsequent sperm maturation (By similarity). May activate several downstream signaling pathways related to cell differentiation, proliferation, growth and survival including the PI3 kinase-mTOR signaling pathway. Mediates the phosphorylation of PTPN11, an activator of this pathway. May also phosphorylate and activate the transcription factor STAT3 to control anchorage-independent cell growth. Mediates the phosphorylation and the activation of VAV3, a guanine nucleotide exchange factor regulating cell morphology. May activate other downstream signaling proteins including AKT1, MAPK1, MAPK3, IRS1 and PLCG2. {ECO:0000250|UniProtKB:Q78DX7, ECO:0000269|PubMed:11094073, ECO:0000269|PubMed:16885344}. |
P09017 | HOXC4 | T251 | ochoa | Homeobox protein Hox-C4 (Homeobox protein CP19) (Homeobox protein Hox-3E) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P09564 | CD7 | S226 | ochoa | T-cell antigen CD7 (GP40) (T-cell leukemia antigen) (T-cell surface antigen Leu-9) (TP41) (CD antigen CD7) | Transmembrane glycoprotein expressed by T-cells and natural killer (NK) cells and their precursors (PubMed:7506726). Plays a costimulatory role in T-cell activation upon binding to its ligand K12/SECTM1 (PubMed:10652336). In turn, mediates the production of cytokines such as IL-2 (PubMed:1709867). On resting NK-cells, CD7 activation results in a significant induction of interferon-gamma levels (PubMed:7506726). {ECO:0000269|PubMed:10652336, ECO:0000269|PubMed:1709867, ECO:0000269|PubMed:7506726}. |
P09629 | HOXB7 | T203 | psp | Homeobox protein Hox-B7 (Homeobox protein HHO.C1) (Homeobox protein Hox-2C) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P09629 | HOXB7 | T204 | psp | Homeobox protein Hox-B7 (Homeobox protein HHO.C1) (Homeobox protein Hox-2C) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P0CG38 | POTEI | Y1062 | ochoa | POTE ankyrin domain family member I | None |
P0CG39 | POTEJ | Y1025 | ochoa | POTE ankyrin domain family member J | None |
P10124 | SRGN | S144 | ochoa | Serglycin (Hematopoietic proteoglycan core protein) (Platelet proteoglycan core protein) (P.PG) (Secretory granule proteoglycan core protein) | Plays a role in formation of mast cell secretory granules and mediates storage of various compounds in secretory vesicles. Required for storage of some proteases in both connective tissue and mucosal mast cells and for storage of granzyme B in T-lymphocytes. Plays a role in localizing neutrophil elastase in azurophil granules of neutrophils. Mediates processing of MMP2. Plays a role in cytotoxic cell granule-mediated apoptosis by forming a complex with granzyme B which is delivered to cells by perforin to induce apoptosis. Regulates the secretion of TNF-alpha and may also regulate protease secretion. Inhibits bone mineralization. {ECO:0000269|PubMed:11911826, ECO:0000269|PubMed:16420477, ECO:0000269|PubMed:16870619}. |
P10276 | RARA | S449 | ochoa | Retinoic acid receptor alpha (RAR-alpha) (Nuclear receptor subfamily 1 group B member 1) | Receptor for retinoic acid (PubMed:16417524, PubMed:19850744, PubMed:20215566, PubMed:21152046, PubMed:37478846). Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes (PubMed:21152046, PubMed:28167758, PubMed:37478846). The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 (PubMed:19398580, PubMed:28167758). In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone deacetylation, chromatin condensation and transcriptional suppression (PubMed:16417524). On ligand binding, the corepressors dissociate from the receptors and associate with the coactivators leading to transcriptional activation (PubMed:19850744, PubMed:20215566, PubMed:37478846, PubMed:9267036). Formation of a complex with histone deacetylases might lead to inhibition of RARE DNA element binding and to transcriptional repression (PubMed:28167758). Transcriptional activation and RARE DNA element binding might be supported by the transcription factor KLF2 (PubMed:28167758). RARA plays an essential role in the regulation of retinoic acid-induced germ cell development during spermatogenesis (By similarity). Has a role in the survival of early spermatocytes at the beginning prophase of meiosis (By similarity). In Sertoli cells, may promote the survival and development of early meiotic prophase spermatocytes (By similarity). In concert with RARG, required for skeletal growth, matrix homeostasis and growth plate function (By similarity). Together with RXRA, positively regulates microRNA-10a expression, thereby inhibiting the GATA6/VCAM1 signaling response to pulsatile shear stress in vascular endothelial cells (PubMed:28167758). In association with HDAC3, HDAC5 and HDAC7 corepressors, plays a role in the repression of microRNA-10a and thereby promotes the inflammatory response (PubMed:28167758). {ECO:0000250|UniProtKB:P11416, ECO:0000269|PubMed:16417524, ECO:0000269|PubMed:19398580, ECO:0000269|PubMed:19850744, ECO:0000269|PubMed:20215566, ECO:0000269|PubMed:21152046, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9267036}. |
P10636 | MAPT | T744 | psp | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P10721 | KIT | S962 | ochoa | Mast/stem cell growth factor receptor Kit (SCFR) (EC 2.7.10.1) (Piebald trait protein) (PBT) (Proto-oncogene c-Kit) (Tyrosine-protein kinase Kit) (p145 c-kit) (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) (CD antigen CD117) | Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1. {ECO:0000269|PubMed:10397721, ECO:0000269|PubMed:12444928, ECO:0000269|PubMed:12511554, ECO:0000269|PubMed:12878163, ECO:0000269|PubMed:17904548, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:21135090, ECO:0000269|PubMed:21640708, ECO:0000269|PubMed:7520444, ECO:0000269|PubMed:9528781}. |
P10721 | KIT | T963 | ochoa | Mast/stem cell growth factor receptor Kit (SCFR) (EC 2.7.10.1) (Piebald trait protein) (PBT) (Proto-oncogene c-Kit) (Tyrosine-protein kinase Kit) (p145 c-kit) (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) (CD antigen CD117) | Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1. {ECO:0000269|PubMed:10397721, ECO:0000269|PubMed:12444928, ECO:0000269|PubMed:12511554, ECO:0000269|PubMed:12878163, ECO:0000269|PubMed:17904548, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:21135090, ECO:0000269|PubMed:21640708, ECO:0000269|PubMed:7520444, ECO:0000269|PubMed:9528781}. |
P10747 | CD28 | Y206 | ochoa|psp | T-cell-specific surface glycoprotein CD28 (TP44) (CD antigen CD28) | Receptor that plays a role in T-cell activation, proliferation, survival and the maintenance of immune homeostasis (PubMed:1650475, PubMed:7568038). Functions not only as an amplifier of TCR signals but delivers unique signals that control intracellular biochemical events that alter the gene expression program of T-cells (PubMed:24665965). Stimulation upon engagement of its cognate ligands CD80 or CD86 increases proliferation and expression of various cytokines in particular IL2 production in both CD4(+) and CD8(+) T-cell subsets (PubMed:1650475, PubMed:35397202). Mechanistically, ligation induces recruitment of protein kinase C-theta/PRKCQ and GRB2 leading to NF-kappa-B activation via both PI3K/Akt-dependent and -independent pathways (PubMed:21964608, PubMed:24665965, PubMed:7568038). In conjunction with TCR/CD3 ligation and CD40L costimulation, enhances the production of IL4 and IL10 in T-cells (PubMed:8617933). {ECO:0000269|PubMed:1650475, ECO:0000269|PubMed:21964608, ECO:0000269|PubMed:24665965, ECO:0000269|PubMed:35397202, ECO:0000269|PubMed:7568038, ECO:0000269|PubMed:8617933}.; FUNCTION: [Isoform 3]: Enhances CD40L-mediated activation of NF-kappa-B and kinases MAPK8 and PAK2 in T-cells (PubMed:15067037). {ECO:0000269|PubMed:15067037}. |
P11142 | HSPA8 | S633 | ochoa | Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8) (Heat shock protein family A member 8) (Lipopolysaccharide-associated protein 1) (LAP-1) (LPS-associated protein 1) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, chaperone-mediated autophagy, activation of proteolysis of misfolded proteins, formation and dissociation of protein complexes, and antigen presentation. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661, PubMed:2799391, PubMed:36586411). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24121476, PubMed:24318877, PubMed:26865365, PubMed:27474739). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Substrate recognition component in chaperone-mediated autophagy (CMA), a selective protein degradation process that mediates degradation of proteins with a -KFERQ motif: HSPA8/HSC70 specifically recognizes and binds cytosolic proteins bearing a -KFERQ motif and promotes their recruitment to the surface of the lysosome where they bind to lysosomal protein LAMP2 (PubMed:11559757, PubMed:2799391, PubMed:36586411). KFERQ motif-containing proteins are eventually transported into the lysosomal lumen where they are degraded (PubMed:11559757, PubMed:2799391, PubMed:36586411). In conjunction with LAMP2, facilitates MHC class II presentation of cytoplasmic antigens by guiding antigens to the lysosomal membrane for interaction with LAMP2 which then elicits MHC class II presentation of peptides to the cell membrane (PubMed:15894275). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). It is recruited to clathrin-coated vesicles through its interaction with DNAJC6 leading to activation of HSPA8/HSC70 ATPase activity and therefore uncoating of clathrin-coated vesicles (By similarity). {ECO:0000250|UniProtKB:P19120, ECO:0000269|PubMed:10722728, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:11559757, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15894275, ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27916661, ECO:0000269|PubMed:2799391, ECO:0000269|PubMed:36586411, ECO:0000303|PubMed:24121476, ECO:0000303|PubMed:26865365}. |
P11166 | SLC2A1 | T478 | ochoa | Solute carrier family 2, facilitated glucose transporter member 1 (Glucose transporter type 1, erythrocyte/brain) (GLUT-1) (HepG2 glucose transporter) | Facilitative glucose transporter, which is responsible for constitutive or basal glucose uptake (PubMed:10227690, PubMed:10954735, PubMed:18245775, PubMed:19449892, PubMed:25982116, PubMed:27078104, PubMed:32860739). Has a very broad substrate specificity; can transport a wide range of aldoses including both pentoses and hexoses (PubMed:18245775, PubMed:19449892). Most important energy carrier of the brain: present at the blood-brain barrier and assures the energy-independent, facilitative transport of glucose into the brain (PubMed:10227690). In association with BSG and NXNL1, promotes retinal cone survival by increasing glucose uptake into photoreceptors (By similarity). Required for mesendoderm differentiation (By similarity). {ECO:0000250|UniProtKB:P17809, ECO:0000250|UniProtKB:P46896, ECO:0000269|PubMed:10227690, ECO:0000269|PubMed:10954735, ECO:0000269|PubMed:18245775, ECO:0000269|PubMed:19449892, ECO:0000269|PubMed:25982116, ECO:0000269|PubMed:27078104, ECO:0000269|PubMed:32860739}. |
P11277 | SPTB | S2123 | ochoa|psp | Spectrin beta chain, erythrocytic (Beta-I spectrin) | Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane. It associates with band 4.1 and actin to form the cytoskeletal superstructure of the erythrocyte plasma membrane. |
P11277 | SPTB | S2124 | ochoa | Spectrin beta chain, erythrocytic (Beta-I spectrin) | Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane. It associates with band 4.1 and actin to form the cytoskeletal superstructure of the erythrocyte plasma membrane. |
P12318 | FCGR2A | Y304 | ochoa|psp | Low affinity immunoglobulin gamma Fc region receptor II-a (IgG Fc receptor II-a) (CDw32) (Fc-gamma RII-a) (Fc-gamma-RIIa) (FcRII-a) (CD antigen CD32) | Binds to the Fc region of immunoglobulins gamma. Low affinity receptor. By binding to IgG it initiates cellular responses against pathogens and soluble antigens. Promotes phagocytosis of opsonized antigens. {ECO:0000269|PubMed:19011614}. |
P12931 | SRC | Y522 | ochoa|psp | Proto-oncogene tyrosine-protein kinase Src (EC 2.7.10.2) (Proto-oncogene c-Src) (pp60c-src) (p60-Src) | Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors (PubMed:34234773). Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates such as AFAP1. Phosphorylation of AFAP1 allows the SRC SH2 domain to bind AFAP1 and to localize to actin filaments. Cytoskeletal reorganization is also controlled through the phosphorylation of cortactin (CTTN) (Probable). When cells adhere via focal adhesions to the extracellular matrix, signals are transmitted by integrins into the cell resulting in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN) (PubMed:21411625). In addition to phosphorylating focal adhesion proteins, SRC is also active at the sites of cell-cell contact adherens junctions and phosphorylates substrates such as beta-catenin (CTNNB1), delta-catenin (CTNND1), and plakoglobin (JUP). Another type of cell-cell junction, the gap junction, is also a target for SRC, which phosphorylates connexin-43 (GJA1). SRC is implicated in regulation of pre-mRNA-processing and phosphorylates RNA-binding proteins such as KHDRBS1 (Probable). Phosphorylates PKP3 at 'Tyr-195' in response to reactive oxygen species, which may cause the release of PKP3 from desmosome cell junctions into the cytoplasm (PubMed:25501895). Also plays a role in PDGF-mediated tyrosine phosphorylation of both STAT1 and STAT3, leading to increased DNA binding activity of these transcription factors (By similarity). Involved in the RAS pathway through phosphorylation of RASA1 and RASGRF1 (PubMed:11389730). Plays a role in EGF-mediated calcium-activated chloride channel activation (PubMed:18586953). Required for epidermal growth factor receptor (EGFR) internalization through phosphorylation of clathrin heavy chain (CLTC and CLTCL1) at 'Tyr-1477'. Involved in beta-arrestin (ARRB1 and ARRB2) desensitization through phosphorylation and activation of GRK2, leading to beta-arrestin phosphorylation and internalization. Has a critical role in the stimulation of the CDK20/MAPK3 mitogen-activated protein kinase cascade by epidermal growth factor (Probable). Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus (PubMed:7853507). Plays an important role in osteoclastic bone resorption in conjunction with PTK2B/PYK2. Both the formation of a SRC-PTK2B/PYK2 complex and SRC kinase activity are necessary for this function. Recruited to activated integrins by PTK2B/PYK2, thereby phosphorylating CBL, which in turn induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14585963, PubMed:8755529). Promotes energy production in osteoclasts by activating mitochondrial cytochrome C oxidase (PubMed:12615910). Phosphorylates DDR2 on tyrosine residues, thereby promoting its subsequent autophosphorylation (PubMed:16186108). Phosphorylates RUNX3 and COX2 on tyrosine residues, TNK2 on 'Tyr-284' and CBL on 'Tyr-731' (PubMed:20100835, PubMed:21309750). Enhances RIGI-elicited antiviral signaling (PubMed:19419966). Phosphorylates PDPK1 at 'Tyr-9', 'Tyr-373' and 'Tyr-376' (PubMed:14585963). Phosphorylates BCAR1 at 'Tyr-128' (PubMed:22710723). Phosphorylates CBLC at multiple tyrosine residues, phosphorylation at 'Tyr-341' activates CBLC E3 activity (PubMed:20525694). Phosphorylates synaptic vesicle protein synaptophysin (SYP) (By similarity). Involved in anchorage-independent cell growth (PubMed:19307596). Required for podosome formation (By similarity). Mediates IL6 signaling by activating YAP1-NOTCH pathway to induce inflammation-induced epithelial regeneration (PubMed:25731159). Phosphorylates OTUB1, promoting deubiquitination of RPTOR (PubMed:35927303). Phosphorylates caspase CASP8 at 'Tyr-380' which negatively regulates CASP8 processing and activation, down-regulating CASP8 proapoptotic function (PubMed:16619028). {ECO:0000250|UniProtKB:P05480, ECO:0000250|UniProtKB:Q9WUD9, ECO:0000269|PubMed:11389730, ECO:0000269|PubMed:12615910, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:16186108, ECO:0000269|PubMed:16619028, ECO:0000269|PubMed:18586953, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:19419966, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:21309750, ECO:0000269|PubMed:21411625, ECO:0000269|PubMed:22710723, ECO:0000269|PubMed:25501895, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:34234773, ECO:0000269|PubMed:35927303, ECO:0000269|PubMed:7853507, ECO:0000269|PubMed:8755529, ECO:0000269|PubMed:8759729, ECO:0000305|PubMed:11964124, ECO:0000305|PubMed:8672527, ECO:0000305|PubMed:9442882}.; FUNCTION: [Isoform 1]: Non-receptor protein tyrosine kinase which phosphorylates synaptophysin with high affinity. {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 2]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in L1CAM-mediated neurite elongation, possibly by acting downstream of L1CAM to drive cytoskeletal rearrangements involved in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 3]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in neurite elongation (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}. |
P13224 | GP1BB | T193 | ochoa | Platelet glycoprotein Ib beta chain (GP-Ib beta) (GPIb-beta) (GPIbB) (Antigen CD42b-beta) (CD antigen CD42c) | Gp-Ib, a surface membrane protein of platelets, participates in the formation of platelet plugs by binding to von Willebrand factor, which is already bound to the subendothelium. |
P13807 | GYS1 | S723 | ochoa | Glycogen [starch] synthase, muscle (EC 2.4.1.11) (Glycogen synthase 1) | Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan. {ECO:0000269|PubMed:35835870}. |
P14373 | TRIM27 | S499 | ochoa | Zinc finger protein RFP (EC 2.3.2.27) (RING finger protein 76) (Ret finger protein) (Tripartite motif-containing protein 27) | E3 ubiquitin-protein ligase that mediates ubiquitination of various substrates and thereby plays a role in diffent processes including proliferation, innate immunity, apoptosis, immune response or autophagy (PubMed:22829933, PubMed:24144979, PubMed:29688809, PubMed:36111389). Ubiquitinates PIK3C2B and inhibits its activity by mediating the formation of 'Lys-48'-linked polyubiquitin chains; the function inhibits CD4 T-cell activation. Acts as a regulator of retrograde transport: together with MAGEL2, mediates the formation of 'Lys-63'-linked polyubiquitin chains at 'Lys-220' of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). Has a transcriptional repressor activity by cooperating with EPC1. Induces apoptosis by activating Jun N-terminal kinase and p38 kinase and also increases caspase-3-like activity independently of mitochondrial events. May function in male germ cell development. Has DNA-binding activity and preferentially bound to double-stranded DNA. Forms a complex with and ubiquitinates the ubiquitin-specific protease USP7, which in turn deubiquitinates RIPK1 resulting in the positive regulation of TNF-alpha-induced apoptosis (PubMed:24144979). In addition, acts with USP7 or PTPN11 as an inhibitor of the antiviral signaling pathway by promoting kinase TBK1 ubiquitination and degradation (PubMed:26358190, PubMed:29688809). Acts as a negative regulator of NOD2 signaling by mediating ubiquitination of NOD2, promoting its degradation by the proteasome (PubMed:22829933). Alternatively, facilitates mitophagy via stabilization of active TBK1 (PubMed:36111389). Negatively regulates autophagy flux under basal conditions by directly polyubiquitinating ULK1 (PubMed:35670107). During starvation-induced autophagy, catalyzes non-degradative ubiquitination of the kinase STK38L promoting its activation and phosphorylation of ULK1 leading to its ubiquitination and degradation to restrain the amplitude and duration of autophagy (PubMed:35670107). {ECO:0000269|PubMed:10976108, ECO:0000269|PubMed:12807881, ECO:0000269|PubMed:22128329, ECO:0000269|PubMed:22829933, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:24144979, ECO:0000269|PubMed:26358190, ECO:0000269|PubMed:29688809, ECO:0000269|PubMed:35670107, ECO:0000269|PubMed:36111389}.; FUNCTION: (Microbial infection) Positively regulates hepatitis C virus replication by suppressing type I IFN response during infection. {ECO:0000269|PubMed:29688809}. |
P15056 | BRAF | T753 | ochoa|psp | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P15813 | CD1D | T322 | psp | Antigen-presenting glycoprotein CD1d (R3G1) (CD antigen CD1d) | Antigen-presenting protein that binds self and non-self glycolipids and presents them to T-cell receptors on natural killer T-cells. {ECO:0000269|PubMed:17475845}. |
P15924 | DSP | S2857 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P15941 | MUC1 | S1242 | ochoa | Mucin-1 (MUC-1) (Breast carcinoma-associated antigen DF3) (Cancer antigen 15-3) (CA 15-3) (Carcinoma-associated mucin) (Episialin) (H23AG) (Krebs von den Lungen-6) (KL-6) (PEMT) (Peanut-reactive urinary mucin) (PUM) (Polymorphic epithelial mucin) (PEM) (Tumor-associated epithelial membrane antigen) (EMA) (Tumor-associated mucin) (CD antigen CD227) [Cleaved into: Mucin-1 subunit alpha (MUC1-NT) (MUC1-alpha); Mucin-1 subunit beta (MUC1-beta) (MUC1-CT)] | The alpha subunit has cell adhesive properties. Can act both as an adhesion and an anti-adhesion protein. May provide a protective layer on epithelial cells against bacterial and enzyme attack.; FUNCTION: The beta subunit contains a C-terminal domain which is involved in cell signaling, through phosphorylations and protein-protein interactions. Modulates signaling in ERK, SRC and NF-kappa-B pathways. In activated T-cells, influences directly or indirectly the Ras/MAPK pathway. Promotes tumor progression. Regulates TP53-mediated transcription and determines cell fate in the genotoxic stress response. Binds, together with KLF4, the PE21 promoter element of TP53 and represses TP53 activity. |
P16109 | SELP | T817 | psp | P-selectin (CD62 antigen-like family member P) (Granule membrane protein 140) (GMP-140) (Leukocyte-endothelial cell adhesion molecule 3) (LECAM3) (Platelet activation dependent granule-external membrane protein) (PADGEM) (CD antigen CD62P) | Ca(2+)-dependent receptor for myeloid cells that binds to carbohydrates on neutrophils and monocytes. Mediates the interaction of activated endothelial cells or platelets with leukocytes. The ligand recognized is sialyl-Lewis X. Mediates rapid rolling of leukocyte rolling over vascular surfaces during the initial steps in inflammation through interaction with SELPLG. Mediates cell-cell interactions and cell adhesion via the interaction with integrin alpha-IIb/beta3 (ITGA2B:ITGB3) and integrin alpha-V/beta-3 (ITGAV:ITGB3) (PubMed:37184585). {ECO:0000269|PubMed:11081633, ECO:0000269|PubMed:28011641, ECO:0000269|PubMed:37184585, ECO:0000269|PubMed:7585950}. |
P17252 | PRKCA | Y658 | ochoa|psp | Protein kinase C alpha type (PKC-A) (PKC-alpha) (EC 2.7.11.13) | Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that is involved in positive and negative regulation of cell proliferation, apoptosis, differentiation, migration and adhesion, tumorigenesis, cardiac hypertrophy, angiogenesis, platelet function and inflammation, by directly phosphorylating targets such as RAF1, BCL2, CSPG4, TNNT2/CTNT, or activating signaling cascade involving MAPK1/3 (ERK1/2) and RAP1GAP. Involved in cell proliferation and cell growth arrest by positive and negative regulation of the cell cycle. Can promote cell growth by phosphorylating and activating RAF1, which mediates the activation of the MAPK/ERK signaling cascade, and/or by up-regulating CDKN1A, which facilitates active cyclin-dependent kinase (CDK) complex formation in glioma cells. In intestinal cells stimulated by the phorbol ester PMA, can trigger a cell cycle arrest program which is associated with the accumulation of the hyper-phosphorylated growth-suppressive form of RB1 and induction of the CDK inhibitors CDKN1A and CDKN1B. Exhibits anti-apoptotic function in glioma cells and protects them from apoptosis by suppressing the p53/TP53-mediated activation of IGFBP3, and in leukemia cells mediates anti-apoptotic action by phosphorylating BCL2. During macrophage differentiation induced by macrophage colony-stimulating factor (CSF1), is translocated to the nucleus and is associated with macrophage development. After wounding, translocates from focal contacts to lamellipodia and participates in the modulation of desmosomal adhesion. Plays a role in cell motility by phosphorylating CSPG4, which induces association of CSPG4 with extensive lamellipodia at the cell periphery and polarization of the cell accompanied by increases in cell motility. During chemokine-induced CD4(+) T cell migration, phosphorylates CDC42-guanine exchange factor DOCK8 resulting in its dissociation from LRCH1 and the activation of GTPase CDC42 (PubMed:28028151). Is highly expressed in a number of cancer cells where it can act as a tumor promoter and is implicated in malignant phenotypes of several tumors such as gliomas and breast cancers. Negatively regulates myocardial contractility and positively regulates angiogenesis, platelet aggregation and thrombus formation in arteries. Mediates hypertrophic growth of neonatal cardiomyocytes, in part through a MAPK1/3 (ERK1/2)-dependent signaling pathway, and upon PMA treatment, is required to induce cardiomyocyte hypertrophy up to heart failure and death, by increasing protein synthesis, protein-DNA ratio and cell surface area. Regulates cardiomyocyte function by phosphorylating cardiac troponin T (TNNT2/CTNT), which induces significant reduction in actomyosin ATPase activity, myofilament calcium sensitivity and myocardial contractility. In angiogenesis, is required for full endothelial cell migration, adhesion to vitronectin (VTN), and vascular endothelial growth factor A (VEGFA)-dependent regulation of kinase activation and vascular tube formation. Involved in the stabilization of VEGFA mRNA at post-transcriptional level and mediates VEGFA-induced cell proliferation. In the regulation of calcium-induced platelet aggregation, mediates signals from the CD36/GP4 receptor for granule release, and activates the integrin heterodimer ITGA2B-ITGB3 through the RAP1GAP pathway for adhesion. During response to lipopolysaccharides (LPS), may regulate selective LPS-induced macrophage functions involved in host defense and inflammation. But in some inflammatory responses, may negatively regulate NF-kappa-B-induced genes, through IL1A-dependent induction of NF-kappa-B inhibitor alpha (NFKBIA/IKBA). Upon stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA), phosphorylates EIF4G1, which modulates EIF4G1 binding to MKNK1 and may be involved in the regulation of EIF4E phosphorylation. Phosphorylates KIT, leading to inhibition of KIT activity. Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription. Phosphorylates SOCS2 at 'Ser-52' facilitating its ubiquitination and proteasomal degradation (By similarity). Phosphorylates KLHL3 in response to angiotensin II signaling, decreasing the interaction between KLHL3 and WNK4 (PubMed:25313067). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P20444, ECO:0000269|PubMed:10848585, ECO:0000269|PubMed:11909826, ECO:0000269|PubMed:12724315, ECO:0000269|PubMed:12832403, ECO:0000269|PubMed:15016832, ECO:0000269|PubMed:15504744, ECO:0000269|PubMed:15526160, ECO:0000269|PubMed:18056764, ECO:0000269|PubMed:19176525, ECO:0000269|PubMed:21576361, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:25313067, ECO:0000269|PubMed:28028151, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:9738012, ECO:0000269|PubMed:9830023, ECO:0000269|PubMed:9873035, ECO:0000269|PubMed:9927633}. |
P17302 | GJA1 | S368 | ochoa|psp | Gap junction alpha-1 protein (Connexin-43) (Cx43) (Gap junction 43 kDa heart protein) | Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). May play a role in cell growth inhibition through the regulation of NOV expression and localization. Plays an essential role in gap junction communication in the ventricles (By similarity). {ECO:0000250|UniProtKB:P08050, ECO:0000250|UniProtKB:P23242}. |
P17302 | GJA1 | S369 | ochoa|psp | Gap junction alpha-1 protein (Connexin-43) (Cx43) (Gap junction 43 kDa heart protein) | Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). May play a role in cell growth inhibition through the regulation of NOV expression and localization. Plays an essential role in gap junction communication in the ventricles (By similarity). {ECO:0000250|UniProtKB:P08050, ECO:0000250|UniProtKB:P23242}. |
P17812 | CTPS1 | S578 | ochoa | CTP synthase 1 (EC 6.3.4.2) (CTP synthetase 1) (UTP--ammonia ligase 1) | This enzyme is involved in the de novo synthesis of CTP, a precursor of DNA, RNA and phospholipids. Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as a source of nitrogen. This enzyme and its product, CTP, play a crucial role in the proliferation of activated lymphocytes and therefore in immunity. {ECO:0000269|PubMed:16179339, ECO:0000269|PubMed:24870241}. |
P19484 | TFEB | S462 | ochoa | Transcription factor EB (Class E basic helix-loop-helix protein 35) (bHLHe35) | Transcription factor that acts as a master regulator of lysosomal biogenesis, autophagy, lysosomal exocytosis, lipid catabolism, energy metabolism and immune response (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:30120233, PubMed:31672913, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823, PubMed:36749723, PubMed:37079666). Specifically recognizes and binds E-box sequences (5'-CANNTG-3'); efficient DNA-binding requires dimerization with itself or with another MiT/TFE family member such as TFE3 or MITF (PubMed:1748288, PubMed:19556463, PubMed:29146937). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, TFEB phosphorylation by MTOR promotes its cytosolic retention and subsequent inactivation (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of MTOR induces TFEB dephosphorylation, resulting in nuclear localization and transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Specifically recognizes and binds the CLEAR-box sequence (5'-GTCACGTGAC-3') present in the regulatory region of many lysosomal genes, leading to activate their expression, thereby playing a central role in expression of lysosomal genes (PubMed:19556463, PubMed:22692423). Regulates lysosomal positioning in response to nutrient deprivation by promoting the expression of PIP4P1 (PubMed:29146937). Acts as a positive regulator of autophagy by promoting expression of genes involved in autophagy (PubMed:21617040, PubMed:22576015, PubMed:23434374, PubMed:27278822). In association with TFE3, activates the expression of CD40L in T-cells, thereby playing a role in T-cell-dependent antibody responses in activated CD4(+) T-cells and thymus-dependent humoral immunity (By similarity). Specifically recognizes the gamma-E3 box, a subset of E-boxes, present in the heavy-chain immunoglobulin enhancer (PubMed:2115126). Plays a role in the signal transduction processes required for normal vascularization of the placenta (By similarity). Involved in the immune response to infection by the bacteria S.aureus, S.typhimurium or S.enterica: infection promotes itaconate production, leading to alkylation, resulting in nuclear localization and transcription factor activity (PubMed:35662396). Itaconate-mediated alkylation activates TFEB-dependent lysosomal biogenesis, facilitating the bacteria clearance during the antibacterial innate immune response (PubMed:35662396). In association with ACSS2, promotes the expression of genes involved in lysosome biogenesis and both autophagy upon glucose deprivation (PubMed:28552616). {ECO:0000250|UniProtKB:Q9R210, ECO:0000269|PubMed:1748288, ECO:0000269|PubMed:19556463, ECO:0000269|PubMed:2115126, ECO:0000269|PubMed:21617040, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23434374, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:27278822, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:29146937, ECO:0000269|PubMed:30120233, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:32753672, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:36749723, ECO:0000269|PubMed:37079666}. |
P19484 | TFEB | S463 | ochoa | Transcription factor EB (Class E basic helix-loop-helix protein 35) (bHLHe35) | Transcription factor that acts as a master regulator of lysosomal biogenesis, autophagy, lysosomal exocytosis, lipid catabolism, energy metabolism and immune response (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:30120233, PubMed:31672913, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823, PubMed:36749723, PubMed:37079666). Specifically recognizes and binds E-box sequences (5'-CANNTG-3'); efficient DNA-binding requires dimerization with itself or with another MiT/TFE family member such as TFE3 or MITF (PubMed:1748288, PubMed:19556463, PubMed:29146937). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, TFEB phosphorylation by MTOR promotes its cytosolic retention and subsequent inactivation (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of MTOR induces TFEB dephosphorylation, resulting in nuclear localization and transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Specifically recognizes and binds the CLEAR-box sequence (5'-GTCACGTGAC-3') present in the regulatory region of many lysosomal genes, leading to activate their expression, thereby playing a central role in expression of lysosomal genes (PubMed:19556463, PubMed:22692423). Regulates lysosomal positioning in response to nutrient deprivation by promoting the expression of PIP4P1 (PubMed:29146937). Acts as a positive regulator of autophagy by promoting expression of genes involved in autophagy (PubMed:21617040, PubMed:22576015, PubMed:23434374, PubMed:27278822). In association with TFE3, activates the expression of CD40L in T-cells, thereby playing a role in T-cell-dependent antibody responses in activated CD4(+) T-cells and thymus-dependent humoral immunity (By similarity). Specifically recognizes the gamma-E3 box, a subset of E-boxes, present in the heavy-chain immunoglobulin enhancer (PubMed:2115126). Plays a role in the signal transduction processes required for normal vascularization of the placenta (By similarity). Involved in the immune response to infection by the bacteria S.aureus, S.typhimurium or S.enterica: infection promotes itaconate production, leading to alkylation, resulting in nuclear localization and transcription factor activity (PubMed:35662396). Itaconate-mediated alkylation activates TFEB-dependent lysosomal biogenesis, facilitating the bacteria clearance during the antibacterial innate immune response (PubMed:35662396). In association with ACSS2, promotes the expression of genes involved in lysosome biogenesis and both autophagy upon glucose deprivation (PubMed:28552616). {ECO:0000250|UniProtKB:Q9R210, ECO:0000269|PubMed:1748288, ECO:0000269|PubMed:19556463, ECO:0000269|PubMed:2115126, ECO:0000269|PubMed:21617040, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23434374, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:27278822, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:29146937, ECO:0000269|PubMed:30120233, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:32753672, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:36749723, ECO:0000269|PubMed:37079666}. |
P20265 | POU3F2 | S429 | ochoa | POU domain, class 3, transcription factor 2 (Brain-specific homeobox/POU domain protein 2) (Brain-2) (Brn-2) (Nervous system-specific octamer-binding transcription factor N-Oct-3) (Octamer-binding protein 7) (Oct-7) (Octamer-binding transcription factor 7) (OTF-7) | Transcription factor that plays a key role in neuronal differentiation (By similarity). Binds preferentially to the recognition sequence which consists of two distinct half-sites, ('GCAT') and ('TAAT'), separated by a non-conserved spacer region of 0, 2, or 3 nucleotides (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro (By similarity). Acts downstream of ASCL1, accessing chromatin that has been opened by ASCL1, and promotes transcription of neuronal genes (By similarity). {ECO:0000250|UniProtKB:P31360, ECO:0000250|UniProtKB:P56222}. |
P20338 | RAB4A | S204 | psp | Ras-related protein Rab-4A (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:15907487, PubMed:16034420). RAB4A is involved in protein transport (PubMed:29425100). Also plays a role in vesicular traffic. Mediates VEGFR2 endosomal trafficking to enhance VEGFR2 signaling (PubMed:29425100). Acts as a regulator of platelet alpha-granule release during activation and aggregation of platelets (By similarity). {ECO:0000250|UniProtKB:P56371, ECO:0000269|PubMed:15907487, ECO:0000269|PubMed:16034420, ECO:0000269|PubMed:29425100}. |
P21462 | FPR1 | T336 | psp | fMet-Leu-Phe receptor (fMLP receptor) (N-formyl peptide receptor) (FPR) (N-formylpeptide chemoattractant receptor) | High affinity receptor for N-formyl-methionyl peptides (fMLP), which are powerful neutrophil chemotactic factors (PubMed:10514456, PubMed:15153520, PubMed:2161213, PubMed:2176894). Binding of fMLP to the receptor stimulates intracellular calcium mobilization and superoxide anion release (PubMed:15153520, PubMed:15210802, PubMed:1712023, PubMed:2161213). This response is mediated via a G-protein that activates a phosphatidylinositol-calcium second messenger system (PubMed:10514456, PubMed:1712023). Receptor for TAFA4, mediates its effects on chemoattracting macrophages, promoting phagocytosis and increasing ROS release (PubMed:25109685). Receptor for cathepsin CTSG, leading to increased phagocyte chemotaxis (PubMed:15210802). {ECO:0000269|PubMed:10514456, ECO:0000269|PubMed:15153520, ECO:0000269|PubMed:2161213, ECO:0000269|PubMed:2176894, ECO:0000269|PubMed:25109685, ECO:0000303|PubMed:10514456, ECO:0000303|PubMed:1712023, ECO:0000303|PubMed:2161213, ECO:0000303|PubMed:2176894}. |
P21731 | TBXA2R | S329 | ochoa|psp | Thromboxane A2 receptor (TXA2-R) (Prostanoid TP receptor) | Receptor for thromboxane A2 (TXA2), a potent stimulator of platelet aggregation. The activity of this receptor is mediated by a G-protein that activates a phosphatidylinositol-calcium second messenger system. In the kidney, the binding of TXA2 to glomerular TP receptors causes intense vasoconstriction. Activates phospholipase C. {ECO:0000269|PubMed:8613548}.; FUNCTION: [Isoform 1]: Activates adenylyl cyclase. {ECO:0000269|PubMed:8613548}.; FUNCTION: [Isoform 2]: Inhibits adenylyl cyclase. {ECO:0000269|PubMed:8613548}. |
P21860 | ERBB3 | Y1328 | ochoa|psp | Receptor tyrosine-protein kinase erbB-3 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-3) (Tyrosine kinase-type cell surface receptor HER3) | Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins. Binds to neuregulin-1 (NRG1) and is activated by it; ligand-binding increases phosphorylation on tyrosine residues and promotes its association with the p85 subunit of phosphatidylinositol 3-kinase (PubMed:20682778). May also be activated by CSPG5 (PubMed:15358134). Involved in the regulation of myeloid cell differentiation (PubMed:27416908). {ECO:0000269|PubMed:15358134, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:27416908}. |
P22314 | UBA1 | S1044 | ochoa | Ubiquitin-like modifier-activating enzyme 1 (EC 6.2.1.45) (Protein A1S9) (Ubiquitin-activating enzyme E1) | Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system (PubMed:1447181, PubMed:1606621, PubMed:33108101). Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:1447181). Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (PubMed:22456334). {ECO:0000269|PubMed:1447181, ECO:0000269|PubMed:1606621, ECO:0000269|PubMed:22456334, ECO:0000269|PubMed:33108101}. |
P22532 | SPRR2D | T58 | ochoa | Small proline-rich protein 2D (SPR-2D) (Small proline-rich protein II) (SPR-II) | Cross-linked envelope protein of keratinocytes. It is a keratinocyte protein that first appears in the cell cytosol, but ultimately becomes cross-linked to membrane proteins by transglutaminase. All that results in the formation of an insoluble envelope beneath the plasma membrane. |
P23434 | GCSH | S160 | ochoa | Glycine cleavage system H protein, mitochondrial (Lipoic acid-containing protein) | The glycine cleavage system catalyzes the degradation of glycine. The H protein (GCSH) shuttles the methylamine group of glycine from the P protein (GLDC) to the T protein (GCST). Has a pivotal role in the lipoylation of enzymes involved in cellular energetics such as the mitochondrial dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (DLAT), and the mitochondrial dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex (DLST) (PubMed:36190515). {ECO:0000269|PubMed:1671321, ECO:0000269|PubMed:36190515}. |
P23588 | EIF4B | S597 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P25025 | CXCR2 | S347 | psp | C-X-C chemokine receptor type 2 (CXC-R2) (CXCR-2) (CDw128b) (GRO/MGSA receptor) (High affinity interleukin-8 receptor B) (IL-8R B) (IL-8 receptor type 2) (CD antigen CD182) | Receptor for interleukin-8 which is a powerful neutrophil chemotactic factor (PubMed:1891716). Binding of IL-8 to the receptor causes activation of neutrophils. This response is mediated via a G-protein that activates a phosphatidylinositol-calcium second messenger system (PubMed:8662698). Binds to IL-8 with high affinity. Also binds with high affinity to CXCL3, GRO/MGSA and NAP-2. {ECO:0000269|PubMed:1891716, ECO:0000269|PubMed:8662698}. |
P25054 | APC | S2830 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25098 | GRK2 | S676 | ochoa | Beta-adrenergic receptor kinase 1 (Beta-ARK-1) (EC 2.7.11.15) (G-protein coupled receptor kinase 2) | Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors, probably inducing a desensitization of them (PubMed:19715378). Key regulator of LPAR1 signaling (PubMed:19306925). Competes with RALA for binding to LPAR1 thus affecting the signaling properties of the receptor (PubMed:19306925). Desensitizes LPAR1 and LPAR2 in a phosphorylation-independent manner (PubMed:19306925). Positively regulates ciliary smoothened (SMO)-dependent Hedgehog (Hh) signaling pathway by facilitating the trafficking of SMO into the cilium and the stimulation of SMO activity (By similarity). Inhibits relaxation of airway smooth muscle in response to blue light (PubMed:30284927). {ECO:0000250|UniProtKB:P21146, ECO:0000269|PubMed:19306925, ECO:0000269|PubMed:19715378, ECO:0000269|PubMed:30284927}. |
P25116 | F2R | S412 | ochoa | Proteinase-activated receptor 1 (PAR-1) (Coagulation factor II receptor) (Thrombin receptor) | High affinity receptor that binds the activated thrombin, leading to calcium release from intracellular stores (PubMed:1672265, PubMed:8136362). The thrombin-activated receptor signaling pathway is mediated through PTX-insensitive G proteins, activation of phospholipase C resulting in the production of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) which binds to InsP3 receptors causing calcium release from the stores (By similarity). In astrocytes, the calcium released into the cytosol allows the Ca(2+)-dependent release of L-glutamate into the synaptic cleft through BEST1, that targets the neuronal postsynaptic GRIN2A/NMDAR receptor resulting in the synaptic plasticity regulation (By similarity). May play a role in platelets activation and in vascular development (PubMed:10079109). Mediates up-regulation of pro-inflammatory cytokines, such as MCP-1/CCL2 and IL6, triggered by coagulation factor Xa (F10) in cardiac fibroblasts and umbilical vein endothelial cells (PubMed:30568593, PubMed:34831181). {ECO:0000250|UniProtKB:P26824, ECO:0000250|UniProtKB:P30558, ECO:0000269|PubMed:10079109, ECO:0000269|PubMed:1672265, ECO:0000269|PubMed:30568593, ECO:0000269|PubMed:34831181, ECO:0000269|PubMed:8136362}. |
P25686 | DNAJB2 | S311 | ochoa | DnaJ homolog subfamily B member 2 (Heat shock 40 kDa protein 3) (Heat shock protein J1) (HSJ-1) | Functions as a co-chaperone, regulating the substrate binding and activating the ATPase activity of chaperones of the HSP70/heat shock protein 70 family (PubMed:22219199, PubMed:7957263). In parallel, also contributes to the ubiquitin-dependent proteasomal degradation of misfolded proteins (PubMed:15936278, PubMed:21625540). Thereby, may regulate the aggregation and promote the functional recovery of misfolded proteins like HTT, MC4R, PRKN, RHO and SOD1 and be crucial for many biological processes (PubMed:12754272, PubMed:20889486, PubMed:21719532, PubMed:22396390, PubMed:24023695). Isoform 1 which is localized to the endoplasmic reticulum membranes may specifically function in ER-associated protein degradation of misfolded proteins (PubMed:15936278). {ECO:0000269|PubMed:12754272, ECO:0000269|PubMed:15936278, ECO:0000269|PubMed:20889486, ECO:0000269|PubMed:21625540, ECO:0000269|PubMed:21719532, ECO:0000269|PubMed:22219199, ECO:0000269|PubMed:22396390, ECO:0000269|PubMed:24023695, ECO:0000269|PubMed:7957263}. |
P26010 | ITGB7 | T784 | psp | Integrin beta-7 (Gut homing receptor beta subunit) | Integrin ITGA4/ITGB7 (alpha-4/beta-7) (Peyer patches-specific homing receptor LPAM-1) is an adhesion molecule that mediates lymphocyte migration and homing to gut-associated lymphoid tissue (GALT) (Probable). Integrin ITGA4/ITGB7 interacts with the cell surface adhesion molecules MADCAM1 which is normally expressed by the vascular endothelium of the gastrointestinal tract (PubMed:10837471, PubMed:14608374). Also interacts with VCAM1 and fibronectin, an extracellular matrix component (Probable). It recognizes one or more domains within the alternatively spliced CS-1 region of fibronectin (Probable). Interactions involve the tripeptide L-D-T in MADCAM1, and L-D-V in fibronectin (Probable). Integrin ITGAE/ITGB7 (alpha-E/beta-7, HML-1) is a receptor for E-cadherin (PubMed:10837471). {ECO:0000269|PubMed:10837471, ECO:0000269|PubMed:14608374, ECO:0000305|PubMed:12297042}.; FUNCTION: (Microbial infection) Binds to HIV-1 gp120, thereby allowing the virus to enter GALT, which is thought to be the major trigger of AIDS disease. Interaction would involve a tripeptide L-D-I in HIV-1 gp120. {ECO:0000269|PubMed:18264102}. |
P26010 | ITGB7 | T785 | psp | Integrin beta-7 (Gut homing receptor beta subunit) | Integrin ITGA4/ITGB7 (alpha-4/beta-7) (Peyer patches-specific homing receptor LPAM-1) is an adhesion molecule that mediates lymphocyte migration and homing to gut-associated lymphoid tissue (GALT) (Probable). Integrin ITGA4/ITGB7 interacts with the cell surface adhesion molecules MADCAM1 which is normally expressed by the vascular endothelium of the gastrointestinal tract (PubMed:10837471, PubMed:14608374). Also interacts with VCAM1 and fibronectin, an extracellular matrix component (Probable). It recognizes one or more domains within the alternatively spliced CS-1 region of fibronectin (Probable). Interactions involve the tripeptide L-D-T in MADCAM1, and L-D-V in fibronectin (Probable). Integrin ITGAE/ITGB7 (alpha-E/beta-7, HML-1) is a receptor for E-cadherin (PubMed:10837471). {ECO:0000269|PubMed:10837471, ECO:0000269|PubMed:14608374, ECO:0000305|PubMed:12297042}.; FUNCTION: (Microbial infection) Binds to HIV-1 gp120, thereby allowing the virus to enter GALT, which is thought to be the major trigger of AIDS disease. Interaction would involve a tripeptide L-D-I in HIV-1 gp120. {ECO:0000269|PubMed:18264102}. |
P26232 | CTNNA2 | S939 | ochoa | Catenin alpha-2 (Alpha N-catenin) (Alpha-catenin-related protein) | May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system (By similarity). Required for proper regulation of cortical neuronal migration and neurite growth (PubMed:30013181). It acts as a negative regulator of Arp2/3 complex activity and Arp2/3-mediated actin polymerization (PubMed:30013181). It thereby suppresses excessive actin branching which would impair neurite growth and stability (PubMed:30013181). Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation (By similarity). {ECO:0000250|UniProtKB:Q61301, ECO:0000269|PubMed:30013181}. |
P27348 | YWHAQ | S232 | ochoa|psp | 14-3-3 protein theta (14-3-3 protein T-cell) (14-3-3 protein tau) (Protein HS1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}. |
P30048 | PRDX3 | S243 | ochoa | Thioredoxin-dependent peroxide reductase, mitochondrial (EC 1.11.1.24) (Antioxidant protein 1) (AOP-1) (HBC189) (Peroxiredoxin III) (Prx-III) (Peroxiredoxin-3) (Protein MER5 homolog) (Thioredoxin-dependent peroxiredoxin 3) | Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides (PubMed:17707404, PubMed:29438714, PubMed:33889951, PubMed:7733872). Acts synergistically with MAP3K13 to regulate the activation of NF-kappa-B in the cytosol (PubMed:12492477). Required for the maintenance of physical strength (By similarity). {ECO:0000250|UniProtKB:P20108, ECO:0000269|PubMed:12492477, ECO:0000269|PubMed:17707404, ECO:0000269|PubMed:29438714, ECO:0000269|PubMed:33889951, ECO:0000269|PubMed:7733872}. |
P30281 | CCND3 | S279 | ochoa | G1/S-specific cyclin-D3 | Regulatory component of the cyclin D3-CDK4 (DC) complex that phosphorylates and inhibits members of the retinoblastoma (RB) protein family including RB1 and regulates the cell-cycle during G(1)/S transition (PubMed:8114739). Phosphorylation of RB1 allows dissociation of the transcription factor E2F from the RB/E2F complex and the subsequent transcription of E2F target genes which are responsible for the progression through the G(1) phase (PubMed:8114739). Hypophosphorylates RB1 in early G(1) phase (PubMed:8114739). Cyclin D-CDK4 complexes are major integrators of various mitogenenic and antimitogenic signals (PubMed:8114739). Component of the ternary complex, cyclin D3/CDK4/CDKN1B, required for nuclear translocation and activity of the cyclin D-CDK4 complex (PubMed:16782892). Shows transcriptional coactivator activity with ATF5 independently of CDK4 (PubMed:15358120). {ECO:0000269|PubMed:15358120, ECO:0000269|PubMed:16782892, ECO:0000269|PubMed:8114739}. |
P30740 | SERPINB1 | S366 | ochoa | Leukocyte elastase inhibitor (LEI) (Monocyte/neutrophil elastase inhibitor) (EI) (M/NEI) (Peptidase inhibitor 2) (PI-2) (Serpin B1) | Neutrophil serine protease inhibitor that plays an essential role in the regulation of the innate immune response, inflammation and cellular homeostasis (PubMed:30692621). Acts primarily to protect the cell from proteases released in the cytoplasm during stress or infection. These proteases are important in killing microbes but when released from granules, these potent enzymes also destroy host proteins and contribute to mortality. Regulates the activity of the neutrophil proteases elastase, cathepsin G, proteinase-3, chymase, chymotrypsin, and kallikrein-3 (PubMed:11747453, PubMed:30692621). Also acts as a potent intracellular inhibitor of GZMH by directly blocking its proteolytic activity (PubMed:23269243). During inflammation, limits the activity of inflammatory caspases CASP1, CASP4 and CASP5 by suppressing their caspase-recruitment domain (CARD) oligomerization and enzymatic activation (PubMed:30692621). When secreted, promotes the proliferation of beta-cells via its protease inhibitory function (PubMed:26701651). {ECO:0000269|PubMed:11747453, ECO:0000269|PubMed:23269243, ECO:0000269|PubMed:26701651, ECO:0000269|PubMed:30692621}. |
P30874 | SSTR2 | T356 | psp | Somatostatin receptor type 2 (SS-2-R) (SS2-R) (SS2R) (SST2) (SRIF-1) | Receptor for somatostatin-14 and -28. This receptor is coupled via pertussis toxin sensitive G proteins to inhibition of adenylyl cyclase. In addition it stimulates phosphotyrosine phosphatase and PLC via pertussis toxin insensitive as well as sensitive G proteins. Inhibits calcium entry by suppressing voltage-dependent calcium channels. Acts as the functionally dominant somatostatin receptor in pancreatic alpha- and beta-cells where it mediates the inhibitory effect of somatostatin-14 on hormone secretion. Inhibits cell growth through enhancement of MAPK1 and MAPK2 phosphorylation and subsequent up-regulation of CDKN1B. Stimulates neuronal migration and axon outgrowth and may participate in neuron development and maturation during brain development. Mediates negative regulation of insulin receptor signaling through PTPN6. Inactivates SSTR3 receptor function following heterodimerization. {ECO:0000269|PubMed:15231824, ECO:0000269|PubMed:18653781, ECO:0000269|PubMed:19434240, ECO:0000269|PubMed:22495673, ECO:0000269|PubMed:22932785}. |
P30989 | NTSR1 | S404 | ochoa | Neurotensin receptor type 1 (NT-R-1) (NTR1) (High-affinity levocabastine-insensitive neurotensin receptor) (NTRH) | G-protein coupled receptor for the tridecapeptide neurotensin (NTS) (PubMed:21725197, PubMed:23140271, PubMed:8381365). Signaling is effected via G proteins that activate a phosphatidylinositol-calcium second messenger system. Signaling leads to the activation of downstream MAP kinases and protects cells against apoptosis (PubMed:21725197). {ECO:0000269|PubMed:21725197, ECO:0000269|PubMed:23140271, ECO:0000269|PubMed:8381365}. |
P31350 | RRM2 | S376 | ochoa | Ribonucleoside-diphosphate reductase subunit M2 (EC 1.17.4.1) (Ribonucleotide reductase small chain) (Ribonucleotide reductase small subunit) | Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. Inhibits Wnt signaling. |
P31645 | SLC6A4 | T616 | psp | Sodium-dependent serotonin transporter (SERT) (5HT transporter) (5HTT) (Solute carrier family 6 member 4) | Serotonin transporter that cotransports serotonin with one Na(+) ion in exchange for one K(+) ion and possibly one proton in an overall electroneutral transport cycle. Transports serotonin across the plasma membrane from the extracellular compartment to the cytosol thus limiting serotonin intercellular signaling (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Essential for serotonin homeostasis in the central nervous system. In the developing somatosensory cortex, acts in glutamatergic neurons to control serotonin uptake and its trophic functions accounting for proper spatial organization of cortical neurons and elaboration of sensory circuits. In the mature cortex, acts primarily in brainstem raphe neurons to mediate serotonin uptake from the synaptic cleft back into the pre-synaptic terminal thus terminating serotonin signaling at the synapse (By similarity). Modulates mucosal serotonin levels in the gastrointestinal tract through uptake and clearance of serotonin in enterocytes. Required for enteric neurogenesis and gastrointestinal reflexes (By similarity). Regulates blood serotonin levels by ensuring rapid high affinity uptake of serotonin from plasma to platelets, where it is further stored in dense granules via vesicular monoamine transporters and then released upon stimulation (PubMed:17506858, PubMed:18317590). Mechanistically, the transport cycle starts with an outward-open conformation having Na1(+) and Cl(-) sites occupied. The binding of a second extracellular Na2(+) ion and serotonin substrate leads to structural changes to outward-occluded to inward-occluded to inward-open, where the Na2(+) ion and serotonin are released into the cytosol. Binding of intracellular K(+) ion induces conformational transitions to inward-occluded to outward-open and completes the cycle by releasing K(+) possibly together with a proton bound to Asp-98 into the extracellular compartment. Na1(+) and Cl(-) ions remain bound throughout the transport cycle (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Additionally, displays serotonin-induced channel-like conductance for monovalent cations, mainly Na(+) ions. The channel activity is uncoupled from the transport cycle and may contribute to the membrane resting potential or excitability (By similarity). {ECO:0000250|UniProtKB:P31652, ECO:0000250|UniProtKB:Q60857, ECO:0000269|PubMed:10407194, ECO:0000269|PubMed:12869649, ECO:0000269|PubMed:17506858, ECO:0000269|PubMed:18317590, ECO:0000269|PubMed:21730057, ECO:0000269|PubMed:27049939, ECO:0000269|PubMed:27756841, ECO:0000269|PubMed:34851672}. |
P31785 | IL2RG | S355 | ochoa | Cytokine receptor common subunit gamma (Interleukin-2 receptor subunit gamma) (IL-2 receptor subunit gamma) (IL-2R subunit gamma) (IL-2RG) (gammaC) (p64) (CD antigen CD132) | Common subunit for the receptors for a variety of interleukins. Probably in association with IL15RA, involved in the stimulation of neutrophil phagocytosis by IL15 (PubMed:15123770). {ECO:0000269|PubMed:15123770}. |
P31995 | FCGR2C | Y310 | ochoa|psp | Low affinity immunoglobulin gamma Fc region receptor II-c (IgG Fc receptor II-c) (CDw32) (Fc-gamma RII-c) (Fc-gamma-RIIc) (FcRII-c) (CD antigen CD32) | Receptor for the Fc region of complexed immunoglobulins gamma. Low affinity receptor. Involved in a variety of effector and regulatory functions such as phagocytosis of immune complexes and modulation of antibody production by B-cells. |
P32004 | L1CAM | S1243 | ochoa | Neural cell adhesion molecule L1 (N-CAM-L1) (NCAM-L1) (CD antigen CD171) | Neural cell adhesion molecule involved in the dynamics of cell adhesion and in the generation of transmembrane signals at tyrosine kinase receptors. During brain development, critical in multiple processes, including neuronal migration, axonal growth and fasciculation, and synaptogenesis. In the mature brain, plays a role in the dynamics of neuronal structure and function, including synaptic plasticity. {ECO:0000269|PubMed:20621658, ECO:0000305}. |
P32004 | L1CAM | S1244 | ochoa | Neural cell adhesion molecule L1 (N-CAM-L1) (NCAM-L1) (CD antigen CD171) | Neural cell adhesion molecule involved in the dynamics of cell adhesion and in the generation of transmembrane signals at tyrosine kinase receptors. During brain development, critical in multiple processes, including neuronal migration, axonal growth and fasciculation, and synaptogenesis. In the mature brain, plays a role in the dynamics of neuronal structure and function, including synaptic plasticity. {ECO:0000269|PubMed:20621658, ECO:0000305}. |
P32238 | CCKAR | S414 | ochoa | Cholecystokinin receptor type A (CCK-A receptor) (CCK-AR) (Cholecystokinin-1 receptor) (CCK1-R) | Receptor for cholecystokinin. Mediates pancreatic growth and enzyme secretion, smooth muscle contraction of the gall bladder and stomach. Has a 1000-fold higher affinity for CCK rather than for gastrin. It modulates feeding and dopamine-induced behavior in the central and peripheral nervous system. This receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. |
P32239 | CCKBR | S434 | psp | Gastrin/cholecystokinin type B receptor (CCK-B receptor) (CCK-BR) (Cholecystokinin-2 receptor) (CCK2-R) | Receptor for gastrin and cholecystokinin. The CCK-B receptors occur throughout the central nervous system where they modulate anxiety, analgesia, arousal, and neuroleptic activity. This receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system.; FUNCTION: Isoform 2 is constitutively activated and may regulate cancer cell proliferation via a gastrin-independent mechanism. |
P32246 | CCR1 | S341 | ochoa | C-C chemokine receptor type 1 (C-C CKR-1) (CC-CKR-1) (CCR-1) (CCR1) (HM145) (LD78 receptor) (Macrophage inflammatory protein 1-alpha receptor) (MIP-1alpha-R) (RANTES-R) (CD antigen CD191) | Chemokine receptor that plays a crucial role in regulating immune cell migration, inflammation, and immune responses (PubMed:14991608). Contributes to the inflammatory response by recruiting immune cells, such as monocytes, macrophages, T-cells, and dendritic cells, to sites of inflammation for the clearance of pathogens and the resolution of tissue damage. When activated by its ligands including CCL3, CCL5-9, CCL13-16 and CCL23, triggers a signaling cascade within immune cells, leading to their migration towards the source of the chemokine (PubMed:15905581). For example, mediates neutrophil migration after activation by CCL3 leading to the sequential release of TNF-alpha and leukotriene B4 (By similarity). Also mediates monocyte migration upon CXCL4 binding (PubMed:29930254). Activation by CCL5 results in neuroinflammation through the ERK1/2 signaling pathway (By similarity). {ECO:0000250|UniProtKB:P51675, ECO:0000269|PubMed:14991608, ECO:0000269|PubMed:15905581, ECO:0000269|PubMed:29930254}. |
P32248 | CCR7 | S364 | psp | C-C chemokine receptor type 7 (C-C CKR-7) (CC-CKR-7) (CCR-7) (BLR2) (CDw197) (Epstein-Barr virus-induced G-protein coupled receptor 1) (EBI1) (EBV-induced G-protein coupled receptor 1) (MIP-3 beta receptor) (CD antigen CD197) | Receptor for the MIP-3-beta chemokine. Probable mediator of EBV effects on B-lymphocytes or of normal lymphocyte functions. |
P32248 | CCR7 | S365 | psp | C-C chemokine receptor type 7 (C-C CKR-7) (CC-CKR-7) (CCR-7) (BLR2) (CDw197) (Epstein-Barr virus-induced G-protein coupled receptor 1) (EBI1) (EBV-induced G-protein coupled receptor 1) (MIP-3 beta receptor) (CD antigen CD197) | Receptor for the MIP-3-beta chemokine. Probable mediator of EBV effects on B-lymphocytes or of normal lymphocyte functions. |
P32249 | GPR183 | T347 | ochoa | G-protein coupled receptor 183 (Epstein-Barr virus-induced G-protein coupled receptor 2) (EBI2) (EBV-induced G-protein coupled receptor 2) (hEBI2) | G-protein coupled receptor expressed in lymphocytes that acts as a chemotactic receptor for B-cells, T-cells, splenic dendritic cells, monocytes/macrophages and astrocytes (By similarity). Receptor for oxysterol 7-alpha,25-dihydroxycholesterol (7-alpha,25-OHC) and other related oxysterols (PubMed:21796212, PubMed:22875855, PubMed:22930711). Mediates cell positioning and movement of a number of cells by binding the 7-alpha,25-OHC ligand that forms a chemotactic gradient (By similarity). Binding of 7-alpha,25-OHC mediates the correct localization of B-cells during humoral immune responses (By similarity). Guides B-cell movement along the B-cell zone-T-cell zone boundary and later to interfollicular and outer follicular regions (By similarity). Its specific expression during B-cell maturation helps position B-cells appropriately for mounting T-dependent antibody responses (By similarity). Collaborates with CXCR5 to mediate B-cell migration; probably by forming a heterodimer with CXCR5 that affects the interaction between of CXCL13 and CXCR5 (PubMed:22913878). Also acts as a chemotactic receptor for some T-cells upon binding to 7-alpha,25-OHC ligand (By similarity). Promotes follicular helper T (Tfh) cells differentiation by positioning activated T-cells at the follicle-T-zone interface, promoting contact of newly activated CD4 T-cells with activated dendritic cells and exposing them to Tfh-cell-promoting inducible costimulator (ICOS) ligand (By similarity). Expression in splenic dendritic cells is required for their homeostasis, localization and ability to induce B- and T-cell responses: GPR183 acts as a chemotactic receptor in dendritic cells that mediates the accumulation of CD4(+) dendritic cells in bridging channels (By similarity). Regulates migration of astrocytes and is involved in communication between astrocytes and macrophages (PubMed:25297897). Promotes osteoclast precursor migration to bone surfaces (By similarity). Signals constitutively through G(i)-alpha, but not G(s)-alpha or G(q)-alpha (PubMed:21673108, PubMed:25297897). Signals constitutively also via MAPK1/3 (ERK1/2) (By similarity). {ECO:0000250|UniProtKB:Q3U6B2, ECO:0000269|PubMed:16540462, ECO:0000269|PubMed:21673108, ECO:0000269|PubMed:21796212, ECO:0000269|PubMed:22875855, ECO:0000269|PubMed:22913878, ECO:0000269|PubMed:22930711, ECO:0000269|PubMed:25297897}. |
P32302 | CXCR5 | S359 | ochoa | C-X-C chemokine receptor type 5 (CXC-R5) (CXCR-5) (Burkitt lymphoma receptor 1) (Monocyte-derived receptor 15) (MDR-15) (CD antigen CD185) | Cytokine receptor that binds to B-lymphocyte chemoattractant (BLC). Involved in B-cell migration into B-cell follicles of spleen and Peyer patches but not into those of mesenteric or peripheral lymph nodes. May have a regulatory function in Burkitt lymphoma (BL) lymphomagenesis and/or B-cell differentiation. |
P32926 | DSG3 | S985 | ochoa | Desmoglein-3 (130 kDa pemphigus vulgaris antigen) (PVA) (Cadherin family member 6) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:31835537). Required for adherens and desmosome junction assembly in response to mechanical force in keratinocytes (PubMed:31835537). Required for desmosome-mediated cell-cell adhesion of cells surrounding the telogen hair club and the basal layer of the outer root sheath epithelium, consequently is essential for the anchoring of telogen hairs in the hair follicle (PubMed:9701552). Required for the maintenance of the epithelial barrier via promoting desmosome-mediated intercellular attachment of suprabasal epithelium to basal cells (By similarity). May play a role in the protein stability of the desmosome plaque components DSP, JUP, PKP1, PKP2 and PKP3 (PubMed:22294297). Required for YAP1 localization at the plasma membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, PKP1 and YWHAG (PubMed:31835537). May also be involved in the positive regulation of YAP1 target gene transcription and as a result cell proliferation (PubMed:31835537). Positively regulates cellular contractility and cell junction formation via organization of cortical F-actin bundles and anchoring of actin to tight junctions, in conjunction with RAC1 (PubMed:22796473). The cytoplasmic pool of DSG3 is required for the localization of CDH1 and CTNNB1 at developing adherens junctions, potentially via modulation of SRC activity (PubMed:22294297). Inhibits keratinocyte migration via suppression of p38MAPK signaling, may therefore play a role in moderating wound healing (PubMed:26763450). {ECO:0000250|UniProtKB:O35902, ECO:0000269|PubMed:22294297, ECO:0000269|PubMed:22796473, ECO:0000269|PubMed:26763450, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9701552}. |
P33176 | KIF5B | S950 | ochoa | Kinesin-1 heavy chain (Conventional kinesin heavy chain) (Ubiquitous kinesin heavy chain) (UKHC) | Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes. Can induce formation of neurite-like membrane protrusions in non-neuronal cells in a ZFYVE27-dependent manner (By similarity). Regulates centrosome and nuclear positioning during mitotic entry. During the G2 phase of the cell cycle in a BICD2-dependent manner, antagonizes dynein function and drives the separation of nuclei and centrosomes (PubMed:20386726). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). Through binding with PLEKHM2 and ARL8B, directs lysosome movement toward microtubule plus ends (Probable). Involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). {ECO:0000250|UniProtKB:Q2PQA9, ECO:0000250|UniProtKB:Q61768, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:24088571, ECO:0000305|PubMed:22172677, ECO:0000305|PubMed:24088571}. |
P33316 | DUT | T239 | ochoa | Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial (dUTPase) (EC 3.6.1.23) (dUTP pyrophosphatase) | Catalyzes the cleavage of 2'-deoxyuridine 5'-triphosphate (dUTP) into 2'-deoxyuridine 5'-monophosphate (dUMP) and inorganic pyrophosphate and through its action efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis (PubMed:17880943, PubMed:8631816, PubMed:8805593). Inhibits peroxisome proliferator-activated receptor (PPAR) activity by binding of its N-terminal to PPAR, preventing the latter's dimerization with retinoid X receptor (By similarity). Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:P70583, ECO:0000250|UniProtKB:Q9CQ43, ECO:0000269|PubMed:17880943, ECO:0000269|PubMed:8631816, ECO:0000269|PubMed:8805593}. |
P33981 | TTK | S844 | ochoa | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P34741 | SDC2 | S187 | ochoa|psp | Syndecan-2 (SYND2) (Fibroglycan) (Heparan sulfate proteoglycan core protein) (HSPG) (CD antigen CD362) | Cell surface proteoglycan which regulates dendritic arbor morphogenesis. {ECO:0000250|UniProtKB:P43407}. |
P34741 | SDC2 | S188 | ochoa|psp | Syndecan-2 (SYND2) (Fibroglycan) (Heparan sulfate proteoglycan core protein) (HSPG) (CD antigen CD362) | Cell surface proteoglycan which regulates dendritic arbor morphogenesis. {ECO:0000250|UniProtKB:P43407}. |
P35232 | PHB1 | T258 | psp | Prohibitin 1 | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors in the nucleus (PubMed:11302691, PubMed:20959514, PubMed:28017329, PubMed:31522117). Plays a role in adipose tissue and glucose homeostasis in a sex-specific manner (By similarity). Contributes to pulmonary vascular remodeling by accelerating proliferation of pulmonary arterial smooth muscle cells (By similarity). {ECO:0000250|UniProtKB:P67778, ECO:0000250|UniProtKB:P67779, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB2, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Regulates mitochondrial respiration activity playing a role in cellular aging (PubMed:11302691). The prohibitin complex plays a role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:P67778, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305}.; FUNCTION: In the nucleus, acts as a transcription coregulator, enhances promoter binding by TP53, a transcription factor it activates, but reduces the promoter binding by E2F1, a transcription factor it represses (PubMed:14500729). Interacts with STAT3 to affect IL17 secretion in T-helper Th17 cells (PubMed:31899195). {ECO:0000269|PubMed:14500729, ECO:0000269|PubMed:31899195}.; FUNCTION: In the plasma membrane, cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates (By similarity). Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:P67778}. |
P35232 | PHB1 | Y259 | psp | Prohibitin 1 | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors in the nucleus (PubMed:11302691, PubMed:20959514, PubMed:28017329, PubMed:31522117). Plays a role in adipose tissue and glucose homeostasis in a sex-specific manner (By similarity). Contributes to pulmonary vascular remodeling by accelerating proliferation of pulmonary arterial smooth muscle cells (By similarity). {ECO:0000250|UniProtKB:P67778, ECO:0000250|UniProtKB:P67779, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB2, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Regulates mitochondrial respiration activity playing a role in cellular aging (PubMed:11302691). The prohibitin complex plays a role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:P67778, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305}.; FUNCTION: In the nucleus, acts as a transcription coregulator, enhances promoter binding by TP53, a transcription factor it activates, but reduces the promoter binding by E2F1, a transcription factor it represses (PubMed:14500729). Interacts with STAT3 to affect IL17 secretion in T-helper Th17 cells (PubMed:31899195). {ECO:0000269|PubMed:14500729, ECO:0000269|PubMed:31899195}.; FUNCTION: In the plasma membrane, cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates (By similarity). Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:P67778}. |
P35240 | NF2 | T581 | ochoa|psp | Merlin (Moesin-ezrin-radixin-like protein) (Neurofibromin-2) (Schwannomerlin) (Schwannomin) | Probable regulator of the Hippo/SWH (Sav/Wts/Hpo) signaling pathway, a signaling pathway that plays a pivotal role in tumor suppression by restricting proliferation and promoting apoptosis. Along with WWC1 can synergistically induce the phosphorylation of LATS1 and LATS2 and can probably function in the regulation of the Hippo/SWH (Sav/Wts/Hpo) signaling pathway. May act as a membrane stabilizing protein. May inhibit PI3 kinase by binding to AGAP2 and impairing its stimulating activity. Suppresses cell proliferation and tumorigenesis by inhibiting the CUL4A-RBX1-DDB1-VprBP/DCAF1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:20178741, ECO:0000269|PubMed:21167305}. |
P35580 | MYH10 | S1962 | ochoa | Myosin-10 (Cellular myosin heavy chain, type B) (Myosin heavy chain 10) (Myosin heavy chain, non-muscle IIb) (Non-muscle myosin heavy chain B) (NMMHC-B) (Non-muscle myosin heavy chain IIb) (NMMHC II-b) (NMMHC-IIB) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. During cell spreading, plays an important role in cytoskeleton reorganization, focal contacts formation (in the central part but not the margins of spreading cells), and lamellipodial extension; this function is mechanically antagonized by MYH9. {ECO:0000269|PubMed:20052411, ECO:0000269|PubMed:20603131}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000305|PubMed:25428876, ECO:0000305|PubMed:39048823}. |
P35611 | ADD1 | T724 | psp | Alpha-adducin (Erythrocyte adducin subunit alpha) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin. |
P35612 | ADD2 | S713 | ochoa|psp | Beta-adducin (Erythrocyte adducin subunit beta) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to the erythrocyte membrane receptor SLC2A1/GLUT1 and may therefore provide a link between the spectrin cytoskeleton to the plasma membrane. Binds to calmodulin. Calmodulin binds preferentially to the beta subunit. {ECO:0000269|PubMed:18347014}. |
P35749 | MYH11 | T1958 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P36941 | LTBR | T421 | ochoa | Tumor necrosis factor receptor superfamily member 3 (Lymphotoxin-beta receptor) (Tumor necrosis factor C receptor) (Tumor necrosis factor receptor 2-related protein) (Tumor necrosis factor receptor type III) (TNF-RIII) (TNFR-III) | Receptor for the heterotrimeric lymphotoxin containing LTA and LTB, and for TNFS14/LIGHT (PubMed:24248355). Activates NF-kappa-B signaling pathway upon stimulation with lymphotoxin (LTA(1)-LTB(2)) (PubMed:24248355). Promotes apoptosis via TRAF3 and TRAF5. May play a role in the development of lymphoid organs. {ECO:0000269|PubMed:10799510, ECO:0000269|PubMed:24248355, ECO:0000269|PubMed:8171323}. |
P37173 | TGFBR2 | S553 | ochoa | TGF-beta receptor type-2 (TGFR-2) (EC 2.7.11.30) (TGF-beta type II receptor) (Transforming growth factor-beta receptor type II) (TGF-beta receptor type II) (TbetaR-II) | Transmembrane serine/threonine kinase forming with the TGF-beta type I serine/threonine kinase receptor, TGFBR1, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and thus regulates a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and activation of TGFBR1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways. {ECO:0000269|PubMed:7774578}.; FUNCTION: [Isoform 1]: Has transforming growth factor beta-activated receptor activity. {ECO:0000269|PubMed:8635485}.; FUNCTION: [Isoform 2]: Has transforming growth factor beta-activated receptor activity. {ECO:0000269|PubMed:8635485}.; FUNCTION: [Isoform 3]: Binds TGFB1, TGFB2 and TGFB3 in the picomolar affinity range without the participation of additional receptors. Blocks activation of SMAD2 and SMAD3 by TGFB1. {ECO:0000269|PubMed:34568316}. |
P37802 | TAGLN2 | S185 | ochoa | Transgelin-2 (Epididymis tissue protein Li 7e) (SM22-alpha homolog) | None |
P40189 | IL6ST | Y905 | ochoa|psp | Interleukin-6 receptor subunit beta (IL-6 receptor subunit beta) (IL-6R subunit beta) (IL-6R-beta) (IL-6RB) (CDw130) (Interleukin-6 signal transducer) (Membrane glycoprotein 130) (gp130) (Oncostatin-M receptor subunit alpha) (CD antigen CD130) | Signal-transducing molecule (PubMed:2261637). The receptor systems for IL6, LIF, OSM, CNTF, IL11, CTF1 and BSF3 can utilize IL6ST for initiating signal transmission. Binding of IL6 to IL6R induces IL6ST homodimerization and formation of a high-affinity receptor complex, which activates the intracellular JAK-MAPK and JAK-STAT3 signaling pathways (PubMed:19915009, PubMed:2261637, PubMed:23294003). That causes phosphorylation of IL6ST tyrosine residues which in turn activates STAT3 (PubMed:19915009, PubMed:23294003, PubMed:25731159). In parallel, the IL6 signaling pathway induces the expression of two cytokine receptor signaling inhibitors, SOCS1 and SOCS3, which inhibit JAK and terminate the activity of the IL6 signaling pathway as a negative feedback loop (By similarity). Also activates the yes-associated protein 1 (YAP) and NOTCH pathways to control inflammation-induced epithelial regeneration, independently of STAT3 (By similarity). Acts as a receptor for the neuroprotective peptide humanin as part of a complex with IL27RA/WSX1 and CNTFR (PubMed:19386761). Mediates signals which regulate immune response, hematopoiesis, pain control and bone metabolism (By similarity). Has a role in embryonic development (By similarity). Essential for survival of motor and sensory neurons and for differentiation of astrocytes (By similarity). Required for expression of TRPA1 in nociceptive neurons (By similarity). Required for the maintenance of PTH1R expression in the osteoblast lineage and for the stimulation of PTH-induced osteoblast differentiation (By similarity). Required for normal trabecular bone mass and cortical bone composition (By similarity). {ECO:0000250|UniProtKB:Q00560, ECO:0000269|PubMed:19386761, ECO:0000269|PubMed:19915009, ECO:0000269|PubMed:2261637, ECO:0000269|PubMed:23294003, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:28747427, ECO:0000269|PubMed:30309848}.; FUNCTION: [Isoform 2]: Binds to the soluble IL6:sIL6R complex (hyper-IL6), thereby blocking IL6 trans-signaling. Inhibits sIL6R-dependent acute phase response (PubMed:11121117, PubMed:21990364, PubMed:30279168). Also blocks IL11 cluster signaling through IL11R (PubMed:30279168). {ECO:0000269|PubMed:11121117, ECO:0000269|PubMed:21990364, ECO:0000269|PubMed:30279168}. |
P41143 | OPRD1 | T358 | psp | Delta-type opioid receptor (D-OR-1) (DOR-1) | G-protein coupled receptor that functions as a receptor for endogenous enkephalins and for a subset of other opioids. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling leads to the inhibition of adenylate cyclase activity. Inhibits neurotransmitter release by reducing calcium ion currents and increasing potassium ion conductance. Plays a role in the perception of pain and in opiate-mediated analgesia. Plays a role in developing analgesic tolerance to morphine. {ECO:0000269|PubMed:22184124, ECO:0000269|PubMed:7808419, ECO:0000269|PubMed:8201839}. |
P41208 | CETN2 | S158 | ochoa|psp | Centrin-2 (Caltractin isoform 1) | Plays a fundamental role in microtubule organizing center structure and function. Required for centriole duplication and correct spindle formation. Has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CCP110.; FUNCTION: Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with RAD23B appears to stabilize XPC. In vitro, stimulates DNA binding of the XPC:RAD23B dimer.; FUNCTION: The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair.; FUNCTION: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores. {ECO:0000269|PubMed:22307388, ECO:0000305|PubMed:23591820}. |
P41212 | ETV6 | S439 | ochoa | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P41227 | NAA10 | S221 | ochoa | N-alpha-acetyltransferase 10 (EC 2.3.1.255) (N-terminal acetyltransferase complex ARD1 subunit homolog A) (hARD1) (NatA catalytic subunit Naa10) | Catalytic subunit of N-terminal acetyltransferase complexes which display alpha (N-terminal) acetyltransferase activity (PubMed:15496142, PubMed:19420222, PubMed:19826488, PubMed:20145209, PubMed:20154145, PubMed:25489052, PubMed:27708256, PubMed:29754825, PubMed:32042062). Acetylates amino termini that are devoid of initiator methionine (PubMed:19420222). The alpha (N-terminal) acetyltransferase activity may be important for vascular, hematopoietic and neuronal growth and development. Without NAA15, displays epsilon (internal) acetyltransferase activity towards HIF1A, thereby promoting its degradation (PubMed:12464182). Represses MYLK kinase activity by acetylation, and thus represses tumor cell migration (PubMed:19826488). Acetylates, and stabilizes TSC2, thereby repressing mTOR activity and suppressing cancer development (PubMed:20145209). Acetylates HSPA1A and HSPA1B at 'Lys-77' which enhances its chaperone activity and leads to preferential binding to co-chaperone HOPX (PubMed:27708256). Acetylates HIST1H4A (PubMed:29754825). Acts as a negative regulator of sister chromatid cohesion during mitosis (PubMed:27422821). {ECO:0000269|PubMed:12464182, ECO:0000269|PubMed:15496142, ECO:0000269|PubMed:19420222, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20145209, ECO:0000269|PubMed:20154145, ECO:0000269|PubMed:25489052, ECO:0000269|PubMed:27422821, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:29754825, ECO:0000269|PubMed:32042062}. |
P41227 | NAA10 | T222 | ochoa | N-alpha-acetyltransferase 10 (EC 2.3.1.255) (N-terminal acetyltransferase complex ARD1 subunit homolog A) (hARD1) (NatA catalytic subunit Naa10) | Catalytic subunit of N-terminal acetyltransferase complexes which display alpha (N-terminal) acetyltransferase activity (PubMed:15496142, PubMed:19420222, PubMed:19826488, PubMed:20145209, PubMed:20154145, PubMed:25489052, PubMed:27708256, PubMed:29754825, PubMed:32042062). Acetylates amino termini that are devoid of initiator methionine (PubMed:19420222). The alpha (N-terminal) acetyltransferase activity may be important for vascular, hematopoietic and neuronal growth and development. Without NAA15, displays epsilon (internal) acetyltransferase activity towards HIF1A, thereby promoting its degradation (PubMed:12464182). Represses MYLK kinase activity by acetylation, and thus represses tumor cell migration (PubMed:19826488). Acetylates, and stabilizes TSC2, thereby repressing mTOR activity and suppressing cancer development (PubMed:20145209). Acetylates HSPA1A and HSPA1B at 'Lys-77' which enhances its chaperone activity and leads to preferential binding to co-chaperone HOPX (PubMed:27708256). Acetylates HIST1H4A (PubMed:29754825). Acts as a negative regulator of sister chromatid cohesion during mitosis (PubMed:27422821). {ECO:0000269|PubMed:12464182, ECO:0000269|PubMed:15496142, ECO:0000269|PubMed:19420222, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20145209, ECO:0000269|PubMed:20154145, ECO:0000269|PubMed:25489052, ECO:0000269|PubMed:27422821, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:29754825, ECO:0000269|PubMed:32042062}. |
P41235 | HNF4A | S461 | psp | Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) | Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}. |
P41586 | ADCYAP1R1 | S454 | ochoa | Pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1 receptor) (PAC1R) (PACAP type I receptor) (PACAP-R-1) (PACAP-R1) | G protein-coupled receptor activated by the neuropeptide pituitary adenylate cyclase-activating polypeptide (ADCYAP1/PACAP) (PubMed:32047270, PubMed:33715378, PubMed:35477937, PubMed:36385145). Binds both PACAP27 and PACAP38 bioactive peptides (PubMed:32047270, PubMed:35477937, PubMed:36385145). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors. Activates cAMP-dependent pathway (PubMed:32047270, PubMed:33715378, PubMed:35477937, PubMed:36385145). May regulate the release of adrenocorticotropin, luteinizing hormone, growth hormone, prolactin, epinephrine, and catecholamine. May play a role in spermatogenesis and sperm motility. Causes smooth muscle relaxation and secretion in the gastrointestinal tract (PubMed:32047270, PubMed:33715378). {ECO:0000269|PubMed:32047270, ECO:0000269|PubMed:33715378, ECO:0000269|PubMed:35477937, ECO:0000269|PubMed:36385145}. |
P42229 | STAT5A | S780 | ochoa|psp | Signal transducer and activator of transcription 5A | Carries out a dual function: signal transduction and activation of transcription. Mediates cellular responses to the cytokine KITLG/SCF and other growth factors. Mediates cellular responses to ERBB4. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4. Binds to the GAS element and activates PRL-induced transcription. Regulates the expression of milk proteins during lactation. {ECO:0000269|PubMed:15534001}. |
P42330 | AKR1C3 | S310 | ochoa | Aldo-keto reductase family 1 member C3 (EC 1.1.1.-) (EC 1.1.1.210) (EC 1.1.1.53) (EC 1.1.1.62) (17-beta-hydroxysteroid dehydrogenase type 5) (17-beta-HSD 5) (3-alpha-HSD type II, brain) (3-alpha-hydroxysteroid dehydrogenase type 2) (3-alpha-HSD type 2) (EC 1.1.1.357) (Chlordecone reductase homolog HAKRb) (Dihydrodiol dehydrogenase 3) (DD-3) (DD3) (Dihydrodiol dehydrogenase type I) (HA1753) (Prostaglandin F synthase) (PGFS) (EC 1.1.1.188) (Testosterone 17-beta-dehydrogenase 5) (EC 1.1.1.239, EC 1.1.1.64) | Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Acts as a NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductase on the steroid nucleus and side chain and regulates the metabolism of androgens, estrogens and progesterone (PubMed:10622721, PubMed:11165022, PubMed:7650035, PubMed:9415401, PubMed:9927279). Displays the ability to catalyze both oxidation and reduction in vitro, but most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentration of NADPH (PubMed:11165022, PubMed:14672942). Acts preferentially as a 17-ketosteroid reductase and has the highest catalytic efficiency of the AKR1C enzyme for the reduction of delta4-androstenedione to form testosterone (PubMed:20036328). Reduces prostaglandin (PG) D2 to 11beta-prostaglandin F2, progesterone to 20alpha-hydroxyprogesterone and estrone to 17beta-estradiol (PubMed:10622721, PubMed:10998348, PubMed:11165022, PubMed:15047184, PubMed:19010934, PubMed:20036328). Catalyzes the transformation of the potent androgen dihydrotestosterone (DHT) into the less active form, 5-alpha-androstan-3-alpha,17-beta-diol (3-alpha-diol) (PubMed:10557352, PubMed:10998348, PubMed:11165022, PubMed:14672942, PubMed:7650035, PubMed:9415401). Also displays retinaldehyde reductase activity toward 9-cis-retinal (PubMed:21851338). {ECO:0000269|PubMed:10557352, ECO:0000269|PubMed:10622721, ECO:0000269|PubMed:10998348, ECO:0000269|PubMed:11165022, ECO:0000269|PubMed:14672942, ECO:0000269|PubMed:15047184, ECO:0000269|PubMed:19010934, ECO:0000269|PubMed:20036328, ECO:0000269|PubMed:21851338, ECO:0000269|PubMed:7650035, ECO:0000269|PubMed:9415401, ECO:0000269|PubMed:9927279}. |
P43246 | MSH2 | S921 | ochoa | DNA mismatch repair protein Msh2 (hMSH2) (MutS protein homolog 2) | Component of the post-replicative DNA mismatch repair system (MMR). Forms two different heterodimers: MutS alpha (MSH2-MSH6 heterodimer) and MutS beta (MSH2-MSH3 heterodimer) which binds to DNA mismatches thereby initiating DNA repair. When bound, heterodimers bend the DNA helix and shields approximately 20 base pairs. MutS alpha recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. MutS beta recognizes larger insertion-deletion loops up to 13 nucleotides long. After mismatch binding, MutS alpha or beta forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. Recruits DNA helicase MCM9 to chromatin which unwinds the mismatch containing DNA strand (PubMed:26300262). ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. In melanocytes may modulate both UV-B-induced cell cycle regulation and apoptosis. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:17611581, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:26300262, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P43487 | RANBP1 | S188 | ochoa | Ran-specific GTPase-activating protein (Ran-binding protein 1) (RanBP1) | Plays a role in RAN-dependent nucleocytoplasmic transport. Alleviates the TNPO1-dependent inhibition of RAN GTPase activity and mediates the dissociation of RAN from proteins involved in transport into the nucleus (By similarity). Induces a conformation change in the complex formed by XPO1 and RAN that triggers the release of the nuclear export signal of cargo proteins (PubMed:20485264). Promotes the disassembly of the complex formed by RAN and importin beta. Promotes dissociation of RAN from a complex with KPNA2 and CSE1L (By similarity). Required for normal mitotic spindle assembly and normal progress through mitosis via its effect on RAN (PubMed:17671426). Does not increase the RAN GTPase activity by itself, but increases GTP hydrolysis mediated by RANGAP1 (PubMed:7882974). Inhibits RCC1-dependent exchange of RAN-bound GDP by GTP (PubMed:7616957, PubMed:7882974). {ECO:0000250|UniProtKB:P34022, ECO:0000269|PubMed:17671426, ECO:0000269|PubMed:20485264, ECO:0000269|PubMed:7616957, ECO:0000269|PubMed:7882974}. |
P46063 | RECQL | S636 | ochoa | ATP-dependent DNA helicase Q1 (EC 5.6.2.4) (DNA 3'-5' helicase Q1) (DNA helicase, RecQ-like type 1) (RecQ1) (DNA-dependent ATPase Q1) (RecQ protein-like 1) | DNA helicase that plays a role in DNA damage repair and genome stability (PubMed:15886194, PubMed:35025765, PubMed:7527136, PubMed:7961977, PubMed:8056767). Exhibits a Mg(2+)- and ATP-dependent DNA-helicase activity that unwinds single- and double-stranded DNA in a 3'-5' direction (PubMed:19151156, PubMed:35025765, PubMed:7527136, PubMed:8056767). Full-length protein unwinds forked DNA substrates, resolves Holliday junctions, and has DNA strand annealing activity (PubMed:19151156, PubMed:25831490). Plays a role in restoring regressed replication forks (PubMed:35025765). Required to restart stalled replication forks induced by abortive topoisomerase 1 and 2 lesions (PubMed:35025765). Does not unwind G-quadruplex DNA (PubMed:18426915). May play a role in the repair of DNA that is damaged by ultraviolet light or other mutagens (PubMed:15886194, PubMed:7961977). {ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:19151156, ECO:0000269|PubMed:25831490, ECO:0000269|PubMed:35025765, ECO:0000269|PubMed:7527136, ECO:0000269|PubMed:7961977, ECO:0000269|PubMed:8056767}. |
P48382 | RFX5 | S602 | ochoa | DNA-binding protein RFX5 (Regulatory factor X 5) | Activates transcription from class II MHC promoters. Recognizes X-boxes. Mediates cooperative binding between RFX and NF-Y. RFX binds the X1 box of MHC-II promoters. |
P48382 | RFX5 | S603 | ochoa | DNA-binding protein RFX5 (Regulatory factor X 5) | Activates transcription from class II MHC promoters. Recognizes X-boxes. Mediates cooperative binding between RFX and NF-Y. RFX binds the X1 box of MHC-II promoters. |
P48539 | PCP4 | S48 | ochoa | Calmodulin regulator protein PCP4 (Brain-specific polypeptide PEP-19) (Purkinje cell protein 4) | Functions as a modulator of calcium-binding by calmodulin. Thereby, regulates calmodulin activity and the different processes it controls (PubMed:19106096, PubMed:23204517, PubMed:27876793). For instance, may play a role in neuronal differentiation through activation of calmodulin-dependent kinase signaling pathways (PubMed:21491429). {ECO:0000269|PubMed:19106096, ECO:0000269|PubMed:21491429, ECO:0000269|PubMed:23204517, ECO:0000269|PubMed:27876793}. |
P48729 | CSNK1A1 | T323 | ochoa | Casein kinase I isoform alpha (CKI-alpha) (EC 2.7.11.1) (CK1) | Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates (PubMed:11955436, PubMed:1409656, PubMed:18305108, PubMed:23902688). It can phosphorylate a large number of proteins (PubMed:11955436, PubMed:1409656, PubMed:18305108, PubMed:23902688). Participates in Wnt signaling (PubMed:11955436). Phosphorylates CTNNB1 at 'Ser-45' (PubMed:11955436). May phosphorylate PER1 and PER2 (By similarity). May play a role in segregating chromosomes during mitosis (PubMed:1409656). May play a role in keratin cytoskeleton disassembly and thereby, it may regulate epithelial cell migration (PubMed:23902688). Acts as a positive regulator of mTORC1 and mTORC2 signaling in response to nutrients by mediating phosphorylation of DEPTOR inhibitor (PubMed:22017875, PubMed:22017877). Acts as an inhibitor of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). {ECO:0000250|UniProtKB:Q8BK63, ECO:0000269|PubMed:11955436, ECO:0000269|PubMed:1409656, ECO:0000269|PubMed:18305108, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:23902688}. |
P49419 | ALDH7A1 | Y526 | ochoa | Alpha-aminoadipic semialdehyde dehydrogenase (Alpha-AASA dehydrogenase) (EC 1.2.1.31) (Aldehyde dehydrogenase family 7 member A1) (EC 1.2.1.3) (Antiquitin-1) (Betaine aldehyde dehydrogenase) (EC 1.2.1.8) (Delta1-piperideine-6-carboxylate dehydrogenase) (P6c dehydrogenase) | Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism. {ECO:0000269|PubMed:16491085, ECO:0000269|PubMed:20207735, ECO:0000269|PubMed:21338592}. |
P49427 | CDC34 | S222 | psp | Ubiquitin-conjugating enzyme E2 R1 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme R1) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme R1) (Ubiquitin-conjugating enzyme E2-32 kDa complementing) (Ubiquitin-conjugating enzyme E2-CDC34) (Ubiquitin-protein ligase R1) | E2 ubiquitin-conjugating enzyme that accepts ubiquitin from an E1 ubiquitin-activating protein, and catalyzes its covalent attachment to other proteins by an E3 ubiquitin-protein ligase complex (PubMed:10329681, PubMed:17588522, PubMed:20061386, PubMed:38326650). In vitro catalyzes 'Lys-48'-linked polyubiquitination (PubMed:22496338). Cooperates with the E2 UBCH5C and the SCF(FBXW11) E3 ligase complex for the polyubiquitination of NFKBIA leading to its subsequent proteasomal degradation (PubMed:10329681, PubMed:10918611, PubMed:17698585). Performs ubiquitin chain elongation building ubiquitin chains from the UBE2D3-primed NFKBIA-linked ubiquitin. UBE2D3 acts as an initiator E2, priming the phosphorylated NFKBIA target at positions 'Lys-21' and/or 'Lys-22' with a monoubiquitin. Cooperates with the SCF(SKP2) E3 ligase complex to regulate cell proliferation through ubiquitination and degradation of MYBL2 and KIP1 (PubMed:10871850, PubMed:15652359, PubMed:19112177). Involved in ubiquitin conjugation and degradation of CREM isoform ICERIIgamma and ATF15 resulting in abrogation of ICERIIgamma- and ATF5-mediated repression of cAMP-induced transcription during both meiotic and mitotic cell cycles. Involved in the regulation of the cell cycle G2/M phase through its targeting of the WEE1 kinase for ubiquitination and degradation (PubMed:19126550). Also involved in the degradation of beta-catenin (PubMed:12037680). Is target of human herpes virus 1 protein ICP0, leading to ICP0-dependent dynamic interaction with proteasomes (PubMed:11805320, PubMed:12060736). {ECO:0000269|PubMed:10329681, ECO:0000269|PubMed:10871850, ECO:0000269|PubMed:10918611, ECO:0000269|PubMed:11805320, ECO:0000269|PubMed:12037680, ECO:0000269|PubMed:12060736, ECO:0000269|PubMed:15652359, ECO:0000269|PubMed:17588522, ECO:0000269|PubMed:17698585, ECO:0000269|PubMed:19112177, ECO:0000269|PubMed:19126550, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:22496338, ECO:0000269|PubMed:38326650}. |
P49639 | HOXA1 | S322 | ochoa | Homeobox protein Hox-A1 (Homeobox protein Hox-1F) | Sequence-specific transcription factor (By similarity). Regulates multiple developmental processes including brainstem, inner and outer ear, abducens nerve and cardiovascular development and morphogenesis as well as cognition and behavior (PubMed:16155570). Also part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Acts on the anterior body structures. Seems to act in the maintenance and/or generation of hindbrain segments (By similarity). Activates transcription in the presence of PBX1A and PKNOX1 (By similarity). {ECO:0000250|UniProtKB:P09022, ECO:0000250|UniProtKB:Q90423, ECO:0000269|PubMed:16155570}. |
P49716 | CEBPD | S256 | ochoa | CCAAT/enhancer-binding protein delta (C/EBP delta) (Nuclear factor NF-IL6-beta) (NF-IL6-beta) | Transcription activator that recognizes two different DNA motifs: the CCAAT homology common to many promoters and the enhanced core homology common to many enhancers (PubMed:16397300). Important transcription factor regulating the expression of genes involved in immune and inflammatory responses (PubMed:16397300, PubMed:1741402). Transcriptional activator that enhances IL6 transcription alone and as heterodimer with CEBPB (PubMed:1741402). {ECO:0000269|PubMed:1741402}. |
P49790 | NUP153 | S1461 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P50479 | PDLIM4 | Y316 | ochoa | PDZ and LIM domain protein 4 (LIM protein RIL) (Reversion-induced LIM protein) | [Isoform 1]: Suppresses SRC activation by recognizing and binding to active SRC and facilitating PTPN13-mediated dephosphorylation of SRC 'Tyr-419' leading to its inactivation. Inactivated SRC dissociates from this protein allowing the initiation of a new SRC inactivation cycle (PubMed:19307596). Involved in reorganization of the actin cytoskeleton (PubMed:21636573). In nonmuscle cells, binds to ACTN1 (alpha-actinin-1), increases the affinity of ACTN1 to F-actin (filamentous actin), and promotes formation of actin stress fibers. Involved in regulation of the synaptic AMPA receptor transport in dendritic spines of hippocampal pyramidal neurons directing the receptors toward an insertion at the postsynaptic membrane. Links endosomal surface-internalized GRIA1-containing AMPA receptors to the alpha-actinin/actin cytoskeleton. Increases AMPA receptor-mediated excitatory postsynaptic currents in neurons (By similarity). {ECO:0000250|UniProtKB:P36202, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:21636573}.; FUNCTION: [Isoform 2]: Involved in reorganization of the actin cytoskeleton and in regulation of cell migration. In response to oxidative stress, binds to NQO1, which stabilizes it and protects it from ubiquitin-independent degradation by the core 20S proteasome. Stabilized protein is able to heterodimerize with isoform 1 changing the subcellular location of it from cytoskeleton and nuclei to cytosol, leading to loss of isoforms 1 ability to induce formation of actin stress fibers. Counteracts the effects produced by isoform 1 on organization of actin cytoskeleton and cell motility to fine-tune actin cytoskeleton rearrangement and to attenuate cell migration. {ECO:0000269|PubMed:21636573}. |
P50895 | BCAM | S614 | ochoa | Basal cell adhesion molecule (Auberger B antigen) (B-CAM cell surface glycoprotein) (F8/G253 antigen) (Lutheran antigen) (Lutheran blood group glycoprotein) (CD antigen CD239) | Transmembrane glycoprotein that functions as both a receptor and an adhesion molecule playing a crucial role in cell adhesion, motility, migration and invasion (PubMed:9616226, PubMed:31413112). Extracellular domain enables binding to extracellular matrix proteins, such as laminin, integrin and other ligands while its intracellular domain interacts with cytoskeletal proteins like hemoglobin, facilitating cell signal transduction (PubMed:17158232). Serves as a receptor for laminin alpha-5/LAMA5 to promote cell adhesion (PubMed:15975931). Mechanistically, JAK2 induces BCAM phosphorylation and activates its adhesion to laminin by stimulating a Rap1/AKT signaling pathway in the absence of EPOR (PubMed:23160466). {ECO:0000269|PubMed:15975931, ECO:0000269|PubMed:17158232, ECO:0000269|PubMed:23160466, ECO:0000269|PubMed:31413112, ECO:0000269|PubMed:9616226}. |
P51151 | RAB9A | T187 | ochoa | Ras-related protein Rab-9A (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). RAB9A is involved in the transport of proteins between the endosomes and the trans-Golgi network (TGN) (PubMed:34793709). Specifically uses NDE1/NDEL1 as an effector to interact with the dynein motor complex in order to control retrograde trafficking of RAB9-associated late endosomes to the TGN (PubMed:34793709). Involved in the recruitment of SGSM2 to melanosomes and is required for the proper trafficking of melanogenic enzymes TYR, TYRP1 and DCT/TYRP2 to melanosomes in melanocytes (By similarity). {ECO:0000250|UniProtKB:P24408, ECO:0000250|UniProtKB:P62820, ECO:0000269|PubMed:34793709}. |
P51159 | RAB27A | T207 | ochoa | Ras-related protein Rab-27A (Rab-27) (EC 3.6.5.2) (GTP-binding protein Ram) | Small GTPase which cycles between active GTP-bound and inactive GDP-bound states. In its active state, binds to a variety of effector proteins to regulate homeostasis of late endocytic pathway, including endosomal positioning, maturation and secretion (PubMed:30771381). Plays a role in cytotoxic granule exocytosis in lymphocytes. Required for both granule maturation and granule docking and priming at the immunologic synapse. {ECO:0000269|PubMed:18812475, ECO:0000269|PubMed:30771381}. |
P51575 | P2RX1 | T386 | ochoa | P2X purinoceptor 1 (P2X1) (ATP receptor) (Purinergic receptor) | ATP-gated nonselective transmembrane cation channel permeable to potassium, sodium and with relatively high calcium permeability (PubMed:10440098, PubMed:15056721, PubMed:20699225, PubMed:8834001, PubMed:8961184). Furthermore, CTP functions as a weak affinity agonist for P2RX1 (PubMed:14699168). Plays a role a role in urogenital, immune and cardiovascular function (By similarity). Specifically, plays an important role in neurogenic contraction of smooth muscle of the vas deferens, and therefore is essential for normal male reproductive function (By similarity). In addition, contributes to smooth muscle contractions of the urinary bladder (By similarity). On platelets, contributes to platelet activation and aggregation and thereby, also to thrombosis (By similarity). On neutrophils, it is involved in chemotaxis and in mitigating the activation of circulating cells (PubMed:19635923). {ECO:0000250|UniProtKB:P51576, ECO:0000269|PubMed:10440098, ECO:0000269|PubMed:14699168, ECO:0000269|PubMed:15056721, ECO:0000269|PubMed:19635923, ECO:0000269|PubMed:20699225, ECO:0000269|PubMed:8834001, ECO:0000269|PubMed:8961184}. |
P51681 | CCR5 | Y339 | psp | C-C chemokine receptor type 5 (C-C CKR-5) (CC-CKR-5) (CCR-5) (CCR5) (CHEMR13) (HIV-1 fusion coreceptor) (CD antigen CD195) | Receptor for a number of inflammatory CC-chemokines including CCL3/MIP-1-alpha, CCL4/MIP-1-beta and RANTES and subsequently transduces a signal by increasing the intracellular calcium ion level. May play a role in the control of granulocytic lineage proliferation or differentiation. Participates in T-lymphocyte migration to the infection site by acting as a chemotactic receptor (PubMed:30713770). {ECO:0000269|PubMed:10383387, ECO:0000269|PubMed:11323418, ECO:0000269|PubMed:30713770, ECO:0000269|PubMed:8639485, ECO:0000269|PubMed:8663314, ECO:0000269|PubMed:8699119}.; FUNCTION: (Microbial infection) Acts as a coreceptor (CD4 being the primary receptor) of human immunodeficiency virus-1/HIV-1. {ECO:0000269|PubMed:10383387, ECO:0000269|PubMed:21763489, ECO:0000269|PubMed:8649511, ECO:0000269|PubMed:8649512, ECO:0000269|PubMed:9632396}. |
P51991 | HNRNPA3 | Y364 | ochoa | Heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) | Plays a role in cytoplasmic trafficking of RNA. Binds to the cis-acting response element, A2RE. May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:11886857}. |
P52209 | PGD | T470 | ochoa | 6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44) | Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. {ECO:0000250}. |
P52746 | ZNF142 | S1674 | ochoa | Zinc finger protein 142 | May be involved in transcriptional regulation. {ECO:0000305}. |
P52943 | CRIP2 | S195 | ochoa | Cysteine-rich protein 2 (CRP-2) (Protein ESP1) | None |
P53567 | CEBPG | S137 | ochoa | CCAAT/enhancer-binding protein gamma (C/EBP gamma) | Transcription factor that binds to the promoter and the enhancer regions of target genes. Binds to the enhancer element PRE-I (positive regulatory element-I) of the IL-4 gene (PubMed:7665092). Binds to the promoter and the enhancer of the immunoglobulin heavy chain. Binds to GPE1, a cis-acting element in the G-CSF gene promoter. {ECO:0000250|UniProtKB:P26801, ECO:0000250|UniProtKB:P53568, ECO:0000269|PubMed:7665092}. |
P54105 | CLNS1A | T223 | ochoa | Methylosome subunit pICln (Chloride channel, nucleotide sensitive 1A) (Chloride conductance regulatory protein ICln) (I(Cln)) (Chloride ion current inducer protein) (ClCI) (Reticulocyte pICln) | Involved in both the assembly of spliceosomal snRNPs and the methylation of Sm proteins (PubMed:10330151, PubMed:11713266, PubMed:18984161, PubMed:21081503). Chaperone that regulates the assembly of spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:10330151, PubMed:18984161). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:10330151). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:10330151, PubMed:18984161). Dissociation by the SMN complex of CLNS1A from the trapped Sm proteins and their transfer to an SMN-Sm complex triggers the assembly of core snRNPs and their transport to the nucleus (PubMed:10330151, PubMed:18984161). {ECO:0000269|PubMed:10330151, ECO:0000269|PubMed:11713266, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21081503}. |
P54252 | ATXN3 | S347 | psp | Ataxin-3 (EC 3.4.19.12) (Machado-Joseph disease protein 1) (Spinocerebellar ataxia type 3 protein) | Deubiquitinating enzyme involved in protein homeostasis maintenance, transcription, cytoskeleton regulation, myogenesis and degradation of misfolded chaperone substrates (PubMed:12297501, PubMed:16118278, PubMed:17696782, PubMed:23625928, PubMed:28445460, PubMed:33157014). Binds long polyubiquitin chains and trims them, while it has weak or no activity against chains of 4 or less ubiquitins (PubMed:17696782). Involved in degradation of misfolded chaperone substrates via its interaction with STUB1/CHIP: recruited to monoubiquitinated STUB1/CHIP, and restricts the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (By similarity). Interacts with key regulators of transcription and represses transcription: acts as a histone-binding protein that regulates transcription (PubMed:12297501). Acts as a negative regulator of mTORC1 signaling in response to amino acid deprivation by mediating deubiquitination of RHEB, thereby promoting RHEB inactivation by the TSC-TBC complex (PubMed:33157014). Regulates autophagy via the deubiquitination of 'Lys-402' of BECN1 leading to the stabilization of BECN1 (PubMed:28445460). {ECO:0000250|UniProtKB:Q9CVD2, ECO:0000269|PubMed:12297501, ECO:0000269|PubMed:16118278, ECO:0000269|PubMed:17696782, ECO:0000269|PubMed:23625928, ECO:0000269|PubMed:28445460, ECO:0000269|PubMed:33157014}. |
P55085 | F2RL1 | S383 | ochoa|psp | Proteinase-activated receptor 2 (PAR-2) (Coagulation factor II receptor-like 1) (G-protein coupled receptor 11) (Thrombin receptor-like 1) [Cleaved into: Proteinase-activated receptor 2, alternate cleaved 1; Proteinase-activated receptor 2, alternate cleaved 2] | Receptor for trypsin and trypsin-like enzymes coupled to G proteins (PubMed:28445455). Its function is mediated through the activation of several signaling pathways including phospholipase C (PLC), intracellular calcium, mitogen-activated protein kinase (MAPK), I-kappaB kinase/NF-kappaB and Rho (PubMed:28445455). Can also be transactivated by cleaved F2R/PAR1. Involved in modulation of inflammatory responses and regulation of innate and adaptive immunity, and acts as a sensor for proteolytic enzymes generated during infection. Generally is promoting inflammation. Can signal synergistically with TLR4 and probably TLR2 in inflammatory responses and modulates TLR3 signaling. Has a protective role in establishing the endothelial barrier; the activity involves coagulation factor X. Regulates endothelial cell barrier integrity during neutrophil extravasation, probably following proteolytic cleavage by PRTN3 (PubMed:23202369). Proposed to have a bronchoprotective role in airway epithelium, but also shown to compromise the airway epithelial barrier by interrupting E-cadherin adhesion (PubMed:10086357). Involved in the regulation of vascular tone; activation results in hypotension presumably mediated by vasodilation. Associates with a subset of G proteins alpha subunits such as GNAQ, GNA11, GNA14, GNA12 and GNA13, but probably not with G(o)-alpha, G(i) subunit alpha-1 and G(i) subunit alpha-2. However, according to PubMed:21627585 can signal through G(i) subunit alpha. Believed to be a class B receptor which internalizes as a complex with arrestin and traffic with it to endosomal vesicles, presumably as desensitized receptor, for extended periods of time. Mediates inhibition of TNF-alpha stimulated JNK phosphorylation via coupling to GNAQ and GNA11; the function involves dissociation of RIPK1 and TRADD from TNFR1. Mediates phosphorylation of nuclear factor NF-kappa-B RELA subunit at 'Ser-536'; the function involves IKBKB and is predominantly independent of G proteins. Involved in cellular migration. Involved in cytoskeletal rearrangement and chemotaxis through beta-arrestin-promoted scaffolds; the function is independent of GNAQ and GNA11 and involves promotion of cofilin dephosphorylation and actin filament severing. Induces redistribution of COPS5 from the plasma membrane to the cytosol and activation of the JNK cascade is mediated by COPS5. Involved in the recruitment of leukocytes to the sites of inflammation and is the major PAR receptor capable of modulating eosinophil function such as pro-inflammatory cytokine secretion, superoxide production and degranulation. During inflammation promotes dendritic cell maturation, trafficking to the lymph nodes and subsequent T-cell activation. Involved in antimicrobial response of innate immune cells; activation enhances phagocytosis of Gram-positive and killing of Gram-negative bacteria. Acts synergistically with interferon-gamma in enhancing antiviral responses. Implicated in a number of acute and chronic inflammatory diseases such as of the joints, lungs, brain, gastrointestinal tract, periodontium, skin, and vascular systems, and in autoimmune disorders. Probably mediates activation of pro-inflammatory and pro-fibrotic responses in fibroblasts, triggered by coagulation factor Xa (F10) (By similarity). Mediates activation of barrier protective signaling responses in endothelial cells, triggered by coagulation factor Xa (F10) (PubMed:22409427). {ECO:0000250|UniProtKB:P55086, ECO:0000269|PubMed:10086357, ECO:0000269|PubMed:10725339, ECO:0000269|PubMed:11413129, ECO:0000269|PubMed:11441110, ECO:0000269|PubMed:11447194, ECO:0000269|PubMed:11714832, ECO:0000269|PubMed:12832443, ECO:0000269|PubMed:15155775, ECO:0000269|PubMed:16359518, ECO:0000269|PubMed:16410250, ECO:0000269|PubMed:16478888, ECO:0000269|PubMed:16714334, ECO:0000269|PubMed:17404307, ECO:0000269|PubMed:17500066, ECO:0000269|PubMed:18424071, ECO:0000269|PubMed:18453611, ECO:0000269|PubMed:18474671, ECO:0000269|PubMed:18622013, ECO:0000269|PubMed:19494303, ECO:0000269|PubMed:19781631, ECO:0000269|PubMed:19864598, ECO:0000269|PubMed:19865078, ECO:0000269|PubMed:20826780, ECO:0000269|PubMed:21501162, ECO:0000269|PubMed:22409427, ECO:0000269|PubMed:23202369, ECO:0000269|PubMed:28445455}. |
P55085 | F2RL1 | S384 | ochoa|psp | Proteinase-activated receptor 2 (PAR-2) (Coagulation factor II receptor-like 1) (G-protein coupled receptor 11) (Thrombin receptor-like 1) [Cleaved into: Proteinase-activated receptor 2, alternate cleaved 1; Proteinase-activated receptor 2, alternate cleaved 2] | Receptor for trypsin and trypsin-like enzymes coupled to G proteins (PubMed:28445455). Its function is mediated through the activation of several signaling pathways including phospholipase C (PLC), intracellular calcium, mitogen-activated protein kinase (MAPK), I-kappaB kinase/NF-kappaB and Rho (PubMed:28445455). Can also be transactivated by cleaved F2R/PAR1. Involved in modulation of inflammatory responses and regulation of innate and adaptive immunity, and acts as a sensor for proteolytic enzymes generated during infection. Generally is promoting inflammation. Can signal synergistically with TLR4 and probably TLR2 in inflammatory responses and modulates TLR3 signaling. Has a protective role in establishing the endothelial barrier; the activity involves coagulation factor X. Regulates endothelial cell barrier integrity during neutrophil extravasation, probably following proteolytic cleavage by PRTN3 (PubMed:23202369). Proposed to have a bronchoprotective role in airway epithelium, but also shown to compromise the airway epithelial barrier by interrupting E-cadherin adhesion (PubMed:10086357). Involved in the regulation of vascular tone; activation results in hypotension presumably mediated by vasodilation. Associates with a subset of G proteins alpha subunits such as GNAQ, GNA11, GNA14, GNA12 and GNA13, but probably not with G(o)-alpha, G(i) subunit alpha-1 and G(i) subunit alpha-2. However, according to PubMed:21627585 can signal through G(i) subunit alpha. Believed to be a class B receptor which internalizes as a complex with arrestin and traffic with it to endosomal vesicles, presumably as desensitized receptor, for extended periods of time. Mediates inhibition of TNF-alpha stimulated JNK phosphorylation via coupling to GNAQ and GNA11; the function involves dissociation of RIPK1 and TRADD from TNFR1. Mediates phosphorylation of nuclear factor NF-kappa-B RELA subunit at 'Ser-536'; the function involves IKBKB and is predominantly independent of G proteins. Involved in cellular migration. Involved in cytoskeletal rearrangement and chemotaxis through beta-arrestin-promoted scaffolds; the function is independent of GNAQ and GNA11 and involves promotion of cofilin dephosphorylation and actin filament severing. Induces redistribution of COPS5 from the plasma membrane to the cytosol and activation of the JNK cascade is mediated by COPS5. Involved in the recruitment of leukocytes to the sites of inflammation and is the major PAR receptor capable of modulating eosinophil function such as pro-inflammatory cytokine secretion, superoxide production and degranulation. During inflammation promotes dendritic cell maturation, trafficking to the lymph nodes and subsequent T-cell activation. Involved in antimicrobial response of innate immune cells; activation enhances phagocytosis of Gram-positive and killing of Gram-negative bacteria. Acts synergistically with interferon-gamma in enhancing antiviral responses. Implicated in a number of acute and chronic inflammatory diseases such as of the joints, lungs, brain, gastrointestinal tract, periodontium, skin, and vascular systems, and in autoimmune disorders. Probably mediates activation of pro-inflammatory and pro-fibrotic responses in fibroblasts, triggered by coagulation factor Xa (F10) (By similarity). Mediates activation of barrier protective signaling responses in endothelial cells, triggered by coagulation factor Xa (F10) (PubMed:22409427). {ECO:0000250|UniProtKB:P55086, ECO:0000269|PubMed:10086357, ECO:0000269|PubMed:10725339, ECO:0000269|PubMed:11413129, ECO:0000269|PubMed:11441110, ECO:0000269|PubMed:11447194, ECO:0000269|PubMed:11714832, ECO:0000269|PubMed:12832443, ECO:0000269|PubMed:15155775, ECO:0000269|PubMed:16359518, ECO:0000269|PubMed:16410250, ECO:0000269|PubMed:16478888, ECO:0000269|PubMed:16714334, ECO:0000269|PubMed:17404307, ECO:0000269|PubMed:17500066, ECO:0000269|PubMed:18424071, ECO:0000269|PubMed:18453611, ECO:0000269|PubMed:18474671, ECO:0000269|PubMed:18622013, ECO:0000269|PubMed:19494303, ECO:0000269|PubMed:19781631, ECO:0000269|PubMed:19864598, ECO:0000269|PubMed:19865078, ECO:0000269|PubMed:20826780, ECO:0000269|PubMed:21501162, ECO:0000269|PubMed:22409427, ECO:0000269|PubMed:23202369, ECO:0000269|PubMed:28445455}. |
P55735 | SEC13 | S309 | ochoa | Protein SEC13 homolog (GATOR2 complex protein SEC13) (SEC13-like protein 1) (SEC13-related protein) | Functions as a component of the nuclear pore complex (NPC) and the COPII coat (PubMed:8972206). At the endoplasmic reticulum, SEC13 is involved in the biogenesis of COPII-coated vesicles (PubMed:8972206). Required for the exit of adipsin (CFD/ADN), an adipocyte-secreted protein from the endoplasmic reticulum (By similarity). {ECO:0000250|UniProtKB:Q9D1M0, ECO:0000269|PubMed:8972206}.; FUNCTION: As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:25457612, PubMed:27487210, PubMed:35831510, PubMed:36528027). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25457612, PubMed:26972053, PubMed:27487210). Within the GATOR2 complex, SEC13 and SEH1L are required to stabilize the complex (PubMed:35831510). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:26972053, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027}. |
P56537 | EIF6 | T231 | ochoa|psp | Eukaryotic translation initiation factor 6 (eIF-6) (B(2)GCN homolog) (B4 integrin interactor) (CAB) (p27(BBP)) | Binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit to form the 80S initiation complex in the cytoplasm (PubMed:10085284, PubMed:14654845, PubMed:21536732, PubMed:32669547). Behaves as a stimulatory translation initiation factor downstream insulin/growth factors. Is also involved in ribosome biogenesis. Associates with pre-60S subunits in the nucleus and is involved in its nuclear export. Cytoplasmic release of TIF6 from 60S subunits and nuclear relocalization is promoted by a RACK1 (RACK1)-dependent protein kinase C activity (PubMed:10085284, PubMed:14654845, PubMed:21536732). In tissues responsive to insulin, controls fatty acid synthesis and glycolysis by exerting translational control of adipogenic transcription factors such as CEBPB, CEBPD and ATF4 that have G/C rich or uORF in their 5'UTR. Required for ROS-dependent megakaryocyte maturation and platelets formation, controls the expression of mitochondrial respiratory chain genes involved in reactive oxygen species (ROS) synthesis (By similarity). Involved in miRNA-mediated gene silencing by the RNA-induced silencing complex (RISC). Required for both miRNA-mediated translational repression and miRNA-mediated cleavage of complementary mRNAs by RISC (PubMed:17507929). Modulates cell cycle progression and global translation of pre-B cells, its activation seems to be rate-limiting in tumorigenesis and tumor growth (By similarity). {ECO:0000255|HAMAP-Rule:MF_03132, ECO:0000269|PubMed:10085284, ECO:0000269|PubMed:14654845, ECO:0000269|PubMed:17507929, ECO:0000269|PubMed:21536732, ECO:0000269|PubMed:32669547}. |
P56693 | SOX10 | T453 | ochoa | Transcription factor SOX-10 | Transcription factor that plays a central role in developing and mature glia (By similarity). Specifically activates expression of myelin genes, during oligodendrocyte (OL) maturation, such as DUSP15 and MYRF, thereby playing a central role in oligodendrocyte maturation and CNS myelination (By similarity). Once induced, MYRF cooperates with SOX10 to implement the myelination program (By similarity). Transcriptional activator of MITF, acting synergistically with PAX3 (PubMed:21965087). Transcriptional activator of MBP, via binding to the gene promoter (By similarity). {ECO:0000250|UniProtKB:O55170, ECO:0000250|UniProtKB:Q04888, ECO:0000269|PubMed:21965087}. |
P56749 | CLDN12 | S231 | ochoa | Claudin-12 | Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell-adhesion activity. {ECO:0000250}. |
P56856 | CLDN18 | T247 | ochoa | Claudin-18 | Involved in alveolar fluid homeostasis via regulation of alveolar epithelial tight junction composition and therefore ion transport and solute permeability, potentially via downstream regulation of the actin cytoskeleton organization and beta-2-adrenergic signaling (By similarity). Required for lung alveolarization and maintenance of the paracellular alveolar epithelial barrier (By similarity). Acts to maintain epithelial progenitor cell proliferation and organ size, via regulation of YAP1 localization away from the nucleus and thereby restriction of YAP1 target gene transcription (By similarity). Acts as a negative regulator of RANKL-induced osteoclast differentiation, potentially via relocation of TJP2/ZO-2 away from the nucleus, subsequently involved in bone resorption in response to calcium deficiency (By similarity). Mediates the osteoprotective effects of estrogen, potentially via acting downstream of estrogen signaling independently of RANKL signaling pathways (By similarity). {ECO:0000250|UniProtKB:P56857}.; FUNCTION: [Isoform A1]: Involved in the maintenance of homeostasis of the alveolar microenvironment via regulation of pH and subsequent T-cell activation in the alveolar space, is therefore indirectly involved in limiting C.neoformans infection. {ECO:0000250|UniProtKB:P56857}.; FUNCTION: [Isoform A2]: Required for the formation of the gastric paracellular barrier via its role in tight junction formation, thereby involved in the response to gastric acidification. {ECO:0000250|UniProtKB:P56857}. |
P56962 | STX17 | S288 | ochoa | Syntaxin-17 | SNAREs, soluble N-ethylmaleimide-sensitive factor-attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion (PubMed:23217709, PubMed:25686604, PubMed:28306502). STX17 is a SNARE of the autophagosome involved in autophagy through the direct control of autophagosome membrane fusion with the lysosome membrane (PubMed:23217709, PubMed:25686604, PubMed:28306502, PubMed:28504273). May also play a role in the early secretory pathway where it may maintain the architecture of the endoplasmic reticulum-Golgi intermediate compartment/ERGIC and Golgi and/or regulate transport between the endoplasmic reticulum, the ERGIC and the Golgi (PubMed:21545355). {ECO:0000269|PubMed:21545355, ECO:0000269|PubMed:23217709, ECO:0000269|PubMed:25686604, ECO:0000269|PubMed:28306502, ECO:0000269|PubMed:28504273}. |
P56962 | STX17 | S289 | ochoa|psp | Syntaxin-17 | SNAREs, soluble N-ethylmaleimide-sensitive factor-attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion (PubMed:23217709, PubMed:25686604, PubMed:28306502). STX17 is a SNARE of the autophagosome involved in autophagy through the direct control of autophagosome membrane fusion with the lysosome membrane (PubMed:23217709, PubMed:25686604, PubMed:28306502, PubMed:28504273). May also play a role in the early secretory pathway where it may maintain the architecture of the endoplasmic reticulum-Golgi intermediate compartment/ERGIC and Golgi and/or regulate transport between the endoplasmic reticulum, the ERGIC and the Golgi (PubMed:21545355). {ECO:0000269|PubMed:21545355, ECO:0000269|PubMed:23217709, ECO:0000269|PubMed:25686604, ECO:0000269|PubMed:28306502, ECO:0000269|PubMed:28504273}. |
P57053 | H2BC12L | S113 | ochoa | Histone H2B type F-S (H2B-clustered histone 12 like) (H2B.S histone 1) (Histone H2B.s) (H2B/s) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
P58876 | H2BC5 | S113 | ochoa | Histone H2B type 1-D (H2B-clustered histone 5) (HIRA-interacting protein 2) (Histone H2B.1 B) (Histone H2B.b) (H2B/b) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
P60709 | ACTB | Y362 | ochoa | Actin, cytoplasmic 1 (EC 3.6.4.-) (Beta-actin) [Cleaved into: Actin, cytoplasmic 1, N-terminally processed] | Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells (PubMed:25255767, PubMed:29581253). Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction (PubMed:29581253). In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA (PubMed:29925947). Plays a role in the assembly of the gamma-tubulin ring complex (gTuRC), which regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments (PubMed:39321809, PubMed:38609661). Part of the ACTR1A/ACTB filament around which the dynactin complex is built (By similarity). The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:Q6QAQ1, ECO:0000269|PubMed:25255767, ECO:0000269|PubMed:29581253, ECO:0000269|PubMed:29925947, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
P60842 | EIF4A1 | T393 | ochoa | Eukaryotic initiation factor 4A-I (eIF-4A-I) (eIF4A-I) (EC 3.6.4.13) (ATP-dependent RNA helicase eIF4A-1) | ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome (PubMed:20156963). In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5'-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon. As a result, promotes cell proliferation and growth (PubMed:20156963). {ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291, ECO:0000269|PubMed:20156963}. |
P61026 | RAB10 | S187 | ochoa | Ras-related protein Rab-10 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:21248164). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:21248164). That Rab is mainly involved in the biosynthetic transport of proteins from the Golgi to the plasma membrane (PubMed:21248164). Regulates, for instance, SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane (By similarity). In parallel, it regulates the transport of TLR4, a toll-like receptor to the plasma membrane and therefore may be important for innate immune response (By similarity). Also plays a specific role in asymmetric protein transport to the plasma membrane (PubMed:16641372). In neurons, it is involved in axonogenesis through regulation of vesicular membrane trafficking toward the axonal plasma membrane (By similarity). In epithelial cells, it regulates transport from the Golgi to the basolateral membrane (PubMed:16641372). May play a role in the basolateral recycling pathway and in phagosome maturation (By similarity). May play a role in endoplasmic reticulum dynamics and morphology controlling tubulation along microtubules and tubules fusion (PubMed:23263280). Together with LRRK2, RAB8A, and RILPL1, it regulates ciliogenesis (PubMed:30398148). When phosphorylated by LRRK2 on Thr-73, binds RILPL1 and inhibits ciliogenesis (PubMed:30398148). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). Targeted to and stabilized on stressed lysosomes through LRRK2 phosphorylation where it promotes the extracellular release of lysosomal content through EHBP1 and EHNP1L1 effector proteins (PubMed:30209220). {ECO:0000250|UniProtKB:P24409, ECO:0000250|UniProtKB:P61027, ECO:0000269|PubMed:16641372, ECO:0000269|PubMed:21248164, ECO:0000269|PubMed:23263280, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:32344433}.; FUNCTION: (Microbial infection) Upon Legionella pneumophila infection promotes endoplasmic reticulum recruitment and bacterial replication. Plays a role in remodeling the Legionella-containing vacuole (LCV) into an endoplasmic reticulum-like vacuole. {ECO:0000269|PubMed:31540829}. |
P61073 | CXCR4 | S338 | ochoa | C-X-C chemokine receptor type 4 (CXC-R4) (CXCR-4) (FB22) (Fusin) (HM89) (LCR1) (Leukocyte-derived seven transmembrane domain receptor) (LESTR) (Lipopolysaccharide-associated protein 3) (LAP-3) (LPS-associated protein 3) (NPYRL) (Stromal cell-derived factor 1 receptor) (SDF-1 receptor) (CD antigen CD184) | Receptor for the C-X-C chemokine CXCL12/SDF-1 that transduces a signal by increasing intracellular calcium ion levels and enhancing MAPK1/MAPK3 activation (PubMed:10452968, PubMed:18799424, PubMed:24912431, PubMed:28978524). Involved in the AKT signaling cascade (PubMed:24912431). Plays a role in regulation of cell migration, e.g. during wound healing (PubMed:28978524). Acts as a receptor for extracellular ubiquitin; leading to enhanced intracellular calcium ions and reduced cellular cAMP levels (PubMed:20228059). Binds bacterial lipopolysaccharide (LPS) et mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Involved in hematopoiesis and in cardiac ventricular septum formation. Also plays an essential role in vascularization of the gastrointestinal tract, probably by regulating vascular branching and/or remodeling processes in endothelial cells. Involved in cerebellar development. In the CNS, could mediate hippocampal-neuron survival (By similarity). {ECO:0000250|UniProtKB:P70658, ECO:0000269|PubMed:10074102, ECO:0000269|PubMed:10452968, ECO:0000269|PubMed:10644702, ECO:0000269|PubMed:10825158, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:17197449, ECO:0000269|PubMed:18799424, ECO:0000269|PubMed:20048153, ECO:0000269|PubMed:20228059, ECO:0000269|PubMed:20505072, ECO:0000269|PubMed:24912431, ECO:0000269|PubMed:28978524, ECO:0000269|PubMed:8752280, ECO:0000269|PubMed:8752281}.; FUNCTION: (Microbial infection) Acts as a coreceptor (CD4 being the primary receptor) for human immunodeficiency virus-1/HIV-1 X4 isolates and as a primary receptor for some HIV-2 isolates. Promotes Env-mediated fusion of the virus (PubMed:10074122, PubMed:10756055, PubMed:8849450, PubMed:8929542, PubMed:9427609). {ECO:0000269|PubMed:10074122, ECO:0000269|PubMed:10756055, ECO:0000269|PubMed:8849450, ECO:0000269|PubMed:8929542, ECO:0000269|PubMed:9427609}. |
P61073 | CXCR4 | S339 | ochoa|psp | C-X-C chemokine receptor type 4 (CXC-R4) (CXCR-4) (FB22) (Fusin) (HM89) (LCR1) (Leukocyte-derived seven transmembrane domain receptor) (LESTR) (Lipopolysaccharide-associated protein 3) (LAP-3) (LPS-associated protein 3) (NPYRL) (Stromal cell-derived factor 1 receptor) (SDF-1 receptor) (CD antigen CD184) | Receptor for the C-X-C chemokine CXCL12/SDF-1 that transduces a signal by increasing intracellular calcium ion levels and enhancing MAPK1/MAPK3 activation (PubMed:10452968, PubMed:18799424, PubMed:24912431, PubMed:28978524). Involved in the AKT signaling cascade (PubMed:24912431). Plays a role in regulation of cell migration, e.g. during wound healing (PubMed:28978524). Acts as a receptor for extracellular ubiquitin; leading to enhanced intracellular calcium ions and reduced cellular cAMP levels (PubMed:20228059). Binds bacterial lipopolysaccharide (LPS) et mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Involved in hematopoiesis and in cardiac ventricular septum formation. Also plays an essential role in vascularization of the gastrointestinal tract, probably by regulating vascular branching and/or remodeling processes in endothelial cells. Involved in cerebellar development. In the CNS, could mediate hippocampal-neuron survival (By similarity). {ECO:0000250|UniProtKB:P70658, ECO:0000269|PubMed:10074102, ECO:0000269|PubMed:10452968, ECO:0000269|PubMed:10644702, ECO:0000269|PubMed:10825158, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:17197449, ECO:0000269|PubMed:18799424, ECO:0000269|PubMed:20048153, ECO:0000269|PubMed:20228059, ECO:0000269|PubMed:20505072, ECO:0000269|PubMed:24912431, ECO:0000269|PubMed:28978524, ECO:0000269|PubMed:8752280, ECO:0000269|PubMed:8752281}.; FUNCTION: (Microbial infection) Acts as a coreceptor (CD4 being the primary receptor) for human immunodeficiency virus-1/HIV-1 X4 isolates and as a primary receptor for some HIV-2 isolates. Promotes Env-mediated fusion of the virus (PubMed:10074122, PubMed:10756055, PubMed:8849450, PubMed:8929542, PubMed:9427609). {ECO:0000269|PubMed:10074122, ECO:0000269|PubMed:10756055, ECO:0000269|PubMed:8849450, ECO:0000269|PubMed:8929542, ECO:0000269|PubMed:9427609}. |
P61981 | YWHAG | T234 | ochoa | 14-3-3 protein gamma (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein gamma, N-terminally processed] | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:15696159, PubMed:16511572, PubMed:36732624). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:15696159, PubMed:16511572, PubMed:36732624). Binding generally results in the modulation of the activity of the binding partner (PubMed:16511572). Promotes inactivation of WDR24 component of the GATOR2 complex by binding to phosphorylated WDR24 (PubMed:36732624). Participates in the positive regulation of NMDA glutamate receptor activity by promoting the L-glutamate secretion through interaction with BEST1 (PubMed:29121962). Reduces keratinocyte intercellular adhesion, via interacting with PKP1 and sequestering it in the cytoplasm, thereby reducing its incorporation into desmosomes (PubMed:29678907). Plays a role in mitochondrial protein catabolic process (also named MALM) that promotes the degradation of damaged proteins inside mitochondria (PubMed:22532927). {ECO:0000269|PubMed:15696159, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:22532927, ECO:0000269|PubMed:29121962, ECO:0000269|PubMed:29678907, ECO:0000269|PubMed:36732624}. |
P62070 | RRAS2 | T190 | ochoa | Ras-related protein R-Ras2 (EC 3.6.5.2) (Ras-like protein TC21) (Teratocarcinoma oncogene) | GTP-binding protein with GTPase activity, involved in the regulation of MAPK signaling pathway and thereby controlling multiple cellular processes (PubMed:31130282, PubMed:31130285, PubMed:39809765). Regulates craniofacial development (PubMed:31130282, PubMed:31130285). {ECO:0000269|PubMed:31130282, ECO:0000269|PubMed:31130285, ECO:0000269|PubMed:39809765}. |
P62263 | RPS14 | S137 | ochoa | Small ribosomal subunit protein uS11 (40S ribosomal protein S14) | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P62266 | RPS23 | S129 | ochoa | Small ribosomal subunit protein uS12 (40S ribosomal protein S23) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:28257692). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (PubMed:23636399, PubMed:25901680, PubMed:25957688). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (PubMed:23636399, PubMed:25901680, PubMed:25957688). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (PubMed:23636399, PubMed:25901680, PubMed:25957688). Plays an important role in translational accuracy (PubMed:28257692). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:28257692, ECO:0000269|PubMed:34516797}. |
P62324 | BTG1 | T158 | ochoa | Protein BTG1 (B-cell translocation gene 1 protein) | Anti-proliferative protein. {ECO:0000269|PubMed:1373383}. |
P62328 | TMSB4X | S31 | ochoa | Thymosin beta-4 (T beta-4) (Fx) [Cleaved into: Hemoregulatory peptide AcSDKP (Ac-Ser-Asp-Lys-Pro) (N-acetyl-SDKP) (AcSDKP) (Seraspenide)] | Plays an important role in the organization of the cytoskeleton (PubMed:10848969, PubMed:1999398). Binds to and sequesters actin monomers (G actin) and therefore inhibits actin polymerization (PubMed:10848969, PubMed:1999398). {ECO:0000269|PubMed:10848969, ECO:0000269|PubMed:1999398}.; FUNCTION: [Hemoregulatory peptide AcSDKP]: Potent inhibitor of bone marrow derived stem cell differentiation (PubMed:7694679). Acts by inhibits the entry of hematopoietic pluripotent stem cells into the S-phase (By similarity). {ECO:0000250|UniProtKB:P62326, ECO:0000269|PubMed:7694679}. |
P62736 | ACTA2 | Y364 | ochoa | Actin, aortic smooth muscle (EC 3.6.4.-) (Alpha-actin-2) (Cell growth-inhibiting gene 46 protein) [Cleaved into: Actin, aortic smooth muscle, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P62753 | RPS6 | S235 | ochoa|psp | Small ribosomal subunit protein eS6 (40S ribosomal protein S6) (Phosphoprotein NP33) | Component of the 40S small ribosomal subunit (PubMed:23636399, PubMed:8706699). Plays an important role in controlling cell growth and proliferation through the selective translation of particular classes of mRNA (PubMed:17220279). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:17220279, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:8706699}. |
P62753 | RPS6 | S236 | ochoa|psp | Small ribosomal subunit protein eS6 (40S ribosomal protein S6) (Phosphoprotein NP33) | Component of the 40S small ribosomal subunit (PubMed:23636399, PubMed:8706699). Plays an important role in controlling cell growth and proliferation through the selective translation of particular classes of mRNA (PubMed:17220279). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:17220279, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:8706699}. |
P62805 | H4C1 | Y89 | ochoa | Histone H4 | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
P62807 | H2BC4 | S113 | ochoa | Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
P63104 | YWHAZ | T232 | ochoa|psp | 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}. |
P63218 | GNG5 | S54 | ochoa | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-5 | Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. |
P63218 | GNG5 | S55 | ochoa | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-5 | Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. |
P63261 | ACTG1 | Y362 | ochoa | Actin, cytoplasmic 2 (EC 3.6.4.-) (Gamma-actin) [Cleaved into: Actin, cytoplasmic 2, N-terminally processed] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. May play a role in the repair of noise-induced stereocilia gaps thereby maintains hearing sensitivity following loud noise damage (By similarity). {ECO:0000250|UniProtKB:P63260, ECO:0000305|PubMed:29581253}. |
P68032 | ACTC1 | Y364 | ochoa | Actin, alpha cardiac muscle 1 (EC 3.6.4.-) (Alpha-cardiac actin) [Cleaved into: Actin, alpha cardiac muscle 1, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P68133 | ACTA1 | Y364 | ochoa | Actin, alpha skeletal muscle (EC 3.6.4.-) (Alpha-actin-1) [Cleaved into: Actin, alpha skeletal muscle, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P78552 | IL13RA1 | T413 | ochoa | Interleukin-13 receptor subunit alpha-1 (IL-13 receptor subunit alpha-1) (IL-13R subunit alpha-1) (IL-13R-alpha-1) (IL-13RA1) (Cancer/testis antigen 19) (CT19) (CD antigen CD213a1) | Binds with low affinity to interleukin-13 (IL13). Together with IL4RA can form a functional receptor for IL13. Also serves as an alternate accessory protein to the common cytokine receptor gamma chain for interleukin-4 (IL4) signaling, but cannot replace the function of IL2RG in allowing enhanced interleukin-2 (IL2) binding activity. |
P82909 | KGD4 | S90 | ochoa | Alpha-ketoglutarate dehydrogenase component 4 (Alpha-ketoglutarate dehydrogenase subunit 4) | Molecular adapter that is necessary to form a stable 2-oxoglutarate dehydrogenase enzyme complex (OGDHC). Enables the specific recruitment of E3 subunit to E2 subunit in the 2-oxoglutarate dehydrogenase complex (OGDHC). {ECO:0000250|UniProtKB:Q9CQX8}. |
P83916 | CBX1 | S172 | ochoa | Chromobox protein homolog 1 (HP1Hsbeta) (Heterochromatin protein 1 homolog beta) (HP1 beta) (Heterochromatin protein p25) (M31) (Modifier 1 protein) (p25beta) | Component of heterochromatin. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. Interaction with lamin B receptor (LBR) can contribute to the association of the heterochromatin with the inner nuclear membrane. {ECO:0000250|UniProtKB:P83917}. |
P84103 | SRSF3 | S150 | ochoa | Serine/arginine-rich splicing factor 3 (Pre-mRNA-splicing factor SRP20) (Splicing factor, arginine/serine-rich 3) | Splicing factor, which binds the consensus motif 5'-C[ACU][AU]C[ACU][AC]C-3' within pre-mRNA and promotes specific exons inclusion during alternative splicing (PubMed:17036044, PubMed:26876937, PubMed:32440474). Interaction with YTHDC1, a RNA-binding protein that recognizes and binds N6-methyladenosine (m6A)-containing RNAs, promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites within exons (PubMed:26876937). Also functions as an adapter involved in mRNA nuclear export (PubMed:11336712, PubMed:18364396, PubMed:28984244). Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NXF1 pathway); enhances NXF1-NXT1 RNA-binding activity (PubMed:11336712, PubMed:18364396). Involved in nuclear export of m6A-containing mRNAs via interaction with YTHDC1: interaction with YTHDC1 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). {ECO:0000269|PubMed:11336712, ECO:0000269|PubMed:17036044, ECO:0000269|PubMed:18364396, ECO:0000269|PubMed:26876937, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:32440474}. |
P84157 | MXRA7 | S191 | ochoa | Matrix-remodeling-associated protein 7 | None |
P98088 | MUC5AC | S5641 | ochoa | Mucin-5AC (MUC-5AC) (Gastric mucin) (Major airway glycoprotein) (Mucin-5 subtype AC, tracheobronchial) (Tracheobronchial mucin) (TBM) | Gel-forming glycoprotein of gastric and respiratory tract epithelia that protects the mucosa from infection and chemical damage by binding to inhaled microorganisms and particles that are subsequently removed by the mucociliary system (PubMed:14535999, PubMed:14718370). Interacts with H.pylori in the gastric epithelium, Barrett's esophagus as well as in gastric metaplasia of the duodenum (GMD) (PubMed:14535999). {ECO:0000269|PubMed:14535999, ECO:0000303|PubMed:14535999, ECO:0000303|PubMed:14718370}. |
P98164 | LRP2 | T4641 | psp | Low-density lipoprotein receptor-related protein 2 (LRP-2) (Glycoprotein 330) (gp330) (Megalin) | Multiligand endocytic receptor (By similarity). Acts together with CUBN to mediate endocytosis of high-density lipoproteins (By similarity). Mediates receptor-mediated uptake of polybasic drugs such as aprotinin, aminoglycosides and polymyxin B (By similarity). In the kidney, mediates the tubular uptake and clearance of leptin (By similarity). Also mediates transport of leptin across the blood-brain barrier through endocytosis at the choroid plexus epithelium (By similarity). Endocytosis of leptin in neuronal cells is required for hypothalamic leptin signaling and leptin-mediated regulation of feeding and body weight (By similarity). Mediates endocytosis and subsequent lysosomal degradation of CST3 in kidney proximal tubule cells (By similarity). Mediates renal uptake of 25-hydroxyvitamin D3 in complex with the vitamin D3 transporter GC/DBP (By similarity). Mediates renal uptake of metallothionein-bound heavy metals (PubMed:15126248). Together with CUBN, mediates renal reabsorption of myoglobin (By similarity). Mediates renal uptake and subsequent lysosomal degradation of APOM (By similarity). Plays a role in kidney selenium homeostasis by mediating renal endocytosis of selenoprotein SEPP1 (By similarity). Mediates renal uptake of the antiapoptotic protein BIRC5/survivin which may be important for functional integrity of the kidney (PubMed:23825075). Mediates renal uptake of matrix metalloproteinase MMP2 in complex with metalloproteinase inhibitor TIMP1 (By similarity). Mediates endocytosis of Sonic hedgehog protein N-product (ShhN), the active product of SHH (By similarity). Also mediates ShhN transcytosis (By similarity). In the embryonic neuroepithelium, mediates endocytic uptake and degradation of BMP4, is required for correct SHH localization in the ventral neural tube and plays a role in patterning of the ventral telencephalon (By similarity). Required at the onset of neurulation to sequester SHH on the apical surface of neuroepithelial cells of the rostral diencephalon ventral midline and to control PTCH1-dependent uptake and intracellular trafficking of SHH (By similarity). During neurulation, required in neuroepithelial cells for uptake of folate bound to the folate receptor FOLR1 which is necessary for neural tube closure (By similarity). In the adult brain, negatively regulates BMP signaling in the subependymal zone which enables neurogenesis to proceed (By similarity). In astrocytes, mediates endocytosis of ALB which is required for the synthesis of the neurotrophic factor oleic acid (By similarity). Involved in neurite branching (By similarity). During optic nerve development, required for SHH-mediated migration and proliferation of oligodendrocyte precursor cells (By similarity). Mediates endocytic uptake and clearance of SHH in the retinal margin which protects retinal progenitor cells from mitogenic stimuli and keeps them quiescent (By similarity). Plays a role in reproductive organ development by mediating uptake in reproductive tissues of androgen and estrogen bound to the sex hormone binding protein SHBG (By similarity). Mediates endocytosis of angiotensin-2 (By similarity). Also mediates endocytosis of angiotensis 1-7 (By similarity). Binds to the complex composed of beta-amyloid protein 40 and CLU/APOJ and mediates its endocytosis and lysosomal degradation (By similarity). Required for embryonic heart development (By similarity). Required for normal hearing, possibly through interaction with estrogen in the inner ear (By similarity). {ECO:0000250|UniProtKB:A2ARV4, ECO:0000250|UniProtKB:C0HL13, ECO:0000250|UniProtKB:P98158, ECO:0000269|PubMed:15126248, ECO:0000269|PubMed:23825075}. |
P98171 | ARHGAP4 | S932 | ochoa | Rho GTPase-activating protein 4 (Rho-GAP hematopoietic protein C1) (Rho-type GTPase-activating protein 4) (p115) | Inhibitory effect on stress fiber organization. May down-regulate Rho-like GTPase in hematopoietic cells. |
Q01130 | SRSF2 | S208 | ochoa | Serine/arginine-rich splicing factor 2 (Protein PR264) (Splicing component, 35 kDa) (Splicing factor SC35) (SC-35) (Splicing factor, arginine/serine-rich 2) | Necessary for the splicing of pre-mRNA. It is required for formation of the earliest ATP-dependent splicing complex and interacts with spliceosomal components bound to both the 5'- and 3'-splice sites during spliceosome assembly. It also is required for ATP-dependent interactions of both U1 and U2 snRNPs with pre-mRNA. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5'- and 3'-splice site binding components, U1 snRNP and U2AF. Binds to purine-rich RNA sequences, either 5'-AGSAGAGTA-3' (S=C or G) or 5'-GTTCGAGTA-3'. Can bind to beta-globin mRNA and commit it to the splicing pathway. The phosphorylated form (by SRPK2) is required for cellular apoptosis in response to cisplatin treatment. {ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21157427}. |
Q01970 | PLCB3 | S1221 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-3) (Phospholipase C-beta-3) (PLC-beta-3) | Catalyzes the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:20966218, PubMed:29122926, PubMed:37991948, PubMed:9188725). Key transducer of G protein-coupled receptor signaling: activated by G(q)/G(11) G alpha proteins downstream of G protein-coupled receptors activation (PubMed:20966218, PubMed:37991948). In neutrophils, participates in a phospholipase C-activating N-formyl peptide-activated GPCR (G protein-coupled receptor) signaling pathway by promoting RASGRP4 activation by DAG, to promote neutrophil functional responses (By similarity). {ECO:0000250|UniProtKB:P51432, ECO:0000269|PubMed:20966218, ECO:0000269|PubMed:29122926, ECO:0000269|PubMed:37991948, ECO:0000269|PubMed:9188725}. |
Q02078 | MEF2A | S494 | ochoa | Myocyte-specific enhancer factor 2A (Serum response factor-like protein 1) | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation. Associates with chromatin to the ZNF16 promoter. {ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:16371476, ECO:0000269|PubMed:16484498, ECO:0000269|PubMed:16563226, ECO:0000269|PubMed:21468593, ECO:0000269|PubMed:9858528}. |
Q02446 | SP4 | S770 | ochoa|psp | Transcription factor Sp4 (SPR-1) | Binds to GT and GC boxes promoters elements. Probable transcriptional activator. |
Q02790 | FKBP4 | S446 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4) (EC 5.2.1.8) (51 kDa FK506-binding protein) (FKBP51) (52 kDa FK506-binding protein) (52 kDa FKBP) (FKBP-52) (59 kDa immunophilin) (p59) (FK506-binding protein 4) (FKBP-4) (FKBP59) (HSP-binding immunophilin) (HBI) (Immunophilin FKBP52) (Rotamase) [Cleaved into: Peptidyl-prolyl cis-trans isomerase FKBP4, N-terminally processed] | Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Also acts as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role against oxidative stress in mitochondria. {ECO:0000269|PubMed:1279700, ECO:0000269|PubMed:1376003, ECO:0000269|PubMed:19945390, ECO:0000269|PubMed:21730050, ECO:0000269|PubMed:2378870}. |
Q02880 | TOP2B | S1613 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q05193 | DNM1 | S851 | psp | Dynamin-1 (EC 3.6.5.5) (Dynamin) (Dynamin I) | Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission and participates in many forms of endocytosis, such as clathrin-mediated endocytosis or synaptic vesicle endocytosis as well as rapid endocytosis (RE) (PubMed:15703209, PubMed:20428113, PubMed:29668686, PubMed:8101525, PubMed:8910402, PubMed:9362482). Associates to the membrane, through lipid binding, and self-assembles into rings and stacks of interconnected rings through oligomerization to form a helical polymer around the vesicle membrane leading to constriction of invaginated coated pits around their necks (PubMed:30069048, PubMed:7877694, PubMed:9922133). Self-assembly of the helical polymer induces membrane tubules narrowing until the polymer reaches a length sufficient to trigger GTP hydrolysis (PubMed:19084269). Depending on the curvature imposed on the tubules, membrane detachment from the helical polymer upon GTP hydrolysis can cause spontaneous hemifission followed by complete fission (PubMed:19084269). May play a role in regulating early stages of clathrin-mediated endocytosis in non-neuronal cells through its activation by dephosphorylation via the signaling downstream of EGFR (PubMed:29668686). Controls vesicle size at a step before fission, during formation of membrane pits, at hippocampal synapses (By similarity). Controls plastic adaptation of the synaptic vesicle recycling machinery to high levels of activity (By similarity). Mediates rapid endocytosis (RE), a Ca(2+)-dependent and clathrin- and K(+)-independent process in chromaffin cells (By similarity). Microtubule-associated force-producing protein involved in producing microtubule bundles and able to bind and hydrolyze GTP (By similarity). Through its interaction with DNAJC6, acts during the early steps of clathrin-coated vesicle (CCV) formation (PubMed:12791276). {ECO:0000250|UniProtKB:P39053, ECO:0000250|UniProtKB:Q08DF4, ECO:0000269|PubMed:12791276, ECO:0000269|PubMed:15703209, ECO:0000269|PubMed:19084269, ECO:0000269|PubMed:20428113, ECO:0000269|PubMed:29668686, ECO:0000269|PubMed:30069048, ECO:0000269|PubMed:7877694, ECO:0000269|PubMed:8101525, ECO:0000269|PubMed:8910402, ECO:0000269|PubMed:9362482, ECO:0000269|PubMed:9922133}. |
Q06124 | PTPN11 | Y580 | psp | Tyrosine-protein phosphatase non-receptor type 11 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1D) (PTP-1D) (Protein-tyrosine phosphatase 2C) (PTP-2C) (SH-PTP2) (SHP-2) (Shp2) (SH-PTP3) | Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus (PubMed:10655584, PubMed:14739280, PubMed:18559669, PubMed:18829466, PubMed:26742426, PubMed:28074573). Positively regulates MAPK signal transduction pathway (PubMed:28074573). Dephosphorylates GAB1, ARHGAP35 and EGFR (PubMed:28074573). Dephosphorylates ROCK2 at 'Tyr-722' resulting in stimulation of its RhoA binding activity (PubMed:18559669). Dephosphorylates CDC73 (PubMed:26742426). Dephosphorylates SOX9 on tyrosine residues, leading to inactivate SOX9 and promote ossification (By similarity). Dephosphorylates tyrosine-phosphorylated NEDD9/CAS-L (PubMed:19275884). {ECO:0000250|UniProtKB:P35235, ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:14739280, ECO:0000269|PubMed:18559669, ECO:0000269|PubMed:18829466, ECO:0000269|PubMed:19275884, ECO:0000269|PubMed:26742426, ECO:0000269|PubMed:28074573}. |
Q06413 | MEF2C | S459 | ochoa | Myocyte-specific enhancer factor 2C (Myocyte enhancer factor 2C) | Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle-specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Enhances transcriptional activation mediated by SOX18. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes and platelets and for bone marrow B-lymphopoiesis. Required for B-cell survival and proliferation in response to BCR stimulation, efficient IgG1 antibody responses to T-cell-dependent antigens and for normal induction of germinal center B-cells. May also be involved in neurogenesis and in the development of cortical architecture (By similarity). Isoforms that lack the repressor domain are more active than isoform 1. {ECO:0000250|UniProtKB:Q8CFN5, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:15340086, ECO:0000269|PubMed:15831463, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:9069290, ECO:0000269|PubMed:9384584}. |
Q06455 | RUNX1T1 | S590 | ochoa | Protein CBFA2T1 (Cyclin-D-related protein) (Eight twenty one protein) (Protein ETO) (Protein MTG8) (Zinc finger MYND domain-containing protein 2) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:10688654, PubMed:12559562, PubMed:15203199). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). Can repress transactivation mediated by TCF12 (PubMed:16803958). Acts as a negative regulator of adipogenesis (By similarity). The AML1-MTG8/ETO fusion protein frequently found in leukemic cells is involved in leukemogenesis and contributes to hematopoietic stem/progenitor cell self-renewal (PubMed:23812588). {ECO:0000250|UniProtKB:Q61909, ECO:0000269|PubMed:10688654, ECO:0000269|PubMed:10973986, ECO:0000269|PubMed:16803958, ECO:0000269|PubMed:23251453, ECO:0000269|PubMed:23812588, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}. |
Q06455 | RUNX1T1 | T591 | ochoa | Protein CBFA2T1 (Cyclin-D-related protein) (Eight twenty one protein) (Protein ETO) (Protein MTG8) (Zinc finger MYND domain-containing protein 2) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:10688654, PubMed:12559562, PubMed:15203199). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). Can repress transactivation mediated by TCF12 (PubMed:16803958). Acts as a negative regulator of adipogenesis (By similarity). The AML1-MTG8/ETO fusion protein frequently found in leukemic cells is involved in leukemogenesis and contributes to hematopoietic stem/progenitor cell self-renewal (PubMed:23812588). {ECO:0000250|UniProtKB:Q61909, ECO:0000269|PubMed:10688654, ECO:0000269|PubMed:10973986, ECO:0000269|PubMed:16803958, ECO:0000269|PubMed:23251453, ECO:0000269|PubMed:23812588, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}. |
Q06481 | APLP2 | Y750 | ochoa | Amyloid beta precursor like protein 2 (APPH) (Amyloid beta (A4) precursor-like protein 2) (Amyloid protein homolog) (Amyloid-like protein 2) (APLP-2) (CDEI box-binding protein) (CDEBP) (Sperm membrane protein YWK-II) | May play a role in the regulation of hemostasis. The soluble form may have inhibitory properties towards coagulation factors. May interact with cellular G-protein signaling pathways. May bind to the DNA 5'-GTCACATG-3'(CDEI box). Inhibits trypsin, chymotrypsin, plasmin, factor XIA and plasma and glandular kallikrein. Modulates the Cu/Zn nitric oxide-catalyzed autodegradation of GPC1 heparan sulfate side chains in fibroblasts (By similarity). {ECO:0000250, ECO:0000269|PubMed:8307156}. |
Q07955 | SRSF1 | S234 | psp | Serine/arginine-rich splicing factor 1 (Alternative-splicing factor 1) (ASF-1) (Splicing factor, arginine/serine-rich 1) (pre-mRNA-splicing factor SF2, P33 subunit) | Plays a role in preventing exon skipping, ensuring the accuracy of splicing and regulating alternative splicing. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5'- and 3'-splice site binding components, U1 snRNP and U2AF. Can stimulate binding of U1 snRNP to a 5'-splice site-containing pre-mRNA. Binds to purine-rich RNA sequences, either the octamer, 5'-RGAAGAAC-3' (r=A or G) or the decamers, AGGACAGAGC/AGGACGAAGC. Binds preferentially to the 5'-CGAGGCG-3' motif in vitro. Three copies of the octamer constitute a powerful splicing enhancer in vitro, the ASF/SF2 splicing enhancer (ASE) which can specifically activate ASE-dependent splicing. Isoform ASF-2 and isoform ASF-3 act as splicing repressors. May function as export adapter involved in mRNA nuclear export through the TAP/NXF1 pathway. {ECO:0000269|PubMed:8139654}. |
Q0VAK6 | LMOD3 | S546 | ochoa | Leiomodin-3 (Leiomodin, fetal form) | Essential for the organization of sarcomeric actin thin filaments in skeletal muscle (PubMed:25250574). Increases the rate of actin polymerization (PubMed:25250574). {ECO:0000269|PubMed:25250574}. |
Q12908 | SLC10A2 | S335 | psp | Ileal sodium/bile acid cotransporter (Apical sodium-dependent bile acid transporter) (ASBT) (Ileal Na(+)/bile acid cotransporter) (Ileal sodium-dependent bile acid transporter) (IBAT) (ISBT) (Na(+)-dependent ileal bile acid transporter) (Sodium/taurocholate cotransporting polypeptide, ileal) (Solute carrier family 10 member 2) | Plays a critical role in the sodium-dependent reabsorption of bile acids from the lumen of the small intestine (PubMed:7592981, PubMed:9458785, PubMed:9856990). Transports various bile acids, unconjugated or conjugated, such as cholate and taurocholate (PubMed:7592981, PubMed:9458785, PubMed:9856990). Also responsible for bile acid transport in the renal proximal tubules, a salvage mechanism that helps conserve bile acids (Probable). Works collaboratively with the Na(+)-taurocholate cotransporting polypeptide (NTCP), the organic solute transporter (OST), and the bile salt export pump (BSEP), to ensure efficacious biological recycling of bile acids during enterohepatic circulation (PubMed:33222321). {ECO:0000269|PubMed:7592981, ECO:0000269|PubMed:9458785, ECO:0000269|PubMed:9856990, ECO:0000303|PubMed:33222321, ECO:0000305|PubMed:9458785}. |
Q12929 | EPS8 | S809 | ochoa | Epidermal growth factor receptor kinase substrate 8 | Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}. |
Q13158 | FADD | S194 | ochoa|psp | FAS-associated death domain protein (FAS-associating death domain-containing protein) (Growth-inhibiting gene 3 protein) (Mediator of receptor induced toxicity) | Apoptotic adapter molecule that recruits caspases CASP8 or CASP10 to the activated FAS/CD95 or TNFRSF1A/TNFR-1 receptors (PubMed:16762833, PubMed:19118384, PubMed:20935634, PubMed:23955153, PubMed:24025841, PubMed:7538907, PubMed:9184224). The resulting aggregate called the death-inducing signaling complex (DISC) performs CASP8 proteolytic activation (PubMed:16762833, PubMed:19118384, PubMed:20935634, PubMed:7538907, PubMed:9184224). Active CASP8 initiates the subsequent cascade of caspases mediating apoptosis (PubMed:16762833). Involved in interferon-mediated antiviral immune response, playing a role in the positive regulation of interferon signaling (PubMed:21109225, PubMed:24204270). {ECO:0000269|PubMed:16762833, ECO:0000269|PubMed:19118384, ECO:0000269|PubMed:20935634, ECO:0000269|PubMed:21109225, ECO:0000269|PubMed:23955153, ECO:0000269|PubMed:24025841, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:7538907, ECO:0000269|PubMed:9184224}. |
Q13164 | MAPK7 | S803 | psp | Mitogen-activated protein kinase 7 (MAP kinase 7) (MAPK 7) (EC 2.7.11.24) (Big MAP kinase 1) (BMK-1) (Extracellular signal-regulated kinase 5) (ERK-5) | Plays a role in various cellular processes such as proliferation, differentiation and cell survival. The upstream activator of MAPK7 is the MAPK kinase MAP2K5. Upon activation, it translocates to the nucleus and phosphorylates various downstream targets including MEF2C. EGF activates MAPK7 through a Ras-independent and MAP2K5-dependent pathway. As part of the MAPK/ERK signaling pathway, acts as a negative regulator of apoptosis in cardiomyocytes via interaction with STUB1/CHIP and promotion of STUB1-mediated ubiquitination and degradation of ICER-type isoforms of CREM (By similarity). May have a role in muscle cell differentiation. May be important for endothelial function and maintenance of blood vessel integrity. MAP2K5 and MAPK7 interact specifically with one another and not with MEK1/ERK1 or MEK2/ERK2 pathways. Phosphorylates SGK1 at Ser-78 and this is required for growth factor-induced cell cycle progression. Involved in the regulation of p53/TP53 by disrupting the PML-MDM2 interaction. {ECO:0000250|UniProtKB:P0C865, ECO:0000269|PubMed:11254654, ECO:0000269|PubMed:11278431, ECO:0000269|PubMed:22869143, ECO:0000269|PubMed:9384584, ECO:0000269|PubMed:9790194}. |
Q13242 | SRSF9 | S208 | ochoa | Serine/arginine-rich splicing factor 9 (Pre-mRNA-splicing factor SRp30C) (Splicing factor, arginine/serine-rich 9) | Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:10196175, ECO:0000269|PubMed:11875052, ECO:0000269|PubMed:12024014, ECO:0000269|PubMed:12604611, ECO:0000269|PubMed:15009090, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:15695522, ECO:0000269|PubMed:7556075}. |
Q13371 | PDCL | S288 | ochoa | Phosducin-like protein (PHLP) | Acts as a positive regulator of hedgehog signaling and regulates ciliary function. {ECO:0000250|UniProtKB:Q9DBX2}.; FUNCTION: [Isoform 1]: Functions as a co-chaperone for CCT in the assembly of heterotrimeric G protein complexes, facilitates the assembly of both Gbeta-Ggamma and RGS-Gbeta5 heterodimers.; FUNCTION: [Isoform 2]: Acts as a negative regulator of heterotrimeric G proteins assembly by trapping the preloaded G beta subunits inside the CCT chaperonin. |
Q13426 | XRCC4 | T323 | ochoa | DNA repair protein XRCC4 (hXRCC4) (X-ray repair cross-complementing protein 4) [Cleaved into: Protein XRCC4, C-terminus (XRCC4/C)] | [DNA repair protein XRCC4]: DNA non-homologous end joining (NHEJ) core factor, required for double-strand break repair and V(D)J recombination (PubMed:10757784, PubMed:10854421, PubMed:12517771, PubMed:16412978, PubMed:17124166, PubMed:17290226, PubMed:22228831, PubMed:25597996, PubMed:25742519, PubMed:25934149, PubMed:26100018, PubMed:26774286, PubMed:8548796). Acts as a scaffold protein that regulates recruitment of other proteins to DNA double-strand breaks (DSBs) (PubMed:15385968, PubMed:20852255, PubMed:26774286, PubMed:27437582). Associates with NHEJ1/XLF to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired (PubMed:21768349, PubMed:21775435, PubMed:22287571, PubMed:26100018, PubMed:27437582, PubMed:28500754). The XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA molecules, holding the broken DNA fragments in close proximity to one other (PubMed:27437582). The mobility of the bridges ensures that the ends remain accessible for further processing by other repair factors (PubMed:27437582). Plays a key role in the NHEJ ligation step of the broken DNA during DSB repair via direct interaction with DNA ligase IV (LIG4): the LIG4-XRCC4 subcomplex reseals the DNA breaks after the gap filling is completed (PubMed:10757784, PubMed:10854421, PubMed:12517771, PubMed:17290226, PubMed:19837014, PubMed:9242410). XRCC4 stabilizes LIG4, regulates its subcellular localization and enhances LIG4's joining activity (PubMed:10757784, PubMed:10854421, PubMed:12517771, PubMed:17290226, PubMed:21982441, PubMed:22228831, PubMed:9242410). Binding of the LIG4-XRCC4 subcomplex to DNA ends is dependent on the assembly of the DNA-dependent protein kinase complex DNA-PK to these DNA ends (PubMed:10757784, PubMed:10854421). Promotes displacement of PNKP from processed strand break termini (PubMed:20852255, PubMed:28453785). {ECO:0000269|PubMed:10757784, ECO:0000269|PubMed:10854421, ECO:0000269|PubMed:12517771, ECO:0000269|PubMed:15385968, ECO:0000269|PubMed:16412978, ECO:0000269|PubMed:17124166, ECO:0000269|PubMed:17290226, ECO:0000269|PubMed:19837014, ECO:0000269|PubMed:20852255, ECO:0000269|PubMed:21768349, ECO:0000269|PubMed:21775435, ECO:0000269|PubMed:21982441, ECO:0000269|PubMed:22228831, ECO:0000269|PubMed:22287571, ECO:0000269|PubMed:25597996, ECO:0000269|PubMed:25742519, ECO:0000269|PubMed:25934149, ECO:0000269|PubMed:26100018, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:27437582, ECO:0000269|PubMed:28453785, ECO:0000269|PubMed:28500754, ECO:0000269|PubMed:8548796, ECO:0000269|PubMed:9242410}.; FUNCTION: [Protein XRCC4, C-terminus]: Acts as an activator of the phospholipid scramblase activity of XKR4 (PubMed:33725486). This form, which is generated upon caspase-3 (CASP3) cleavage, translocates into the cytoplasm and interacts with XKR4, thereby promoting phosphatidylserine scramblase activity of XKR4 and leading to phosphatidylserine exposure on apoptotic cell surface (PubMed:33725486). {ECO:0000269|PubMed:33725486}. |
Q13451 | FKBP5 | T443 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP5 (PPIase FKBP5) (EC 5.2.1.8) (51 kDa FK506-binding protein) (51 kDa FKBP) (FKBP-51) (54 kDa progesterone receptor-associated immunophilin) (Androgen-regulated protein 6) (FF1 antigen) (FK506-binding protein 5) (FKBP-5) (FKBP54) (p54) (HSP90-binding immunophilin) (Rotamase) | Immunophilin protein with PPIase and co-chaperone activities (PubMed:11350175). Component of unligated steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). Plays a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors maintaining the complex into the cytoplasm when unliganded (PubMed:12538866). Acts as a regulator of Akt/AKT1 activity by promoting the interaction between Akt/AKT1 and PHLPP1, thereby enhancing dephosphorylation and subsequent activation of Akt/AKT1 (PubMed:28147277, PubMed:28363942). Interacts with IKBKE and IKBKB which facilitates IKK complex assembly leading to increased IKBKE and IKBKB kinase activity, NF-kappa-B activation, and IFN production (PubMed:26101251, PubMed:31434731). {ECO:0000269|PubMed:11350175, ECO:0000269|PubMed:12538866, ECO:0000269|PubMed:26101251, ECO:0000269|PubMed:28147277, ECO:0000269|PubMed:28363942, ECO:0000269|PubMed:31434731}. |
Q13464 | ROCK1 | S1341 | ochoa|psp | Rho-associated protein kinase 1 (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-35) (Rho-associated, coiled-coil-containing protein kinase 1) (Rho-associated, coiled-coil-containing protein kinase I) (ROCK-I) (p160 ROCK-1) (p160ROCK) | Protein kinase which is a key regulator of the actin cytoskeleton and cell polarity (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:8617235, PubMed:9722579). Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of DAPK3, GFAP, LIMK1, LIMK2, MYL9/MLC2, TPPP, PFN1 and PPP1R12A (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:23093407, PubMed:23355470, PubMed:8617235, PubMed:9722579). Phosphorylates FHOD1 and acts synergistically with it to promote SRC-dependent non-apoptotic plasma membrane blebbing (PubMed:18694941). Phosphorylates JIP3 and regulates the recruitment of JNK to JIP3 upon UVB-induced stress (PubMed:19036714). Acts as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability (By similarity). Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation (PubMed:19181962). Required for centrosome positioning and centrosome-dependent exit from mitosis (By similarity). Plays a role in terminal erythroid differentiation (PubMed:21072057). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Promotes keratinocyte terminal differentiation (PubMed:19997641). Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process, essential for osteoblast mineralization (By similarity). May regulate closure of the eyelids and ventral body wall by inducing the assembly of actomyosin bundles (By similarity). {ECO:0000250|UniProtKB:P70335, ECO:0000250|UniProtKB:Q8MIT6, ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:10652353, ECO:0000269|PubMed:11018042, ECO:0000269|PubMed:11283607, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18573880, ECO:0000269|PubMed:18694941, ECO:0000269|PubMed:19036714, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19181962, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21072057, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:8617235, ECO:0000269|PubMed:9722579}. |
Q13496 | MTM1 | S590 | ochoa | Myotubularin (EC 3.1.3.95) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Phosphatidylinositol-3-phosphate phosphatase) | Lipid phosphatase which dephosphorylates phosphatidylinositol 3-monophosphate (PI3P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) (PubMed:10900271, PubMed:11001925, PubMed:12646134, PubMed:14722070). Has also been shown to dephosphorylate phosphotyrosine- and phosphoserine-containing peptides (PubMed:9537414). Negatively regulates EGFR degradation through regulation of EGFR trafficking from the late endosome to the lysosome (PubMed:14722070). Plays a role in vacuolar formation and morphology. Regulates desmin intermediate filament assembly and architecture (PubMed:21135508). Plays a role in mitochondrial morphology and positioning (PubMed:21135508). Required for skeletal muscle maintenance but not for myogenesis (PubMed:21135508). In skeletal muscles, stabilizes MTMR12 protein levels (PubMed:23818870). {ECO:0000269|PubMed:10900271, ECO:0000269|PubMed:11001925, ECO:0000269|PubMed:12646134, ECO:0000269|PubMed:14722070, ECO:0000269|PubMed:21135508, ECO:0000269|PubMed:23818870, ECO:0000269|PubMed:9537414}. |
Q13613 | MTMR1 | S652 | ochoa | Phosphatidylinositol-3-phosphate phosphatase MTMR1 (EC 3.1.3.-) (Myotubularin-related protein 1) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (EC 3.1.3.95) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate, generating phosphatidylinositol (PubMed:11733541, PubMed:27018598). Could also dephosphorylate phosphatidylinositol 3,5-bisphosphate to produce phosphatidylinositol 5-phosphate (PubMed:27018598). {ECO:0000269|PubMed:11733541, ECO:0000269|PubMed:27018598}. |
Q13614 | MTMR2 | S630 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR2 (EC 3.1.3.95) (Myotubularin-related protein 2) (Phosphatidylinositol-3-phosphate phosphatase) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:11733541, PubMed:12668758, PubMed:14690594, PubMed:21372139). Regulates the level of these phosphoinositides critical for various biological processes including autophagy initiation and autophagosome maturation (PubMed:35580604). {ECO:0000269|PubMed:11733541, ECO:0000269|PubMed:12668758, ECO:0000269|PubMed:14690594, ECO:0000269|PubMed:21372139, ECO:0000269|PubMed:35580604}. |
Q14011 | CIRBP | S159 | ochoa | Cold-inducible RNA-binding protein (A18 hnRNP) (Glycine-rich RNA-binding protein CIRP) | Cold-inducible mRNA binding protein that plays a protective role in the genotoxic stress response by stabilizing transcripts of genes involved in cell survival. Acts as a translational activator. Seems to play an essential role in cold-induced suppression of cell proliferation. Binds specifically to the 3'-untranslated regions (3'-UTRs) of stress-responsive transcripts RPA2 and TXN. Acts as a translational repressor (By similarity). Promotes assembly of stress granules (SGs), when overexpressed. {ECO:0000250, ECO:0000269|PubMed:11574538, ECO:0000269|PubMed:16513844}. |
Q14135 | VGLL4 | S276 | ochoa | Transcription cofactor vestigial-like protein 4 (Vgl-4) | May act as a specific coactivator for the mammalian TEFs. {ECO:0000250}. |
Q14330 | GPR18 | S317 | ochoa | N-arachidonyl glycine receptor (NAGly receptor) (G-protein coupled receptor 18) | G protein-coupled receptor (GPCR) that plays a role in diverse physiological processes particularly within the immune and nervous systems (PubMed:21732409, PubMed:26195725). Becomes active when triggered by various endogenous ligands including endocannabinoid N-arachidonyl glycine (NAGly), delta-9-tetrahydrocannabinol or resolvin D2/RvD2 derived from the omega-3 fatty acid docosahexaenoic acid (DHA) (PubMed:16844083, PubMed:24762058, PubMed:26195725, PubMed:27572937). Upon RvD2 binding, facilitates the resolution of inflammation, aiding in tissue repair and homeostasis. Mechanistically, RvD2 ligation initiates Galphas protein coupling, activation of cAMP-PKA signaling pathway and phosphorylation of STAT3, leading to RvD2-stimulated macrophage phagocytosis (PubMed:27994074). Mediates NAGly-induced process of reorganization of actin filaments and induction of acrosomal exocytosis (PubMed:27572937). Activation by N-arachidonoyl glycine (NAGly) can also induce apoptosis in macrophages (By similarity). Plays a role in homeostasis of CD8+ subsets of intraepithelial lymphocytes (IELs) (CD8alphaalpha and CD8alphabeta IELs) in small intestine by supporting preferential migration of CD8alphaalpha T-cells to intraepithelial compartment over lamina propria compartment, and by mediating their reconstitution into small intestine after bone marrow transplant (By similarity). Also participates in hypotensive responses, mediating reduction in intraocular and blood pressure (By similarity). {ECO:0000250|UniProtKB:Q8K1Z6, ECO:0000269|PubMed:16844083, ECO:0000269|PubMed:21732409, ECO:0000269|PubMed:24762058, ECO:0000269|PubMed:26195725, ECO:0000269|PubMed:27572937, ECO:0000269|PubMed:27994074}. |
Q14332 | FZD2 | Y552 | psp | Frizzled-2 (Fz-2) (hFz2) (FzE2) | Receptor for Wnt proteins. Most of frizzled receptors are coupled to the beta-catenin canonical signaling pathway, which leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes (PubMed:25759469). A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues. {ECO:0000269|PubMed:25759469}.; FUNCTION: (Microbial infection) Acts as a receptor for C.difficile toxin TcdB in the colonic epithelium (PubMed:27680706, PubMed:29748286). TcdB occupies the binding site for Wnt-adducted palmitoleate in frizzled receptors and TcdB-binding prevents Wnt-binding and downstream Wnt signaling (PubMed:29748286). {ECO:0000269|PubMed:27680706, ECO:0000269|PubMed:29748286}. |
Q14696 | MESD | S221 | ochoa | LRP chaperone MESD (LDLR chaperone MESD) (Mesoderm development LRP chaperone MESD) (Mesoderm development candidate 2) (Mesoderm development protein) (Renal carcinoma antigen NY-REN-61) | Chaperone specifically assisting the folding of beta-propeller/EGF modules within the family of low-density lipoprotein receptors (LDLRs) (PubMed:15014448). Acts as a modulator of the Wnt pathway through chaperoning the coreceptors of the canonical Wnt pathway, LRP5 and LRP6, to the plasma membrane (PubMed:17488095, PubMed:23572575). Essential for specification of embryonic polarity and mesoderm induction. Plays an essential role in neuromuscular junction (NMJ) formation by promoting cell-surface expression of LRP4 (By similarity). May regulate phagocytosis of apoptotic retinal pigment epithelium (RPE) cells (By similarity). {ECO:0000250|UniProtKB:Q9ERE7, ECO:0000269|PubMed:15014448, ECO:0000269|PubMed:17488095, ECO:0000269|PubMed:23572575}. |
Q14814 | MEF2D | S508 | ochoa | Myocyte-specific enhancer factor 2D | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}. |
Q14978 | NOLC1 | S686 | ochoa | Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}. |
Q15022 | SUZ12 | S726 | ochoa | Polycomb protein SUZ12 (Chromatin precipitated E2F target 9 protein) (ChET 9 protein) (Joined to JAZF1 protein) (Suppressor of zeste 12 protein homolog) | Polycomb group (PcG) protein. Component of the PRC2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:15231737, PubMed:15385962, PubMed:16618801, PubMed:17344414, PubMed:18285464, PubMed:28229514, PubMed:29499137, PubMed:31959557). The PRC2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems (PubMed:12351676, PubMed:12435631, PubMed:15099518, PubMed:15225548, PubMed:15385962, PubMed:15684044, PubMed:16431907, PubMed:18086877, PubMed:18285464). Genes repressed by the PRC2 complex include HOXC8, HOXA9, MYT1 and CDKN2A (PubMed:15231737, PubMed:16618801, PubMed:17200670, PubMed:31959557). {ECO:0000269|PubMed:12351676, ECO:0000269|PubMed:12435631, ECO:0000269|PubMed:15099518, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:15684044, ECO:0000269|PubMed:16431907, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:17200670, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18086877, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:28229514, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q15025 | TNIP1 | T623 | ochoa | TNFAIP3-interacting protein 1 (A20-binding inhibitor of NF-kappa-B activation 1) (ABIN-1) (HIV-1 Nef-interacting protein) (Nef-associated factor 1) (Naf1) (Nip40-1) (Virion-associated nuclear shuttling protein) (VAN) (hVAN) | Inhibits NF-kappa-B activation and TNF-induced NF-kappa-B-dependent gene expression by regulating TAX1BP1 and A20/TNFAIP3-mediated deubiquitination of IKBKG; proposed to link A20/TNFAIP3 to ubiquitinated IKBKG (PubMed:21885437). Involved in regulation of EGF-induced ERK1/ERK2 signaling pathway; blocks MAPK3/MAPK1 nuclear translocation and MAPK1-dependent transcription. Increases cell surface CD4(T4) antigen expression. Involved in the anti-inflammatory response of macrophages and positively regulates TLR-induced activation of CEBPB. Involved in the prevention of autoimmunity; this function implicates binding to polyubiquitin. Involved in leukocyte integrin activation during inflammation; this function is mediated by association with SELPLG and dependent on phosphorylation by SRC-family kinases. Interacts with HIV-1 matrix protein and is packaged into virions and overexpression can inhibit viral replication. May regulate matrix nuclear localization, both nuclear import of PIC (Preintegration complex) and export of GAG polyprotein and viral genomic RNA during virion production. In case of infection, promotes association of IKBKG with Shigella flexneri E3 ubiquitin-protein ligase ipah9.8 p which in turn promotes polyubiquitination of IKBKG leading to its proteasome-dependent degradation and thus is perturbing NF-kappa-B activation during bacterial infection. {ECO:0000269|PubMed:12220502, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17016622, ECO:0000269|PubMed:17632516, ECO:0000269|PubMed:20010814, ECO:0000269|PubMed:21885437}. |
Q15046 | KARS1 | T584 | ochoa | Lysine--tRNA ligase (EC 2.7.7.-) (EC 6.1.1.6) (Lysyl-tRNA synthetase) (LysRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:18029264, PubMed:18272479, PubMed:9278442). When secreted, acts as a signaling molecule that induces immune response through the activation of monocyte/macrophages (PubMed:15851690). Catalyzes the synthesis of the signaling molecule diadenosine tetraphosphate (Ap4A), and thereby mediates disruption of the complex between HINT1 and MITF and the concomitant activation of MITF transcriptional activity (PubMed:14975237, PubMed:19524539, PubMed:23159739, PubMed:5338216). {ECO:0000269|PubMed:14975237, ECO:0000269|PubMed:15851690, ECO:0000269|PubMed:18029264, ECO:0000269|PubMed:19524539, ECO:0000269|PubMed:28887846, ECO:0000269|PubMed:5338216, ECO:0000269|PubMed:9278442}.; FUNCTION: (Microbial infection) Interacts with HIV-1 virus GAG protein, facilitating the selective packaging of tRNA(3)(Lys), the primer for reverse transcription initiation. {ECO:0000269|PubMed:15220430}. |
Q15109 | AGER | S391 | ochoa|psp | Advanced glycosylation end product-specific receptor (Receptor for advanced glycosylation end products) | Cell surface pattern recognition receptor that senses endogenous stress signals with a broad ligand repertoire including advanced glycation end products, S100 proteins, high-mobility group box 1 protein/HMGB1, amyloid beta/APP oligomers, nucleic acids, histones, phospholipids and glycosaminoglycans (PubMed:27572515, PubMed:28515150, PubMed:34743181, PubMed:35974093, PubMed:24081950). Advanced glycosylation end products are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes (PubMed:21565706). These ligands accumulate at inflammatory sites during the pathogenesis of various diseases including diabetes, vascular complications, neurodegenerative disorders and cancers, and RAGE transduces their binding into pro-inflammatory responses. Upon ligand binding, uses TIRAP and MYD88 as adapters to transduce the signal ultimately leading to the induction of inflammatory cytokines IL6, IL8 and TNFalpha through activation of NF-kappa-B (PubMed:21829704, PubMed:33436632). Interaction with S100A12 on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key pro-inflammatory mediators (PubMed:19386136). Interaction with S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling (By similarity). Contributes to the translocation of amyloid-beta peptide (ABPP) across the cell membrane from the extracellular to the intracellular space in cortical neurons (PubMed:19906677). ABPP-initiated RAGE signaling, especially stimulation of p38 mitogen-activated protein kinase (MAPK), has the capacity to drive a transport system delivering ABPP as a complex with RAGE to the intraneuronal space. Participates in endothelial albumin transcytosis together with HMGB1 through the RAGE/SRC/Caveolin-1 pathway, leading to endothelial hyperpermeability (PubMed:27572515). Mediates the loading of HMGB1 in extracellular vesicles (EVs) that shuttle HMGB1 to hepatocytes by transferrin-mediated endocytosis and subsequently promote hepatocyte pyroptosis by activating the NLRP3 inflammasome (PubMed:34743181). Binds to DNA and promotes extracellular hypomethylated DNA (CpG DNA) uptake by cells via the endosomal route to activate inflammatory responses (PubMed:24081950, PubMed:28515150). Mediates phagocytosis by non-professional phagocytes (NPP) and this is enhanced by binding to ligands including RNA, DNA, HMGB1 and histones (PubMed:35974093). Promotes NPP-mediated phagocytosis of Saccharomyces cerevisiae spores by binding to RNA attached to the spore wall (PubMed:35974093). Also promotes NPP-mediated phagocytosis of apoptotic cells (PubMed:35974093). Following DNA damage, recruited to DNA double-strand break sites where it colocalizes with the MRN repair complex via interaction with double-strand break repair protein MRE11 (By similarity). Enhances the endonuclease activity of MRE11, promoting the end resection of damaged DNA (By similarity). Promotes DNA damage repair in trophoblasts which enhances trophoblast invasion and contributes to placental development and maintenance (PubMed:33918759). Protects cells from DNA replication stress by localizing to damaged replication forks where it stabilizes the MCM2-7 complex and promotes faithful progression of the replication fork (PubMed:36807739). Mediates the production of reactive oxygen species (ROS) in human endothelial cells (PubMed:25401185). {ECO:0000250|UniProtKB:Q62151, ECO:0000269|PubMed:19906677, ECO:0000269|PubMed:20943659, ECO:0000269|PubMed:21559403, ECO:0000269|PubMed:21565706, ECO:0000269|PubMed:21829704, ECO:0000269|PubMed:24081950, ECO:0000269|PubMed:25401185, ECO:0000269|PubMed:27572515, ECO:0000269|PubMed:28515150, ECO:0000269|PubMed:33436632, ECO:0000269|PubMed:33918759, ECO:0000269|PubMed:34743181, ECO:0000269|PubMed:35974093, ECO:0000269|PubMed:36807739}. |
Q15121 | PEA15 | S116 | ochoa|psp | Astrocytic phosphoprotein PEA-15 (15 kDa phosphoprotein enriched in astrocytes) (Phosphoprotein enriched in diabetes) (PED) | Blocks Ras-mediated inhibition of integrin activation and modulates the ERK MAP kinase cascade. Inhibits RPS6KA3 activities by retaining it in the cytoplasm (By similarity). Inhibits both TNFRSF6- and TNFRSF1A-mediated CASP8 activity and apoptosis. Regulates glucose transport by controlling both the content of SLC2A1 glucose transporters on the plasma membrane and the insulin-dependent trafficking of SLC2A4 from the cell interior to the surface. {ECO:0000250, ECO:0000269|PubMed:10442631, ECO:0000269|PubMed:9670003}. |
Q15149 | PLEC | S4670 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15172 | PPP2R5A | S472 | ochoa | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform (PP2A B subunit isoform B'-alpha) (PP2A B subunit isoform B56-alpha) (PP2A B subunit isoform PR61-alpha) (PR61alpha) (PP2A B subunit isoform R5-alpha) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q15208 | STK38 | T452 | ochoa | Serine/threonine-protein kinase 38 (EC 2.7.11.1) (NDR1 protein kinase) (Nuclear Dbf2-related kinase 1) | Serine/threonine-protein kinase that acts as a negative regulator of MAP3K1/2 signaling (PubMed:12493777, PubMed:15197186, PubMed:17906693, PubMed:7761441). Converts MAP3K2 from its phosphorylated form to its non-phosphorylated form and inhibits autophosphorylation of MAP3K2 (PubMed:12493777, PubMed:15197186, PubMed:17906693, PubMed:7761441). Acts as an ufmylation 'reader' in a kinase-independent manner: specifically recognizes and binds mono-ufmylated histone H4 in response to DNA damage, promoting the recruitment of SUV39H1 to the double-strand breaks, resulting in ATM activation (PubMed:32537488). {ECO:0000269|PubMed:12493777, ECO:0000269|PubMed:15197186, ECO:0000269|PubMed:17906693, ECO:0000269|PubMed:32537488, ECO:0000269|PubMed:7761441}. |
Q15223 | NECTIN1 | S503 | ochoa | Nectin-1 (Herpes virus entry mediator C) (Herpesvirus entry mediator C) (HveC) (Herpesvirus Ig-like receptor) (HIgR) (Nectin cell adhesion molecule 1) (Poliovirus receptor-related protein 1) (CD antigen CD111) | Cell adhesion molecule that promotes cell-cell contacts and plays important roles in the development of the nervous system (PubMed:21325282). Acts by forming homophilic or heterophilic trans-dimers (PubMed:21325282). Heterophilic interactions have been detected between NECTIN1 and NECTIN3 and between NECTIN1 and NECTIN4 (By similarity). Involved in axon guidance by promoting contacts between the commissural axons and the floor plate cells (By similarity). Involved in synaptogegesis (By similarity). Has some neurite outgrowth-promoting activity (By similarity). Promotes formation of checkerboard-like cellular pattern of hair cells and supporting cells in the auditory epithelium via heterophilic interaction with NECTIN3: NECTIN1 is present in the membrane of hair cells and associates with NECTIN3 on supporting cells, thereby mediating heterotypic adhesion between these two cell types (By similarity). Required for enamel mineralization (By similarity). {ECO:0000250|UniProtKB:Q9JKF6, ECO:0000269|PubMed:21325282}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1, herpes simplex virus 2/HHV-2, and pseudorabies virus/PRV (PubMed:21980294, PubMed:25231300, PubMed:28381567, PubMed:28542478, PubMed:34587223, PubMed:38857290, PubMed:39048823, PubMed:39048830, PubMed:7721102, PubMed:9616127, PubMed:9657005). Constitutes the major receptor for herpes simplex virus 1/HHV-1 entry into host cells (PubMed:34587223). {ECO:0000269|PubMed:21980294, ECO:0000269|PubMed:25231300, ECO:0000269|PubMed:28381567, ECO:0000269|PubMed:28542478, ECO:0000269|PubMed:34587223, ECO:0000269|PubMed:38857290, ECO:0000269|PubMed:39048823, ECO:0000269|PubMed:39048830, ECO:0000269|PubMed:7721102, ECO:0000269|PubMed:9616127, ECO:0000269|PubMed:9657005}. |
Q15291 | RBBP5 | S525 | ochoa | Retinoblastoma-binding protein 5 (RBBP-5) (Retinoblastoma-binding protein RBQ-3) | In embryonic stem (ES) cells, plays a crucial role in the differentiation potential, particularly along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci, including that mediated by retinoic acid (By similarity). Does not affect ES cell self-renewal (By similarity). Component or associated component of some histone methyltransferase complexes which regulates transcription through recruitment of those complexes to gene promoters (PubMed:19131338). As part of the MLL1/MLL complex, involved in mono-, di- and trimethylation at 'Lys-4' of histone H3 (PubMed:19556245). Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation (PubMed:19556245). In association with ASH2L and WDR5, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000250|UniProtKB:Q8BX09, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}. |
Q15629 | TRAM1 | S360 | ochoa | Translocating chain-associated membrane protein 1 (Protein TRAM1) | Involved in the translocation of nascent protein chains into or through the endoplasmic reticulum (ER) membrane by facilitating the proper chain positioning at the SEC61 channel (PubMed:12475939, PubMed:1315422, PubMed:32013668, PubMed:8616892, PubMed:9506517). Regulates the exposure of nascent secretory protein chain to the cytosol during translocation into the ER (PubMed:9506517). May affect the phospholipid bilayer in the vicinity of the lateral gate of the SEC61 channel, thereby facilitating ER protein transport (PubMed:32013668). Intimately associates with transmembrane (TM) domain of nascent membrane proteins during the entire integration process into the ER membrane (PubMed:8616892). Associates with the second TM domain of G-protein-coupled receptor opsin/OPSD nascent chain in the ER membrane, which may facilitate its integration into the membrane (PubMed:12475939). Under conditions of ER stress, participates in the disposal of misfolded ER membrane proteins during the unfolded protein response (UPR), an integrated stress response (ISR) pathway, by selectively retrotranslocating misfolded ER-membrane proteins from the ER into the cytosol where they are ubiquitinated and degraded by the proteasome (PubMed:20430023). {ECO:0000269|PubMed:12475939, ECO:0000269|PubMed:1315422, ECO:0000269|PubMed:20430023, ECO:0000269|PubMed:32013668, ECO:0000269|PubMed:8616892, ECO:0000269|PubMed:9506517, ECO:0000303|PubMed:32013668}.; FUNCTION: (Microbial infection) In case of cytomegalovirus infection, participates in US2- and US11-mediated ER-to-cytosol retrotranslocation and subsequent degradation of major histocompatibility complex (MHC) class I heavy chains, thereby decreasing the immune detection by cytotoxic T-cells. {ECO:0000269|PubMed:19121997}. |
Q15735 | INPP5J | S992 | ochoa | Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A (EC 3.1.3.36) (Inositol polyphosphate 5-phosphatase J) (Phosphatidylinositol 1,3,4,5-tetrakisphosphate 5-phosphatase) (EC 3.1.3.56) (Phosphatidylinositol 1,4,5-trisphosphate 5-phosphatase) (EC 3.1.3.56) | Inositol 5-phosphatase, which converts inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate. Also converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate and inositol 1,3,4,5-tetrakisphosphate to inositol 1,3,4-trisphosphate in vitro. May be involved in modulation of the function of inositol and phosphatidylinositol polyphosphate-binding proteins that are present at membranes ruffles. {ECO:0000250|UniProtKB:Q9JMC1}. |
Q15762 | CD226 | Y322 | ochoa|psp | CD226 antigen (DNAX accessory molecule 1) (DNAM-1) (CD antigen CD226) | Cell surface receptor that plays an important role in the immune system, particularly in intercellular adhesion, lymphocyte signaling, cytotoxicity and lymphokine secretion mediated by cytotoxic T-cells and NK cells (PubMed:8673704, PubMed:9712030). Functions as a costimulatory receptor upon recognition of target cells, such as virus-infected or tumor cells. Upon binding to its ligands PVR/CD155 or NECTIN2/CD112 on target cells, promotes the cytotoxic activity of NK cells and CTLs, enhancing their ability to kill these cells (PubMed:26755705, PubMed:31253644, PubMed:30591568). Mechanistically, phosphorylation by Src kinases such as LYN of FYN, enables binding to adapter GRB2, leading to activation of VAV1, PI3K and PLCG1. Promotes also activation of kinases ERK and AKT, as well as calcium fluxes (By similarity). {ECO:0000250|UniProtKB:Q8K4F0, ECO:0000269|PubMed:26755705, ECO:0000269|PubMed:30591568, ECO:0000269|PubMed:31253644, ECO:0000269|PubMed:8673704, ECO:0000269|PubMed:9712030}. |
Q15847 | ADIRF | S62 | ochoa | Adipogenesis regulatory factor (Adipogenesis factor rich in obesity) (Adipose most abundant gene transcript 2 protein) (Adipose-specific protein 2) (apM-2) | Plays a role in fat cell development; promotes adipogenic differentiation and stimulates transcription initiation of master adipogenesis factors like PPARG and CEBPA at early stages of preadipocyte differentiation. Its overexpression confers resistance to the anticancer chemotherapeutic drug cisplatin. {ECO:0000269|PubMed:19444912, ECO:0000269|PubMed:23239344}. |
Q16181 | SEPTIN7 | S423 | ochoa | Septin-7 (CDC10 protein homolog) | Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Required for normal progress through mitosis. Involved in cytokinesis. Required for normal association of CENPE with the kinetochore. Plays a role in ciliogenesis and collective cell movements. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). {ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18460473, ECO:0000305|PubMed:25588830}. |
Q16181 | SEPTIN7 | S424 | ochoa | Septin-7 (CDC10 protein homolog) | Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Required for normal progress through mitosis. Involved in cytokinesis. Required for normal association of CENPE with the kinetochore. Plays a role in ciliogenesis and collective cell movements. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). {ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18460473, ECO:0000305|PubMed:25588830}. |
Q16533 | SNAPC1 | S355 | ochoa | snRNA-activating protein complex subunit 1 (SNAPc subunit 1) (Proximal sequence element-binding transcription factor subunit gamma) (PSE-binding factor subunit gamma) (PTF subunit gamma) (Small nuclear RNA-activating complex polypeptide 1) (snRNA-activating protein complex 43 kDa subunit) (SNAPc 43 kDa subunit) | Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023}. |
Q16778 | H2BC21 | S113 | ochoa | Histone H2B type 2-E (H2B-clustered histone 21) (Histone H2B-GL105) (Histone H2B.q) (H2B/q) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
Q16820 | MEP1B | S687 | psp | Meprin A subunit beta (EC 3.4.24.63) (Endopeptidase-2) (Meprin B) (N-benzoyl-L-tyrosyl-P-amino-benzoic acid hydrolase subunit beta) (PABA peptide hydrolase) (PPH beta) | Membrane metallopeptidase that sheds many membrane-bound proteins. Exhibits a strong preference for acidic amino acids at the P1' position. Known substrates include: FGF19, VGFA, IL1B, IL18, procollagen I and III, E-cadherin, KLK7, gastrin, ADAM10, tenascin-C. The presence of several pro-inflammatory cytokine among substrates implicate MEP1B in inflammation. It is also involved in tissue remodeling due to its capability to degrade extracellular matrix components. Also cleaves the amyloid precursor protein/APP, thereby releasing neurotoxic amyloid beta peptides (PubMed:27180357). {ECO:0000269|PubMed:21693781, ECO:0000269|PubMed:27180357}. |
Q2VIQ3 | KIF4B | T1220 | ochoa | Chromosome-associated kinesin KIF4B (Chromokinesin-B) | Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (By similarity). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (By similarity). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:O95239, ECO:0000250|UniProtKB:P33174}. |
Q2VIQ3 | KIF4B | S1221 | ochoa | Chromosome-associated kinesin KIF4B (Chromokinesin-B) | Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (By similarity). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (By similarity). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:O95239, ECO:0000250|UniProtKB:P33174}. |
Q32M88 | PGGHG | S723 | ochoa | Protein-glucosylgalactosylhydroxylysine glucosidase (EC 3.2.1.107) (Acid trehalase-like protein 1) | Catalyzes the hydrolysis of glucose from the disaccharide unit linked to hydroxylysine residues of collagen and collagen-like proteins. {ECO:0000269|PubMed:26682924}. |
Q32M88 | PGGHG | S724 | ochoa | Protein-glucosylgalactosylhydroxylysine glucosidase (EC 3.2.1.107) (Acid trehalase-like protein 1) | Catalyzes the hydrolysis of glucose from the disaccharide unit linked to hydroxylysine residues of collagen and collagen-like proteins. {ECO:0000269|PubMed:26682924}. |
Q32P44 | EML3 | S883 | ochoa | Echinoderm microtubule-associated protein-like 3 (EMAP-3) | Regulates mitotic spindle assembly, microtubule (MT)-kinetochore attachment and chromosome separation via recruitment of HAUS augmin-like complex and TUBG1 to the existing MTs and promoting MT-based MT nucleation (PubMed:30723163). Required for proper alignnment of chromosomes during metaphase (PubMed:18445686). {ECO:0000269|PubMed:18445686, ECO:0000269|PubMed:30723163}. |
Q3MHD2 | LSM12 | S182 | ochoa | Protein LSM12 | Nicotinic acid adenine dinucleotide phosphate (NAADP) binding protein (PubMed:34362892). Confers NAADP sensitivity to the two pore channel complex (TPCs) by acting as TPC accessory protein necessary for NAADP-evoked Ca(2+) release (PubMed:34362892). {ECO:0000269|PubMed:34362892}. |
Q49A26 | GLYR1 | S540 | ochoa | Cytokine-like nuclear factor N-PAC (NPAC) (3-hydroxyisobutyrate dehydrogenase-like protein) (Glyoxylate reductase 1 homolog) (Nuclear protein NP60) (Nuclear protein of 60 kDa) (Nucleosome-destabilizing factor) (hNDF) (Putative oxidoreductase GLYR1) | Cytokine-like nuclear factor with chromatin gene reader activity involved in chromatin modification and regulation of gene expression (PubMed:23260659, PubMed:30970244). Acts as a nucleosome-destabilizing factor that is recruited to genes during transcriptional activation (PubMed:29759984, PubMed:30970244). Recognizes and binds histone H3 without a preference for specific epigenetic markers and also binds DNA (PubMed:20850016, PubMed:30970244). Interacts with KDM1B and promotes its histone demethylase activity by facilitating the capture of H3 tails, they form a multifunctional enzyme complex that modifies transcribed chromatin and facilitates Pol II transcription through nucleosomes (PubMed:23260659, PubMed:29759984, PubMed:30970244). Stimulates the acetylation of 'Lys-56' of nucleosomal histone H3 (H3K56ac) by EP300 (PubMed:29759984). With GATA4, co-binds a defined set of heart development genes and coregulates their expression during cardiomyocyte differentiation (PubMed:35182466). Regulates p38 MAP kinase activity by mediating stress activation of MAPK14/p38alpha and specifically regulating MAPK14 signaling (PubMed:16352664). Indirectly promotes phosphorylation of MAPK14 and activation of ATF2 (PubMed:16352664). The phosphorylation of MAPK14 requires upstream activity of MAP2K4 and MAP2K6 (PubMed:16352664). {ECO:0000269|PubMed:16352664, ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:23260659, ECO:0000269|PubMed:29759984, ECO:0000269|PubMed:30970244, ECO:0000269|PubMed:35182466}. |
Q504Q3 | PAN2 | T1188 | ochoa | PAN2-PAN3 deadenylation complex catalytic subunit PAN2 (EC 3.1.13.4) (Inactive ubiquitin carboxyl-terminal hydrolase 52) (PAB1P-dependent poly(A)-specific ribonuclease) (Poly(A)-nuclease deadenylation complex subunit 2) (PAN deadenylation complex subunit 2) | Catalytic subunit of the poly(A)-nuclease (PAN) deadenylation complex, one of two cytoplasmic mRNA deadenylases involved in general and miRNA-mediated mRNA turnover. PAN specifically shortens poly(A) tails of RNA and the activity is stimulated by poly(A)-binding protein (PABP). PAN deadenylation is followed by rapid degradation of the shortened mRNA tails by the CCR4-NOT complex. Deadenylated mRNAs are then degraded by two alternative mechanisms, namely exosome-mediated 3'-5' exonucleolytic degradation, or deadenylation-dependent mRNA decaping and subsequent 5'-3' exonucleolytic degradation by XRN1. Also acts as an important regulator of the HIF1A-mediated hypoxic response. Required for HIF1A mRNA stability independent of poly(A) tail length regulation. {ECO:0000255|HAMAP-Rule:MF_03182, ECO:0000269|PubMed:14583602, ECO:0000269|PubMed:16284618, ECO:0000269|PubMed:23398456}. |
Q504Q3 | PAN2 | S1189 | ochoa | PAN2-PAN3 deadenylation complex catalytic subunit PAN2 (EC 3.1.13.4) (Inactive ubiquitin carboxyl-terminal hydrolase 52) (PAB1P-dependent poly(A)-specific ribonuclease) (Poly(A)-nuclease deadenylation complex subunit 2) (PAN deadenylation complex subunit 2) | Catalytic subunit of the poly(A)-nuclease (PAN) deadenylation complex, one of two cytoplasmic mRNA deadenylases involved in general and miRNA-mediated mRNA turnover. PAN specifically shortens poly(A) tails of RNA and the activity is stimulated by poly(A)-binding protein (PABP). PAN deadenylation is followed by rapid degradation of the shortened mRNA tails by the CCR4-NOT complex. Deadenylated mRNAs are then degraded by two alternative mechanisms, namely exosome-mediated 3'-5' exonucleolytic degradation, or deadenylation-dependent mRNA decaping and subsequent 5'-3' exonucleolytic degradation by XRN1. Also acts as an important regulator of the HIF1A-mediated hypoxic response. Required for HIF1A mRNA stability independent of poly(A) tail length regulation. {ECO:0000255|HAMAP-Rule:MF_03182, ECO:0000269|PubMed:14583602, ECO:0000269|PubMed:16284618, ECO:0000269|PubMed:23398456}. |
Q53FP2 | TMEM35A | S154 | ochoa | Novel acetylcholine receptor chaperone | Molecular chaperone which mediates the proper assembly and functional expression of the nicotinic acetylcholine receptors (nAChRs) throughout the brain (PubMed:26875622, PubMed:27789755, PubMed:28445721, PubMed:32204458, PubMed:32783947). Essential for the proper folding, assembly, function and surface trafficking of alpha-7 (CHRNA7), alpha-4-beta-2, alpha-3-beta-2 and alpha-3-beta-4 receptors (PubMed:26875622, PubMed:27789755, PubMed:28445721, PubMed:32204458, PubMed:32783947). Stably associates with ribophorin-1 (RPN1) and ribophorin-2 (RPN2) (components of the oligosaccharyl transferase (OST) complex) and with calnexin (CANX), both of which are critical for NACHO-mediated effects on CHRNA7 assembly and function (By similarity). Facilitates the proper folding and assembly of alpha-6-beta-2 and alpha-6-beta-2-beta-3 receptors and acts at early stages of the nAChRs subunit assembly (PubMed:28445721). Promotes the expression of the alpha-4(2):beta-2(3) stoichiometric form over the alpha-4(3):beta-2(2) form (PubMed:32676916). {ECO:0000250|UniProtKB:Q9D328, ECO:0000269|PubMed:26875622, ECO:0000269|PubMed:27789755, ECO:0000269|PubMed:28445721, ECO:0000269|PubMed:32204458, ECO:0000269|PubMed:32676916, ECO:0000269|PubMed:32783947}. |
Q53GA4 | PHLDA2 | S138 | ochoa | Pleckstrin homology-like domain family A member 2 (Beckwith-Wiedemann syndrome chromosomal region 1 candidate gene C protein) (Imprinted in placenta and liver protein) (Tumor-suppressing STF cDNA 3 protein) (Tumor-suppressing subchromosomal transferable fragment candidate gene 3 protein) (p17-Beckwith-Wiedemann region 1 C) (p17-BWR1C) | Plays a role in regulating placenta growth. May act via its PH domain that competes with other PH domain-containing proteins, thereby preventing their binding to membrane lipids (By similarity). {ECO:0000250}. |
Q53GL7 | PARP10 | S1011 | ochoa | Protein mono-ADP-ribosyltransferase PARP10 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 10) (ARTD10) (Poly [ADP-ribose] polymerase 10) (PARP-10) | ADP-ribosyltransferase that mediates mono-ADP-ribosylation of glutamate and aspartate residues on target proteins (PubMed:18851833, PubMed:23332125, PubMed:23474714, PubMed:25043379). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed:18851833). Catalyzes mono-ADP-ribosylation of GSK3B, leading to negatively regulate GSK3B kinase activity (PubMed:23332125). Involved in translesion DNA synthesis in response to DNA damage via its interaction with PCNA (PubMed:24695737). {ECO:0000269|PubMed:18851833, ECO:0000269|PubMed:23332125, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:24695737, ECO:0000269|PubMed:25043379}. |
Q53S58 | TMEM177 | S297 | ochoa | Transmembrane protein 177 | Plays a role in the early steps of cytochrome c oxidase subunit II (MT-CO2/COX2) maturation and is required for the stabilization of COX20 and the newly synthesized MT-CO2/COX2 protein. {ECO:0000269|PubMed:29154948}. |
Q58WW2 | DCAF6 | S847 | ochoa | DDB1- and CUL4-associated factor 6 (Androgen receptor complex-associated protein) (ARCAP) (IQ motif and WD repeat-containing protein 1) (Nuclear receptor interaction protein) (NRIP) | Ligand-dependent coactivator of nuclear receptors. Enhance transcriptional activity of the nuclear receptors NR3C1 and AR. May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:15784617, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240}. |
Q5BJF6 | ODF2 | T815 | ochoa | Outer dense fiber protein 2 (Cenexin) (Outer dense fiber of sperm tails protein 2) | Seems to be a major component of sperm tail outer dense fibers (ODF). ODFs are filamentous structures located on the outside of the axoneme in the midpiece and principal piece of the mammalian sperm tail and may help to maintain the passive elastic structures and elastic recoil of the sperm tail. May have a modulating influence on sperm motility. Functions as a general scaffold protein that is specifically localized at the distal/subdistal appendages of mother centrioles. Component of the centrosome matrix required for the localization of PLK1 and NIN to the centrosomes. Required for the formation and/or maintenance of normal CETN1 assembly. {ECO:0000269|PubMed:16966375}. |
Q5F1R6 | DNAJC21 | S517 | ochoa | DnaJ homolog subfamily C member 21 (DnaJ homolog subfamily A member 5) (Protein GS3) | May act as a co-chaperone for HSP70. May play a role in ribosomal RNA (rRNA) biogenesis, possibly in the maturation of the 60S subunit. Binds the precursor 45S rRNA. {ECO:0000269|PubMed:27346687}. |
Q5HYI7 | MTX3 | T298 | ochoa | Metaxin-3 | Could function in transport of proteins into the mitochondrion. {ECO:0000250}. |
Q5JQS6 | GCSAML | S122 | ochoa | Germinal center-associated signaling and motility-like protein | None |
Q5JR59 | MTUS2 | S1356 | ochoa | Microtubule-associated tumor suppressor candidate 2 (Cardiac zipper protein) (Microtubule plus-end tracking protein TIP150) (Tracking protein of 150 kDa) | Binds microtubules. Together with MAPRE1 may target the microtubule depolymerase KIF2C to the plus-end of microtubules. May regulate the dynamics of microtubules at their growing distal tip. {ECO:0000269|PubMed:19543227}. |
Q5NUL3 | FFAR4 | T347 | psp | Free fatty acid receptor 4 (G-protein coupled receptor 120) (G-protein coupled receptor 129) (G-protein coupled receptor GT01) (G-protein coupled receptor PGR4) (Omega-3 fatty acid receptor 1) | [Isoform 2]: G-protein-coupled receptor for long-chain fatty acids (LCFAs) with a major role in adipogenesis, energy metabolism and inflammation. Signals via G-protein and beta-arrestin pathways (PubMed:22282525, PubMed:22343897, PubMed:24742677, PubMed:24817122, PubMed:27852822). LCFAs sensing initiates activation of phosphoinositidase C-linked G proteins GNAQ and GNA11 (G(q)/G(11)), inducing a variety of cellular responses via second messenger pathways such as intracellular calcium mobilization, modulation of cyclic adenosine monophosphate (cAMP) production, and mitogen-activated protein kinases (MAPKs) (PubMed:22282525, PubMed:22343897, PubMed:24742677, PubMed:27852822). After LCFAs binding, associates with beta-arrestin ARRB2 that acts as an adapter protein coupling the receptor to specific downstream signaling pathways, as well as mediating receptor endocytosis (PubMed:22282525, PubMed:24817122). In response to dietary fats, plays an important role in the regulation of adipocyte proliferation and differentiation (By similarity). Acts as a receptor for omega-3 polyunsaturated fatty acids (PUFAs) at primary cilium of perivascular preadipocytes, initiating an adipogenic program via cAMP and CTCF-dependent chromatin remodeling that ultimately results in transcriptional activation of adipogenic genes and cell cycle entry (By similarity). Induces differentiation of brown adipocytes probably via autocrine and endocrine functions of FGF21 hormone (By similarity). Activates brown adipocytes by initiating intracellular calcium signaling that leads to mitochondrial depolarization and fission, and overall increased mitochondrial respiration (By similarity). Consequently stimulates fatty acid uptake and oxidation in mitochondria together with UCP1-mediated thermogenic respiration, eventually reducing fat mass (By similarity). Regulates bi-potential differentiation of bone marrow mesenchymal stem cells toward osteoblasts or adipocytes likely by up-regulating distinct integrins (By similarity). In response to dietary fats regulates hormone secretion and appetite (By similarity). Stimulates GIP and GLP1 secretion from enteroendocrine cells as well as GCG secretion in pancreatic alpha cells, thereby playing a role in the regulation of blood glucose levels (By similarity). Negatively regulates glucose-induced SST secretion in pancreatic delta cells (By similarity). Mediates LCFAs inhibition of GHRL secretion, an appetite-controlling hormone (By similarity). In taste buds, contributes to sensing of dietary fatty acids by the gustatory system (By similarity). During the inflammatory response, promotes anti-inflammatory M2 macrophage differentiation in adipose tissue (By similarity). Mediates the anti-inflammatory effects of omega-3 PUFAs via inhibition of NLRP3 inflammasome activation (PubMed:23809162). In this pathway, interacts with adapter protein ARRB2 and inhibits the priming step triggered by Toll-like receptors (TLRs) at the level of TAK1 and TAB1 (By similarity). Further inhibits the activation step when ARRB2 directly associates with NLRP3, leading to inhibition of pro-inflammatory cytokine release (PubMed:23809162). Mediates LCFAs anti-apoptotic effects (By similarity). {ECO:0000250|UniProtKB:Q7TMA4, ECO:0000269|PubMed:22282525, ECO:0000269|PubMed:22343897, ECO:0000269|PubMed:23809162, ECO:0000269|PubMed:24742677, ECO:0000269|PubMed:24817122, ECO:0000269|PubMed:27852822}.; FUNCTION: [Isoform 1]: Receptor for LCFAs decoupled from G-protein signaling. May signal through beta-arrestin pathway. After LCFAs binding, associates with beta-arrestin ARRB2 that may act as an adapter protein coupling the receptor to specific downstream signaling pathways, as well as mediating receptor endocytosis. {ECO:0000269|PubMed:22282525}. |
Q5QNW6 | H2BC18 | S113 | ochoa | Histone H2B type 2-F (H2B-clustered histone 18) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q5SSG8 | MUC21 | S553 | ochoa | Mucin-21 (MUC-21) (Epiglycanin) | None |
Q5T2W1 | PDZK1 | S505 | psp | Na(+)/H(+) exchange regulatory cofactor NHE-RF3 (NHERF-3) (CFTR-associated protein of 70 kDa) (Na(+)/H(+) exchanger regulatory factor 3) (Na/Pi cotransporter C-terminal-associated protein 1) (NaPi-Cap1) (PDZ domain-containing protein 1) (Sodium-hydrogen exchanger regulatory factor 3) | A scaffold protein that connects plasma membrane proteins and regulatory components, regulating their surface expression in epithelial cells apical domains. May be involved in the coordination of a diverse range of regulatory processes for ion transport and second messenger cascades. In complex with NHERF1, may cluster proteins that are functionally dependent in a mutual fashion and modulate the trafficking and the activity of the associated membrane proteins. May play a role in the cellular mechanisms associated with multidrug resistance through its interaction with ABCC2 and PDZK1IP1. May potentiate the CFTR chloride channel activity. Required for normal cell-surface expression of SCARB1. Plays a role in maintaining normal plasma cholesterol levels via its effects on SCARB1. Plays a role in the normal localization and function of the chloride-anion exchanger SLC26A6 to the plasma membrane in the brush border of the proximal tubule of the kidney. May be involved in the regulation of proximal tubular Na(+)-dependent inorganic phosphate cotransport therefore playing an important role in tubule function (By similarity). {ECO:0000250}. |
Q5VT25 | CDC42BPA | S1719 | ochoa | Serine/threonine-protein kinase MRCK alpha (EC 2.7.11.1) (CDC42-binding protein kinase alpha) (DMPK-like alpha) (Myotonic dystrophy kinase-related CDC42-binding kinase alpha) (MRCK alpha) (Myotonic dystrophy protein kinase-like alpha) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration (PubMed:15723050, PubMed:9092543, PubMed:9418861). Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates: PPP1R12A, LIMK1 and LIMK2 (PubMed:11340065, PubMed:11399775). May play a role in TFRC-mediated iron uptake (PubMed:20188707). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). Triggers the formation of an extrusion apical actin ring required for epithelial extrusion of apoptotic cells (PubMed:29162624). {ECO:0000250|UniProtKB:Q3UU96, ECO:0000269|PubMed:11340065, ECO:0000269|PubMed:11399775, ECO:0000269|PubMed:15723050, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:20188707, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:29162624, ECO:0000269|PubMed:9092543, ECO:0000269|PubMed:9418861}. |
Q5VZK9 | CARMIL1 | S1357 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q641Q2 | WASHC2A | S1328 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q659C4 | LARP1B | S900 | ochoa | La-related protein 1B (La ribonucleoprotein domain family member 1B) (La ribonucleoprotein domain family member 2) (La-related protein 2) | None |
Q66GS9 | CEP135 | S1126 | ochoa | Centrosomal protein of 135 kDa (Cep135) (Centrosomal protein 4) | Centrosomal microtubule-binding protein involved in centriole biogenesis (PubMed:27477386). Acts as a scaffolding protein during early centriole biogenesis. Required for the targeting of centriole satellite proteins to centrosomes such as of PCM1, SSX2IP and CEP290 and recruitment of WRAP73 to centrioles. Also required for centriole-centriole cohesion during interphase by acting as a platform protein for CEP250 at the centriole. Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18851962, ECO:0000269|PubMed:26675238, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27477386}. |
Q66GS9 | CEP135 | T1127 | ochoa | Centrosomal protein of 135 kDa (Cep135) (Centrosomal protein 4) | Centrosomal microtubule-binding protein involved in centriole biogenesis (PubMed:27477386). Acts as a scaffolding protein during early centriole biogenesis. Required for the targeting of centriole satellite proteins to centrosomes such as of PCM1, SSX2IP and CEP290 and recruitment of WRAP73 to centrioles. Also required for centriole-centriole cohesion during interphase by acting as a platform protein for CEP250 at the centriole. Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18851962, ECO:0000269|PubMed:26675238, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27477386}. |
Q6NUK4 | REEP3 | S242 | ochoa | Receptor expression-enhancing protein 3 | Microtubule-binding protein required to ensure proper cell division and nuclear envelope reassembly by sequestering the endoplasmic reticulum away from chromosomes during mitosis. Probably acts by clearing the endoplasmic reticulum membrane from metaphase chromosomes. {ECO:0000269|PubMed:23911198}. |
Q6NYC1 | JMJD6 | S390 | ochoa | Bifunctional arginine demethylase and lysyl-hydroxylase JMJD6 (EC 1.14.11.-) (Histone arginine demethylase JMJD6) (JmjC domain-containing protein 6) (Jumonji domain-containing protein 6) (Lysyl-hydroxylase JMJD6) (Peptide-lysine 5-dioxygenase JMJD6) (Phosphatidylserine receptor) (Protein PTDSR) | Dioxygenase that can both act as a arginine demethylase and a lysyl-hydroxylase (PubMed:17947579, PubMed:20684070, PubMed:21060799, PubMed:22189873, PubMed:24498420). Acts as a lysyl-hydroxylase that catalyzes 5-hydroxylation on specific lysine residues of target proteins such as U2AF2/U2AF65 and LUC7L2. Regulates RNA splicing by mediating 5-hydroxylation of U2AF2/U2AF65, affecting the pre-mRNA splicing activity of U2AF2/U2AF65 (PubMed:19574390). Hydroxylates its own N-terminus, which is required for homooligomerization (PubMed:22189873). Plays a role in the regulation of nucleolar liquid-liquid phase separation (LLPS) by post-translationally modifying LIAT1 at its lysine-rich domain which inhibits LIAT1 nucleolar targeting (By similarity). In addition to peptidyl-lysine 5-dioxygenase activity, may act as an RNA hydroxylase, as suggested by its ability to bind single strand RNA (PubMed:20679243, PubMed:29176719). Also acts as an arginine demethylase which preferentially demethylates asymmetric dimethylation (PubMed:17947579, PubMed:24360279, PubMed:24498420). Demethylates histone H3 at 'Arg-2' (H3R2me) and histone H4 at 'Arg-3' (H4R3me), including mono-, symmetric di- and asymmetric dimethylated forms, thereby playing a role in histone code (PubMed:17947579, PubMed:24360279). However, histone arginine demethylation may not constitute the primary activity in vivo (PubMed:17947579, PubMed:21060799, PubMed:22189873). In collaboration with BRD4, interacts with the positive transcription elongation factor b (P-TEFb) complex in its active form to regulate polymerase II promoter-proximal pause release for transcriptional activation of a large cohort of genes. On distal enhancers, so called anti-pause enhancers, demethylates both histone H4R3me2 and the methyl cap of 7SKsnRNA leading to the dismissal of the 7SKsnRNA:HEXIM1 inhibitor complex. After removal of repressive marks, the complex BRD4:JMJD6 attract and retain the P-TEFb complex on chromatin, leading to its activation, promoter-proximal polymerase II pause release, and transcriptional activation (PubMed:24360279). Demethylates other arginine methylated-proteins such as ESR1 (PubMed:24498420). Has no histone lysine demethylase activity (PubMed:21060799). Required for differentiation of multiple organs during embryogenesis. Acts as a key regulator of hematopoietic differentiation: required for angiogenic sprouting by regulating the pre-mRNA splicing activity of U2AF2/U2AF65 (By similarity). Seems to be necessary for the regulation of macrophage cytokine responses (PubMed:15622002). {ECO:0000250|UniProtKB:Q9ERI5, ECO:0000269|PubMed:15622002, ECO:0000269|PubMed:17947579, ECO:0000269|PubMed:19574390, ECO:0000269|PubMed:20679243, ECO:0000269|PubMed:20684070, ECO:0000269|PubMed:21060799, ECO:0000269|PubMed:22189873, ECO:0000269|PubMed:24360279, ECO:0000269|PubMed:24498420, ECO:0000269|PubMed:29176719}. |
Q6NZI2 | CAVIN1 | T376 | ochoa | Caveolae-associated protein 1 (Cavin-1) (Polymerase I and transcript release factor) | Plays an important role in caveolae formation and organization. Essential for the formation of caveolae in all tissues (PubMed:18056712, PubMed:18191225, PubMed:19726876). Core component of the CAVIN complex which is essential for recruitment of the complex to the caveolae in presence of calveolin-1 (CAV1). Essential for normal oligomerization of CAV1. Promotes ribosomal transcriptional activity in response to metabolic challenges in the adipocytes and plays an important role in the formation of the ribosomal transcriptional loop. Dissociates transcription complexes paused by DNA-bound TTF1, thereby releasing both RNA polymerase I and pre-RNA from the template (By similarity) (PubMed:18056712, PubMed:18191225, PubMed:19726876). The caveolae biogenesis pathway is required for the secretion of proteins such as GASK1A (By similarity). {ECO:0000250|UniProtKB:O54724, ECO:0000269|PubMed:18056712, ECO:0000269|PubMed:18191225, ECO:0000269|PubMed:19726876}. |
Q6P1X5 | TAF2 | S1185 | ochoa | Transcription initiation factor TFIID subunit 2 (150 kDa cofactor of initiator function) (RNA polymerase II TBP-associated factor subunit B) (TBP-associated factor 150 kDa) (Transcription initiation factor TFIID 150 kDa subunit) (TAF(II)150) (TAFII-150) (TAFII150) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473, PubMed:9418870, PubMed:9774672). TAF2 forms a promoter DNA binding subcomplex of TFIID, together with TAF7 and TAF1 (PubMed:33795473, PubMed:9774672). {ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:9418870, ECO:0000269|PubMed:9774672}. |
Q6P9B6 | MEAK7 | S443 | ochoa | MTOR-associated protein MEAK7 (MEAK7) (MTOR associated protein, eak-7 homolog) (TBC/LysM-associated domain-containing protein 1) (TLD domain-containing protein 1) | Activates an alternative mTOR signaling through RPS6KB2 activation and EIF4EBP1 repression to regulate cell proliferation and migration (PubMed:29750193). Recruits MTOR at the lysosome, essential for MTOR signaling at the lysosome (PubMed:29750193). {ECO:0000269|PubMed:29750193}. |
Q6PI26 | SHQ1 | S564 | ochoa | Protein SHQ1 homolog | Required for the quantitative accumulation of H/ACA ribonucleoproteins (RNPs), including telomerase, probably through the stabilization of DKC1, from the time of its synthesis until its association with NOP10, NHP2, and NAF1 at the nascent H/ACA RNA. {ECO:0000269|PubMed:19383767, ECO:0000269|PubMed:34542157}. |
Q6R327 | RICTOR | T1695 | psp | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6S8J3 | POTEE | Y1062 | ochoa | POTE ankyrin domain family member E (ANKRD26-like family C member 1A) (Prostate, ovary, testis-expressed protein on chromosome 2) (POTE-2) | None |
Q6SZW1 | SARM1 | S711 | ochoa | NAD(+) hydrolase SARM1 (NADase SARM1) (hSARM1) (EC 3.2.2.6) (NADP(+) hydrolase SARM1) (EC 3.2.2.-) (Sterile alpha and Armadillo repeat protein) (Sterile alpha and TIR motif-containing protein 1) (Sterile alpha motif domain-containing protein 2) (MyD88-5) (SAM domain-containing protein 2) (Tir-1 homolog) (HsTIR) | NAD(+) hydrolase, which plays a key role in axonal degeneration following injury by regulating NAD(+) metabolism (PubMed:25908823, PubMed:27671644, PubMed:28334607). Acts as a negative regulator of MYD88- and TRIF-dependent toll-like receptor signaling pathway by promoting Wallerian degeneration, an injury-induced form of programmed subcellular death which involves degeneration of an axon distal to the injury site (PubMed:15123841, PubMed:16964262, PubMed:20306472, PubMed:25908823). Wallerian degeneration is triggered by NAD(+) depletion: in response to injury, SARM1 is activated and catalyzes cleavage of NAD(+) into ADP-D-ribose (ADPR), cyclic ADPR (cADPR) and nicotinamide; NAD(+) cleavage promoting cytoskeletal degradation and axon destruction (PubMed:25908823, PubMed:28334607, PubMed:30333228, PubMed:31128467, PubMed:31439792, PubMed:31439793, PubMed:32049506, PubMed:32828421, PubMed:33053563). Also able to hydrolyze NADP(+), but not other NAD(+)-related molecules (PubMed:29395922). Can activate neuronal cell death in response to stress (PubMed:20306472). Regulates dendritic arborization through the MAPK4-JNK pathway (By similarity). Involved in innate immune response: inhibits both TICAM1/TRIF- and MYD88-dependent activation of JUN/AP-1, TRIF-dependent activation of NF-kappa-B and IRF3, and the phosphorylation of MAPK14/p38 (PubMed:16964262). {ECO:0000250|UniProtKB:Q6PDS3, ECO:0000269|PubMed:15123841, ECO:0000269|PubMed:16964262, ECO:0000269|PubMed:20306472, ECO:0000269|PubMed:25908823, ECO:0000269|PubMed:27671644, ECO:0000269|PubMed:28334607, ECO:0000269|PubMed:29395922, ECO:0000269|PubMed:30333228, ECO:0000269|PubMed:31128467, ECO:0000269|PubMed:31439792, ECO:0000269|PubMed:31439793, ECO:0000269|PubMed:32049506, ECO:0000269|PubMed:32828421, ECO:0000269|PubMed:33053563}. |
Q6Y7W6 | GIGYF2 | S1285 | ochoa | GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) | Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}. |
Q6ZRI6 | C15orf39 | S1034 | ochoa | Uncharacterized protein C15orf39 | None |
Q70EL4 | USP43 | T1109 | ochoa | Ubiquitin carboxyl-terminal hydrolase 43 (EC 3.4.19.12) (Deubiquitinating enzyme 43) (Ubiquitin thioesterase 43) (Ubiquitin-specific-processing protease 43) | May recognize and hydrolyze the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins (By similarity). {ECO:0000250}. |
Q7KZ85 | SUPT6H | S1712 | ochoa | Transcription elongation factor SPT6 (hSPT6) (Histone chaperone suppressor of Ty6) (Tat-cotransactivator 2 protein) (Tat-CT2 protein) | Histone H3-H4 chaperone that plays a key role in the regulation of transcription elongation and mRNA processing. Enhances the transcription elongation by RNA polymerase II (RNAPII) and is also required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat. Besides chaperoning histones in transcription, acts to transport and splice mRNA by forming a complex with IWS1 and the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2), to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. SUPT6H via its association with SETD1A, regulates both class-switch recombination and somatic hypermutation through formation of H3K4me3 epigenetic marks on activation-induced cytidine deaminase (AICDA) target loci. Promotes the activation of the myogenic gene program by entailing erasure of the repressive H3K27me3 epigenetic mark through stabilization of the chromatin interaction of the H3K27 demethylase KDM6A. {ECO:0000269|PubMed:15060154, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:22316138, ECO:0000269|PubMed:23503590, ECO:0000269|PubMed:9514752}. |
Q7L211 | ABHD13 | S323 | ochoa | Protein ABHD13 (EC 3.-.-.-) (Alpha/beta hydrolase domain-containing protein 13) (Abhydrolase domain-containing protein 13) | None |
Q7L2Z9 | CENPQ | S255 | psp | Centromere protein Q (CENP-Q) | Component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex (PubMed:16622420). Plays an important role in chromosome congression and in the recruitment of CENP-O complex (which comprises CENPO, CENPP, CENPQ and CENPU), CENPE and PLK1 to the kinetochores (PubMed:25395579). {ECO:0000269|PubMed:16622420, ECO:0000269|PubMed:25395579}. |
Q7L591 | DOK3 | S483 | ochoa | Docking protein 3 (Downstream of tyrosine kinase 3) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK3 is a negative regulator of JNK signaling in B-cells through interaction with INPP5D/SHIP1. May modulate ABL1 function (By similarity). {ECO:0000250}. |
Q7L5N7 | LPCAT2 | S530 | ochoa | Lysophosphatidylcholine acyltransferase 2 (LPC acyltransferase 2) (LPCAT-2) (LysoPC acyltransferase 2) (EC 2.3.1.23) (1-acylglycerol-3-phosphate O-acyltransferase 11) (1-AGP acyltransferase 11) (1-AGPAT 11) (EC 2.3.1.51) (1-acylglycerophosphocholine O-acyltransferase) (1-alkenylglycerophosphocholine O-acyltransferase) (EC 2.3.1.25) (1-alkylglycerophosphocholine O-acetyltransferase) (EC 2.3.1.67) (Acetyl-CoA:lyso-platelet-activating factor acetyltransferase) (Acetyl-CoA:lyso-PAF acetyltransferase) (Lyso-PAF acetyltransferase) (LysoPAFAT) (Acyltransferase-like 1) (Lysophosphatidic acid acyltransferase alpha) (LPAAT-alpha) | Exhibits both acyltransferase and acetyltransferase activities (PubMed:17182612, PubMed:20363836, PubMed:21498505). Catalyzes the conversion of lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) (PubMed:21498505). Catalyzes the conversion 1-acyl-sn-glycerol-3-phosphate (lysophosphatidic acid or LPA) into 1,2-diacyl-sn-glycerol-3-phosphate (phosphatidic acid or PA) by incorporating an acyl moiety at the sn-2 position of the glycerol backbone (PubMed:20363836). Involved in platelet-activating factor (PAF) biosynthesis by catalyzing the conversion of the PAF precursor, 1-O-alkyl-sn-glycero-3-phosphocholine (lyso-PAF) into 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) (PubMed:17182612). Also converts lyso-PAF to 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (PC), a major component of cell membranes and a PAF precursor (By similarity). Under resting conditions, acyltransferase activity is preferred (By similarity). Upon acute inflammatory stimulus, acetyltransferase activity is enhanced and PAF synthesis increases (By similarity). Involved in the regulation of lipid droplet number and size (PubMed:25491198). {ECO:0000250|UniProtKB:Q8BYI6, ECO:0000269|PubMed:17182612, ECO:0000269|PubMed:20363836, ECO:0000269|PubMed:21498505, ECO:0000269|PubMed:25491198}. |
Q7L7X3 | TAOK1 | S987 | ochoa | Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) | Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}. |
Q7Z2X4 | PID1 | S236 | ochoa | PTB-containing, cubilin and LRP1-interacting protein (P-CLI1) (Phosphotyrosine interaction domain-containing protein 1) (Protein NYGGF4) | Increases proliferation of preadipocytes without affecting adipocytic differentiation. {ECO:0000269|PubMed:16815647}. |
Q7Z2X4 | PID1 | S237 | ochoa | PTB-containing, cubilin and LRP1-interacting protein (P-CLI1) (Phosphotyrosine interaction domain-containing protein 1) (Protein NYGGF4) | Increases proliferation of preadipocytes without affecting adipocytic differentiation. {ECO:0000269|PubMed:16815647}. |
Q7Z309 | PABIR2 | S234 | ochoa | PABIR family member 2 | None |
Q7Z7N9 | TMEM179B | S205 | ochoa | Transmembrane protein 179B | None |
Q7Z7N9 | TMEM179B | S206 | ochoa | Transmembrane protein 179B | None |
Q86SJ2 | AMIGO2 | S508 | ochoa | Amphoterin-induced protein 2 (AMIGO-2) (Alivin-1) (Differentially expressed in gastric adenocarcinomas) (DEGA) | Required for depolarization-dependent survival of cultured cerebellar granule neurons. May mediate homophilic as well as heterophilic cell-cell interaction with AMIGO1 or AMIGO3. May contribute to signal transduction through its intracellular domain. May be required for tumorigenesis of a subset of gastric adenocarcinomas. |
Q86TI0 | TBC1D1 | S1154 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86TN4 | TRPT1 | S239 | ochoa | tRNA 2'-phosphotransferase 1 (EC 2.7.1.160) | Catalyzes the last step of tRNA splicing, the transfer of the splice junction 2'-phosphate from ligated tRNA to NAD to produce ADP-ribose 1''-2'' cyclic phosphate. {ECO:0000305|PubMed:14504659}. |
Q86TN4 | TRPT1 | S240 | ochoa | tRNA 2'-phosphotransferase 1 (EC 2.7.1.160) | Catalyzes the last step of tRNA splicing, the transfer of the splice junction 2'-phosphate from ligated tRNA to NAD to produce ADP-ribose 1''-2'' cyclic phosphate. {ECO:0000305|PubMed:14504659}. |
Q86UE4 | MTDH | S568 | ochoa | Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) | Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}. |
Q86UR5 | RIMS1 | S1679 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86V88 | MDP1 | T162 | ochoa | Magnesium-dependent phosphatase 1 (MDP-1) (EC 3.1.3.-) (EC 3.1.3.48) | Magnesium-dependent phosphatase which may act as a tyrosine phosphatase. {ECO:0000250}. |
Q86VR2 | RETREG3 | S453 | ochoa | Reticulophagy regulator 3 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Promotes ER membrane curvature and ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes (PubMed:33826365). Required for collagen quality control in a LIR motif-dependent manner (By similarity). Mediates NRF1-enhanced neurite outgrowth (PubMed:26040720). {ECO:0000250|UniProtKB:Q9CQV4, ECO:0000269|PubMed:26040720, ECO:0000269|PubMed:33826365, ECO:0000269|PubMed:34338405}. |
Q86WV6 | STING1 | S366 | psp | Stimulator of interferon genes protein (hSTING) (Endoplasmic reticulum interferon stimulator) (ERIS) (Mediator of IRF3 activation) (hMITA) (Transmembrane protein 173) | Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:18724357, PubMed:18818105, PubMed:19433799, PubMed:19776740, PubMed:23027953, PubMed:23747010, PubMed:23910378, PubMed:27801882, PubMed:29973723, PubMed:30842659, PubMed:35045565, PubMed:35388221, PubMed:36808561, PubMed:37832545, PubMed:25704810, PubMed:39255680). Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm (PubMed:26300263). Acts by binding cyclic dinucleotides: recognizes and binds cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, cyclic UMP-AMP (2',3'-cUAMP), and cyclic GMP-AMP (cGAMP), a messenger produced by CGAS in response to DNA virus in the cytosol (PubMed:21947006, PubMed:23258412, PubMed:23707065, PubMed:23722158, PubMed:23747010, PubMed:23910378, PubMed:26229117, PubMed:30842659, PubMed:35388221, PubMed:37379839). Upon binding to c-di-GMP, cUAMP or cGAMP, STING1 oligomerizes, translocates from the endoplasmic reticulum and is phosphorylated by TBK1 on the pLxIS motif, leading to recruitment and subsequent activation of the transcription factor IRF3 to induce expression of type I interferon and exert a potent anti-viral state (PubMed:22394562, PubMed:25636800, PubMed:29973723, PubMed:30842653, PubMed:35045565, PubMed:35388221). Exhibits 2',3' phosphodiester linkage-specific ligand recognition: can bind both 2'-3' linked cGAMP (2'-3'-cGAMP) and 3'-3' linked cGAMP but is preferentially activated by 2'-3' linked cGAMP (PubMed:23747010, PubMed:23910378, PubMed:26300263). The preference for 2'-3'-cGAMP, compared to other linkage isomers is probably due to the ligand itself, whichs adopts an organized free-ligand conformation that resembles the STING1-bound conformation and pays low energy costs in changing into the active conformation (PubMed:26150511). In addition to promote the production of type I interferons, plays a direct role in autophagy (PubMed:30568238, PubMed:30842662). Following cGAMP-binding, STING1 buds from the endoplasmic reticulum into COPII vesicles, which then form the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) (PubMed:30842662). The ERGIC serves as the membrane source for WIPI2 recruitment and LC3 lipidation, leading to formation of autophagosomes that target cytosolic DNA or DNA viruses for degradation by the lysosome (PubMed:30842662). Promotes autophagy by acting as a proton channel that directs proton efflux from the Golgi to facilitate MAP1LC3B/LC3B lipidation (PubMed:37535724). The autophagy- and interferon-inducing activities can be uncoupled and autophagy induction is independent of TBK1 phosphorylation (PubMed:30568238, PubMed:30842662). Autophagy is also triggered upon infection by bacteria: following c-di-GMP-binding, which is produced by live Gram-positive bacteria, promotes reticulophagy (By similarity). May be involved in translocon function, the translocon possibly being able to influence the induction of type I interferons (PubMed:18724357). May be involved in transduction of apoptotic signals via its association with the major histocompatibility complex class II (MHC-II) (By similarity). {ECO:0000250|UniProtKB:Q3TBT3, ECO:0000269|PubMed:18724357, ECO:0000269|PubMed:18818105, ECO:0000269|PubMed:19433799, ECO:0000269|PubMed:19776740, ECO:0000269|PubMed:21947006, ECO:0000269|PubMed:22394562, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:23258412, ECO:0000269|PubMed:23707065, ECO:0000269|PubMed:23722158, ECO:0000269|PubMed:23747010, ECO:0000269|PubMed:23910378, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:26150511, ECO:0000269|PubMed:26229117, ECO:0000269|PubMed:26300263, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29973723, ECO:0000269|PubMed:30568238, ECO:0000269|PubMed:30842653, ECO:0000269|PubMed:30842659, ECO:0000269|PubMed:30842662, ECO:0000269|PubMed:35045565, ECO:0000269|PubMed:35388221, ECO:0000269|PubMed:36808561, ECO:0000269|PubMed:37379839, ECO:0000269|PubMed:37535724, ECO:0000269|PubMed:37832545, ECO:0000269|PubMed:39255680}.; FUNCTION: (Microbial infection) Antiviral activity is antagonized by oncoproteins, such as papillomavirus (HPV) protein E7 and adenovirus early E1A protein (PubMed:26405230). Such oncoproteins prevent the ability to sense cytosolic DNA (PubMed:26405230). {ECO:0000269|PubMed:26405230}. |
Q86XL3 | ANKLE2 | S924 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q8IV32 | CCDC71 | S453 | ochoa | Coiled-coil domain-containing protein 71 | None |
Q8IVF7 | FMNL3 | S1014 | ochoa | Formin-like protein 3 (Formin homology 2 domain-containing protein 3) (WW domain-binding protein 3) (WBP-3) | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Required for developmental angiogenesis (By similarity). In this process, required for microtubule reorganization and for efficient endothelial cell elongation. In quiescent endothelial cells, triggers rearrangement of the actin cytoskeleton, but does not alter microtubule alignement. {ECO:0000250|UniProtKB:Q6NXC0, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22275430}. |
Q8IVL1 | NAV2 | S2474 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVY1 | C1orf210 | T99 | ochoa | Type III endosome membrane protein TEMP (TEMP) | May be involved in membrane trafficking between endosomes and plasma membrane. |
Q8IW52 | SLITRK4 | Y824 | ochoa | SLIT and NTRK-like protein 4 | It is involved in synaptogenesis and promotes synapse differentiation (PubMed:27812321). Suppresses neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q810B8, ECO:0000269|PubMed:27812321}. |
Q8IWX8 | CHERP | S902 | ochoa | Calcium homeostasis endoplasmic reticulum protein (ERPROT 213-21) (SR-related CTD-associated factor 6) | Involved in calcium homeostasis, growth and proliferation. {ECO:0000269|PubMed:10794731, ECO:0000269|PubMed:12656674}. |
Q8IY57 | YAF2 | S166 | ochoa | YY1-associated factor 2 | Binds to MYC and inhibits MYC-mediated transactivation. Also binds to MYCN and enhances MYCN-dependent transcriptional activation. Increases calpain 2-mediated proteolysis of YY1 in vitro. Component of the E2F6.com-1 complex, a repressive complex that methylates 'Lys-9' of histone H3, suggesting that it is involved in chromatin-remodeling. {ECO:0000269|PubMed:11593398, ECO:0000269|PubMed:12706874, ECO:0000269|PubMed:9016636}. |
Q8IY57 | YAF2 | S167 | ochoa|psp | YY1-associated factor 2 | Binds to MYC and inhibits MYC-mediated transactivation. Also binds to MYCN and enhances MYCN-dependent transcriptional activation. Increases calpain 2-mediated proteolysis of YY1 in vitro. Component of the E2F6.com-1 complex, a repressive complex that methylates 'Lys-9' of histone H3, suggesting that it is involved in chromatin-remodeling. {ECO:0000269|PubMed:11593398, ECO:0000269|PubMed:12706874, ECO:0000269|PubMed:9016636}. |
Q8IYW5 | RNF168 | S558 | ochoa | E3 ubiquitin-protein ligase RNF168 (hRNF168) (EC 2.3.2.27) (RING finger protein 168) (RING-type E3 ubiquitin transferase RNF168) | E3 ubiquitin-protein ligase required for accumulation of repair proteins to sites of DNA damage. Acts with UBE2N/UBC13 to amplify the RNF8-dependent histone ubiquitination. Recruited to sites of DNA damage at double-strand breaks (DSBs) by binding to ubiquitinated histone H2A and H2AX and amplifies the RNF8-dependent H2A ubiquitination, promoting the formation of 'Lys-63'-linked ubiquitin conjugates. This leads to concentrate ubiquitinated histones H2A and H2AX at DNA lesions to the threshold required for recruitment of TP53BP1 and BRCA1. Also recruited at DNA interstrand cross-links (ICLs) sites and promotes accumulation of 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. Following DNA damage, promotes the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF8, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Not able to initiate 'Lys-63'-linked ubiquitination in vitro; possibly due to partial occlusion of the UBE2N/UBC13-binding region. Catalyzes monoubiquitination of 'Lys-13' and 'Lys-15' of nucleosomal histone H2A (H2AK13Ub and H2AK15Ub, respectively). {ECO:0000255|HAMAP-Rule:MF_03066, ECO:0000269|PubMed:19203578, ECO:0000269|PubMed:19203579, ECO:0000269|PubMed:20550933, ECO:0000269|PubMed:22373579, ECO:0000269|PubMed:22705371, ECO:0000269|PubMed:22713238, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:22980979, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538}. |
Q8IZY2 | ABCA7 | S2133 | ochoa | Phospholipid-transporting ATPase ABCA7 (EC 7.6.2.1) (ABCA-SSN) (ATP-binding cassette sub-family A member 7) (Autoantigen SS-N) (Macrophage ABC transporter) | Catalyzes the translocation of specific phospholipids from the cytoplasmic to the extracellular/lumenal leaflet of membrane coupled to the hydrolysis of ATP (PubMed:24097981). Transports preferentially phosphatidylserine over phosphatidylcholine (PubMed:24097981). Plays a role in lipid homeostasis and macrophage-mediated phagocytosis (PubMed:12917409, PubMed:12925201, PubMed:14570867, PubMed:14592415). Binds APOA1 and may function in apolipoprotein-mediated phospholipid efflux from cells (PubMed:12917409, PubMed:14570867, PubMed:14592415). May also mediate cholesterol efflux (PubMed:14570867). May regulate cellular ceramide homeostasis during keratinocyte differentiation (PubMed:12925201). Involved in lipid raft organization and CD1D localization on thymocytes and antigen-presenting cells, which plays an important role in natural killer T-cell development and activation (By similarity). Plays a role in phagocytosis of apoptotic cells by macrophages (By similarity). Macrophage phagocytosis is stimulated by APOA1 or APOA2, probably by stabilization of ABCA7 (By similarity). Also involved in phagocytic clearance of amyloid-beta by microglia cells and macrophages (By similarity). Further limits amyloid-beta production by playing a role in the regulation of amyloid-beta A4 precursor protein (APP) endocytosis and/or processing (PubMed:26260791). Amyloid-beta is the main component of amyloid plaques found in the brains of Alzheimer patients (PubMed:26260791). {ECO:0000250|UniProtKB:Q91V24, ECO:0000269|PubMed:12917409, ECO:0000269|PubMed:12925201, ECO:0000269|PubMed:14570867, ECO:0000269|PubMed:14592415, ECO:0000269|PubMed:24097981, ECO:0000269|PubMed:26260791}. |
Q8N0Z9 | VSIG10 | S526 | ochoa | V-set and immunoglobulin domain-containing protein 10 | None |
Q8N257 | H2BC26 | S113 | ochoa | Histone H2B type 3-B (H2B type 12) (H2B-clustered histone 26) (H2B.U histone 1) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q8N271 | PROM2 | T821 | ochoa | Prominin-2 (PROM-2) (Prominin-like protein 2) (hPROML2) | None |
Q8N2Z9 | CENPS | S125 | ochoa | Centromere protein S (CENP-S) (Apoptosis-inducing TAF9-like domain-containing protein 1) (FANCM-associated histone fold protein 1) (FANCM-interacting histone fold protein 1) (Fanconi anemia-associated polypeptide of 16 kDa) | DNA-binding component of the Fanconi anemia (FA) core complex. Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:20347428, PubMed:20347429). In complex with CENPX (MHF heterodimer), crucial cofactor for FANCM in both binding and ATP-dependent remodeling of DNA. Stabilizes FANCM (PubMed:20347428, PubMed:20347429). In complex with CENPX and FANCM (but not other FANC proteins), rapidly recruited to blocked forks and promotes gene conversion at blocked replication forks (PubMed:20347428). In complex with CENPT, CENPW and CENPX (CENP-T-W-S-X heterotetramer), involved in the formation of a functional kinetochore outer plate, which is essential for kinetochore-microtubule attachment and faithful mitotic progression (PubMed:19620631). As a component of MHF and CENP-T-W-S-X complexes, binds DNA and bends it to form a nucleosome-like structure (PubMed:20347428, PubMed:22304917). DNA-binding function is fulfilled in the presence of CENPX, with the following preference for DNA substates: Holliday junction > double-stranded > splay arm > single-stranded. Does not bind DNA on its own (PubMed:20347428, PubMed:20347429). {ECO:0000269|PubMed:19620631, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:22304917}. |
Q8N488 | RYBP | S214 | ochoa | RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}. |
Q8N488 | RYBP | T215 | ochoa | RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}. |
Q8N4M1 | SLC44A3 | S639 | ochoa | Choline transporter-like protein 3 (Solute carrier family 44 member 3) | None |
Q8N4V1 | MMGT1 | S117 | ochoa | ER membrane protein complex subunit 5 (Membrane magnesium transporter 1) (Transmembrane protein 32) | Part of the endoplasmic reticulum membrane protein complex (EMC) that enables the energy-independent insertion into endoplasmic reticulum membranes of newly synthesized membrane proteins (PubMed:29242231, PubMed:29809151, PubMed:30415835, PubMed:32439656, PubMed:32459176). Preferentially accommodates proteins with transmembrane domains that are weakly hydrophobic or contain destabilizing features such as charged and aromatic residues (PubMed:29242231, PubMed:29809151, PubMed:30415835). Involved in the cotranslational insertion of multi-pass membrane proteins in which stop-transfer membrane-anchor sequences become ER membrane spanning helices (PubMed:29809151, PubMed:30415835). It is also required for the post-translational insertion of tail-anchored/TA proteins in endoplasmic reticulum membranes (PubMed:29242231, PubMed:29809151). By mediating the proper cotranslational insertion of N-terminal transmembrane domains in an N-exo topology, with translocated N-terminus in the lumen of the ER, controls the topology of multi-pass membrane proteins like the G protein-coupled receptors (PubMed:30415835). By regulating the insertion of various proteins in membranes, it is indirectly involved in many cellular processes (By similarity). May be involved in Mg(2+) transport (By similarity). {ECO:0000250|UniProtKB:Q8K273, ECO:0000269|PubMed:29242231, ECO:0000269|PubMed:29809151, ECO:0000269|PubMed:30415835, ECO:0000269|PubMed:32439656, ECO:0000269|PubMed:32459176}. |
Q8N554 | ZNF276 | S601 | ochoa | Zinc finger protein 276 (Zfp-276) (Zinc finger protein 477) | May be involved in transcriptional regulation. |
Q8N5G2 | MACO1 | S650 | ochoa | Macoilin (Macoilin-1) (Transmembrane protein 57) | Plays a role in the regulation of neuronal activity. {ECO:0000269|PubMed:21589894}. |
Q8N5S9 | CAMKK1 | S492 | ochoa | Calcium/calmodulin-dependent protein kinase kinase 1 (CaM-KK 1) (CaM-kinase kinase 1) (CaMKK 1) (EC 2.7.11.17) (CaM-kinase IV kinase) (Calcium/calmodulin-dependent protein kinase kinase alpha) (CaM-KK alpha) (CaM-kinase kinase alpha) (CaMKK alpha) | Calcium/calmodulin-dependent protein kinase that belongs to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Phosphorylates CAMK1, CAMK1D, CAMK1G and CAMK4. Involved in regulating cell apoptosis. Promotes cell survival by phosphorylating AKT1/PKB that inhibits pro-apoptotic BAD/Bcl2-antagonist of cell death. {ECO:0000269|PubMed:12935886}. |
Q8N9B5 | JMY | S974 | ochoa | Junction-mediating and -regulatory protein | Acts both as a nuclear p53/TP53-cofactor and a cytoplasmic regulator of actin dynamics depending on conditions (PubMed:30420355). In nucleus, acts as a cofactor that increases p53/TP53 response via its interaction with p300/EP300. Increases p53/TP53-dependent transcription and apoptosis, suggesting an important role in p53/TP53 stress response such as DNA damage. In cytoplasm, acts as a nucleation-promoting factor for both branched and unbranched actin filaments (PubMed:30420355). Activates the Arp2/3 complex to induce branched actin filament networks. Also catalyzes actin polymerization in the absence of Arp2/3, creating unbranched filaments (PubMed:30420355). Contributes to cell motility by controlling actin dynamics. May promote the rapid formation of a branched actin network by first nucleating new mother filaments and then activating Arp2/3 to branch off these filaments. Upon nutrient stress, directly recruited by MAP1LC3B to the phagophore membrane surfaces to promote actin assembly during autophagy (PubMed:30420355). The p53/TP53-cofactor and actin activator activities are regulated via its subcellular location (By similarity). {ECO:0000250|UniProtKB:Q9QXM1, ECO:0000269|PubMed:30420355}. |
Q8N9N8 | EIF1AD | Y152 | ochoa | Probable RNA-binding protein EIF1AD (Eukaryotic translation initiation factor 1A domain-containing protein) (Haponin) | Plays a role into cellular response to oxidative stress. Decreases cell proliferation. {ECO:0000269|PubMed:20644585, ECO:0000269|PubMed:22095125}. |
Q8NC51 | SERBP1 | S394 | ochoa | SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) | Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}. |
Q8NF50 | DOCK8 | S2086 | ochoa | Dedicator of cytokinesis protein 8 | Guanine nucleotide exchange factor (GEF) which specifically activates small GTPase CDC42 by exchanging bound GDP for free GTP (PubMed:22461490, PubMed:28028151). During immune responses, required for interstitial dendritic cell (DC) migration by locally activating CDC42 at the leading edge membrane of DC (By similarity). Required for CD4(+) T-cell migration in response to chemokine stimulation by promoting CDC42 activation at T cell leading edge membrane (PubMed:28028151). Is involved in NK cell cytotoxicity by controlling polarization of microtubule-organizing center (MTOC), and possibly regulating CCDC88B-mediated lytic granule transport to MTOC during cell killing (PubMed:25762780). {ECO:0000250|UniProtKB:Q8C147, ECO:0000269|PubMed:22461490, ECO:0000269|PubMed:25762780, ECO:0000269|PubMed:28028151}. |
Q8NFP7 | NUDT10 | T150 | ochoa | Diphosphoinositol polyphosphate phosphohydrolase 3-alpha (DIPP-3-alpha) (DIPP3-alpha) (hDIPP3alpha) (EC 3.6.1.52) (Diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase 3-alpha) (Diadenosine hexaphosphate hydrolase (AMP-forming)) (EC 3.6.1.60) (Nucleoside diphosphate-linked moiety X motif 10) (Nudix motif 10) (hAps2) | Cleaves a beta-phosphate from the diphosphate groups in PP-InsP5 (diphosphoinositol pentakisphosphate), suggesting that it may play a role in signal transduction. Also able to catalyze the hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred substrates. The major reaction products are ADP and p4a from Ap6A and ADP and ATP from Ap5A. Also able to hydrolyze 5-phosphoribose 1-diphosphate. {ECO:0000269|PubMed:12105228}. |
Q8NHG7 | SVIP | S64 | ochoa | Small VCP/p97-interacting protein | Negative regulator of the ER-associated degradation pathway (ERAD) of misfolded proteins. It competes with AMFR/gp78 for binding VCP/p97, and inhibits AMFR/gp78-VCP/p97 complex formation that is required for degradation of ERAD substrates (PubMed:17872946). Involved in the regulation of adrenal cortisol and dehydroepiandrosterone (DHEA) biosynthesis (PubMed:35042898). {ECO:0000269|PubMed:17872946, ECO:0000269|PubMed:35042898}. |
Q8NHW5 | RPLP0P6 | S304 | ochoa | Putative ribosomal protein uL10-like (60S acidic ribosomal protein P0-like) (Large ribosomal subunit protein uL10-like) | Ribosomal protein P0 is the functional equivalent of E.coli protein L10. {ECO:0000250}. |
Q8TB72 | PUM2 | S1052 | ochoa | Pumilio homolog 2 (Pumilio-2) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (, PubMed:21397187). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:22345517). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). May regulate DCUN1D3 mRNA levels (PubMed:25349211). May support proliferation and self-renewal of stem cells. Binds specifically to miRNA MIR199A precursor, with PUM1, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25349211, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233}. |
Q8TBC3 | SHKBP1 | T693 | ochoa | SH3KBP1-binding protein 1 (SETA-binding protein 1) | Inhibits CBL-SH3KBP1 complex mediated down-regulation of EGFR signaling by sequestration of SH3KBP1. Binds to SH3KBP1 and prevents its interaction with CBL and inhibits translocation of SH3KBP1 to EGFR containing vesicles upon EGF stimulation. {ECO:0000250|UniProtKB:Q6P7W2}. |
Q8TC07 | TBC1D15 | T677 | ochoa | TBC1 domain family member 15 (GTPase-activating protein RAB7) (GAP for RAB7) (Rab7-GAP) | Acts as a GTPase activating protein for RAB7A. Does not act on RAB4, RAB5 or RAB6 (By similarity). {ECO:0000250}. |
Q8TCG2 | PI4K2B | T468 | ochoa | Phosphatidylinositol 4-kinase type 2-beta (EC 2.7.1.67) (Phosphatidylinositol 4-kinase type II-beta) (PI4KII-BETA) | Together with PI4K2A and the type III PI4Ks (PIK4CA and PIK4CB) it contributes to the overall PI4-kinase activity of the cell (PubMed:11923287, PubMed:12324459). This contribution may be especially significant in plasma membrane, endosomal and Golgi compartments (PubMed:11923287, PubMed:12324459). The phosphorylation of phosphatidylinositol (PI) to PI4P is the first committed step in the generation of phosphatidylinositol 4,5-bisphosphate (PIP2), a precursor of the second messenger inositol 1,4,5-trisphosphate (InsP3) (PubMed:11923287, PubMed:12324459). Contributes to the production of InsP3 in stimulated cells and is likely to be involved in the regulation of vesicular trafficking. {ECO:0000269|PubMed:11923287, ECO:0000269|PubMed:12324459}. |
Q8TCZ2 | CD99L2 | T248 | ochoa | CD99 antigen-like protein 2 (MIC2-like protein 1) (CD antigen CD99) | Plays a role in a late step of leukocyte extravasation helping cells to overcome the endothelial basement membrane. Acts at the same site as, but independently of, PECAM1 (By similarity). Homophilic adhesion molecule, but these interactions may not be required for cell aggregation (By similarity). {ECO:0000250}. |
Q8TEA8 | DTD1 | S196 | ochoa|psp | D-aminoacyl-tRNA deacylase 1 (DTD) (EC 3.1.1.96) (DNA-unwinding element-binding protein B) (DUE-B) (Gly-tRNA(Ala) deacylase) (Histidyl-tRNA synthase-related) | Possible ATPase (PubMed:15653697) involved in DNA replication, may facilitate loading of CDC45 onto pre-replication complexes (PubMed:20065034). {ECO:0000269|PubMed:15653697, ECO:0000269|PubMed:20065034}.; FUNCTION: An aminoacyl-tRNA editing enzyme that deacylates mischarged D-aminoacyl-tRNAs. Also deacylates mischarged glycyl-tRNA(Ala), protecting cells against glycine mischarging by AlaRS. Acts via tRNA-based rather than protein-based catalysis; rejects L-amino acids rather than detecting D-amino acids in the active site. By recycling D-aminoacyl-tRNA to D-amino acids and free tRNA molecules, this enzyme counteracts the toxicity associated with the formation of D-aminoacyl-tRNA entities in vivo and helps enforce protein L-homochirality. {ECO:0000250|UniProtKB:Q8IIS0}. |
Q8TEM1 | NUP210 | S1874 | ochoa | Nuclear pore membrane glycoprotein 210 (Nuclear pore protein gp210) (Nuclear envelope pore membrane protein POM 210) (POM210) (Nucleoporin Nup210) (Pore membrane protein of 210 kDa) | Nucleoporin essential for nuclear pore assembly and fusion, nuclear pore spacing, as well as structural integrity. {ECO:0000269|PubMed:14517331}. |
Q8TF05 | PPP4R1 | T936 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 1 | Regulatory subunit of serine/threonine-protein phosphatase 4. May play a role in regulation of cell division in renal glomeruli. The PPP4C-PPP4R1 PP4 complex may play a role in dephosphorylation and regulation of HDAC3. Plays a role in the inhibition of TNF-induced NF-kappa-B activation by regulating the dephosphorylation of TRAF2. {ECO:0000269|PubMed:15805470}.; FUNCTION: (Microbial infection) Participates in merkel polyomavirus-mediated inhibition of NF-kappa-B by bridging viral small tumor antigen with NEMO. {ECO:0000269|PubMed:28445980}. |
Q8TF71 | SLC16A10 | S502 | ochoa | Monocarboxylate transporter 10 (MCT 10) (Aromatic amino acid transporter 1) (Solute carrier family 16 member 10) (T-type amino acid transporter 1) | Sodium- and proton-independent thyroid hormones and aromatic acids transporter (PubMed:11827462, PubMed:18337592, PubMed:28754537). Mediates both uptake and efflux of 3,5,3'-triiodothyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) with high affinity, suggesting a role in the homeostasis of thyroid hormone levels (PubMed:18337592). Responsible for low affinity bidirectional transport of the aromatic amino acids, such as phenylalanine, tyrosine, tryptophan and L-3,4-dihydroxyphenylalanine (L-dopa) (PubMed:11827462, PubMed:28754537). Plays an important role in homeostasis of aromatic amino acids (By similarity). {ECO:0000250|UniProtKB:Q3U9N9, ECO:0000269|PubMed:11827462, ECO:0000269|PubMed:18337592, ECO:0000269|PubMed:28754537}. |
Q8WTT2 | NOC3L | S787 | ochoa | Nucleolar complex protein 3 homolog (NOC3 protein homolog) (Factor for adipocyte differentiation 24) (NOC3-like protein) (Nucleolar complex-associated protein 3-like protein) | May be required for adipogenesis. {ECO:0000250}. |
Q8WUD1 | RAB2B | S202 | ochoa | Ras-related protein Rab-2B (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between active GTP-bound and inactive GDP-bound states. In their active state, drive transport of vesicular carriers from donor organelles to acceptor organelles to regulate the membrane traffic that maintains organelle identity and morphology. Regulates the compacted morphology of the Golgi (Probable). Promotes cytosolic DNA-induced innate immune responses. Regulates IFN responses against DNA viruses by regulating the CGAS-STING signaling axis (By similarity). Together with RAB2A redundantly required for efficient autophagic flux (PubMed:28483915). {ECO:0000250|UniProtKB:P59279, ECO:0000269|PubMed:28483915, ECO:0000305|PubMed:26209634}. |
Q8WUD4 | CCDC12 | S152 | ochoa | Coiled-coil domain-containing protein 12 | None |
Q8WUX9 | CHMP7 | S439 | ochoa | Charged multivesicular body protein 7 (Chromatin-modifying protein 7) | ESCRT-III-like protein required to recruit the ESCRT-III complex to the nuclear envelope (NE) during late anaphase (PubMed:26040712). Together with SPAST, the ESCRT-III complex promotes NE sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712, PubMed:28242692). Recruited to the reforming NE during anaphase by LEMD2 (PubMed:28242692). Plays a role in the endosomal sorting pathway (PubMed:16856878). {ECO:0000269|PubMed:16856878, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692}. |
Q8WWI5 | SLC44A1 | S644 | ochoa | Choline transporter-like protein 1 (CDw92) (Solute carrier family 44 member 1) (CD antigen CD92) | Choline/H+ antiporter (PubMed:19357133, PubMed:23651124, PubMed:31855247, PubMed:33789160). Also acts as a high-affinity ethanolamine/H+ antiporter, regulating the supply of extracellular ethanolamine (Etn) for the CDP-Etn pathway, redistribute intracellular Etn and balance the CDP-Cho and CDP-Etn arms of the Kennedy pathway (PubMed:33789160). Involved in membrane synthesis and myelin production (PubMed:31855247). {ECO:0000269|PubMed:19357133, ECO:0000269|PubMed:23651124, ECO:0000269|PubMed:31855247, ECO:0000269|PubMed:33789160}. |
Q92508 | PIEZO1 | Y2507 | ochoa | Piezo-type mechanosensitive ion channel component 1 (Membrane protein induced by beta-amyloid treatment) (Mib) (Protein FAM38A) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:23479567, PubMed:23695678, PubMed:25955826, PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Generates currents characterized by a linear current-voltage relationship that are sensitive to ruthenium red and gadolinium (By similarity). Conductance to monovalent alkali ions is highest for K(+), intermediate for Na(+) and lowest for Li(+) (PubMed:25955826). Divalent ions except for Mn(2+) permeate the channel but more slowly than the monovalent ions and they also reduce K(+) currents (PubMed:25955826). Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling (PubMed:20016066). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing (By similarity). Acts as a shear-stress sensor that promotes endothelial cell organization and alignment in the direction of blood flow through calpain activation (PubMed:25119035). Plays a key role in blood vessel formation and vascular structure in both development and adult physiology (By similarity). Acts as a sensor of phosphatidylserine (PS) flipping at the plasma membrane and governs morphogenesis of muscle cells (By similarity). In myoblasts, flippase-mediated PS enrichment at the inner leaflet of plasma membrane triggers channel activation and Ca2+ influx followed by Rho GTPases signal transduction, leading to assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). {ECO:0000250|UniProtKB:E2JF22, ECO:0000250|UniProtKB:Q91X60, ECO:0000269|PubMed:25955826, ECO:0000269|PubMed:29799007}. |
Q92541 | RTF1 | S697 | ochoa | RNA polymerase-associated protein RTF1 homolog | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Binds single-stranded DNA. Required for maximal induction of heat-shock genes. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of a SET1 complex (By similarity). {ECO:0000250, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:20178742}. |
Q92545 | TMEM131 | S1870 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92609 | TBC1D5 | S781 | ochoa | TBC1 domain family member 5 | May act as a GTPase-activating protein (GAP) for Rab family protein(s). May act as a GAP for RAB7A. Can displace RAB7A and retromer CSC subcomplex from the endosomal membrane to the cytosol; at least retromer displacement seems to require its catalytic activity (PubMed:19531583, PubMed:20923837). Required for retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN); the function seems to require its catalytic activity. Involved in regulation of autophagy (PubMed:22354992). May act as a molecular switch between endosomal and autophagosomal transport and is involved in reprogramming vesicle trafficking upon autophagy induction. Involved in the trafficking of ATG9A upon activation of autophagy. May regulate the recruitment of ATG9A-AP2-containing vesicles to autophagic membranes (PubMed:24603492). {ECO:0000269|PubMed:19531583, ECO:0000269|PubMed:20923837, ECO:0000269|PubMed:22354992, ECO:0000269|PubMed:24603492, ECO:0000305|PubMed:19531583, ECO:0000305|PubMed:22354992, ECO:0000305|PubMed:24603492}. |
Q92609 | TBC1D5 | S782 | ochoa | TBC1 domain family member 5 | May act as a GTPase-activating protein (GAP) for Rab family protein(s). May act as a GAP for RAB7A. Can displace RAB7A and retromer CSC subcomplex from the endosomal membrane to the cytosol; at least retromer displacement seems to require its catalytic activity (PubMed:19531583, PubMed:20923837). Required for retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN); the function seems to require its catalytic activity. Involved in regulation of autophagy (PubMed:22354992). May act as a molecular switch between endosomal and autophagosomal transport and is involved in reprogramming vesicle trafficking upon autophagy induction. Involved in the trafficking of ATG9A upon activation of autophagy. May regulate the recruitment of ATG9A-AP2-containing vesicles to autophagic membranes (PubMed:24603492). {ECO:0000269|PubMed:19531583, ECO:0000269|PubMed:20923837, ECO:0000269|PubMed:22354992, ECO:0000269|PubMed:24603492, ECO:0000305|PubMed:19531583, ECO:0000305|PubMed:22354992, ECO:0000305|PubMed:24603492}. |
Q92614 | MYO18A | S2041 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92616 | GCN1 | S2657 | ochoa | Stalled ribosome sensor GCN1 (GCN1 eIF-2-alpha kinase activator homolog) (GCN1-like protein 1) (General control of amino-acid synthesis 1-like protein 1) (Translational activator GCN1) (HsGCN1) | Ribosome collision sensor that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:32610081, PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Directly binds to the ribosome and acts as a sentinel for colliding ribosomes: activated following ribosome stalling and promotes recruitment of RNF14, which directly ubiquitinates EEF1A1/eEF1A, leading to its degradation (PubMed:36638793, PubMed:37951215, PubMed:37951216). In addition to EEF1A1/eEF1A, the RNF14-RNF25 translation quality control pathway mediates degradation of ETF1/eRF1 and ubiquitination of ribosomal protein (PubMed:36638793, PubMed:37651229). GCN1 also acts as a positive activator of the integrated stress response (ISR) by mediating activation of EIF2AK4/GCN2 in response to amino acid starvation (By similarity). Interaction with EIF2AK4/GCN2 on translating ribosomes stimulates EIF2AK4/GCN2 kinase activity, leading to phosphorylation of eukaryotic translation initiation factor 2 (eIF-2-alpha/EIF2S1) (By similarity). EIF2S1/eIF-2-alpha phosphorylation converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (By similarity). {ECO:0000250|UniProtKB:E9PVA8, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951215, ECO:0000269|PubMed:37951216}. |
Q92633 | LPAR1 | T351 | ochoa | Lysophosphatidic acid receptor 1 (LPA receptor 1) (LPA-1) (Lysophosphatidic acid receptor Edg-2) | Receptor for lysophosphatidic acid (LPA) (PubMed:19306925, PubMed:25025571, PubMed:26091040, PubMed:9070858). Plays a role in the reorganization of the actin cytoskeleton, cell migration, differentiation and proliferation, and thereby contributes to the responses to tissue damage and infectious agents. Activates downstream signaling cascades via the G(i)/G(o), G(12)/G(13), and G(q) families of heteromeric G proteins. Signaling inhibits adenylyl cyclase activity and decreases cellular cAMP levels (PubMed:26091040). Signaling triggers an increase of cytoplasmic Ca(2+) levels (PubMed:19656035, PubMed:19733258, PubMed:26091040). Activates RALA; this leads to the activation of phospholipase C (PLC) and the formation of inositol 1,4,5-trisphosphate (PubMed:19306925). Signaling mediates activation of down-stream MAP kinases (By similarity). Contributes to the regulation of cell shape. Promotes Rho-dependent reorganization of the actin cytoskeleton in neuronal cells and neurite retraction (PubMed:26091040). Promotes the activation of Rho and the formation of actin stress fibers (PubMed:26091040). Promotes formation of lamellipodia at the leading edge of migrating cells via activation of RAC1 (By similarity). Through its function as LPA receptor, plays a role in chemotaxis and cell migration, including responses to injury and wounding (PubMed:18066075, PubMed:19656035, PubMed:19733258). Plays a role in triggering inflammation in response to bacterial lipopolysaccharide (LPS) via its interaction with CD14. Promotes cell proliferation in response to LPA (By similarity). Inhibits the intracellular ciliogenesis pathway in response to LPA and through AKT1 activation (PubMed:31204173). Required for normal skeleton development. May play a role in osteoblast differentiation. Required for normal brain development. Required for normal proliferation, survival and maturation of newly formed neurons in the adult dentate gyrus. Plays a role in pain perception and in the initiation of neuropathic pain (By similarity). {ECO:0000250|UniProtKB:P61793, ECO:0000269|PubMed:18066075, ECO:0000269|PubMed:19306925, ECO:0000269|PubMed:19656035, ECO:0000269|PubMed:19733258, ECO:0000269|PubMed:25025571, ECO:0000269|PubMed:26091040, ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:9070858, ECO:0000305|PubMed:11093753, ECO:0000305|PubMed:9069262}. |
Q92692 | NECTIN2 | S524 | ochoa | Nectin-2 (Herpes virus entry mediator B) (Herpesvirus entry mediator B) (HveB) (Nectin cell adhesion molecule 2) (Poliovirus receptor-related protein 2) (CD antigen CD112) | Modulator of T-cell signaling. Can be either a costimulator of T-cell function, or a coinhibitor, depending on the receptor it binds to. Upon binding to CD226, stimulates T-cell proliferation and cytokine production, including that of IL2, IL5, IL10, IL13, and IFNG. Upon interaction with PVRIG, inhibits T-cell proliferation. These interactions are competitive (PubMed:26755705). Probable cell adhesion protein (PubMed:9657005). {ECO:0000269|PubMed:26755705, ECO:0000269|PubMed:9657005}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1 (HHV-1) mutant Rid1, herpes simplex virus 1 (HHV-2) and pseudorabies virus (PRV). {ECO:0000269|PubMed:11602758, ECO:0000269|PubMed:9657005}. |
Q92738 | USP6NL | Y814 | ochoa | USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) | Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}. |
Q92823 | NRCAM | S1290 | ochoa | Neuronal cell adhesion molecule (Nr-CAM) (Neuronal surface protein Bravo) (hBravo) (NgCAM-related cell adhesion molecule) (Ng-CAM-related) | Cell adhesion protein that is required for normal responses to cell-cell contacts in brain and in the peripheral nervous system. Plays a role in neurite outgrowth in response to contactin binding. Plays a role in mediating cell-cell contacts between Schwann cells and axons. Plays a role in the formation and maintenance of the nodes of Ranvier on myelinated axons. Nodes of Ranvier contain clustered sodium channels that are crucial for the saltatory propagation of action potentials along myelinated axons. During development, nodes of Ranvier are formed by the fusion of two heminodes. Required for normal clustering of sodium channels at heminodes; not required for the formation of mature nodes with normal sodium channel clusters. Required, together with GLDN, for maintaining NFASC and sodium channel clusters at mature nodes of Ranvier. {ECO:0000250|UniProtKB:Q810U4}. |
Q92823 | NRCAM | S1291 | ochoa | Neuronal cell adhesion molecule (Nr-CAM) (Neuronal surface protein Bravo) (hBravo) (NgCAM-related cell adhesion molecule) (Ng-CAM-related) | Cell adhesion protein that is required for normal responses to cell-cell contacts in brain and in the peripheral nervous system. Plays a role in neurite outgrowth in response to contactin binding. Plays a role in mediating cell-cell contacts between Schwann cells and axons. Plays a role in the formation and maintenance of the nodes of Ranvier on myelinated axons. Nodes of Ranvier contain clustered sodium channels that are crucial for the saltatory propagation of action potentials along myelinated axons. During development, nodes of Ranvier are formed by the fusion of two heminodes. Required for normal clustering of sodium channels at heminodes; not required for the formation of mature nodes with normal sodium channel clusters. Required, together with GLDN, for maintaining NFASC and sodium channel clusters at mature nodes of Ranvier. {ECO:0000250|UniProtKB:Q810U4}. |
Q92882 | OSTF1 | T200 | ochoa | Osteoclast-stimulating factor 1 | Induces bone resorption, acting probably through a signaling cascade which results in the secretion of factor(s) enhancing osteoclast formation and activity. {ECO:0000269|PubMed:10092216}. |
Q92890 | UFD1 | S294 | ochoa | Ubiquitin recognition factor in ER-associated degradation protein 1 (Ubiquitin fusion degradation protein 1) (UB fusion protein 1) | Essential component of the ubiquitin-dependent proteolytic pathway which degrades ubiquitin fusion proteins. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. It may be involved in the development of some ectoderm-derived structures (By similarity). Acts as a negative regulator of type I interferon production via the complex formed with VCP and NPLOC4, which binds to RIGI and recruits RNF125 to promote ubiquitination and degradation of RIGI (PubMed:26471729). {ECO:0000250|UniProtKB:Q9ES53, ECO:0000269|PubMed:26471729}. |
Q92905 | COPS5 | S320 | psp | COP9 signalosome complex subunit 5 (SGN5) (Signalosome subunit 5) (EC 3.4.-.-) (Jun activation domain-binding protein 1) | Probable protease subunit of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of the SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. In the complex, it probably acts as the catalytic center that mediates the cleavage of Nedd8 from cullins. It however has no metalloprotease activity by itself and requires the other subunits of the CSN complex. Interacts directly with a large number of proteins that are regulated by the CSN complex, confirming a key role in the complex. Promotes the proteasomal degradation of BRSK2. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:19214193, ECO:0000269|PubMed:20978819, ECO:0000269|PubMed:22609399, ECO:0000269|PubMed:9535219}. |
Q93079 | H2BC9 | S113 | ochoa | Histone H2B type 1-H (H2B-clustered histone 9) (Histone H2B.j) (H2B/j) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q96A00 | PPP1R14A | S134 | ochoa | Protein phosphatase 1 regulatory subunit 14A (17 kDa PKC-potentiated inhibitory protein of PP1) (Protein kinase C-potentiated inhibitor protein of 17 kDa) (CPI-17) | Inhibitor of PPP1CA. Has over 1000-fold higher inhibitory activity when phosphorylated, creating a molecular switch for regulating the phosphorylation status of PPP1CA substrates and smooth muscle contraction. |
Q96A08 | H2BC1 | S114 | ochoa | Histone H2B type 1-A (Histone H2B, testis) (TSH2B.1) (hTSH2B) (Testis-specific histone H2B) | Variant histone specifically required to direct the transformation of dissociating nucleosomes to protamine in male germ cells (By similarity). Entirely replaces classical histone H2B prior nucleosome to protamine transition and probably acts as a nucleosome dissociating factor that creates a more dynamic chromatin, facilitating the large-scale exchange of histones (By similarity). Core component of nucleosome (By similarity). Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template (By similarity). Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability (By similarity). DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). Also found in fat cells, its function and the presence of post-translational modifications specific to such cells are still unclear (PubMed:21249133). {ECO:0000250|UniProtKB:P70696, ECO:0000269|PubMed:21249133}. |
Q96A19 | CCDC102A | S537 | ochoa | Coiled-coil domain-containing protein 102A | None |
Q96AC1 | FERMT2 | S666 | ochoa | Fermitin family homolog 2 (Kindlin-2) (Mitogen-inducible gene 2 protein) (MIG-2) (Pleckstrin homology domain-containing family C member 1) (PH domain-containing family C member 1) | Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling. {ECO:0000269|PubMed:12679033, ECO:0000269|PubMed:18458155, ECO:0000269|PubMed:21325030, ECO:0000269|PubMed:22030399, ECO:0000269|PubMed:22078565, ECO:0000269|PubMed:22699938}. |
Q96AD5 | PNPLA2 | T490 | ochoa | Patatin-like phospholipase domain-containing protein 2 (EC 3.1.1.3) (Adipose triglyceride lipase) (Calcium-independent phospholipase A2-zeta) (iPLA2-zeta) (EC 3.1.1.4) (Desnutrin) (Pigment epithelium-derived factor receptor) (PEDF-R) (TTS2.2) (Transport-secretion protein 2) (TTS2) | Catalyzes the initial step in triglyceride hydrolysis in adipocyte and non-adipocyte lipid droplets (PubMed:15364929, PubMed:15550674, PubMed:16150821, PubMed:16239926, PubMed:17603008, PubMed:34903883). Exhibits a strong preference for the hydrolysis of long-chain fatty acid esters at the sn-2 position of the glycerol backbone and acts coordinately with LIPE/HLS and DGAT2 within the lipolytic cascade (By similarity). Also possesses acylglycerol transacylase and phospholipase A2 activities (PubMed:15364929, PubMed:17032652, PubMed:17603008). Transfers fatty acid from triglyceride to retinol, hydrolyzes retinylesters, and generates 1,3-diacylglycerol from triglycerides (PubMed:17603008). Regulates adiposome size and may be involved in the degradation of adiposomes (PubMed:16239926). Catalyzes the formation of an ester bond between hydroxy fatty acids and fatty acids derived from triglycerides or diglycerides to generate fatty acid esters of hydroxy fatty acids (FAHFAs) in adipocytes (PubMed:35676490). Acts antagonistically with LDAH in regulation of cellular lipid stores (PubMed:28578400). Inhibits LDAH-stimulated lipid droplet fusion (PubMed:28578400). May play an important role in energy homeostasis (By similarity). May play a role in the response of the organism to starvation, enhancing hydrolysis of triglycerides and providing free fatty acids to other tissues to be oxidized in situations of energy depletion (By similarity). {ECO:0000250|UniProtKB:Q8BJ56, ECO:0000269|PubMed:15364929, ECO:0000269|PubMed:15550674, ECO:0000269|PubMed:16150821, ECO:0000269|PubMed:16239926, ECO:0000269|PubMed:17032652, ECO:0000269|PubMed:17603008, ECO:0000269|PubMed:28578400, ECO:0000269|PubMed:34903883, ECO:0000269|PubMed:35676490}. |
Q96AE4 | FUBP1 | S630 | ochoa|psp | Far upstream element-binding protein 1 (FBP) (FUSE-binding protein 1) (DNA helicase V) (hDH V) | Regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. May act both as activator and repressor of transcription. {ECO:0000269|PubMed:8125259}. |
Q96AM1 | MRGPRF | T330 | ochoa | Mas-related G-protein coupled receptor member F (Mas-related gene F protein) (G-protein coupled receptor 140) (G-protein coupled receptor 168) | Orphan receptor. May bind to a neuropeptide and may regulate nociceptor function and/or development, including the sensation or modulation of pain (By similarity). {ECO:0000250}. |
Q96BI3 | APH1A | S251 | psp | Gamma-secretase subunit APH-1A (APH-1a) (Aph-1alpha) (Presenilin-stabilization factor) | Non-catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein) (PubMed:12297508, PubMed:12522139, PubMed:12679784, PubMed:12763021, PubMed:25043039, PubMed:26280335, PubMed:30598546, PubMed:30630874). Required for normal gamma-secretase assembly (PubMed:12471034, PubMed:12522139, PubMed:12763021, PubMed:19369254). The gamma-secretase complex plays a role in Notch and Wnt signaling cascades and regulation of downstream processes via its role in processing key regulatory proteins, and by regulating cytosolic CTNNB1 levels (Probable). {ECO:0000269|PubMed:12297508, ECO:0000269|PubMed:12471034, ECO:0000269|PubMed:12522139, ECO:0000269|PubMed:12679784, ECO:0000269|PubMed:12763021, ECO:0000269|PubMed:25043039, ECO:0000269|PubMed:26280335, ECO:0000269|PubMed:30598546, ECO:0000269|PubMed:30630874, ECO:0000305}. |
Q96C57 | CUSTOS | S248 | ochoa | Protein CUSTOS | Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}. |
Q96CS2 | HAUS1 | S264 | ochoa | HAUS augmin-like complex subunit 1 (Coiled-coil domain-containing protein 5) (Enhancer of invasion-cluster) (HEI-C) | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. {ECO:0000269|PubMed:15082789, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q96D46 | NMD3 | S490 | ochoa | 60S ribosomal export protein NMD3 (hNMD3) | Acts as an adapter for the XPO1/CRM1-mediated export of the 60S ribosomal subunit. {ECO:0000269|PubMed:12724356, ECO:0000269|PubMed:12773398}. |
Q96EY7 | PTCD3 | T675 | ochoa | Small ribosomal subunit protein mS39 (28S ribosomal protein S39, mitochondrial) (MRP-S39) (Pentatricopeptide repeat domain-containing protein 3, mitochondrial) (Transformation-related gene 15 protein) (TRG-15) | Mitochondrial RNA-binding protein that has a role in mitochondrial translation. {ECO:0000269|PubMed:19427859}. |
Q96G61 | NUDT11 | T150 | ochoa | Diphosphoinositol polyphosphate phosphohydrolase 3-beta (DIPP-3-beta) (DIPP3-beta) (hDIPP3beta) (EC 3.6.1.52) (Diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase 3-beta) (Diadenosine hexaphosphate hydrolase (AMP-forming)) (EC 3.6.1.60) (Nucleoside diphosphate-linked moiety X motif 11) (Nudix motif 11) (hAps1) | Cleaves a beta-phosphate from the diphosphate groups in PP-InsP5 (diphosphoinositol pentakisphosphate), suggesting that it may play a role in signal transduction. Also able to catalyze the hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred substrates. The major reaction products are ADP and p4a from Ap6A and ADP and ATP from Ap5A. Also able to hydrolyze 5-phosphoribose 1-diphosphate. {ECO:0000269|PubMed:12105228}. |
Q96GD4 | AURKB | S331 | psp | Aurora kinase B (EC 2.7.11.1) (Aurora 1) (Aurora- and IPL1-like midbody-associated protein 1) (AIM-1) (Aurora/IPL1-related kinase 2) (ARK-2) (Aurora-related kinase 2) (STK-1) (Serine/threonine-protein kinase 12) (Serine/threonine-protein kinase 5) (Serine/threonine-protein kinase aurora-B) | Serine/threonine-protein kinase component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis (PubMed:11516652, PubMed:12925766, PubMed:14610074, PubMed:14722118, PubMed:29449677). The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly (PubMed:11516652, PubMed:12925766, PubMed:14610074, PubMed:14722118, PubMed:26829474). Involved in the bipolar attachment of spindle microtubules to kinetochores and is a key regulator for the onset of cytokinesis during mitosis (PubMed:15249581). Required for central/midzone spindle assembly and cleavage furrow formation (PubMed:12458200, PubMed:12686604). Key component of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage: phosphorylates CHMP4C, leading to retain abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis (PubMed:22422861, PubMed:24814515). AURKB phosphorylates the CPC complex subunits BIRC5/survivin, CDCA8/borealin and INCENP (PubMed:11516652, PubMed:12925766, PubMed:14610074). Phosphorylation of INCENP leads to increased AURKB activity (PubMed:11516652, PubMed:12925766, PubMed:14610074). Other known AURKB substrates involved in centromeric functions and mitosis are CENPA, DES/desmin, GPAF, KIF2C, NSUN2, RACGAP1, SEPTIN1, VIM/vimentin, HASPIN, and histone H3 (PubMed:11756469, PubMed:11784863, PubMed:11856369, PubMed:12689593, PubMed:14602875, PubMed:16103226, PubMed:21658950). A positive feedback loop involving HASPIN and AURKB contributes to localization of CPC to centromeres (PubMed:21658950). Phosphorylation of VIM controls vimentin filament segregation in cytokinetic process, whereas histone H3 is phosphorylated at 'Ser-10' and 'Ser-28' during mitosis (H3S10ph and H3S28ph, respectively) (PubMed:11784863, PubMed:11856369). AURKB is also required for kinetochore localization of BUB1 and SGO1 (PubMed:15020684, PubMed:17617734). Phosphorylation of p53/TP53 negatively regulates its transcriptional activity (PubMed:20959462). Key regulator of active promoters in resting B- and T-lymphocytes: acts by mediating phosphorylation of H3S28ph at active promoters in resting B-cells, inhibiting RNF2/RING1B-mediated ubiquitination of histone H2A and enhancing binding and activity of the USP16 deubiquitinase at transcribed genes (By similarity). Acts as an inhibitor of CGAS during mitosis: catalyzes phosphorylation of the N-terminus of CGAS during the G2-M transition, blocking CGAS liquid phase separation and activation, and thereby preventing CGAS-induced autoimmunity (PubMed:33542149). Phosphorylates KRT5 during anaphase and telophase (By similarity). Phosphorylates ATXN10 which promotes phosphorylation of ATXN10 by PLK1 and may play a role in the regulation of cytokinesis and stimulating the proteasomal degradation of ATXN10 (PubMed:25666058). {ECO:0000250|UniProtKB:O70126, ECO:0000269|PubMed:11516652, ECO:0000269|PubMed:11756469, ECO:0000269|PubMed:11784863, ECO:0000269|PubMed:11856369, ECO:0000269|PubMed:12458200, ECO:0000269|PubMed:12686604, ECO:0000269|PubMed:12689593, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:14602875, ECO:0000269|PubMed:14610074, ECO:0000269|PubMed:14722118, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15249581, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:21658950, ECO:0000269|PubMed:22422861, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:25666058, ECO:0000269|PubMed:26829474, ECO:0000269|PubMed:29449677, ECO:0000269|PubMed:33542149}. |
Q96HE9 | PRR11 | T346 | ochoa | Proline-rich protein 11 | Plays a critical role in cell cycle progression. {ECO:0000269|PubMed:23246489}. |
Q96IQ7 | VSIG2 | S314 | ochoa | V-set and immunoglobulin domain-containing protein 2 (Cortical thymocyte-like protein) (CT-like protein) | None |
Q96J84 | KIRREL1 | S743 | ochoa | Kin of IRRE-like protein 1 (Kin of irregular chiasm-like protein 1) (Nephrin-like protein 1) | Required for proper function of the glomerular filtration barrier. It is involved in the maintenance of a stable podocyte architecture with interdigitating foot processes connected by specialized cell-cell junctions, known as the slit diaphragm (PubMed:31472902). It is a signaling protein that needs the presence of TEC kinases to fully trans-activate the transcription factor AP-1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:31472902}. |
Q96JK2 | DCAF5 | T929 | ochoa | DDB1- and CUL4-associated factor 5 (Breakpoint cluster region protein 2) (BCRP2) (WD repeat-containing protein 22) | Is a substrate receptor for the CUL4-DDB1 E3 ubiquitin-protein ligase complex (CRL4) (PubMed:29691401, PubMed:30442713). The complex CRL4-DCAF5 is involved in the ubiquitination of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1 (PubMed:29691401, PubMed:30442713). {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}. |
Q96MM7 | HS6ST2 | S591 | ochoa | Heparan-sulfate 6-O-sulfotransferase 2 (HS6ST-2) (EC 2.8.2.-) | 6-O-sulfation enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of the N-sulfoglucosamine residue (GlcNS) of heparan sulfate. {ECO:0000269|PubMed:12492399, ECO:0000269|PubMed:30471091}. |
Q96N66 | MBOAT7 | S459 | ochoa | Membrane-bound acylglycerophosphatidylinositol O-acyltransferase MBOAT7 (EC 2.3.1.-) (1-acylglycerophosphatidylinositol O-acyltransferase) (Bladder and breast carcinoma-overexpressed gene 1 protein) (Leukocyte receptor cluster member 4) (Lysophosphatidylinositol acyltransferase) (LPIAT) (Lyso-PI acyltransferase) (Lysophospholipid acyltransferase 7) (LPLAT 7) (Membrane-bound O-acyltransferase domain-containing protein 7) (O-acyltransferase domain-containing protein 7) (h-mboa-7) | Acyltransferase which catalyzes the transfer of an acyl group from an acyl-CoA to a lysophosphatidylinositol (1-acylglycerophosphatidylinositol or LPI) leading to the production of a phosphatidylinositol (1,2-diacyl-sn-glycero-3-phosphoinositol or PI) and participates in the reacylation step of the phospholipid remodeling pathway also known as the Lands cycle (PubMed:18094042, PubMed:18772128). Prefers arachidonoyl-CoA as the acyl donor, thus contributing to the regulation of free levels arachidonic acid in cell (PubMed:18094042, PubMed:18772128). In liver, participates in the regulation of triglyceride metabolism through the phosphatidylinositol acyl-chain remodeling regulation (PubMed:32253259). {ECO:0000269|PubMed:18094042, ECO:0000269|PubMed:18772128, ECO:0000269|PubMed:32253259}. |
Q96N96 | SPATA13 | S638 | ochoa | Spermatogenesis-associated protein 13 (APC-stimulated guanine nucleotide exchange factor 2) (Asef2) | Acts as a guanine nucleotide exchange factor (GEF) for RHOA, RAC1 and CDC42 GTPases. Regulates cell migration and adhesion assembly and disassembly through a RAC1, PI3K, RHOA and AKT1-dependent mechanism. Increases both RAC1 and CDC42 activity, but decreases the amount of active RHOA. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Involved in tumor angiogenesis and may play a role in intestinal adenoma formation and tumor progression. {ECO:0000269|PubMed:17145773, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:19934221}. |
Q96NE9 | FRMD6 | S609 | ochoa | FERM domain-containing protein 6 (Willin) | None |
Q96PY5 | FMNL2 | S1072 | psp | Formin-like protein 2 (Formin homology 2 domain-containing protein 2) | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics. {ECO:0000269|PubMed:21834987}. |
Q96Q07 | BTBD9 | S598 | ochoa | BTB/POZ domain-containing protein 9 | None |
Q96Q07 | BTBD9 | S599 | ochoa | BTB/POZ domain-containing protein 9 | None |
Q96QE2 | SLC2A13 | S635 | ochoa | Proton myo-inositol cotransporter (H(+)-myo-inositol cotransporter) (Hmit) (H(+)-myo-inositol symporter) (Solute carrier family 2 member 13) | H(+)-myo-inositol cotransporter (PubMed:11500374). Can also transport related stereoisomers (PubMed:11500374). {ECO:0000269|PubMed:11500374}. |
Q96QK1 | VPS35 | S783 | ochoa | Vacuolar protein sorting-associated protein 35 (hVPS35) (Maternal-embryonic 3) (Vesicle protein sorting 35) | Acts as a component of the retromer cargo-selective complex (CSC). The CSC is believed to be the core functional component of retromer or respective retromer complex variants acting to prevent missorting of selected transmembrane cargo proteins into the lysosomal degradation pathway. The recruitment of the CSC to the endosomal membrane involves RAB7A and SNX3. The CSC seems to associate with the cytoplasmic domain of cargo proteins predominantly via VPS35; however, these interactions seem to be of low affinity and retromer SNX proteins may also contribute to cargo selectivity thus questioning the classical function of the CSC. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX3-retromer mediates the retrograde endosome-to-TGN transport of WLS distinct from the SNX-BAR retromer pathway (PubMed:30213940). The SNX27-retromer is believed to be involved in endosome-to-plasma membrane trafficking and recycling of a broad spectrum of cargo proteins. The CSC seems to act as recruitment hub for other proteins, such as the WASH complex and TBC1D5 (Probable). Required for retrograde transport of lysosomal enzyme receptor IGF2R and SLC11A2. Required to regulate transcytosis of the polymeric immunoglobulin receptor (pIgR-pIgA) (PubMed:15078903, PubMed:15247922, PubMed:20164305). Required for endosomal localization of WASHC2C (PubMed:22070227, PubMed:28892079). Mediates the association of the CSC with the WASH complex via WASHC2 (PubMed:22070227, PubMed:24819384, PubMed:24980502). Required for the endosomal localization of TBC1D5 (PubMed:20923837). {ECO:0000269|PubMed:15078903, ECO:0000269|PubMed:15247922, ECO:0000269|PubMed:20164305, ECO:0000269|PubMed:20923837, ECO:0000269|PubMed:22070227, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24819384, ECO:0000269|PubMed:24980502, ECO:0000269|PubMed:28892079, ECO:0000269|PubMed:30213940, ECO:0000303|PubMed:21725319, ECO:0000303|PubMed:22070227, ECO:0000303|PubMed:22513087, ECO:0000303|PubMed:23563491}.; FUNCTION: (Microbial infection) The heterotrimeric retromer cargo-selective complex (CSC) mediates the exit of human papillomavirus from the early endosome and the delivery to the Golgi apparatus. {ECO:0000269|PubMed:25693203, ECO:0000269|PubMed:30122350}. |
Q96QR8 | PURB | S298 | ochoa | Transcriptional regulator protein Pur-beta (Purine-rich element-binding protein B) | Transcriptional regulator which can act as an activator or a repressor. Represses the transcription of ACTA2 in fibroblasts and smooth muscle cells via its ability to interact with the purine-rich strand of a MCAT- containing element in the 5' flanking region of the gene. Represses the transcription of MYOCD, capable of repressing all isoforms of MYOCD but the magnitude of the repressive effects is most notable for the SMC- specific isoforms. Promotes hepatic glucose production by activating the transcription of ADCY6, leading to cAMP accumulation, increased PKA activity, CREB activation, and increased transcription of PCK1 and G6PC genes (By similarity). Has capacity to bind repeated elements in single-stranded DNA such as the purine-rich single strand of the PUR element located upstream of the MYC gene (PubMed:1448097). Participates in transcriptional and translational regulation of alpha-MHC expression in cardiac myocytes by binding to the purine-rich negative regulatory (PNR) element Modulates constitutive liver galectin-3 gene transcription by binding to its promoter. May play a role in the dendritic transport of a subset of mRNAs (By similarity). {ECO:0000250|UniProtKB:O35295, ECO:0000250|UniProtKB:Q68A21, ECO:0000269|PubMed:1448097}. |
Q96QT4 | TRPM7 | S1851 | ochoa|psp | Transient receptor potential cation channel subfamily M member 7 (EC 2.7.11.1) (Channel-kinase 1) (Long transient receptor potential channel 7) (LTrpC-7) (LTrpC7) [Cleaved into: TRPM7 kinase, cleaved form (M7CK); TRPM7 channel, cleaved form] | Bifunctional protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. The channel is highly permeable to divalent cations, specifically calcium (Ca2+), magnesium (Mg2+) and zinc (Zn2+) and mediates their influx (PubMed:11385574, PubMed:12887921, PubMed:15485879, PubMed:24316671, PubMed:35561741, PubMed:36027648). Controls a wide range of biological processes such as Ca2(+), Mg(2+) and Zn(2+) homeostasis, vesicular Zn(2+) release channel and intracellular Ca(2+) signaling, embryonic development, immune responses, cell motility, proliferation and differentiation (By similarity). The C-terminal alpha-kinase domain autophosphorylates cytoplasmic residues of TRPM7 (PubMed:18365021). In vivo, TRPM7 phosphorylates SMAD2, suggesting that TRPM7 kinase may play a role in activating SMAD signaling pathways. In vitro, TRPM7 kinase phosphorylates ANXA1 (annexin A1), myosin II isoforms and a variety of proteins with diverse cellular functions (PubMed:15485879, PubMed:18394644). {ECO:0000250|UniProtKB:Q923J1, ECO:0000269|PubMed:11385574, ECO:0000269|PubMed:12887921, ECO:0000269|PubMed:15485879, ECO:0000269|PubMed:18365021, ECO:0000269|PubMed:18394644, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:35561741, ECO:0000269|PubMed:36027648}.; FUNCTION: [TRPM7 channel, cleaved form]: The cleaved channel exhibits substantially higher current and potentiates Fas receptor signaling. {ECO:0000250|UniProtKB:Q923J1}.; FUNCTION: [TRPM7 kinase, cleaved form]: The C-terminal kinase domain can be cleaved from the channel segment in a cell-type-specific fashion. In immune cells, the TRPM7 kinase domain is clipped from the channel domain by caspases in response to Fas-receptor stimulation. The cleaved kinase fragments can translocate to the nucleus, and bind chromatin-remodeling complex proteins in a Zn(2+)-dependent manner to ultimately phosphorylate specific Ser/Thr residues of histones known to be functionally important for cell differentiation and embryonic development. {ECO:0000250|UniProtKB:Q923J1}. |
Q96QT4 | TRPM7 | T1852 | ochoa | Transient receptor potential cation channel subfamily M member 7 (EC 2.7.11.1) (Channel-kinase 1) (Long transient receptor potential channel 7) (LTrpC-7) (LTrpC7) [Cleaved into: TRPM7 kinase, cleaved form (M7CK); TRPM7 channel, cleaved form] | Bifunctional protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. The channel is highly permeable to divalent cations, specifically calcium (Ca2+), magnesium (Mg2+) and zinc (Zn2+) and mediates their influx (PubMed:11385574, PubMed:12887921, PubMed:15485879, PubMed:24316671, PubMed:35561741, PubMed:36027648). Controls a wide range of biological processes such as Ca2(+), Mg(2+) and Zn(2+) homeostasis, vesicular Zn(2+) release channel and intracellular Ca(2+) signaling, embryonic development, immune responses, cell motility, proliferation and differentiation (By similarity). The C-terminal alpha-kinase domain autophosphorylates cytoplasmic residues of TRPM7 (PubMed:18365021). In vivo, TRPM7 phosphorylates SMAD2, suggesting that TRPM7 kinase may play a role in activating SMAD signaling pathways. In vitro, TRPM7 kinase phosphorylates ANXA1 (annexin A1), myosin II isoforms and a variety of proteins with diverse cellular functions (PubMed:15485879, PubMed:18394644). {ECO:0000250|UniProtKB:Q923J1, ECO:0000269|PubMed:11385574, ECO:0000269|PubMed:12887921, ECO:0000269|PubMed:15485879, ECO:0000269|PubMed:18365021, ECO:0000269|PubMed:18394644, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:35561741, ECO:0000269|PubMed:36027648}.; FUNCTION: [TRPM7 channel, cleaved form]: The cleaved channel exhibits substantially higher current and potentiates Fas receptor signaling. {ECO:0000250|UniProtKB:Q923J1}.; FUNCTION: [TRPM7 kinase, cleaved form]: The C-terminal kinase domain can be cleaved from the channel segment in a cell-type-specific fashion. In immune cells, the TRPM7 kinase domain is clipped from the channel domain by caspases in response to Fas-receptor stimulation. The cleaved kinase fragments can translocate to the nucleus, and bind chromatin-remodeling complex proteins in a Zn(2+)-dependent manner to ultimately phosphorylate specific Ser/Thr residues of histones known to be functionally important for cell differentiation and embryonic development. {ECO:0000250|UniProtKB:Q923J1}. |
Q96RE7 | NACC1 | S514 | ochoa | Nucleus accumbens-associated protein 1 (NAC-1) (BTB/POZ domain-containing protein 14B) | Functions as a transcriptional repressor. Seems to function as a transcriptional corepressor in neuronal cells through recruitment of HDAC3 and HDAC4. Contributes to tumor progression, and tumor cell proliferation and survival. This may be mediated at least in part through repressing transcriptional activity of GADD45GIP1. Required for recruiting the proteasome from the nucleus to the cytoplasm and dendritic spines. {ECO:0000269|PubMed:17130457, ECO:0000269|PubMed:17804717}. |
Q96RL1 | UIMC1 | S705 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96S21 | RAB40C | S268 | ochoa | Ras-related protein Rab-40C (EC 3.6.5.2) (Rar-like protein) (Ras-like protein family member 8C) (SOCS box-containing protein RAR3) | RAB40C small GTPase acts as substrate-recognition component of the ECS(RAB40C) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15601820, PubMed:35512830). The Rab40 subfamily belongs to the Rab family that are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:29156729). As part of the ECS(RAB40C) complex, mediates ANKRD28 ubiquitination and degradation, thereby inhibiting protein phosphatase 6 (PP6) complex activity and focal adhesion assembly during cell migration (PubMed:35512830). Also negatively regulate lipid droplets accumulation in a GTP-dependent manner (PubMed:29156729). {ECO:0000269|PubMed:15601820, ECO:0000269|PubMed:29156729, ECO:0000269|PubMed:35512830}. |
Q96T51 | RUFY1 | S694 | ochoa | RUN and FYVE domain-containing protein 1 (FYVE-finger protein EIP1) (La-binding protein 1) (Rab4-interacting protein) (Zinc finger FYVE domain-containing protein 12) | Activating adapter involved in cargo sorting from early/recycling endosomes. Regulates retrieval of proteins from endosomes to the trans-Golgi network through interaction with the dynein-dynactin complex (PubMed:36282215). Dual effector of RAB4B and RAB14, mediates a cooperative interaction allowing endosomal tethering and fusion (PubMed:20534812). Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate and participates in early endosomal trafficking (PubMed:14617813). In oocytes, self-assembles to form a protein matrix which hold together endolysosomes, autophagosomes and proteasomes and generate non-membrane-bound compartments called endo-lysosomal vesicular assemblies (ELVAs). In immature oocytes, ELVAs sequester ubiquitinated protein aggregates and degrade them upon oocyte maturation (By similarity). {ECO:0000250|UniProtKB:Q8BIJ7, ECO:0000269|PubMed:14617813, ECO:0000269|PubMed:20534812, ECO:0000269|PubMed:36282215}. |
Q99547 | MPHOSPH6 | T147 | ochoa | M-phase phosphoprotein 6 | RNA-binding protein that associates with the RNA exosome complex. Involved in the 3'-processing of the 7S pre-RNA to the mature 5.8S rRNA and play a role in recruiting the RNA exosome complex to pre-rRNA; this function may include C1D. {ECO:0000269|PubMed:17412707, ECO:0000269|PubMed:26166824}. |
Q99614 | TTC1 | S279 | ochoa | Tetratricopeptide repeat protein 1 (TPR repeat protein 1) | None |
Q99623 | PHB2 | S286 | ochoa | Prohibitin-2 (B-cell receptor-associated protein BAP37) (D-prohibitin) (Repressor of estrogen receptor activity) | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors and sex steroid hormones in the nucleus. {ECO:0000269|PubMed:10359819, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:24003225, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Also regulates cytochrome-c oxidase assembly (COX) and mitochondrial respiration (PubMed:11302691, PubMed:20959514). Binding to sphingoid 1-phosphate (SPP) modulates its regulator activity (PubMed:11302691, PubMed:20959514). Has a key role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305|PubMed:25904163}.; FUNCTION: In the nucleus, serves as transcriptional co-regulator (Probable). Acts as a mediator of transcriptional repression by nuclear hormone receptors via recruitment of histone deacetylases. Functions as an estrogen receptor (ER)-selective coregulator that potentiates the inhibitory activities of antiestrogens and represses the activity of estrogens. Competes with NCOA1 for modulation of ER transcriptional activity (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000305|PubMed:25904163}.; FUNCTION: In the plasma membrane, is involved in IGFBP6-induced cell migration (PubMed:24003225). Cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates. Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:24003225}.; FUNCTION: (Microbial infection) Involved in human enterovirus 71/EV-71 infection by enhancing the autophagy mechanism during the infection. {ECO:0000269|PubMed:32276428}. |
Q99743 | NPAS2 | S811 | ochoa | Neuronal PAS domain-containing protein 2 (Neuronal PAS2) (Basic-helix-loop-helix-PAS protein MOP4) (Class E basic helix-loop-helix protein 9) (bHLHe9) (Member of PAS protein 4) (PAS domain-containing protein 4) | Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. The NPAS2-BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. NPAS2 plays an important role in sleep homeostasis and in maintaining circadian behaviors in normal light/dark and feeding conditions and in the effective synchronization of feeding behavior with scheduled food availability. Regulates the gene transcription of key metabolic pathways in the liver and is involved in DNA damage response by regulating several cell cycle and DNA repair genes. Controls the circadian rhythm of NR0B2 expression by binding rhythmically to its promoter (By similarity). Mediates the diurnal variation in the expression of GABARA1 receptor in the brain and contributes to the regulation of anxiety-like behaviors and GABAergic neurotransmission in the ventral striatum (By similarity). {ECO:0000250|UniProtKB:P97460, ECO:0000269|PubMed:11441146, ECO:0000269|PubMed:11441147, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:18439826, ECO:0000269|PubMed:18819933}. |
Q99877 | H2BC15 | S113 | ochoa | Histone H2B type 1-N (Histone H2B.d) (H2B/d) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q99879 | H2BC14 | S113 | ochoa | Histone H2B type 1-M (Histone H2B.e) (H2B/e) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q99880 | H2BC13 | S113 | ochoa | Histone H2B type 1-L (Histone H2B.c) (H2B/c) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q99956 | DUSP9 | T371 | ochoa | Dual specificity protein phosphatase 9 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 4) (MAP kinase phosphatase 4) (MKP-4) | Inactivates MAP kinases. Has a specificity for the ERK family. |
Q9BPX3 | NCAPG | S1002 | ochoa | Condensin complex subunit 3 (Chromosome-associated protein G) (Condensin subunit CAP-G) (hCAP-G) (Melanoma antigen NY-MEL-3) (Non-SMC condensin I complex subunit G) (XCAP-G homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}. |
Q9BPZ7 | MAPKAP1 | T509 | ochoa | Target of rapamycin complex 2 subunit MAPKAP1 (TORC2 subunit MAPKAP1) (Mitogen-activated protein kinase 2-associated protein 1) (Stress-activated map kinase-interacting protein 1) (SAPK-interacting protein 1) (mSIN1) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15467718, PubMed:16919458, PubMed:16962653, PubMed:17043309, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:16919458, PubMed:16962653, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:16962653). Within the mTORC2 complex, MAPKAP1/SIN1 acts as a substrate adapter which recognizes and binds AGC protein kinase family members for phosphorylation by MTOR (PubMed:21806543, PubMed:28264193). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:28264193, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (PubMed:30837283, PubMed:35926713). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). MAPKAP1 inhibits MAP3K2 by preventing its dimerization and autophosphorylation (PubMed:15988011). Inhibits HRAS and KRAS independently of mTORC2 complex (PubMed:17303383, PubMed:34380736, PubMed:35522713). Enhances osmotic stress-induced phosphorylation of ATF2 and ATF2-mediated transcription (PubMed:17054722). Involved in ciliogenesis, regulates cilia length through its interaction with CCDC28B independently of mTORC2 complex (PubMed:23727834). {ECO:0000250|UniProtKB:Q8BKH7, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15988011, ECO:0000269|PubMed:16919458, ECO:0000269|PubMed:16962653, ECO:0000269|PubMed:17043309, ECO:0000269|PubMed:17054722, ECO:0000269|PubMed:17303383, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23727834, ECO:0000269|PubMed:28264193, ECO:0000269|PubMed:28968999, ECO:0000269|PubMed:30837283, ECO:0000269|PubMed:34380736, ECO:0000269|PubMed:35522713, ECO:0000269|PubMed:35926713}.; FUNCTION: [Isoform 4]: In contrast to isoform 1, isoform 2 and isoform 6, isoform 4 is not a component of the a mTORC2 complex. {ECO:0000269|PubMed:26263164}. |
Q9BQA9 | CYBC1 | S173 | ochoa | Cytochrome b-245 chaperone 1 (Essential for reactive oxygen species protein) (Eros) | Functions as a chaperone necessary for a stable expression of the CYBA and CYBB subunits of the cytochrome b-245 heterodimer (PubMed:30361506). Controls the phagocyte respiratory burst and is essential for innate immunity (By similarity). {ECO:0000250|UniProtKB:Q3TYS2, ECO:0000269|PubMed:30361506}. |
Q9BQL6 | FERMT1 | T663 | ochoa | Fermitin family homolog 1 (Kindlerin) (Kindlin syndrome protein) (Kindlin-1) (Unc-112-related protein 1) | Involved in cell adhesion. Contributes to integrin activation. When coexpressed with talin, potentiates activation of ITGA2B. Required for normal keratinocyte proliferation. Required for normal polarization of basal keratinocytes in skin, and for normal cell shape. Required for normal adhesion of keratinocytes to fibronectin and laminin, and for normal keratinocyte migration to wound sites. May mediate TGF-beta 1 signaling in tumor progression. {ECO:0000269|PubMed:14634021, ECO:0000269|PubMed:17012746, ECO:0000269|PubMed:19804783}. |
Q9BQS7 | HEPH | S1145 | ochoa | Hephaestin (Hp) (EC 1.16.3.1) | Plasma membrane ferroxidase that mediates the extracellular conversion of ferrous/Fe(2+) iron into its ferric/Fe(3+) form. Couples ferroportin which specifically exports ferrous/Fe(2+) iron from cells to transferrin that only binds and shuttles extracellular ferric/Fe(3+) iron throughout the body (PubMed:22961397, PubMed:37277838). By helping iron transfer from cells to blood mainly contributes to dietary iron absorption by the intestinal epithelium and more generally regulates iron levels in the body (By similarity). {ECO:0000250|UniProtKB:Q9Z0Z4, ECO:0000269|PubMed:22961397, ECO:0000269|PubMed:37277838}. |
Q9BTU6 | PI4K2A | Y465 | ochoa | Phosphatidylinositol 4-kinase type 2-alpha (EC 2.7.1.67) (Phosphatidylinositol 4-kinase type II-alpha) | Membrane-bound phosphatidylinositol-4 kinase (PI4-kinase) that catalyzes the phosphorylation of phosphatidylinositol (PI) to phosphatidylinositol 4-phosphate (PI4P), a lipid that plays important roles in endocytosis, Golgi function, protein sorting and membrane trafficking and is required for prolonged survival of neurons. Besides, phosphorylation of phosphatidylinositol (PI) to phosphatidylinositol 4-phosphate (PI4P) is the first committed step in the generation of phosphatidylinositol 4,5-bisphosphate (PIP2), a precursor of the second messenger inositol 1,4,5-trisphosphate (InsP3). {ECO:0000269|PubMed:11279162, ECO:0000269|PubMed:16443754, ECO:0000269|PubMed:20388919, ECO:0000269|PubMed:23146885, ECO:0000269|PubMed:24675427, ECO:0000269|PubMed:25168678, ECO:0000305}. |
Q9BUL9 | RPP25 | S186 | ochoa | Ribonuclease P protein subunit p25 (RNase P protein subunit p25) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:12003489, PubMed:16723659, PubMed:30454648). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:12003489, ECO:0000269|PubMed:16723659, ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648}. |
Q9BW30 | TPPP3 | S162 | ochoa | Tubulin polymerization-promoting protein family member 3 (TPPP/p20) | Regulator of microtubule dynamic that has microtubule bundling activity (PubMed:17105200, PubMed:19633818). Required for embryo implantation; possibly by regulating beta-catenin (By similarity). Also required for decidualization via regulation of beta-catenin (PubMed:30667362). {ECO:0000250|UniProtKB:Q9CRB6, ECO:0000269|PubMed:17105200, ECO:0000269|PubMed:19633818, ECO:0000269|PubMed:30667362}. |
Q9BXI6 | TBC1D10A | S494 | ochoa | TBC1 domain family member 10A (EBP50-PDX interactor of 64 kDa) (EPI64 protein) (Rab27A-GAP-alpha) | GTPase-activating protein (GAP) specific for RAB27A and RAB35 (PubMed:16923811, PubMed:30905672). Does not show GAP activity for RAB2A, RAB3A and RAB4A (PubMed:16923811). {ECO:0000269|PubMed:16923811, ECO:0000269|PubMed:30905672}. |
Q9BXK1 | KLF16 | S238 | ochoa | Krueppel-like factor 16 (Basic transcription element-binding protein 4) (BTE-binding protein 4) (Novel Sp1-like zinc finger transcription factor 2) (Transcription factor BTEB4) (Transcription factor NSLP2) | Transcription factor that binds GC and GT boxes and displaces Sp1 and Sp3 from these sequences. Modulates dopaminergic transmission in the brain (By similarity). {ECO:0000250}. |
Q9BYG3 | NIFK | T279 | ochoa | MKI67 FHA domain-interacting nucleolar phosphoprotein (Nucleolar phosphoprotein Nopp34) (Nucleolar protein interacting with the FHA domain of pKI-67) (hNIFK) | None |
Q9BYX2 | TBC1D2 | S915 | ochoa | TBC1 domain family member 2A (Armus) (Prostate antigen recognized and identified by SEREX 1) (PARIS-1) | Acts as a GTPase-activating protein for RAB7A. Signal effector acting as a linker between RAC1 and RAB7A, leading to RAB7A inactivation and subsequent inhibition of cadherin degradation and reduced cell-cell adhesion. {ECO:0000269|PubMed:20116244}. |
Q9BYX7 | POTEKP | Y362 | ochoa | Putative beta-actin-like protein 3 (Kappa-actin) (POTE ankyrin domain family member K) | None |
Q9BZ67 | FRMD8 | S451 | ochoa | FERM domain-containing protein 8 (Band4.1 inhibitor LRP interactor) (Bili) (iRhom tail-associated protein) (iTAP) | Promotes the cell surface stability of iRhom1/RHBDF1 and iRhom2/RHBDF2 and prevents their degradation via the endolysosomal pathway. By acting on iRhoms, involved in ADAM17-mediated shedding of TNF, amphiregulin/AREG, HBEGF and TGFA from the cell surface (PubMed:29897333, PubMed:29897336). Negatively regulates Wnt signaling, possibly by antagonizing the recruitment of AXIN1 to LRP6 (PubMed:19572019). {ECO:0000269|PubMed:19572019, ECO:0000269|PubMed:29897333, ECO:0000269|PubMed:29897336}. |
Q9BZE2 | PUS3 | T468 | ochoa | tRNA pseudouridine(38/39) synthase (EC 5.4.99.45) (tRNA pseudouridine synthase 3) (tRNA pseudouridylate synthase 3) (tRNA-uridine isomerase 3) | Formation of pseudouridine at position 39 in the anticodon stem and loop of transfer RNAs. {ECO:0000269|PubMed:27055666}. |
Q9BZS1 | FOXP3 | S418 | psp | Forkhead box protein P3 (Scurfin) [Cleaved into: Forkhead box protein P3, C-terminally processed; Forkhead box protein P3 41 kDa form] | Transcriptional regulator which is crucial for the development and inhibitory function of regulatory T-cells (Treg) (PubMed:17377532, PubMed:21458306, PubMed:23947341, PubMed:24354325, PubMed:24722479, PubMed:24835996, PubMed:30513302, PubMed:32644293). Plays an essential role in maintaining homeostasis of the immune system by allowing the acquisition of full suppressive function and stability of the Treg lineage, and by directly modulating the expansion and function of conventional T-cells (PubMed:23169781). Can act either as a transcriptional repressor or a transcriptional activator depending on its interactions with other transcription factors, histone acetylases and deacetylases (PubMed:17377532, PubMed:21458306, PubMed:23947341, PubMed:24354325, PubMed:24722479). The suppressive activity of Treg involves the coordinate activation of many genes, including CTLA4 and TNFRSF18 by FOXP3 along with repression of genes encoding cytokines such as interleukin-2 (IL2) and interferon-gamma (IFNG) (PubMed:17377532, PubMed:21458306, PubMed:23947341, PubMed:24354325, PubMed:24722479). Inhibits cytokine production and T-cell effector function by repressing the activity of two key transcription factors, RELA and NFATC2 (PubMed:15790681). Mediates transcriptional repression of IL2 via its association with histone acetylase KAT5 and histone deacetylase HDAC7 (PubMed:17360565). Can activate the expression of TNFRSF18, IL2RA and CTLA4 and repress the expression of IL2 and IFNG via its association with transcription factor RUNX1 (PubMed:17377532). Inhibits the differentiation of IL17 producing helper T-cells (Th17) by antagonizing RORC function, leading to down-regulation of IL17 expression, favoring Treg development (PubMed:18368049). Inhibits the transcriptional activator activity of RORA (PubMed:18354202). Can repress the expression of IL2 and IFNG via its association with transcription factor IKZF4 (By similarity). {ECO:0000250|UniProtKB:Q99JB6, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:17360565, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:18354202, ECO:0000269|PubMed:18368049, ECO:0000269|PubMed:21458306, ECO:0000269|PubMed:23169781, ECO:0000269|PubMed:24835996, ECO:0000269|PubMed:30513302, ECO:0000269|PubMed:32644293, ECO:0000303|PubMed:23947341, ECO:0000303|PubMed:24354325, ECO:0000303|PubMed:24722479}. |
Q9BZV2 | SLC19A3 | S482 | ochoa | Thiamine transporter 2 (ThTr-2) (ThTr2) (Solute carrier family 19 member 3) | Mediates high affinity thiamine uptake, probably via a proton anti-port mechanism (PubMed:11731220, PubMed:33008889, PubMed:35512554, PubMed:35724964). Has no folate transport activity (PubMed:11731220). Mediates H(+)-dependent pyridoxine transport (PubMed:33008889, PubMed:35512554, PubMed:35724964, PubMed:36456177). {ECO:0000269|PubMed:11731220, ECO:0000269|PubMed:33008889, ECO:0000269|PubMed:35512554, ECO:0000269|PubMed:35724964, ECO:0000269|PubMed:36456177}. |
Q9C0C2 | TNKS1BP1 | S1715 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0H2 | TTYH3 | Y509 | ochoa | Protein tweety homolog 3 (hTTY3) (Volume-regulated anion channel subunit TTYH3) | Calcium-independent, swelling-dependent volume-regulated anion channel (VRAC-swell) which plays a pivotal role in the process of regulatory volume decrease (RVD) in the brain through the efflux of anions like chloride and organic osmolytes like glutamate (By similarity). Probable large-conductance Ca(2+)-activated chloride channel (PubMed:15010458). {ECO:0000250|UniProtKB:Q6P5F7, ECO:0000269|PubMed:15010458}. |
Q9H015 | SLC22A4 | S537 | ochoa | Solute carrier family 22 member 4 (Ergothioneine transporter) (ET transporter) (ETTh) (Organic cation/carnitine transporter 1) (OCTN1) | Transporter that mediates the transport of endogenous and microbial zwitterions and organic cations (PubMed:10215651, PubMed:15107849, PubMed:15795384, PubMed:16729965, PubMed:20601551, PubMed:22206629, PubMed:22569296, PubMed:29530864). Functions as a Na(+)-dependent and pH-dependent high affinity microbial symporter of potent food-derived antioxidant ergothioeine (PubMed:15795384, PubMed:29530864, PubMed:33124720). Transports one sodium ion with one ergothioeine molecule (By similarity). Involved in the absorption of ergothioneine from the luminal/apical side of the small intestine and renal tubular cells, and into non-parenchymal liver cells, thereby contributing to maintain steady-state ergothioneine level in the body (PubMed:20601551). Also mediates the bidirectional transport of acetycholine, although the exact transport mechanism has not been fully identified yet (PubMed:22206629). Most likely exports anti-inflammatory acetylcholine in non-neuronal tissues, thereby contributing to the non-neuronal cholinergic system (PubMed:22206629, PubMed:22569296). Displays a general physiological role linked to better survival by controlling inflammation and oxidative stress, which may be related to ergothioneine and acetycholine transports (PubMed:15795384, PubMed:22206629). May also function as a low-affinity Na(+)-dependent transporter of L-carnitine through the mitochondrial membrane, thereby maintaining intracellular carnitine homeostasis (PubMed:10215651, PubMed:15107849, PubMed:16729965). May contribute to regulate the transport of cationic compounds in testis across the blood-testis-barrier (PubMed:35307651). {ECO:0000250|UniProtKB:Q9R141, ECO:0000269|PubMed:10215651, ECO:0000269|PubMed:15107849, ECO:0000269|PubMed:15795384, ECO:0000269|PubMed:16729965, ECO:0000269|PubMed:20601551, ECO:0000269|PubMed:22206629, ECO:0000269|PubMed:22569296, ECO:0000269|PubMed:29530864, ECO:0000269|PubMed:35307651}. |
Q9H0B6 | KLC2 | S608 | ochoa|psp | Kinesin light chain 2 (KLC 2) | Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}. |
Q9H0B6 | KLC2 | S609 | ochoa | Kinesin light chain 2 (KLC 2) | Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}. |
Q9H0M4 | ZCWPW1 | S634 | ochoa | Zinc finger CW-type PWWP domain protein 1 | Dual histone methylation reader specific for PRDM9-catalyzed histone marks (H3K4me3 and H3K36me3) (PubMed:20826339, PubMed:32744506). Facilitates the repair of PRDM9-induced meiotic double-strand breaks (DSBs) (By similarity). Essential for male fertility and spermatogenesis (By similarity). Required for meiosis prophase I progression in male but not in female germ cells (By similarity). {ECO:0000250|UniProtKB:Q6IR42, ECO:0000269|PubMed:20826339, ECO:0000269|PubMed:32744506}. |
Q9H1C0 | LPAR5 | S359 | ochoa | Lysophosphatidic acid receptor 5 (LPA receptor 5) (LPA-5) (G-protein coupled receptor 92) (G-protein coupled receptor 93) | Receptor for lysophosphatidic acid (LPA), a mediator of diverse cellular activities. |
Q9H1E3 | NUCKS1 | S229 | ochoa | Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) | Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}. |
Q9H3M7 | TXNIP | T377 | ochoa | Thioredoxin-interacting protein (Thioredoxin-binding protein 2) (Vitamin D3 up-regulated protein 1) | May act as an oxidative stress mediator by inhibiting thioredoxin activity or by limiting its bioavailability (PubMed:17603038). Interacts with COPS5 and restores COPS5-induced suppression of CDKN1B stability, blocking the COPS5-mediated translocation of CDKN1B from the nucleus to the cytoplasm (By similarity). Functions as a transcriptional repressor, possibly by acting as a bridge molecule between transcription factors and corepressor complexes, and over-expression will induce G0/G1 cell cycle arrest (PubMed:12821938). Required for the maturation of natural killer cells (By similarity). Acts as a suppressor of tumor cell growth (PubMed:18541147). Inhibits the proteasomal degradation of DDIT4, and thereby contributes to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1) (PubMed:21460850). {ECO:0000250|UniProtKB:Q8BG60, ECO:0000269|PubMed:12821938, ECO:0000269|PubMed:17603038, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:21460850}. |
Q9H3M7 | TXNIP | Y378 | ochoa | Thioredoxin-interacting protein (Thioredoxin-binding protein 2) (Vitamin D3 up-regulated protein 1) | May act as an oxidative stress mediator by inhibiting thioredoxin activity or by limiting its bioavailability (PubMed:17603038). Interacts with COPS5 and restores COPS5-induced suppression of CDKN1B stability, blocking the COPS5-mediated translocation of CDKN1B from the nucleus to the cytoplasm (By similarity). Functions as a transcriptional repressor, possibly by acting as a bridge molecule between transcription factors and corepressor complexes, and over-expression will induce G0/G1 cell cycle arrest (PubMed:12821938). Required for the maturation of natural killer cells (By similarity). Acts as a suppressor of tumor cell growth (PubMed:18541147). Inhibits the proteasomal degradation of DDIT4, and thereby contributes to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1) (PubMed:21460850). {ECO:0000250|UniProtKB:Q8BG60, ECO:0000269|PubMed:12821938, ECO:0000269|PubMed:17603038, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:21460850}. |
Q9H3S1 | SEMA4A | S747 | ochoa | Semaphorin-4A (Semaphorin-B) (Sema B) | Cell surface receptor for PLXNB1, PLXNB2, PLXNB3 and PLXND1 that plays an important role in cell-cell signaling (By similarity). Regulates glutamatergic and GABAergic synapse development (By similarity). Promotes the development of inhibitory synapses in a PLXNB1-dependent manner and promotes the development of excitatory synapses in a PLXNB2-dependent manner (By similarity). Plays a role in priming antigen-specific T-cells, promotes differentiation of Th1 T-helper cells, and thereby contributes to adaptive immunity (By similarity). Promotes phosphorylation of TIMD2 (By similarity). Inhibits angiogenesis (By similarity). Promotes axon growth cone collapse (By similarity). Inhibits axonal extension by providing local signals to specify territories inaccessible for growing axons (By similarity). {ECO:0000250|UniProtKB:Q62178}. |
Q9H4G0 | EPB41L1 | T867 | ochoa | Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) | May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases. |
Q9H6B4 | CLMP | T359 | ochoa | CXADR-like membrane protein (Adipocyte adhesion molecule) (Coxsackie- and adenovirus receptor-like membrane protein) (CAR-like membrane protein) | May be involved in the cell-cell adhesion. May play a role in adipocyte differentiation and development of obesity. Is required for normal small intestine development. {ECO:0000269|PubMed:14573622, ECO:0000269|PubMed:15563274, ECO:0000269|PubMed:22155368}. |
Q9H6Y7 | RNF167 | T336 | ochoa | E3 ubiquitin-protein ligase RNF167 (EC 2.3.2.27) (RING finger protein 167) | E3 ubiquitin-protein ligase that acts as a regulator of the TORC1 signaling pathway (PubMed:33594058, PubMed:35114100). Positively regulates the TORC1 signaling pathway independently of arginine levels: acts by catalyzing 'Lys-29'-polyubiquitination and degradation of CASTOR1, releasing the GATOR2 complex from CASTOR1 (PubMed:33594058). Also negatively regulates the TORC1 signaling pathway in response to leucine deprivation: acts by mediating 'Lys-63'-linked polyubiquitination of SESN2, promoting SESN2-interaction with the GATOR2 complex (PubMed:35114100). Also involved in protein trafficking and localization (PubMed:23129617, PubMed:23353890, PubMed:24387786, PubMed:27808481, PubMed:32409562). Acts as a regulator of synaptic transmission by mediating ubiquitination and degradation of AMPAR receptor GluA2/GRIA2 (PubMed:23129617, PubMed:33650289). Does not catalyze ubiquitination of GluA1/GRIA1 (PubMed:23129617). Also acts as a regulator of the recycling endosome pathway by mediating ubiquitination of VAMP3 (PubMed:23353890). Regulates lysosome positioning by catalyzing ubiquitination and degradation of ARL8B (PubMed:27808481). Plays a role in growth regulation involved in G1/S transition by mediating, possibly by mediating ubiquitination of SLC22A18 (PubMed:16314844). Acts with a limited set of E2 enzymes, such as UBE2D1 and UBE2N (PubMed:33650289). {ECO:0000269|PubMed:16314844, ECO:0000269|PubMed:23129617, ECO:0000269|PubMed:23353890, ECO:0000269|PubMed:24387786, ECO:0000269|PubMed:27808481, ECO:0000269|PubMed:32409562, ECO:0000269|PubMed:33594058, ECO:0000269|PubMed:33650289, ECO:0000269|PubMed:35114100}. |
Q9H7M9 | VSIR | S298 | ochoa | V-type immunoglobulin domain-containing suppressor of T-cell activation (Platelet receptor Gi24) (Stress-induced secreted protein-1) (Sisp-1) (V-set domain-containing immunoregulatory receptor) (V-set immunoregulatory receptor) | Immunoregulatory receptor which inhibits the T-cell response (PubMed:24691993). May promote differentiation of embryonic stem cells, by inhibiting BMP4 signaling (By similarity). May stimulate MMP14-mediated MMP2 activation (PubMed:20666777). {ECO:0000250|UniProtKB:Q9D659, ECO:0000269|PubMed:20666777, ECO:0000269|PubMed:24691993}. |
Q9H832 | UBE2Z | S340 | ochoa | Ubiquitin-conjugating enzyme E2 Z (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme Z) (Uba6-specific E2 conjugating enzyme 1) (Use1) (Ubiquitin carrier protein Z) (Ubiquitin-protein ligase Z) | Catalyzes the covalent attachment of ubiquitin to other proteins (By similarity). Specific substrate for UBA6, not charged with ubiquitin by UBE1. May be involved in apoptosis regulation. {ECO:0000255|PROSITE-ProRule:PRU00388, ECO:0000269|PubMed:17464193, ECO:0000269|PubMed:17597759}. |
Q9H832 | UBE2Z | S341 | ochoa | Ubiquitin-conjugating enzyme E2 Z (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme Z) (Uba6-specific E2 conjugating enzyme 1) (Use1) (Ubiquitin carrier protein Z) (Ubiquitin-protein ligase Z) | Catalyzes the covalent attachment of ubiquitin to other proteins (By similarity). Specific substrate for UBA6, not charged with ubiquitin by UBE1. May be involved in apoptosis regulation. {ECO:0000255|PROSITE-ProRule:PRU00388, ECO:0000269|PubMed:17464193, ECO:0000269|PubMed:17597759}. |
Q9H9V4 | RNF122 | S141 | ochoa | RING finger protein 122 | May induce necrosis and apoptosis. May play a role in cell viability. {ECO:0000269|PubMed:16751333}. |
Q9HAH7 | FBRS | S447 | ochoa | Probable fibrosin-1 | None |
Q9HB90 | RRAGC | S385 | ochoa | Ras-related GTP-binding protein C (Rag C) (RagC) (EC 3.6.5.-) (GTPase-interacting protein 2) (TIB929) | Guanine nucleotide-binding protein that plays a crucial role in the cellular response to amino acid availability through regulation of the mTORC1 signaling cascade (PubMed:20381137, PubMed:24095279, PubMed:27234373, PubMed:31601708, PubMed:31601764, PubMed:32612235, PubMed:34071043, PubMed:36697823, PubMed:37057673). Forms heterodimeric Rag complexes with RagA/RRAGA or RagB/RRAGB and cycles between an inactive GTP-bound and an active GDP-bound form: RagC/RRAGC is in its active form when GDP-bound RagC/RRAGC forms a complex with GTP-bound RagA/RRAGA (or RagB/RRAGB) and in an inactive form when GTP-bound RagC/RRAGC heterodimerizes with GDP-bound RagA/RRAGA (or RagB/RRAGB) (PubMed:24095279, PubMed:31601708, PubMed:31601764, PubMed:32868926). In its GDP-bound active form, promotes the recruitment of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB (PubMed:20381137, PubMed:24095279, PubMed:27234373, PubMed:32612235, PubMed:36697823). This is a crucial step in the activation of the MTOR signaling cascade by amino acids (PubMed:20381137, PubMed:24095279, PubMed:27234373). Also plays a central role in the non-canonical mTORC1 complex, which acts independently of RHEB and specifically mediates phosphorylation of MiT/TFE factors TFEB and TFE3: GDP-bound RagC/RRAGC mediates recruitment of MiT/TFE factors TFEB and TFE3 (PubMed:32612235, PubMed:36697823). {ECO:0000269|PubMed:20381137, ECO:0000269|PubMed:24095279, ECO:0000269|PubMed:27234373, ECO:0000269|PubMed:31601708, ECO:0000269|PubMed:31601764, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:32868926, ECO:0000269|PubMed:34071043, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:37057673}. |
Q9HBH9 | MKNK2 | S452 | ochoa | MAP kinase-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 2) (MAPK signal-integrating kinase 2) (Mnk2) | Serine/threonine-protein kinase that phosphorylates SFPQ/PSF, HNRNPA1 and EIF4E. May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. Required for mediating PP2A-inhibition-induced EIF4E phosphorylation. Triggers EIF4E shuttling from cytoplasm to nucleus. Isoform 1 displays a high basal kinase activity, but isoform 2 exhibits a very low kinase activity. Acts as a mediator of the suppressive effects of IFNgamma on hematopoiesis. Negative regulator for signals that control generation of arsenic trioxide As(2)O(3)-dependent apoptosis and anti-leukemic responses. Involved in anti-apoptotic signaling in response to serum withdrawal. {ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:12897141, ECO:0000269|PubMed:16111636, ECO:0000269|PubMed:17965020, ECO:0000269|PubMed:18299328, ECO:0000269|PubMed:20823271, ECO:0000269|PubMed:20927323, ECO:0000269|PubMed:21149447}. |
Q9HCD6 | TANC2 | S1977 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCH3 | CPNE5 | S579 | ochoa | Copine-5 (Copine V) | Probable calcium-dependent phospholipid-binding protein that may play a role in calcium-mediated intracellular processes (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99829, ECO:0000269|PubMed:23999003}. |
Q9HD42 | CHMP1A | S182 | ochoa|psp | Charged multivesicular body protein 1a (Chromatin-modifying protein 1a) (CHMP1a) (Vacuolar protein sorting-associated protein 46-1) (Vps46-1) (hVps46-1) | Probable peripherally associated component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. Involved in cytokinesis. Involved in recruiting VPS4A and/or VPS4B to the midbody of dividing cells. May also be involved in chromosome condensation. Targets the Polycomb group (PcG) protein BMI1/PCGF4 to regions of condensed chromatin. May play a role in stable cell cycle progression and in PcG gene silencing. {ECO:0000269|PubMed:11559747, ECO:0000269|PubMed:11559748, ECO:0000269|PubMed:19129479, ECO:0000269|PubMed:23045692}. |
Q9HD43 | PTPRH | Y1102 | ochoa | Receptor-type tyrosine-protein phosphatase H (R-PTP-H) (EC 3.1.3.48) (Stomach cancer-associated protein tyrosine phosphatase 1) (SAP-1) (Transmembrane-type protein-tyrosine phosphatase type H) | Protein phosphatase that may contribute to contact inhibition of cell growth and motility by mediating the dephosphorylation of focal adhesion-associated substrates and thus negatively regulating integrin-promoted signaling processes. Induces apoptotic cell death by at least two distinct mechanisms: inhibition of cell survival signaling mediated by PI 3-kinase, Akt, and ILK and activation of a caspase-dependent proapoptotic pathway. Inhibits the basal activity of LCK and its activation in response to TCR stimulation and TCR-induced activation of MAP kinase and surface expression of CD69. Inhibits TCR-induced tyrosine phosphorylation of LAT and ZAP70. Inhibits both basal activity of DOK1 and its CD2-induced tyrosine phosphorylation. Induces dephosphorylation of BCAR1, focal adhesion kinase and SRC. Reduces migratory activity of activity of Jurkat cells. Reduces tyrosine phosphorylation of CEACAM20 and thereby contributes to suppress the intestinal immune response CEACAM20 (By similarity). {ECO:0000250|UniProtKB:E9Q0N2, ECO:0000269|PubMed:11278335, ECO:0000269|PubMed:12101188, ECO:0000269|PubMed:12837766, ECO:0000269|PubMed:15850787}. |
Q9NPD8 | UBE2T | S184 | ochoa|psp | Ubiquitin-conjugating enzyme E2 T (EC 2.3.2.23) (Cell proliferation-inducing gene 50 protein) (E2 ubiquitin-conjugating enzyme T) (Ubiquitin carrier protein T) (Ubiquitin-protein ligase T) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. Catalyzes monoubiquitination. Involved in mitomycin-C (MMC)-induced DNA repair. Acts as a specific E2 ubiquitin-conjugating enzyme for the Fanconi anemia complex by associating with E3 ubiquitin-protein ligase FANCL and catalyzing monoubiquitination of FANCD2, a key step in the DNA damage pathway (PubMed:16916645, PubMed:17938197, PubMed:19111657, PubMed:19589784, PubMed:28437106). Also mediates monoubiquitination of FANCL and FANCI (PubMed:16916645, PubMed:17938197, PubMed:19111657, PubMed:19589784). May contribute to ubiquitination and degradation of BRCA1 (PubMed:19887602). In vitro able to promote polyubiquitination using all 7 ubiquitin Lys residues, but may prefer 'Lys-11'-, 'Lys-27'-, 'Lys-48'- and 'Lys-63'-linked polyubiquitination (PubMed:20061386). {ECO:0000269|PubMed:16916645, ECO:0000269|PubMed:17938197, ECO:0000269|PubMed:19111657, ECO:0000269|PubMed:19589784, ECO:0000269|PubMed:19887602, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:28437106}. |
Q9NPF5 | DMAP1 | S454 | ochoa | DNA methyltransferase 1-associated protein 1 (DNMAP1) (DNMT1-associated protein 1) | Involved in transcription repression and activation. Its interaction with HDAC2 may provide a mechanism for histone deacetylation in heterochromatin following replication of DNA at late firing origins. Can also repress transcription independently of histone deacetylase activity. May specifically potentiate DAXX-mediated repression of glucocorticoid receptor-dependent transcription. Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Participates in the nuclear localization of URI1 and increases its transcriptional corepressor activity. {ECO:0000269|PubMed:14665632, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:14978102, ECO:0000269|PubMed:15367675}. |
Q9NPH3 | IL1RAP | S556 | ochoa | Interleukin-1 receptor accessory protein (IL-1 receptor accessory protein) (IL-1RAcP) (EC 3.2.2.6) (Interleukin-1 receptor 3) (IL-1R-3) (IL-1R3) | Coreceptor for IL1RL2 in the IL-36 signaling system (By similarity). Coreceptor with IL1R1 in the IL-1 signaling system. Associates with IL1R1 bound to IL1B to form the high affinity interleukin-1 receptor complex which mediates interleukin-1-dependent activation of NF-kappa-B and other pathways. Signaling involves the recruitment of adapter molecules such as TOLLIP, MYD88, and IRAK1 or IRAK2 via the respective TIR domains of the receptor/coreceptor subunits. Recruits TOLLIP to the signaling complex. Does not bind to interleukin-1 alone; binding of IL1RN to IL1R1, prevents its association with IL1R1 to form a signaling complex. The cellular response is modulated through a non-signaling association with the membrane IL1R2 decoy receptor. Coreceptor for IL1RL1 in the IL-33 signaling system. Can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to PTPRD (By similarity). May play a role in IL1B-mediated costimulation of IFNG production from T-helper 1 (Th1) cells (Probable). {ECO:0000250|UniProtKB:Q61730, ECO:0000269|PubMed:10799889, ECO:0000269|PubMed:9371760, ECO:0000305|PubMed:10653850, ECO:0000305|PubMed:19836339}.; FUNCTION: [Isoform 2]: Associates with secreted ligand-bound IL1R2 and increases the affinity of secreted IL1R2 for IL1B; this complex formation may be the dominant mechanism for neutralization of IL1B by secreted/soluble receptors (PubMed:12530978). Enhances the ability of secreted IL1R1 to inhibit IL-33 signaling (By similarity). {ECO:0000250|UniProtKB:Q61730, ECO:0000269|PubMed:12530978}.; FUNCTION: [Isoform 4]: Unable to mediate canonical IL-1 signaling (PubMed:19481478). Required for Src phosphorylation by IL1B. May be involved in IL1B-potentiated NMDA-induced calcium influx in neurons (By similarity). {ECO:0000250|UniProtKB:Q61730, ECO:0000269|PubMed:19481478}. |
Q9NPH3 | IL1RAP | S557 | ochoa | Interleukin-1 receptor accessory protein (IL-1 receptor accessory protein) (IL-1RAcP) (EC 3.2.2.6) (Interleukin-1 receptor 3) (IL-1R-3) (IL-1R3) | Coreceptor for IL1RL2 in the IL-36 signaling system (By similarity). Coreceptor with IL1R1 in the IL-1 signaling system. Associates with IL1R1 bound to IL1B to form the high affinity interleukin-1 receptor complex which mediates interleukin-1-dependent activation of NF-kappa-B and other pathways. Signaling involves the recruitment of adapter molecules such as TOLLIP, MYD88, and IRAK1 or IRAK2 via the respective TIR domains of the receptor/coreceptor subunits. Recruits TOLLIP to the signaling complex. Does not bind to interleukin-1 alone; binding of IL1RN to IL1R1, prevents its association with IL1R1 to form a signaling complex. The cellular response is modulated through a non-signaling association with the membrane IL1R2 decoy receptor. Coreceptor for IL1RL1 in the IL-33 signaling system. Can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to PTPRD (By similarity). May play a role in IL1B-mediated costimulation of IFNG production from T-helper 1 (Th1) cells (Probable). {ECO:0000250|UniProtKB:Q61730, ECO:0000269|PubMed:10799889, ECO:0000269|PubMed:9371760, ECO:0000305|PubMed:10653850, ECO:0000305|PubMed:19836339}.; FUNCTION: [Isoform 2]: Associates with secreted ligand-bound IL1R2 and increases the affinity of secreted IL1R2 for IL1B; this complex formation may be the dominant mechanism for neutralization of IL1B by secreted/soluble receptors (PubMed:12530978). Enhances the ability of secreted IL1R1 to inhibit IL-33 signaling (By similarity). {ECO:0000250|UniProtKB:Q61730, ECO:0000269|PubMed:12530978}.; FUNCTION: [Isoform 4]: Unable to mediate canonical IL-1 signaling (PubMed:19481478). Required for Src phosphorylation by IL1B. May be involved in IL1B-potentiated NMDA-induced calcium influx in neurons (By similarity). {ECO:0000250|UniProtKB:Q61730, ECO:0000269|PubMed:19481478}. |
Q9NQS3 | NECTIN3 | S535 | ochoa | Nectin-3 (CDw113) (Nectin cell adhesion molecule 3) (Poliovirus receptor-related protein 3) (CD antigen CD113) | Cell adhesion molecule that promotes cell-cell adhesion through heterophilic trans-interactions with nectins-like or other nectins, such as trans-interaction with NECTIN2 at Sertoli-spermatid junctions (PubMed:16216929). Trans-interaction with PVR induces activation of CDC42 and RAC small G proteins through common signaling molecules such as SRC and RAP1 (PubMed:16216929). Induces endocytosis-mediated down-regulation of PVR from the cell surface, resulting in reduction of cell movement and proliferation (PubMed:16216929). Involved in axon guidance by promoting contacts between the commissural axons and the floor plate cells (By similarity). Also involved in the formation of cell-cell junctions, including adherens junctions and synapses (By similarity). Promotes formation of checkerboard-like cellular pattern of hair cells and supporting cells in the auditory epithelium via heterophilic interaction with NECTIN1: NECTIN1 is present in the membrane of hair cells and associates with NECTIN3 on supporting cells, thereby mediating heterotypic adhesion between these two cell types (By similarity). Plays a role in the morphology of the ciliary body (By similarity). {ECO:0000250|UniProtKB:Q9JLB9, ECO:0000269|PubMed:16216929}. |
Q9NQZ2 | UTP3 | S466 | ochoa | Something about silencing protein 10 (Charged amino acid-rich leucine zipper 1) (CRL1) (Disrupter of silencing SAS10) (UTP3 homolog) | Essential for gene silencing: has a role in the structure of silenced chromatin. Plays a role in the developing brain (By similarity). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:Q12136, ECO:0000250|UniProtKB:Q9JI13, ECO:0000269|PubMed:34516797}. |
Q9NRE2 | TSHZ2 | S1020 | ochoa | Teashirt homolog 2 (Ovarian cancer-related protein 10-2) (OVC10-2) (Zinc finger protein 218) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q9NSV4 | DIAPH3 | S1179 | ochoa | Protein diaphanous homolog 3 (Diaphanous-related formin-3) (DRF3) (MDia2) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers. Required for cytokinesis, stress fiber formation and transcriptional activation of the serum response factor. Binds to GTP-bound form of Rho and to profilin: acts in a Rho-dependent manner to recruit profilin to the membrane, where it promotes actin polymerization. DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics. Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity. {ECO:0000250|UniProtKB:Q9Z207}. |
Q9NV29 | TMEM100 | S121 | ochoa | Transmembrane protein 100 | Plays a role during embryonic arterial endothelium differentiation and vascular morphogenesis through the ACVRL1 receptor-dependent signaling pathway upon stimulation by bone morphogenetic proteins, such as GDF2/BMP9 and BMP10. Involved in the regulation of nociception, acting as a modulator of the interaction between TRPA1 and TRPV1, two molecular sensors and mediators of pain signals in dorsal root ganglia (DRG) neurons. Mechanistically, it weakens their interaction, thereby releasing the inhibition of TRPA1 by TRPV1 and increasing the single-channel open probability of the TRPA1-TRPV1 complex. {ECO:0000250|UniProtKB:Q9CQG9}. |
Q9NV56 | MRGBP | S191 | ochoa | MRG/MORF4L-binding protein (MRG-binding protein) (Up-regulated in colon cancer 4) (Urcc4) | Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. |
Q9NVM1 | EVA1B | S152 | ochoa | Protein eva-1 homolog B (Protein FAM176B) | None |
Q9NW97 | TMEM51 | Y239 | ochoa | Transmembrane protein 51 | None |
Q9NWD8 | TMEM248 | S300 | ochoa | Transmembrane protein 248 | None |
Q9NWH9 | SLTM | S1021 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWQ8 | PAG1 | S419 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NWR8 | MCUB | S322 | ochoa | Calcium uniporter regulatory subunit MCUb, mitochondrial (MCUb) (Coiled-coil domain-containing protein 109B) | Negative regulator of the mitochondrial calcium uniporter (MCU), a channel that mediates calcium uptake into the mitochondrial matrix (PubMed:31533452). MCUB is required to limit mitochondrial calcium overload during stress (PubMed:31533452). Acts as a dominant-negative regulator that displaces MCU from the functional uniplex complex and thereby decreases the association of calcium sensors MICU1 and MICU2, preventing channel gating (PubMed:31533452). Mitochondrial calcium homeostasis plays key roles in mitochondrial metabolism (PubMed:31533452). Acts as an important regulator of mitochondrial metabolism in response to stress in muscle cells: induced in response to fasting, leading to restrict mitochondrial calcium uptake, resulting in reprogramming of mitochondria toward fatty acid oxidation preference (By similarity). Acts as a regulator of macrophage polarization during skeletal muscle regeneration: inhibition of mitochondrial calcium uptake drives differentiation of macrophages with anti-inflammatory profile, promoting the differentiation and fusion of satellite cells (By similarity). {ECO:0000250|UniProtKB:Q810S1, ECO:0000269|PubMed:31533452}. |
Q9NXG2 | THUMPD1 | S339 | ochoa | THUMP domain-containing protein 1 | Functions as a tRNA-binding adapter to mediate NAT10-dependent tRNA acetylation modifying cytidine to N4-acetylcytidine (ac4C) (PubMed:25653167, PubMed:35196516). {ECO:0000269|PubMed:25653167, ECO:0000269|PubMed:35196516}. |
Q9NXH9 | TRMT1 | T646 | ochoa | tRNA (guanine(26)-N(2))-dimethyltransferase (EC 2.1.1.216) (tRNA 2,2-dimethylguanosine-26 methyltransferase) (tRNA methyltransferase 1) (hTRM1) (tRNA(guanine-26,N(2)-N(2)) methyltransferase) (tRNA(m(2,2)G26)dimethyltransferase) | Dimethylates a single guanine residue at position 26 of most nuclear- and mitochondrial-encoded tRNAs using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:10982862, PubMed:28784718, PubMed:37204604, PubMed:39786990). tRNA guanine(26)-dimethylation is required for redox homeostasis and ensure proper cellular proliferation and oxidative stress survival (PubMed:28784718). {ECO:0000269|PubMed:10982862, ECO:0000269|PubMed:28784718, ECO:0000269|PubMed:37204604, ECO:0000269|PubMed:39786990}. |
Q9NYG2 | ZDHHC3 | T286 | ochoa | Palmitoyltransferase ZDHHC3 (EC 2.3.1.225) (Acyltransferase ZDHHC3) (EC 2.3.1.-) (Protein DHHC1) (Zinc finger DHHC domain-containing protein 3) (DHHC-3) | Golgi-localized palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates (PubMed:19001095, PubMed:21926431, PubMed:22240897, PubMed:22314500, PubMed:23034182). Has no stringent fatty acid selectivity and in addition to palmitate can also transfer onto target proteins myristate from tetradecanoyl-CoA and stearate from octadecanoyl-CoA (By similarity). Plays an important role in G protein-coupled receptor signaling pathways involving GNAQ and potentially other heterotrimeric G proteins by regulating their dynamic association with the plasma membrane (PubMed:19001095). Palmitoylates ITGA6 and ITGB4, thereby regulating the alpha-6/beta-4 integrin localization, expression and function in cell adhesion to laminin (PubMed:22314500). Plays a role in the TRAIL-activated apoptotic signaling pathway most probably through the palmitoylation and localization to the plasma membrane of TNFRSF10A (PubMed:22240897). In the brain, by palmitoylating the gamma subunit GABRG2 of GABA(A) receptors and regulating their postsynaptic accumulation, plays a role in synaptic GABAergic inhibitory function and GABAergic innervation (By similarity). Palmitoylates the neuronal protein GAP43 which is also involved in the formation of GABAergic synapses (By similarity). Palmitoylates NCDN thereby regulating its association with endosome membranes (By similarity). Probably palmitoylates PRCD and is involved in its proper localization within the photoreceptor (By similarity). Could mediate the palmitoylation of NCAM1 and regulate neurite outgrowth (By similarity). Could palmitoylate DNAJC5 and regulate its localization to Golgi membranes (By similarity). Also constitutively palmitoylates DLG4 (By similarity). May also palmitoylate SNAP25 (By similarity). Could palmitoylate the glutamate receptors GRIA1 and GRIA2 but this has not been confirmed in vivo (By similarity). Could also palmitoylate the D(2) dopamine receptor DRD2 (PubMed:26535572). May also palmitoylate LAMTOR1, promoting its localization to lysosomal membranes (PubMed:35893977). Palmitoylates the Toll-like receptor 9/TLR9 in the Golgi and thereby regulates TLR9 trafficking to endosomes (PubMed:38169466). May palmitoylate CALHM1 and CALHM3 subunits of gustatory voltage-gated ion channels and modulate channel gating and kinetics. {ECO:0000250|UniProtKB:Q8R173, ECO:0000269|PubMed:19001095, ECO:0000269|PubMed:21926431, ECO:0000269|PubMed:22240897, ECO:0000269|PubMed:22314500, ECO:0000269|PubMed:23034182, ECO:0000269|PubMed:26535572, ECO:0000269|PubMed:35893977, ECO:0000269|PubMed:38169466}.; FUNCTION: May also function as a calcium transporter. {ECO:0000250|UniProtKB:Q8R173}. |
Q9NYP7 | ELOVL5 | S285 | ochoa | Very long chain fatty acid elongase 5 (EC 2.3.1.199) (3-keto acyl-CoA synthase ELOVL5) (ELOVL fatty acid elongase 5) (ELOVL FA elongase 5) (Elongation of very long chain fatty acids protein 5) (Fatty acid elongase 1) (hELO1) (Very long chain 3-ketoacyl-CoA synthase 5) (Very long chain 3-oxoacyl-CoA synthase 5) | Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme that acts specifically toward polyunsaturated acyl-CoA with the higher activity toward C18:3(n-6) acyl-CoA. May participate in the production of monounsaturated and of polyunsaturated VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators (By similarity) (PubMed:10970790, PubMed:20937905). In conditions where the essential linoleic and alpha linoleic fatty acids are lacking it is also involved in the synthesis of Mead acid from oleic acid (By similarity). {ECO:0000250|UniProtKB:Q8BHI7, ECO:0000255|HAMAP-Rule:MF_03205, ECO:0000269|PubMed:10970790, ECO:0000269|PubMed:20937905}. |
Q9NYV6 | RRN3 | S637 | ochoa | RNA polymerase I-specific transcription initiation factor RRN3 (Transcription initiation factor IA) (TIF-IA) | Required for efficient transcription initiation by RNA polymerase I (Pol I). Required for the formation of the competent pre-initiation complex (PIC). {ECO:0000250, ECO:0000269|PubMed:10758157, ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11265758, ECO:0000269|PubMed:15805466}. |
Q9NZH0 | GPRC5B | T389 | ochoa | G-protein coupled receptor family C group 5 member B (A-69G12.1) (Retinoic acid-induced gene 2 protein) (RAIG-2) | G-protein coupled receptor involved in the regulation of cell volume. {ECO:0000269|PubMed:37143309}. |
Q9NZJ0 | DTL | S717 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9NZQ7 | CD274 | T277 | ochoa | Programmed cell death 1 ligand 1 (PD-L1) (PDCD1 ligand 1) (Programmed death ligand 1) (hPD-L1) (B7 homolog 1) (B7-H1) (CD antigen CD274) | Plays a critical role in induction and maintenance of immune tolerance to self (PubMed:11015443, PubMed:28813410, PubMed:28813417, PubMed:31399419). As a ligand for the inhibitory receptor PDCD1/PD-1, modulates the activation threshold of T-cells and limits T-cell effector response (PubMed:11015443, PubMed:28813410, PubMed:28813417, PubMed:36727298). Through a yet unknown activating receptor, may costimulate T-cell subsets that predominantly produce interleukin-10 (IL10) (PubMed:10581077). Can also act as a transcription coactivator: in response to hypoxia, translocates into the nucleus via its interaction with phosphorylated STAT3 and promotes transcription of GSDMC, leading to pyroptosis (PubMed:32929201). {ECO:0000269|PubMed:10581077, ECO:0000269|PubMed:11015443, ECO:0000269|PubMed:28813410, ECO:0000269|PubMed:28813417, ECO:0000269|PubMed:31399419, ECO:0000269|PubMed:32929201, ECO:0000269|PubMed:36727298}.; FUNCTION: The PDCD1-mediated inhibitory pathway is exploited by tumors to attenuate anti-tumor immunity and escape destruction by the immune system, thereby facilitating tumor survival (PubMed:28813410, PubMed:28813417). The interaction with PDCD1/PD-1 inhibits cytotoxic T lymphocytes (CTLs) effector function (By similarity). The blockage of the PDCD1-mediated pathway results in the reversal of the exhausted T-cell phenotype and the normalization of the anti-tumor response, providing a rationale for cancer immunotherapy (By similarity). {ECO:0000250|UniProtKB:Q9EP73, ECO:0000269|PubMed:28813410, ECO:0000269|PubMed:28813417}. |
Q9P203 | BTBD7 | S1119 | ochoa | BTB/POZ domain-containing protein 7 | Acts as a mediator of epithelial dynamics and organ branching by promoting cleft progression. Induced following accumulation of fibronectin in forming clefts, leading to local expression of the cell-scattering SNAIL2 and suppression of E-cadherin levels, thereby altering cell morphology and reducing cell-cell adhesion. This stimulates cell separation at the base of forming clefts by local, dynamic intercellular gap formation and promotes cleft progression (By similarity). {ECO:0000250}. |
Q9P296 | C5AR2 | S323 | psp | C5a anaphylatoxin chemotactic receptor 2 (Complement component 5a receptor 2) (G-protein coupled receptor 77) | Receptor for the chemotactic and inflammatory C3a, C4a and C5a anaphylatoxin peptides and also for their dearginated forms ASP/C3adesArg, C4adesArg and C5adesArg respectively. Couples weakly to G(i)-mediated signaling pathways. {ECO:0000269|PubMed:11773063, ECO:0000269|PubMed:15833747, ECO:0000269|PubMed:19615750}. |
Q9P2D1 | CHD7 | S2983 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2J3 | KLHL9 | S603 | ochoa | Kelch-like protein 9 | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for mitotic progression and cytokinesis. The BCR(KLHL9-KLHL13) E3 ubiquitin ligase complex mediates the ubiquitination of AURKB and controls the dynamic behavior of AURKB on mitotic chromosomes and thereby coordinates faithful mitotic progression and completion of cytokinesis. {ECO:0000269|PubMed:14528312, ECO:0000269|PubMed:17543862, ECO:0000269|PubMed:19995937}. |
Q9UBI6 | GNG12 | T58 | ochoa | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 | Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. |
Q9UBI6 | GNG12 | S59 | ochoa | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 | Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. |
Q9UEY8 | ADD3 | S693 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UGV2 | NDRG3 | S361 | ochoa | Protein NDRG3 (N-myc downstream-regulated gene 3 protein) | None |
Q9UHD2 | TBK1 | S716 | ochoa|psp | Serine/threonine-protein kinase TBK1 (EC 2.7.11.1) (NF-kappa-B-activating kinase) (T2K) (TANK-binding kinase 1) | Serine/threonine kinase that plays an essential role in regulating inflammatory responses to foreign agents (PubMed:10581243, PubMed:11839743, PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:15485837, PubMed:18583960, PubMed:21138416, PubMed:23453971, PubMed:23453972, PubMed:23746807, PubMed:25636800, PubMed:26611359, PubMed:32404352, PubMed:34363755, PubMed:32298923). Following activation of toll-like receptors by viral or bacterial components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors (IRFs) IRF3 and IRF7 as well as DDX3X (PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:18583960, PubMed:25636800). This activity allows subsequent homodimerization and nuclear translocation of the IRFs leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNA and IFNB (PubMed:12702806, PubMed:15367631, PubMed:25636800, PubMed:32972995). In order to establish such an antiviral state, TBK1 form several different complexes whose composition depends on the type of cell and cellular stimuli (PubMed:23453971, PubMed:23453972, PubMed:23746807). Plays a key role in IRF3 activation: acts by first phosphorylating innate adapter proteins MAVS, STING1 and TICAM1 on their pLxIS motif, leading to recruitment of IRF3, thereby licensing IRF3 for phosphorylation by TBK1 (PubMed:25636800, PubMed:30842653, PubMed:37926288). Phosphorylated IRF3 dissociates from the adapter proteins, dimerizes, and then enters the nucleus to induce expression of interferons (PubMed:25636800). Thus, several scaffolding molecules including FADD, TRADD, MAVS, AZI2, TANK or TBKBP1/SINTBAD can be recruited to the TBK1-containing-complexes (PubMed:21931631). Under particular conditions, functions as a NF-kappa-B effector by phosphorylating NF-kappa-B inhibitor alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus (PubMed:10783893, PubMed:15489227). Restricts bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177', thus enhancing LC3 binding affinity and antibacterial autophagy (PubMed:21617041). Phosphorylates SMCR8 component of the C9orf72-SMCR8 complex, promoting autophagosome maturation (PubMed:27103069). Phosphorylates ATG8 proteins MAP1LC3C and GABARAPL2, thereby preventing their delipidation and premature removal from nascent autophagosomes (PubMed:31709703). Seems to play a role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, which leads to a negative impact on insulin sensitivity (By similarity). Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C (PubMed:21270402). Phosphorylates Borna disease virus (BDV) P protein (PubMed:16155125). Plays an essential role in the TLR3- and IFN-dependent control of herpes virus HSV-1 and HSV-2 infections in the central nervous system (PubMed:22851595). Acts both as a positive and negative regulator of the mTORC1 complex, depending on the context: activates mTORC1 in response to growth factors by catalyzing phosphorylation of MTOR, while it limits the mTORC1 complex by promoting phosphorylation of RPTOR (PubMed:29150432, PubMed:31530866). Acts as a positive regulator of the mTORC2 complex by mediating phosphorylation of MTOR, leading to increased phosphorylation and activation of AKT1 (By similarity). Phosphorylates and activates AKT1 (PubMed:21464307). Involved in the regulation of TNF-induced RIPK1-mediated cell death, probably acting via CYLD phosphorylation that in turn controls RIPK1 ubiquitination status (PubMed:34363755). Also participates in the differentiation of T follicular regulatory cells together with the receptor ICOS (PubMed:27135603). {ECO:0000250|UniProtKB:Q9WUN2, ECO:0000269|PubMed:10581243, ECO:0000269|PubMed:10783893, ECO:0000269|PubMed:11839743, ECO:0000269|PubMed:12692549, ECO:0000269|PubMed:12702806, ECO:0000269|PubMed:14703513, ECO:0000269|PubMed:15367631, ECO:0000269|PubMed:15485837, ECO:0000269|PubMed:15489227, ECO:0000269|PubMed:16155125, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:21270402, ECO:0000269|PubMed:21464307, ECO:0000269|PubMed:21617041, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:22851595, ECO:0000269|PubMed:23453971, ECO:0000269|PubMed:23453972, ECO:0000269|PubMed:23746807, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:26611359, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27135603, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:30842653, ECO:0000269|PubMed:31530866, ECO:0000269|PubMed:31709703, ECO:0000269|PubMed:32298923, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:34363755, ECO:0000269|PubMed:37926288}. |
Q9UHI5 | SLC7A8 | T522 | ochoa | Large neutral amino acids transporter small subunit 2 (L-type amino acid transporter 2) (hLAT2) (Solute carrier family 7 member 8) | Associates with SLC3A2 to form a functional heterodimeric complex that translocates small and large neutral amino acids with broad specificity and a stoichiometry of 1:1. Functions as amino acid antiporter mediating the influx of extracellular essential amino acids mainly in exchange with the efflux of highly concentrated intracellular amino acids (PubMed:10391915, PubMed:11311135, PubMed:11847106, PubMed:12716892, PubMed:15081149, PubMed:15918515, PubMed:29355479, PubMed:33298890, PubMed:34848541). Has relatively symmetrical selectivities but strongly asymmetrical substrate affinities at both the intracellular and extracellular sides of the transporter (PubMed:11847106). This asymmetry allows SLC7A8 to regulate intracellular amino acid pools (mM concentrations) by exchange with external amino acids (uM concentration range), equilibrating the relative concentrations of different amino acids across the plasma membrane instead of mediating their net uptake (PubMed:10391915, PubMed:11847106). May play an essential role in the reabsorption of neutral amino acids from the epithelial cells to the bloodstream in the kidney (PubMed:12716892). Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity (PubMed:12117417). Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the transmembrane (PubMed:15769744). Imports the thyroid hormone diiodothyronine (T2) and to a smaller extent triiodothyronine (T3) but not rT 3 or thyroxine (T4) (By similarity). Mediates the uptake of L-DOPA (By similarity). May participate in auditory function (By similarity). {ECO:0000250|UniProtKB:Q9QXW9, ECO:0000250|UniProtKB:Q9WVR6, ECO:0000269|PubMed:10391915, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:11847106, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12716892, ECO:0000269|PubMed:15081149, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:15918515, ECO:0000269|PubMed:29355479, ECO:0000269|PubMed:33298890, ECO:0000269|PubMed:34848541}. |
Q9UHX3 | ADGRE2 | S809 | ochoa | Adhesion G protein-coupled receptor E2 (EGF-like module receptor 2) (EGF-like module-containing mucin-like hormone receptor-like 2) (CD antigen CD312) | Cell surface receptor that binds to the chondroitin sulfate moiety of glycosaminoglycan chains and promotes cell attachment. Promotes granulocyte chemotaxis, degranulation and adhesion. In macrophages, promotes the release of inflammatory cytokines, including IL8 and TNF. Signals probably through G-proteins. Is a regulator of mast cell degranulation (PubMed:26841242). {ECO:0000269|PubMed:12829604, ECO:0000269|PubMed:17928360, ECO:0000269|PubMed:22310662, ECO:0000269|PubMed:22575658, ECO:0000269|PubMed:26841242}. |
Q9UHX3 | ADGRE2 | S810 | ochoa | Adhesion G protein-coupled receptor E2 (EGF-like module receptor 2) (EGF-like module-containing mucin-like hormone receptor-like 2) (CD antigen CD312) | Cell surface receptor that binds to the chondroitin sulfate moiety of glycosaminoglycan chains and promotes cell attachment. Promotes granulocyte chemotaxis, degranulation and adhesion. In macrophages, promotes the release of inflammatory cytokines, including IL8 and TNF. Signals probably through G-proteins. Is a regulator of mast cell degranulation (PubMed:26841242). {ECO:0000269|PubMed:12829604, ECO:0000269|PubMed:17928360, ECO:0000269|PubMed:22310662, ECO:0000269|PubMed:22575658, ECO:0000269|PubMed:26841242}. |
Q9UI15 | TAGLN3 | S185 | ochoa | Transgelin-3 (Neuronal protein 22) (NP22) (Neuronal protein NP25) | None |
Q9UJD0 | RIMS3 | S295 | ochoa | Regulating synaptic membrane exocytosis protein 3 (Nim3) (RIM3 gamma) (Rab-3-interacting molecule 3) (RIM 3) | Regulates synaptic membrane exocytosis. {ECO:0000250}. |
Q9UJX2 | CDC23 | T584 | ochoa | Cell division cycle protein 23 homolog (Anaphase-promoting complex subunit 8) (APC8) (Cyclosome subunit 8) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9UK76 | JPT1 | S140 | ochoa | Jupiter microtubule associated homolog 1 (Androgen-regulated protein 2) (Hematological and neurological expressed 1 protein) [Cleaved into: Jupiter microtubule associated homolog 1, N-terminally processed] | Modulates negatively AKT-mediated GSK3B signaling (PubMed:21323578, PubMed:22155408). Induces CTNNB1 'Ser-33' phosphorylation and degradation through the suppression of the inhibitory 'Ser-9' phosphorylation of GSK3B, which represses the function of the APC:CTNNB1:GSK3B complex and the interaction with CDH1/E-cadherin in adherent junctions (PubMed:25169422). Plays a role in the regulation of cell cycle and cell adhesion (PubMed:25169422, PubMed:25450365). Has an inhibitory role on AR-signaling pathway through the induction of receptor proteasomal degradation (PubMed:22155408). {ECO:0000269|PubMed:21323578, ECO:0000269|PubMed:22155408, ECO:0000269|PubMed:25169422, ECO:0000269|PubMed:25450365}. |
Q9UKG1 | APPL1 | S696 | ochoa | DCC-interacting protein 13-alpha (Dip13-alpha) (Adapter protein containing PH domain, PTB domain and leucine zipper motif 1) | Multifunctional adapter protein that binds to various membrane receptors, nuclear factors and signaling proteins to regulate many processes, such as cell proliferation, immune response, endosomal trafficking and cell metabolism (PubMed:10490823, PubMed:15016378, PubMed:19661063, PubMed:26073777, PubMed:26583432). Regulates signaling pathway leading to cell proliferation through interaction with RAB5A and subunits of the NuRD/MeCP1 complex (PubMed:15016378). Functions as a positive regulator of innate immune response via activation of AKT1 signaling pathway by forming a complex with APPL1 and PIK3R1 (By similarity). Inhibits Fc-gamma receptor-mediated phagocytosis through PI3K/Akt signaling in macrophages (By similarity). Regulates TLR4 signaling in activated macrophages (By similarity). Involved in trafficking of the TGFBR1 from the endosomes to the nucleus via microtubules in a TRAF6-dependent manner (PubMed:26583432). Plays a role in cell metabolism by regulating adiponecting and insulin signaling pathways (PubMed:19661063, PubMed:24879834, PubMed:26073777). Required for fibroblast migration through HGF cell signaling (By similarity). Positive regulator of beta-catenin/TCF-dependent transcription through direct interaction with RUVBL2/reptin resulting in the relief of RUVBL2-mediated repression of beta-catenin/TCF target genes by modulating the interactions within the beta-catenin-reptin-HDAC complex (PubMed:19433865). {ECO:0000250|UniProtKB:Q8K3H0, ECO:0000269|PubMed:10490823, ECO:0000269|PubMed:15016378, ECO:0000269|PubMed:19433865, ECO:0000269|PubMed:19661063, ECO:0000269|PubMed:24879834, ECO:0000269|PubMed:26073777, ECO:0000269|PubMed:26583432}. |
Q9UKI8 | TLK1 | T753 | ochoa | Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) | Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}. |
Q9UKY7 | CDV3 | Y244 | ochoa | Protein CDV3 homolog | None |
Q9ULH0 | KIDINS220 | S1757 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULP0 | NDRG4 | S338 | ochoa | Protein NDRG4 (Brain development-related molecule 1) (N-myc downstream-regulated gene 4 protein) (Vascular smooth muscle cell-associated protein 8) (SMAP-8) | Contributes to the maintenance of intracerebral BDNF levels within the normal range, which is necessary for the preservation of spatial learning and the resistance to neuronal cell death caused by ischemic stress (By similarity). May enhance growth factor-induced ERK1 and ERK2 phosphorylation, including that induced by PDGF and FGF. May attenuate NGF-promoted ELK1 phosphorylation in a microtubule-dependent manner. {ECO:0000250, ECO:0000269|PubMed:12755708}. |
Q9ULV8 | CBLC | S461 | ochoa | E3 ubiquitin-protein ligase CBL-C (EC 2.3.2.27) (RING finger protein 57) (RING-type E3 ubiquitin transferase CBL-C) (SH3-binding protein CBL-3) (SH3-binding protein CBL-C) (Signal transduction protein CBL-C) | Acts as an E3 ubiquitin-protein ligase, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome. Functionally coupled with the E2 ubiquitin-protein ligases UB2D1, UB2D2 and UB2D3. Regulator of EGFR mediated signal transduction; upon EGF activation, ubiquitinates EGFR. Isoform 1, but not isoform 2, inhibits EGF stimulated MAPK1 activation. Promotes ubiquitination of SRC phosphorylated at 'Tyr-419'. In collaboration with CD2AP may act as regulatory checkpoint for Ret signaling by modulating the rate of RET degradation after ligand activation; CD2AP converts it from an inhibitor to a promoter of RET degradation; the function limits the potency of GDNF on neuronal survival. {ECO:0000269|PubMed:10362357, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:18753381, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:23145173}. |
Q9ULW0 | TPX2 | T734 | ochoa | Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) | Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}. |
Q9UMS6 | SYNPO2 | S1079 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UN36 | NDRG2 | T357 | ochoa | Protein NDRG2 (N-myc downstream-regulated gene 2 protein) (Protein Syld709613) | Contributes to the regulation of the Wnt signaling pathway. Down-regulates CTNNB1-mediated transcriptional activation of target genes, such as CCND1, and may thereby act as tumor suppressor. May be involved in dendritic cell and neuron differentiation. {ECO:0000269|PubMed:12845671, ECO:0000269|PubMed:16103061, ECO:0000269|PubMed:21247902}. |
Q9UNS2 | COPS3 | S410 | ochoa | COP9 signalosome complex subunit 3 (SGN3) (Signalosome subunit 3) (JAB1-containing signalosome subunit 3) | Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:9535219}. |
Q9UPI3 | FLVCR2 | S512 | ochoa | Choline/ethanolamine transporter FLVCR2 (Calcium-chelate transporter) (CCT) (Feline leukemia virus subgroup C receptor-related protein 2) (Heme transporter FLVCR2) | Choline uniporter that specifically mediates choline uptake at the blood-brain-barrier (PubMed:38302740, PubMed:38778100). Responsible for the majority of choline uptake across the blood-brain-barrier from the circulation into the brain (By similarity). Choline, a nutrient critical for brain development, is a precursor of phosphatidylcholine, as well as betaine (By similarity). Also mediates transport of ethanolamine (PubMed:38778100). Choline and ethanolamine transport is not coupled with proton transport and is exclusively driven by the choline gradient across the plasma membrane (PubMed:38778100). However, the presence of an inwardly directed proton gradient enhances choline uptake (By similarity). Also acts as a heme b transporter (PubMed:20823265, PubMed:32973183). Required to regulate mitochondrial respiration processes, ATP synthesis and thermogenesis (PubMed:32973183). At low heme levels, interacts with components of electron transfer chain (ETC) complexes and ATP2A2, leading to ubiquitin-mediated degradation of ATP2A2 and inhibition of thermogenesis (PubMed:32973183). Upon heme binding, dissociates from ETC complexes to allow switching from mitochondrial ATP synthesis to thermogenesis (PubMed:32973183). {ECO:0000250|UniProtKB:Q91X85, ECO:0000269|PubMed:20823265, ECO:0000269|PubMed:32973183, ECO:0000269|PubMed:38302740, ECO:0000269|PubMed:38778100}. |
Q9UPR0 | PLCL2 | S1113 | ochoa | Inactive phospholipase C-like protein 2 (PLC-L(2)) (PLC-L2) (Phospholipase C-L2) (Phospholipase C-epsilon-2) (PLC-epsilon-2) | May play an role in the regulation of Ins(1,4,5)P3 around the endoplasmic reticulum. {ECO:0000250}. |
Q9UPU7 | TBC1D2B | S949 | ochoa | TBC1 domain family member 2B | GTPase-activating protein that plays a role in the early steps of endocytosis (PubMed:32623794). {ECO:0000269|PubMed:32623794}. |
Q9UQ26 | RIMS2 | S1398 | ochoa | Regulating synaptic membrane exocytosis protein 2 (Rab-3-interacting molecule 2) (RIM 2) (Rab-3-interacting protein 3) | Rab effector involved in exocytosis. May act as scaffold protein. Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:23999003}. |
Q9UQ35 | SRRM2 | T2738 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQL6 | HDAC5 | S1108 | ochoa|psp | Histone deacetylase 5 (HD5) (EC 3.5.1.98) (Antigen NY-CO-9) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Serves as a corepressor of RARA and causes its deacetylation (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). {ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:28167758}. |
Q9UQN3 | CHMP2B | S199 | ochoa | Charged multivesicular body protein 2b (CHMP2.5) (Chromatin-modifying protein 2b) (CHMP2b) (Vacuolar protein sorting-associated protein 2-2) (Vps2-2) (hVps2-2) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. |
Q9Y2H1 | STK38L | T450 | ochoa | Serine/threonine-protein kinase 38-like (EC 2.7.11.1) (NDR2 protein kinase) (Nuclear Dbf2-related kinase 2) | Involved in the regulation of structural processes in differentiating and mature neuronal cells. {ECO:0000250, ECO:0000269|PubMed:15037617, ECO:0000269|PubMed:15067004}. |
Q9Y2W1 | THRAP3 | T941 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y320 | TMX2 | S282 | ochoa | Thioredoxin-related transmembrane protein 2 (Cell proliferation-inducing gene 26 protein) (Thioredoxin domain-containing protein 14) | Endoplasmic reticulum and mitochondria-associated protein that probably functions as a regulator of cellular redox state and thereby regulates protein post-translational modification, protein folding and mitochondrial activity. Indirectly regulates neuronal proliferation, migration, and organization in the developing brain. {ECO:0000269|PubMed:31735293}. |
Q9Y320 | TMX2 | T283 | ochoa | Thioredoxin-related transmembrane protein 2 (Cell proliferation-inducing gene 26 protein) (Thioredoxin domain-containing protein 14) | Endoplasmic reticulum and mitochondria-associated protein that probably functions as a regulator of cellular redox state and thereby regulates protein post-translational modification, protein folding and mitochondrial activity. Indirectly regulates neuronal proliferation, migration, and organization in the developing brain. {ECO:0000269|PubMed:31735293}. |
Q9Y383 | LUC7L2 | S378 | ochoa | Putative RNA-binding protein Luc7-like 2 | May bind to RNA via its Arg/Ser-rich domain. |
Q9Y3E2 | BOLA1 | S123 | ochoa | BolA-like protein 1 (hBolA) | Acts as a mitochondrial iron-sulfur (Fe-S) cluster assembly factor that facilitates (Fe-S) cluster insertion into a subset of mitochondrial proteins (By similarity). Probably acts together with the monothiol glutaredoxin GLRX5 (PubMed:27532772). May protect cells against oxidative stress (PubMed:22746225). {ECO:0000250|UniProtKB:Q3E793, ECO:0000269|PubMed:22746225, ECO:0000305|PubMed:27532772}. |
Q9Y3P8 | SIT1 | S182 | ochoa | Signaling threshold-regulating transmembrane adapter 1 (SHP2-interacting transmembrane adapter protein) (Suppression-inducing transmembrane adapter 1) (gp30/40) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells. Involved in positive selection of T-cells. {ECO:0000269|PubMed:10209036}. |
Q9Y3P9 | RABGAP1 | S1055 | ochoa | Rab GTPase-activating protein 1 (GAP and centrosome-associated protein) (Rab6 GTPase-activating protein GAPCenA) | May act as a GTPase-activating protein of RAB6A. May play a role in microtubule nucleation by centrosome. May participate in a RAB6A-mediated pathway involved in the metaphase-anaphase transition. {ECO:0000269|PubMed:10202141, ECO:0000269|PubMed:16395330}. |
Q9Y4C4 | MFHAS1 | S1038 | ochoa | Malignant fibrous histiocytoma-amplified sequence 1 (Malignant fibrous histiocytoma-amplified sequence with leucine-rich tandem repeats 1) | Probable GTP-binding protein (PubMed:24286120). Functions in innate immunity and more specifically the inflammatory response as a regulator of the Toll-like receptor TLR2 and TLR4 signaling pathways (PubMed:26599367, PubMed:28471450, PubMed:28609714). Negatively regulates the part of the TLR4 signaling pathway that leads to the activation of the transcription factor AP-1. By retaining the phosphatase complex PP2A into the cytoplasm, prevents the dephosphorylation of the AP-1 subunit JUN which is required for proper activation of the transcription factor (PubMed:28609714). Both inhibits and activates the TLR2-dependent signaling pathway (PubMed:26599367). Positively regulates the TLR2 signaling pathway to activate specifically the downstream p38 and JNK MAP kinases and promote the polarization of macrophages toward the pro-inflammatory M1 phenotype (PubMed:28471450). It may also play a role in the regulation of inflammation induced by high glucose through the PKB/AKT signaling pathway (PubMed:29168081). Also involved in erythrocyte differentiation through activation of the ERK1/ERK2 signaling pathway (PubMed:23327923). {ECO:0000269|PubMed:23327923, ECO:0000269|PubMed:24286120, ECO:0000269|PubMed:26599367, ECO:0000269|PubMed:28471450, ECO:0000269|PubMed:28609714, ECO:0000269|PubMed:29168081}. |
Q9Y4U1 | MMACHC | S268 | ochoa | Cyanocobalamin reductase / alkylcobalamin dealkylase (Alkylcobalamin:glutathione S-alkyltransferase) (EC 2.5.1.151) (CblC) (Cyanocobalamin reductase (cyanide-eliminating)) (EC 1.16.1.6) (Methylmalonic aciduria and homocystinuria type C protein) (MMACHC) | Cobalamin (vitamin B12) cytosolic chaperone that catalyzes the reductive decyanation of cyanocob(III)alamin (cyanocobalamin, CNCbl) to yield cob(II)alamin and cyanide, using FAD or FMN as cofactors and NADPH as cosubstrate (PubMed:18779575, PubMed:19700356, PubMed:21697092, PubMed:25809485). Cyanocobalamin constitutes the inactive form of vitamin B12 introduced from the diet, and is converted into the active cofactors methylcobalamin (MeCbl) involved in methionine biosynthesis, and 5'-deoxyadenosylcobalamin (AdoCbl) involved in the TCA cycle (PubMed:19801555). Forms a complex with the lysosomal transporter ABCD4 and its chaperone LMBRD1, to transport cobalamin across the lysosomal membrane into the cytosol (PubMed:25535791). The processing of cobalamin in the cytosol occurs in a multiprotein complex composed of at least MMACHC, MMADHC, MTRR (methionine synthase reductase) and MTR (methionine synthase) which may contribute to shuttle safely and efficiently cobalamin towards MTR in order to produce methionine (PubMed:21071249, PubMed:27771510). Also acts as a glutathione transferase by catalyzing the dealkylation of the alkylcob(III)alamins MeCbl and AdoCbl, using the thiolate of glutathione for nucleophilic displacement to generate cob(I)alamin and the corresponding glutathione thioether (PubMed:19801555, PubMed:21697092, PubMed:22642810, PubMed:25809485). The conversion of incoming MeCbl or AdoCbl into a common intermediate cob(I)alamin is necessary to meet the cellular needs for both cofactors (PubMed:19801555). Cysteine and homocysteine cannot substitute for glutathione in this reaction (PubMed:19801555). {ECO:0000269|PubMed:18779575, ECO:0000269|PubMed:19700356, ECO:0000269|PubMed:19801555, ECO:0000269|PubMed:21071249, ECO:0000269|PubMed:21697092, ECO:0000269|PubMed:22642810, ECO:0000269|PubMed:25809485, ECO:0000269|PubMed:27771510, ECO:0000303|PubMed:19801555, ECO:0000303|PubMed:25535791}. |
Q9Y5M8 | SRPRB | S257 | ochoa | Signal recognition particle receptor subunit beta (SR-beta) (Protein APMCF1) | Component of the signal recognition particle (SRP) complex receptor (SR) (By similarity). Ensures, in conjunction with the SRP complex, the correct targeting of the nascent secretory proteins to the endoplasmic reticulum membrane system (By similarity). May mediate the membrane association of SR (By similarity). {ECO:0000250|UniProtKB:P47758}. |
Q9Y5R8 | TRAPPC1 | S132 | ochoa | Trafficking protein particle complex subunit 1 (BET5 homolog) (Multiple myeloma protein 2) (MUM-2) | May play a role in vesicular transport from endoplasmic reticulum to Golgi. |
Q9Y5S1 | TRPV2 | S751 | ochoa | Transient receptor potential cation channel subfamily V member 2 (TrpV2) (Osm-9-like TRP channel 2) (OTRPC2) (Vanilloid receptor-like protein 1) (VRL-1) | Calcium-permeable, non-selective cation channel with an outward rectification. Seems to be regulated, at least in part, by IGF1, PDGF and neuropeptide head activator. May transduce physical stimuli in mast cells. Activated by temperatures higher than 52 degrees Celsius; is not activated by vanilloids and acidic pH. {ECO:0000269|PubMed:10201375}. |
Q9Y5S2 | CDC42BPB | S1697 | ochoa | Serine/threonine-protein kinase MRCK beta (EC 2.7.11.1) (CDC42-binding protein kinase beta) (CDC42BP-beta) (DMPK-like beta) (Myotonic dystrophy kinase-related CDC42-binding kinase beta) (MRCK beta) (Myotonic dystrophy protein kinase-like beta) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration. Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715, PubMed:21949762). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates PPP1R12A (PubMed:21457715). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). {ECO:0000250|UniProtKB:Q7TT50, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:21949762}. |
Q9Y5X2 | SNX8 | T452 | ochoa | Sorting nexin-8 | May be involved in several stages of intracellular trafficking. May play a role in intracellular protein transport from early endosomes to the trans-Golgi network. {ECO:0000269|PubMed:19782049}. |
Q9Y6G9 | DYNC1LI1 | S510 | ochoa | Cytoplasmic dynein 1 light intermediate chain 1 (LIC1) (Dynein light chain A) (DLC-A) (Dynein light intermediate chain 1, cytosolic) (DLIC-1) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. Probably involved in the microtubule-dependent transport of pericentrin. Is required for progress through the spindle assembly checkpoint. The phosphorylated form appears to be involved in the selective removal of MAD1L1 and MAD1L2 but not BUB1B from kinetochores. Forms a functional Rab11/RAB11FIP3/dynein complex onto endosomal membrane that regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endosomal recycling compartment (ERC) (PubMed:20026645). {ECO:0000269|PubMed:19229290, ECO:0000269|PubMed:20026645}. |
Q9Y6W5 | WASF2 | S484 | psp | Actin-binding protein WASF2 (Protein WAVE-2) (Verprolin homology domain-containing protein 2) (Wiskott-Aldrich syndrome protein family member 2) (WASP family protein member 2) | Downstream effector molecule involved in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Promotes formation of actin filaments. Part of the WAVE complex that regulates lamellipodia formation. The WAVE complex regulates actin filament reorganization via its interaction with the Arp2/3 complex. {ECO:0000269|PubMed:10381382, ECO:0000269|PubMed:16275905}. |
Q9Y6X5 | ENPP4 | S439 | ochoa | Bis(5'-adenosyl)-triphosphatase ENPP4 (EC 3.6.1.29) (AP3A hydrolase) (AP3Aase) (Ectonucleotide pyrophosphatase/phosphodiesterase family member 4) (E-NPP 4) (NPP-4) | Hydrolyzes extracellular Ap3A into AMP and ADP, and Ap4A into AMP and ATP. Ap3A and Ap4A are diadenosine polyphosphates thought to induce proliferation of vascular smooth muscle cells. Acts as a procoagulant, mediating platelet aggregation at the site of nascent thrombus via release of ADP from Ap3A and activation of ADP receptors. {ECO:0000269|PubMed:22995898, ECO:0000269|PubMed:24338010}. |
Q9Y3U8 | RPL36 | S91 | Sugiyama | Large ribosomal subunit protein eL36 (60S ribosomal protein L36) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
P61927 | RPL37 | T83 | Sugiyama | Large ribosomal subunit protein eL37 (60S ribosomal protein L37) (G1.16) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P04406 | GAPDH | S321 | Sugiyama | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) (Peptidyl-cysteine S-nitrosylase GAPDH) (EC 2.6.99.-) | Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively (PubMed:11724794, PubMed:3170585). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate (PubMed:11724794, PubMed:3170585). Modulates the organization and assembly of the cytoskeleton (By similarity). Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes (PubMed:23071094). Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation (PubMed:23071094). Also plays a role in innate immunity by promoting TNF-induced NF-kappa-B activation and type I interferon production, via interaction with TRAF2 and TRAF3, respectively (PubMed:23332158, PubMed:27387501). Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis (By similarity). Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC (By similarity). {ECO:0000250|UniProtKB:P04797, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23332158, ECO:0000269|PubMed:27387501, ECO:0000269|PubMed:3170585}. |
P62899 | RPL31 | T112 | Sugiyama | Large ribosomal subunit protein eL31 (60S ribosomal protein L31) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P50213 | IDH3A | S352 | Sugiyama | Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial (EC 1.1.1.41) (Isocitric dehydrogenase subunit alpha) (NAD(+)-specific ICDH subunit alpha) | Catalytic subunit of the enzyme which catalyzes the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. {ECO:0000269|PubMed:28139779}. |
O43707 | ACTN4 | Y898 | Sugiyama | Alpha-actinin-4 (Non-muscle alpha-actinin 4) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}. |
P26196 | DDX6 | Y469 | Sugiyama | Probable ATP-dependent RNA helicase DDX6 (EC 3.6.4.13) (ATP-dependent RNA helicase p54) (DEAD box protein 6) (Oncogene RCK) | Essential for the formation of P-bodies, cytosolic membrane-less ribonucleoprotein granules involved in RNA metabolism through the coordinated storage of mRNAs encoding regulatory functions (PubMed:25995375, PubMed:27342281, PubMed:31422817). Plays a role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:27342281). In the process of mRNA degradation, plays a role in mRNA decapping (PubMed:16364915). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts (PubMed:26098573). {ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:25995375, ECO:0000269|PubMed:26098573, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:31422817}. |
P61604 | HSPE1 | Y88 | Sugiyama | 10 kDa heat shock protein, mitochondrial (Hsp10) (10 kDa chaperonin) (Chaperonin 10) (CPN10) (Early-pregnancy factor) (EPF) (Heat shock protein family E member 1) | Co-chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp60, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131, PubMed:7912672). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000269|PubMed:7912672, ECO:0000305|PubMed:25918392}. |
Q14257 | RCN2 | Y303 | Sugiyama | Reticulocalbin-2 (Calcium-binding protein ERC-55) (E6-binding protein) (E6BP) | Not known. Binds calcium. |
Q7L5N1 | COPS6 | Y313 | Sugiyama | COP9 signalosome complex subunit 6 (SGN6) (Signalosome subunit 6) (JAB1-containing signalosome subunit 6) (MOV34 homolog) (Vpr-interacting protein) (hVIP) | Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Has some glucocorticoid receptor-responsive activity. Stabilizes COP1 through reducing COP1 auto-ubiquitination and decelerating COP1 turnover rate, hence regulates the ubiquitination of COP1 targets. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:21625211, ECO:0000269|PubMed:9535219}. |
Q9BS26 | ERP44 | S393 | Sugiyama | Endoplasmic reticulum resident protein 44 (ER protein 44) (ERp44) (Thioredoxin domain-containing protein 4) | Mediates thiol-dependent retention in the early secretory pathway, forming mixed disulfides with substrate proteins through its conserved CRFS motif (PubMed:11847130, PubMed:14517240). Inhibits the calcium channel activity of ITPR1 (PubMed:15652484). May have a role in the control of oxidative protein folding in the endoplasmic reticulum (PubMed:11847130, PubMed:14517240, PubMed:29858230). Required to retain ERO1A and ERO1B in the endoplasmic reticulum (PubMed:11847130, PubMed:29858230). {ECO:0000269|PubMed:11847130, ECO:0000269|PubMed:14517240, ECO:0000269|PubMed:15652484, ECO:0000269|PubMed:29858230}. |
O95881 | TXNDC12 | T159 | Sugiyama | Thioredoxin domain-containing protein 12 (EC 1.8.4.2) (Endoplasmic reticulum resident protein 18) (ER protein 18) (ERp18) (Endoplasmic reticulum resident protein 19) (ER protein 19) (ERp19) (Thioredoxin-like protein p19) (hTLP19) | Protein-disulfide reductase of the endoplasmic reticulum that promotes disulfide bond formation in client proteins through its thiol-disulfide oxidase activity. {ECO:0000269|PubMed:12761212}. |
Q13438 | OS9 | S653 | Sugiyama | Protein OS-9 (Amplified in osteosarcoma 9) | Lectin component of the HRD1 complex, which functions in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) (PubMed:18264092, PubMed:18417469, PubMed:19084021, PubMed:19346256, PubMed:21172656, PubMed:24899641). Specifically recognizes and binds improperly folded glycoproteins as well as hyperglycosylated proteins, retain them in the ER, and transfers them to the ubiquitination machinery and promote their degradation (PubMed:18264092, PubMed:18417469, PubMed:19084021, PubMed:19346256, PubMed:21172656, PubMed:24899641). Possible targets include TRPV4 as well as hyperglycosylated HSP90B1 (PubMed:17932042). {ECO:0000269|PubMed:17932042, ECO:0000269|PubMed:18264092, ECO:0000269|PubMed:18417469, ECO:0000269|PubMed:19084021, ECO:0000269|PubMed:19346256, ECO:0000269|PubMed:21172656, ECO:0000269|PubMed:24899641}. |
O75582 | RPS6KA5 | S788 | Sugiyama | Ribosomal protein S6 kinase alpha-5 (S6K-alpha-5) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 5) (Nuclear mitogen- and stress-activated protein kinase 1) (RSK-like protein kinase) (RSKL) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factors RELA, STAT3 and ETV1/ER81, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes (PubMed:11909979, PubMed:12569367, PubMed:12763138, PubMed:18511904, PubMed:9687510, PubMed:9873047). Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin (PubMed:11909979, PubMed:9873047). Plays an essential role in the control of RELA transcriptional activity in response to TNF and upon glucocorticoid, associates in the cytoplasm with the glucocorticoid receptor NR3C1 and contributes to RELA inhibition and repression of inflammatory gene expression (PubMed:12628924, PubMed:18511904). In skeletal myoblasts is required for phosphorylation of RELA at 'Ser-276' during oxidative stress (PubMed:12628924). In erythropoietin-stimulated cells, is necessary for the 'Ser-727' phosphorylation of STAT3 and regulation of its transcriptional potential (PubMed:12763138). Phosphorylates ETV1/ER81 at 'Ser-191' and 'Ser-216', and thereby regulates its ability to stimulate transcription, which may be important during development and breast tumor formation (PubMed:12569367). Directly represses transcription via phosphorylation of 'Ser-1' of histone H2A (PubMed:15010469). Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN (PubMed:12773393). May also phosphorylate 'Ser-28' of histone H3 (PubMed:12773393). Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14) (PubMed:12773393). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines (By similarity). Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors (By similarity). Plays a role in neuronal cell death by mediating the downstream effects of excitotoxic injury (By similarity). Phosphorylates TRIM7 at 'Ser-107' in response to growth factor signaling via the MEK/ERK pathway, thereby stimulating its ubiquitin ligase activity (PubMed:25851810). {ECO:0000250|UniProtKB:Q8C050, ECO:0000269|PubMed:11909979, ECO:0000269|PubMed:12569367, ECO:0000269|PubMed:12628924, ECO:0000269|PubMed:12763138, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:15010469, ECO:0000269|PubMed:18511904, ECO:0000269|PubMed:25851810, ECO:0000269|PubMed:9687510, ECO:0000269|PubMed:9873047}. |
O75676 | RPS6KA4 | S758 | Sugiyama | Ribosomal protein S6 kinase alpha-4 (S6K-alpha-4) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 4) (Nuclear mitogen- and stress-activated protein kinase 2) (Ribosomal protein kinase B) (RSKB) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factor RELA, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes. Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin. Plays an essential role in the control of RELA transcriptional activity in response to TNF. Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN. May also phosphorylate 'Ser-28' of histone H3. Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines. Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors. {ECO:0000269|PubMed:11035004, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:9792677}. |
P42773 | CDKN2C | S154 | Sugiyama | Cyclin-dependent kinase 4 inhibitor C (Cyclin-dependent kinase 6 inhibitor) (p18-INK4c) (p18-INK6) | Interacts strongly with CDK6, weakly with CDK4. Inhibits cell growth and proliferation with a correlated dependence on endogenous retinoblastoma protein RB. |
Q9Y2B0 | CNPY2 | T168 | Sugiyama | Protein canopy homolog 2 (MIR-interacting saposin-like protein) (Putative secreted protein Zsig9) (Transmembrane protein 4) | Positive regulator of neurite outgrowth by stabilizing myosin regulatory light chain (MRLC). It prevents MIR-mediated MRLC ubiquitination and its subsequent proteasomal degradation. |
P61513 | RPL37A | T78 | Sugiyama | Large ribosomal subunit protein eL43 (60S ribosomal protein L37a) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P61769 | B2M | T106 | Sugiyama | Beta-2-microglobulin [Cleaved into: Beta-2-microglobulin form pI 5.3] | Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. Exogenously applied M.tuberculosis EsxA or EsxA-EsxB (or EsxA expressed in host) binds B2M and decreases its export to the cell surface (total protein levels do not change), probably leading to defects in class I antigen presentation (PubMed:25356553). {ECO:0000269|PubMed:25356553}. |
Q8IWX8 | CHERP | Y903 | Sugiyama | Calcium homeostasis endoplasmic reticulum protein (ERPROT 213-21) (SR-related CTD-associated factor 6) | Involved in calcium homeostasis, growth and proliferation. {ECO:0000269|PubMed:10794731, ECO:0000269|PubMed:12656674}. |
Q96FW1 | OTUB1 | Y258 | Sugiyama | Ubiquitin thioesterase OTUB1 (EC 3.4.19.12) (Deubiquitinating enzyme OTUB1) (OTU domain-containing ubiquitin aldehyde-binding protein 1) (Otubain-1) (hOTU1) (Ubiquitin-specific-processing protease OTUB1) | Hydrolase that can specifically remove 'Lys-48'-linked conjugated ubiquitin from proteins and plays an important regulatory role at the level of protein turnover by preventing degradation (PubMed:12401499, PubMed:12704427, PubMed:14661020, PubMed:23827681). Regulator of T-cell anergy, a phenomenon that occurs when T-cells are rendered unresponsive to antigen rechallenge and no longer respond to their cognate antigen (PubMed:14661020). Acts via its interaction with RNF128/GRAIL, a crucial inductor of CD4 T-cell anergy (PubMed:14661020). Isoform 1 destabilizes RNF128, leading to prevent anergy (PubMed:14661020). In contrast, isoform 2 stabilizes RNF128 and promotes anergy (PubMed:14661020). Surprisingly, it regulates RNF128-mediated ubiquitination, but does not deubiquitinate polyubiquitinated RNF128 (PubMed:14661020). Deubiquitinates estrogen receptor alpha (ESR1) (PubMed:19383985). Mediates deubiquitination of 'Lys-48'-linked polyubiquitin chains, but not 'Lys-63'-linked polyubiquitin chains (PubMed:18954305, PubMed:19211026, PubMed:23827681). Not able to cleave di-ubiquitin (PubMed:18954305, PubMed:23827681). Also capable of removing NEDD8 from NEDD8 conjugates, but with a much lower preference compared to 'Lys-48'-linked ubiquitin (PubMed:18954305, PubMed:23827681). {ECO:0000269|PubMed:12401499, ECO:0000269|PubMed:12704427, ECO:0000269|PubMed:14661020, ECO:0000269|PubMed:18954305, ECO:0000269|PubMed:19211026, ECO:0000269|PubMed:19383985, ECO:0000269|PubMed:23827681}.; FUNCTION: Plays a key non-catalytic role in DNA repair regulation by inhibiting activity of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites (PubMed:20725033, PubMed:22325355). Inhibits RNF168 independently of ubiquitin thioesterase activity by binding and inhibiting UBE2N/UBC13, the E2 partner of RNF168, thereby limiting spreading of 'Lys-63'-linked histone H2A and H2AX marks (PubMed:20725033, PubMed:22325355). Inhibition occurs by binding to free ubiquitin: free ubiquitin acts as an allosteric regulator that increases affinity for UBE2N/UBC13 and disrupts interaction with UBE2V1 (PubMed:20725033, PubMed:22325355). The OTUB1-UBE2N/UBC13-free ubiquitin complex adopts a configuration that mimics a cleaved 'Lys48'-linked di-ubiquitin chain (PubMed:20725033, PubMed:22325355). Acts as a regulator of mTORC1 and mTORC2 complexes (PubMed:29382726, PubMed:35927303). When phosphorylated at Tyr-26, acts as an activator of the mTORC1 complex by mediating deubiquitination of RPTOR via a non-catalytic process: acts by binding and inhibiting the activity of the ubiquitin-conjugating enzyme E2 (UBE2D1/UBCH5A, UBE2W/UBC16 and UBE2N/UBC13), thereby preventing ubiquitination of RPTOR (PubMed:35927303). Can also act as an inhibitor of the mTORC1 and mTORC2 complexes in response to amino acids by mediating non-catalytic deubiquitination of DEPTOR (PubMed:29382726). {ECO:0000269|PubMed:20725033, ECO:0000269|PubMed:22325355, ECO:0000269|PubMed:29382726, ECO:0000269|PubMed:35927303}. |
Q9Y2T3 | GDA | Y441 | Sugiyama | Guanine deaminase (Guanase) (Guanine aminase) (EC 3.5.4.3) (Guanine aminohydrolase) (GAH) (p51-nedasin) | Catalyzes the hydrolytic deamination of guanine, producing xanthine and ammonia. {ECO:0000269|PubMed:10075721, ECO:0000269|PubMed:22662200}. |
Q99459 | CDC5L | Y788 | Sugiyama | Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5-related protein) | DNA-binding protein involved in cell cycle control. May act as a transcription activator. Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:11991638, PubMed:20176811, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154, PubMed:30728453). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR) (PubMed:20176811). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:10570151, ECO:0000269|PubMed:11082045, ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:18583928, ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:9038199, ECO:0000269|PubMed:9468527, ECO:0000269|PubMed:9632794, ECO:0000305|PubMed:33509932}. |
O95861 | BPNT1 | Y294 | Sugiyama | 3'(2'),5'-bisphosphate nucleotidase 1 (EC 3.1.3.7) (3'-phosphoadenosine 5'-phosphate phosphatase) (PAP phosphatase) (Bisphosphate 3'-nucleotidase 1) (BPntase 1) (HsPIP) (Inositol-polyphosphate 1-phosphatase) (EC 3.1.3.57) | Phosphatase that converts 3'(2')-phosphoadenosine 5'-phosphate (PAP) to AMP and inositol 1,4-bisphosphate (Ins(1,4)P2) to inositol 4-phosphate (PubMed:10675562). Is also able to hydrolyze adenosine 3'-phosphate 5'-phosphosulfate (PAPS) to adenosine 5'-phosphosulfate (APS) (By similarity). Probably prevents the toxic accumulation of PAP, a compound which inhibits a variety of proteins, including PAPS-utilizing enzymes such as sulfotransferases, and RNA processing enzymes. Could also play a role in inositol recycling and phosphoinositide metabolism. Is not active on 3'-AMP, inositol-1-phosphate and inositol-1,4,5-triphosphate (PubMed:10675562). {ECO:0000250|UniProtKB:Q9Z1N4, ECO:0000269|PubMed:10675562}. |
P17174 | GOT1 | Y400 | Sugiyama | Aspartate aminotransferase, cytoplasmic (cAspAT) (EC 2.6.1.1) (EC 2.6.1.3) (Cysteine aminotransferase, cytoplasmic) (Cysteine transaminase, cytoplasmic) (cCAT) (Glutamate oxaloacetate transaminase 1) (Transaminase A) | Biosynthesis of L-glutamate from L-aspartate or L-cysteine (PubMed:21900944). Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-mercaptopyruvate sulfurtransferase (3MST). Hydrogen sulfide is an important synaptic modulator and neuroprotectant in the brain. In addition, catalyzes (2S)-2-aminobutanoate, a by-product in the cysteine biosynthesis pathway (PubMed:27827456). {ECO:0000269|PubMed:16039064, ECO:0000269|PubMed:21900944, ECO:0000269|PubMed:27827456}. |
P35568 | IRS1 | Y1229 | SIGNOR | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P18615 | NELFE | Y367 | Sugiyama | Negative elongation factor E (NELF-E) (RNA-binding protein RD) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}. |
Q10567 | AP1B1 | S936 | Sugiyama | AP-1 complex subunit beta-1 (Adaptor protein complex AP-1 subunit beta-1) (Adaptor-related protein complex 1 subunit beta-1) (Beta-1-adaptin) (Beta-adaptin 1) (Clathrin assembly protein complex 1 beta large chain) (Golgi adaptor HA1/AP1 adaptin beta subunit) | Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes (PubMed:31630791). The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. {ECO:0000269|PubMed:31630791}. |
P35268 | RPL22 | Y114 | Sugiyama | Large ribosomal subunit protein eL22 (60S ribosomal protein L22) (EBER-associated protein) (EAP) (Epstein-Barr virus small RNA-associated protein) (Heparin-binding protein HBp15) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P36954 | POLR2I | Y111 | Sugiyama | DNA-directed RNA polymerase II subunit RPB9 (RNA polymerase II subunit B9) (DNA-directed RNA polymerase II subunit I) (RNA polymerase II 14.5 kDa subunit) (RPB14.5) | Core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. POLR2I/RPB9 is part of the upper jaw surrounding the central large cleft and thought to grab the incoming DNA template. {ECO:0000250|UniProtKB:P27999, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:9852112}. |
P36954 | POLR2I | Y112 | Sugiyama | DNA-directed RNA polymerase II subunit RPB9 (RNA polymerase II subunit B9) (DNA-directed RNA polymerase II subunit I) (RNA polymerase II 14.5 kDa subunit) (RPB14.5) | Core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. POLR2I/RPB9 is part of the upper jaw surrounding the central large cleft and thought to grab the incoming DNA template. {ECO:0000250|UniProtKB:P27999, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:9852112}. |
P07108 | DBI | Y74 | Sugiyama | Acyl-CoA-binding protein (ACBP) (Diazepam-binding inhibitor) (DBI) (Endozepine) (EP) | Binds medium- and long-chain acyl-CoA esters with very high affinity and may function as an intracellular carrier of acyl-CoA esters. It is also able to displace diazepam from the benzodiazepine (BZD) recognition site located on the GABA type A receptor. It is therefore possible that this protein also acts as a neuropeptide to modulate the action of the GABA receptor. |
Q8N806 | UBR7 | S411 | Sugiyama | Putative E3 ubiquitin-protein ligase UBR7 (EC 2.3.2.27) (N-recognin-7) (RING-type E3 ubiquitin transferase UBR7) | E3 ubiquitin-protein ligase which is a component of the N-end rule pathway. Recognizes and binds to proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation. {ECO:0000250}. |
P01350 | GAST | Y87 | GPS6|ELM|iPTMNet|EPSD | Gastrin [Cleaved into: Gastrin-71 (Gastrin component I); Gastrin-52 (G52); Big gastrin (Gastrin component II) (Gastrin-34) (G34); Gastrin (Gastrin component III) (Gastrin-17) (G17); Gastrin-14 (G14); Gastrin-6 (G6)] | Gastrin stimulates the stomach mucosa to produce and secrete hydrochloric acid and the pancreas to secrete its digestive enzymes. It also stimulates smooth muscle contraction and increases blood circulation and water secretion in the stomach and intestine. |
Q16401 | PSMD5 | Y490 | Sugiyama | 26S proteasome non-ATPase regulatory subunit 5 (26S protease subunit S5 basic) (26S proteasome subunit S5B) | Acts as a chaperone during the assembly of the 26S proteasome, specifically of the base subcomplex of the PA700/19S regulatory complex (RC). In the initial step of the base subcomplex assembly is part of an intermediate PSMD5:PSMC2:PSMC1:PSMD2 module which probably assembles with a PSMD10:PSMC4:PSMC5:PAAF1 module followed by dissociation of PSMD5. {ECO:0000269|PubMed:19412159, ECO:0000269|PubMed:19490896}. |
Q16401 | PSMD5 | Y491 | Sugiyama | 26S proteasome non-ATPase regulatory subunit 5 (26S protease subunit S5 basic) (26S proteasome subunit S5B) | Acts as a chaperone during the assembly of the 26S proteasome, specifically of the base subcomplex of the PA700/19S regulatory complex (RC). In the initial step of the base subcomplex assembly is part of an intermediate PSMD5:PSMC2:PSMC1:PSMD2 module which probably assembles with a PSMD10:PSMC4:PSMC5:PAAF1 module followed by dissociation of PSMD5. {ECO:0000269|PubMed:19412159, ECO:0000269|PubMed:19490896}. |
Q96PK6 | RBM14 | Y655 | Sugiyama | RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) | Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}. |
P13688 | CEACAM1 | S512 | PSP | Cell adhesion molecule CEACAM1 (Biliary glycoprotein 1) (BGP-1) (Carcinoembryonic antigen-related cell adhesion molecule 1) (CEA cell adhesion molecule 1) (CD antigen CD66a) | [Isoform 1]: Cell adhesion protein that mediates homophilic cell adhesion in a calcium-independent manner (By similarity). Plays a role as coinhibitory receptor in immune response, insulin action and also functions as an activator during angiogenesis (PubMed:18424730, PubMed:23696226, PubMed:25363763). Its coinhibitory receptor function is phosphorylation- and PTPN6 -dependent, which in turn, suppress signal transduction of associated receptors by dephosphorylation of their downstream effectors. Plays a role in immune response, of T cells, natural killer (NK) and neutrophils (PubMed:18424730, PubMed:23696226). Upon TCR/CD3 complex stimulation, inhibits TCR-mediated cytotoxicity by blocking granule exocytosis by mediating homophilic binding to adjacent cells, allowing interaction with and phosphorylation by LCK and interaction with the TCR/CD3 complex which recruits PTPN6 resulting in dephosphorylation of CD247 and ZAP70 (PubMed:18424730). Also inhibits T cell proliferation and cytokine production through inhibition of JNK cascade and plays a crucial role in regulating autoimmunity and anti-tumor immunity by inhibiting T cell through its interaction with HAVCR2 (PubMed:25363763). Upon natural killer (NK) cells activation, inhibit KLRK1-mediated cytolysis of CEACAM1-bearing tumor cells by trans-homophilic interactions with CEACAM1 on the target cell and lead to cis-interaction between CEACAM1 and KLRK1, allowing PTPN6 recruitment and then VAV1 dephosphorylation (PubMed:23696226). Upon neutrophils activation negatively regulates IL1B production by recruiting PTPN6 to a SYK-TLR4-CEACAM1 complex, that dephosphorylates SYK, reducing the production of reactive oxygen species (ROS) and lysosome disruption, which in turn, reduces the activity of the inflammasome. Down-regulates neutrophil production by acting as a coinhibitory receptor for CSF3R by down-regulating the CSF3R-STAT3 pathway through recruitment of PTPN6 that dephosphorylates CSF3R (By similarity). Also regulates insulin action by promoting INS clearance and regulating lipogenesis in liver through regulating insulin signaling (By similarity). Upon INS stimulation, undergoes phosphorylation by INSR leading to INS clearance by increasing receptor-mediated insulin endocytosis. This inernalization promotes interaction with FASN leading to receptor-mediated insulin degradation and to reduction of FASN activity leading to negative regulation of fatty acid synthesis. INSR-mediated phosphorylation also provokes a down-regulation of cell proliferation through SHC1 interaction resulting in decrease coupling of SHC1 to the MAPK3/ERK1-MAPK1/ERK2 and phosphatidylinositol 3-kinase pathways (By similarity). Functions as activator in angiogenesis by promoting blood vessel remodeling through endothelial cell differentiation and migration and in arteriogenesis by increasing the number of collateral arteries and collateral vessel calibers after ischemia. Also regulates vascular permeability through the VEGFR2 signaling pathway resulting in control of nitric oxide production (By similarity). Down-regulates cell growth in response to EGF through its interaction with SHC1 that mediates interaction with EGFR resulting in decrease coupling of SHC1 to the MAPK3/ERK1-MAPK1/ERK2 pathway (By similarity). Negatively regulates platelet aggregation by decreasing platelet adhesion on type I collagen through the GPVI-FcRgamma complex (By similarity). Inhibits cell migration and cell scattering through interaction with FLNA; interferes with the interaction of FLNA with RALA (PubMed:16291724). Mediates bile acid transport activity in a phosphorylation dependent manner (By similarity). Negatively regulates osteoclastogenesis (By similarity). {ECO:0000250|UniProtKB:P16573, ECO:0000250|UniProtKB:P31809, ECO:0000269|PubMed:16291724, ECO:0000269|PubMed:18424730, ECO:0000269|PubMed:23696226, ECO:0000269|PubMed:25363763}.; FUNCTION: [Isoform 8]: Cell adhesion protein that mediates homophilic cell adhesion in a calcium-independent manner (By similarity). Promotes populations of T cells regulating IgA production and secretion associated with control of the commensal microbiota and resistance to enteropathogens (By similarity). {ECO:0000250|UniProtKB:P16573, ECO:0000250|UniProtKB:P31809}. |
P36382 | GJA5 | S345 | iPTMNet|EPSD | Gap junction alpha-5 protein (Connexin-40) (Cx40) | One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. |
O14958 | CASQ2 | S385 | SIGNOR|iPTMNet | Calsequestrin-2 (Calsequestrin, cardiac muscle isoform) | Calsequestrin is a high-capacity, moderate affinity, calcium-binding protein and thus acts as an internal calcium store in muscle. Calcium ions are bound by clusters of acidic residues at the protein surface, especially at the interface between subunits. Can bind around 60 Ca(2+) ions. Regulates the release of lumenal Ca(2+) via the calcium release channel RYR2; this plays an important role in triggering muscle contraction. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. {ECO:0000269|PubMed:16908766, ECO:0000269|PubMed:17881003, ECO:0000269|PubMed:18399795, ECO:0000269|PubMed:21416293}. |
O75390 | CS | S453 | Sugiyama | Citrate synthase, mitochondrial (EC 2.3.3.1) (Citrate (Si)-synthase) | Key enzyme of the Krebs tricarboxylic acid cycle which catalyzes the synthesis of citrate from acetyl coenzyme A and oxaloacetate. {ECO:0000305}. |
P40925 | MDH1 | T321 | Sugiyama | Malate dehydrogenase, cytoplasmic (EC 1.1.1.37) (Aromatic alpha-keto acid reductase) (KAR) (EC 1.1.1.96) (Cytosolic malate dehydrogenase) | Catalyzes the reduction of aromatic alpha-keto acids in the presence of NADH (PubMed:2449162, PubMed:3052244). Plays essential roles in the malate-aspartate shuttle and the tricarboxylic acid cycle, important in mitochondrial NADH supply for oxidative phosphorylation (PubMed:31538237). Catalyzes the reduction of 2-oxoglutarate to 2-hydroxyglutarate, leading to elevated reactive oxygen species (ROS) (PubMed:34012073). {ECO:0000269|PubMed:2449162, ECO:0000269|PubMed:3052244, ECO:0000269|PubMed:31538237}. |
Q9NZV8 | KCND2 | S616 | SIGNOR | A-type voltage-gated potassium channel KCND2 (Potassium voltage-gated channel subfamily D member 2) (Voltage-gated potassium channel subunit Kv4.2) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Mediates the major part of the dendritic A-type current I(SA) in brain neurons (By similarity). This current is activated at membrane potentials that are below the threshold for action potentials. It regulates neuronal excitability, prolongs the latency before the first spike in a series of action potentials, regulates the frequency of repetitive action potential firing, shortens the duration of action potentials and regulates the back-propagation of action potentials from the neuronal cell body to the dendrites. Contributes to the regulation of the circadian rhythm of action potential firing in suprachiasmatic nucleus neurons, which regulates the circadian rhythm of locomotor activity (By similarity). Functions downstream of the metabotropic glutamate receptor GRM5 and plays a role in neuronal excitability and in nociception mediated by activation of GRM5 (By similarity). Mediates the transient outward current I(to) in rodent heart left ventricle apex cells, but not in human heart, where this current is mediated by another family member. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient (PubMed:10551270, PubMed:11507158, PubMed:14623880, PubMed:14695263, PubMed:14980201, PubMed:15454437, PubMed:16934482, PubMed:19171772, PubMed:24501278, PubMed:24811166, PubMed:34552243, PubMed:35597238). The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:11507158). Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCND2 and KCND3; channel properties depend on the type of pore-forming alpha subunits that are part of the channel. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes. Interaction with specific isoforms of the regulatory subunits KCNIP1, KCNIP2, KCNIP3 or KCNIP4 strongly increases expression at the cell surface and thereby increases channel activity; it modulates the kinetics of channel activation and inactivation, shifts the threshold for channel activation to more negative voltage values, shifts the threshold for inactivation to less negative voltages and accelerates recovery after inactivation (PubMed:14623880, PubMed:14980201, PubMed:15454437, PubMed:19171772, PubMed:24501278, PubMed:24811166). Likewise, interaction with DPP6 or DPP10 promotes expression at the cell membrane and regulates both channel characteristics and activity (By similarity). Upon depolarization, the channel goes from a resting closed state (C state) to an activated but non-conducting state (C* state), from there, the channel may either inactivate (I state) or open (O state) (PubMed:35597238). {ECO:0000250|UniProtKB:Q63881, ECO:0000250|UniProtKB:Q9Z0V2, ECO:0000269|PubMed:10551270, ECO:0000269|PubMed:10729221, ECO:0000269|PubMed:11507158, ECO:0000269|PubMed:14623880, ECO:0000269|PubMed:14695263, ECO:0000269|PubMed:14980201, ECO:0000269|PubMed:15454437, ECO:0000269|PubMed:16934482, ECO:0000269|PubMed:19171772, ECO:0000269|PubMed:24501278, ECO:0000269|PubMed:24811166, ECO:0000269|PubMed:34552243, ECO:0000269|PubMed:35597238}. |
P15927 | RPA2 | Y256 | Sugiyama | Replication protein A 32 kDa subunit (RP-A p32) (Replication factor A protein 2) (RF-A protein 2) (Replication protein A 34 kDa subunit) (RP-A p34) | As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage. In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP activates the ATR kinase a master regulator of the DNA damage response. It is required for the recruitment of the DNA double-strand break repair factors RAD51 and RAD52 to chromatin in response to DNA damage. Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair. Also plays a role in base excision repair (BER) probably through interaction with UNG. Also recruits SMARCAL1/HARP, which is involved in replication fork restart, to sites of DNA damage. May also play a role in telomere maintenance. RPA stimulates 5'-3' helicase activity of BRIP1/FANCJ (PubMed:17596542). {ECO:0000269|PubMed:15205463, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:17765923, ECO:0000269|PubMed:17959650, ECO:0000269|PubMed:19116208, ECO:0000269|PubMed:20154705, ECO:0000269|PubMed:21504906, ECO:0000269|PubMed:2406247, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:7697716, ECO:0000269|PubMed:7700386, ECO:0000269|PubMed:8702565, ECO:0000269|PubMed:9430682, ECO:0000269|PubMed:9765279}. |
Q15293 | RCN1 | T318 | Sugiyama | Reticulocalbin-1 | May regulate calcium-dependent activities in the endoplasmic reticulum lumen or post-ER compartment. |
P15927 | RPA2 | S257 | Sugiyama | Replication protein A 32 kDa subunit (RP-A p32) (Replication factor A protein 2) (RF-A protein 2) (Replication protein A 34 kDa subunit) (RP-A p34) | As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage. In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP activates the ATR kinase a master regulator of the DNA damage response. It is required for the recruitment of the DNA double-strand break repair factors RAD51 and RAD52 to chromatin in response to DNA damage. Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair. Also plays a role in base excision repair (BER) probably through interaction with UNG. Also recruits SMARCAL1/HARP, which is involved in replication fork restart, to sites of DNA damage. May also play a role in telomere maintenance. RPA stimulates 5'-3' helicase activity of BRIP1/FANCJ (PubMed:17596542). {ECO:0000269|PubMed:15205463, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:17765923, ECO:0000269|PubMed:17959650, ECO:0000269|PubMed:19116208, ECO:0000269|PubMed:20154705, ECO:0000269|PubMed:21504906, ECO:0000269|PubMed:2406247, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:7697716, ECO:0000269|PubMed:7700386, ECO:0000269|PubMed:8702565, ECO:0000269|PubMed:9430682, ECO:0000269|PubMed:9765279}. |
P60510 | PPP4C | T293 | Sugiyama | Serine/threonine-protein phosphatase 4 catalytic subunit (PP4C) (Pp4) (EC 3.1.3.16) (Protein phosphatase X) (PP-X) | Protein phosphatase that is involved in many processes such as microtubule organization at centrosomes, maturation of spliceosomal snRNPs, apoptosis, DNA repair, tumor necrosis factor (TNF)-alpha signaling, activation of c-Jun N-terminal kinase MAPK8, regulation of histone acetylation, DNA damage checkpoint signaling, NF-kappa-B activation and cell migration. The PPP4C-PPP4R1 PP4 complex may play a role in dephosphorylation and regulation of HDAC3. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on Ser-140 (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Dephosphorylates NDEL1 at CDK1 phosphorylation sites and negatively regulates CDK1 activity in interphase (By similarity). In response to DNA damage, catalyzes RPA2 dephosphorylation, an essential step for DNA repair since it allows the efficient RPA2-mediated recruitment of RAD51 to chromatin. {ECO:0000250, ECO:0000269|PubMed:11698396, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:12934076, ECO:0000269|PubMed:1336397, ECO:0000269|PubMed:15805470, ECO:0000269|PubMed:18347064, ECO:0000269|PubMed:18487071, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:18758438, ECO:0000269|PubMed:20154705}. |
P52298 | NCBP2 | Y142 | Sugiyama | Nuclear cap-binding protein subunit 2 (20 kDa nuclear cap-binding protein) (Cell proliferation-inducing gene 55 protein) (NCBP 20 kDa subunit) (CBP20) (NCBP-interacting protein 1) (NIP1) | Component of the cap-binding complex (CBC), which binds co-transcriptionally to the 5' cap of pre-mRNAs and is involved in various processes such as pre-mRNA splicing, translation regulation, nonsense-mediated mRNA decay, RNA-mediated gene silencing (RNAi) by microRNAs (miRNAs) and mRNA export. The CBC complex is involved in mRNA export from the nucleus via its interaction with ALYREF/THOC4/ALY, leading to the recruitment of the mRNA export machinery to the 5' end of mRNA and to mRNA export in a 5' to 3' direction through the nuclear pore. The CBC complex is also involved in mediating U snRNA and intronless mRNAs export from the nucleus. The CBC complex is essential for a pioneer round of mRNA translation, before steady state translation when the CBC complex is replaced by cytoplasmic cap-binding protein eIF4E. The pioneer round of mRNA translation mediated by the CBC complex plays a central role in nonsense-mediated mRNA decay (NMD), NMD only taking place in mRNAs bound to the CBC complex, but not on eIF4E-bound mRNAs. The CBC complex enhances NMD in mRNAs containing at least one exon-junction complex (EJC) via its interaction with UPF1, promoting the interaction between UPF1 and UPF2. The CBC complex is also involved in 'failsafe' NMD, which is independent of the EJC complex, while it does not participate in Staufen-mediated mRNA decay (SMD). During cell proliferation, the CBC complex is also involved in microRNAs (miRNAs) biogenesis via its interaction with SRRT/ARS2, thereby being required for miRNA-mediated RNA interference. The CBC complex also acts as a negative regulator of PARN, thereby acting as an inhibitor of mRNA deadenylation. In the CBC complex, NCBP2/CBP20 recognizes and binds capped RNAs (m7GpppG-capped RNA) but requires NCBP1/CBP80 to stabilize the movement of its N-terminal loop and lock the CBC into a high affinity cap-binding state with the cap structure. The conventional cap-binding complex with NCBP2 binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus (PubMed:26382858). {ECO:0000269|PubMed:11551508, ECO:0000269|PubMed:15361857, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:17363367, ECO:0000269|PubMed:17873884, ECO:0000269|PubMed:18369367, ECO:0000269|PubMed:19632182, ECO:0000269|PubMed:26382858}. |
Q86X55 | CARM1 | S595 | SIGNOR | Histone-arginine methyltransferase CARM1 (EC 2.1.1.319) (Coactivator-associated arginine methyltransferase 1) (Protein arginine N-methyltransferase 4) | Methylates (mono- and asymmetric dimethylation) the guanidino nitrogens of arginyl residues in several proteins involved in DNA packaging, transcription regulation, pre-mRNA splicing, and mRNA stability (PubMed:12237300, PubMed:16497732, PubMed:19405910). Recruited to promoters upon gene activation together with histone acetyltransferases from EP300/P300 and p160 families, methylates histone H3 at 'Arg-17' (H3R17me), forming mainly asymmetric dimethylarginine (H3R17me2a), leading to activation of transcription via chromatin remodeling (PubMed:12237300, PubMed:16497732, PubMed:19405910). During nuclear hormone receptor activation and TCF7L2/TCF4 activation, acts synergically with EP300/P300 and either one of the p160 histone acetyltransferases NCOA1/SRC1, NCOA2/GRIP1 and NCOA3/ACTR or CTNNB1/beta-catenin to activate transcription (By similarity). During myogenic transcriptional activation, acts together with NCOA3/ACTR as a coactivator for MEF2C (By similarity). During monocyte inflammatory stimulation, acts together with EP300/P300 as a coactivator for NF-kappa-B (By similarity). Acts as a coactivator for PPARG, promotes adipocyte differentiation and the accumulation of brown fat tissue (By similarity). Plays a role in the regulation of pre-mRNA alternative splicing by methylation of splicing factors (By similarity). Also seems to be involved in p53/TP53 transcriptional activation (By similarity). Methylates EP300/P300, both at 'Arg-2142', which may loosen its interaction with NCOA2/GRIP1, and at 'Arg-580' and 'Arg-604' in the KIX domain, which impairs its interaction with CREB and inhibits CREB-dependent transcriptional activation (PubMed:15731352). Also methylates arginine residues in RNA-binding proteins PABPC1, ELAVL1 and ELAV4, which may affect their mRNA-stabilizing properties and the half-life of their target mRNAs (By similarity). Acts as a transcriptional coactivator of ACACA/acetyl-CoA carboxylase by enriching H3R17 methylation at its promoter, thereby positively regulating fatty acid synthesis (By similarity). Independently of its methyltransferase activity, involved in replication fork progression: promotes PARP1 recruitment to replication forks, leading to poly-ADP-ribosylation of chromatin at replication forks and reduced fork speed (PubMed:33412112). {ECO:0000250|UniProtKB:Q9WVG6, ECO:0000269|PubMed:12237300, ECO:0000269|PubMed:15731352, ECO:0000269|PubMed:16497732, ECO:0000269|PubMed:19405910, ECO:0000269|PubMed:33412112}. |
Q96DB5 | RMDN1 | T301 | Sugiyama | Regulator of microtubule dynamics protein 1 (RMD-1) (hRMD-1) (Protein FAM82B) | None |
Q00526 | CDK3 | S292 | Sugiyama | Cyclin-dependent kinase 3 (EC 2.7.11.22) (Cell division protein kinase 3) | Serine/threonine-protein kinase that plays a critical role in the control of the eukaryotic cell cycle; involved in G0-G1 and G1-S cell cycle transitions. Interacts with CCNC/cyclin-C during interphase. Phosphorylates histone H1, ATF1, RB1 and CABLES1. ATF1 phosphorylation triggers ATF1 transactivation and transcriptional activities, and promotes cell proliferation and transformation. CDK3/cyclin-C mediated RB1 phosphorylation is required for G0-G1 transition. Promotes G1-S transition probably by contributing to the activation of E2F1, E2F2 and E2F3 in a RB1-independent manner. {ECO:0000269|PubMed:15084261, ECO:0000269|PubMed:18794154, ECO:0000269|PubMed:8846921}. |
Q00534 | CDK6 | S312 | Sugiyama | Cyclin-dependent kinase 6 (EC 2.7.11.22) (Cell division protein kinase 6) (Serine/threonine-protein kinase PLSTIRE) | Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and negatively regulates cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans. May play a role in the centrosome organization during the cell cycle phases (PubMed:23918663). {ECO:0000269|PubMed:12833137, ECO:0000269|PubMed:14985467, ECO:0000269|PubMed:15254224, ECO:0000269|PubMed:15809340, ECO:0000269|PubMed:17420273, ECO:0000269|PubMed:17431401, ECO:0000269|PubMed:20333249, ECO:0000269|PubMed:20668294, ECO:0000269|PubMed:23918663, ECO:0000269|PubMed:8114739}. |
P62888 | RPL30 | S102 | Sugiyama | Large ribosomal subunit protein eL30 (60S ribosomal protein L30) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q9Y4P3 | TBL2 | T433 | GPS6|EPSD | Transducin beta-like protein 2 (WS beta-transducin repeats protein) (WS-betaTRP) (Williams-Beuren syndrome chromosomal region 13 protein) | None |
Q9H7E9 | C8orf33 | T216 | Sugiyama | UPF0488 protein C8orf33 | None |
Q15120 | PDK3 | S393 | Sugiyama | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 3, mitochondrial (EC 2.7.11.2) (Pyruvate dehydrogenase kinase isoform 3) | Inhibits pyruvate dehydrogenase activity by phosphorylation of the E1 subunit PDHA1, and thereby regulates glucose metabolism and aerobic respiration. Can also phosphorylate PDHA2. Decreases glucose utilization and increases fat metabolism in response to prolonged fasting, and as adaptation to a high-fat diet. Plays a role in glucose homeostasis and in maintaining normal blood glucose levels in function of nutrient levels and under starvation. Plays a role in the generation of reactive oxygen species. {ECO:0000269|PubMed:10748134, ECO:0000269|PubMed:11486000, ECO:0000269|PubMed:15861126, ECO:0000269|PubMed:16436377, ECO:0000269|PubMed:17683942, ECO:0000269|PubMed:18718909, ECO:0000269|PubMed:22865452}. |
Q16816 | PHKG1 | T374 | Sugiyama | Phosphorylase b kinase gamma catalytic chain, skeletal muscle/heart isoform (PHK-gamma-M) (EC 2.7.11.19) (Phosphorylase kinase subunit gamma-1) (Serine/threonine-protein kinase PHKG1) (EC 2.7.11.1, EC 2.7.11.26) | Catalytic subunit of the phosphorylase b kinase (PHK), which mediates the neural and hormonal regulation of glycogen breakdown (glycogenolysis) by phosphorylating and thereby activating glycogen phosphorylase. In vitro, phosphorylates PYGM, TNNI3, MAPT/TAU, GAP43 and NRGN/RC3 (By similarity). {ECO:0000250}. |
Q9Y5L4 | TIMM13 | S81 | Sugiyama | Mitochondrial import inner membrane translocase subunit Tim13 | Mitochondrial intermembrane chaperone that participates in the import and insertion of some multi-pass transmembrane proteins into the mitochondrial inner membrane. Also required for the transfer of beta-barrel precursors from the TOM complex to the sorting and assembly machinery (SAM complex) of the outer membrane. Acts as a chaperone-like protein that protects the hydrophobic precursors from aggregation and guide them through the mitochondrial intermembrane space. The TIMM8-TIMM13 complex mediates the import of proteins such as TIMM23, SLC25A12/ARALAR1 and SLC25A13/ARALAR2, while the predominant TIMM9-TIMM10 70 kDa complex mediates the import of much more proteins. {ECO:0000269|PubMed:11489896, ECO:0000269|PubMed:15254020}. |
P60174 | TPI1 | S236 | Sugiyama | Triosephosphate isomerase (TIM) (EC 5.3.1.1) (Methylglyoxal synthase) (EC 4.2.3.3) (Triose-phosphate isomerase) | Triosephosphate isomerase is an extremely efficient metabolic enzyme that catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde-3-phosphate (G3P) in glycolysis and gluconeogenesis. {ECO:0000269|PubMed:18562316}.; FUNCTION: It is also responsible for the non-negligible production of methylglyoxal a reactive cytotoxic side-product that modifies and can alter proteins, DNA and lipids. {ECO:0000250|UniProtKB:P00939}. |
Q14974 | KPNB1 | T863 | Sugiyama | Importin subunit beta-1 (Importin-90) (Karyopherin subunit beta-1) (Nuclear factor p97) (Pore targeting complex 97 kDa subunit) (PTAC97) | Functions in nuclear protein import, either in association with an adapter protein, like an importin-alpha subunit, which binds to nuclear localization signals (NLS) in cargo substrates, or by acting as autonomous nuclear transport receptor (PubMed:10228156, PubMed:11682607, PubMed:11891849, PubMed:19386897, PubMed:20818336, PubMed:24699649, PubMed:7615630, PubMed:9687515). Acting autonomously, serves itself as NLS receptor (PubMed:10228156, PubMed:11682607, PubMed:11891849, PubMed:19386897, PubMed:20818336, PubMed:24699649, PubMed:7615630, PubMed:9687515). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:10228156, PubMed:11682607, PubMed:11891849, PubMed:19386897, PubMed:20818336, PubMed:24699649, PubMed:7615630, PubMed:9687515). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin (PubMed:10228156, PubMed:11682607, PubMed:11891849, PubMed:19386897, PubMed:20818336, PubMed:24699649, PubMed:7615630, PubMed:9687515). The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (PubMed:10228156, PubMed:11682607, PubMed:11891849, PubMed:19386897, PubMed:24699649, PubMed:7615630, PubMed:9687515). Mediates autonomously the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5 (PubMed:11682607, PubMed:9687515). In association with IPO7, mediates the nuclear import of H1 histone (PubMed:10228156). In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones (By similarity). Imports MRTFA, SNAI1 and PRKCI into the nucleus (PubMed:11891849, PubMed:19386897, PubMed:20818336, PubMed:24699649). {ECO:0000250|UniProtKB:P70168, ECO:0000269|PubMed:10228156, ECO:0000269|PubMed:11682607, ECO:0000269|PubMed:11891849, ECO:0000269|PubMed:19386897, ECO:0000269|PubMed:20818336, ECO:0000269|PubMed:24699649, ECO:0000269|PubMed:7615630, ECO:0000269|PubMed:9687515}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. {ECO:0000269|PubMed:16704975, ECO:0000269|PubMed:9405152, ECO:0000269|PubMed:9891055}. |
P38117 | ETFB | T241 | Sugiyama | Electron transfer flavoprotein subunit beta (Beta-ETF) | Heterodimeric electron transfer flavoprotein that accepts electrons from several mitochondrial dehydrogenases, including acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase (PubMed:15159392, PubMed:15975918, PubMed:25416781). It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (Probable). Required for normal mitochondrial fatty acid oxidation and normal amino acid metabolism (PubMed:12815589, PubMed:7912128). ETFB binds an AMP molecule that probably has a purely structural role (PubMed:15159392, PubMed:15975918, PubMed:8962055). {ECO:0000269|PubMed:12815589, ECO:0000269|PubMed:15159392, ECO:0000269|PubMed:15975918, ECO:0000269|PubMed:25416781, ECO:0000269|PubMed:7912128, ECO:0000269|PubMed:8962055, ECO:0000303|PubMed:17941859, ECO:0000305}. |
Q13895 | BYSL | S423 | Sugiyama | Bystin | Required for processing of 20S pre-rRNA precursor and biogenesis of 40S ribosomal subunits. May be required for trophinin-dependent regulation of cell adhesion during implantation of human embryos. {ECO:0000269|PubMed:17360433, ECO:0000269|PubMed:17381424}. |
Q01581 | HMGCS1 | T506 | Sugiyama | Hydroxymethylglutaryl-CoA synthase, cytoplasmic (HMG-CoA synthase) (EC 2.3.3.10) (3-hydroxy-3-methylglutaryl coenzyme A synthase) | Catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is converted by HMG-CoA reductase (HMGCR) into mevalonate, a precursor for cholesterol synthesis. {ECO:0000269|PubMed:7913309}. |
Q969X0 | RILPL2 | T197 | Sugiyama | RILP-like protein 2 (Rab-interacting lysosomal protein-like 2) (p40phox-binding protein) | Involved in cell shape and neuronal morphogenesis, positively regulating the establishment and maintenance of dendritic spines (By similarity). Plays a role in cellular protein transport, including protein transport away from primary cilia (By similarity). May function via activation of RAC1 and PAK1 (By similarity). {ECO:0000250|UniProtKB:Q6AYA0, ECO:0000250|UniProtKB:Q99LE1}. |
P04080 | CSTB | Y85 | Sugiyama | Cystatin-B (CPI-B) (Liver thiol proteinase inhibitor) (Stefin-B) | This is an intracellular thiol proteinase inhibitor. Tightly binding reversible inhibitor of cathepsins L, H and B. |
P37108 | SRP14 | T122 | ochoa | Signal recognition particle 14 kDa protein (SRP14) (18 kDa Alu RNA-binding protein) | Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:11089964). SRP9 together with SRP14 and the Alu portion of the SRP RNA, constitutes the elongation arrest domain of SRP (PubMed:11089964). The complex of SRP9 and SRP14 is required for SRP RNA binding (PubMed:11089964). {ECO:0000269|PubMed:11089964}. |
Q6Y7W6 | GIGYF2 | S1284 | ochoa | GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) | Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}. |
Q6ZS30 | NBEAL1 | S2679 | ochoa | Neurobeachin-like protein 1 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 16 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 17 protein) | None |
Q9Y624 | F11R | S284 | ochoa|psp | Junctional adhesion molecule A (JAM-A) (Junctional adhesion molecule 1) (JAM-1) (Platelet F11 receptor) (Platelet adhesion molecule 1) (PAM-1) (CD antigen CD321) | Seems to play a role in epithelial tight junction formation. Appears early in primordial forms of cell junctions and recruits PARD3 (PubMed:11489913). The association of the PARD6-PARD3 complex may prevent the interaction of PARD3 with JAM1, thereby preventing tight junction assembly (By similarity). Plays a role in regulating monocyte transmigration involved in integrity of epithelial barrier (By similarity). Ligand for integrin alpha-L/beta-2 involved in memory T-cell and neutrophil transmigration (PubMed:11812992). Involved in platelet activation (PubMed:10753840). {ECO:0000250|UniProtKB:O88792, ECO:0000269|PubMed:10753840, ECO:0000269|PubMed:11489913, ECO:0000269|PubMed:11812992}.; FUNCTION: (Microbial infection) Acts as a receptor for Mammalian reovirus sigma-1. {ECO:0000269|PubMed:11239401}.; FUNCTION: (Microbial infection) Acts as a receptor for Human Rotavirus strain Wa. {ECO:0000269|PubMed:25481868}. |
M0QZK8 | None | S88 | ochoa | gamma-glutamylcyclotransferase (EC 4.3.2.9) | None |
O75223 | GGCT | S173 | ochoa | Gamma-glutamylcyclotransferase (EC 4.3.2.9) (Cytochrome c-releasing factor 21) | Catalyzes the formation of 5-oxoproline from gamma-glutamyl dipeptides and may play a significant role in glutathione homeostasis (PubMed:18515354). Induces release of cytochrome c from mitochondria with resultant induction of apoptosis (PubMed:16765912). {ECO:0000269|PubMed:16765912, ECO:0000269|PubMed:18515354}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-5619507 | Activation of HOX genes during differentiation | 1.089096e-09 | 8.963 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 1.089096e-09 | 8.963 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 1.751717e-09 | 8.757 |
R-HSA-171306 | Packaging Of Telomere Ends | 5.360176e-09 | 8.271 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 5.944087e-09 | 8.226 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 5.360176e-09 | 8.271 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 4.451307e-09 | 8.352 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 8.629635e-09 | 8.064 |
R-HSA-5334118 | DNA methylation | 1.062851e-08 | 7.974 |
R-HSA-69473 | G2/M DNA damage checkpoint | 1.010763e-08 | 7.995 |
R-HSA-212300 | PRC2 methylates histones and DNA | 1.486178e-08 | 7.828 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 2.212872e-08 | 7.655 |
R-HSA-774815 | Nucleosome assembly | 2.827191e-08 | 7.549 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 2.827191e-08 | 7.549 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 2.768263e-08 | 7.558 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 2.744317e-08 | 7.562 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 6.732516e-08 | 7.172 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 6.533232e-08 | 7.185 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 6.533232e-08 | 7.185 |
R-HSA-1500931 | Cell-Cell communication | 9.823306e-08 | 7.008 |
R-HSA-9710421 | Defective pyroptosis | 1.173530e-07 | 6.931 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 1.450589e-07 | 6.838 |
R-HSA-110331 | Cleavage of the damaged purine | 1.450589e-07 | 6.838 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 1.738382e-07 | 6.760 |
R-HSA-73927 | Depurination | 1.866393e-07 | 6.729 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 1.986061e-07 | 6.702 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 3.031692e-07 | 6.518 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 3.829487e-07 | 6.417 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 3.829487e-07 | 6.417 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 5.404719e-07 | 6.267 |
R-HSA-73864 | RNA Polymerase I Transcription | 5.324001e-07 | 6.274 |
R-HSA-912446 | Meiotic recombination | 6.540868e-07 | 6.184 |
R-HSA-9645723 | Diseases of programmed cell death | 6.095105e-07 | 6.215 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 6.482835e-07 | 6.188 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 6.009091e-07 | 6.221 |
R-HSA-73928 | Depyrimidination | 6.009091e-07 | 6.221 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 7.103858e-07 | 6.149 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 8.364709e-07 | 6.078 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 8.444524e-07 | 6.073 |
R-HSA-1221632 | Meiotic synapsis | 9.625110e-07 | 6.017 |
R-HSA-446728 | Cell junction organization | 9.446223e-07 | 6.025 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 9.805410e-07 | 6.009 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 1.392356e-06 | 5.856 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 1.824350e-06 | 5.739 |
R-HSA-5693606 | DNA Double Strand Break Response | 2.125653e-06 | 5.673 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 2.372263e-06 | 5.625 |
R-HSA-421270 | Cell-cell junction organization | 2.688295e-06 | 5.571 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 3.325064e-06 | 5.478 |
R-HSA-977225 | Amyloid fiber formation | 3.759827e-06 | 5.425 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 3.944683e-06 | 5.404 |
R-HSA-68875 | Mitotic Prophase | 3.934274e-06 | 5.405 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 4.971298e-06 | 5.304 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 6.092171e-06 | 5.215 |
R-HSA-8852135 | Protein ubiquitination | 7.044633e-06 | 5.152 |
R-HSA-3214815 | HDACs deacetylate histones | 7.207024e-06 | 5.142 |
R-HSA-68886 | M Phase | 7.480314e-06 | 5.126 |
R-HSA-157579 | Telomere Maintenance | 1.049826e-05 | 4.979 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 1.144760e-05 | 4.941 |
R-HSA-418990 | Adherens junctions interactions | 1.347953e-05 | 4.870 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 1.385478e-05 | 4.858 |
R-HSA-73886 | Chromosome Maintenance | 1.520368e-05 | 4.818 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 2.144166e-05 | 4.669 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 2.477210e-05 | 4.606 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 2.477210e-05 | 4.606 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 2.477210e-05 | 4.606 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 2.542309e-05 | 4.595 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 2.542309e-05 | 4.595 |
R-HSA-1500620 | Meiosis | 2.596316e-05 | 4.586 |
R-HSA-69620 | Cell Cycle Checkpoints | 2.974866e-05 | 4.527 |
R-HSA-69481 | G2/M Checkpoints | 2.990841e-05 | 4.524 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 3.474990e-05 | 4.459 |
R-HSA-211000 | Gene Silencing by RNA | 3.501405e-05 | 4.456 |
R-HSA-69002 | DNA Replication Pre-Initiation | 4.287905e-05 | 4.368 |
R-HSA-1474165 | Reproduction | 4.311371e-05 | 4.365 |
R-HSA-3214847 | HATs acetylate histones | 4.781801e-05 | 4.320 |
R-HSA-69278 | Cell Cycle, Mitotic | 5.111888e-05 | 4.291 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 5.113272e-05 | 4.291 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 6.364831e-05 | 4.196 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 6.490906e-05 | 4.188 |
R-HSA-1640170 | Cell Cycle | 6.518347e-05 | 4.186 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 6.976173e-05 | 4.156 |
R-HSA-162582 | Signal Transduction | 6.668389e-05 | 4.176 |
R-HSA-68867 | Assembly of the pre-replicative complex | 8.043301e-05 | 4.095 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 8.168906e-05 | 4.088 |
R-HSA-9609646 | HCMV Infection | 1.097056e-04 | 3.960 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 1.171980e-04 | 3.931 |
R-HSA-5693538 | Homology Directed Repair | 1.208035e-04 | 3.918 |
R-HSA-1059683 | Interleukin-6 signaling | 1.319877e-04 | 3.879 |
R-HSA-9609690 | HCMV Early Events | 1.344062e-04 | 3.872 |
R-HSA-1266738 | Developmental Biology | 1.402761e-04 | 3.853 |
R-HSA-9610379 | HCMV Late Events | 1.550522e-04 | 3.810 |
R-HSA-422475 | Axon guidance | 1.622861e-04 | 3.790 |
R-HSA-389948 | Co-inhibition by PD-1 | 1.745278e-04 | 3.758 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 1.802119e-04 | 3.744 |
R-HSA-9675108 | Nervous system development | 1.819641e-04 | 3.740 |
R-HSA-73884 | Base Excision Repair | 1.848919e-04 | 3.733 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 2.258934e-04 | 3.646 |
R-HSA-9018519 | Estrogen-dependent gene expression | 2.307003e-04 | 3.637 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 2.598570e-04 | 3.585 |
R-HSA-2559583 | Cellular Senescence | 3.084164e-04 | 3.511 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 3.120642e-04 | 3.506 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 3.390549e-04 | 3.470 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 3.569697e-04 | 3.447 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 4.029279e-04 | 3.395 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 4.029279e-04 | 3.395 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 4.042669e-04 | 3.393 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 4.328905e-04 | 3.364 |
R-HSA-156902 | Peptide chain elongation | 5.093213e-04 | 3.293 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 5.423004e-04 | 3.266 |
R-HSA-9824446 | Viral Infection Pathways | 5.865707e-04 | 3.232 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 6.720376e-04 | 3.173 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 6.720376e-04 | 3.173 |
R-HSA-9842860 | Regulation of endogenous retroelements | 6.747493e-04 | 3.171 |
R-HSA-156842 | Eukaryotic Translation Elongation | 8.032380e-04 | 3.095 |
R-HSA-75153 | Apoptotic execution phase | 8.252444e-04 | 3.083 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 8.276837e-04 | 3.082 |
R-HSA-69306 | DNA Replication | 8.276837e-04 | 3.082 |
R-HSA-72737 | Cap-dependent Translation Initiation | 8.983517e-04 | 3.047 |
R-HSA-72613 | Eukaryotic Translation Initiation | 8.983517e-04 | 3.047 |
R-HSA-437239 | Recycling pathway of L1 | 9.366555e-04 | 3.028 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 1.039955e-03 | 2.983 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 1.130779e-03 | 2.947 |
R-HSA-72764 | Eukaryotic Translation Termination | 1.130779e-03 | 2.947 |
R-HSA-73894 | DNA Repair | 1.096698e-03 | 2.960 |
R-HSA-8953897 | Cellular responses to stimuli | 1.380830e-03 | 2.860 |
R-HSA-8939211 | ESR-mediated signaling | 1.479709e-03 | 2.830 |
R-HSA-3249367 | STAT6-mediated induction of chemokines | 1.533878e-03 | 2.814 |
R-HSA-2262752 | Cellular responses to stress | 1.582628e-03 | 2.801 |
R-HSA-196025 | Formation of annular gap junctions | 1.591168e-03 | 2.798 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 1.601217e-03 | 2.796 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 1.601217e-03 | 2.796 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 1.753854e-03 | 2.756 |
R-HSA-2408557 | Selenocysteine synthesis | 1.825726e-03 | 2.739 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 1.869973e-03 | 2.728 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 2.030359e-03 | 2.692 |
R-HSA-192823 | Viral mRNA Translation | 2.123938e-03 | 2.673 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 2.149201e-03 | 2.668 |
R-HSA-190873 | Gap junction degradation | 2.176773e-03 | 2.662 |
R-HSA-112411 | MAPK1 (ERK2) activation | 2.176773e-03 | 2.662 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 2.316152e-03 | 2.635 |
R-HSA-373760 | L1CAM interactions | 2.447040e-03 | 2.611 |
R-HSA-6783589 | Interleukin-6 family signaling | 2.464999e-03 | 2.608 |
R-HSA-376176 | Signaling by ROBO receptors | 2.709029e-03 | 2.567 |
R-HSA-9711097 | Cellular response to starvation | 2.752125e-03 | 2.560 |
R-HSA-110056 | MAPK3 (ERK1) activation | 2.896199e-03 | 2.538 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 3.267403e-03 | 2.486 |
R-HSA-5688426 | Deubiquitination | 3.389660e-03 | 2.470 |
R-HSA-420597 | Nectin/Necl trans heterodimerization | 3.942693e-03 | 2.404 |
R-HSA-449147 | Signaling by Interleukins | 3.840164e-03 | 2.416 |
R-HSA-168255 | Influenza Infection | 3.925611e-03 | 2.406 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 4.557963e-03 | 2.341 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 4.564504e-03 | 2.341 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 4.700846e-03 | 2.328 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 5.505042e-03 | 2.259 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 5.563061e-03 | 2.255 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 6.100006e-03 | 2.215 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 6.713272e-03 | 2.173 |
R-HSA-199991 | Membrane Trafficking | 6.965332e-03 | 2.157 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 7.322064e-03 | 2.135 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 8.793179e-03 | 2.056 |
R-HSA-9856872 | Malate-aspartate shuttle | 8.960732e-03 | 2.048 |
R-HSA-195721 | Signaling by WNT | 9.406348e-03 | 2.027 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 9.479334e-03 | 2.023 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 9.479334e-03 | 2.023 |
R-HSA-9948299 | Ribosome-associated quality control | 1.072808e-02 | 1.969 |
R-HSA-392518 | Signal amplification | 1.074327e-02 | 1.969 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 9.735138e-03 | 2.012 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 1.074934e-02 | 1.969 |
R-HSA-446353 | Cell-extracellular matrix interactions | 1.074934e-02 | 1.969 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 1.074934e-02 | 1.969 |
R-HSA-3247509 | Chromatin modifying enzymes | 1.109908e-02 | 1.955 |
R-HSA-428930 | Thromboxane signalling through TP receptor | 1.158730e-02 | 1.936 |
R-HSA-429947 | Deadenylation of mRNA | 1.158730e-02 | 1.936 |
R-HSA-375276 | Peptide ligand-binding receptors | 1.160799e-02 | 1.935 |
R-HSA-400685 | Sema4D in semaphorin signaling | 1.317639e-02 | 1.880 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 1.393438e-02 | 1.856 |
R-HSA-3656535 | TGFBR1 LBD Mutants in Cancer | 1.397118e-02 | 1.855 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 1.409644e-02 | 1.851 |
R-HSA-380108 | Chemokine receptors bind chemokines | 1.478584e-02 | 1.830 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 1.678194e-02 | 1.775 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 1.678194e-02 | 1.775 |
R-HSA-6798695 | Neutrophil degranulation | 1.557668e-02 | 1.808 |
R-HSA-430116 | GP1b-IX-V activation signalling | 1.689135e-02 | 1.772 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 1.678194e-02 | 1.775 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 1.494731e-02 | 1.825 |
R-HSA-8953854 | Metabolism of RNA | 1.492074e-02 | 1.826 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 1.689135e-02 | 1.772 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 1.705156e-02 | 1.768 |
R-HSA-373755 | Semaphorin interactions | 1.521034e-02 | 1.818 |
R-HSA-2682334 | EPH-Ephrin signaling | 1.728751e-02 | 1.762 |
R-HSA-9827857 | Specification of primordial germ cells | 1.744023e-02 | 1.758 |
R-HSA-201556 | Signaling by ALK | 1.787457e-02 | 1.748 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 1.801935e-02 | 1.744 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 1.821497e-02 | 1.740 |
R-HSA-4839726 | Chromatin organization | 1.922192e-02 | 1.716 |
R-HSA-180292 | GAB1 signalosome | 2.013673e-02 | 1.696 |
R-HSA-2586552 | Signaling by Leptin | 2.079582e-02 | 1.682 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 2.174728e-02 | 1.663 |
R-HSA-168256 | Immune System | 2.218231e-02 | 1.654 |
R-HSA-1834941 | STING mediated induction of host immune responses | 2.307621e-02 | 1.637 |
R-HSA-4839744 | Signaling by APC mutants | 2.515298e-02 | 1.599 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 2.515298e-02 | 1.599 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 2.515298e-02 | 1.599 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 2.515298e-02 | 1.599 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 2.515298e-02 | 1.599 |
R-HSA-191650 | Regulation of gap junction activity | 2.966779e-02 | 1.528 |
R-HSA-9754119 | Drug-mediated inhibition of CDK4/CDK6 activity | 2.966779e-02 | 1.528 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 2.966779e-02 | 1.528 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 2.966779e-02 | 1.528 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 2.715924e-02 | 1.566 |
R-HSA-9764561 | Regulation of CDH1 Function | 2.762884e-02 | 1.559 |
R-HSA-5689880 | Ub-specific processing proteases | 2.695227e-02 | 1.569 |
R-HSA-157118 | Signaling by NOTCH | 2.568959e-02 | 1.590 |
R-HSA-198753 | ERK/MAPK targets | 2.970130e-02 | 1.527 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 2.996215e-02 | 1.523 |
R-HSA-4839748 | Signaling by AMER1 mutants | 2.996215e-02 | 1.523 |
R-HSA-4839735 | Signaling by AXIN mutants | 2.996215e-02 | 1.523 |
R-HSA-3928662 | EPHB-mediated forward signaling | 3.004529e-02 | 1.522 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 3.004529e-02 | 1.522 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 3.006832e-02 | 1.522 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 3.006832e-02 | 1.522 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 3.107672e-02 | 1.508 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 3.923610e-02 | 1.406 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 3.521986e-02 | 1.453 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 3.521986e-02 | 1.453 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 3.521986e-02 | 1.453 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 3.521986e-02 | 1.453 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 3.521986e-02 | 1.453 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 3.734075e-02 | 1.428 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 3.433376e-02 | 1.464 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 3.339321e-02 | 1.476 |
R-HSA-212165 | Epigenetic regulation of gene expression | 3.557740e-02 | 1.449 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 3.923610e-02 | 1.406 |
R-HSA-166208 | mTORC1-mediated signalling | 3.734075e-02 | 1.428 |
R-HSA-8873719 | RAB geranylgeranylation | 3.395220e-02 | 1.469 |
R-HSA-72312 | rRNA processing | 3.531990e-02 | 1.452 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 3.923610e-02 | 1.406 |
R-HSA-109582 | Hemostasis | 3.582171e-02 | 1.446 |
R-HSA-166520 | Signaling by NTRKs | 3.696645e-02 | 1.432 |
R-HSA-109581 | Apoptosis | 3.280331e-02 | 1.484 |
R-HSA-2408522 | Selenoamino acid metabolism | 3.543087e-02 | 1.451 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 3.928922e-02 | 1.406 |
R-HSA-8949664 | Processing of SMDT1 | 4.092020e-02 | 1.388 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 4.092020e-02 | 1.388 |
R-HSA-5683057 | MAPK family signaling cascades | 4.105912e-02 | 1.387 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 4.133327e-02 | 1.384 |
R-HSA-3000170 | Syndecan interactions | 4.154488e-02 | 1.381 |
R-HSA-9669937 | Drug resistance of KIT mutants | 4.337225e-02 | 1.363 |
R-HSA-9669921 | KIT mutants bind TKIs | 4.337225e-02 | 1.363 |
R-HSA-9669926 | Nilotinib-resistant KIT mutants | 4.337225e-02 | 1.363 |
R-HSA-9669917 | Imatinib-resistant KIT mutants | 4.337225e-02 | 1.363 |
R-HSA-9669914 | Dasatinib-resistant KIT mutants | 4.337225e-02 | 1.363 |
R-HSA-9669934 | Sunitinib-resistant KIT mutants | 4.337225e-02 | 1.363 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 4.337225e-02 | 1.363 |
R-HSA-9669924 | Masitinib-resistant KIT mutants | 4.337225e-02 | 1.363 |
R-HSA-9669936 | Sorafenib-resistant KIT mutants | 4.337225e-02 | 1.363 |
R-HSA-9669929 | Regorafenib-resistant KIT mutants | 4.337225e-02 | 1.363 |
R-HSA-157858 | Gap junction trafficking and regulation | 4.357269e-02 | 1.361 |
R-HSA-1433559 | Regulation of KIT signaling | 4.705514e-02 | 1.327 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 4.705514e-02 | 1.327 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 5.361475e-02 | 1.271 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 5.361475e-02 | 1.271 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 5.361475e-02 | 1.271 |
R-HSA-72187 | mRNA 3'-end processing | 5.326198e-02 | 1.274 |
R-HSA-8854518 | AURKA Activation by TPX2 | 4.931912e-02 | 1.307 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 5.007545e-02 | 1.300 |
R-HSA-72172 | mRNA Splicing | 4.523596e-02 | 1.345 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 4.845654e-02 | 1.315 |
R-HSA-2132295 | MHC class II antigen presentation | 4.505002e-02 | 1.346 |
R-HSA-525793 | Myogenesis | 5.569460e-02 | 1.254 |
R-HSA-420029 | Tight junction interactions | 5.072281e-02 | 1.295 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 5.361475e-02 | 1.271 |
R-HSA-9734767 | Developmental Cell Lineages | 5.183493e-02 | 1.285 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 5.072281e-02 | 1.295 |
R-HSA-162587 | HIV Life Cycle | 5.192691e-02 | 1.285 |
R-HSA-68877 | Mitotic Prometaphase | 5.469021e-02 | 1.262 |
R-HSA-162906 | HIV Infection | 5.278377e-02 | 1.277 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 4.653789e-02 | 1.332 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 5.361475e-02 | 1.271 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 5.603544e-02 | 1.252 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 5.569460e-02 | 1.254 |
R-HSA-1295596 | Spry regulation of FGF signaling | 5.361475e-02 | 1.271 |
R-HSA-416700 | Other semaphorin interactions | 5.361475e-02 | 1.271 |
R-HSA-391160 | Signal regulatory protein family interactions | 4.705514e-02 | 1.327 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 4.505002e-02 | 1.346 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 5.603544e-02 | 1.252 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 5.361475e-02 | 1.271 |
R-HSA-5357801 | Programmed Cell Death | 4.671834e-02 | 1.331 |
R-HSA-9678108 | SARS-CoV-1 Infection | 5.443760e-02 | 1.264 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 5.749336e-02 | 1.240 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 5.891860e-02 | 1.230 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 6.027208e-02 | 1.220 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 6.058749e-02 | 1.218 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 6.058749e-02 | 1.218 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 6.091908e-02 | 1.215 |
R-HSA-141424 | Amplification of signal from the kinetochores | 6.121008e-02 | 1.213 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 6.121008e-02 | 1.213 |
R-HSA-9645135 | STAT5 Activation | 6.125402e-02 | 1.213 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 6.125402e-02 | 1.213 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 6.210127e-02 | 1.207 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 6.243968e-02 | 1.205 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 8.486587e-02 | 1.071 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 8.486587e-02 | 1.071 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 8.486587e-02 | 1.071 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 8.486587e-02 | 1.071 |
R-HSA-3642279 | TGFBR2 MSI Frameshift Mutants in Cancer | 8.486587e-02 | 1.071 |
R-HSA-5619068 | Defective SLC2A10 causes arterial tortuosity syndrome (ATS) | 8.486587e-02 | 1.071 |
R-HSA-5632968 | Defective Mismatch Repair Associated With MSH6 | 8.486587e-02 | 1.071 |
R-HSA-5632927 | Defective Mismatch Repair Associated With MSH3 | 8.486587e-02 | 1.071 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 8.486587e-02 | 1.071 |
R-HSA-5619043 | Defective SLC2A1 causes GLUT1 deficiency syndrome 1 (GLUT1DS1) | 8.486587e-02 | 1.071 |
R-HSA-164940 | Nef mediated downregulation of MHC class I complex cell surface expression | 8.645517e-02 | 1.063 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 7.571953e-02 | 1.121 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 7.571953e-02 | 1.121 |
R-HSA-418217 | G beta:gamma signalling through PLC beta | 8.384963e-02 | 1.076 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 8.959100e-02 | 1.048 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 7.807804e-02 | 1.107 |
R-HSA-1433557 | Signaling by SCF-KIT | 7.898030e-02 | 1.102 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 7.807804e-02 | 1.107 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 7.350264e-02 | 1.134 |
R-HSA-190828 | Gap junction trafficking | 8.409161e-02 | 1.075 |
R-HSA-444473 | Formyl peptide receptors bind formyl peptides and many other ligands | 8.645517e-02 | 1.063 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 6.796045e-02 | 1.168 |
R-HSA-191859 | snRNP Assembly | 8.057953e-02 | 1.094 |
R-HSA-194441 | Metabolism of non-coding RNA | 8.057953e-02 | 1.094 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 7.202567e-02 | 1.143 |
R-HSA-8985947 | Interleukin-9 signaling | 8.645517e-02 | 1.063 |
R-HSA-1280218 | Adaptive Immune System | 8.609399e-02 | 1.065 |
R-HSA-418886 | Netrin mediated repulsion signals | 7.350264e-02 | 1.134 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 8.384963e-02 | 1.076 |
R-HSA-500657 | Presynaptic function of Kainate receptors | 8.384963e-02 | 1.076 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 7.211447e-02 | 1.142 |
R-HSA-8854214 | TBC/RABGAPs | 7.898030e-02 | 1.102 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 8.057953e-02 | 1.094 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 6.796045e-02 | 1.168 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 7.571953e-02 | 1.121 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 7.210092e-02 | 1.142 |
R-HSA-447041 | CHL1 interactions | 7.350264e-02 | 1.134 |
R-HSA-416476 | G alpha (q) signalling events | 8.665247e-02 | 1.062 |
R-HSA-983189 | Kinesins | 8.501909e-02 | 1.070 |
R-HSA-450294 | MAP kinase activation | 8.959100e-02 | 1.048 |
R-HSA-9958517 | SLC-mediated bile acid transport | 8.645517e-02 | 1.063 |
R-HSA-9022707 | MECP2 regulates transcription factors | 7.350264e-02 | 1.134 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 8.645517e-02 | 1.063 |
R-HSA-168898 | Toll-like Receptor Cascades | 8.923606e-02 | 1.049 |
R-HSA-9694516 | SARS-CoV-2 Infection | 6.790997e-02 | 1.168 |
R-HSA-9679506 | SARS-CoV Infections | 8.420835e-02 | 1.075 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 7.333935e-02 | 1.135 |
R-HSA-210745 | Regulation of gene expression in beta cells | 7.211447e-02 | 1.142 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 9.071441e-02 | 1.042 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 9.233487e-02 | 1.035 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 9.233487e-02 | 1.035 |
R-HSA-9707616 | Heme signaling | 9.429419e-02 | 1.026 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 9.482252e-02 | 1.023 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 9.482252e-02 | 1.023 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 9.482252e-02 | 1.023 |
R-HSA-6802949 | Signaling by RAS mutants | 9.482252e-02 | 1.023 |
R-HSA-9839373 | Signaling by TGFBR3 | 9.482252e-02 | 1.023 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 9.536033e-02 | 1.021 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 9.737669e-02 | 1.012 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 9.912739e-02 | 1.004 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 9.912739e-02 | 1.004 |
R-HSA-170984 | ARMS-mediated activation | 1.000277e-01 | 1.000 |
R-HSA-9020958 | Interleukin-21 signaling | 1.000277e-01 | 1.000 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 1.000277e-01 | 1.000 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 1.000277e-01 | 1.000 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 1.001335e-01 | 0.999 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 1.002704e-01 | 0.999 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 1.004373e-01 | 0.998 |
R-HSA-5663205 | Infectious disease | 1.008936e-01 | 0.996 |
R-HSA-389513 | Co-inhibition by CTLA4 | 1.011587e-01 | 0.995 |
R-HSA-445144 | Signal transduction by L1 | 1.011587e-01 | 0.995 |
R-HSA-9629569 | Protein hydroxylation | 1.011587e-01 | 0.995 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 1.042606e-01 | 0.982 |
R-HSA-5223345 | Miscellaneous transport and binding events | 1.042606e-01 | 0.982 |
R-HSA-114608 | Platelet degranulation | 1.048751e-01 | 0.979 |
R-HSA-389356 | Co-stimulation by CD28 | 1.062147e-01 | 0.974 |
R-HSA-68882 | Mitotic Anaphase | 1.082689e-01 | 0.965 |
R-HSA-164939 | Nef mediated downregulation of CD28 cell surface expression | 1.245621e-01 | 0.905 |
R-HSA-5632928 | Defective Mismatch Repair Associated With MSH2 | 1.245621e-01 | 0.905 |
R-HSA-9680187 | Signaling by extracellular domain mutants of KIT | 1.245621e-01 | 0.905 |
R-HSA-9669935 | Signaling by juxtamembrane domain KIT mutants | 1.245621e-01 | 0.905 |
R-HSA-3359473 | Defective MMADHC causes MMAHCD | 1.245621e-01 | 0.905 |
R-HSA-9632700 | Evasion of Oxidative Stress Induced Senescence Due to Defective p16INK4A binding... | 1.245621e-01 | 0.905 |
R-HSA-9669933 | Signaling by kinase domain mutants of KIT | 1.245621e-01 | 0.905 |
R-HSA-5619101 | Variant SLC6A20 contributes towards hyperglycinuria (HG) and iminoglycinuria (IG... | 1.245621e-01 | 0.905 |
R-HSA-9630794 | Evasion of Oncogene Induced Senescence Due to Defective p16INK4A binding to CDK4... | 1.245621e-01 | 0.905 |
R-HSA-5660686 | Variant SLC6A20 contributes towards hyperglycinuria (HG) and iminoglycinuria (IG... | 1.245621e-01 | 0.905 |
R-HSA-5619053 | Defective SLC22A5 causes systemic primary carnitine deficiency (CDSP) | 1.245621e-01 | 0.905 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 1.625388e-01 | 0.789 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 1.625388e-01 | 0.789 |
R-HSA-198765 | Signalling to ERK5 | 1.625388e-01 | 0.789 |
R-HSA-3642278 | Loss of Function of TGFBR2 in Cancer | 1.625388e-01 | 0.789 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 1.625388e-01 | 0.789 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 1.625388e-01 | 0.789 |
R-HSA-3828062 | Glycogen storage disease type 0 (muscle GYS1) | 1.625388e-01 | 0.789 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 1.625388e-01 | 0.789 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 1.625388e-01 | 0.789 |
R-HSA-3814836 | Glycogen storage disease type XV (GYG1) | 1.625388e-01 | 0.789 |
R-HSA-5655799 | Defective SLC40A1 causes hemochromatosis 4 (HFE4) (duodenum) | 1.625388e-01 | 0.789 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 1.625388e-01 | 0.789 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 1.625388e-01 | 0.789 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 1.625388e-01 | 0.789 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 1.625388e-01 | 0.789 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 1.625388e-01 | 0.789 |
R-HSA-3645790 | TGFBR2 Kinase Domain Mutants in Cancer | 1.625388e-01 | 0.789 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 1.590401e-01 | 0.798 |
R-HSA-3656253 | Defective EXT1 causes exostoses 1, TRPS2 and CHDS | 1.590401e-01 | 0.798 |
R-HSA-3656237 | Defective EXT2 causes exostoses 2 | 1.590401e-01 | 0.798 |
R-HSA-9669938 | Signaling by KIT in disease | 1.294893e-01 | 0.888 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 1.294893e-01 | 0.888 |
R-HSA-6803529 | FGFR2 alternative splicing | 1.294893e-01 | 0.888 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 1.394936e-01 | 0.855 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 1.497485e-01 | 0.825 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 1.497485e-01 | 0.825 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 1.113599e-01 | 0.953 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 1.338816e-01 | 0.873 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 1.498427e-01 | 0.824 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 1.580842e-01 | 0.801 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 1.308866e-01 | 0.883 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 1.374273e-01 | 0.862 |
R-HSA-72649 | Translation initiation complex formation | 1.441094e-01 | 0.841 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 1.578806e-01 | 0.802 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 1.542257e-01 | 0.812 |
R-HSA-8983432 | Interleukin-15 signaling | 1.590401e-01 | 0.798 |
R-HSA-6802957 | Oncogenic MAPK signaling | 1.233426e-01 | 0.909 |
R-HSA-73893 | DNA Damage Bypass | 1.121517e-01 | 0.950 |
R-HSA-177929 | Signaling by EGFR | 1.578806e-01 | 0.802 |
R-HSA-180746 | Nuclear import of Rev protein | 1.113599e-01 | 0.953 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 1.141422e-01 | 0.943 |
R-HSA-5689877 | Josephin domain DUBs | 1.141422e-01 | 0.943 |
R-HSA-1483248 | Synthesis of PIPs at the ER membrane | 1.287264e-01 | 0.890 |
R-HSA-173107 | Binding and entry of HIV virion | 1.141422e-01 | 0.943 |
R-HSA-5673000 | RAF activation | 1.113599e-01 | 0.953 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 1.110184e-01 | 0.955 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 1.603638e-01 | 0.795 |
R-HSA-9020558 | Interleukin-2 signaling | 1.287264e-01 | 0.890 |
R-HSA-1266695 | Interleukin-7 signaling | 1.602362e-01 | 0.795 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 1.497485e-01 | 0.825 |
R-HSA-9630750 | Evasion of Oncogene Induced Senescence Due to p16INK4A Defects | 1.245621e-01 | 0.905 |
R-HSA-190827 | Transport of connexins along the secretory pathway | 1.245621e-01 | 0.905 |
R-HSA-9632693 | Evasion of Oxidative Stress Induced Senescence Due to p16INK4A Defects | 1.245621e-01 | 0.905 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 1.625388e-01 | 0.789 |
R-HSA-9014843 | Interleukin-33 signaling | 1.625388e-01 | 0.789 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 1.590401e-01 | 0.798 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 1.590401e-01 | 0.798 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 1.197535e-01 | 0.922 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 1.417725e-01 | 0.848 |
R-HSA-9682385 | FLT3 signaling in disease | 1.261775e-01 | 0.899 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 1.431793e-01 | 0.844 |
R-HSA-5653656 | Vesicle-mediated transport | 1.280226e-01 | 0.893 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 1.243644e-01 | 0.905 |
R-HSA-9839394 | TGFBR3 expression | 1.602362e-01 | 0.795 |
R-HSA-5689896 | Ovarian tumor domain proteases | 1.338816e-01 | 0.873 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 1.394936e-01 | 0.855 |
R-HSA-190704 | Oligomerization of connexins into connexons | 1.245621e-01 | 0.905 |
R-HSA-352238 | Breakdown of the nuclear lamina | 1.245621e-01 | 0.905 |
R-HSA-9675132 | Diseases of cellular response to stress | 1.625388e-01 | 0.789 |
R-HSA-9630747 | Diseases of Cellular Senescence | 1.625388e-01 | 0.789 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 1.498427e-01 | 0.824 |
R-HSA-448424 | Interleukin-17 signaling | 1.364624e-01 | 0.865 |
R-HSA-9007101 | Rab regulation of trafficking | 1.327662e-01 | 0.877 |
R-HSA-1483255 | PI Metabolism | 1.337213e-01 | 0.874 |
R-HSA-210991 | Basigin interactions | 1.103040e-01 | 0.957 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 1.134380e-01 | 0.945 |
R-HSA-210990 | PECAM1 interactions | 1.287264e-01 | 0.890 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 1.439828e-01 | 0.842 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 1.437131e-01 | 0.843 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 1.103040e-01 | 0.957 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 1.158055e-01 | 0.936 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 1.158055e-01 | 0.936 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 1.158055e-01 | 0.936 |
R-HSA-9006925 | Intracellular signaling by second messengers | 1.321507e-01 | 0.879 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 1.497485e-01 | 0.825 |
R-HSA-8863678 | Neurodegenerative Diseases | 1.497485e-01 | 0.825 |
R-HSA-8853659 | RET signaling | 1.261775e-01 | 0.899 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 1.167246e-01 | 0.933 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 1.664889e-01 | 0.779 |
R-HSA-380287 | Centrosome maturation | 1.666059e-01 | 0.778 |
R-HSA-1169408 | ISG15 antiviral mechanism | 1.666059e-01 | 0.778 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 1.682082e-01 | 0.774 |
R-HSA-1257604 | PIP3 activates AKT signaling | 1.683252e-01 | 0.774 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 1.709388e-01 | 0.767 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 1.721653e-01 | 0.764 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 1.734404e-01 | 0.761 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 1.734404e-01 | 0.761 |
R-HSA-194138 | Signaling by VEGF | 1.740519e-01 | 0.759 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 1.746497e-01 | 0.758 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 1.746497e-01 | 0.758 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 1.746497e-01 | 0.758 |
R-HSA-75892 | Platelet Adhesion to exposed collagen | 1.746497e-01 | 0.758 |
R-HSA-9656223 | Signaling by RAF1 mutants | 1.750486e-01 | 0.757 |
R-HSA-5674135 | MAP2K and MAPK activation | 1.750486e-01 | 0.757 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 1.782041e-01 | 0.749 |
R-HSA-3359474 | Defective MMACHC causes MAHCC | 1.988702e-01 | 0.701 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 1.988702e-01 | 0.701 |
R-HSA-8865999 | MET activates PTPN11 | 1.988702e-01 | 0.701 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 1.988702e-01 | 0.701 |
R-HSA-3656532 | TGFBR1 KD Mutants in Cancer | 2.336275e-01 | 0.631 |
R-HSA-447038 | NrCAM interactions | 2.668789e-01 | 0.574 |
R-HSA-74713 | IRS activation | 2.668789e-01 | 0.574 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 2.668789e-01 | 0.574 |
R-HSA-9845620 | Enhanced binding of GP1BA variant to VWF multimer:collagen | 2.668789e-01 | 0.574 |
R-HSA-3304356 | SMAD2/3 Phosphorylation Motif Mutants in Cancer | 2.668789e-01 | 0.574 |
R-HSA-9846298 | Defective binding of VWF variant to GPIb:IX:V | 2.668789e-01 | 0.574 |
R-HSA-9673221 | Defective F9 activation | 2.668789e-01 | 0.574 |
R-HSA-5638303 | Inhibition of Signaling by Overexpressed EGFR | 2.986896e-01 | 0.525 |
R-HSA-5638302 | Signaling by Overexpressed Wild-Type EGFR in Cancer | 2.986896e-01 | 0.525 |
R-HSA-9652817 | Signaling by MAPK mutants | 2.986896e-01 | 0.525 |
R-HSA-5576894 | Phase 1 - inactivation of fast Na+ channels | 2.986896e-01 | 0.525 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 3.291218e-01 | 0.483 |
R-HSA-8964026 | Chylomicron clearance | 3.291218e-01 | 0.483 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 3.291218e-01 | 0.483 |
R-HSA-8964315 | G beta:gamma signalling through BTK | 2.065081e-01 | 0.685 |
R-HSA-114516 | Disinhibition of SNARE formation | 3.582352e-01 | 0.446 |
R-HSA-112412 | SOS-mediated signalling | 3.582352e-01 | 0.446 |
R-HSA-111367 | SLBP independent Processing of Histone Pre-mRNAs | 3.582352e-01 | 0.446 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 3.582352e-01 | 0.446 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 2.389098e-01 | 0.622 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 2.389098e-01 | 0.622 |
R-HSA-6783984 | Glycine degradation | 2.389098e-01 | 0.622 |
R-HSA-3560783 | Defective B4GALT7 causes EDS, progeroid type | 2.389098e-01 | 0.622 |
R-HSA-4420332 | Defective B3GALT6 causes EDSP2 and SEMDJL1 | 2.389098e-01 | 0.622 |
R-HSA-3560801 | Defective B3GAT3 causes JDSSDHD | 2.552119e-01 | 0.593 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 1.929184e-01 | 0.715 |
R-HSA-113418 | Formation of the Early Elongation Complex | 1.929184e-01 | 0.715 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 2.715335e-01 | 0.566 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 2.041609e-01 | 0.690 |
R-HSA-9615710 | Late endosomal microautophagy | 2.041609e-01 | 0.690 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 2.155494e-01 | 0.666 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 2.155494e-01 | 0.666 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 2.270674e-01 | 0.644 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 2.270674e-01 | 0.644 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 3.041086e-01 | 0.517 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 2.504282e-01 | 0.601 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 3.203057e-01 | 0.494 |
R-HSA-390522 | Striated Muscle Contraction | 2.622403e-01 | 0.581 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 2.198814e-01 | 0.658 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 2.198814e-01 | 0.658 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 2.860542e-01 | 0.544 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 3.523957e-01 | 0.453 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 2.256566e-01 | 0.647 |
R-HSA-8957275 | Post-translational protein phosphorylation | 2.132694e-01 | 0.671 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 3.460689e-01 | 0.461 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 2.484789e-01 | 0.605 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 2.631412e-01 | 0.580 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 3.087980e-01 | 0.510 |
R-HSA-5696398 | Nucleotide Excision Repair | 2.653003e-01 | 0.576 |
R-HSA-167169 | HIV Transcription Elongation | 3.460689e-01 | 0.461 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 2.389098e-01 | 0.622 |
R-HSA-2022928 | HS-GAG biosynthesis | 2.980282e-01 | 0.526 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 2.269525e-01 | 0.644 |
R-HSA-1227986 | Signaling by ERBB2 | 1.869262e-01 | 0.728 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 2.552119e-01 | 0.593 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 2.780196e-01 | 0.556 |
R-HSA-5358508 | Mismatch Repair | 2.715335e-01 | 0.566 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 2.980282e-01 | 0.526 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 3.460689e-01 | 0.461 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 3.580557e-01 | 0.446 |
R-HSA-373753 | Nephrin family interactions | 3.041086e-01 | 0.517 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 2.389098e-01 | 0.622 |
R-HSA-202040 | G-protein activation | 3.203057e-01 | 0.494 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 2.552119e-01 | 0.593 |
R-HSA-397795 | G-protein beta:gamma signalling | 2.504282e-01 | 0.601 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 3.340613e-01 | 0.476 |
R-HSA-3371568 | Attenuation phase | 3.460689e-01 | 0.461 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 1.818386e-01 | 0.740 |
R-HSA-110320 | Translesion Synthesis by POLH | 2.878422e-01 | 0.541 |
R-HSA-392170 | ADP signalling through P2Y purinoceptor 12 | 3.203057e-01 | 0.494 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 2.008901e-01 | 0.697 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 2.155494e-01 | 0.666 |
R-HSA-69236 | G1 Phase | 2.015750e-01 | 0.696 |
R-HSA-69231 | Cyclin D associated events in G1 | 2.015750e-01 | 0.696 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 1.988702e-01 | 0.701 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 2.336275e-01 | 0.631 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 3.582352e-01 | 0.446 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 2.155494e-01 | 0.666 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 3.203057e-01 | 0.494 |
R-HSA-6783310 | Fanconi Anemia Pathway | 2.106716e-01 | 0.676 |
R-HSA-169893 | Prolonged ERK activation events | 2.226624e-01 | 0.652 |
R-HSA-75157 | FasL/ CD95L signaling | 1.988702e-01 | 0.701 |
R-HSA-9636249 | Inhibition of nitric oxide production | 1.988702e-01 | 0.701 |
R-HSA-392851 | Prostacyclin signalling through prostacyclin receptor | 2.878422e-01 | 0.541 |
R-HSA-165159 | MTOR signalling | 1.837551e-01 | 0.736 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 2.389098e-01 | 0.622 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 3.580557e-01 | 0.446 |
R-HSA-72766 | Translation | 3.510470e-01 | 0.455 |
R-HSA-4791275 | Signaling by WNT in cancer | 2.386989e-01 | 0.622 |
R-HSA-5635838 | Activation of SMO | 2.226624e-01 | 0.652 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 2.741203e-01 | 0.562 |
R-HSA-8875513 | MET interacts with TNS proteins | 1.988702e-01 | 0.701 |
R-HSA-75158 | TRAIL signaling | 2.986896e-01 | 0.525 |
R-HSA-187024 | NGF-independant TRKA activation | 2.986896e-01 | 0.525 |
R-HSA-9017802 | Noncanonical activation of NOTCH3 | 2.986896e-01 | 0.525 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 2.986896e-01 | 0.525 |
R-HSA-199920 | CREB phosphorylation | 3.291218e-01 | 0.483 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 3.291218e-01 | 0.483 |
R-HSA-9839389 | TGFBR3 regulates TGF-beta signaling | 3.582352e-01 | 0.446 |
R-HSA-419771 | Opsins | 3.582352e-01 | 0.446 |
R-HSA-1566977 | Fibronectin matrix formation | 2.389098e-01 | 0.622 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 2.715335e-01 | 0.566 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 2.878422e-01 | 0.541 |
R-HSA-9634597 | GPER1 signaling | 2.386072e-01 | 0.622 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 3.100291e-01 | 0.509 |
R-HSA-187687 | Signalling to ERKs | 2.860542e-01 | 0.544 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 3.432797e-01 | 0.464 |
R-HSA-9694614 | Attachment and Entry | 3.364088e-01 | 0.473 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 1.929184e-01 | 0.715 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 2.041609e-01 | 0.690 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 2.741203e-01 | 0.562 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 1.837551e-01 | 0.736 |
R-HSA-5673001 | RAF/MAP kinase cascade | 2.169217e-01 | 0.664 |
R-HSA-9823587 | Defects of platelet adhesion to exposed collagen | 2.986896e-01 | 0.525 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 2.986896e-01 | 0.525 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 2.226624e-01 | 0.652 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 2.386989e-01 | 0.622 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 2.504282e-01 | 0.601 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 2.622403e-01 | 0.581 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 3.561558e-01 | 0.448 |
R-HSA-416482 | G alpha (12/13) signalling events | 3.346254e-01 | 0.475 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 2.106716e-01 | 0.676 |
R-HSA-844456 | The NLRP3 inflammasome | 2.878422e-01 | 0.541 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 2.715335e-01 | 0.566 |
R-HSA-8963693 | Aspartate and asparagine metabolism | 2.270674e-01 | 0.644 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 3.100291e-01 | 0.509 |
R-HSA-162909 | Host Interactions of HIV factors | 2.720063e-01 | 0.565 |
R-HSA-5654738 | Signaling by FGFR2 | 1.992694e-01 | 0.701 |
R-HSA-9729555 | Sensory perception of sour taste | 2.336275e-01 | 0.631 |
R-HSA-429593 | Inositol transporters | 2.668789e-01 | 0.574 |
R-HSA-9014826 | Interleukin-36 pathway | 2.668789e-01 | 0.574 |
R-HSA-187706 | Signalling to p38 via RIT and RIN | 2.986896e-01 | 0.525 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 2.986896e-01 | 0.525 |
R-HSA-5653890 | Lactose synthesis | 3.291218e-01 | 0.483 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 2.226624e-01 | 0.652 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 1.818386e-01 | 0.740 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 2.741203e-01 | 0.562 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 2.269525e-01 | 0.644 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 3.273918e-01 | 0.485 |
R-HSA-3214841 | PKMTs methylate histone lysines | 3.580557e-01 | 0.446 |
R-HSA-418594 | G alpha (i) signalling events | 2.025712e-01 | 0.693 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 2.534848e-01 | 0.596 |
R-HSA-190236 | Signaling by FGFR | 2.132694e-01 | 0.671 |
R-HSA-1170546 | Prolactin receptor signaling | 1.904888e-01 | 0.720 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 2.552119e-01 | 0.593 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 2.270674e-01 | 0.644 |
R-HSA-5362517 | Signaling by Retinoic Acid | 3.561558e-01 | 0.448 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 2.832744e-01 | 0.548 |
R-HSA-5654736 | Signaling by FGFR1 | 3.163955e-01 | 0.500 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 3.523957e-01 | 0.453 |
R-HSA-4086398 | Ca2+ pathway | 2.917404e-01 | 0.535 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 2.336275e-01 | 0.631 |
R-HSA-9927353 | Co-inhibition by BTLA | 2.668789e-01 | 0.574 |
R-HSA-8852405 | Signaling by MST1 | 2.986896e-01 | 0.525 |
R-HSA-389542 | NADPH regeneration | 3.291218e-01 | 0.483 |
R-HSA-187015 | Activation of TRKA receptors | 3.582352e-01 | 0.446 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 3.582352e-01 | 0.446 |
R-HSA-6798163 | Choline catabolism | 2.552119e-01 | 0.593 |
R-HSA-420092 | Glucagon-type ligand receptors | 2.041609e-01 | 0.690 |
R-HSA-186763 | Downstream signal transduction | 2.270674e-01 | 0.644 |
R-HSA-445355 | Smooth Muscle Contraction | 2.868232e-01 | 0.542 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 3.460689e-01 | 0.461 |
R-HSA-1483249 | Inositol phosphate metabolism | 3.133603e-01 | 0.504 |
R-HSA-8876725 | Protein methylation | 2.065081e-01 | 0.685 |
R-HSA-432142 | Platelet sensitization by LDL | 2.715335e-01 | 0.566 |
R-HSA-189200 | Cellular hexose transport | 3.523957e-01 | 0.453 |
R-HSA-9679191 | Potential therapeutics for SARS | 3.306501e-01 | 0.481 |
R-HSA-111933 | Calmodulin induced events | 2.980282e-01 | 0.526 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 3.364088e-01 | 0.473 |
R-HSA-111997 | CaM pathway | 2.980282e-01 | 0.526 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 2.832744e-01 | 0.548 |
R-HSA-6806942 | MET Receptor Activation | 3.291218e-01 | 0.483 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 2.065081e-01 | 0.685 |
R-HSA-597592 | Post-translational protein modification | 3.074603e-01 | 0.512 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 3.391288e-01 | 0.470 |
R-HSA-975634 | Retinoid metabolism and transport | 2.748570e-01 | 0.561 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 3.460689e-01 | 0.461 |
R-HSA-1236394 | Signaling by ERBB4 | 3.002499e-01 | 0.523 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 2.413670e-01 | 0.617 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 1.929184e-01 | 0.715 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 2.413670e-01 | 0.617 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 2.596147e-01 | 0.586 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 2.596147e-01 | 0.586 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 3.519487e-01 | 0.454 |
R-HSA-2559585 | Oncogene Induced Senescence | 2.860542e-01 | 0.544 |
R-HSA-6806834 | Signaling by MET | 3.519487e-01 | 0.454 |
R-HSA-9823730 | Formation of definitive endoderm | 3.041086e-01 | 0.517 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 1.950738e-01 | 0.710 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 2.119921e-01 | 0.674 |
R-HSA-9033500 | TYSND1 cleaves peroxisomal proteins | 2.986896e-01 | 0.525 |
R-HSA-447043 | Neurofascin interactions | 3.291218e-01 | 0.483 |
R-HSA-9008059 | Interleukin-37 signaling | 2.155494e-01 | 0.666 |
R-HSA-9694631 | Maturation of nucleoprotein | 2.878422e-01 | 0.541 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 3.203057e-01 | 0.494 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 2.770522e-01 | 0.557 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 1.818386e-01 | 0.740 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 3.163955e-01 | 0.500 |
R-HSA-9831926 | Nephron development | 2.715335e-01 | 0.566 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 2.373687e-01 | 0.625 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 3.203057e-01 | 0.494 |
R-HSA-9614085 | FOXO-mediated transcription | 2.195621e-01 | 0.658 |
R-HSA-114452 | Activation of BH3-only proteins | 2.155494e-01 | 0.666 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 3.364088e-01 | 0.473 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 3.362520e-01 | 0.473 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 3.344444e-01 | 0.476 |
R-HSA-6783783 | Interleukin-10 signaling | 1.859257e-01 | 0.731 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 2.484789e-01 | 0.605 |
R-HSA-381070 | IRE1alpha activates chaperones | 2.930857e-01 | 0.533 |
R-HSA-186712 | Regulation of beta-cell development | 3.462014e-01 | 0.461 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 2.715335e-01 | 0.566 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 3.523957e-01 | 0.453 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 3.606281e-01 | 0.443 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 3.661086e-01 | 0.436 |
R-HSA-112043 | PLC beta mediated events | 3.661086e-01 | 0.436 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 3.682461e-01 | 0.434 |
R-HSA-200425 | Carnitine shuttle | 3.682461e-01 | 0.434 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 3.682461e-01 | 0.434 |
R-HSA-982772 | Growth hormone receptor signaling | 3.682461e-01 | 0.434 |
R-HSA-8854691 | Interleukin-20 family signaling | 3.682461e-01 | 0.434 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 3.682461e-01 | 0.434 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 3.700113e-01 | 0.432 |
R-HSA-70171 | Glycolysis | 3.702533e-01 | 0.432 |
R-HSA-6784531 | tRNA processing in the nucleus | 3.760534e-01 | 0.425 |
R-HSA-500792 | GPCR ligand binding | 3.773499e-01 | 0.423 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 3.819254e-01 | 0.418 |
R-HSA-111996 | Ca-dependent events | 3.819254e-01 | 0.418 |
R-HSA-1643685 | Disease | 3.823928e-01 | 0.417 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 3.839420e-01 | 0.416 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 3.839420e-01 | 0.416 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 3.839420e-01 | 0.416 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 3.858648e-01 | 0.414 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 3.859841e-01 | 0.413 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 3.859841e-01 | 0.413 |
R-HSA-446107 | Type I hemidesmosome assembly | 3.860869e-01 | 0.413 |
R-HSA-3371378 | Regulation by c-FLIP | 3.860869e-01 | 0.413 |
R-HSA-77588 | SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs | 3.860869e-01 | 0.413 |
R-HSA-212718 | EGFR interacts with phospholipase C-gamma | 3.860869e-01 | 0.413 |
R-HSA-69416 | Dimerization of procaspase-8 | 3.860869e-01 | 0.413 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 3.860869e-01 | 0.413 |
R-HSA-3785653 | Myoclonic epilepsy of Lafora | 3.860869e-01 | 0.413 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 3.860869e-01 | 0.413 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 3.860869e-01 | 0.413 |
R-HSA-8875656 | MET receptor recycling | 3.860869e-01 | 0.413 |
R-HSA-9010642 | ROBO receptors bind AKAP5 | 3.860869e-01 | 0.413 |
R-HSA-9839383 | TGFBR3 PTM regulation | 3.860869e-01 | 0.413 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 3.860869e-01 | 0.413 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 3.860869e-01 | 0.413 |
R-HSA-9637628 | Modulation by Mtb of host immune system | 3.860869e-01 | 0.413 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 3.860869e-01 | 0.413 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 3.888553e-01 | 0.410 |
R-HSA-3371556 | Cellular response to heat stress | 3.914124e-01 | 0.407 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 3.937886e-01 | 0.405 |
R-HSA-5654743 | Signaling by FGFR4 | 3.937886e-01 | 0.405 |
R-HSA-1296041 | Activation of G protein gated Potassium channels | 3.994668e-01 | 0.399 |
R-HSA-997272 | Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits | 3.994668e-01 | 0.399 |
R-HSA-1296059 | G protein gated Potassium channels | 3.994668e-01 | 0.399 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 3.994668e-01 | 0.399 |
R-HSA-3214842 | HDMs demethylate histones | 3.994668e-01 | 0.399 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 4.014753e-01 | 0.396 |
R-HSA-111885 | Opioid Signalling | 4.014753e-01 | 0.396 |
R-HSA-388396 | GPCR downstream signalling | 4.049253e-01 | 0.393 |
R-HSA-2172127 | DAP12 interactions | 4.055917e-01 | 0.392 |
R-HSA-9613354 | Lipophagy | 4.127315e-01 | 0.384 |
R-HSA-5218900 | CASP8 activity is inhibited | 4.127315e-01 | 0.384 |
R-HSA-2025928 | Calcineurin activates NFAT | 4.127315e-01 | 0.384 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 4.127315e-01 | 0.384 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 4.127315e-01 | 0.384 |
R-HSA-418889 | Caspase activation via Dependence Receptors in the absence of ligand | 4.127315e-01 | 0.384 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 4.127315e-01 | 0.384 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 4.127315e-01 | 0.384 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 4.127315e-01 | 0.384 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 4.127315e-01 | 0.384 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 4.127315e-01 | 0.384 |
R-HSA-8874081 | MET activates PTK2 signaling | 4.148058e-01 | 0.382 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 4.148058e-01 | 0.382 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 4.148058e-01 | 0.382 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 4.148058e-01 | 0.382 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 4.148058e-01 | 0.382 |
R-HSA-9845614 | Sphingolipid catabolism | 4.148058e-01 | 0.382 |
R-HSA-3295583 | TRP channels | 4.148058e-01 | 0.382 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 4.148058e-01 | 0.382 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 4.148058e-01 | 0.382 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 4.154078e-01 | 0.382 |
R-HSA-2467813 | Separation of Sister Chromatids | 4.172489e-01 | 0.380 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 4.173262e-01 | 0.380 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 4.173262e-01 | 0.380 |
R-HSA-5654741 | Signaling by FGFR3 | 4.173262e-01 | 0.380 |
R-HSA-1489509 | DAG and IP3 signaling | 4.173262e-01 | 0.380 |
R-HSA-392499 | Metabolism of proteins | 4.226197e-01 | 0.374 |
R-HSA-112040 | G-protein mediated events | 4.254484e-01 | 0.371 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 4.289840e-01 | 0.368 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 4.289840e-01 | 0.368 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 4.299460e-01 | 0.367 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 4.299460e-01 | 0.367 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 4.299460e-01 | 0.367 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 4.299460e-01 | 0.367 |
R-HSA-264876 | Insulin processing | 4.299460e-01 | 0.367 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 4.299460e-01 | 0.367 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 4.352225e-01 | 0.361 |
R-HSA-167172 | Transcription of the HIV genome | 4.352225e-01 | 0.361 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 4.352225e-01 | 0.361 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 4.382212e-01 | 0.358 |
R-HSA-390450 | Folding of actin by CCT/TriC | 4.382212e-01 | 0.358 |
R-HSA-198203 | PI3K/AKT activation | 4.382212e-01 | 0.358 |
R-HSA-164843 | 2-LTR circle formation | 4.382212e-01 | 0.358 |
R-HSA-74749 | Signal attenuation | 4.382212e-01 | 0.358 |
R-HSA-9948001 | CASP4 inflammasome assembly | 4.382212e-01 | 0.358 |
R-HSA-9020956 | Interleukin-27 signaling | 4.382212e-01 | 0.358 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 4.382212e-01 | 0.358 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 4.382212e-01 | 0.358 |
R-HSA-9668250 | Defective factor IX causes hemophilia B | 4.382212e-01 | 0.358 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 4.382212e-01 | 0.358 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 4.382212e-01 | 0.358 |
R-HSA-8934903 | Receptor Mediated Mitophagy | 4.382212e-01 | 0.358 |
R-HSA-9693928 | Defective RIPK1-mediated regulated necrosis | 4.382212e-01 | 0.358 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 4.405574e-01 | 0.356 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 4.419042e-01 | 0.355 |
R-HSA-167287 | HIV elongation arrest and recovery | 4.448758e-01 | 0.352 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 4.448758e-01 | 0.352 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 4.448758e-01 | 0.352 |
R-HSA-622312 | Inflammasomes | 4.448758e-01 | 0.352 |
R-HSA-5620971 | Pyroptosis | 4.448758e-01 | 0.352 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 4.470548e-01 | 0.350 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 4.520393e-01 | 0.345 |
R-HSA-372790 | Signaling by GPCR | 4.529546e-01 | 0.344 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 4.546247e-01 | 0.342 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 4.555747e-01 | 0.341 |
R-HSA-72086 | mRNA Capping | 4.595849e-01 | 0.338 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 4.595849e-01 | 0.338 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 4.595849e-01 | 0.338 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 4.595849e-01 | 0.338 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 4.626061e-01 | 0.335 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 4.626061e-01 | 0.335 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 4.626061e-01 | 0.335 |
R-HSA-9758890 | Transport of RCbl within the body | 4.626061e-01 | 0.335 |
R-HSA-196819 | Vitamin B1 (thiamin) metabolism | 4.626061e-01 | 0.335 |
R-HSA-9635465 | Suppression of apoptosis | 4.626061e-01 | 0.335 |
R-HSA-391908 | Prostanoid ligand receptors | 4.626061e-01 | 0.335 |
R-HSA-389661 | Glyoxylate metabolism and glycine degradation | 4.634229e-01 | 0.334 |
R-HSA-9856651 | MITF-M-dependent gene expression | 4.682310e-01 | 0.330 |
R-HSA-391251 | Protein folding | 4.725016e-01 | 0.326 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 4.738017e-01 | 0.324 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 4.738017e-01 | 0.324 |
R-HSA-2424491 | DAP12 signaling | 4.740643e-01 | 0.324 |
R-HSA-68962 | Activation of the pre-replicative complex | 4.740643e-01 | 0.324 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 4.740643e-01 | 0.324 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 4.740643e-01 | 0.324 |
R-HSA-9843745 | Adipogenesis | 4.766691e-01 | 0.322 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 4.836628e-01 | 0.315 |
R-HSA-3371571 | HSF1-dependent transactivation | 4.858710e-01 | 0.313 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 4.858710e-01 | 0.313 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 4.859339e-01 | 0.313 |
R-HSA-202670 | ERKs are inactivated | 4.859339e-01 | 0.313 |
R-HSA-1236977 | Endosomal/Vacuolar pathway | 4.859339e-01 | 0.313 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 4.859339e-01 | 0.313 |
R-HSA-75896 | Plasmalogen biosynthesis | 4.859339e-01 | 0.313 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 4.859339e-01 | 0.313 |
R-HSA-162592 | Integration of provirus | 4.859339e-01 | 0.313 |
R-HSA-399719 | Trafficking of AMPA receptors | 4.883064e-01 | 0.311 |
R-HSA-162588 | Budding and maturation of HIV virion | 4.883064e-01 | 0.311 |
R-HSA-1474244 | Extracellular matrix organization | 4.900306e-01 | 0.310 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 4.913572e-01 | 0.309 |
R-HSA-9013694 | Signaling by NOTCH4 | 4.927193e-01 | 0.307 |
R-HSA-1226099 | Signaling by FGFR in disease | 4.927193e-01 | 0.307 |
R-HSA-1989781 | PPARA activates gene expression | 5.007399e-01 | 0.300 |
R-HSA-917937 | Iron uptake and transport | 5.020712e-01 | 0.299 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 5.020712e-01 | 0.299 |
R-HSA-1296065 | Inwardly rectifying K+ channels | 5.023044e-01 | 0.299 |
R-HSA-2024096 | HS-GAG degradation | 5.023044e-01 | 0.299 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 5.078566e-01 | 0.294 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 5.082504e-01 | 0.294 |
R-HSA-179812 | GRB2 events in EGFR signaling | 5.082504e-01 | 0.294 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 5.082504e-01 | 0.294 |
R-HSA-8984722 | Interleukin-35 Signalling | 5.082504e-01 | 0.294 |
R-HSA-9842663 | Signaling by LTK | 5.082504e-01 | 0.294 |
R-HSA-9028731 | Activated NTRK2 signals through FRS2 and FRS3 | 5.082504e-01 | 0.294 |
R-HSA-877312 | Regulation of IFNG signaling | 5.082504e-01 | 0.294 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 5.082504e-01 | 0.294 |
R-HSA-209543 | p75NTR recruits signalling complexes | 5.082504e-01 | 0.294 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 5.135798e-01 | 0.289 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 5.160526e-01 | 0.287 |
R-HSA-354192 | Integrin signaling | 5.160526e-01 | 0.287 |
R-HSA-9930044 | Nuclear RNA decay | 5.160526e-01 | 0.287 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 5.160526e-01 | 0.287 |
R-HSA-9733709 | Cardiogenesis | 5.160526e-01 | 0.287 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 5.160526e-01 | 0.287 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 5.160526e-01 | 0.287 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 5.160526e-01 | 0.287 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 5.160526e-01 | 0.287 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 5.186637e-01 | 0.285 |
R-HSA-9694635 | Translation of Structural Proteins | 5.205432e-01 | 0.284 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 5.221615e-01 | 0.282 |
R-HSA-70326 | Glucose metabolism | 5.236355e-01 | 0.281 |
R-HSA-418597 | G alpha (z) signalling events | 5.293412e-01 | 0.276 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 5.295465e-01 | 0.276 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 5.295465e-01 | 0.276 |
R-HSA-9853506 | OGDH complex synthesizes succinyl-CoA from 2-OG | 5.295995e-01 | 0.276 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 5.295995e-01 | 0.276 |
R-HSA-1482883 | Acyl chain remodeling of DAG and TAG | 5.295995e-01 | 0.276 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 5.295995e-01 | 0.276 |
R-HSA-170968 | Frs2-mediated activation | 5.295995e-01 | 0.276 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 5.295995e-01 | 0.276 |
R-HSA-5676594 | TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway | 5.295995e-01 | 0.276 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 5.295995e-01 | 0.276 |
R-HSA-9683610 | Maturation of nucleoprotein | 5.295995e-01 | 0.276 |
R-HSA-216083 | Integrin cell surface interactions | 5.296567e-01 | 0.276 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 5.296567e-01 | 0.276 |
R-HSA-422356 | Regulation of insulin secretion | 5.302460e-01 | 0.276 |
R-HSA-9006936 | Signaling by TGFB family members | 5.326291e-01 | 0.274 |
R-HSA-9659379 | Sensory processing of sound | 5.386847e-01 | 0.269 |
R-HSA-5578775 | Ion homeostasis | 5.398852e-01 | 0.268 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 5.398852e-01 | 0.268 |
R-HSA-1971475 | Glycosaminoglycan-protein linkage region biosynthesis | 5.427821e-01 | 0.265 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 5.427821e-01 | 0.265 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 5.427821e-01 | 0.265 |
R-HSA-190861 | Gap junction assembly | 5.427821e-01 | 0.265 |
R-HSA-5205647 | Mitophagy | 5.427821e-01 | 0.265 |
R-HSA-5365859 | RA biosynthesis pathway | 5.427821e-01 | 0.265 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 5.427821e-01 | 0.265 |
R-HSA-9833482 | PKR-mediated signaling | 5.476241e-01 | 0.262 |
R-HSA-69166 | Removal of the Flap Intermediate | 5.500229e-01 | 0.260 |
R-HSA-177504 | Retrograde neurotrophin signalling | 5.500229e-01 | 0.260 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 5.500229e-01 | 0.260 |
R-HSA-9686114 | Non-canonical inflammasome activation | 5.500229e-01 | 0.260 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 5.500229e-01 | 0.260 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 5.500229e-01 | 0.260 |
R-HSA-9828642 | Respiratory syncytial virus genome transcription | 5.500229e-01 | 0.260 |
R-HSA-5621480 | Dectin-2 family | 5.502922e-01 | 0.259 |
R-HSA-1632852 | Macroautophagy | 5.518692e-01 | 0.258 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 5.557565e-01 | 0.255 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 5.557565e-01 | 0.255 |
R-HSA-381042 | PERK regulates gene expression | 5.557565e-01 | 0.255 |
R-HSA-168249 | Innate Immune System | 5.656112e-01 | 0.247 |
R-HSA-74158 | RNA Polymerase III Transcription | 5.684674e-01 | 0.245 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 5.684674e-01 | 0.245 |
R-HSA-3371511 | HSF1 activation | 5.684674e-01 | 0.245 |
R-HSA-114604 | GPVI-mediated activation cascade | 5.684674e-01 | 0.245 |
R-HSA-8941326 | RUNX2 regulates bone development | 5.684674e-01 | 0.245 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 5.684674e-01 | 0.245 |
R-HSA-69205 | G1/S-Specific Transcription | 5.684674e-01 | 0.245 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 5.684674e-01 | 0.245 |
R-HSA-6804757 | Regulation of TP53 Degradation | 5.684674e-01 | 0.245 |
R-HSA-180336 | SHC1 events in EGFR signaling | 5.695608e-01 | 0.244 |
R-HSA-9857492 | Protein lipoylation | 5.695608e-01 | 0.244 |
R-HSA-110312 | Translesion synthesis by REV1 | 5.695608e-01 | 0.244 |
R-HSA-418885 | DCC mediated attractive signaling | 5.695608e-01 | 0.244 |
R-HSA-69183 | Processive synthesis on the lagging strand | 5.695608e-01 | 0.244 |
R-HSA-171007 | p38MAPK events | 5.695608e-01 | 0.244 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 5.695608e-01 | 0.244 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 5.695608e-01 | 0.244 |
R-HSA-193639 | p75NTR signals via NF-kB | 5.695608e-01 | 0.244 |
R-HSA-1638091 | Heparan sulfate/heparin (HS-GAG) metabolism | 5.706829e-01 | 0.244 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 5.706829e-01 | 0.244 |
R-HSA-5619102 | SLC transporter disorders | 5.759181e-01 | 0.240 |
R-HSA-397014 | Muscle contraction | 5.785294e-01 | 0.238 |
R-HSA-549127 | SLC-mediated transport of organic cations | 5.809132e-01 | 0.236 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 5.882515e-01 | 0.230 |
R-HSA-5656121 | Translesion synthesis by POLI | 5.882515e-01 | 0.230 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 5.882515e-01 | 0.230 |
R-HSA-176412 | Phosphorylation of the APC/C | 5.882515e-01 | 0.230 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 5.882515e-01 | 0.230 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 5.882515e-01 | 0.230 |
R-HSA-2485179 | Activation of the phototransduction cascade | 5.882515e-01 | 0.230 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 5.882515e-01 | 0.230 |
R-HSA-8875878 | MET promotes cell motility | 5.930930e-01 | 0.227 |
R-HSA-2187338 | Visual phototransduction | 5.972005e-01 | 0.224 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 5.992682e-01 | 0.222 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 5.992682e-01 | 0.222 |
R-HSA-418346 | Platelet homeostasis | 5.999976e-01 | 0.222 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 6.001720e-01 | 0.222 |
R-HSA-1268020 | Mitochondrial protein import | 6.001720e-01 | 0.222 |
R-HSA-186797 | Signaling by PDGF | 6.001720e-01 | 0.222 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 6.050064e-01 | 0.218 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 6.050064e-01 | 0.218 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 6.050064e-01 | 0.218 |
R-HSA-5655862 | Translesion synthesis by POLK | 6.061316e-01 | 0.217 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 6.061316e-01 | 0.217 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 6.061316e-01 | 0.217 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 6.061316e-01 | 0.217 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 6.061316e-01 | 0.217 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 6.061316e-01 | 0.217 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 6.061316e-01 | 0.217 |
R-HSA-9675151 | Disorders of Developmental Biology | 6.061316e-01 | 0.217 |
R-HSA-6787450 | tRNA modification in the mitochondrion | 6.061316e-01 | 0.217 |
R-HSA-9651496 | Defects of contact activation system (CAS) and kallikrein/kinin system (KKS) | 6.061316e-01 | 0.217 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 6.073806e-01 | 0.217 |
R-HSA-9700206 | Signaling by ALK in cancer | 6.073806e-01 | 0.217 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 6.075244e-01 | 0.216 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 6.097011e-01 | 0.215 |
R-HSA-8848021 | Signaling by PTK6 | 6.097011e-01 | 0.215 |
R-HSA-390466 | Chaperonin-mediated protein folding | 6.156759e-01 | 0.211 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 6.166536e-01 | 0.210 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 6.166536e-01 | 0.210 |
R-HSA-451927 | Interleukin-2 family signaling | 6.166536e-01 | 0.210 |
R-HSA-8982491 | Glycogen metabolism | 6.166536e-01 | 0.210 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 6.190773e-01 | 0.208 |
R-HSA-913531 | Interferon Signaling | 6.194139e-01 | 0.208 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 6.232364e-01 | 0.205 |
R-HSA-190840 | Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane | 6.232364e-01 | 0.205 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 6.232364e-01 | 0.205 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 6.232364e-01 | 0.205 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 6.232364e-01 | 0.205 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 6.232364e-01 | 0.205 |
R-HSA-3229121 | Glycogen storage diseases | 6.232364e-01 | 0.205 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 6.232364e-01 | 0.205 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 6.232364e-01 | 0.205 |
R-HSA-5210891 | Uptake and function of anthrax toxins | 6.232364e-01 | 0.205 |
R-HSA-9663891 | Selective autophagy | 6.237212e-01 | 0.205 |
R-HSA-8951664 | Neddylation | 6.259030e-01 | 0.203 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 6.280352e-01 | 0.202 |
R-HSA-9607240 | FLT3 Signaling | 6.280352e-01 | 0.202 |
R-HSA-9694548 | Maturation of spike protein | 6.280352e-01 | 0.202 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 6.280352e-01 | 0.202 |
R-HSA-446652 | Interleukin-1 family signaling | 6.280915e-01 | 0.202 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 6.350371e-01 | 0.197 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 6.391523e-01 | 0.194 |
R-HSA-167161 | HIV Transcription Initiation | 6.391523e-01 | 0.194 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 6.391523e-01 | 0.194 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 6.391523e-01 | 0.194 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 6.391523e-01 | 0.194 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 6.395994e-01 | 0.194 |
R-HSA-3928664 | Ephrin signaling | 6.395994e-01 | 0.194 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 6.395994e-01 | 0.194 |
R-HSA-190872 | Transport of connexons to the plasma membrane | 6.395994e-01 | 0.194 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 6.395994e-01 | 0.194 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 6.395994e-01 | 0.194 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 6.395994e-01 | 0.194 |
R-HSA-428643 | Organic anion transport by SLC5/17/25 transporters | 6.395994e-01 | 0.194 |
R-HSA-210993 | Tie2 Signaling | 6.395994e-01 | 0.194 |
R-HSA-196791 | Vitamin D (calciferol) metabolism | 6.395994e-01 | 0.194 |
R-HSA-1483257 | Phospholipid metabolism | 6.402073e-01 | 0.194 |
R-HSA-9909396 | Circadian clock | 6.409777e-01 | 0.193 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 6.462776e-01 | 0.190 |
R-HSA-9830369 | Kidney development | 6.462776e-01 | 0.190 |
R-HSA-991365 | Activation of GABAB receptors | 6.500065e-01 | 0.187 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 6.500065e-01 | 0.187 |
R-HSA-977444 | GABA B receptor activation | 6.500065e-01 | 0.187 |
R-HSA-9612973 | Autophagy | 6.518226e-01 | 0.186 |
R-HSA-913709 | O-linked glycosylation of mucins | 6.550325e-01 | 0.184 |
R-HSA-5218859 | Regulated Necrosis | 6.550325e-01 | 0.184 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 6.552526e-01 | 0.184 |
R-HSA-9913635 | Strand-asynchronous mitochondrial DNA replication | 6.552526e-01 | 0.184 |
R-HSA-5654710 | PI-3K cascade:FGFR3 | 6.552526e-01 | 0.184 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 6.552526e-01 | 0.184 |
R-HSA-392517 | Rap1 signalling | 6.552526e-01 | 0.184 |
R-HSA-1237112 | Methionine salvage pathway | 6.552526e-01 | 0.184 |
R-HSA-9671793 | Diseases of hemostasis | 6.552526e-01 | 0.184 |
R-HSA-74160 | Gene expression (Transcription) | 6.601993e-01 | 0.180 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 6.605995e-01 | 0.180 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 6.605995e-01 | 0.180 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 6.623188e-01 | 0.179 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 6.655887e-01 | 0.177 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 6.702269e-01 | 0.174 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 6.702269e-01 | 0.174 |
R-HSA-3322077 | Glycogen synthesis | 6.702269e-01 | 0.174 |
R-HSA-5654720 | PI-3K cascade:FGFR4 | 6.702269e-01 | 0.174 |
R-HSA-1482922 | Acyl chain remodelling of PI | 6.702269e-01 | 0.174 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 6.702269e-01 | 0.174 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 6.702269e-01 | 0.174 |
R-HSA-8848584 | Wax and plasmalogen biosynthesis | 6.702269e-01 | 0.174 |
R-HSA-391903 | Eicosanoid ligand-binding receptors | 6.702269e-01 | 0.174 |
R-HSA-140875 | Common Pathway of Fibrin Clot Formation | 6.702269e-01 | 0.174 |
R-HSA-3214858 | RMTs methylate histone arginines | 6.709336e-01 | 0.173 |
R-HSA-196741 | Cobalamin (Cbl, vitamin B12) transport and metabolism | 6.709336e-01 | 0.173 |
R-HSA-373752 | Netrin-1 signaling | 6.709336e-01 | 0.173 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 6.720726e-01 | 0.173 |
R-HSA-204005 | COPII-mediated vesicle transport | 6.720726e-01 | 0.173 |
R-HSA-5633007 | Regulation of TP53 Activity | 6.746327e-01 | 0.171 |
R-HSA-909733 | Interferon alpha/beta signaling | 6.767031e-01 | 0.170 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 6.780035e-01 | 0.169 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 6.803577e-01 | 0.167 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 6.810113e-01 | 0.167 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 6.810113e-01 | 0.167 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 6.810113e-01 | 0.167 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 6.810113e-01 | 0.167 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 6.841472e-01 | 0.165 |
R-HSA-9931295 | PD-L1(CD274) glycosylation and translocation to plasma membrane | 6.845517e-01 | 0.165 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 6.845517e-01 | 0.165 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 6.845517e-01 | 0.165 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 6.845517e-01 | 0.165 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 6.845517e-01 | 0.165 |
R-HSA-69186 | Lagging Strand Synthesis | 6.845517e-01 | 0.165 |
R-HSA-167044 | Signalling to RAS | 6.845517e-01 | 0.165 |
R-HSA-140837 | Intrinsic Pathway of Fibrin Clot Formation | 6.845517e-01 | 0.165 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 6.845517e-01 | 0.165 |
R-HSA-196836 | Vitamin C (ascorbate) metabolism | 6.845517e-01 | 0.165 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 6.908353e-01 | 0.161 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 6.908353e-01 | 0.161 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 6.908353e-01 | 0.161 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 6.908353e-01 | 0.161 |
R-HSA-9675135 | Diseases of DNA repair | 6.908353e-01 | 0.161 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 6.908353e-01 | 0.161 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 6.982550e-01 | 0.156 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 6.982550e-01 | 0.156 |
R-HSA-5654706 | FRS-mediated FGFR3 signaling | 6.982550e-01 | 0.156 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 6.982550e-01 | 0.156 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 6.982550e-01 | 0.156 |
R-HSA-174403 | Glutathione synthesis and recycling | 6.982550e-01 | 0.156 |
R-HSA-9671555 | Signaling by PDGFR in disease | 6.982550e-01 | 0.156 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 7.004087e-01 | 0.155 |
R-HSA-1483191 | Synthesis of PC | 7.004087e-01 | 0.155 |
R-HSA-73857 | RNA Polymerase II Transcription | 7.053601e-01 | 0.152 |
R-HSA-70263 | Gluconeogenesis | 7.097347e-01 | 0.149 |
R-HSA-350054 | Notch-HLH transcription pathway | 7.113639e-01 | 0.148 |
R-HSA-8964038 | LDL clearance | 7.113639e-01 | 0.148 |
R-HSA-5654689 | PI-3K cascade:FGFR1 | 7.113639e-01 | 0.148 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 7.113639e-01 | 0.148 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 7.113639e-01 | 0.148 |
R-HSA-5654712 | FRS-mediated FGFR4 signaling | 7.113639e-01 | 0.148 |
R-HSA-3238698 | WNT ligand biogenesis and trafficking | 7.113639e-01 | 0.148 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 7.113639e-01 | 0.148 |
R-HSA-444209 | Free fatty acid receptors | 7.113639e-01 | 0.148 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 7.113639e-01 | 0.148 |
R-HSA-912526 | Interleukin receptor SHC signaling | 7.239040e-01 | 0.140 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 7.239040e-01 | 0.140 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 7.239040e-01 | 0.140 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 7.239040e-01 | 0.140 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 7.239040e-01 | 0.140 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 7.239040e-01 | 0.140 |
R-HSA-9830674 | Formation of the ureteric bud | 7.239040e-01 | 0.140 |
R-HSA-1369062 | ABC transporters in lipid homeostasis | 7.239040e-01 | 0.140 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 7.239040e-01 | 0.140 |
R-HSA-109704 | PI3K Cascade | 7.276583e-01 | 0.138 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 7.276583e-01 | 0.138 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 7.287982e-01 | 0.137 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 7.311493e-01 | 0.136 |
R-HSA-9020702 | Interleukin-1 signaling | 7.311493e-01 | 0.136 |
R-HSA-72306 | tRNA processing | 7.323768e-01 | 0.135 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 7.340081e-01 | 0.134 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 7.359000e-01 | 0.133 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 7.359000e-01 | 0.133 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 7.359000e-01 | 0.133 |
R-HSA-2514856 | The phototransduction cascade | 7.362632e-01 | 0.133 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 7.446353e-01 | 0.128 |
R-HSA-5654695 | PI-3K cascade:FGFR2 | 7.473755e-01 | 0.126 |
R-HSA-3000157 | Laminin interactions | 7.473755e-01 | 0.126 |
R-HSA-5654693 | FRS-mediated FGFR1 signaling | 7.473755e-01 | 0.126 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 7.473755e-01 | 0.126 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 7.473755e-01 | 0.126 |
R-HSA-3296469 | Defects in cobalamin (B12) metabolism | 7.473755e-01 | 0.126 |
R-HSA-9620244 | Long-term potentiation | 7.473755e-01 | 0.126 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 7.473755e-01 | 0.126 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 7.473755e-01 | 0.126 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 7.473755e-01 | 0.126 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 7.527786e-01 | 0.123 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 7.527786e-01 | 0.123 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 7.547216e-01 | 0.122 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 7.583531e-01 | 0.120 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 7.583531e-01 | 0.120 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 7.583531e-01 | 0.120 |
R-HSA-2046105 | Linoleic acid (LA) metabolism | 7.583531e-01 | 0.120 |
R-HSA-9637687 | Suppression of phagosomal maturation | 7.583531e-01 | 0.120 |
R-HSA-5689901 | Metalloprotease DUBs | 7.583531e-01 | 0.120 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 7.583531e-01 | 0.120 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 7.583531e-01 | 0.120 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 7.641177e-01 | 0.117 |
R-HSA-9012852 | Signaling by NOTCH3 | 7.683951e-01 | 0.114 |
R-HSA-9759218 | Cobalamin (Cbl) metabolism | 7.688543e-01 | 0.114 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 7.688543e-01 | 0.114 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 7.688543e-01 | 0.114 |
R-HSA-901032 | ER Quality Control Compartment (ERQC) | 7.688543e-01 | 0.114 |
R-HSA-9828806 | Maturation of hRSV A proteins | 7.688543e-01 | 0.114 |
R-HSA-9609507 | Protein localization | 7.688826e-01 | 0.114 |
R-HSA-611105 | Respiratory electron transport | 7.696640e-01 | 0.114 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 7.758766e-01 | 0.110 |
R-HSA-75893 | TNF signaling | 7.758766e-01 | 0.110 |
R-HSA-2672351 | Stimuli-sensing channels | 7.782133e-01 | 0.109 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 7.788997e-01 | 0.109 |
R-HSA-5654700 | FRS-mediated FGFR2 signaling | 7.788997e-01 | 0.109 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 7.788997e-01 | 0.109 |
R-HSA-171319 | Telomere Extension By Telomerase | 7.788997e-01 | 0.109 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 7.788997e-01 | 0.109 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 7.802965e-01 | 0.108 |
R-HSA-6794362 | Protein-protein interactions at synapses | 7.802965e-01 | 0.108 |
R-HSA-112399 | IRS-mediated signalling | 7.831460e-01 | 0.106 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 7.831460e-01 | 0.106 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 7.885092e-01 | 0.103 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 7.885092e-01 | 0.103 |
R-HSA-204174 | Regulation of pyruvate dehydrogenase (PDH) complex | 7.885092e-01 | 0.103 |
R-HSA-418360 | Platelet calcium homeostasis | 7.885092e-01 | 0.103 |
R-HSA-9006335 | Signaling by Erythropoietin | 7.885092e-01 | 0.103 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 7.885092e-01 | 0.103 |
R-HSA-202403 | TCR signaling | 7.889047e-01 | 0.103 |
R-HSA-6782135 | Dual incision in TC-NER | 7.902075e-01 | 0.102 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 7.922376e-01 | 0.101 |
R-HSA-9033241 | Peroxisomal protein import | 7.970655e-01 | 0.099 |
R-HSA-180786 | Extension of Telomeres | 7.970655e-01 | 0.099 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 7.977016e-01 | 0.098 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 7.977016e-01 | 0.098 |
R-HSA-112311 | Neurotransmitter clearance | 7.977016e-01 | 0.098 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 7.977016e-01 | 0.098 |
R-HSA-438064 | Post NMDA receptor activation events | 7.980029e-01 | 0.098 |
R-HSA-447115 | Interleukin-12 family signaling | 7.980029e-01 | 0.098 |
R-HSA-70268 | Pyruvate metabolism | 7.980029e-01 | 0.098 |
R-HSA-69275 | G2/M Transition | 8.030079e-01 | 0.095 |
R-HSA-977443 | GABA receptor activation | 8.037243e-01 | 0.095 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 8.037243e-01 | 0.095 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 8.037243e-01 | 0.095 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 8.037243e-01 | 0.095 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 8.037243e-01 | 0.095 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 8.037243e-01 | 0.095 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 8.064727e-01 | 0.093 |
R-HSA-182971 | EGFR downregulation | 8.064949e-01 | 0.093 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 8.064949e-01 | 0.093 |
R-HSA-2129379 | Molecules associated with elastic fibres | 8.064949e-01 | 0.093 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 8.064949e-01 | 0.093 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 8.076976e-01 | 0.093 |
R-HSA-163685 | Integration of energy metabolism | 8.076976e-01 | 0.093 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 8.101883e-01 | 0.091 |
R-HSA-445717 | Aquaporin-mediated transport | 8.101883e-01 | 0.091 |
R-HSA-453274 | Mitotic G2-G2/M phases | 8.107412e-01 | 0.091 |
R-HSA-202424 | Downstream TCR signaling | 8.145001e-01 | 0.089 |
R-HSA-69190 | DNA strand elongation | 8.149066e-01 | 0.089 |
R-HSA-5617833 | Cilium Assembly | 8.182385e-01 | 0.087 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 8.185174e-01 | 0.087 |
R-HSA-6807070 | PTEN Regulation | 8.206386e-01 | 0.086 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 8.229531e-01 | 0.085 |
R-HSA-176187 | Activation of ATR in response to replication stress | 8.229531e-01 | 0.085 |
R-HSA-5675482 | Regulation of necroptotic cell death | 8.229531e-01 | 0.085 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 8.229531e-01 | 0.085 |
R-HSA-159418 | Recycling of bile acids and salts | 8.229531e-01 | 0.085 |
R-HSA-74751 | Insulin receptor signalling cascade | 8.284547e-01 | 0.082 |
R-HSA-2428924 | IGF1R signaling cascade | 8.284547e-01 | 0.082 |
R-HSA-936837 | Ion transport by P-type ATPases | 8.284547e-01 | 0.082 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 8.288700e-01 | 0.082 |
R-HSA-1482788 | Acyl chain remodelling of PC | 8.306502e-01 | 0.081 |
R-HSA-8964539 | Glutamate and glutamine metabolism | 8.306502e-01 | 0.081 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 8.306502e-01 | 0.081 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 8.341827e-01 | 0.079 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 8.341827e-01 | 0.079 |
R-HSA-5619115 | Disorders of transmembrane transporters | 8.363270e-01 | 0.078 |
R-HSA-5696400 | Dual Incision in GG-NER | 8.380132e-01 | 0.077 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 8.380132e-01 | 0.077 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 8.380132e-01 | 0.077 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 8.380132e-01 | 0.077 |
R-HSA-1980145 | Signaling by NOTCH2 | 8.380132e-01 | 0.077 |
R-HSA-901042 | Calnexin/calreticulin cycle | 8.380132e-01 | 0.077 |
R-HSA-2393930 | Phosphate bond hydrolysis by NUDT proteins | 8.380132e-01 | 0.077 |
R-HSA-9837999 | Mitochondrial protein degradation | 8.394536e-01 | 0.076 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 8.397374e-01 | 0.076 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 8.450565e-01 | 0.073 |
R-HSA-917977 | Transferrin endocytosis and recycling | 8.450565e-01 | 0.073 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 8.450565e-01 | 0.073 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 8.450565e-01 | 0.073 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 8.450565e-01 | 0.073 |
R-HSA-193775 | Synthesis of bile acids and bile salts via 24-hydroxycholesterol | 8.450565e-01 | 0.073 |
R-HSA-418555 | G alpha (s) signalling events | 8.462090e-01 | 0.073 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 8.462090e-01 | 0.073 |
R-HSA-212436 | Generic Transcription Pathway | 8.511436e-01 | 0.070 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 8.517939e-01 | 0.070 |
R-HSA-1296071 | Potassium Channels | 8.529913e-01 | 0.069 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 8.552892e-01 | 0.068 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 8.554040e-01 | 0.068 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 8.562524e-01 | 0.067 |
R-HSA-1296072 | Voltage gated Potassium channels | 8.582388e-01 | 0.066 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 8.582388e-01 | 0.066 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 8.582388e-01 | 0.066 |
R-HSA-71064 | Lysine catabolism | 8.582388e-01 | 0.066 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 8.603075e-01 | 0.065 |
R-HSA-1566948 | Elastic fibre formation | 8.644037e-01 | 0.063 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 8.644037e-01 | 0.063 |
R-HSA-2046106 | alpha-linolenic acid (ALA) metabolism | 8.644037e-01 | 0.063 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 8.644037e-01 | 0.063 |
R-HSA-453276 | Regulation of mitotic cell cycle | 8.650584e-01 | 0.063 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 8.650584e-01 | 0.063 |
R-HSA-3000178 | ECM proteoglycans | 8.650584e-01 | 0.063 |
R-HSA-5632684 | Hedgehog 'on' state | 8.650584e-01 | 0.063 |
R-HSA-69206 | G1/S Transition | 8.674995e-01 | 0.062 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 8.675458e-01 | 0.062 |
R-HSA-74259 | Purine catabolism | 8.696607e-01 | 0.061 |
R-HSA-8964043 | Plasma lipoprotein clearance | 8.703010e-01 | 0.060 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 8.703010e-01 | 0.060 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 8.703010e-01 | 0.060 |
R-HSA-71336 | Pentose phosphate pathway | 8.703010e-01 | 0.060 |
R-HSA-9648002 | RAS processing | 8.703010e-01 | 0.060 |
R-HSA-9646399 | Aggrephagy | 8.759421e-01 | 0.058 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 8.759421e-01 | 0.058 |
R-HSA-202433 | Generation of second messenger molecules | 8.759421e-01 | 0.058 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 8.759421e-01 | 0.058 |
R-HSA-9854311 | Maturation of TCA enzymes and regulation of TCA cycle | 8.759421e-01 | 0.058 |
R-HSA-379726 | Mitochondrial tRNA aminoacylation | 8.759421e-01 | 0.058 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 8.771042e-01 | 0.057 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 8.813381e-01 | 0.055 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 8.813381e-01 | 0.055 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 8.813381e-01 | 0.055 |
R-HSA-3000480 | Scavenging by Class A Receptors | 8.864998e-01 | 0.052 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 8.864998e-01 | 0.052 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 8.864998e-01 | 0.052 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 8.864998e-01 | 0.052 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 8.864998e-01 | 0.052 |
R-HSA-9683701 | Translation of Structural Proteins | 8.864998e-01 | 0.052 |
R-HSA-5689603 | UCH proteinases | 8.866619e-01 | 0.052 |
R-HSA-1980143 | Signaling by NOTCH1 | 8.866619e-01 | 0.052 |
R-HSA-9020591 | Interleukin-12 signaling | 8.866619e-01 | 0.052 |
R-HSA-9833110 | RSV-host interactions | 8.877924e-01 | 0.052 |
R-HSA-5576891 | Cardiac conduction | 8.904737e-01 | 0.050 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 8.914373e-01 | 0.050 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 8.914373e-01 | 0.050 |
R-HSA-112315 | Transmission across Chemical Synapses | 8.938490e-01 | 0.049 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 8.943701e-01 | 0.048 |
R-HSA-4086400 | PCP/CE pathway | 8.943701e-01 | 0.048 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 8.961602e-01 | 0.048 |
R-HSA-75876 | Synthesis of very long-chain fatty acyl-CoAs | 8.961602e-01 | 0.048 |
R-HSA-983712 | Ion channel transport | 8.986773e-01 | 0.046 |
R-HSA-9907900 | Proteasome assembly | 9.006780e-01 | 0.045 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 9.049995e-01 | 0.043 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 9.049995e-01 | 0.043 |
R-HSA-2453902 | The canonical retinoid cycle in rods (twilight vision) | 9.049995e-01 | 0.043 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 9.049995e-01 | 0.043 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 9.049995e-01 | 0.043 |
R-HSA-1614558 | Degradation of cysteine and homocysteine | 9.049995e-01 | 0.043 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 9.091332e-01 | 0.041 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 9.115578e-01 | 0.040 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 9.130872e-01 | 0.039 |
R-HSA-2046104 | alpha-linolenic (omega3) and linoleic (omega6) acid metabolism | 9.130872e-01 | 0.039 |
R-HSA-9031628 | NGF-stimulated transcription | 9.168695e-01 | 0.038 |
R-HSA-425410 | Metal ion SLC transporters | 9.168695e-01 | 0.038 |
R-HSA-9658195 | Leishmania infection | 9.170524e-01 | 0.038 |
R-HSA-9824443 | Parasitic Infection Pathways | 9.170524e-01 | 0.038 |
R-HSA-9664407 | Parasite infection | 9.172257e-01 | 0.038 |
R-HSA-9664417 | Leishmania phagocytosis | 9.172257e-01 | 0.038 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 9.172257e-01 | 0.038 |
R-HSA-9766229 | Degradation of CDH1 | 9.204873e-01 | 0.036 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 9.204873e-01 | 0.036 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 9.204873e-01 | 0.036 |
R-HSA-1614635 | Sulfur amino acid metabolism | 9.233829e-01 | 0.035 |
R-HSA-5658442 | Regulation of RAS by GAPs | 9.239479e-01 | 0.034 |
R-HSA-2162123 | Synthesis of Prostaglandins (PG) and Thromboxanes (TX) | 9.239479e-01 | 0.034 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 9.272582e-01 | 0.033 |
R-HSA-9864848 | Complex IV assembly | 9.272582e-01 | 0.033 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.288974e-01 | 0.032 |
R-HSA-1592230 | Mitochondrial biogenesis | 9.297048e-01 | 0.032 |
R-HSA-2980736 | Peptide hormone metabolism | 9.297048e-01 | 0.032 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 9.304245e-01 | 0.031 |
R-HSA-6794361 | Neurexins and neuroligins | 9.304245e-01 | 0.031 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 9.304245e-01 | 0.031 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 9.334532e-01 | 0.030 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 9.334532e-01 | 0.030 |
R-HSA-112310 | Neurotransmitter release cycle | 9.337067e-01 | 0.030 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 9.345751e-01 | 0.029 |
R-HSA-15869 | Metabolism of nucleotides | 9.361899e-01 | 0.029 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 9.363502e-01 | 0.029 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 9.381491e-01 | 0.028 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 9.381491e-01 | 0.028 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 9.389321e-01 | 0.027 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 9.391213e-01 | 0.027 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 9.391213e-01 | 0.027 |
R-HSA-74752 | Signaling by Insulin receptor | 9.405701e-01 | 0.027 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 9.415175e-01 | 0.026 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 9.417718e-01 | 0.026 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 9.417718e-01 | 0.026 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 9.417718e-01 | 0.026 |
R-HSA-2029481 | FCGR activation | 9.427040e-01 | 0.026 |
R-HSA-6809371 | Formation of the cornified envelope | 9.438562e-01 | 0.025 |
R-HSA-3781865 | Diseases of glycosylation | 9.461306e-01 | 0.024 |
R-HSA-73887 | Death Receptor Signaling | 9.464780e-01 | 0.024 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 9.490519e-01 | 0.023 |
R-HSA-5389840 | Mitochondrial translation elongation | 9.505327e-01 | 0.022 |
R-HSA-6807878 | COPI-mediated anterograde transport | 9.505327e-01 | 0.022 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 9.505327e-01 | 0.022 |
R-HSA-379724 | tRNA Aminoacylation | 9.512707e-01 | 0.022 |
R-HSA-156590 | Glutathione conjugation | 9.512707e-01 | 0.022 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 9.533842e-01 | 0.021 |
R-HSA-877300 | Interferon gamma signaling | 9.538970e-01 | 0.020 |
R-HSA-5368286 | Mitochondrial translation initiation | 9.540536e-01 | 0.020 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 9.554229e-01 | 0.020 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 9.557230e-01 | 0.020 |
R-HSA-382556 | ABC-family proteins mediated transport | 9.573342e-01 | 0.019 |
R-HSA-6799198 | Complex I biogenesis | 9.573646e-01 | 0.019 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 9.573646e-01 | 0.019 |
R-HSA-382551 | Transport of small molecules | 9.592311e-01 | 0.018 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 9.618380e-01 | 0.017 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 9.643225e-01 | 0.016 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 9.643225e-01 | 0.016 |
R-HSA-196807 | Nicotinate metabolism | 9.643225e-01 | 0.016 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 9.653480e-01 | 0.015 |
R-HSA-5173105 | O-linked glycosylation | 9.668652e-01 | 0.015 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 9.675549e-01 | 0.014 |
R-HSA-5358351 | Signaling by Hedgehog | 9.679578e-01 | 0.014 |
R-HSA-69239 | Synthesis of DNA | 9.683483e-01 | 0.014 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 9.684760e-01 | 0.014 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 9.687860e-01 | 0.014 |
R-HSA-112316 | Neuronal System | 9.698049e-01 | 0.013 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 9.701463e-01 | 0.013 |
R-HSA-8978934 | Metabolism of cofactors | 9.701463e-01 | 0.013 |
R-HSA-5419276 | Mitochondrial translation termination | 9.706410e-01 | 0.013 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 9.708415e-01 | 0.013 |
R-HSA-9664433 | Leishmania parasite growth and survival | 9.708415e-01 | 0.013 |
R-HSA-9711123 | Cellular response to chemical stress | 9.714341e-01 | 0.013 |
R-HSA-194068 | Bile acid and bile salt metabolism | 9.717265e-01 | 0.012 |
R-HSA-69052 | Switching of origins to a post-replicative state | 9.726918e-01 | 0.012 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 9.726918e-01 | 0.012 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 9.726918e-01 | 0.012 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 9.781383e-01 | 0.010 |
R-HSA-5619084 | ABC transporter disorders | 9.781471e-01 | 0.010 |
R-HSA-191273 | Cholesterol biosynthesis | 9.781471e-01 | 0.010 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 9.790999e-01 | 0.009 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 9.813786e-01 | 0.008 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 9.825138e-01 | 0.008 |
R-HSA-8957322 | Metabolism of steroids | 9.852405e-01 | 0.006 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 9.863028e-01 | 0.006 |
R-HSA-1236974 | ER-Phagosome pathway | 9.872031e-01 | 0.006 |
R-HSA-8956319 | Nucleotide catabolism | 9.878011e-01 | 0.005 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 9.892947e-01 | 0.005 |
R-HSA-1474290 | Collagen formation | 9.902088e-01 | 0.004 |
R-HSA-77289 | Mitochondrial Fatty Acid Beta-Oxidation | 9.906362e-01 | 0.004 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 9.918097e-01 | 0.004 |
R-HSA-5368287 | Mitochondrial translation | 9.920460e-01 | 0.003 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 9.925093e-01 | 0.003 |
R-HSA-5610787 | Hedgehog 'off' state | 9.928363e-01 | 0.003 |
R-HSA-69242 | S Phase | 9.948355e-01 | 0.002 |
R-HSA-9758941 | Gastrulation | 9.950352e-01 | 0.002 |
R-HSA-1236975 | Antigen processing-Cross presentation | 9.952074e-01 | 0.002 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 9.956611e-01 | 0.002 |
R-HSA-2871796 | FCERI mediated MAPK activation | 9.959917e-01 | 0.002 |
R-HSA-156580 | Phase II - Conjugation of compounds | 9.967690e-01 | 0.001 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 9.967943e-01 | 0.001 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 9.973570e-01 | 0.001 |
R-HSA-6805567 | Keratinization | 9.974013e-01 | 0.001 |
R-HSA-977606 | Regulation of Complement cascade | 9.979501e-01 | 0.001 |
R-HSA-9717189 | Sensory perception of taste | 9.985668e-01 | 0.001 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 9.990025e-01 | 0.000 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 9.992677e-01 | 0.000 |
R-HSA-166658 | Complement cascade | 9.992998e-01 | 0.000 |
R-HSA-428157 | Sphingolipid metabolism | 9.994093e-01 | 0.000 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 9.994403e-01 | 0.000 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 9.994555e-01 | 0.000 |
R-HSA-2142753 | Arachidonate metabolism | 9.994883e-01 | 0.000 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 9.996090e-01 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 9.997558e-01 | 0.000 |
R-HSA-446203 | Asparagine N-linked glycosylation | 9.999192e-01 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 9.999391e-01 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 9.999672e-01 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 9.999997e-01 | 0.000 |
R-HSA-211859 | Biological oxidations | 9.999999e-01 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | 0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CLK3 |
0.919 | 0.477 | 1 | 0.898 |
MOS |
0.910 | 0.282 | 1 | 0.891 |
COT |
0.908 | 0.217 | 2 | 0.880 |
PIM3 |
0.903 | 0.236 | -3 | 0.879 |
CAMK1B |
0.901 | 0.161 | -3 | 0.876 |
CDC7 |
0.900 | 0.170 | 1 | 0.870 |
NLK |
0.900 | 0.228 | 1 | 0.880 |
SKMLCK |
0.899 | 0.222 | -2 | 0.909 |
CDKL1 |
0.899 | 0.188 | -3 | 0.832 |
PRPK |
0.899 | -0.060 | -1 | 0.861 |
PIM1 |
0.898 | 0.252 | -3 | 0.842 |
BMPR1B |
0.896 | 0.277 | 1 | 0.821 |
ATR |
0.896 | 0.081 | 1 | 0.832 |
SRPK1 |
0.896 | 0.286 | -3 | 0.802 |
CAMLCK |
0.895 | 0.141 | -2 | 0.894 |
DAPK2 |
0.895 | 0.146 | -3 | 0.873 |
BMPR2 |
0.894 | -0.114 | -2 | 0.906 |
ICK |
0.894 | 0.225 | -3 | 0.862 |
RSK2 |
0.894 | 0.246 | -3 | 0.820 |
NIK |
0.894 | 0.055 | -3 | 0.883 |
HIPK4 |
0.893 | 0.285 | 1 | 0.856 |
CLK2 |
0.893 | 0.416 | -3 | 0.813 |
LATS1 |
0.893 | 0.217 | -3 | 0.885 |
DYRK2 |
0.893 | 0.332 | 1 | 0.808 |
ERK5 |
0.892 | 0.135 | 1 | 0.844 |
RAF1 |
0.892 | -0.054 | 1 | 0.805 |
CAMK2G |
0.891 | 0.019 | 2 | 0.844 |
MTOR |
0.891 | 0.043 | 1 | 0.797 |
JNK2 |
0.891 | 0.321 | 1 | 0.740 |
GRK1 |
0.890 | 0.221 | -2 | 0.825 |
GRK6 |
0.890 | 0.116 | 1 | 0.832 |
CDKL5 |
0.889 | 0.180 | -3 | 0.826 |
CLK4 |
0.889 | 0.305 | -3 | 0.817 |
NDR2 |
0.889 | 0.171 | -3 | 0.881 |
GRK7 |
0.889 | 0.205 | 1 | 0.780 |
PKN3 |
0.889 | 0.093 | -3 | 0.849 |
JNK3 |
0.888 | 0.293 | 1 | 0.774 |
GRK5 |
0.888 | -0.023 | -3 | 0.845 |
TGFBR1 |
0.887 | 0.157 | -2 | 0.843 |
HIPK1 |
0.887 | 0.334 | 1 | 0.817 |
ALK4 |
0.887 | 0.094 | -2 | 0.867 |
CDK1 |
0.887 | 0.297 | 1 | 0.765 |
P90RSK |
0.886 | 0.179 | -3 | 0.818 |
NUAK2 |
0.885 | 0.106 | -3 | 0.875 |
P70S6KB |
0.885 | 0.153 | -3 | 0.832 |
HIPK2 |
0.885 | 0.356 | 1 | 0.740 |
PDHK4 |
0.885 | -0.272 | 1 | 0.831 |
DSTYK |
0.884 | -0.029 | 2 | 0.907 |
CAMK2B |
0.884 | 0.199 | 2 | 0.822 |
DLK |
0.884 | -0.085 | 1 | 0.799 |
ALK2 |
0.884 | 0.164 | -2 | 0.848 |
PASK |
0.884 | 0.225 | -3 | 0.882 |
PRKD1 |
0.883 | 0.174 | -3 | 0.851 |
P38B |
0.883 | 0.285 | 1 | 0.753 |
WNK1 |
0.883 | 0.026 | -2 | 0.905 |
NDR1 |
0.883 | 0.102 | -3 | 0.871 |
P38A |
0.883 | 0.256 | 1 | 0.802 |
KIS |
0.883 | 0.315 | 1 | 0.796 |
PKR |
0.883 | 0.002 | 1 | 0.809 |
CAMK2A |
0.882 | 0.201 | 2 | 0.837 |
SRPK3 |
0.882 | 0.200 | -3 | 0.767 |
RSK4 |
0.882 | 0.243 | -3 | 0.803 |
IKKB |
0.882 | -0.044 | -2 | 0.771 |
CLK1 |
0.882 | 0.300 | -3 | 0.794 |
PKN2 |
0.882 | 0.081 | -3 | 0.861 |
CHAK2 |
0.882 | -0.023 | -1 | 0.832 |
AMPKA1 |
0.882 | 0.065 | -3 | 0.882 |
SRPK2 |
0.882 | 0.244 | -3 | 0.731 |
PRKD2 |
0.881 | 0.200 | -3 | 0.821 |
PKCD |
0.881 | 0.097 | 2 | 0.796 |
MAPKAPK2 |
0.881 | 0.197 | -3 | 0.793 |
P38G |
0.880 | 0.281 | 1 | 0.686 |
DYRK4 |
0.880 | 0.341 | 1 | 0.753 |
ACVR2B |
0.880 | 0.121 | -2 | 0.829 |
CAMK2D |
0.880 | 0.062 | -3 | 0.846 |
MST4 |
0.880 | 0.034 | 2 | 0.863 |
RSK3 |
0.879 | 0.157 | -3 | 0.808 |
MLK1 |
0.879 | -0.117 | 2 | 0.823 |
BMPR1A |
0.879 | 0.213 | 1 | 0.803 |
TSSK2 |
0.879 | 0.049 | -5 | 0.871 |
CDK5 |
0.879 | 0.249 | 1 | 0.806 |
RIPK3 |
0.878 | -0.088 | 3 | 0.755 |
PKACG |
0.878 | 0.141 | -2 | 0.805 |
MAPKAPK3 |
0.878 | 0.103 | -3 | 0.817 |
TBK1 |
0.878 | -0.150 | 1 | 0.680 |
ACVR2A |
0.878 | 0.086 | -2 | 0.815 |
LATS2 |
0.878 | 0.087 | -5 | 0.796 |
CDK18 |
0.878 | 0.282 | 1 | 0.735 |
PRP4 |
0.877 | 0.187 | -3 | 0.772 |
ATM |
0.877 | 0.052 | 1 | 0.779 |
VRK2 |
0.877 | -0.213 | 1 | 0.853 |
DYRK1A |
0.877 | 0.269 | 1 | 0.827 |
PKACB |
0.877 | 0.228 | -2 | 0.745 |
CDK8 |
0.877 | 0.217 | 1 | 0.775 |
MARK4 |
0.877 | -0.009 | 4 | 0.851 |
MSK1 |
0.877 | 0.194 | -3 | 0.794 |
AURC |
0.877 | 0.190 | -2 | 0.727 |
MEK1 |
0.876 | -0.167 | 2 | 0.853 |
ANKRD3 |
0.876 | -0.197 | 1 | 0.808 |
TGFBR2 |
0.876 | -0.041 | -2 | 0.830 |
PDHK1 |
0.876 | -0.322 | 1 | 0.804 |
HUNK |
0.876 | -0.125 | 2 | 0.827 |
PIM2 |
0.875 | 0.177 | -3 | 0.793 |
PAK1 |
0.875 | 0.097 | -2 | 0.835 |
CDK7 |
0.875 | 0.219 | 1 | 0.791 |
ERK1 |
0.875 | 0.245 | 1 | 0.740 |
MASTL |
0.875 | -0.279 | -2 | 0.836 |
TSSK1 |
0.875 | 0.066 | -3 | 0.898 |
AMPKA2 |
0.874 | 0.072 | -3 | 0.861 |
GAK |
0.874 | 0.102 | 1 | 0.823 |
PLK1 |
0.874 | -0.041 | -2 | 0.831 |
MYLK4 |
0.874 | 0.132 | -2 | 0.830 |
IKKA |
0.874 | 0.020 | -2 | 0.762 |
NEK6 |
0.874 | -0.083 | -2 | 0.882 |
AKT2 |
0.874 | 0.184 | -3 | 0.748 |
DYRK1B |
0.873 | 0.287 | 1 | 0.768 |
IKKE |
0.873 | -0.163 | 1 | 0.675 |
MLK2 |
0.873 | -0.165 | 2 | 0.823 |
MSK2 |
0.873 | 0.121 | -3 | 0.787 |
FAM20C |
0.873 | 0.203 | 2 | 0.693 |
ULK2 |
0.873 | -0.266 | 2 | 0.793 |
CDK17 |
0.873 | 0.257 | 1 | 0.694 |
GCN2 |
0.873 | -0.214 | 2 | 0.816 |
CDK3 |
0.873 | 0.268 | 1 | 0.712 |
P38D |
0.873 | 0.290 | 1 | 0.700 |
GRK4 |
0.872 | -0.057 | -2 | 0.859 |
PRKX |
0.872 | 0.268 | -3 | 0.762 |
DYRK3 |
0.872 | 0.287 | 1 | 0.811 |
ERK2 |
0.872 | 0.196 | 1 | 0.778 |
DNAPK |
0.872 | 0.084 | 1 | 0.704 |
NEK7 |
0.872 | -0.216 | -3 | 0.801 |
DAPK3 |
0.871 | 0.177 | -3 | 0.842 |
CDK14 |
0.871 | 0.263 | 1 | 0.765 |
SGK3 |
0.871 | 0.144 | -3 | 0.812 |
CDK13 |
0.871 | 0.205 | 1 | 0.767 |
HIPK3 |
0.871 | 0.259 | 1 | 0.793 |
CAMK4 |
0.871 | -0.003 | -3 | 0.847 |
YSK4 |
0.871 | -0.144 | 1 | 0.726 |
GSK3A |
0.870 | 0.182 | 4 | 0.515 |
CDK19 |
0.870 | 0.225 | 1 | 0.743 |
MLK3 |
0.870 | -0.037 | 2 | 0.754 |
GRK2 |
0.870 | 0.021 | -2 | 0.758 |
TLK2 |
0.870 | -0.052 | 1 | 0.768 |
RIPK1 |
0.870 | -0.207 | 1 | 0.767 |
DCAMKL1 |
0.870 | 0.083 | -3 | 0.838 |
AURB |
0.870 | 0.131 | -2 | 0.725 |
SMMLCK |
0.869 | 0.086 | -3 | 0.836 |
BRAF |
0.869 | -0.108 | -4 | 0.871 |
MAK |
0.869 | 0.308 | -2 | 0.773 |
PRKD3 |
0.869 | 0.111 | -3 | 0.785 |
AURA |
0.869 | 0.137 | -2 | 0.702 |
PKCB |
0.869 | 0.068 | 2 | 0.745 |
NEK9 |
0.868 | -0.262 | 2 | 0.840 |
CDK2 |
0.868 | 0.151 | 1 | 0.822 |
MST3 |
0.868 | 0.020 | 2 | 0.850 |
PKCA |
0.868 | 0.060 | 2 | 0.740 |
JNK1 |
0.867 | 0.245 | 1 | 0.742 |
CHK1 |
0.867 | 0.018 | -3 | 0.857 |
WNK3 |
0.867 | -0.281 | 1 | 0.771 |
PAK3 |
0.867 | 0.018 | -2 | 0.829 |
CDK16 |
0.866 | 0.265 | 1 | 0.710 |
TAO3 |
0.866 | -0.021 | 1 | 0.760 |
PLK3 |
0.866 | -0.047 | 2 | 0.805 |
PKCG |
0.866 | 0.044 | 2 | 0.749 |
CDK10 |
0.866 | 0.284 | 1 | 0.755 |
CDK12 |
0.866 | 0.213 | 1 | 0.743 |
DRAK1 |
0.866 | -0.003 | 1 | 0.760 |
DAPK1 |
0.866 | 0.169 | -3 | 0.825 |
PKG2 |
0.866 | 0.133 | -2 | 0.742 |
PAK2 |
0.865 | 0.014 | -2 | 0.817 |
MNK1 |
0.865 | 0.088 | -2 | 0.850 |
MEK5 |
0.865 | -0.293 | 2 | 0.834 |
SMG1 |
0.865 | -0.037 | 1 | 0.784 |
MELK |
0.864 | -0.001 | -3 | 0.838 |
MLK4 |
0.864 | -0.089 | 2 | 0.732 |
MEKK3 |
0.864 | -0.161 | 1 | 0.756 |
QSK |
0.864 | 0.033 | 4 | 0.824 |
IRE1 |
0.864 | -0.129 | 1 | 0.757 |
TTBK2 |
0.863 | -0.212 | 2 | 0.714 |
NIM1 |
0.863 | -0.086 | 3 | 0.789 |
MEKK2 |
0.863 | -0.166 | 2 | 0.806 |
MNK2 |
0.863 | 0.058 | -2 | 0.843 |
GSK3B |
0.863 | 0.089 | 4 | 0.505 |
PKCH |
0.863 | 0.011 | 2 | 0.732 |
GCK |
0.863 | 0.020 | 1 | 0.759 |
MPSK1 |
0.863 | 0.024 | 1 | 0.767 |
NEK5 |
0.863 | -0.168 | 1 | 0.782 |
PKCZ |
0.862 | -0.017 | 2 | 0.787 |
CDK9 |
0.862 | 0.177 | 1 | 0.770 |
CAMK1G |
0.862 | 0.061 | -3 | 0.792 |
BCKDK |
0.861 | -0.222 | -1 | 0.796 |
NUAK1 |
0.861 | 0.016 | -3 | 0.829 |
IRE2 |
0.860 | -0.102 | 2 | 0.750 |
PKACA |
0.860 | 0.183 | -2 | 0.697 |
CK2A2 |
0.860 | 0.198 | 1 | 0.759 |
MEKK1 |
0.860 | -0.250 | 1 | 0.757 |
CAMK1D |
0.860 | 0.118 | -3 | 0.743 |
ROCK2 |
0.860 | 0.165 | -3 | 0.837 |
TLK1 |
0.860 | -0.121 | -2 | 0.865 |
ULK1 |
0.860 | -0.295 | -3 | 0.770 |
MOK |
0.860 | 0.262 | 1 | 0.815 |
ZAK |
0.859 | -0.214 | 1 | 0.730 |
AKT1 |
0.859 | 0.151 | -3 | 0.767 |
LKB1 |
0.859 | -0.082 | -3 | 0.805 |
QIK |
0.859 | -0.101 | -3 | 0.838 |
NEK2 |
0.859 | -0.191 | 2 | 0.822 |
DCAMKL2 |
0.859 | 0.004 | -3 | 0.847 |
SIK |
0.859 | 0.038 | -3 | 0.798 |
CHAK1 |
0.858 | -0.193 | 2 | 0.785 |
PERK |
0.858 | -0.221 | -2 | 0.850 |
SGK1 |
0.858 | 0.186 | -3 | 0.683 |
MARK3 |
0.858 | 0.010 | 4 | 0.781 |
PDK1 |
0.858 | -0.093 | 1 | 0.758 |
WNK4 |
0.858 | -0.139 | -2 | 0.888 |
TAK1 |
0.857 | -0.080 | 1 | 0.786 |
DMPK1 |
0.857 | 0.199 | -3 | 0.812 |
MARK2 |
0.857 | -0.028 | 4 | 0.746 |
CK1E |
0.857 | 0.065 | -3 | 0.590 |
EEF2K |
0.856 | -0.053 | 3 | 0.839 |
CK1D |
0.856 | 0.082 | -3 | 0.538 |
TAO2 |
0.856 | -0.139 | 2 | 0.857 |
PINK1 |
0.856 | -0.166 | 1 | 0.845 |
TNIK |
0.856 | -0.025 | 3 | 0.866 |
PHKG1 |
0.856 | -0.036 | -3 | 0.858 |
NEK11 |
0.855 | -0.211 | 1 | 0.747 |
NEK8 |
0.855 | -0.204 | 2 | 0.828 |
ERK7 |
0.855 | 0.095 | 2 | 0.569 |
HPK1 |
0.855 | -0.011 | 1 | 0.740 |
GRK3 |
0.855 | 0.029 | -2 | 0.719 |
MRCKA |
0.855 | 0.137 | -3 | 0.800 |
BRSK1 |
0.855 | 0.011 | -3 | 0.828 |
LRRK2 |
0.854 | -0.151 | 2 | 0.863 |
CAMKK1 |
0.854 | -0.228 | -2 | 0.769 |
MST2 |
0.854 | -0.137 | 1 | 0.760 |
CAMKK2 |
0.854 | -0.186 | -2 | 0.768 |
HRI |
0.854 | -0.301 | -2 | 0.865 |
MRCKB |
0.853 | 0.141 | -3 | 0.784 |
PAK6 |
0.852 | 0.081 | -2 | 0.752 |
SSTK |
0.852 | 0.010 | 4 | 0.811 |
P70S6K |
0.852 | 0.077 | -3 | 0.747 |
MINK |
0.852 | -0.114 | 1 | 0.735 |
CDK4 |
0.852 | 0.209 | 1 | 0.736 |
MARK1 |
0.851 | -0.051 | 4 | 0.801 |
CDK6 |
0.851 | 0.195 | 1 | 0.743 |
CK1A2 |
0.851 | 0.063 | -3 | 0.542 |
KHS2 |
0.851 | 0.036 | 1 | 0.747 |
IRAK4 |
0.851 | -0.187 | 1 | 0.749 |
CK2A1 |
0.850 | 0.173 | 1 | 0.738 |
KHS1 |
0.850 | -0.015 | 1 | 0.729 |
HGK |
0.850 | -0.120 | 3 | 0.865 |
MAP3K15 |
0.850 | -0.176 | 1 | 0.715 |
VRK1 |
0.850 | -0.214 | 2 | 0.834 |
MAPKAPK5 |
0.850 | -0.045 | -3 | 0.743 |
PLK2 |
0.850 | 0.027 | -3 | 0.775 |
PKCE |
0.849 | 0.082 | 2 | 0.735 |
MEKK6 |
0.849 | -0.179 | 1 | 0.745 |
PLK4 |
0.848 | -0.186 | 2 | 0.648 |
SBK |
0.848 | 0.163 | -3 | 0.642 |
PKCT |
0.848 | -0.005 | 2 | 0.736 |
CHK2 |
0.848 | 0.087 | -3 | 0.699 |
BUB1 |
0.847 | 0.104 | -5 | 0.827 |
PDHK3_TYR |
0.847 | 0.345 | 4 | 0.925 |
AKT3 |
0.847 | 0.166 | -3 | 0.699 |
BRSK2 |
0.847 | -0.088 | -3 | 0.838 |
NEK1 |
0.846 | -0.211 | 1 | 0.746 |
NEK4 |
0.846 | -0.247 | 1 | 0.734 |
PBK |
0.846 | -0.024 | 1 | 0.738 |
SNRK |
0.845 | -0.198 | 2 | 0.703 |
MST1 |
0.845 | -0.182 | 1 | 0.738 |
CRIK |
0.845 | 0.159 | -3 | 0.766 |
LOK |
0.845 | -0.104 | -2 | 0.792 |
TTK |
0.844 | -0.038 | -2 | 0.849 |
PKCI |
0.844 | -0.017 | 2 | 0.755 |
ROCK1 |
0.844 | 0.128 | -3 | 0.801 |
CAMK1A |
0.843 | 0.095 | -3 | 0.716 |
OSR1 |
0.843 | -0.073 | 2 | 0.804 |
ALPHAK3 |
0.842 | -0.007 | -1 | 0.777 |
SLK |
0.842 | -0.108 | -2 | 0.736 |
PDHK4_TYR |
0.841 | 0.231 | 2 | 0.904 |
YSK1 |
0.839 | -0.167 | 2 | 0.814 |
MAP2K6_TYR |
0.839 | 0.169 | -1 | 0.881 |
MAP2K4_TYR |
0.837 | 0.102 | -1 | 0.877 |
PHKG2 |
0.836 | -0.057 | -3 | 0.827 |
BMPR2_TYR |
0.836 | 0.126 | -1 | 0.882 |
TESK1_TYR |
0.836 | 0.031 | 3 | 0.899 |
PDHK1_TYR |
0.835 | 0.113 | -1 | 0.898 |
HASPIN |
0.835 | -0.001 | -1 | 0.692 |
IRAK1 |
0.835 | -0.393 | -1 | 0.737 |
PAK5 |
0.835 | 0.029 | -2 | 0.695 |
PKN1 |
0.835 | 0.023 | -3 | 0.763 |
BIKE |
0.834 | -0.025 | 1 | 0.703 |
MEK2 |
0.834 | -0.401 | 2 | 0.814 |
CK1G1 |
0.832 | -0.023 | -3 | 0.581 |
MYO3B |
0.832 | -0.103 | 2 | 0.832 |
STK33 |
0.832 | -0.204 | 2 | 0.639 |
ASK1 |
0.831 | -0.240 | 1 | 0.706 |
TTBK1 |
0.831 | -0.275 | 2 | 0.636 |
PAK4 |
0.831 | 0.043 | -2 | 0.706 |
PKMYT1_TYR |
0.830 | -0.045 | 3 | 0.869 |
MAP2K7_TYR |
0.830 | -0.159 | 2 | 0.880 |
LIMK2_TYR |
0.829 | 0.046 | -3 | 0.880 |
MYO3A |
0.828 | -0.151 | 1 | 0.734 |
PINK1_TYR |
0.827 | -0.138 | 1 | 0.825 |
EPHA6 |
0.827 | 0.072 | -1 | 0.877 |
YANK3 |
0.827 | -0.044 | 2 | 0.427 |
EPHB4 |
0.823 | 0.014 | -1 | 0.847 |
TXK |
0.823 | 0.132 | 1 | 0.830 |
RIPK2 |
0.822 | -0.392 | 1 | 0.680 |
RET |
0.821 | -0.136 | 1 | 0.765 |
AAK1 |
0.820 | 0.030 | 1 | 0.607 |
NEK3 |
0.820 | -0.321 | 1 | 0.698 |
TAO1 |
0.819 | -0.203 | 1 | 0.670 |
YES1 |
0.818 | -0.024 | -1 | 0.855 |
FGR |
0.818 | -0.053 | 1 | 0.813 |
ABL2 |
0.818 | -0.012 | -1 | 0.818 |
LIMK1_TYR |
0.817 | -0.223 | 2 | 0.864 |
PKG1 |
0.817 | 0.048 | -2 | 0.660 |
EPHA4 |
0.817 | 0.015 | 2 | 0.813 |
STLK3 |
0.816 | -0.305 | 1 | 0.694 |
FER |
0.816 | -0.083 | 1 | 0.854 |
DDR1 |
0.815 | -0.166 | 4 | 0.831 |
INSRR |
0.814 | -0.068 | 3 | 0.747 |
TYRO3 |
0.814 | -0.197 | 3 | 0.792 |
CSF1R |
0.814 | -0.140 | 3 | 0.787 |
MST1R |
0.814 | -0.226 | 3 | 0.808 |
SRMS |
0.814 | -0.028 | 1 | 0.833 |
BLK |
0.813 | 0.067 | -1 | 0.854 |
ROS1 |
0.813 | -0.188 | 3 | 0.760 |
ABL1 |
0.813 | -0.054 | -1 | 0.810 |
LCK |
0.812 | 0.024 | -1 | 0.848 |
JAK3 |
0.812 | -0.133 | 1 | 0.750 |
TYK2 |
0.812 | -0.311 | 1 | 0.757 |
FGFR2 |
0.811 | -0.122 | 3 | 0.809 |
TNK2 |
0.811 | -0.079 | 3 | 0.760 |
ITK |
0.810 | -0.051 | -1 | 0.799 |
HCK |
0.810 | -0.086 | -1 | 0.840 |
JAK2 |
0.810 | -0.259 | 1 | 0.754 |
EPHB1 |
0.810 | -0.078 | 1 | 0.815 |
EPHB2 |
0.810 | -0.028 | -1 | 0.833 |
FYN |
0.809 | 0.067 | -1 | 0.831 |
EPHB3 |
0.809 | -0.066 | -1 | 0.833 |
KDR |
0.808 | -0.112 | 3 | 0.757 |
KIT |
0.808 | -0.144 | 3 | 0.794 |
CK1A |
0.807 | 0.036 | -3 | 0.455 |
MET |
0.805 | -0.105 | 3 | 0.783 |
MERTK |
0.805 | -0.105 | 3 | 0.777 |
BMX |
0.804 | -0.050 | -1 | 0.729 |
FLT1 |
0.804 | -0.085 | -1 | 0.847 |
EPHA7 |
0.803 | -0.061 | 2 | 0.812 |
FLT3 |
0.803 | -0.223 | 3 | 0.789 |
PDGFRB |
0.803 | -0.263 | 3 | 0.799 |
TEK |
0.802 | -0.192 | 3 | 0.731 |
FGFR3 |
0.802 | -0.128 | 3 | 0.779 |
PTK2 |
0.801 | 0.085 | -1 | 0.810 |
FGFR1 |
0.801 | -0.217 | 3 | 0.764 |
TNK1 |
0.801 | -0.169 | 3 | 0.777 |
NEK10_TYR |
0.801 | -0.190 | 1 | 0.642 |
TEC |
0.801 | -0.106 | -1 | 0.736 |
AXL |
0.800 | -0.199 | 3 | 0.773 |
EPHA3 |
0.800 | -0.135 | 2 | 0.783 |
DDR2 |
0.800 | -0.021 | 3 | 0.739 |
SYK |
0.800 | 0.092 | -1 | 0.803 |
TNNI3K_TYR |
0.799 | -0.142 | 1 | 0.764 |
EPHA5 |
0.798 | -0.034 | 2 | 0.801 |
JAK1 |
0.798 | -0.180 | 1 | 0.691 |
PTK2B |
0.798 | -0.048 | -1 | 0.780 |
WEE1_TYR |
0.797 | -0.160 | -1 | 0.743 |
LTK |
0.797 | -0.187 | 3 | 0.741 |
CK1G3 |
0.797 | 0.004 | -3 | 0.410 |
ERBB2 |
0.797 | -0.196 | 1 | 0.739 |
FRK |
0.797 | -0.117 | -1 | 0.854 |
YANK2 |
0.796 | -0.086 | 2 | 0.442 |
NTRK1 |
0.796 | -0.255 | -1 | 0.822 |
ALK |
0.796 | -0.213 | 3 | 0.711 |
BTK |
0.796 | -0.269 | -1 | 0.762 |
SRC |
0.795 | -0.066 | -1 | 0.825 |
LYN |
0.795 | -0.115 | 3 | 0.715 |
EPHA8 |
0.794 | -0.067 | -1 | 0.823 |
MATK |
0.794 | -0.140 | -1 | 0.753 |
EGFR |
0.794 | -0.080 | 1 | 0.654 |
PTK6 |
0.794 | -0.284 | -1 | 0.724 |
FLT4 |
0.793 | -0.235 | 3 | 0.759 |
EPHA1 |
0.793 | -0.182 | 3 | 0.756 |
PDGFRA |
0.792 | -0.370 | 3 | 0.794 |
INSR |
0.791 | -0.226 | 3 | 0.721 |
NTRK3 |
0.790 | -0.204 | -1 | 0.779 |
FGFR4 |
0.789 | -0.119 | -1 | 0.782 |
CSK |
0.788 | -0.184 | 2 | 0.807 |
NTRK2 |
0.788 | -0.326 | 3 | 0.752 |
EPHA2 |
0.785 | -0.074 | -1 | 0.790 |
ERBB4 |
0.785 | -0.041 | 1 | 0.687 |
CK1G2 |
0.781 | 0.009 | -3 | 0.500 |
IGF1R |
0.779 | -0.184 | 3 | 0.665 |
ZAP70 |
0.775 | -0.005 | -1 | 0.716 |
MUSK |
0.772 | -0.241 | 1 | 0.637 |
FES |
0.765 | -0.198 | -1 | 0.708 |