Motif 1063 (n=847)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A6H8Y1 | BDP1 | T214 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6H8Y1 | BDP1 | T915 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6H8Y1 | BDP1 | T970 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6NKT7 | RGPD3 | T1483 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
B5ME19 | EIF3CL | T525 | ochoa | Eukaryotic translation initiation factor 3 subunit C-like protein | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression. {ECO:0000250|UniProtKB:Q99613}. |
H3BNX3 | None | T197 | ochoa | Sulfide:quinone oxidoreductase, mitochondrial (EC 1.8.5.8) (Sulfide quinone oxidoreductase) | Catalyzes the oxidation of hydrogen sulfide with the help of a quinone, such as ubiquinone-10, giving rise to thiosulfate and ultimately to sulfane (molecular sulfur) atoms. Requires an additional electron acceptor; can use sulfite, sulfide or cyanide (in vitro). It is believed the in vivo electron acceptor is glutathione. {ECO:0000256|ARBA:ARBA00059167}. |
K7ELQ4 | ATF7-NPFF | T53 | ochoa | ATF7-NPFF readthrough | None |
O00267 | SUPT5H | T1034 | ochoa | Transcription elongation factor SPT5 (hSPT5) (DRB sensitivity-inducing factor 160 kDa subunit) (DSIF p160) (DRB sensitivity-inducing factor large subunit) (DSIF large subunit) (Tat-cotransactivator 1 protein) (Tat-CT1 protein) | Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A (PubMed:10075709, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter (PubMed:10075709, PubMed:10199401, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II (PubMed:16214896). TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme (PubMed:16214896). Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites (PubMed:16214896). Following phosphorylation by CDK9, DSIF can also positively regulate transcriptional elongation (PubMed:16427012). Required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat (PubMed:10393184, PubMed:10454543, PubMed:11809800, PubMed:9514752). DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences (PubMed:11112772, PubMed:14701750). {ECO:0000269|PubMed:10075709, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10421630, ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11553615, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:12653964, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15136722, ECO:0000269|PubMed:15380072, ECO:0000269|PubMed:16214896, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:9450929, ECO:0000269|PubMed:9514752, ECO:0000269|PubMed:9857195}. |
O14646 | CHD1 | T958 | ochoa | Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) | ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}. |
O14686 | KMT2D | T1865 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14715 | RGPD8 | T1482 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O15240 | VGF | T424 | ochoa | Neurosecretory protein VGF [Cleaved into: Neuroendocrine regulatory peptide-1 (NERP-1); Neuroendocrine regulatory peptide-2 (NERP-2); VGF-derived peptide TLQP-21; VGF-derived peptide TLQP-62; Antimicrobial peptide VGF[554-577]] | [Neurosecretory protein VGF]: Secreted polyprotein that is packaged and proteolytically processed by prohormone convertases PCSK1 and PCSK2 in a cell-type-specific manner (By similarity). VGF and peptides derived from its processing play many roles in neurogenesis and neuroplasticity associated with learning, memory, depression and chronic pain (By similarity). {ECO:0000250|UniProtKB:P20156, ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [Neuroendocrine regulatory peptide-1]: Plays a role in the control of body fluid homeostasis by regulating vasopressin release. Suppresses presynaptic glutamatergic neurons connected to vasopressin neurons. {ECO:0000250|UniProtKB:P20156}.; FUNCTION: [Neuroendocrine regulatory peptide-2]: Plays a role in the control of body fluid homeostasis by regulating vasopressin release. Activates GABAergic interneurons which are inhibitory neurons of the nervous system and thereby suppresses presynaptic glutamatergic neurons (By similarity). Also stimulates feeding behavior in an orexin-dependent manner in the hypothalamus (By similarity). Functions as a positive regulator for the activation of orexin neurons resulting in elevated gastric acid secretion and gastric emptying (By similarity). {ECO:0000250|UniProtKB:P20156}.; FUNCTION: [VGF-derived peptide TLQP-21]: Secreted multifunctional neuropeptide that binds to different cell receptors and thereby plays multiple physiological roles including modulation of energy expenditure, pain, response to stress, gastric regulation, glucose homeostasis as well as lipolysis (By similarity). Activates the G-protein-coupled receptor C3AR1 via a folding-upon-binding mechanism leading to enhanced lipolysis in adipocytes (By similarity). Interacts with C1QBP receptor in macrophages and microglia causing increased levels of intracellular calcium and hypersensitivity (By similarity). {ECO:0000250|UniProtKB:P20156, ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [VGF-derived peptide TLQP-62]: Plays a role in the regulation of memory formation and depression-related behaviors potentially by influencing synaptic plasticity and neurogenesis. Induces acute and transient activation of the NTRK2/TRKB receptor and subsequent CREB phosphorylation (By similarity). Also induces insulin secretion in insulinoma cells by increasing intracellular calcium mobilization (By similarity). {ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [Antimicrobial peptide VGF[554-577]]: Has bactericidal activity against M.luteus, and antifungal activity against P. Pastoris. {ECO:0000269|PubMed:23250050}. |
O43303 | CCP110 | T566 | psp | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43765 | SGTA | T81 | ochoa | Small glutamine-rich tetratricopeptide repeat-containing protein alpha (Alpha-SGT) (Vpu-binding protein) (UBP) | Co-chaperone that binds misfolded and hydrophobic patches-containing client proteins in the cytosol. Mediates their targeting to the endoplasmic reticulum but also regulates their sorting to the proteasome when targeting fails (PubMed:28104892). Functions in tail-anchored/type II transmembrane proteins membrane insertion constituting with ASNA1 and the BAG6 complex a targeting module (PubMed:28104892). Functions upstream of the BAG6 complex and ASNA1, binding more rapidly the transmembrane domain of newly synthesized proteins (PubMed:25535373, PubMed:28104892). It is also involved in the regulation of the endoplasmic reticulum-associated misfolded protein catabolic process via its interaction with BAG6: collaborates with the BAG6 complex to maintain hydrophobic substrates in non-ubiquitinated states (PubMed:23129660, PubMed:25179605). Competes with RNF126 for interaction with BAG6, preventing the ubiquitination of client proteins associated with the BAG6 complex (PubMed:27193484). Binds directly to HSC70 and HSP70 and regulates their ATPase activity (PubMed:18759457). {ECO:0000269|PubMed:18759457, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:25535373, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: (Microbial infection) In case of infection by polyomavirus, involved in the virus endoplasmic reticulum membrane penetration and infection via interaction with DNAJB12, DNAJB14 and HSPA8/Hsc70 (PubMed:24675744). {ECO:0000269|PubMed:24675744}. |
O43829 | ZBTB14 | T235 | ochoa | Zinc finger and BTB domain-containing protein 14 (Zinc finger protein 161 homolog) (Zfp-161) (Zinc finger protein 478) (Zinc finger protein 5 homolog) (ZF5) (Zfp-5) (hZF5) | Transcriptional activator of the dopamine transporter (DAT), binding it's promoter at the consensus sequence 5'-CCTGCACAGTTCACGGA-3'. Binds to 5'-d(GCC)(n)-3' trinucleotide repeats in promoter regions and acts as a repressor of the FMR1 gene. Transcriptional repressor of MYC and thymidine kinase promoters. {ECO:0000269|PubMed:17714511}. |
O60282 | KIF5C | T396 | ochoa | Kinesin heavy chain isoform 5C (EC 3.6.4.-) (Kinesin heavy chain neuron-specific 2) (Kinesin-1) | Microtubule-associated force-producing protein that may play a role in organelle transport. Has ATPase activity (By similarity). Involved in synaptic transmission (PubMed:24812067). Mediates dendritic trafficking of mRNAs (By similarity). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). {ECO:0000250|UniProtKB:P28738, ECO:0000250|UniProtKB:P56536, ECO:0000269|PubMed:24812067}. |
O60488 | ACSL4 | T679 | ochoa | Long-chain-fatty-acid--CoA ligase 4 (EC 6.2.1.3) (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 4) (LACS 4) | Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:21242590, PubMed:22633490, PubMed:24269233). Preferentially activates arachidonate and eicosapentaenoate as substrates (PubMed:21242590). Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose-stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion (PubMed:21242590). {ECO:0000250|UniProtKB:O35547, ECO:0000269|PubMed:21242590, ECO:0000269|PubMed:22633490, ECO:0000269|PubMed:24269233}. |
O60502 | OGA | T709 | ochoa | Protein O-GlcNAcase (OGA) (EC 3.2.1.169) (Beta-N-acetylglucosaminidase) (Beta-N-acetylhexosaminidase) (Beta-hexosaminidase) (Meningioma-expressed antigen 5) (N-acetyl-beta-D-glucosaminidase) (N-acetyl-beta-glucosaminidase) (Nuclear cytoplasmic O-GlcNAcase and acetyltransferase) (NCOAT) | [Isoform 1]: Cleaves GlcNAc but not GalNAc from O-glycosylated proteins (PubMed:11148210, PubMed:11788610, PubMed:20673219, PubMed:22365600, PubMed:24088714, PubMed:28939839, PubMed:37962578). Deglycosylates a large and diverse number of proteins, such as CRYAB, ELK1, GSDMD, LMNB1 and TAB1 (PubMed:28939839, PubMed:37962578). Can use p-nitrophenyl-beta-GlcNAc and 4-methylumbelliferone-GlcNAc as substrates but not p-nitrophenyl-beta-GalNAc or p-nitrophenyl-alpha-GlcNAc (in vitro) (PubMed:20673219). Does not bind acetyl-CoA and does not have histone acetyltransferase activity (PubMed:24088714). {ECO:0000269|PubMed:11148210, ECO:0000269|PubMed:11788610, ECO:0000269|PubMed:20673219, ECO:0000269|PubMed:22365600, ECO:0000269|PubMed:24088714, ECO:0000269|PubMed:28939839, ECO:0000269|PubMed:37962578}.; FUNCTION: [Isoform 3]: Cleaves GlcNAc but not GalNAc from O-glycosylated proteins. Can use p-nitrophenyl-beta-GlcNAc as substrate but not p-nitrophenyl-beta-GalNAc or p-nitrophenyl-alpha-GlcNAc (in vitro), but has about six times lower specific activity than isoform 1. {ECO:0000269|PubMed:20673219}. |
O60566 | BUB1B | T620 | psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) | Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}. |
O60885 | BRD4 | T296 | ochoa | Bromodomain-containing protein 4 (Protein HUNK1) | Chromatin reader protein that recognizes and binds acetylated histones and plays a key role in transmission of epigenetic memory across cell divisions and transcription regulation (PubMed:20871596, PubMed:23086925, PubMed:23317504, PubMed:29176719, PubMed:29379197). Remains associated with acetylated chromatin throughout the entire cell cycle and provides epigenetic memory for postmitotic G1 gene transcription by preserving acetylated chromatin status and maintaining high-order chromatin structure (PubMed:22334664, PubMed:23317504, PubMed:23589332). During interphase, plays a key role in regulating the transcription of signal-inducible genes by associating with the P-TEFb complex and recruiting it to promoters (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). Also recruits P-TEFb complex to distal enhancers, so called anti-pause enhancers in collaboration with JMJD6 (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). BRD4 and JMJD6 are required to form the transcriptionally active P-TEFb complex by displacing negative regulators such as HEXIM1 and 7SKsnRNA complex from P-TEFb, thereby transforming it into an active form that can then phosphorylate the C-terminal domain (CTD) of RNA polymerase II (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). Regulates differentiation of naive CD4(+) T-cells into T-helper Th17 by promoting recruitment of P-TEFb to promoters (By similarity). Promotes phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II (PubMed:23086925). According to a report, directly acts as an atypical protein kinase and mediates phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II; these data however need additional evidences in vivo (PubMed:22509028). In addition to acetylated histones, also recognizes and binds acetylated RELA, leading to further recruitment of the P-TEFb complex and subsequent activation of NF-kappa-B (PubMed:19103749). Also acts as a regulator of p53/TP53-mediated transcription: following phosphorylation by CK2, recruited to p53/TP53 specific target promoters (PubMed:23317504). {ECO:0000250|UniProtKB:Q9ESU6, ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:19103749, ECO:0000269|PubMed:19596240, ECO:0000269|PubMed:22334664, ECO:0000269|PubMed:22509028, ECO:0000269|PubMed:23086925, ECO:0000269|PubMed:23317504, ECO:0000269|PubMed:23589332, ECO:0000269|PubMed:24360279, ECO:0000269|PubMed:29176719}.; FUNCTION: [Isoform B]: Acts as a chromatin insulator in the DNA damage response pathway. Inhibits DNA damage response signaling by recruiting the condensin-2 complex to acetylated histones, leading to chromatin structure remodeling, insulating the region from DNA damage response by limiting spreading of histone H2AX/H2A.x phosphorylation. {ECO:0000269|PubMed:23728299}. |
O75369 | FLNB | T994 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75376 | NCOR1 | T1061 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75410 | TACC1 | T257 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75533 | SF3B1 | T142 | ochoa|psp | Splicing factor 3B subunit 1 (Pre-mRNA-splicing factor SF3b 155 kDa subunit) (SF3b155) (Spliceosome-associated protein 155) (SAP 155) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:27720643, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B1 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). Together with other U2 snRNP complex components may also play a role in the selective processing of microRNAs (miRNAs) from the long primary miRNA transcript, pri-miR-17-92 (By similarity). {ECO:0000250|UniProtKB:Q99NB9, ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
O75533 | SF3B1 | T227 | ochoa | Splicing factor 3B subunit 1 (Pre-mRNA-splicing factor SF3b 155 kDa subunit) (SF3b155) (Spliceosome-associated protein 155) (SAP 155) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:27720643, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B1 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). Together with other U2 snRNP complex components may also play a role in the selective processing of microRNAs (miRNAs) from the long primary miRNA transcript, pri-miR-17-92 (By similarity). {ECO:0000250|UniProtKB:Q99NB9, ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
O75533 | SF3B1 | T296 | ochoa | Splicing factor 3B subunit 1 (Pre-mRNA-splicing factor SF3b 155 kDa subunit) (SF3b155) (Spliceosome-associated protein 155) (SAP 155) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:27720643, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B1 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). Together with other U2 snRNP complex components may also play a role in the selective processing of microRNAs (miRNAs) from the long primary miRNA transcript, pri-miR-17-92 (By similarity). {ECO:0000250|UniProtKB:Q99NB9, ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
O75807 | PPP1R15A | T422 | ochoa | Protein phosphatase 1 regulatory subunit 15A (Growth arrest and DNA damage-inducible protein GADD34) (Myeloid differentiation primary response protein MyD116 homolog) | Recruits the serine/threonine-protein phosphatase PPP1CA to prevents excessive phosphorylation of the translation initiation factor eIF-2A/EIF2S1, thereby reversing the shut-off of protein synthesis initiated by stress-inducible kinases and facilitating recovery of cells from stress (PubMed:26095357, PubMed:26742780). Down-regulates the TGF-beta signaling pathway by promoting dephosphorylation of TGFB1 by PP1 (PubMed:14718519). May promote apoptosis by inducing p53/TP53 phosphorylation on 'Ser-15' (PubMed:14635196). Plays an essential role in autophagy by tuning translation during starvation, thus enabling lysosomal biogenesis and a sustained autophagic flux (PubMed:32978159). Also acts a viral restriction factor by attenuating HIV-1 replication (PubMed:31778897). Mechanistically, mediates the inhibition of HIV-1 TAR RNA-mediated translation (PubMed:31778897). {ECO:0000269|PubMed:11564868, ECO:0000269|PubMed:12556489, ECO:0000269|PubMed:14635196, ECO:0000269|PubMed:14718519, ECO:0000269|PubMed:26095357, ECO:0000269|PubMed:31778897, ECO:0000269|PubMed:8139541}.; FUNCTION: (Microbial infection) Promotes enterovirus 71 replication by mediating the internal ribosome entry site (IRES) activity of viral 5'-UTR. {ECO:0000269|PubMed:34985336}. |
O75822 | EIF3J | T109 | ochoa | Eukaryotic translation initiation factor 3 subunit J (eIF3j) (Eukaryotic translation initiation factor 3 subunit 1) (eIF-3-alpha) (eIF3 p35) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
O94762 | RECQL5 | T845 | ochoa | ATP-dependent DNA helicase Q5 (EC 5.6.2.4) (DNA 3'-5' helicase RecQ5) (DNA helicase, RecQ-like type 5) (RecQ5) (RecQ protein-like 5) | DNA helicase that plays an important role in DNA replication, transcription and repair (PubMed:20643585, PubMed:22973052, PubMed:28100692). Probably unwinds DNA in a 3'-5' direction (Probable) (PubMed:28100692). Binds to the RNA polymerase II subunit POLR2A during transcription elongation and suppresses transcription-associated genomic instability (PubMed:20231364). Also associates with POLR1A and enforces the stability of ribosomal DNA arrays (PubMed:27502483). Plays an important role in mitotic chromosome separation after cross-over events and cell cycle progress (PubMed:22013166). Mechanistically, removes RAD51 filaments protecting stalled replication forks at common fragile sites and stimulates MUS81-EME1 endonuclease leading to mitotic DNA synthesis (PubMed:28575661). Required for efficient DNA repair, including repair of inter-strand cross-links (PubMed:23715498). Stimulates DNA decatenation mediated by TOP2A. Prevents sister chromatid exchange and homologous recombination. A core helicase fragment (residues 11-609) binds preferentially to splayed duplex, looped and ssDNA (PubMed:28100692). {ECO:0000269|PubMed:20231364, ECO:0000269|PubMed:20348101, ECO:0000269|PubMed:20643585, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22973052, ECO:0000269|PubMed:23715498, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:27502483, ECO:0000269|PubMed:28100692, ECO:0000269|PubMed:28575661, ECO:0000305|PubMed:28100692}. |
O94913 | PCF11 | T1497 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O94915 | FRYL | T2547 | ochoa | Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) | Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}. |
O95400 | CD2BP2 | T243 | ochoa | CD2 antigen cytoplasmic tail-binding protein 2 (CD2 cytoplasmic domain-binding protein 2) (CD2 tail-binding protein 2) (U5 snRNP 52K protein) (U5-52K) | Involved in pre-mRNA splicing as component of the U5 snRNP complex that is involved in spliceosome assembly. {ECO:0000269|PubMed:15840814}. |
O95573 | ACSL3 | T688 | ochoa | Fatty acid CoA ligase Acsl3 (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 3) (LACS 3) (Long-chain-fatty-acid--CoA ligase 3) (EC 6.2.1.3) (Medium-chain acyl-CoA ligase Acsl3) (EC 6.2.1.2) | Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:22633490). Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins) (PubMed:18003621). Has mainly an anabolic role in energy metabolism. Mediates hepatic lipogenesis. Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates. Both isoforms exhibit the same level of activity (By similarity). {ECO:0000250|UniProtKB:Q63151, ECO:0000269|PubMed:18003621, ECO:0000269|PubMed:22633490}. |
O95831 | AIFM1 | T105 | ochoa | Apoptosis-inducing factor 1, mitochondrial (EC 1.6.99.-) (Programmed cell death protein 8) | Functions both as NADH oxidoreductase and as regulator of apoptosis (PubMed:17094969, PubMed:20362274, PubMed:23217327, PubMed:33168626). In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway (PubMed:20362274). Release into the cytoplasm is mediated upon binding to poly-ADP-ribose chains (By similarity). The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA (PubMed:20362274). Binds to DNA in a sequence-independent manner (PubMed:27178839). Interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthesis, and activates caspase-7 to amplify apoptosis (PubMed:17094969). Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells (PubMed:19418225). In contrast, participates in normal mitochondrial metabolism. Plays an important role in the regulation of respiratory chain biogenesis by interacting with CHCHD4 and controlling CHCHD4 mitochondrial import (PubMed:26004228). {ECO:0000250|UniProtKB:Q9Z0X1, ECO:0000269|PubMed:17094969, ECO:0000269|PubMed:19418225, ECO:0000269|PubMed:20362274, ECO:0000269|PubMed:23217327, ECO:0000269|PubMed:26004228, ECO:0000269|PubMed:27178839, ECO:0000269|PubMed:33168626}.; FUNCTION: [Isoform 4]: Has NADH oxidoreductase activity. Does not induce nuclear apoptosis. {ECO:0000269|PubMed:16644725}.; FUNCTION: [Isoform 5]: Pro-apoptotic isoform. {ECO:0000269|PubMed:16365034}. |
P00390 | GSR | T383 | ochoa | Glutathione reductase, mitochondrial (GR) (GRase) (EC 1.8.1.7) | Catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH). Constitutes the major mechanism to maintain a high GSH:GSSG ratio in the cytosol. {ECO:0000269|PubMed:17185460}. |
P00533 | EGFR | T693 | ochoa|psp | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P01100 | FOS | T331 | psp | Protein c-Fos (Cellular oncogene fos) (Fos proto-oncogene, AP-1 transcription factor subunit) (G0/G1 switch regulatory protein 7) (Proto-oncogene c-Fos) (Transcription factor AP-1 subunit c-Fos) | Nuclear phosphoprotein which forms a tight but non-covalently linked complex with the JUN/AP-1 transcription factor. In the heterodimer, FOS and JUN/AP-1 basic regions each seems to interact with symmetrical DNA half sites. On TGF-beta activation, forms a multimeric SMAD3/SMAD4/JUN/FOS complex at the AP1/SMAD-binding site to regulate TGF-beta-mediated signaling. Has a critical function in regulating the development of cells destined to form and maintain the skeleton. It is thought to have an important role in signal transduction, cell proliferation and differentiation. In growing cells, activates phospholipid synthesis, possibly by activating CDS1 and PI4K2A. This activity requires Tyr-dephosphorylation and association with the endoplasmic reticulum. {ECO:0000269|PubMed:16055710, ECO:0000269|PubMed:17160021, ECO:0000269|PubMed:22105363, ECO:0000269|PubMed:7588633, ECO:0000269|PubMed:9732876}. |
P01106 | MYC | T259 | psp | Myc proto-oncogene protein (Class E basic helix-loop-helix protein 39) (bHLHe39) (Proto-oncogene c-Myc) (Transcription factor p64) | Transcription factor that binds DNA in a non-specific manner, yet also specifically recognizes the core sequence 5'-CAC[GA]TG-3' (PubMed:24940000, PubMed:25956029). Activates the transcription of growth-related genes (PubMed:24940000, PubMed:25956029). Binds to the VEGFA promoter, promoting VEGFA production and subsequent sprouting angiogenesis (PubMed:24940000, PubMed:25956029). Regulator of somatic reprogramming, controls self-renewal of embryonic stem cells (By similarity). Functions with TAF6L to activate target gene expression through RNA polymerase II pause release (By similarity). Positively regulates transcription of HNRNPA1, HNRNPA2 and PTBP1 which in turn regulate splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). {ECO:0000250|UniProtKB:P01108, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:25956029}. |
P04626 | ERBB2 | T701 | ochoa|psp | Receptor tyrosine-protein kinase erbB-2 (EC 2.7.10.1) (Metastatic lymph node gene 19 protein) (MLN 19) (Proto-oncogene Neu) (Proto-oncogene c-ErbB-2) (Tyrosine kinase-type cell surface receptor HER2) (p185erbB2) (CD antigen CD340) | Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. {ECO:0000305}.; FUNCTION: In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth. {ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:15380516, ECO:0000269|PubMed:21555369}. |
P06400 | RB1 | T821 | ochoa|psp | Retinoblastoma-associated protein (p105-Rb) (p110-RB1) (pRb) (Rb) (pp110) | Tumor suppressor that is a key regulator of the G1/S transition of the cell cycle (PubMed:10499802). The hypophosphorylated form binds transcription regulators of the E2F family, preventing transcription of E2F-responsive genes (PubMed:10499802). Both physically blocks E2Fs transactivating domain and recruits chromatin-modifying enzymes that actively repress transcription (PubMed:10499802). Cyclin and CDK-dependent phosphorylation of RB1 induces its dissociation from E2Fs, thereby activating transcription of E2F responsive genes and triggering entry into S phase (PubMed:10499802). RB1 also promotes the G0-G1 transition upon phosphorylation and activation by CDK3/cyclin-C (PubMed:15084261). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity). {ECO:0000250|UniProtKB:P13405, ECO:0000250|UniProtKB:P33568, ECO:0000269|PubMed:10499802, ECO:0000269|PubMed:15084261}.; FUNCTION: (Microbial infection) In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity. {ECO:0000269|PubMed:1316611, ECO:0000269|PubMed:17974914, ECO:0000269|PubMed:18701596, ECO:0000269|PubMed:2839300, ECO:0000269|PubMed:8892909}. |
P08908 | HTR1A | T314 | psp | 5-hydroxytryptamine receptor 1A (5-HT-1A) (5-HT1A) (G-21) (Serotonin receptor 1A) | G-protein coupled receptor for 5-hydroxytryptamine (serotonin) (PubMed:22957663, PubMed:3138543, PubMed:33762731, PubMed:37935376, PubMed:37935377, PubMed:8138923, PubMed:8393041). Also functions as a receptor for various drugs and psychoactive substances (PubMed:22957663, PubMed:3138543, PubMed:33762731, PubMed:38552625, PubMed:8138923, PubMed:8393041). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors, such as adenylate cyclase (PubMed:22957663, PubMed:3138543, PubMed:33762731, PubMed:8138923, PubMed:8393041). HTR1A is coupled to G(i)/G(o) G alpha proteins and mediates inhibitory neurotransmission: signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second messenger system that regulates the release of Ca(2+) ions from intracellular stores (PubMed:33762731, PubMed:35610220). Beta-arrestin family members regulate signaling by mediating both receptor desensitization and resensitization processes (PubMed:18476671, PubMed:20363322, PubMed:20945968). Plays a role in the regulation of 5-hydroxytryptamine release and in the regulation of dopamine and 5-hydroxytryptamine metabolism (PubMed:18476671, PubMed:20363322, PubMed:20945968). Plays a role in the regulation of dopamine and 5-hydroxytryptamine levels in the brain, and thereby affects neural activity, mood and behavior (PubMed:18476671, PubMed:20363322, PubMed:20945968). Plays a role in the response to anxiogenic stimuli (PubMed:18476671, PubMed:20363322, PubMed:20945968). {ECO:0000269|PubMed:22957663, ECO:0000269|PubMed:3138543, ECO:0000269|PubMed:33762731, ECO:0000269|PubMed:35610220, ECO:0000269|PubMed:37935376, ECO:0000269|PubMed:37935377, ECO:0000269|PubMed:38552625, ECO:0000269|PubMed:8138923, ECO:0000269|PubMed:8393041, ECO:0000303|PubMed:18476671, ECO:0000303|PubMed:20363322, ECO:0000303|PubMed:20945968}. |
P0C7T5 | ATXN1L | T369 | ochoa | Ataxin-1-like (Brother of ataxin-1) (Brother of ATXN1) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression (PubMed:21475249). Can suppress ATXN1 cytotoxicity in spinocerebellar ataxia type 1 (SCA1). In concert with CIC and ATXN1, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P0C7T6, ECO:0000269|PubMed:21475249}. |
P0DJD0 | RGPD1 | T1467 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | T1475 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P10636 | MAPT | T111 | psp | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P11021 | HSPA5 | T534 | psp | Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein) | Endoplasmic reticulum chaperone that plays a key role in protein folding and quality control in the endoplasmic reticulum lumen (PubMed:2294010, PubMed:23769672, PubMed:23990668, PubMed:28332555). Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10/ERdj5, probably to facilitate the release of DNAJC10/ERdj5 from its substrate (By similarity). Acts as a key repressor of the EIF2AK3/PERK and ERN1/IRE1-mediated unfolded protein response (UPR) (PubMed:11907036, PubMed:1550958, PubMed:19538957, PubMed:36739529). In the unstressed endoplasmic reticulum, recruited by DNAJB9/ERdj4 to the luminal region of ERN1/IRE1, leading to disrupt the dimerization of ERN1/IRE1, thereby inactivating ERN1/IRE1 (By similarity). Also binds and inactivates EIF2AK3/PERK in unstressed cells (PubMed:11907036). Accumulation of misfolded protein in the endoplasmic reticulum causes release of HSPA5/BiP from ERN1/IRE1 and EIF2AK3/PERK, allowing their homodimerization and subsequent activation (PubMed:11907036). Plays an auxiliary role in post-translational transport of small presecretory proteins across endoplasmic reticulum (ER). May function as an allosteric modulator for SEC61 channel-forming translocon complex, likely cooperating with SEC62 to enable the productive insertion of these precursors into SEC61 channel. Appears to specifically regulate translocation of precursors having inhibitory residues in their mature region that weaken channel gating. May also play a role in apoptosis and cell proliferation (PubMed:26045166). {ECO:0000250|UniProtKB:G3I8R9, ECO:0000250|UniProtKB:P20029, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:1550958, ECO:0000269|PubMed:19538957, ECO:0000269|PubMed:2294010, ECO:0000269|PubMed:23769672, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:26045166, ECO:0000269|PubMed:28332555, ECO:0000269|PubMed:29719251, ECO:0000269|PubMed:36739529}.; FUNCTION: (Microbial infection) Plays an important role in viral binding to the host cell membrane and entry for several flaviruses such as Dengue virus, Zika virus and Japanese encephalitis virus (PubMed:15098107, PubMed:28053106, PubMed:33432092). Acts as a component of the cellular receptor for Dengue virus serotype 2/DENV-2 on human liver cells (PubMed:15098107). {ECO:0000269|PubMed:15098107, ECO:0000269|PubMed:28053106, ECO:0000269|PubMed:33432092}.; FUNCTION: (Microbial infection) Acts as a receptor for CotH proteins expressed by fungi of the order mucorales, the causative agent of mucormycosis, which plays an important role in epithelial cell invasion by the fungi (PubMed:20484814, PubMed:24355926, PubMed:32487760). Acts as a receptor for R.delemar CotH3 in nasal epithelial cells, which may be an early step in rhinoorbital/cerebral mucormycosis (RCM) disease progression (PubMed:32487760). {ECO:0000269|PubMed:20484814, ECO:0000269|PubMed:24355926, ECO:0000269|PubMed:32487760}. |
P12272 | PTHLH | T121 | psp | Parathyroid hormone-related protein (PTH-rP) (PTHrP) (Parathyroid hormone-like protein) (PLP) [Cleaved into: PTHrP[1-36]; PTHrP[38-94]; Osteostatin (PTHrP[107-139])] | Neuroendocrine peptide which is a critical regulator of cellular and organ growth, development, migration, differentiation and survival and of epithelial calcium ion transport (PubMed:12538599, PubMed:35932760, PubMed:3616618). Acts by binding to its receptor, PTH1R, activating G protein-coupled receptor signaling (PubMed:19674967, PubMed:35932760). Regulates endochondral bone development and epithelial-mesenchymal interactions during the formation of the mammary glands and teeth (By similarity). Required for skeletal homeostasis (PubMed:12538599). Promotes mammary mesenchyme differentiation and bud outgrowth by modulating mesenchymal cell responsiveness to BMPs (PubMed:12538599). Up-regulates BMPR1A expression in the mammary mesenchyme and this increases the sensitivity of these cells to BMPs and allows them to respond to BMP4 in a paracrine and/or autocrine fashion (By similarity). BMP4 signaling in the mesenchyme, in turn, triggers epithelial outgrowth and augments MSX2 expression, which causes the mammary mesenchyme to inhibit hair follicle formation within the nipple sheath (By similarity). Promotes colon cancer cell migration and invasion in an integrin alpha-6/beta-1-dependent manner through activation of Rac1 (PubMed:20637541). {ECO:0000250|UniProtKB:P22858, ECO:0000269|PubMed:19674967, ECO:0000269|PubMed:20637541, ECO:0000269|PubMed:35932760, ECO:0000269|PubMed:3616618, ECO:0000303|PubMed:12538599}.; FUNCTION: [Osteostatin]: Potent inhibitor of osteoclastic bone resorption. {ECO:0000269|PubMed:1915066, ECO:0000269|PubMed:1954916, ECO:0000269|PubMed:20637541, ECO:0000269|PubMed:9048639, ECO:0000269|PubMed:9144344}. |
P13010 | XRCC5 | T629 | ochoa | X-ray repair cross-complementing protein 5 (EC 3.6.4.-) (86 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 2) (ATP-dependent DNA helicase II 80 kDa subunit) (CTC box-binding factor 85 kDa subunit) (CTC85) (CTCBF) (DNA repair protein XRCC5) (Ku80) (Ku86) (Lupus Ku autoantigen protein p86) (Nuclear factor IV) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining)) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488}. |
P13647 | KRT5 | T151 | psp | Keratin, type II cytoskeletal 5 (58 kDa cytokeratin) (Cytokeratin-5) (CK-5) (Keratin-5) (K5) (Type-II keratin Kb5) | Required for the formation of keratin intermediate filaments in the basal epidermis and maintenance of the skin barrier in response to mechanical stress (By similarity). Regulates the recruitment of Langerhans cells to the epidermis, potentially by modulation of the abundance of macrophage chemotactic cytokines, macrophage inflammatory cytokines and CTNND1 localization in keratinocytes (By similarity). {ECO:0000250|UniProtKB:Q922U2}. |
P14859 | POU2F1 | T270 | ochoa | POU domain, class 2, transcription factor 1 (NF-A1) (Octamer-binding protein 1) (Oct-1) (Octamer-binding transcription factor 1) (OTF-1) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3') and activates the promoters of the genes for some small nuclear RNAs (snRNA) and of genes such as those for histone H2B and immunoglobulins. Modulates transcription transactivation by NR3C1, AR and PGR. {ECO:0000269|PubMed:10480874, ECO:0000269|PubMed:1684878, ECO:0000269|PubMed:7859290}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, POU2F1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and HCFC1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000305|PubMed:12826401}. |
P15336 | ATF2 | T71 | ochoa|psp | Cyclic AMP-dependent transcription factor ATF-2 (cAMP-dependent transcription factor ATF-2) (Activating transcription factor 2) (Cyclic AMP-responsive element-binding protein 2) (CREB-2) (cAMP-responsive element-binding protein 2) (HB16) (cAMP response element-binding protein CRE-BP1) | Transcriptional activator which regulates the transcription of various genes, including those involved in anti-apoptosis, cell growth, and DNA damage response. Dependent on its binding partner, binds to CRE (cAMP response element) consensus sequences (5'-TGACGTCA-3') or to AP-1 (activator protein 1) consensus sequences (5'-TGACTCA-3'). In the nucleus, contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. In the cytoplasm, interacts with and perturbs HK1- and VDAC1-containing complexes at the mitochondrial outer membrane, thereby impairing mitochondrial membrane potential, inducing mitochondrial leakage and promoting cell death. The phosphorylated form (mediated by ATM) plays a role in the DNA damage response and is involved in the ionizing radiation (IR)-induced S phase checkpoint control and in the recruitment of the MRN complex into the IR-induced foci (IRIF). Exhibits histone acetyltransferase (HAT) activity which specifically acetylates histones H2B and H4 in vitro (PubMed:10821277). In concert with CUL3 and RBX1, promotes the degradation of KAT5 thereby attenuating its ability to acetylate and activate ATM. Can elicit oncogenic or tumor suppressor activities depending on the tissue or cell type. {ECO:0000269|PubMed:10821277, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:18397884, ECO:0000269|PubMed:22304920}. |
P15880 | RPS2 | T252 | ochoa | Small ribosomal subunit protein uS5 (40S ribosomal protein S2) (40S ribosomal protein S4) (Protein LLRep3) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (PubMed:23636399). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (PubMed:23636399). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (PubMed:23636399). Plays a role in the assembly and function of the 40S ribosomal subunit (By similarity). Mutations in this protein affects the control of translational fidelity (By similarity). Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly (By similarity). {ECO:0000250|UniProtKB:P25443, ECO:0000269|PubMed:23636399}. |
P17096 | HMGA1 | T78 | ochoa|psp | High mobility group protein HMG-I/HMG-Y (HMG-I(Y)) (High mobility group AT-hook protein 1) (High mobility group protein A1) (High mobility group protein R) | HMG-I/Y bind preferentially to the minor groove of A+T rich regions in double-stranded DNA. It is suggested that these proteins could function in nucleosome phasing and in the 3'-end processing of mRNA transcripts. They are also involved in the transcription regulation of genes containing, or in close proximity to A+T-rich regions. |
P17252 | PRKCA | T638 | ochoa|psp | Protein kinase C alpha type (PKC-A) (PKC-alpha) (EC 2.7.11.13) | Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that is involved in positive and negative regulation of cell proliferation, apoptosis, differentiation, migration and adhesion, tumorigenesis, cardiac hypertrophy, angiogenesis, platelet function and inflammation, by directly phosphorylating targets such as RAF1, BCL2, CSPG4, TNNT2/CTNT, or activating signaling cascade involving MAPK1/3 (ERK1/2) and RAP1GAP. Involved in cell proliferation and cell growth arrest by positive and negative regulation of the cell cycle. Can promote cell growth by phosphorylating and activating RAF1, which mediates the activation of the MAPK/ERK signaling cascade, and/or by up-regulating CDKN1A, which facilitates active cyclin-dependent kinase (CDK) complex formation in glioma cells. In intestinal cells stimulated by the phorbol ester PMA, can trigger a cell cycle arrest program which is associated with the accumulation of the hyper-phosphorylated growth-suppressive form of RB1 and induction of the CDK inhibitors CDKN1A and CDKN1B. Exhibits anti-apoptotic function in glioma cells and protects them from apoptosis by suppressing the p53/TP53-mediated activation of IGFBP3, and in leukemia cells mediates anti-apoptotic action by phosphorylating BCL2. During macrophage differentiation induced by macrophage colony-stimulating factor (CSF1), is translocated to the nucleus and is associated with macrophage development. After wounding, translocates from focal contacts to lamellipodia and participates in the modulation of desmosomal adhesion. Plays a role in cell motility by phosphorylating CSPG4, which induces association of CSPG4 with extensive lamellipodia at the cell periphery and polarization of the cell accompanied by increases in cell motility. During chemokine-induced CD4(+) T cell migration, phosphorylates CDC42-guanine exchange factor DOCK8 resulting in its dissociation from LRCH1 and the activation of GTPase CDC42 (PubMed:28028151). Is highly expressed in a number of cancer cells where it can act as a tumor promoter and is implicated in malignant phenotypes of several tumors such as gliomas and breast cancers. Negatively regulates myocardial contractility and positively regulates angiogenesis, platelet aggregation and thrombus formation in arteries. Mediates hypertrophic growth of neonatal cardiomyocytes, in part through a MAPK1/3 (ERK1/2)-dependent signaling pathway, and upon PMA treatment, is required to induce cardiomyocyte hypertrophy up to heart failure and death, by increasing protein synthesis, protein-DNA ratio and cell surface area. Regulates cardiomyocyte function by phosphorylating cardiac troponin T (TNNT2/CTNT), which induces significant reduction in actomyosin ATPase activity, myofilament calcium sensitivity and myocardial contractility. In angiogenesis, is required for full endothelial cell migration, adhesion to vitronectin (VTN), and vascular endothelial growth factor A (VEGFA)-dependent regulation of kinase activation and vascular tube formation. Involved in the stabilization of VEGFA mRNA at post-transcriptional level and mediates VEGFA-induced cell proliferation. In the regulation of calcium-induced platelet aggregation, mediates signals from the CD36/GP4 receptor for granule release, and activates the integrin heterodimer ITGA2B-ITGB3 through the RAP1GAP pathway for adhesion. During response to lipopolysaccharides (LPS), may regulate selective LPS-induced macrophage functions involved in host defense and inflammation. But in some inflammatory responses, may negatively regulate NF-kappa-B-induced genes, through IL1A-dependent induction of NF-kappa-B inhibitor alpha (NFKBIA/IKBA). Upon stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA), phosphorylates EIF4G1, which modulates EIF4G1 binding to MKNK1 and may be involved in the regulation of EIF4E phosphorylation. Phosphorylates KIT, leading to inhibition of KIT activity. Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription. Phosphorylates SOCS2 at 'Ser-52' facilitating its ubiquitination and proteasomal degradation (By similarity). Phosphorylates KLHL3 in response to angiotensin II signaling, decreasing the interaction between KLHL3 and WNK4 (PubMed:25313067). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P20444, ECO:0000269|PubMed:10848585, ECO:0000269|PubMed:11909826, ECO:0000269|PubMed:12724315, ECO:0000269|PubMed:12832403, ECO:0000269|PubMed:15016832, ECO:0000269|PubMed:15504744, ECO:0000269|PubMed:15526160, ECO:0000269|PubMed:18056764, ECO:0000269|PubMed:19176525, ECO:0000269|PubMed:21576361, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:25313067, ECO:0000269|PubMed:28028151, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:9738012, ECO:0000269|PubMed:9830023, ECO:0000269|PubMed:9873035, ECO:0000269|PubMed:9927633}. |
P17535 | JUND | T117 | ochoa | Transcription factor JunD (Transcription factor AP-1 subunit JunD) | Transcription factor binding AP-1 sites (PubMed:9989505). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription factor complex, thereby enhancing their DNA binding activity to an AP-1 consensus sequence 3'-TGA[GC]TCA-5' and enhancing their transcriptional activity (PubMed:28981703, PubMed:9989505). {ECO:0000269|PubMed:28981703, ECO:0000269|PubMed:9989505}. |
P17544 | ATF7 | T53 | psp | Cyclic AMP-dependent transcription factor ATF-7 (cAMP-dependent transcription factor ATF-7) (Activating transcription factor 7) (Transcription factor ATF-A) | Stress-responsive chromatin regulator that plays a role in various biological processes including innate immunological memory, adipocyte differentiation or telomerase regulation (PubMed:29490055). In absence of stress, contributes to the formation of heterochromatin and heterochromatin-like structure by recruiting histone H3K9 tri- and di-methyltransferases thus silencing the transcription of target genes such as STAT1 in adipocytes, or genes involved in innate immunity in macrophages and adipocytes (By similarity). Stress induces ATF7 phosphorylation that disrupts interactions with histone methyltransferase and enhances the association with coactivators containing histone acetyltransferase and/or histone demethylase, leading to disruption of the heterochromatin-like structure and subsequently transcriptional activation (By similarity). In response to TNF-alpha, which is induced by various stresses, phosphorylated ATF7 and telomerase are released from telomeres leading to telomere shortening (PubMed:29490055). Also plays a role in maintaining epithelial regenerative capacity and protecting against cell death during intestinal epithelial damage and repair (By similarity). {ECO:0000250|UniProtKB:Q8R0S1, ECO:0000269|PubMed:29490055}.; FUNCTION: [Isoform 4]: Acts as a dominant repressor of the E-selectin/NF-ELAM1/delta-A promoter.; FUNCTION: [Isoform 5]: Acts as a negative regulator, inhibiting both ATF2 and ATF7 transcriptional activities. It may exert these effects by sequestrating in the cytoplasm the Thr-53 phosphorylating kinase, preventing activation. {ECO:0000269|PubMed:21858082}. |
P17844 | DDX5 | T446 | ochoa|psp | Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) | Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}. |
P19012 | KRT15 | T145 | ochoa | Keratin, type I cytoskeletal 15 (Cytokeratin-15) (CK-15) (Keratin-15) (K15) | None |
P22234 | PAICS | T238 | ochoa | Bifunctional phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) [Includes: Phosphoribosylaminoimidazole carboxylase (EC 4.1.1.21) (AIR carboxylase) (AIRC); Phosphoribosylaminoimidazole succinocarboxamide synthetase (EC 6.3.2.6) (SAICAR synthetase)] | Bifunctional phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazole succinocarboxamide synthetase catalyzing two reactions of the de novo purine biosynthetic pathway. {ECO:0000269|PubMed:17224163, ECO:0000269|PubMed:2183217, ECO:0000269|PubMed:31600779}. |
P23528 | CFL1 | T91 | ochoa | Cofilin-1 (18 kDa phosphoprotein) (p18) (Cofilin, non-muscle isoform) | Binds to F-actin and exhibits pH-sensitive F-actin depolymerizing activity (PubMed:11812157). In conjunction with the subcortical maternal complex (SCMC), plays an essential role for zygotes to progress beyond the first embryonic cell divisions via regulation of actin dynamics (PubMed:15580268). Required for the centralization of the mitotic spindle and symmetric division of zygotes (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization in epithelial cells (PubMed:21834987). Required for the up-regulation of atypical chemokine receptor ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). Required for neural tube morphogenesis and neural crest cell migration (By similarity). {ECO:0000250|UniProtKB:P18760, ECO:0000269|PubMed:11812157, ECO:0000269|PubMed:15580268, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:23633677}. |
P25205 | MCM3 | T722 | ochoa|psp | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P26358 | DNMT1 | T166 | ochoa | DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) | Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}. |
P26641 | EEF1G | T46 | ochoa | Elongation factor 1-gamma (EF-1-gamma) (eEF-1B gamma) | Probably plays a role in anchoring the complex to other cellular components. |
P27816 | MAP4 | T76 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P29083 | GTF2E1 | T419 | ochoa | General transcription factor IIE subunit 1 (General transcription factor IIE 56 kDa subunit) (Transcription initiation factor IIE subunit alpha) (TFIIE-alpha) | Recruits TFIIH to the initiation complex and stimulates the RNA polymerase II C-terminal domain kinase and DNA-dependent ATPase activities of TFIIH. Both TFIIH and TFIIE are required for promoter clearance by RNA polymerase. |
P29536 | LMOD1 | T295 | ochoa | Leiomodin-1 (64 kDa autoantigen 1D) (64 kDa autoantigen 1D3) (64 kDa autoantigen D1) (Leiomodin, muscle form) (Smooth muscle leiomodin) (SM-Lmod) (Thyroid-associated ophthalmopathy autoantigen) | Required for proper contractility of visceral smooth muscle cells (PubMed:28292896). Mediates nucleation of actin filaments. {ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:28292896}. |
P30041 | PRDX6 | T44 | ochoa | Peroxiredoxin-6 (EC 1.11.1.27) (1-Cys peroxiredoxin) (1-Cys PRX) (24 kDa protein) (Acidic calcium-independent phospholipase A2) (aiPLA2) (EC 3.1.1.4) (Antioxidant protein 2) (Glutathione-dependent peroxiredoxin) (Liver 2D page spot 40) (Lysophosphatidylcholine acyltransferase 5) (LPC acyltransferase 5) (LPCAT-5) (Lyso-PC acyltransferase 5) (EC 2.3.1.23) (Non-selenium glutathione peroxidase) (NSGPx) (Red blood cells page spot 12) | Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively (PubMed:10893423, PubMed:9497358). Can reduce H(2)O(2) and short chain organic, fatty acid, and phospholipid hydroperoxides (PubMed:10893423). Also has phospholipase activity, can therefore either reduce the oxidized sn-2 fatty acyl group of phospholipids (peroxidase activity) or hydrolyze the sn-2 ester bond of phospholipids (phospholipase activity) (PubMed:10893423, PubMed:26830860). These activities are dependent on binding to phospholipids at acidic pH and to oxidized phospholipds at cytosolic pH (PubMed:10893423). Plays a role in cell protection against oxidative stress by detoxifying peroxides and in phospholipid homeostasis (PubMed:10893423). Exhibits acyl-CoA-dependent lysophospholipid acyltransferase which mediates the conversion of lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) (PubMed:26830860). Shows a clear preference for LPC as the lysophospholipid and for palmitoyl CoA as the fatty acyl substrate (PubMed:26830860). {ECO:0000269|PubMed:10893423, ECO:0000269|PubMed:26830860, ECO:0000269|PubMed:9497358}. |
P30044 | PRDX5 | T97 | ochoa | Peroxiredoxin-5, mitochondrial (EC 1.11.1.24) (Alu corepressor 1) (Antioxidant enzyme B166) (AOEB166) (Liver tissue 2D-page spot 71B) (PLP) (Peroxiredoxin V) (Prx-V) (Peroxisomal antioxidant enzyme) (TPx type VI) (Thioredoxin peroxidase PMP20) (Thioredoxin-dependent peroxiredoxin 5) | Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides and as sensor of hydrogen peroxide-mediated signaling events. {ECO:0000269|PubMed:10514471, ECO:0000269|PubMed:10521424, ECO:0000269|PubMed:10751410, ECO:0000269|PubMed:31740833}. |
P31749 | AKT1 | T448 | ochoa | RAC-alpha serine/threonine-protein kinase (EC 2.7.11.1) (Protein kinase B) (PKB) (Protein kinase B alpha) (PKB alpha) (Proto-oncogene c-Akt) (RAC-PK-alpha) | AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis (PubMed:11882383, PubMed:15526160, PubMed:15861136, PubMed:21432781, PubMed:21620960, PubMed:31204173). This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960, PubMed:29343641, PubMed:31204173). Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960). AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface (By similarity). Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling (By similarity). Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport (PubMed:11994271). AKT also regulates the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity (By similarity). Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven (By similarity). AKT also regulates cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase) (PubMed:11154276). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis (PubMed:11154276). AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating the mTORC1 signaling pathway, and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1 (PubMed:12150915, PubMed:12172553). Also regulates the mTORC1 signaling pathway by catalyzing phosphorylation of CASTOR1 and DEPDC5 (PubMed:31548394, PubMed:33594058). AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Part of a positive feedback loop of mTORC2 signaling by mediating phosphorylation of MAPKAP1/SIN1, promoting mTORC2 activation (By similarity). AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization (PubMed:10358075). In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319' (PubMed:10358075). FOXO3 and FOXO4 are phosphorylated on equivalent sites (PubMed:10358075). AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein) (PubMed:9829964). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1 (PubMed:9829964). AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis (By similarity). Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis (By similarity). Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity (By similarity). The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth (By similarity). Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor 1 (IGF1) (PubMed:12176338, PubMed:12964941). AKT mediates the antiapoptotic effects of IGF1 (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). May be involved in the regulation of the placental development (By similarity). Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3 (PubMed:17726016). Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation (PubMed:20086174). Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation (PubMed:19592491). Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity (PubMed:10576742). Phosphorylation of BAD stimulates its pro-apoptotic activity (PubMed:10926925). Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53 (PubMed:23431171). Phosphorylates palladin (PALLD), modulating cytoskeletal organization and cell motility (PubMed:20471940). Phosphorylates prohibitin (PHB), playing an important role in cell metabolism and proliferation (PubMed:18507042). Phosphorylates CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization (PubMed:16982699). These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation (PubMed:16139227). Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation (PubMed:20682768). Phosphorylates PCK1 at 'Ser-90', reducing the binding affinity of PCK1 to oxaloacetate and changing PCK1 into an atypical protein kinase activity using GTP as donor (PubMed:32322062). Also acts as an activator of TMEM175 potassium channel activity in response to growth factors: forms the lysoK(GF) complex together with TMEM175 and acts by promoting TMEM175 channel activation, independently of its protein kinase activity (PubMed:32228865). Acts as a regulator of mitochondrial calcium uptake by mediating phosphorylation of MICU1 in the mitochondrial intermembrane space, impairing MICU1 maturation (PubMed:30504268). Acts as an inhibitor of tRNA methylation by mediating phosphorylation of the N-terminus of METTL1, thereby inhibiting METTL1 methyltransferase activity (PubMed:15861136). In response to LPAR1 receptor pathway activation, phosphorylates Rabin8/RAB3IP which alters its activity and phosphorylates WDR44 which induces WDR44 binding to Rab11, thereby switching Rab11 vesicular function from preciliary trafficking to endocytic recycling (PubMed:31204173). {ECO:0000250|UniProtKB:P31750, ECO:0000250|UniProtKB:P47196, ECO:0000269|PubMed:10358075, ECO:0000269|PubMed:10576742, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11154276, ECO:0000269|PubMed:11994271, ECO:0000269|PubMed:12150915, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12176338, ECO:0000269|PubMed:12964941, ECO:0000269|PubMed:15861136, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:16982699, ECO:0000269|PubMed:17726016, ECO:0000269|PubMed:18507042, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:19934221, ECO:0000269|PubMed:20086174, ECO:0000269|PubMed:20471940, ECO:0000269|PubMed:20682768, ECO:0000269|PubMed:23431171, ECO:0000269|PubMed:30504268, ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:32228865, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:33594058, ECO:0000269|PubMed:9829964, ECO:0000303|PubMed:11882383, ECO:0000303|PubMed:15526160, ECO:0000303|PubMed:21432781, ECO:0000303|PubMed:21620960}. |
P31948 | STIP1 | T332 | ochoa | Stress-induced-phosphoprotein 1 (STI1) (Hsc70/Hsp90-organizing protein) (Hop) (Renal carcinoma antigen NY-REN-11) (Transformation-sensitive protein IEF SSP 3521) | Acts as a co-chaperone for HSP90AA1 (PubMed:27353360). Mediates the association of the molecular chaperones HSPA8/HSC70 and HSP90 (By similarity). {ECO:0000250|UniProtKB:O35814, ECO:0000303|PubMed:27353360}. |
P36021 | SLC16A2 | T80 | ochoa | Monocarboxylate transporter 8 (MCT 8) (Monocarboxylate transporter 7) (MCT 7) (Solute carrier family 16 member 2) (X-linked PEST-containing transporter) | Specific thyroid hormone transmembrane transporter, that mediates both uptake and efflux of thyroid hormones across the cell membrane independently of pH or a Na(+) gradient. Major substrates are the iodothyronines T3 and T4 and to a lesser extent rT3 and 3,3-diiodothyronine (3,3'-T2) (PubMed:16887882, PubMed:18337592, PubMed:20628049, PubMed:23550058, PubMed:26426690, PubMed:27805744, PubMed:31436139). Acts as an important mediator of thyroid hormone transport, especially T3, through the blood-brain barrier (Probable) (PubMed:28526555). {ECO:0000269|PubMed:16887882, ECO:0000269|PubMed:18337592, ECO:0000269|PubMed:20628049, ECO:0000269|PubMed:23550058, ECO:0000269|PubMed:26426690, ECO:0000269|PubMed:27805744, ECO:0000269|PubMed:28526555, ECO:0000269|PubMed:31436139, ECO:0000305|PubMed:18636565}. |
P40818 | USP8 | T737 | ochoa | Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) | Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}. |
P41212 | ETV6 | T161 | ochoa | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P41743 | PRKCI | T564 | ochoa|psp | Protein kinase C iota type (EC 2.7.11.13) (Atypical protein kinase C-lambda/iota) (PRKC-lambda/iota) (aPKC-lambda/iota) (nPKC-iota) | Calcium- and diacylglycerol-independent serine/ threonine-protein kinase that plays a general protective role against apoptotic stimuli, is involved in NF-kappa-B activation, cell survival, differentiation and polarity, and contributes to the regulation of microtubule dynamics in the early secretory pathway. Is necessary for BCR-ABL oncogene-mediated resistance to apoptotic drug in leukemia cells, protecting leukemia cells against drug-induced apoptosis. In cultured neurons, prevents amyloid beta protein-induced apoptosis by interrupting cell death process at a very early step. In glioblastoma cells, may function downstream of phosphatidylinositol 3-kinase (PI(3)K) and PDPK1 in the promotion of cell survival by phosphorylating and inhibiting the pro-apoptotic factor BAD. Can form a protein complex in non-small cell lung cancer (NSCLC) cells with PARD6A and ECT2 and regulate ECT2 oncogenic activity by phosphorylation, which in turn promotes transformed growth and invasion. In response to nerve growth factor (NGF), acts downstream of SRC to phosphorylate and activate IRAK1, allowing the subsequent activation of NF-kappa-B and neuronal cell survival. Functions in the organization of the apical domain in epithelial cells by phosphorylating EZR. This step is crucial for activation and normal distribution of EZR at the early stages of intestinal epithelial cell differentiation. Forms a protein complex with LLGL1 and PARD6B independently of PARD3 to regulate epithelial cell polarity. Plays a role in microtubule dynamics in the early secretory pathway through interaction with RAB2A and GAPDH and recruitment to vesicular tubular clusters (VTCs). In human coronary artery endothelial cells (HCAEC), is activated by saturated fatty acids and mediates lipid-induced apoptosis. Involved in early synaptic long term potentiation phase in CA1 hippocampal cells and short term memory formation (By similarity). {ECO:0000250|UniProtKB:F1M7Y5, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10467349, ECO:0000269|PubMed:10906326, ECO:0000269|PubMed:11042363, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:12871960, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15994303, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19327373, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21419810, ECO:0000269|PubMed:8226978, ECO:0000269|PubMed:9346882}. |
P43490 | NAMPT | T435 | ochoa | Nicotinamide phosphoribosyltransferase (NAmPRTase) (Nampt) (EC 2.4.2.12) (Pre-B-cell colony-enhancing factor 1) (Pre-B cell-enhancing factor) (Visfatin) | Catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to yield nicotinamide mononucleotide, an intermediate in the biosynthesis of NAD. It is the rate limiting component in the mammalian NAD biosynthesis pathway. The secreted form behaves both as a cytokine with immunomodulating properties and an adipokine with anti-diabetic properties, it has no enzymatic activity, partly because of lack of activation by ATP, which has a low level in extracellular space and plasma. Plays a role in the modulation of circadian clock function. NAMPT-dependent oscillatory production of NAD regulates oscillation of clock target gene expression by releasing the core clock component: CLOCK-BMAL1 heterodimer from NAD-dependent SIRT1-mediated suppression (By similarity). {ECO:0000250|UniProtKB:Q99KQ4, ECO:0000269|PubMed:24130902}. |
P46013 | MKI67 | T1091 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | T1335 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | T1943 | psp | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | T2065 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46821 | MAP1B | T527 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | T565 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | T908 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P49137 | MAPKAPK2 | T334 | ochoa|psp | MAP kinase-activated protein kinase 2 (MAPK-activated protein kinase 2) (MAPKAP kinase 2) (MAPKAP-K2) (MAPKAPK-2) (MK-2) (MK2) (EC 2.7.11.1) | Stress-activated serine/threonine-protein kinase involved in cytokine production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling, DNA damage response and transcriptional regulation. Following stress, it is phosphorylated and activated by MAP kinase p38-alpha/MAPK14, leading to phosphorylation of substrates. Phosphorylates serine in the peptide sequence, Hyd-X-R-X(2)-S, where Hyd is a large hydrophobic residue. Phosphorylates ALOX5, CDC25B, CDC25C, CEP131, ELAVL1, HNRNPA0, HSP27/HSPB1, KRT18, KRT20, LIMK1, LSP1, PABPC1, PARN, PDE4A, RCSD1, RPS6KA3, TAB3 and TTP/ZFP36. Phosphorylates HSF1; leading to the interaction with HSP90 proteins and inhibiting HSF1 homotrimerization, DNA-binding and transactivation activities (PubMed:16278218). Mediates phosphorylation of HSP27/HSPB1 in response to stress, leading to the dissociation of HSP27/HSPB1 from large small heat-shock protein (sHsps) oligomers and impairment of their chaperone activities and ability to protect against oxidative stress effectively. Involved in inflammatory response by regulating tumor necrosis factor (TNF) and IL6 production post-transcriptionally: acts by phosphorylating AU-rich elements (AREs)-binding proteins ELAVL1, HNRNPA0, PABPC1 and TTP/ZFP36, leading to the regulation of the stability and translation of TNF and IL6 mRNAs. Phosphorylation of TTP/ZFP36, a major post-transcriptional regulator of TNF, promotes its binding to 14-3-3 proteins and reduces its ARE mRNA affinity, leading to inhibition of dependent degradation of ARE-containing transcripts. Phosphorylates CEP131 in response to cellular stress induced by ultraviolet irradiation which promotes binding of CEP131 to 14-3-3 proteins and inhibits formation of novel centriolar satellites (PubMed:26616734). Also involved in late G2/M checkpoint following DNA damage through a process of post-transcriptional mRNA stabilization: following DNA damage, relocalizes from nucleus to cytoplasm and phosphorylates HNRNPA0 and PARN, leading to stabilization of GADD45A mRNA. Involved in toll-like receptor signaling pathway (TLR) in dendritic cells: required for acute TLR-induced macropinocytosis by phosphorylating and activating RPS6KA3. {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:11844797, ECO:0000269|PubMed:12456657, ECO:0000269|PubMed:12565831, ECO:0000269|PubMed:14499342, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:15014438, ECO:0000269|PubMed:15629715, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:16456544, ECO:0000269|PubMed:17481585, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:20932473, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:8093612, ECO:0000269|PubMed:8280084, ECO:0000269|PubMed:8774846}. |
P49792 | RANBP2 | T2458 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49915 | GMPS | T318 | ochoa | GMP synthase [glutamine-hydrolyzing] (EC 6.3.5.2) (GMP synthetase) (Glutamine amidotransferase) | Catalyzes the conversion of xanthine monophosphate (XMP) to GMP in the presence of glutamine and ATP through an adenyl-XMP intermediate. {ECO:0000269|PubMed:8089153}. |
P50851 | LRBA | T1579 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P51114 | FXR1 | T597 | ochoa | RNA-binding protein FXR1 (FMR1 autosomal homolog 1) (hFXR1p) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for various processes, such as neurogenesis, muscle development and spermatogenesis (PubMed:17382880, PubMed:20417602, PubMed:30067974, PubMed:34731628, PubMed:35989368, PubMed:36306353). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:17382880, PubMed:34731628). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (By similarity). Required to activate translation of stored mRNAs during late spermatogenesis: acts by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules that recruit translation initiation factor EIF4G3 to activate translation of stored mRNAs in late spermatids (By similarity). Promotes translation of MYC transcripts by recruiting the eIF4F complex to the translation start site (PubMed:34731628). Acts as a negative regulator of inflammation in response to IL19 by promoting destabilization of pro-inflammatory transcripts (PubMed:30067974). Also acts as an inhibitor of inflammation by binding to TNF mRNA, decreasing TNF protein production (By similarity). Acts as a negative regulator of AMPA receptor GRIA2/GluA2 synthesis during long-lasting synaptic potentiation of hippocampal neurons by binding to GRIA2/GluA2 mRNA, thereby inhibiting its translation (By similarity). Regulates proliferation of adult neural stem cells by binding to CDKN1A mRNA and promoting its expression (By similarity). Acts as a regulator of sleep and synaptic homeostasis by regulating translation of transcripts in neurons (By similarity). Required for embryonic and postnatal development of muscle tissue by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules (PubMed:30770808). Involved in the nuclear pore complex localization to the nuclear envelope by preventing cytoplasmic aggregation of nucleoporins: acts by preventing ectopic phase separation of nucleoporins in the cytoplasm via a microtubule-dependent mechanism (PubMed:32706158). Plays a role in the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with PKP3 (PubMed:25225333). May also do the same for PKP2, PKP3 and DSP via its interaction with PKP1 (PubMed:25225333). Forms a cytoplasmic messenger ribonucleoprotein (mRNP) network by packaging long mRNAs, serving as a scaffold that recruits proteins and signaling molecules. This network facilitates signaling reactions by maintaining proximity between kinases and substrates, crucial for processes like actomyosin reorganization (PubMed:39106863). {ECO:0000250|UniProtKB:Q61584, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:30067974, ECO:0000269|PubMed:30770808, ECO:0000269|PubMed:32706158, ECO:0000269|PubMed:34731628, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36306353, ECO:0000269|PubMed:39106863}. |
P51587 | BRCA2 | T1104 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51665 | PSMD7 | T149 | ochoa | 26S proteasome non-ATPase regulatory subunit 7 (26S proteasome regulatory subunit RPN8) (26S proteasome regulatory subunit S12) (Mov34 protein homolog) (Proteasome subunit p40) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
P51858 | HDGF | T200 | ochoa | Hepatoma-derived growth factor (HDGF) (High mobility group protein 1-like 2) (HMG-1L2) | [Isoform 1]: Acts as a transcriptional repressor (PubMed:17974029). Has mitogenic activity for fibroblasts (PubMed:11751870, PubMed:26845719). Heparin-binding protein (PubMed:15491618). {ECO:0000269|PubMed:11751870, ECO:0000269|PubMed:15491618, ECO:0000269|PubMed:17974029, ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 2]: Does not have mitogenic activity for fibroblasts (PubMed:26845719). Does not bind heparin (PubMed:26845719). {ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 3]: Has mitogenic activity for fibroblasts (PubMed:26845719). Heparin-binding protein (PubMed:26845719). {ECO:0000269|PubMed:26845719}. |
P52732 | KIF11 | T926 | ochoa|psp | Kinesin-like protein KIF11 (Kinesin-like protein 1) (Kinesin-like spindle protein HKSP) (Kinesin-related motor protein Eg5) (Thyroid receptor-interacting protein 5) (TR-interacting protein 5) (TRIP-5) | Motor protein required for establishing a bipolar spindle and thus contributing to chromosome congression during mitosis (PubMed:19001501, PubMed:37728657). Required in non-mitotic cells for transport of secretory proteins from the Golgi complex to the cell surface (PubMed:23857769). {ECO:0000269|PubMed:19001501, ECO:0000269|PubMed:23857769}. |
P53667 | LIMK1 | T229 | ochoa | LIM domain kinase 1 (LIMK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays an essential role in the regulation of actin filament dynamics. Acts downstream of several Rho family GTPase signal transduction pathways (PubMed:10436159, PubMed:11832213, PubMed:12807904, PubMed:15660133, PubMed:16230460, PubMed:18028908, PubMed:22328514, PubMed:23633677). Activated by upstream kinases including ROCK1, PAK1 and PAK4, which phosphorylate LIMK1 on a threonine residue located in its activation loop (PubMed:10436159). LIMK1 subsequently phosphorylates and inactivates the actin binding/depolymerizing factors cofilin-1/CFL1, cofilin-2/CFL2 and destrin/DSTN, thereby preventing the cleavage of filamentous actin (F-actin), and stabilizing the actin cytoskeleton (PubMed:11832213, PubMed:15660133, PubMed:16230460, PubMed:23633677). In this way LIMK1 regulates several actin-dependent biological processes including cell motility, cell cycle progression, and differentiation (PubMed:11832213, PubMed:15660133, PubMed:16230460, PubMed:23633677). Phosphorylates TPPP on serine residues, thereby promoting microtubule disassembly (PubMed:18028908). Stimulates axonal outgrowth and may be involved in brain development (PubMed:18028908). {ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:16230460, ECO:0000269|PubMed:18028908, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:23633677}.; FUNCTION: [Isoform 3]: Has a dominant negative effect on actin cytoskeletal changes. Required for atypical chemokine receptor ACKR2-induced phosphorylation of cofilin (CFL1). {ECO:0000269|PubMed:10196227}. |
P53805 | RCAN1 | T208 | psp | Calcipressin-1 (Adapt78) (Down syndrome critical region protein 1) (Myocyte-enriched calcineurin-interacting protein 1) (MCIP1) (Regulator of calcineurin 1) | Inhibits calcineurin-dependent transcriptional responses by binding to the catalytic domain of calcineurin A (PubMed:12809556). Could play a role during central nervous system development (By similarity). {ECO:0000250|UniProtKB:Q9JHG6, ECO:0000269|PubMed:12809556}. |
P54198 | HIRA | T555 | ochoa|psp | Protein HIRA (TUP1-like enhancer of split protein 1) | Cooperates with ASF1A to promote replication-independent chromatin assembly. Required for the periodic repression of histone gene transcription during the cell cycle. Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit. {ECO:0000269|PubMed:12370293, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15621527}. |
P54274 | TERF1 | T371 | psp | Telomeric repeat-binding factor 1 (NIMA-interacting protein 2) (TTAGGG repeat-binding factor 1) (Telomeric protein Pin2/TRF1) | Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and negatively regulates telomere length. Involved in the regulation of the mitotic spindle. Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. {ECO:0000269|PubMed:16166375}. |
P54829 | PTPN5 | T255 | psp | Tyrosine-protein phosphatase non-receptor type 5 (EC 3.1.3.48) (Neural-specific protein-tyrosine phosphatase) (Striatum-enriched protein-tyrosine phosphatase) (STEP) | May regulate the activity of several effector molecules involved in synaptic plasticity and neuronal cell survival, including MAPKs, Src family kinases and NMDA receptors. {ECO:0000269|PubMed:21777200}. |
P56817 | BACE1 | T252 | psp | Beta-secretase 1 (EC 3.4.23.46) (Aspartyl protease 2) (ASP2) (Asp 2) (Beta-site amyloid precursor protein cleaving enzyme 1) (Beta-site APP cleaving enzyme 1) (Memapsin-2) (Membrane-associated aspartic protease 2) | Responsible for the proteolytic processing of the amyloid precursor protein (APP). Cleaves at the N-terminus of the A-beta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated C-terminal fragment which is later released by gamma-secretase (PubMed:10656250, PubMed:10677483, PubMed:20354142). Cleaves CHL1 (By similarity). {ECO:0000250|UniProtKB:P56818, ECO:0000269|PubMed:10656250, ECO:0000269|PubMed:10677483, ECO:0000269|PubMed:20354142}. |
P61764 | STXBP1 | T574 | psp | Syntaxin-binding protein 1 (MUNC18-1) (N-Sec1) (Protein unc-18 homolog 1) (Unc18-1) (Protein unc-18 homolog A) (Unc-18A) (p67) | Participates in the regulation of synaptic vesicle docking and fusion through interaction with GTP-binding proteins (By similarity). Essential for neurotransmission and binds syntaxin, a component of the synaptic vesicle fusion machinery probably in a 1:1 ratio. Can interact with syntaxins 1, 2, and 3 but not syntaxin 4. Involved in the release of neurotransmitters from neurons through interacting with SNARE complex component STX1A and mediating the assembly of the SNARE complex at synaptic membranes (By similarity). May play a role in determining the specificity of intracellular fusion reactions. {ECO:0000250|UniProtKB:O08599, ECO:0000250|UniProtKB:P61765}. |
P63208 | SKP1 | T131 | ochoa|psp | S-phase kinase-associated protein 1 (Cyclin-A/CDK2-associated protein p19) (p19A) (Organ of Corti protein 2) (OCP-2) (Organ of Corti protein II) (OCP-II) (RNA polymerase II elongation factor-like protein) (SIII) (Transcription elongation factor B polypeptide 1-like) (p19skp1) | Essential component of the SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex, which mediates the ubiquitination of proteins involved in cell cycle progression, signal transduction and transcription. In the SCF complex, serves as an adapter that links the F-box protein to CUL1. The functional specificity of the SCF complex depends on the F-box protein as substrate recognition component. SCF(BTRC) and SCF(FBXW11) direct ubiquitination of CTNNB1 and participate in Wnt signaling. SCF(FBXW11) directs ubiquitination of phosphorylated NFKBIA. SCF(BTRC) directs ubiquitination of NFKBIB, NFKBIE, ATF4, SMAD3, SMAD4, CDC25A, FBXO5, CEP68 and probably NFKB2 (PubMed:25704143). SCF(SKP2) directs ubiquitination of phosphorylated CDKN1B/p27kip and is involved in regulation of G1/S transition. SCF(SKP2) directs ubiquitination of ORC1, CDT1, RBL2, ELF4, CDKN1A, RAG2, FOXO1A, and probably MYC and TAL1. SCF(FBXW7) directs ubiquitination of cyclin E, NOTCH1 released notch intracellular domain (NICD), and probably PSEN1. SCF(FBXW2) directs ubiquitination of GCM1. SCF(FBXO32) directs ubiquitination of MYOD1. SCF(FBXO7) directs ubiquitination of BIRC2 and DLGAP5. SCF(FBXO33) directs ubiquitination of YBX1. SCF(FBXO11) directs ubiquitination of BCL6 and DTL but does not seem to direct ubiquitination of TP53. SCF(BTRC) mediates the ubiquitination of NFKBIA at 'Lys-21' and 'Lys-22'; the degradation frees the associated NFKB1-RELA dimer to translocate into the nucleus and to activate transcription. SCF(CCNF) directs ubiquitination of CCP110. SCF(FBXL3) and SCF(FBXL21) direct ubiquitination of CRY1 and CRY2. SCF(FBXO9) directs ubiquitination of TTI1 and TELO2. SCF(FBXO10) directs ubiquitination of BCL2. Core component of the Cul7-RING(FBXW8) ubiquitin ligase complex, which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:35982156). Also acts as a core component of the Cul1-RING(FBXL4) ubiquitin ligase complex, which mediates the ubiquitination and subsequent proteasomal degradation of BNIP3 and BNI3L (PubMed:36896912). {ECO:0000269|PubMed:16209941, ECO:0000269|PubMed:20181953, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23431138, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:28727686, ECO:0000269|PubMed:35982156, ECO:0000269|PubMed:36896912}. |
Q00653 | NFKB2 | T429 | ochoa | Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}. |
Q01082 | SPTBN1 | T2195 | ochoa | Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}. |
Q01484 | ANK2 | T2239 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | T3803 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | T3814 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01831 | XPC | T169 | ochoa | DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) | Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}. |
Q02241 | KIF23 | T450 | ochoa | Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}. |
Q02930 | CREB5 | T61 | ochoa | Cyclic AMP-responsive element-binding protein 5 (CREB-5) (cAMP-responsive element-binding protein 5) (cAMP-response element-binding protein A) (CRE-BPa) | Binds to the cAMP response element and activates transcription. {ECO:0000269|PubMed:8378084}. |
Q02952 | AKAP12 | T618 | psp | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03164 | KMT2A | T2525 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q05209 | PTPN12 | T693 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q05513 | PRKCZ | T560 | ochoa|psp | Protein kinase C zeta type (EC 2.7.11.13) (nPKC-zeta) | Calcium- and diacylglycerol-independent serine/threonine-protein kinase that functions in phosphatidylinositol 3-kinase (PI3K) pathway and mitogen-activated protein (MAP) kinase cascade, and is involved in NF-kappa-B activation, mitogenic signaling, cell proliferation, cell polarity, inflammatory response and maintenance of long-term potentiation (LTP). Upon lipopolysaccharide (LPS) treatment in macrophages, or following mitogenic stimuli, functions downstream of PI3K to activate MAP2K1/MEK1-MAPK1/ERK2 signaling cascade independently of RAF1 activation. Required for insulin-dependent activation of AKT3, but may function as an adapter rather than a direct activator. Upon insulin treatment may act as a downstream effector of PI3K and contribute to the activation of translocation of the glucose transporter SLC2A4/GLUT4 and subsequent glucose transport in adipocytes. In EGF-induced cells, binds and activates MAP2K5/MEK5-MAPK7/ERK5 independently of its kinase activity and can activate JUN promoter through MEF2C. Through binding with SQSTM1/p62, functions in interleukin-1 signaling and activation of NF-kappa-B with the specific adapters RIPK1 and TRAF6. Participates in TNF-dependent transactivation of NF-kappa-B by phosphorylating and activating IKBKB kinase, which in turn leads to the degradation of NF-kappa-B inhibitors. In migrating astrocytes, forms a cytoplasmic complex with PARD6A and is recruited by CDC42 to function in the establishment of cell polarity along with the microtubule motor and dynein. In association with FEZ1, stimulates neuronal differentiation in PC12 cells. In the inflammatory response, is required for the T-helper 2 (Th2) differentiation process, including interleukin production, efficient activation of JAK1 and the subsequent phosphorylation and nuclear translocation of STAT6. May be involved in development of allergic airway inflammation (asthma), a process dependent on Th2 immune response. In the NF-kappa-B-mediated inflammatory response, can relieve SETD6-dependent repression of NF-kappa-B target genes by phosphorylating the RELA subunit at 'Ser-311'. Phosphorylates VAMP2 in vitro (PubMed:17313651). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11035106, ECO:0000269|PubMed:12162751, ECO:0000269|PubMed:15084291, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:17313651, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:9447975}.; FUNCTION: [Isoform 2]: Involved in late synaptic long term potention phase in CA1 hippocampal cells and long term memory maintenance. {ECO:0000250|UniProtKB:Q02956}. |
Q07157 | TJP1 | T1528 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08378 | GOLGA3 | T1396 | ochoa | Golgin subfamily A member 3 (Golgi complex-associated protein of 170 kDa) (GCP170) (Golgin-160) | Golgi auto-antigen; probably involved in maintaining Golgi structure. |
Q08AD1 | CAMSAP2 | T569 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q08AD1 | CAMSAP2 | T865 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q08AE8 | SPIRE1 | T509 | ochoa | Protein spire homolog 1 (Spir-1) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:11747823, PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (PubMed:11747823). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with FMN2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). In addition, promotes innate immune signaling downstream of dsRNA sensing (PubMed:35148361). Mechanistically, contributes to IRF3 phosphorylation and activation downstream of MAVS and upstream of TBK1 (PubMed:35148361). {ECO:0000269|PubMed:11747823, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480, ECO:0000269|PubMed:35148361}. |
Q08AM6 | VAC14 | T499 | ochoa | Protein VAC14 homolog (Tax1-binding protein 2) | Scaffold protein component of the PI(3,5)P2 regulatory complex which regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Pentamerizes into a star-shaped structure and nucleates the assembly of the complex. The pentamer binds a single copy each of PIKFYVE and FIG4 and coordinates both PIKfyve kinase activity and FIG4 phosphatase activity, being required to maintain normal levels of phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:33098764). Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes. {ECO:0000269|PubMed:15542851, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:33098764}. |
Q0VF96 | CGNL1 | T302 | ochoa | Cingulin-like protein 1 (Junction-associated coiled-coil protein) (Paracingulin) | May be involved in anchoring the apical junctional complex, especially tight junctions, to actin-based cytoskeletons. {ECO:0000269|PubMed:22891260}. |
Q10570 | CPSF1 | T1042 | ochoa | Cleavage and polyadenylation specificity factor subunit 1 (Cleavage and polyadenylation specificity factor 160 kDa subunit) (CPSF 160 kDa subunit) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (PubMed:14749727). May play a role in eye morphogenesis and the development of retinal ganglion cell projections to the midbrain (By similarity). {ECO:0000250|UniProtKB:A0A0R4IC37, ECO:0000269|PubMed:14749727}. |
Q12846 | STX4 | T120 | ochoa | Syntaxin-4 (Renal carcinoma antigen NY-REN-31) | Plasma membrane t-SNARE that mediates docking of transport vesicles (By similarity). Necessary for the translocation of SLC2A4 from intracellular vesicles to the plasma membrane (By similarity). In neurons, recruited at neurite tips to membrane domains rich in the phospholipid 1-oleoyl-2-palmitoyl-PC (OPPC) which promotes neurite tip surface expression of the dopamine transporter SLC6A3/DAT by facilitating fusion of SLC6A3-containing transport vesicles with the plasma membrane (By similarity). Together with STXB3 and VAMP2, may also play a role in docking/fusion of intracellular GLUT4-containing vesicles with the cell surface in adipocytes and in docking of synaptic vesicles at presynaptic active zones (By similarity). Required for normal hearing (PubMed:36355422). {ECO:0000250|UniProtKB:P70452, ECO:0000250|UniProtKB:Q08850, ECO:0000269|PubMed:36355422}. |
Q12888 | TP53BP1 | T1056 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12923 | PTPN13 | T1464 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q13042 | CDC16 | T581 | ochoa | Cell division cycle protein 16 homolog (Anaphase-promoting complex subunit 6) (APC6) (CDC16 homolog) (CDC16Hs) (Cyclosome subunit 6) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q13136 | PPFIA1 | T230 | ochoa | Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}. |
Q13164 | MAPK7 | T733 | ochoa|psp | Mitogen-activated protein kinase 7 (MAP kinase 7) (MAPK 7) (EC 2.7.11.24) (Big MAP kinase 1) (BMK-1) (Extracellular signal-regulated kinase 5) (ERK-5) | Plays a role in various cellular processes such as proliferation, differentiation and cell survival. The upstream activator of MAPK7 is the MAPK kinase MAP2K5. Upon activation, it translocates to the nucleus and phosphorylates various downstream targets including MEF2C. EGF activates MAPK7 through a Ras-independent and MAP2K5-dependent pathway. As part of the MAPK/ERK signaling pathway, acts as a negative regulator of apoptosis in cardiomyocytes via interaction with STUB1/CHIP and promotion of STUB1-mediated ubiquitination and degradation of ICER-type isoforms of CREM (By similarity). May have a role in muscle cell differentiation. May be important for endothelial function and maintenance of blood vessel integrity. MAP2K5 and MAPK7 interact specifically with one another and not with MEK1/ERK1 or MEK2/ERK2 pathways. Phosphorylates SGK1 at Ser-78 and this is required for growth factor-induced cell cycle progression. Involved in the regulation of p53/TP53 by disrupting the PML-MDM2 interaction. {ECO:0000250|UniProtKB:P0C865, ECO:0000269|PubMed:11254654, ECO:0000269|PubMed:11278431, ECO:0000269|PubMed:22869143, ECO:0000269|PubMed:9384584, ECO:0000269|PubMed:9790194}. |
Q13177 | PAK2 | T154 | ochoa | Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}. |
Q13416 | ORC2 | T226 | ochoa|psp | Origin recognition complex subunit 2 | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K20me3 and H4K27me3. Stabilizes LRWD1, by protecting it from ubiquitin-mediated proteasomal degradation. Also stabilizes ORC3. {ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22935713}. |
Q13428 | TCOF1 | T1358 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13561 | DCTN2 | T198 | ochoa | Dynactin subunit 2 (50 kDa dynein-associated polypeptide) (Dynactin complex 50 kDa subunit) (DCTN-50) (p50 dynamitin) | Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules. In the dynactin soulder domain, binds the ACTR1A filament and acts as a molecular ruler to determine the length (By similarity). Modulates cytoplasmic dynein binding to an organelle, and plays a role in prometaphase chromosome alignment and spindle organization during mitosis. Involved in anchoring microtubules to centrosomes. May play a role in synapse formation during brain development (By similarity). {ECO:0000250|UniProtKB:A0A5G2QD80, ECO:0000250|UniProtKB:Q99KJ8}. |
Q13772 | NCOA4 | T307 | ochoa | Nuclear receptor coactivator 4 (NCoA-4) (Androgen receptor coactivator 70 kDa protein) (70 kDa AR-activator) (70 kDa androgen receptor coactivator) (Androgen receptor-associated protein of 70 kDa) (Ferritin cargo receptor NCOA4) (Ret-activating protein ELE1) | Cargo receptor for the autophagic turnover of the iron-binding ferritin complex, playing a central role in iron homeostasis (PubMed:25327288, PubMed:26436293). Acts as an adapter for delivery of ferritin to lysosomes and autophagic degradation of ferritin, a process named ferritinophagy (PubMed:25327288, PubMed:26436293). Targets the iron-binding ferritin complex to autolysosomes following starvation or iron depletion (PubMed:25327288). Ensures efficient erythropoiesis, possibly by regulating hemin-induced erythroid differentiation (PubMed:26436293). In some studies, has been shown to enhance the androgen receptor AR transcriptional activity as well as acting as ligand-independent coactivator of the peroxisome proliferator-activated receptor (PPAR) gamma (PubMed:10347167, PubMed:8643607). Another study shows only weak behavior as a coactivator for the androgen receptor and no alteration of the ligand responsiveness of the AR (PubMed:10517667). Binds to DNA replication origins, binding is not restricted to sites of active transcription and may likely be independent from the nuclear receptor transcriptional coactivator function (PubMed:24910095). May inhibit activation of DNA replication origins, possibly by obstructing DNA unwinding via interaction with the MCM2-7 complex (PubMed:24910095). {ECO:0000269|PubMed:10347167, ECO:0000269|PubMed:10517667, ECO:0000269|PubMed:24910095, ECO:0000269|PubMed:25327288, ECO:0000269|PubMed:26436293, ECO:0000269|PubMed:8643607}. |
Q14103 | HNRNPD | T193 | ochoa|psp | Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) (AU-rich element RNA-binding protein 1) | Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Also binds to double- and single-stranded DNA sequences in a specific manner and functions a transcription factor. Each of the RNA-binding domains specifically can bind solely to a single-stranded non-monotonous 5'-UUAG-3' sequence and also weaker to the single-stranded 5'-TTAGGG-3' telomeric DNA repeat. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. Binding of RRM1 to DNA inhibits the formation of DNA quadruplex structure which may play a role in telomere elongation. May be involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain. May play a role in the regulation of the rhythmic expression of circadian clock core genes. Directly binds to the 3'UTR of CRY1 mRNA and induces CRY1 rhythmic translation. May also be involved in the regulation of PER2 translation. {ECO:0000269|PubMed:10080887, ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:24423872}. |
Q14160 | SCRIB | T749 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14160 | SCRIB | T883 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14289 | PTK2B | T765 | ochoa | Protein-tyrosine kinase 2-beta (EC 2.7.10.2) (Calcium-dependent tyrosine kinase) (CADTK) (Calcium-regulated non-receptor proline-rich tyrosine kinase) (Cell adhesion kinase beta) (CAK-beta) (CAKB) (Focal adhesion kinase 2) (FADK 2) (Proline-rich tyrosine kinase 2) (Related adhesion focal tyrosine kinase) (RAFTK) | Non-receptor protein-tyrosine kinase that regulates reorganization of the actin cytoskeleton, cell polarization, cell migration, adhesion, spreading and bone remodeling. Plays a role in the regulation of the humoral immune response, and is required for normal levels of marginal B-cells in the spleen and normal migration of splenic B-cells. Required for normal macrophage polarization and migration towards sites of inflammation. Regulates cytoskeleton rearrangement and cell spreading in T-cells, and contributes to the regulation of T-cell responses. Promotes osteoclastic bone resorption; this requires both PTK2B/PYK2 and SRC. May inhibit differentiation and activity of osteoprogenitor cells. Functions in signaling downstream of integrin and collagen receptors, immune receptors, G-protein coupled receptors (GPCR), cytokine, chemokine and growth factor receptors, and mediates responses to cellular stress. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and of the AKT1 signaling cascade. Promotes activation of NOS3. Regulates production of the cellular messenger cGMP. Promotes activation of the MAP kinase signaling cascade, including activation of MAPK1/ERK2, MAPK3/ERK1 and MAPK8/JNK1. Promotes activation of Rho family GTPases, such as RHOA and RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Acts as a scaffold, binding to both PDPK1 and SRC, thereby allowing SRC to phosphorylate PDPK1 at 'Tyr-9, 'Tyr-373', and 'Tyr-376'. Promotes phosphorylation of NMDA receptors by SRC family members, and thereby contributes to the regulation of NMDA receptor ion channel activity and intracellular Ca(2+) levels. May also regulate potassium ion transport by phosphorylation of potassium channel subunits. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ASAP1, NPHP1, KCNA2 and SHC1. Promotes phosphorylation of ASAP2, RHOU and PXN; this requires both SRC and PTK2/PYK2. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:12771146, ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:15050747, ECO:0000269|PubMed:15166227, ECO:0000269|PubMed:17634955, ECO:0000269|PubMed:18086875, ECO:0000269|PubMed:18339875, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18765415, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:19207108, ECO:0000269|PubMed:19244237, ECO:0000269|PubMed:19428251, ECO:0000269|PubMed:19648005, ECO:0000269|PubMed:19880522, ECO:0000269|PubMed:20001213, ECO:0000269|PubMed:20381867, ECO:0000269|PubMed:20521079, ECO:0000269|PubMed:21357692, ECO:0000269|PubMed:21533080, ECO:0000269|PubMed:7544443, ECO:0000269|PubMed:8670418, ECO:0000269|PubMed:8849729}. |
Q14432 | PDE3A | T1107 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) | Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}. |
Q14676 | MDC1 | T150 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14738 | PPP2R5D | T538 | ochoa | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform (PP2A B subunit isoform B'-delta) (PP2A B subunit isoform B56-delta) (PP2A B subunit isoform PR61-delta) (PP2A B subunit isoform R5-delta) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q14978 | NOLC1 | T259 | ochoa | Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}. |
Q14D04 | VEPH1 | T422 | ochoa | Ventricular zone-expressed PH domain-containing protein homolog 1 (Protein melted) | Interacts with TGF-beta receptor type-1 (TGFBR1) and inhibits dissociation of activated SMAD2 from TGFBR1, impeding its nuclear accumulation and resulting in impaired TGF-beta signaling. May also affect FOXO, Hippo and Wnt signaling. {ECO:0000269|PubMed:26039994}. |
Q15047 | SETDB1 | T976 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15303 | ERBB4 | T699 | ochoa|psp | Receptor tyrosine-protein kinase erbB-4 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-4) (Tyrosine kinase-type cell surface receptor HER4) (p180erbB4) [Cleaved into: ERBB4 intracellular domain (4ICD) (E4ICD) (s80HER4)] | Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins and EGF family members and regulates development of the heart, the central nervous system and the mammary gland, gene transcription, cell proliferation, differentiation, migration and apoptosis. Required for normal cardiac muscle differentiation during embryonic development, and for postnatal cardiomyocyte proliferation. Required for normal development of the embryonic central nervous system, especially for normal neural crest cell migration and normal axon guidance. Required for mammary gland differentiation, induction of milk proteins and lactation. Acts as cell-surface receptor for the neuregulins NRG1, NRG2, NRG3 and NRG4 and the EGF family members BTC, EREG and HBEGF. Ligand binding triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Ligand specificity and signaling is modulated by alternative splicing, proteolytic processing, and by the formation of heterodimers with other ERBB family members, thereby creating multiple combinations of intracellular phosphotyrosines that trigger ligand- and context-specific cellular responses. Mediates phosphorylation of SHC1 and activation of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1. Isoform JM-A CYT-1 and isoform JM-B CYT-1 phosphorylate PIK3R1, leading to the activation of phosphatidylinositol 3-kinase and AKT1 and protect cells against apoptosis. Isoform JM-A CYT-1 and isoform JM-B CYT-1 mediate reorganization of the actin cytoskeleton and promote cell migration in response to NRG1. Isoform JM-A CYT-2 and isoform JM-B CYT-2 lack the phosphotyrosine that mediates interaction with PIK3R1, and hence do not phosphorylate PIK3R1, do not protect cells against apoptosis, and do not promote reorganization of the actin cytoskeleton and cell migration. Proteolytic processing of isoform JM-A CYT-1 and isoform JM-A CYT-2 gives rise to the corresponding soluble intracellular domains (4ICD) that translocate to the nucleus, promote nuclear import of STAT5A, activation of STAT5A, mammary epithelium differentiation, cell proliferation and activation of gene expression. The ERBB4 soluble intracellular domains (4ICD) colocalize with STAT5A at the CSN2 promoter to regulate transcription of milk proteins during lactation. The ERBB4 soluble intracellular domains can also translocate to mitochondria and promote apoptosis. {ECO:0000269|PubMed:10348342, ECO:0000269|PubMed:10353604, ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:10722704, ECO:0000269|PubMed:10867024, ECO:0000269|PubMed:11178955, ECO:0000269|PubMed:11390655, ECO:0000269|PubMed:12807903, ECO:0000269|PubMed:15534001, ECO:0000269|PubMed:15746097, ECO:0000269|PubMed:16251361, ECO:0000269|PubMed:16778220, ECO:0000269|PubMed:16837552, ECO:0000269|PubMed:17486069, ECO:0000269|PubMed:17638867, ECO:0000269|PubMed:19098003, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:8383326, ECO:0000269|PubMed:8617750, ECO:0000269|PubMed:9135143, ECO:0000269|PubMed:9168115, ECO:0000269|PubMed:9334263}. |
Q15643 | TRIP11 | T1846 | ochoa | Thyroid receptor-interacting protein 11 (TR-interacting protein 11) (TRIP-11) (Clonal evolution-related gene on chromosome 14 protein) (Golgi-associated microtubule-binding protein 210) (GMAP-210) (Trip230) | Is a membrane tether required for vesicle tethering to Golgi. Has an essential role in the maintenance of Golgi structure and function (PubMed:25473115, PubMed:30728324). It is required for efficient anterograde and retrograde trafficking in the early secretory pathway, functioning at both the ER-to-Golgi intermediate compartment (ERGIC) and Golgi complex (PubMed:25717001). Binds the ligand binding domain of the thyroid receptor (THRB) in the presence of triiodothyronine and enhances THRB-modulated transcription. {ECO:0000269|PubMed:10189370, ECO:0000269|PubMed:25473115, ECO:0000269|PubMed:25717001, ECO:0000269|PubMed:30728324, ECO:0000269|PubMed:9256431}. |
Q15652 | JMJD1C | T2001 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15653 | NFKBIB | T175 | ochoa | NF-kappa-B inhibitor beta (NF-kappa-BIB) (I-kappa-B-beta) (IkB-B) (IkB-beta) (IkappaBbeta) (Thyroid receptor-interacting protein 9) (TR-interacting protein 9) (TRIP-9) | Inhibits NF-kappa-B by complexing with and trapping it in the cytoplasm. However, the unphosphorylated form resynthesized after cell stimulation is able to bind NF-kappa-B allowing its transport to the nucleus and protecting it to further NFKBIA-dependent inactivation. Association with inhibitor kappa B-interacting NKIRAS1 and NKIRAS2 prevent its phosphorylation rendering it more resistant to degradation, explaining its slower degradation. |
Q15772 | SPEG | T449 | ochoa | Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) | Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells. |
Q15833 | STXBP2 | T572 | psp | Syntaxin-binding protein 2 (Protein unc-18 homolog 2) (Unc18-2) (Protein unc-18 homolog B) (Unc-18B) | Involved in intracellular vesicle trafficking and vesicle fusion with membranes. Contributes to the granule exocytosis machinery through interaction with soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that regulate membrane fusion. Regulates cytotoxic granule exocytosis in natural killer (NK) cells. {ECO:0000269|PubMed:19804848, ECO:0000269|PubMed:19884660}. |
Q17RH5 | RAPGEF2 | T632 | psp | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (Neural RAP guanine nucleotide exchange protein) (PDZ domain-containing guanine nucleotide exchange factor 1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | None |
Q1MSJ5 | CSPP1 | T242 | ochoa | Centrosome and spindle pole-associated protein 1 | May play a role in cell-cycle-dependent microtubule organization. {ECO:0000269|PubMed:16826565}. |
Q2KHR3 | QSER1 | T1248 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q3B820 | FAM161A | T428 | ochoa | Protein FAM161A | Involved in ciliogenesis. {ECO:0000269|PubMed:22940612}. |
Q3L8U1 | CHD9 | T2113 | ochoa | Chromodomain-helicase-DNA-binding protein 9 (CHD-9) (EC 3.6.4.-) (ATP-dependent helicase CHD9) (Chromatin-related mesenchymal modulator) (CReMM) (Chromatin-remodeling factor CHROM1) (Kismet homolog 2) (PPAR-alpha-interacting complex protein 320 kDa) (Peroxisomal proliferator-activated receptor A-interacting complex 320 kDa protein) | Probable ATP-dependent chromatin-remodeling factor. Acts as a transcriptional coactivator for PPARA and possibly other nuclear receptors. Has DNA-dependent ATPase activity and binds to A/T-rich DNA. Associates with A/T-rich regulatory regions in promoters of genes that participate in the differentiation of progenitors during osteogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:16095617, ECO:0000269|PubMed:16554032}. |
Q3T8J9 | GON4L | T626 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3T8J9 | GON4L | T1444 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q53LP3 | SOWAHC | T485 | ochoa | Ankyrin repeat domain-containing protein SOWAHC (Ankyrin repeat domain-containing protein 57) (Protein sosondowah homolog C) | None |
Q562F6 | SGO2 | T845 | ochoa | Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) | Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}. |
Q5D1E8 | ZC3H12A | T31 | ochoa | Endoribonuclease ZC3H12A (EC 3.1.-.-) (Monocyte chemotactic protein-induced protein 1) (MCP-induced protein 1) (MCPIP-1) (Regnase-1) (Reg1) (Zinc finger CCCH domain-containing protein 12A) | Endoribonuclease involved in various biological functions such as cellular inflammatory response and immune homeostasis, glial differentiation of neuroprogenitor cells, cell death of cardiomyocytes, adipogenesis and angiogenesis. Functions as an endoribonuclease involved in mRNA decay (PubMed:19909337). Modulates the inflammatory response by promoting the degradation of a set of translationally active cytokine-induced inflammation-related mRNAs, such as IL6 and IL12B, during the early phase of inflammation (PubMed:26320658). Prevents aberrant T-cell-mediated immune reaction by degradation of multiple mRNAs controlling T-cell activation, such as those encoding cytokines (IL6 and IL2), cell surface receptors (ICOS, TNFRSF4 and TNFR2) and transcription factor (REL) (By similarity). Inhibits cooperatively with ZC3H12A the differentiation of helper T cells Th17 in lungs. They repress target mRNA encoding the Th17 cell-promoting factors IL6, ICOS, REL, IRF4, NFKBID and NFKBIZ. The cooperation requires RNA-binding by RC3H1 and the nuclease activity of ZC3H12A (By similarity). Together with RC3H1, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Self regulates by destabilizing its own mRNA (By similarity). Cleaves mRNA harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-dependent manner (PubMed:19909337, PubMed:22561375, PubMed:26134560, PubMed:26320658). Plays a role in the inhibition of microRNAs (miRNAs) biogenesis (PubMed:22055188). Cleaves the terminal loop of a set of precursor miRNAs (pre-miRNAs) important for the regulation of the inflammatory response leading to their degradation, and thus preventing the biosynthesis of mature miRNAs (PubMed:22055188). Also plays a role in promoting angiogenesis in response to inflammatory cytokines by inhibiting the production of antiangiogenic microRNAs via its anti-dicer RNase activity (PubMed:24048733). Affects the overall ubiquitination of cellular proteins (By similarity). Positively regulates deubiquitinase activity promoting the cleavage at 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains on TNF receptor-associated factors (TRAFs), preventing JNK and NF-kappa-B signaling pathway activation, and hence negatively regulating macrophage-mediated inflammatory response and immune homeostasis (By similarity). Also induces deubiquitination of the transcription factor HIF1A, probably leading to its stabilization and nuclear import, thereby positively regulating the expression of proangiogenic HIF1A-targeted genes (PubMed:24048733). Involved in a TANK-dependent negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Prevents stress granule (SGs) formation and promotes macrophage apoptosis under stress conditions, including arsenite-induced oxidative stress, heat shock and energy deprivation (By similarity). Plays a role in the regulation of macrophage polarization; promotes IL4-induced polarization of macrophages M1 into anti-inflammatory M2 state (By similarity). May also act as a transcription factor that regulates the expression of multiple genes involved in inflammatory response, angiogenesis, adipogenesis and apoptosis (PubMed:16574901, PubMed:18364357). Functions as a positive regulator of glial differentiation of neuroprogenitor cells through an amyloid precursor protein (APP)-dependent signaling pathway (PubMed:19185603). Attenuates septic myocardial contractile dysfunction in response to lipopolysaccharide (LPS) by reducing I-kappa-B-kinase (IKK)-mediated NF-kappa-B activation, and hence myocardial pro-inflammatory cytokine production (By similarity). {ECO:0000250|UniProtKB:Q5D1E7, ECO:0000269|PubMed:16574901, ECO:0000269|PubMed:18364357, ECO:0000269|PubMed:19185603, ECO:0000269|PubMed:19909337, ECO:0000269|PubMed:22055188, ECO:0000269|PubMed:22561375, ECO:0000269|PubMed:24048733, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:26134560, ECO:0000269|PubMed:26320658}.; FUNCTION: (Microbial infection) Binds to Japanese encephalitis virus (JEV) and Dengue virus (DEN) RNAs. {ECO:0000269|PubMed:23355615}.; FUNCTION: (Microbial infection) Exhibits antiviral activity against HIV-1 in lymphocytes by decreasing the abundance of HIV-1 viral RNA species. {ECO:0000269|PubMed:24191027}. |
Q5JSP0 | FGD3 | T121 | ochoa | FYVE, RhoGEF and PH domain-containing protein 3 (Zinc finger FYVE domain-containing protein 5) | Promotes the formation of filopodia. May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q5JVS0 | HABP4 | T268 | ochoa | Intracellular hyaluronan-binding protein 4 (IHABP-4) (IHABP4) (Hyaluronan-binding protein 4) (Ki-1/57 intracellular antigen) | Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (By similarity). Acts via its association with EEF2/eEF2 factor at the A-site of the ribosome, promoting ribosome stabilization in an inactive state compatible with storage (By similarity). Plays a key role in ribosome hibernation in the mature oocyte by promoting ribosome stabilization (By similarity). Ribosomes, which are produced in large quantities during oogenesis, are stored and translationally repressed in the oocyte and early embryo (By similarity). Also binds RNA, regulating transcription and pre-mRNA splicing (PubMed:14699138, PubMed:16455055, PubMed:19523114, PubMed:21771594). Binds (via C-terminus) to poly(U) RNA (PubMed:19523114). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). Negatively regulates DNA-binding activity of the transcription factor MEF2C in myocardial cells in response to mechanical stress (By similarity). {ECO:0000250|UniProtKB:A1L1K8, ECO:0000250|UniProtKB:Q5XJA5, ECO:0000269|PubMed:14699138, ECO:0000269|PubMed:16455055, ECO:0000269|PubMed:19523114, ECO:0000269|PubMed:21771594, ECO:0000269|PubMed:28695742}. |
Q5QJE6 | DNTTIP2 | T341 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5SW79 | CEP170 | T174 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T5P2 | KIAA1217 | T1109 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T5X7 | BEND3 | T124 | ochoa | BEN domain-containing protein 3 | Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}. |
Q5U5Q3 | MEX3C | T268 | ochoa | RNA-binding E3 ubiquitin-protein ligase MEX3C (EC 2.3.2.27) (RING finger and KH domain-containing protein 2) (RING finger protein 194) (RING-type E3 ubiquitin transferase MEX3C) | E3 ubiquitin ligase responsible for the post-transcriptional regulation of common HLA-A allotypes. Binds to the 3' UTR of HLA-A2 mRNA, and regulates its levels by promoting mRNA decay. RNA binding is sufficient to prevent translation, but ubiquitin ligase activity is required for mRNA degradation. {ECO:0000269|PubMed:22863774, ECO:0000269|PubMed:23446422}. |
Q5VYS8 | TUT7 | T1414 | ochoa | Terminal uridylyltransferase 7 (TUTase 7) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 6) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:19703396, PubMed:25480299). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets (PubMed:25480299). Also functions as an integral regulator of microRNA biogenesiS using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7). Uridylated pre-let-7 RNA is not processed by Dicer and undergo degradation. Pre-let-7 uridylation is strongly enhanced in the presence of LIN28A (PubMed:22898984). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828, PubMed:28671666). Add oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (PubMed:18172165, PubMed:19703396, PubMed:22898984, PubMed:25480299, PubMed:25979828, PubMed:28671666). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:Q5BLK4, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22898984, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:28671666, ECO:0000269|PubMed:30122351}. |
Q5VZL5 | ZMYM4 | T217 | ochoa | Zinc finger MYM-type protein 4 (Zinc finger protein 262) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q5W0B1 | OBI1 | T60 | ochoa | ORC ubiquitin ligase 1 (OBI1) (EC 2.3.2.27) (RING finger protein 219) | E3 ubiquitin ligase essential for DNA replication origin activation during S phase (PubMed:31160578). Acts as a replication origin selector which selects the origins to be fired and catalyzes the multi-mono-ubiquitination of a subset of chromatin-bound ORC3 and ORC5 during S-phase (PubMed:31160578). {ECO:0000269|PubMed:31160578}. |
Q63HK3 | ZKSCAN2 | T594 | ochoa | Zinc finger protein with KRAB and SCAN domains 2 (Zinc finger protein 694) | May be involved in transcriptional regulation. |
Q66GS9 | CEP135 | T488 | ochoa | Centrosomal protein of 135 kDa (Cep135) (Centrosomal protein 4) | Centrosomal microtubule-binding protein involved in centriole biogenesis (PubMed:27477386). Acts as a scaffolding protein during early centriole biogenesis. Required for the targeting of centriole satellite proteins to centrosomes such as of PCM1, SSX2IP and CEP290 and recruitment of WRAP73 to centrioles. Also required for centriole-centriole cohesion during interphase by acting as a platform protein for CEP250 at the centriole. Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18851962, ECO:0000269|PubMed:26675238, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27477386}. |
Q69YH5 | CDCA2 | T47 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q6P0N0 | MIS18BP1 | T149 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6P0N0 | MIS18BP1 | T993 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6PIW4 | FIGNL1 | T218 | ochoa | Fidgetin-like protein 1 (EC 3.6.4.-) | Involved in DNA double-strand break (DBS) repair via homologous recombination (HR). Recruited at DSB sites independently of BRCA2, RAD51 and RAD51 paralogs in a H2AX-dependent manner. May regulate osteoblast proliferation and differentiation (PubMed:23754376). May play a role in the control of male meiosis dynamic (By similarity). {ECO:0000250|UniProtKB:Q8BPY9, ECO:0000269|PubMed:23754376}. |
Q6R327 | RICTOR | T1376 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6T4R5 | NHS | T997 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6T4R5 | NHS | T1134 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6WCQ1 | MPRIP | T383 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q6ZS17 | RIPOR1 | T355 | ochoa | Rho family-interacting cell polarization regulator 1 | Downstream effector protein for Rho-type small GTPases that plays a role in cell polarity and directional migration (PubMed:27807006). Acts as an adapter protein, linking active Rho proteins to STK24 and STK26 kinases, and hence positively regulates Golgi reorientation in polarized cell migration upon Rho activation (PubMed:27807006). Involved in the subcellular relocation of STK26 from the Golgi to cytoplasm punctae in a Rho- and PDCD10-dependent manner upon serum stimulation (PubMed:27807006). {ECO:0000269|PubMed:27807006}. |
Q7L576 | CYFIP1 | T1068 | ochoa | Cytoplasmic FMR1-interacting protein 1 (Specifically Rac1-associated protein 1) (Sra-1) (p140sra-1) | Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit is an adapter between EIF4E and FMR1. Promotes the translation repression activity of FMR1 in brain probably by mediating its association with EIF4E and mRNA (By similarity). Regulates formation of membrane ruffles and lamellipodia. Plays a role in axon outgrowth. Binds to F-actin but not to RNA. Part of the WAVE complex that regulates actin filament reorganization via its interaction with the Arp2/3 complex. Actin remodeling activity is regulated by RAC1. Regulator of epithelial morphogenesis. As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). May act as an invasion suppressor in cancers. {ECO:0000250|UniProtKB:Q7TMB8, ECO:0000269|PubMed:16260607, ECO:0000269|PubMed:19524508, ECO:0000269|PubMed:21107423, ECO:0000269|PubMed:9417078}. |
Q7Z3J3 | RGPD4 | T1483 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z417 | NUFIP2 | T87 | ochoa | FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) | Binds RNA. {ECO:0000269|PubMed:12837692}. |
Q7Z569 | BRAP | T308 | ochoa | BRCA1-associated protein (EC 2.3.2.27) (BRAP2) (Impedes mitogenic signal propagation) (IMP) (RING finger protein 52) (RING-type E3 ubiquitin transferase BRAP2) (Renal carcinoma antigen NY-REN-63) | Negatively regulates MAP kinase activation by limiting the formation of Raf/MEK complexes probably by inactivation of the KSR1 scaffold protein. Also acts as a Ras responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination resulting in the release of inhibition of Raf/MEK complex formation. May also act as a cytoplasmic retention protein with a role in regulating nuclear transport. {ECO:0000269|PubMed:14724641, ECO:0000303|PubMed:10777491}. |
Q7Z6Z7 | HUWE1 | T1722 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86UU0 | BCL9L | T514 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86VR2 | RETREG3 | T307 | ochoa | Reticulophagy regulator 3 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Promotes ER membrane curvature and ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes (PubMed:33826365). Required for collagen quality control in a LIR motif-dependent manner (By similarity). Mediates NRF1-enhanced neurite outgrowth (PubMed:26040720). {ECO:0000250|UniProtKB:Q9CQV4, ECO:0000269|PubMed:26040720, ECO:0000269|PubMed:33826365, ECO:0000269|PubMed:34338405}. |
Q86W34 | AMZ2 | T326 | ochoa | Archaemetzincin-2 (EC 3.4.-.-) (Archeobacterial metalloproteinase-like protein 2) | Probable zinc metalloprotease. {ECO:0000250|UniProtKB:Q8TXW1}. |
Q86WB0 | ZC3HC1 | T28 | ochoa | Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) | Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}. |
Q86XN8 | MEX3D | T215 | ochoa | RNA-binding protein MEX3D (RING finger and KH domain-containing protein 1) (RING finger protein 193) (TINO) | RNA binding protein, may be involved in post-transcriptional regulatory mechanisms. {ECO:0000250}. |
Q86YP4 | GATAD2A | T49 | ochoa | Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q8IVF2 | AHNAK2 | T443 | ochoa | Protein AHNAK2 | None |
Q8IWT3 | CUL9 | T591 | ochoa | Cullin-9 (CUL-9) (UbcH7-associated protein 1) (p53-associated parkin-like cytoplasmic protein) | Core component of a Cul9-RING ubiquitin-protein ligase complex composed of CUL9 and RBX1 (PubMed:38605244). The CUL9-RBX1 complex mediates ubiquitination and subsequent degradation of BIRC5 and is required to maintain microtubule dynamics and genome integrity. Acts downstream of the 3M complex, which inhibits the ubiquitination of BIRC5 (PubMed:24793696). The CUL9-RBX1 complex also mediates mono-ubiquitination of p53/TP53 (PubMed:38605244). Acts as a cytoplasmic anchor protein in p53/TP53-associated protein complex. Regulates the subcellular localization of p53/TP53 and its subsequent function (PubMed:12526791, PubMed:17332328). Ubiquitinates apurinic/apyrimidinic endodeoxyribonuclease APEX2 (PubMed:38605244). Ubiquitination by the CUL9-RBX1 complex is predominantly mediated by E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2D2 (PubMed:38605244). {ECO:0000269|PubMed:12526791, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:38605244}. |
Q8IX01 | SUGP2 | T1045 | ochoa | SURP and G-patch domain-containing protein 2 (Arginine/serine-rich-splicing factor 14) (Splicing factor, arginine/serine-rich 14) | May play a role in mRNA splicing. {ECO:0000305}. |
Q8IY42 | C4orf19 | T231 | ochoa | PDCD10 and GCKIII kinases-associated protein 1 | Acts as a tumor suppressor (PubMed:36882524, PubMed:38517886). Acts as a tumor suppressor for colorectal cancer cell proliferation by targeting KEAP1/USP17/ELK1/CDK6 axis (PubMed:36882524). {ECO:0000269|PubMed:36882524, ECO:0000269|PubMed:38517886}. |
Q8IZ21 | PHACTR4 | T494 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8N3U4 | STAG2 | T1151 | ochoa | Cohesin subunit SA-2 (SCC3 homolog 2) (Stromal antigen 2) | Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. {ECO:0000269|PubMed:12034751}. |
Q8N4C9 | C17orf78 | T157 | ochoa | Uncharacterized protein C17orf78 | None |
Q8NC51 | SERBP1 | T258 | ochoa | SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) | Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}. |
Q8NCY6 | MSANTD4 | T192 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 4 (Myb/SANT-like DNA-binding domain containing 4 with coiled-coils) | None |
Q8ND82 | ZNF280C | T377 | ochoa | Zinc finger protein 280C (Suppressor of hairy wing homolog 3) (Zinc finger protein 633) | May function as a transcription factor. |
Q8NDI1 | EHBP1 | T378 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NDT2 | RBM15B | T631 | ochoa | Putative RNA-binding protein 15B (One-twenty two protein 3) (HsOTT3) (HuOTT3) (RNA-binding motif protein 15B) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:16129689, PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:27602518). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Functions in the regulation of alternative or illicit splicing, possibly by regulating m6A methylation (PubMed:16129689). Inhibits pre-mRNA splicing (PubMed:21044963). Also functions as a mRNA export factor by acting as a cofactor for the nuclear export receptor NXF1 (PubMed:19586903). {ECO:0000269|PubMed:19586903, ECO:0000269|PubMed:21044963, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:16129689}. |
Q8NET8 | TRPV3 | T35 | psp | Transient receptor potential cation channel subfamily V member 3 (TrpV3) (Vanilloid receptor-like 3) (VRL-3) | Non-selective calcium permeant cation channel (PubMed:12077604, PubMed:12077606, PubMed:26818531, PubMed:37648856, PubMed:38691614). It is activated by innocuous (warm) temperatures and shows an increased response at noxious temperatures greater than 39 degrees Celsius (PubMed:12077604, PubMed:12077606). Activation exhibits an outward rectification (PubMed:12077604). The channel pore can dilate to provide permeability to larger cations (PubMed:37648856). May associate with TRPV1 and may modulate its activity (PubMed:12077606). Is a negative regulator of hair growth and cycling: TRPV3-coupled signaling suppresses keratinocyte proliferation in hair follicles and induces apoptosis and premature hair follicle regression (catagen) (PubMed:21593771). {ECO:0000269|PubMed:12077604, ECO:0000269|PubMed:12077606, ECO:0000269|PubMed:21593771, ECO:0000269|PubMed:26818531, ECO:0000269|PubMed:37648856, ECO:0000269|PubMed:38691614}. |
Q8NEU8 | APPL2 | T346 | ochoa | DCC-interacting protein 13-beta (Dip13-beta) (Adapter protein containing PH domain, PTB domain and leucine zipper motif 2) | Multifunctional adapter protein that binds to various membrane receptors, nuclear factors and signaling proteins to regulate many processes, such as cell proliferation, immune response, endosomal trafficking and cell metabolism (PubMed:15016378, PubMed:24879834, PubMed:26583432). Regulates signaling pathway leading to cell proliferation through interaction with RAB5A and subunits of the NuRD/MeCP1 complex (PubMed:15016378). Plays a role in immune response by modulating phagocytosis, inflammatory and innate immune responses. In macrophages, enhances Fc-gamma receptor-mediated phagocytosis through interaction with RAB31 leading to activation of PI3K/Akt signaling. In response to LPS, modulates inflammatory responses by playing a key role on the regulation of TLR4 signaling and in the nuclear translocation of RELA/NF-kappa-B p65 and the secretion of pro- and anti-inflammatory cytokines. Also functions as a negative regulator of innate immune response via inhibition of AKT1 signaling pathway by forming a complex with APPL1 and PIK3R1 (By similarity). Plays a role in endosomal trafficking of TGFBR1 from the endosomes to the nucleus (PubMed:26583432). Plays a role in cell metabolism by regulating adiponecting ans insulin signaling pathways and adaptative thermogenesis (By similarity) (PubMed:24879834). In muscle, negatively regulates adiponectin-simulated glucose uptake and fatty acid oxidation by inhibiting adiponectin signaling pathway through APPL1 sequestration thereby antagonizing APPL1 action (By similarity). In muscles, negatively regulates insulin-induced plasma membrane recruitment of GLUT4 and glucose uptake through interaction with TBC1D1 (PubMed:24879834). Plays a role in cold and diet-induced adaptive thermogenesis by activating ventromedial hypothalamus (VMH) neurons throught AMPK inhibition which enhances sympathetic outflow to subcutaneous white adipose tissue (sWAT), sWAT beiging and cold tolerance (By similarity). Also plays a role in other signaling pathways namely Wnt/beta-catenin, HGF and glucocorticoid receptor signaling (By similarity) (PubMed:19433865). Positive regulator of beta-catenin/TCF-dependent transcription through direct interaction with RUVBL2/reptin resulting in the relief of RUVBL2-mediated repression of beta-catenin/TCF target genes by modulating the interactions within the beta-catenin-reptin-HDAC complex (PubMed:19433865). May affect adult neurogenesis in hippocampus and olfactory system via regulating the sensitivity of glucocorticoid receptor. Required for fibroblast migration through HGF cell signaling (By similarity). {ECO:0000250|UniProtKB:Q8K3G9, ECO:0000269|PubMed:15016378, ECO:0000269|PubMed:19433865, ECO:0000269|PubMed:24879834, ECO:0000269|PubMed:26583432}. |
Q8NFY4 | SEMA6D | T777 | ochoa | Semaphorin-6D | Shows growth cone collapsing activity on dorsal root ganglion (DRG) neurons in vitro. May be a stop signal for the DRG neurons in their target areas, and possibly also for other neurons. May also be involved in the maintenance and remodeling of neuronal connections. Ligand of TREM2 with PLXNA1 as coreceptor in dendritic cells, plays a role in the generation of immune responses and skeletal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q76KF0}. |
Q8NHP6 | MOSPD2 | T288 | ochoa | Motile sperm domain-containing protein 2 | Endoplasmic reticulum-anchored protein that mediates the formation of contact sites between the endoplasmic (ER) and endosomes, mitochondria or Golgi through interaction with conventional- and phosphorylated-FFAT-containing organelle-bound proteins (PubMed:29858488, PubMed:33124732, PubMed:35389430). In addition, forms endoplasmic reticulum (ER)-lipid droplets (LDs) contacts through a direct protein-membrane interaction and participates in LDs homeostasis (PubMed:35389430). The attachment mechanism involves an amphipathic helix that has an affinity for lipid packing defects present at the surface of LDs (PubMed:35389430). Promotes migration of primary monocytes and neutrophils, in response to various chemokines (PubMed:28137892). {ECO:0000269|PubMed:28137892, ECO:0000269|PubMed:29858488, ECO:0000269|PubMed:33124732, ECO:0000269|PubMed:35389430}. |
Q8NI27 | THOC2 | T1289 | ochoa | THO complex subunit 2 (Tho2) (hTREX120) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q8TBA6 | GOLGA5 | T214 | ochoa | Golgin subfamily A member 5 (Cell proliferation-inducing gene 31 protein) (Golgin-84) (Protein Ret-II) (RET-fused gene 5 protein) | Involved in maintaining Golgi structure. Stimulates the formation of Golgi stacks and ribbons. Involved in intra-Golgi retrograde transport. {ECO:0000269|PubMed:12538640, ECO:0000269|PubMed:15718469}. |
Q8TF01 | PNISR | T485 | ochoa | Arginine/serine-rich protein PNISR (PNN-interacting serine/arginine-rich protein) (SR-related protein) (SR-rich protein) (Serine/arginine-rich-splicing regulatory protein 130) (SRrp130) (Splicing factor, arginine/serine-rich 130) (Splicing factor, arginine/serine-rich 18) | None |
Q8WVM7 | STAG1 | T1108 | ochoa | Cohesin subunit SA-1 (SCC3 homolog 1) (Stromal antigen 1) | Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. |
Q8WWI1 | LMO7 | T117 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WYB5 | KAT6B | T1275 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q8WYP5 | AHCTF1 | T1808 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYQ5 | DGCR8 | T371 | ochoa|psp | Microprocessor complex subunit DGCR8 (DiGeorge syndrome critical region 8) | Component of the microprocessor complex that acts as a RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DGCR8 function as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11 bp away form the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs (PubMed:26027739, PubMed:26748718). The heme-bound DGCR8 dimer binds pri-miRNAs as a cooperative trimer (of dimers) and is active in triggering pri-miRNA cleavage, whereas the heme-free DGCR8 monomer binds pri-miRNAs as a dimer and is much less active. Both double-stranded and single-stranded regions of a pri-miRNA are required for its binding (PubMed:15531877, PubMed:15574589, PubMed:15589161, PubMed:16751099, PubMed:16906129, PubMed:16963499, PubMed:17159994). Specifically recognizes and binds N6-methyladenosine (m6A)-containing pri-miRNAs, a modification required for pri-miRNAs processing (PubMed:25799998). Involved in the silencing of embryonic stem cell self-renewal (By similarity). Also plays a role in DNA repair by promoting the recruitment of RNF168 to RNF8 and MDC1 at DNA double-strand breaks and subsequently the clearance of DNA breaks (PubMed:34188037). {ECO:0000250|UniProtKB:Q9EQM6, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:16963499, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}. |
Q8WZ42 | TTN | T11969 | psp | Titin (EC 2.7.11.1) (Connectin) (Rhabdomyosarcoma antigen MU-RMS-40.14) | Key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The size and extensibility of the cross-links are the main determinants of sarcomere extensibility properties of muscle. In non-muscle cells, seems to play a role in chromosome condensation and chromosome segregation during mitosis. Might link the lamina network to chromatin or nuclear actin, or both during interphase. {ECO:0000269|PubMed:11846417, ECO:0000269|PubMed:9804419}. |
Q92508 | PIEZO1 | T734 | ochoa | Piezo-type mechanosensitive ion channel component 1 (Membrane protein induced by beta-amyloid treatment) (Mib) (Protein FAM38A) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:23479567, PubMed:23695678, PubMed:25955826, PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Generates currents characterized by a linear current-voltage relationship that are sensitive to ruthenium red and gadolinium (By similarity). Conductance to monovalent alkali ions is highest for K(+), intermediate for Na(+) and lowest for Li(+) (PubMed:25955826). Divalent ions except for Mn(2+) permeate the channel but more slowly than the monovalent ions and they also reduce K(+) currents (PubMed:25955826). Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling (PubMed:20016066). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing (By similarity). Acts as a shear-stress sensor that promotes endothelial cell organization and alignment in the direction of blood flow through calpain activation (PubMed:25119035). Plays a key role in blood vessel formation and vascular structure in both development and adult physiology (By similarity). Acts as a sensor of phosphatidylserine (PS) flipping at the plasma membrane and governs morphogenesis of muscle cells (By similarity). In myoblasts, flippase-mediated PS enrichment at the inner leaflet of plasma membrane triggers channel activation and Ca2+ influx followed by Rho GTPases signal transduction, leading to assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). {ECO:0000250|UniProtKB:E2JF22, ECO:0000250|UniProtKB:Q91X60, ECO:0000269|PubMed:25955826, ECO:0000269|PubMed:29799007}. |
Q92597 | NDRG1 | T375 | ochoa | Protein NDRG1 (Differentiation-related gene 1 protein) (DRG-1) (N-myc downstream-regulated gene 1 protein) (Nickel-specific induction protein Cap43) (Reducing agents and tunicamycin-responsive protein) (RTP) (Rit42) | Stress-responsive protein involved in hormone responses, cell growth, and differentiation. Acts as a tumor suppressor in many cell types. Necessary but not sufficient for p53/TP53-mediated caspase activation and apoptosis. Has a role in cell trafficking, notably of the Schwann cell, and is necessary for the maintenance and development of the peripheral nerve myelin sheath. Required for vesicular recycling of CDH1 and TF. May also function in lipid trafficking. Protects cells from spindle disruption damage. Functions in p53/TP53-dependent mitotic spindle checkpoint. Regulates microtubule dynamics and maintains euploidy. {ECO:0000269|PubMed:15247272, ECO:0000269|PubMed:15377670, ECO:0000269|PubMed:17786215, ECO:0000269|PubMed:9766676}. |
Q92785 | DPF2 | T310 | ochoa | Zinc finger protein ubi-d4 (Apoptosis response zinc finger protein) (BRG1-associated factor 45D) (BAF45D) (D4, zinc and double PHD fingers family 2) (Protein requiem) | Plays an active role in transcriptional regulation by binding modified histones H3 and H4 (PubMed:27775714, PubMed:28533407). Is a negative regulator of myeloid differentiation of hematopoietic progenitor cells (PubMed:28533407). Might also have a role in the development and maturation of lymphoid cells (By similarity). Involved in the regulation of non-canonical NF-kappa-B pathway (PubMed:20460684). {ECO:0000250|UniProtKB:Q61103, ECO:0000269|PubMed:20460684, ECO:0000269|PubMed:27775714, ECO:0000269|PubMed:28533407}. |
Q92797 | SYMPK | T1083 | ochoa | Symplekin | Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3'-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house-keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity. {ECO:0000269|PubMed:16230528, ECO:0000269|PubMed:20861839}. |
Q92805 | GOLGA1 | T606 | ochoa | Golgin subfamily A member 1 (Golgin-97) | Involved in vesicular trafficking at the Golgi apparatus level. Involved in endosome-to-Golgi trafficking. Mechanistically, captures transport vesicles arriving from endosomes via the protein TBC1D23 (PubMed:29084197, PubMed:38552021). Recognized vesicles are then tethered to the trans-Golgi before subsequent SNARE engagement and vesicle fusion. Selectively regulates E-cadherin transport from the trans-Golgi network in tubulovesicular carriers (PubMed:34969853). {ECO:0000269|PubMed:29084197, ECO:0000269|PubMed:34969853, ECO:0000269|PubMed:38552021}.; FUNCTION: (Microbial infection) Plays an important role in poxvirus morphogenesis. Translocates into the viral factories where it may transport the membrane fragments and associated protein factors important for virus maturation to the sites of virion assembly. {ECO:0000269|PubMed:17276477}. |
Q92841 | DDX17 | T523 | ochoa | Probable ATP-dependent RNA helicase DDX17 (EC 3.6.4.13) (DEAD box protein 17) (DEAD box protein p72) (DEAD box protein p82) (RNA-dependent helicase p72) | As an RNA helicase, unwinds RNA and alters RNA structures through ATP binding and hydrolysis. Involved in multiple cellular processes, including pre-mRNA splicing, alternative splicing, ribosomal RNA processing and miRNA processing, as well as transcription regulation. Regulates the alternative splicing of exons exhibiting specific features (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). For instance, promotes the inclusion of AC-rich alternative exons in CD44 transcripts (PubMed:12138182). This function requires the RNA helicase activity (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). Affects NFAT5 and histone macro-H2A.1/MACROH2A1 alternative splicing in a CDK9-dependent manner (PubMed:22266867, PubMed:26209609). In NFAT5, promotes the introduction of alternative exon 4, which contains 2 stop codons and may target NFAT5 exon 4-containing transcripts to nonsense-mediated mRNA decay, leading to the down-regulation of NFAT5 protein (PubMed:22266867). Affects splicing of mediators of steroid hormone signaling pathway, including kinases that phosphorylates ESR1, such as CDK2, MAPK1 and GSK3B, and transcriptional regulators, such as CREBBP, MED1, NCOR1 and NCOR2. By affecting GSK3B splicing, participates in ESR1 and AR stabilization (PubMed:24275493). In myoblasts and epithelial cells, cooperates with HNRNPH1 to control the splicing of specific subsets of exons (PubMed:24910439). In addition to binding mature mRNAs, also interacts with certain pri-microRNAs, including MIR663/miR-663a, MIR99B/miR-99b, and MIR6087/miR-6087 (PubMed:25126784). Binds pri-microRNAs on the 3' segment flanking the stem loop via the 5'-[ACG]CAUC[ACU]-3' consensus sequence (PubMed:24581491). Required for the production of subsets of microRNAs, including MIR21 and MIR125B1 (PubMed:24581491, PubMed:27478153). May be involved not only in microRNA primary transcript processing, but also stabilization (By similarity). Participates in MYC down-regulation at high cell density through the production of MYC-targeting microRNAs (PubMed:24581491). Along with DDX5, may be involved in the processing of the 32S intermediate into the mature 28S ribosomal RNA (PubMed:17485482). Promoter-specific transcription regulator, functioning as a coactivator or corepressor depending on the context of the promoter and the transcriptional complex in which it exists (PubMed:15298701). Enhances NFAT5 transcriptional activity (PubMed:22266867). Synergizes with TP53 in the activation of the MDM2 promoter; this activity requires acetylation on lysine residues (PubMed:17226766, PubMed:19995069, PubMed:20663877). May also coactivate MDM2 transcription through a TP53-independent pathway (PubMed:17226766). Coactivates MMP7 transcription (PubMed:17226766). Along with CTNNB1, coactivates MYC, JUN, FOSL1 and cyclin D1/CCND1 transcription (PubMed:17699760). Alone or in combination with DDX5 and/or SRA1 non-coding RNA, plays a critical role in promoting the assembly of proteins required for the formation of the transcription initiation complex and chromatin remodeling leading to coactivation of MYOD1-dependent transcription. This helicase-independent activity is required for skeletal muscle cells to properly differentiate into myotubes (PubMed:17011493, PubMed:24910439). During epithelial-to-mesenchymal transition, coregulates SMAD-dependent transcriptional activity, directly controlling key effectors of differentiation, including miRNAs which in turn directly repress its expression (PubMed:24910439). Plays a role in estrogen and testosterone signaling pathway at several levels. Mediates the use of alternative promoters in estrogen-responsive genes and regulates transcription and splicing of a large number of steroid hormone target genes (PubMed:19995069, PubMed:20406972, PubMed:20663877, PubMed:24275493). Contrary to splicing regulation activity, transcriptional coregulation of the estrogen receptor ESR1 is helicase-independent (PubMed:19718048, PubMed:24275493). Plays a role in innate immunity. Specifically restricts bunyavirus infection, including Rift Valley fever virus (RVFV) or La Crosse virus (LACV), but not vesicular stomatitis virus (VSV), in an interferon- and DROSHA-independent manner (PubMed:25126784). Binds to RVFV RNA, likely via structured viral RNA elements (PubMed:25126784). Promotes mRNA degradation mediated by the antiviral zinc-finger protein ZC3HAV1, in an ATPase-dependent manner (PubMed:18334637). {ECO:0000250|UniProtKB:Q501J6, ECO:0000269|PubMed:12138182, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17226766, ECO:0000269|PubMed:17485482, ECO:0000269|PubMed:17699760, ECO:0000269|PubMed:18334637, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:19995069, ECO:0000269|PubMed:20406972, ECO:0000269|PubMed:20663877, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:23022728, ECO:0000269|PubMed:24275493, ECO:0000269|PubMed:24581491, ECO:0000269|PubMed:24910439, ECO:0000269|PubMed:25126784, ECO:0000269|PubMed:26209609, ECO:0000269|PubMed:27478153, ECO:0000305}. |
Q92922 | SMARCC1 | T398 | ochoa | SWI/SNF complex subunit SMARCC1 (BRG1-associated factor 155) (BAF155) (SWI/SNF complex 155 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 1) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. May stimulate the ATPase activity of the catalytic subunit of the complex (PubMed:10078207, PubMed:29374058). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:P97496, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q92989 | CLP1 | T356 | ochoa | Polyribonucleotide 5'-hydroxyl-kinase Clp1 (EC 2.7.1.78) (Polyadenylation factor Clp1) (Polynucleotide kinase Clp1) (Pre-mRNA cleavage complex II protein Clp1) | Polynucleotide kinase that can phosphorylate the 5'-hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double-stranded DNA (dsDNA) and double-stranded DNA:RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA:RNA hybrid is phosphorylated more efficiently than the DNA component. Plays a key role in both tRNA splicing and mRNA 3'-end formation. Component of the tRNA splicing endonuclease complex: phosphorylates the 5'-terminus of the tRNA 3'-exon during tRNA splicing; this phosphorylation event is a prerequisite for the subsequent ligation of the two exon halves and the production of a mature tRNA (PubMed:24766809, PubMed:24766810). Its role in tRNA splicing and maturation is required for cerebellar development (PubMed:24766809, PubMed:24766810). Component of the pre-mRNA cleavage complex II (CF-II), which seems to be required for mRNA 3'-end formation. Also phosphorylates the 5'-terminus of exogenously introduced short interfering RNAs (siRNAs), which is a necessary prerequisite for their incorporation into the RNA-induced silencing complex (RISC). However, endogenous siRNAs and microRNAs (miRNAs) that are produced by the cleavage of dsRNA precursors by DICER1 already contain a 5'-phosphate group, so this protein may be dispensible for normal RNA-mediated gene silencing. {ECO:0000269|PubMed:17495927, ECO:0000269|PubMed:18648070, ECO:0000269|PubMed:24766809, ECO:0000269|PubMed:24766810}. |
Q92994 | BRF1 | T270 | psp | Transcription factor IIIB 90 kDa subunit (TFIIIB90) (hTFIIIB90) (B-related factor 1) (BRF-1) (hBRF) (TAF3B2) (TATA box-binding protein-associated factor, RNA polymerase III, subunit 2) | General activator of RNA polymerase which utilizes different TFIIIB complexes at structurally distinct promoters. The isoform 1 is involved in the transcription of tRNA, adenovirus VA1, 7SL and 5S RNA. Isoform 2 is required for transcription of the U6 promoter. |
Q93062 | RBPMS | T118 | ochoa | RNA-binding protein with multiple splicing (RBP-MS) (RBPMS) (Heart and RRM expressed sequence) (Hermes) | [Isoform A]: RNA binding protein that mediates the regulation of pre-mRNA alternative splicing (AS) (PubMed:24860013, PubMed:26347403). Acts either as activator (FLNB, HSPG2, LIPA1, MYOCD, PTPRF and PPFIBP1) or repressor (TPM1, ACTN1, ITGA7, PIEZO1, LSM14B, MBNL1 and MBML2) of splicing events on specific pre-mRNA targets (By similarity). Together with RNA binding proteins RBFOX2 and MBNL1/2, activates a splicing program associated with differentiated contractile vascular smooth muscle cells (SMC) by regulating AS of numerous pre-mRNA involved in actin cytoskeleton and focal adhesion machineries, suggesting a role in promoting a cell differentiated state (By similarity). Binds to introns, exons and 3'-UTR associated with tandem CAC trinucleotide motifs separated by a variable spacer region, at a minimum as a dimer. The minimal length of RNA required for RBPMS-binding tandem CAC motifs is 15 nt, with spacing ranging from 1 to 9 nt. Can also bind to CA dinucleotide repeats (PubMed:24860013, PubMed:26347403). Mediates repression of TPM1 exon 3 by binding to CAC tandem repeats in the flanking intronic regions, followed by higher-order oligomerization and heterotypic interactions with other splicing regulators including MBNL1 and RBFOX2, which prevents assembly of ATP-dependent splicing complexes (By similarity). {ECO:0000250|UniProtKB:A0A8I6G705, ECO:0000269|PubMed:24860013, ECO:0000269|PubMed:26347403}.; FUNCTION: [Isoform C]: Acts as a regulator of pre-mRNA alternative splicing (AS) (By similarity). Binds mRNA (PubMed:17099224). Regulates AS of ACTN1, FLNB, although with lower efficiency than isoform A / RBPMSA (By similarity). Acts as coactivator of SMAD transcriptional activity in a TGFB1-dependent manner, possibly through increased phosphorylation of SMAD2 and SMAD3 at the C-terminal SSXS regions and promotion of the nuclear accumulation of SMAD proteins (PubMed:17099224). {ECO:0000250|UniProtKB:A0A8I6G705, ECO:0000269|PubMed:17099224}. |
Q93100 | PHKB | T702 | ochoa | Phosphorylase b kinase regulatory subunit beta (Phosphorylase kinase subunit beta) | Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The beta chain acts as a regulatory unit and modulates the activity of the holoenzyme in response to phosphorylation. |
Q96A49 | SYAP1 | T248 | ochoa | Synapse-associated protein 1 (BSD domain-containing signal transducer and Akt interactor protein) (BSTA) | Plays a role in adipocyte differentiation by promoting mTORC2-mediated phosphorylation of AKT1 at 'Ser-473' after growth factor stimulation (PubMed:23300339). {ECO:0000269|PubMed:23300339}. |
Q96AE4 | FUBP1 | T153 | ochoa | Far upstream element-binding protein 1 (FBP) (FUSE-binding protein 1) (DNA helicase V) (hDH V) | Regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. May act both as activator and repressor of transcription. {ECO:0000269|PubMed:8125259}. |
Q96BD5 | PHF21A | T176 | ochoa | PHD finger protein 21A (BHC80a) (BRAF35-HDAC complex protein BHC80) | Component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it may act as a scaffold. Inhibits KDM1A-mediated demethylation of 'Lys-4' of histone H3 in vitro, suggesting a role in demethylation regulation. {ECO:0000269|PubMed:16140033}. |
Q96C24 | SYTL4 | T511 | ochoa | Synaptotagmin-like protein 4 (Exophilin-2) (Granuphilin) | Modulates exocytosis of dense-core granules and secretion of hormones in the pancreas and the pituitary. Interacts with vesicles containing negatively charged phospholipids in a Ca(2+)-independent manner (By similarity). {ECO:0000250}. |
Q96CP6 | GRAMD1A | T277 | ochoa | Protein Aster-A (GRAM domain-containing protein 1A) | Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). May play a role in tumor progression (By similarity). Plays a role in autophagy regulation and is required for biogenesis of the autophagosome (PubMed:31222192). This function in autophagy requires its cholesterol-transfer activity (PubMed:31222192). {ECO:0000250|UniProtKB:Q8VEF1, ECO:0000269|PubMed:31222192}. |
Q96D71 | REPS1 | T694 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96ED9 | HOOK2 | T230 | ochoa | Protein Hook homolog 2 (h-hook2) (hHK2) | Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). Contributes to the establishment and maintenance of centrosome function. May function in the positioning or formation of aggresomes, which are pericentriolar accumulations of misfolded proteins, proteasomes and chaperones. FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000269|PubMed:17140400, ECO:0000269|PubMed:17540036, ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}. |
Q96F07 | CYFIP2 | T1092 | ochoa | Cytoplasmic FMR1-interacting protein 2 (p53-inducible protein 121) | Involved in T-cell adhesion and p53/TP53-dependent induction of apoptosis. Does not bind RNA. As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). {ECO:0000250|UniProtKB:Q5SQX6, ECO:0000269|PubMed:10449408, ECO:0000269|PubMed:15048733, ECO:0000269|PubMed:17245118}. |
Q96GX5 | MASTL | T519 | ochoa | Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) | Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}. |
Q96K58 | ZNF668 | T600 | ochoa | Zinc finger protein 668 | May be involved in transcriptional regulation. May play a role in DNA repair process. {ECO:0000269|PubMed:34313816}. |
Q96MP8 | KCTD7 | T200 | ochoa | BTB/POZ domain-containing protein KCTD7 | May be involved in the control of excitability of cortical neurons. {ECO:0000250}. |
Q96N16 | JAKMIP1 | T467 | ochoa | Janus kinase and microtubule-interacting protein 1 (GABA-B receptor-binding protein) (Multiple alpha-helices and RNA-linker protein 1) (Marlin-1) | Associates with microtubules and may play a role in the microtubule-dependent transport of the GABA-B receptor. May play a role in JAK1 signaling and regulate microtubule cytoskeleton rearrangements. {ECO:0000269|PubMed:14718537, ECO:0000269|PubMed:15277531, ECO:0000269|PubMed:17532644}. |
Q96N77 | ZNF641 | T197 | ochoa | Zinc finger protein 641 | Transcriptional activator. Activates transcriptional activities of SRE and AP-1. {ECO:0000269|PubMed:16343441}. |
Q96NB3 | ZNF830 | T146 | ochoa | Zinc finger protein 830 (Coiled-coil domain-containing protein 16) | May play a role in pre-mRNA splicing as component of the spliceosome (PubMed:25599396). Acts as an important regulator of the cell cycle that participates in the maintenance of genome integrity. During cell cycle progression in embryonic fibroblast, prevents replication fork collapse, double-strand break formation and cell cycle checkpoint activation. Controls mitotic cell cycle progression and cell survival in rapidly proliferating intestinal epithelium and embryonic stem cells. During the embryo preimplantation, controls different aspects of M phase. During early oocyte growth, plays a role in oocyte survival by preventing chromosomal breaks formation, activation of TP63 and reduction of transcription (By similarity). {ECO:0000250|UniProtKB:Q8R1N0, ECO:0000305|PubMed:25599396}. |
Q96PD2 | DCBLD2 | T593 | ochoa|psp | Discoidin, CUB and LCCL domain-containing protein 2 (CUB, LCCL and coagulation factor V/VIII-homology domains protein 1) (Endothelial and smooth muscle cell-derived neuropilin-like protein) | None |
Q96Q89 | KIF20B | T1644 | ochoa|psp | Kinesin-like protein KIF20B (Cancer/testis antigen 90) (CT90) (Kinesin family member 20B) (Kinesin-related motor interacting with PIN1) (M-phase phosphoprotein 1) (MPP1) | Plus-end-directed motor enzyme that is required for completion of cytokinesis (PubMed:11470801, PubMed:12740395). Required for proper midbody organization and abscission in polarized cortical stem cells. Plays a role in the regulation of neuronal polarization by mediating the transport of specific cargos. Participates in the mobilization of SHTN1 and in the accumulation of PIP3 in the growth cone of primary hippocampal neurons in a tubulin and actin-dependent manner. In the developing telencephalon, cooperates with SHTN1 to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in cerebral cortex growth (By similarity). Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000250|UniProtKB:Q80WE4, ECO:0000269|PubMed:11470801, ECO:0000269|PubMed:12740395, ECO:0000269|PubMed:17409436}. |
Q96RG2 | PASK | T640 | psp | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96SD1 | DCLRE1C | T656 | psp | Protein artemis (EC 3.1.-.-) (DNA cross-link repair 1C protein) (Protein A-SCID) (SNM1 homolog C) (hSNM1C) (SNM1-like protein) | Nuclease involved in DNA non-homologous end joining (NHEJ); required for double-strand break repair and V(D)J recombination (PubMed:11336668, PubMed:11955432, PubMed:12055248, PubMed:14744996, PubMed:15071507, PubMed:15574326, PubMed:15936993). Required for V(D)J recombination, the process by which exons encoding the antigen-binding domains of immunoglobulins and T-cell receptor proteins are assembled from individual V, (D), and J gene segments (PubMed:11336668, PubMed:11955432, PubMed:14744996). V(D)J recombination is initiated by the lymphoid specific RAG endonuclease complex, which generates site specific DNA double strand breaks (DSBs) (PubMed:11336668, PubMed:11955432, PubMed:14744996). These DSBs present two types of DNA end structures: hairpin sealed coding ends and phosphorylated blunt signal ends (PubMed:11336668, PubMed:11955432, PubMed:14744996). These ends are independently repaired by the non homologous end joining (NHEJ) pathway to form coding and signal joints respectively (PubMed:11336668, PubMed:11955432, PubMed:14744996). This protein exhibits single-strand specific 5'-3' exonuclease activity in isolation and acquires endonucleolytic activity on 5' and 3' hairpins and overhangs when in a complex with PRKDC (PubMed:11955432, PubMed:15071507, PubMed:15574326, PubMed:15936993). The latter activity is required specifically for the resolution of closed hairpins prior to the formation of the coding joint (PubMed:11955432). Also required for the repair of complex DSBs induced by ionizing radiation, which require substantial end-processing prior to religation by NHEJ (PubMed:15456891, PubMed:15468306, PubMed:15574327, PubMed:15811628). {ECO:0000269|PubMed:11336668, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12055248, ECO:0000269|PubMed:14744996, ECO:0000269|PubMed:15071507, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15468306, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:15574327, ECO:0000269|PubMed:15811628, ECO:0000269|PubMed:15936993}. |
Q96T58 | SPEN | T1140 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | T1947 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | T2393 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99549 | MPHOSPH8 | T454 | ochoa | M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) | Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q99613 | EIF3C | T524 | ochoa | Eukaryotic translation initiation factor 3 subunit C (eIF3c) (Eukaryotic translation initiation factor 3 subunit 8) (eIF3 p110) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03002, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
Q99640 | PKMYT1 | T71 | ochoa | Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase (EC 2.7.11.1) (Myt1 kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins (PubMed:10373560, PubMed:10504341, PubMed:9001210, PubMed:9268380). Mediates phosphorylation of CDK1 predominantly on 'Thr-14'. Also involved in Golgi fragmentation (PubMed:9001210, PubMed:9268380). May be involved in phosphorylation of CDK1 on 'Tyr-15' to a lesser degree, however tyrosine kinase activity is unclear and may be indirect (PubMed:9001210, PubMed:9268380). {ECO:0000269|PubMed:10373560, ECO:0000269|PubMed:10504341, ECO:0000269|PubMed:9001210, ECO:0000269|PubMed:9268380}. |
Q99666 | RGPD5 | T1482 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99747 | NAPG | T287 | ochoa | Gamma-soluble NSF attachment protein (SNAP-gamma) (N-ethylmaleimide-sensitive factor attachment protein gamma) | Required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus. |
Q99814 | EPAS1 | T406 | psp | Endothelial PAS domain-containing protein 1 (EPAS-1) (Basic-helix-loop-helix-PAS protein MOP2) (Class E basic helix-loop-helix protein 73) (bHLHe73) (HIF-1-alpha-like factor) (HLF) (Hypoxia-inducible factor 2-alpha) (HIF-2-alpha) (HIF2-alpha) (Member of PAS protein 2) (PAS domain-containing protein 2) | Transcription factor involved in the induction of oxygen regulated genes. Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Regulates the vascular endothelial growth factor (VEGF) expression and seems to be implicated in the development of blood vessels and the tubular system of lung. May also play a role in the formation of the endothelium that gives rise to the blood brain barrier. Potent activator of the Tie-2 tyrosine kinase expression. Activation requires recruitment of transcriptional coactivators such as CREBBP and probably EP300. Interaction with redox regulatory protein APEX1 seems to activate CTAD (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:P97481}. |
Q9BR39 | JPH2 | T525 | ochoa | Junctophilin-2 (JP-2) (Junctophilin type 2) [Cleaved into: Junctophilin-2 N-terminal fragment (JP2NT)] | [Junctophilin-2]: Membrane-binding protein that provides a structural bridge between the plasma membrane and the sarcoplasmic reticulum and is required for normal excitation-contraction coupling in cardiomyocytes (PubMed:20095964). Provides a structural foundation for functional cross-talk between the cell surface and intracellular Ca(2+) release channels by maintaining the 12-15 nm gap between the sarcolemma and the sarcoplasmic reticulum membranes in the cardiac dyads (By similarity). Necessary for proper intracellular Ca(2+) signaling in cardiac myocytes via its involvement in ryanodine receptor-mediated calcium ion release (By similarity). Contributes to the construction of skeletal muscle triad junctions (By similarity). {ECO:0000250|UniProtKB:Q9ET78, ECO:0000269|PubMed:20095964}.; FUNCTION: [Junctophilin-2 N-terminal fragment]: Transcription repressor required to safeguard against the deleterious effects of cardiac stress. Generated following cleavage of the Junctophilin-2 chain by calpain in response to cardiac stress in cardiomyocytes. Following cleavage and release from the membrane, translocates to the nucleus, binds DNA and represses expression of genes implicated in cell growth and differentiation, hypertrophy, inflammation and fibrosis. Modifies the transcription profile and thereby attenuates pathological remodeling in response to cardiac stress. Probably acts by competing with MEF2 transcription factors and TATA-binding proteins. {ECO:0000250|UniProtKB:Q9ET78}. |
Q9BUA3 | SPINDOC | T49 | ochoa | Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) | Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}. |
Q9BUB5 | MKNK1 | T250 | psp | MAP kinase-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 1) (MAPK signal-integrating kinase 1) (Mnk1) | May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. {ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:15350534, ECO:0000269|PubMed:9155018, ECO:0000269|PubMed:9878069}. |
Q9BWT3 | PAPOLG | T108 | ochoa | Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) | Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}. |
Q9BXW9 | FANCD2 | T896 | ochoa|psp | Fanconi anemia group D2 protein (Protein FACD2) | Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}. |
Q9BY89 | KIAA1671 | T600 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYW2 | SETD2 | T113 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYW2 | SETD2 | T592 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYW2 | SETD2 | T1870 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZ95 | NSD3 | T547 | ochoa | Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) | Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}. |
Q9C0A1 | ZFHX2 | T946 | ochoa | Zinc finger homeobox protein 2 (Zinc finger homeodomain protein 2) (ZFH-2) | Transcriptional regulator that is critical for the regulation of pain perception and processing of noxious stimuli. {ECO:0000269|PubMed:29253101}. |
Q9C0C2 | TNKS1BP1 | T578 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C9 | UBE2O | T435 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0F1 | CEP44 | T346 | ochoa | Centrosomal protein of 44 kDa (Cep44) (HBV PreS1-transactivated protein 3) (PS1TP3) | Centriole-enriched microtubule-binding protein involved in centriole biogenesis. In collaboration with CEP295 and POC1B, is required for the centriole-to-centrosome conversion by ensuring the formation of bona fide centriole wall (PubMed:32060285). Functions as a linker component that maintains centrosome cohesion. Associates with CROCC and regulates its stability and localization to the centrosome (PubMed:31974111). {ECO:0000269|PubMed:31974111, ECO:0000269|PubMed:32060285}. |
Q9H063 | MAF1 | T212 | ochoa | Repressor of RNA polymerase III transcription MAF1 homolog | Plays a role in the repression of RNA polymerase III-mediated transcription in response to changing nutritional, environmental and cellular stress conditions to balance the production of highly abundant tRNAs, 5S rRNA, and other small non-coding RNAs with cell growth and maintenance (PubMed:18377933, PubMed:20233713, PubMed:20516213, PubMed:20543138). Also plays a key role in cell fate determination by promoting mesorderm induction and adipocyte differentiation (By similarity). Mechanistically, associates with the RNA polymerase III clamp and thereby impairs its recruitment to the complex made of the promoter DNA, TBP and the initiation factor TFIIIB (PubMed:17505538, PubMed:20887893). When nutrients are available and mTOR kinase is active, MAF1 is hyperphosphorylated and RNA polymerase III is engaged in transcription. Stress-induced MAF1 dephosphorylation results in nuclear localization, increased targeting of gene-bound RNA polymerase III and a decrease in the transcriptional readout (PubMed:26941251). Additionally, may also regulate RNA polymerase I and RNA polymerase II-dependent transcription through its ability to regulate expression of the central initiation factor TBP (PubMed:17499043). {ECO:0000250|UniProtKB:Q9D0U6, ECO:0000269|PubMed:17499043, ECO:0000269|PubMed:17505538, ECO:0000269|PubMed:18377933, ECO:0000269|PubMed:20233713, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20543138, ECO:0000269|PubMed:20887893, ECO:0000269|PubMed:26941251}. |
Q9H0A0 | NAT10 | T666 | ochoa | RNA cytidine acetyltransferase (EC 2.3.1.-) (18S rRNA cytosine acetyltransferase) (N-acetyltransferase 10) (N-acetyltransferase-like protein) (hALP) | RNA cytidine acetyltransferase that catalyzes the formation of N(4)-acetylcytidine (ac4C) modification on mRNAs, 18S rRNA and tRNAs (PubMed:25411247, PubMed:25653167, PubMed:30449621, PubMed:35679869). Catalyzes ac4C modification of a broad range of mRNAs, enhancing mRNA stability and translation (PubMed:30449621, PubMed:35679869). mRNA ac4C modification is frequently present within wobble cytidine sites and promotes translation efficiency (PubMed:30449621). Mediates the formation of ac4C at position 1842 in 18S rRNA (PubMed:25411247). May also catalyze the formation of ac4C at position 1337 in 18S rRNA (By similarity). Required for early nucleolar cleavages of precursor rRNA at sites A0, A1 and A2 during 18S rRNA synthesis (PubMed:25411247, PubMed:25653167). Catalyzes the formation of ac4C in serine and leucine tRNAs (By similarity). Requires the tRNA-binding adapter protein THUMPD1 for full tRNA acetyltransferase activity but not for 18S rRNA acetylation (PubMed:25653167). In addition to RNA acetyltransferase activity, also able to acetylate lysine residues of proteins, such as histones, microtubules, p53/TP53 and MDM2, in vitro (PubMed:14592445, PubMed:17631499, PubMed:19303003, PubMed:26882543, PubMed:27993683, PubMed:30165671). The relevance of the protein lysine acetyltransferase activity is however unsure in vivo (PubMed:30449621). Activates telomerase activity by stimulating the transcription of TERT, and may also regulate telomerase function by affecting the balance of telomerase subunit assembly, disassembly, and localization (PubMed:14592445, PubMed:18082603). Involved in the regulation of centrosome duplication by acetylating CENATAC during mitosis, promoting SASS6 proteasome degradation (PubMed:31722219). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:P53914, ECO:0000269|PubMed:14592445, ECO:0000269|PubMed:17631499, ECO:0000269|PubMed:18082603, ECO:0000269|PubMed:19303003, ECO:0000269|PubMed:25411247, ECO:0000269|PubMed:25653167, ECO:0000269|PubMed:26882543, ECO:0000269|PubMed:27993683, ECO:0000269|PubMed:30165671, ECO:0000269|PubMed:30449621, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:35679869}. |
Q9H0E9 | BRD8 | T77 | ochoa | Bromodomain-containing protein 8 (Skeletal muscle abundant protein) (Skeletal muscle abundant protein 2) (Thyroid hormone receptor coactivating protein of 120 kDa) (TrCP120) (p120) | May act as a coactivator during transcriptional activation by hormone-activated nuclear receptors (NR). Isoform 2 stimulates transcriptional activation by AR/DHTR, ESR1/NR3A1, RXRA/NR2B1 and THRB/ERBA2. At least isoform 1 and isoform 2 are components of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:10517671, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q9H2G2 | SLK | T1097 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2X6 | HIPK2 | T880 | psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H4I2 | ZHX3 | T612 | ochoa | Zinc fingers and homeoboxes protein 3 (Triple homeobox protein 1) (Zinc finger and homeodomain protein 3) | Acts as a transcriptional repressor. Involved in the early stages of mesenchymal stem cell (MSC) osteogenic differentiation. Is a regulator of podocyte gene expression during primary glomerula disease. Binds to promoter DNA. {ECO:0000269|PubMed:12659632, ECO:0000269|PubMed:21174497}. |
Q9H4L7 | SMARCAD1 | T54 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) | DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}. |
Q9H869 | YY1AP1 | T103 | ochoa | YY1-associated protein 1 (Hepatocellular carcinoma susceptibility protein) (Hepatocellular carcinoma-associated protein 2) | Associates with the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication (PubMed:27939641). Enhances transcription activation by YY1 (PubMed:14744866). Plays a role in cell cycle regulation (PubMed:17541814, PubMed:27939641). {ECO:0000269|PubMed:14744866, ECO:0000269|PubMed:17541814, ECO:0000269|PubMed:27939641}. |
Q9H8E8 | KAT14 | T289 | ochoa | Cysteine-rich protein 2-binding protein (CSRP2-binding protein) (ADA2A-containing complex subunit 2) (ATAC2) (CRP2-binding partner) (CRP2BP) (Lysine acetyltransferase 14) | Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. May function as a scaffold for the ATAC complex to promote ATAC complex stability. Has also weak histone acetyltransferase activity toward histone H4. Required for the normal progression through G1 and G2/M phases of the cell cycle. {ECO:0000269|PubMed:19103755}. |
Q9HC35 | EML4 | T897 | ochoa | Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) | Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}. |
Q9NQW6 | ANLN | T393 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NR46 | SH3GLB2 | T142 | ochoa | Endophilin-B2 (SH3 domain-containing GRB2-like protein B2) | None |
Q9NS87 | KIF15 | T1144 | ochoa | Kinesin-like protein KIF15 (Kinesin-like protein 2) (hKLP2) (Kinesin-like protein 7) (Serologically defined breast cancer antigen NY-BR-62) | Plus-end directed kinesin-like motor enzyme involved in mitotic spindle assembly. {ECO:0000250}. |
Q9NUL3 | STAU2 | T408 | ochoa | Double-stranded RNA-binding protein Staufen homolog 2 | RNA-binding protein required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite. As protein synthesis occurs within the dendrite, the localization of specific mRNAs to dendrites may be a prerequisite for neurite outgrowth and plasticity at sites distant from the cell body (By similarity). {ECO:0000250|UniProtKB:Q68SB1}. |
Q9NXD2 | MTMR10 | T755 | ochoa | Myotubularin-related protein 10 (Inactive phosphatidylinositol 3-phosphatase 10) | None |
Q9NXX6 | NSMCE4A | T345 | ochoa | Non-structural maintenance of chromosomes element 4 homolog A (NS4EA) (Non-SMC element 4 homolog A) | Component of the SMC5-SMC6 complex, a complex involved in DNA double-strand breaks by homologous recombination. The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks. The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs). Is involved in positive regulation of response to DNA damage stimulus. {ECO:0000269|PubMed:18086888}. |
Q9NZM3 | ITSN2 | T573 | ochoa | Intersectin-2 (SH3 domain-containing protein 1B) (SH3P18) (SH3P18-like WASP-associated protein) | Adapter protein that may provide indirect link between the endocytic membrane traffic and the actin assembly machinery. May regulate the formation of clathrin-coated vesicles (CCPs). Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:23999003}. |
Q9NZN5 | ARHGEF12 | T1148 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9P0K7 | RAI14 | T249 | ochoa | Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) | Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}. |
Q9P2D1 | CHD7 | T2153 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9UBU8 | MORF4L1 | T168 | ochoa | Mortality factor 4-like protein 1 (MORF-related gene 15 protein) (MRG15) (Protein MSL3-1) (Transcription factor-like protein MRG15) | Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. NuA4 may also play a direct role in DNA repair when directly recruited to sites of DNA damage. As part of the SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:12391155, PubMed:14966270, PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). Required for homologous recombination repair (HRR) and resistance to mitomycin C (MMC). Involved in the localization of PALB2, BRCA2 and RAD51, but not BRCA1, to DNA-damage foci. {ECO:0000269|PubMed:12391155, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:20332121, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
Q9UBW5 | BIN2 | T478 | ochoa | Bridging integrator 2 (Breast cancer-associated protein 1) | Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}. |
Q9UD71 | PPP1R1B | T34 | psp | Protein phosphatase 1 regulatory subunit 1B (DARPP-32) (Dopamine- and cAMP-regulated neuronal phosphoprotein) | Inhibitor of protein-phosphatase 1. |
Q9UDY2 | TJP2 | T1054 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UGP5 | POLL | T553 | psp | DNA polymerase lambda (Pol Lambda) (EC 2.7.7.7) (EC 4.2.99.-) (DNA polymerase beta-2) (Pol beta2) (DNA polymerase kappa) | DNA polymerase that functions in several pathways of DNA repair (PubMed:11457865, PubMed:19806195, PubMed:20693240, PubMed:30250067). Involved in base excision repair (BER) responsible for repair of lesions that give rise to abasic (AP) sites in DNA (PubMed:11457865, PubMed:19806195). Also contributes to DNA double-strand break repair by non-homologous end joining and homologous recombination (PubMed:19806195, PubMed:20693240, PubMed:30250067). Has both template-dependent and template-independent (terminal transferase) DNA polymerase activities (PubMed:10887191, PubMed:10982892, PubMed:12809503, PubMed:14627824, PubMed:15537631, PubMed:19806195). Also has a 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity (PubMed:11457865, PubMed:19806195). {ECO:0000269|PubMed:10887191, ECO:0000269|PubMed:10982892, ECO:0000269|PubMed:11457865, ECO:0000269|PubMed:12809503, ECO:0000269|PubMed:14627824, ECO:0000269|PubMed:15537631, ECO:0000269|PubMed:19806195, ECO:0000269|PubMed:20693240, ECO:0000269|PubMed:30250067}. |
Q9UHX1 | PUF60 | T60 | ochoa | Poly(U)-binding-splicing factor PUF60 (60 kDa poly(U)-binding-splicing factor) (FUSE-binding protein-interacting repressor) (FBP-interacting repressor) (Ro-binding protein 1) (RoBP1) (Siah-binding protein 1) (Siah-BP1) | DNA- and RNA-binding protein, involved in several nuclear processes such as pre-mRNA splicing, apoptosis and transcription regulation. In association with FUBP1 regulates MYC transcription at the P2 promoter through the core-TFIIH basal transcription factor. Acts as a transcriptional repressor through the core-TFIIH basal transcription factor. Represses FUBP1-induced transcriptional activation but not basal transcription. Decreases ERCC3 helicase activity. Does not repress TFIIH-mediated transcription in xeroderma pigmentosum complementation group B (XPB) cells. Is also involved in pre-mRNA splicing. Promotes splicing of an intron with weak 3'-splice site and pyrimidine tract in a cooperative manner with U2AF2. Involved in apoptosis induction when overexpressed in HeLa cells. Isoform 6 failed to repress MYC transcription and inhibited FIR-induced apoptosis in colorectal cancer. Isoform 6 may contribute to tumor progression by enabling increased MYC expression and greater resistance to apoptosis in tumors than in normal cells. Modulates alternative splicing of several mRNAs. Binds to relaxed DNA of active promoter regions. Binds to the pyrimidine tract and 3'-splice site regions of pre-mRNA; binding is enhanced in presence of U2AF2. Binds to Y5 RNA in association with RO60. Binds to poly(U) RNA. {ECO:0000269|PubMed:10606266, ECO:0000269|PubMed:10882074, ECO:0000269|PubMed:11239393, ECO:0000269|PubMed:16452196, ECO:0000269|PubMed:16628215, ECO:0000269|PubMed:17579712}. |
Q9UI09 | NDUFA12 | T120 | ochoa|psp | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 (13 kDa differentiation-associated protein) (Complex I-B17.2) (CI-B17.2) (CIB17.2) (NADH-ubiquinone oxidoreductase subunit B17.2) | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. {ECO:0000269|PubMed:27626371}. |
Q9UIF9 | BAZ2A | T1377 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UJM3 | ERRFI1 | T131 | ochoa | ERBB receptor feedback inhibitor 1 (Mitogen-inducible gene 6 protein) (MIG-6) | Negative regulator of EGFR signaling in skin morphogenesis. Acts as a negative regulator for several EGFR family members, including ERBB2, ERBB3 and ERBB4. Inhibits EGFR catalytic activity by interfering with its dimerization. Inhibits autophosphorylation of EGFR, ERBB2 and ERBB4. Important for normal keratinocyte proliferation and differentiation. Plays a role in modulating the response to steroid hormones in the uterus. Required for normal response to progesterone in the uterus and for fertility. Mediates epithelial estrogen responses in the uterus by regulating ESR1 levels and activation. Important for regulation of endometrium cell proliferation. Important for normal prenatal and perinatal lung development (By similarity). {ECO:0000250}. |
Q9UKL3 | CASP8AP2 | T460 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKV3 | ACIN1 | T254 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9ULD2 | MTUS1 | T430 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULD5 | ZNF777 | T356 | ochoa | Zinc finger protein 777 | May be involved in transcriptional repression (PubMed:31856708). Inhibits cell proliferation through CDKN1A/p21 induction by down-regulation of NIBAN1/FAM129A at low cell density (PubMed:25560148). {ECO:0000269|PubMed:25560148, ECO:0000269|PubMed:31856708}. |
Q9ULR3 | PPM1H | T113 | ochoa | Protein phosphatase 1H (EC 3.1.3.16) | Dephosphorylates CDKN1B at 'Thr-187', thus removing a signal for proteasomal degradation. {ECO:0000269|PubMed:22586611}. |
Q9UMS6 | SYNPO2 | T848 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UPV0 | CEP164 | T1435 | ochoa | Centrosomal protein of 164 kDa (Cep164) | Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}. |
Q9UPV9 | TRAK1 | T539 | ochoa | Trafficking kinesin-binding protein 1 (106 kDa O-GlcNAc transferase-interacting protein) (Protein Milton) | Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity). {ECO:0000250|UniProtKB:Q960V3, ECO:0000269|PubMed:18675823, ECO:0000269|PubMed:24995978}. |
Q9UQR0 | SCML2 | T20 | ochoa | Sex comb on midleg-like protein 2 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development (By similarity). {ECO:0000250}. |
Q9Y230 | RUVBL2 | T360 | ochoa | RuvB-like 2 (EC 3.6.4.12) (48 kDa TATA box-binding protein-interacting protein) (48 kDa TBP-interacting protein) (51 kDa erythrocyte cytosolic protein) (ECP-51) (INO80 complex subunit J) (Repressing pontin 52) (Reptin 52) (TIP49b) (TIP60-associated protein 54-beta) (TAP54-beta) | Possesses single-stranded DNA-stimulated ATPase and ATP-dependent DNA helicase (5' to 3') activity; hexamerization is thought to be critical for ATP hydrolysis and adjacent subunits in the ring-like structure contribute to the ATPase activity (PubMed:10428817, PubMed:17157868, PubMed:33205750). Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). This modification may both alter nucleosome -DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription (PubMed:14966270). This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair (PubMed:14966270). The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400 (PubMed:14966270). NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage (PubMed:14966270). Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome (PubMed:24463511). Proposed core component of the chromatin remodeling INO80 complex which exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding (PubMed:16230350, PubMed:21303910). Plays an essential role in oncogenic transformation by MYC and also modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex (PubMed:10882073, PubMed:16014379). May also inhibit the transcriptional activity of ATF2 (PubMed:11713276). Involved in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway where it negatively regulates expression of ER stress response genes (PubMed:25652260). May play a role in regulating the composition of the U5 snRNP complex (PubMed:28561026). {ECO:0000269|PubMed:10428817, ECO:0000269|PubMed:10882073, ECO:0000269|PubMed:11713276, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:16014379, ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:17157868, ECO:0000269|PubMed:21303910, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:25652260, ECO:0000269|PubMed:28561026, ECO:0000269|PubMed:33205750}. |
Q9Y243 | AKT3 | T447 | ochoa|psp | RAC-gamma serine/threonine-protein kinase (EC 2.7.11.1) (Protein kinase Akt-3) (Protein kinase B gamma) (PKB gamma) (RAC-PK-gamma) (STK-2) | AKT3 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT3 is the least studied AKT isoform. It plays an important role in brain development and is crucial for the viability of malignant glioma cells. AKT3 isoform may also be the key molecule in up-regulation and down-regulation of MMP13 via IL13. Required for the coordination of mitochondrial biogenesis with growth factor-induced increases in cellular energy demands. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis. {ECO:0000269|PubMed:18524868, ECO:0000269|PubMed:21191416}. |
Q9Y2U8 | LEMD3 | T209 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2W2 | WBP11 | T328 | ochoa | WW domain-binding protein 11 (WBP-11) (Npw38-binding protein) (NpwBP) (SH3 domain-binding protein SNP70) (Splicing factor that interacts with PQBP-1 and PP1) | Activates pre-mRNA splicing. May inhibit PP1 phosphatase activity. {ECO:0000269|PubMed:10593949, ECO:0000269|PubMed:11375989, ECO:0000269|PubMed:14640981}. |
Q9Y371 | SH3GLB1 | T145 | psp | Endophilin-B1 (Bax-interacting factor 1) (Bif-1) (SH3 domain-containing GRB2-like protein B1) | May be required for normal outer mitochondrial membrane dynamics (PubMed:15452144). Required for coatomer-mediated retrograde transport in certain cells (By similarity). May recruit other proteins to membranes with high curvature. May promote membrane fusion (PubMed:11604418). Involved in activation of caspase-dependent apoptosis by promoting BAX/BAK1 activation (PubMed:16227588). Isoform 1 acts proapoptotic in fibroblasts (By similarity). Involved in caspase-independent apoptosis during nutrition starvation and involved in the regulation of autophagy. Activates lipid kinase activity of PIK3C3 during autophagy probably by associating with the PI3K complex II (PI3KC3-C2) (PubMed:17891140). Associated with PI3KC3-C2 during autophagy may regulate the trafficking of ATG9A from the Golgi complex to the peripheral cytoplasm for the formation of autophagosomes by inducing Golgi membrane tubulation and fragmentation (PubMed:21068542). Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). Isoform 2 acts antiapoptotic in neuronal cells; involved in maintenance of mitochondrial morphology and promotes neuronal viability (By similarity). {ECO:0000250|UniProtKB:Q9JK48, ECO:0000269|PubMed:11604418, ECO:0000269|PubMed:15452144, ECO:0000269|PubMed:17891140, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:21068542}. |
Q9Y485 | DMXL1 | T663 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y4D8 | HECTD4 | T1504 | ochoa | Probable E3 ubiquitin-protein ligase HECTD4 (EC 2.3.2.26) (HECT domain-containing protein 4) (HECT-type E3 ubiquitin transferase HECTD4) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000250}. |
Q9Y4L1 | HYOU1 | T590 | ochoa | Hypoxia up-regulated protein 1 (150 kDa oxygen-regulated protein) (ORP-150) (170 kDa glucose-regulated protein) (GRP-170) (Heat shock protein family H member 4) | Has a pivotal role in cytoprotective cellular mechanisms triggered by oxygen deprivation. Promotes HSPA5/BiP-mediated ATP nucleotide exchange and thereby activates the unfolded protein response (UPR) pathway in the presence of endoplasmic reticulum stress (By similarity). May play a role as a molecular chaperone and participate in protein folding. {ECO:0000250|UniProtKB:Q9JKR6, ECO:0000269|PubMed:10037731}. |
Q9Y5B6 | PAXBP1 | T242 | ochoa | PAX3- and PAX7-binding protein 1 (GC-rich sequence DNA-binding factor 1) | Adapter protein linking the transcription factors PAX3 and PAX7 to the histone methylation machinery and involved in myogenesis. Associates with a histone methyltransferase complex that specifically mediates dimethylation and trimethylation of 'Lys-4' of histone H3. Mediates the recruitment of that complex to the transcription factors PAX3 and PAX7 on chromatin to regulate the expression of genes involved in muscle progenitor cells proliferation including ID3 and CDC20. {ECO:0000250|UniProtKB:P58501}. |
Q9Y5N6 | ORC6 | T195 | ochoa | Origin recognition complex subunit 6 | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. Does not bind histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3. {ECO:0000269|PubMed:22427655}. |
Q9Y666 | SLC12A7 | T973 | ochoa | Solute carrier family 12 member 7 (Electroneutral potassium-chloride cotransporter 4) (K-Cl cotransporter 4) | Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:10913127). May mediate K(+) uptake into Deiters' cells in the cochlea and contribute to K(+) recycling in the inner ear. Important for the survival of cochlear outer and inner hair cells and the maintenance of the organ of Corti. May be required for basolateral Cl(-) extrusion in the kidney and contribute to renal acidification (By similarity). {ECO:0000250, ECO:0000269|PubMed:10913127}. |
Q9Y692 | GMEB1 | T204 | ochoa | Glucocorticoid modulatory element-binding protein 1 (GMEB-1) (DNA-binding protein p96PIF) (Parvovirus initiation factor p96) (PIF p96) | Trans-acting factor that binds to glucocorticoid modulatory elements (GME) present in the TAT (tyrosine aminotransferase) promoter and increases sensitivity to low concentrations of glucocorticoids. Also binds to the transferrin receptor promoter. Essential auxiliary factor for the replication of parvoviruses. |
Q9Y6D9 | MAD1L1 | T423 | ochoa | Mitotic spindle assembly checkpoint protein MAD1 (Mitotic arrest deficient 1-like protein 1) (MAD1-like protein 1) (Mitotic checkpoint MAD1 protein homolog) (HsMAD1) (hMAD1) (Tax-binding protein 181) | Component of the spindle-assembly checkpoint that prevents the onset of anaphase until all chromosomes are properly aligned at the metaphase plate (PubMed:10049595, PubMed:20133940, PubMed:29162720). Forms a heterotetrameric complex with the closed conformation form of MAD2L1 (C-MAD2) at unattached kinetochores during prometaphase, recruits an open conformation of MAD2L1 (O-MAD2) and promotes the conversion of O-MAD2 to C-MAD2, which ensures mitotic checkpoint signaling (PubMed:29162720). {ECO:0000269|PubMed:10049595, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:36322655}.; FUNCTION: [Isoform 3]: Sequesters MAD2L1 in the cytoplasm preventing its function as an activator of the mitotic spindle assembly checkpoint (SAC) resulting in SAC impairment and chromosomal instability in hepatocellular carcinomas. {ECO:0000269|PubMed:19010891}. |
Q9Y6N5 | SQOR | T197 | ochoa | Sulfide:quinone oxidoreductase, mitochondrial (SQOR) (EC 1.8.5.8) (Sulfide dehydrogenase-like) (Sulfide quinone oxidoreductase) | Catalyzes the oxidation of hydrogen sulfide with the help of a quinone, such as ubiquinone-10, giving rise to thiosulfate and ultimately to sulfane (molecular sulfur) atoms. Requires an additional electron acceptor; can use sulfite, sulfide or cyanide (in vitro) (PubMed:22852582). It is believed the in vivo electron acceptor is glutathione (PubMed:25225291, PubMed:29715001). {ECO:0000269|PubMed:22852582, ECO:0000269|PubMed:25225291, ECO:0000269|PubMed:29715001, ECO:0000269|PubMed:32160317}. |
Q9Y6X9 | MORC2 | T733 | ochoa|psp | ATPase MORC2 (EC 3.6.1.-) (MORC family CW-type zinc finger protein 2) (Zinc finger CW-type coiled-coil domain protein 1) | Essential for epigenetic silencing by the HUSH (human silencing hub) complex. Recruited by HUSH to target site in heterochromatin, the ATPase activity and homodimerization are critical for HUSH-mediated silencing (PubMed:28581500, PubMed:29440755, PubMed:32693025). Represses germ cell-related genes and L1 retrotransposons in collaboration with SETDB1 and the HUSH complex, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). During DNA damage response, regulates chromatin remodeling through ATP hydrolysis. Upon DNA damage, is phosphorylated by PAK1, both colocalize to chromatin and induce H2AX expression. ATPase activity is required and dependent of phosphorylation by PAK1 and presence of DNA (PubMed:23260667). Recruits histone deacetylases, such as HDAC4, to promoter regions, causing local histone H3 deacetylation and transcriptional repression of genes such as CA9 (PubMed:20110259, PubMed:20225202). Exhibits a cytosolic function in lipogenesis, adipogenic differentiation, and lipid homeostasis by increasing the activity of ACLY, possibly preventing its dephosphorylation (PubMed:24286864). {ECO:0000269|PubMed:20110259, ECO:0000269|PubMed:20225202, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:24286864, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:29440755, ECO:0000269|PubMed:32693025}. |
P51858 | HDGF | T94 | Sugiyama | Hepatoma-derived growth factor (HDGF) (High mobility group protein 1-like 2) (HMG-1L2) | [Isoform 1]: Acts as a transcriptional repressor (PubMed:17974029). Has mitogenic activity for fibroblasts (PubMed:11751870, PubMed:26845719). Heparin-binding protein (PubMed:15491618). {ECO:0000269|PubMed:11751870, ECO:0000269|PubMed:15491618, ECO:0000269|PubMed:17974029, ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 2]: Does not have mitogenic activity for fibroblasts (PubMed:26845719). Does not bind heparin (PubMed:26845719). {ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 3]: Has mitogenic activity for fibroblasts (PubMed:26845719). Heparin-binding protein (PubMed:26845719). {ECO:0000269|PubMed:26845719}. |
Q02878 | RPL6 | T213 | Sugiyama | Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}. |
O60333 | KIF1B | T652 | Sugiyama | Kinesin-like protein KIF1B (Klp) (EC 5.6.1.3) | Has a plus-end-directed microtubule motor activity and functions as a motor for transport of vesicles and organelles along microtubules. {ECO:0000269|PubMed:16225668}.; FUNCTION: [Isoform 2]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde synaptic vesicle transport along axonal microtubules from the cell body to the presynapse in neuronal cells (By similarity). Functions as a downstream effector in a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells (PubMed:18334619). {ECO:0000250|UniProtKB:Q60575, ECO:0000269|PubMed:18334619}.; FUNCTION: [Isoform 3]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde transport of mitochondria. {ECO:0000269|PubMed:16225668}. |
P49327 | FASN | T1120 | Sugiyama | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
O75874 | IDH1 | T157 | SIGNOR | Isocitrate dehydrogenase [NADP] cytoplasmic (IDH) (IDH1) (EC 1.1.1.42) (Cytosolic NADP-isocitrate dehydrogenase) (IDPc) (NADP(+)-specific ICDH) (Oxalosuccinate decarboxylase) | Catalyzes the NADP(+)-dependent oxidative decarboxylation of isocitrate (D-threo-isocitrate) to 2-ketoglutarate (2-oxoglutarate), which is required by other enzymes such as the phytanoyl-CoA dioxygenase (PubMed:10521434, PubMed:19935646). Plays a critical role in the generation of NADPH, an important cofactor in many biosynthesis pathways (PubMed:10521434). May act as a corneal epithelial crystallin and may be involved in maintaining corneal epithelial transparency (By similarity). {ECO:0000250|UniProtKB:Q9XSG3, ECO:0000269|PubMed:10521434, ECO:0000269|PubMed:19935646, ECO:0000303|PubMed:10521434}. |
Q01860 | POU5F1 | T118 | EPSD|PSP | POU domain, class 5, transcription factor 1 (Octamer-binding protein 3) (Oct-3) (Octamer-binding protein 4) (Oct-4) (Octamer-binding transcription factor 3) (OTF-3) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3'). Forms a trimeric complex with SOX2 or SOX15 on DNA and controls the expression of a number of genes involved in embryonic development such as YES1, FGF4, UTF1 and ZFP206. Critical for early embryogenesis and for embryonic stem cell pluripotency. {ECO:0000269|PubMed:18035408}. |
Q8WVM8 | SCFD1 | T320 | Sugiyama | Sec1 family domain-containing protein 1 (SLY1 homolog) (Sly1p) (Syntaxin-binding protein 1-like 2) | Plays a role in SNARE-pin assembly and Golgi-to-ER retrograde transport via its interaction with COG4. Involved in vesicular transport between the endoplasmic reticulum and the Golgi (By similarity). {ECO:0000250}. |
Q5JTZ9 | AARS2 | T670 | Sugiyama | Alanine--tRNA ligase, mitochondrial (EC 6.1.1.7) (Alanyl-tRNA synthetase) (AlaRS) (Protein lactyltransferase AARS2) (EC 6.-.-.-) | Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged tRNA(Ala) via its editing domain (PubMed:21549344). In presence of high levels of lactate, also acts as a protein lactyltransferase that mediates lactylation of lysine residues in target proteins, such as CGAS (PubMed:39322678). Acts as an inhibitor of cGAS/STING signaling by catalyzing lactylation of CGAS, preventing the formation of liquid-like droplets in which CGAS is activated (PubMed:39322678). {ECO:0000269|PubMed:21549344, ECO:0000269|PubMed:39322678}. |
P48736 | PIK3CG | T285 | Sugiyama | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform (PI3-kinase subunit gamma) (PI3K-gamma) (PI3Kgamma) (PtdIns-3-kinase subunit gamma) (EC 2.7.1.137) (EC 2.7.1.153) (EC 2.7.1.154) (Phosphatidylinositol 4,5-bisphosphate 3-kinase 110 kDa catalytic subunit gamma) (PtdIns-3-kinase subunit p110-gamma) (p110gamma) (Phosphoinositide-3-kinase catalytic gamma polypeptide) (Serine/threonine protein kinase PIK3CG) (EC 2.7.11.1) (p120-PI3K) | Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Links G-protein coupled receptor activation to PIP3 production. Involved in immune, inflammatory and allergic responses. Modulates leukocyte chemotaxis to inflammatory sites and in response to chemoattractant agents. May control leukocyte polarization and migration by regulating the spatial accumulation of PIP3 and by regulating the organization of F-actin formation and integrin-based adhesion at the leading edge. Controls motility of dendritic cells. Together with PIK3CD is involved in natural killer (NK) cell development and migration towards the sites of inflammation. Participates in T-lymphocyte migration. Regulates T-lymphocyte proliferation, activation, and cytokine production. Together with PIK3CD participates in T-lymphocyte development. Required for B-lymphocyte development and signaling. Together with PIK3CD participates in neutrophil respiratory burst. Together with PIK3CD is involved in neutrophil chemotaxis and extravasation. Together with PIK3CB promotes platelet aggregation and thrombosis. Regulates alpha-IIb/beta-3 integrins (ITGA2B/ ITGB3) adhesive function in platelets downstream of P2Y12 through a lipid kinase activity-independent mechanism. May have also a lipid kinase activity-dependent function in platelet aggregation. Involved in endothelial progenitor cell migration. Negative regulator of cardiac contractility. Modulates cardiac contractility by anchoring protein kinase A (PKA) and PDE3B activation, reducing cAMP levels. Regulates cardiac contractility also by promoting beta-adrenergic receptor internalization by binding to GRK2 and by non-muscle tropomyosin phosphorylation. Also has serine/threonine protein kinase activity: both lipid and protein kinase activities are required for beta-adrenergic receptor endocytosis. May also have a scaffolding role in modulating cardiac contractility. Contributes to cardiac hypertrophy under pathological stress. Through simultaneous binding of PDE3B to RAPGEF3 and PIK3R6 is assembled in a signaling complex in which the PI3K gamma complex is activated by RAPGEF3 and which is involved in angiogenesis. In neutrophils, participates in a phospholipase C-activating N-formyl peptide-activated GPCR (G protein-coupled receptor) signaling pathway downstream of RASGRP4-mediated Ras-activation, to promote neutrophil functional responses (By similarity). {ECO:0000250|UniProtKB:Q9JHG7, ECO:0000269|PubMed:11277933, ECO:0000269|PubMed:12163475, ECO:0000269|PubMed:15135396, ECO:0000269|PubMed:15294162, ECO:0000269|PubMed:16094730, ECO:0000269|PubMed:16123124, ECO:0000269|PubMed:21393242, ECO:0000269|PubMed:31554793, ECO:0000269|PubMed:33054089, ECO:0000269|PubMed:7624799}. |
Q99250 | SCN2A | T1966 | SIGNOR | Sodium channel protein type 2 subunit alpha (HBSC II) (Sodium channel protein brain II subunit alpha) (Sodium channel protein type II subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.2) | Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient (PubMed:1325650, PubMed:17021166, PubMed:28256214, PubMed:29844171). Implicated in the regulation of hippocampal replay occurring within sharp wave ripples (SPW-R) important for memory (By similarity). {ECO:0000250|UniProtKB:B1AWN6, ECO:0000269|PubMed:1325650, ECO:0000269|PubMed:17021166, ECO:0000269|PubMed:28256214, ECO:0000269|PubMed:29844171}. |
Q9UQD0 | SCN8A | T1938 | SIGNOR | Sodium channel protein type 8 subunit alpha (Sodium channel protein type VIII subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.6) | Pore-forming subunit of a voltage-gated sodium channel complex assuming opened or closed conformations in response to the voltage difference across membranes and through which sodium ions selectively pass along their electrochemical gradient (PubMed:24874546, PubMed:25239001, PubMed:25725044, PubMed:26900580, PubMed:29726066, PubMed:33245860, PubMed:36696443, PubMed:36823201). Contributes to neuronal excitability by regulating action potential threshold and propagation (PubMed:24874546, PubMed:25239001, PubMed:25725044, PubMed:26900580, PubMed:29726066, PubMed:33245860, PubMed:36696443, PubMed:36823201). {ECO:0000269|PubMed:24874546, ECO:0000269|PubMed:25239001, ECO:0000269|PubMed:25725044, ECO:0000269|PubMed:26900580, ECO:0000269|PubMed:29726066, ECO:0000269|PubMed:33245860, ECO:0000269|PubMed:36696443, ECO:0000269|PubMed:36823201}.; FUNCTION: [Isoform 5]: More specifically expressed in non-neuronal cells, could play a role in sodium release from intracellular compartments and participate in the control of podosomes formation and macrophages adhesion and movement. {ECO:0000269|PubMed:19136557}. |
Q9UBS4 | DNAJB11 | T188 | Sugiyama | DnaJ homolog subfamily B member 11 (APOBEC1-binding protein 2) (ABBP-2) (DnaJ protein homolog 9) (ER-associated DNAJ) (ER-associated Hsp40 co-chaperone) (Endoplasmic reticulum DNA J domain-containing protein 3) (ER-resident protein ERdj3) (ERdj3) (ERj3p) (HEDJ) (Human DnaJ protein 9) (hDj-9) (PWP1-interacting protein 4) | As a co-chaperone for HSPA5 it is required for proper folding, trafficking or degradation of proteins (PubMed:10827079, PubMed:15525676, PubMed:29706351). Binds directly to both unfolded proteins that are substrates for ERAD and nascent unfolded peptide chains, but dissociates from the HSPA5-unfolded protein complex before folding is completed (PubMed:15525676). May help recruiting HSPA5 and other chaperones to the substrate. Stimulates HSPA5 ATPase activity (PubMed:10827079). It is necessary for maturation and correct trafficking of PKD1 (PubMed:29706351). {ECO:0000269|PubMed:10827079, ECO:0000269|PubMed:15525676, ECO:0000269|PubMed:29706351}. |
Q07666 | KHDRBS1 | T126 | Sugiyama | KH domain-containing, RNA-binding, signal transduction-associated protein 1 (GAP-associated tyrosine phosphoprotein p62) (Src-associated in mitosis 68 kDa protein) (Sam68) (p21 Ras GTPase-activating protein-associated p62) (p68) | Recruited and tyrosine phosphorylated by several receptor systems, for example the T-cell, leptin and insulin receptors. Once phosphorylated, functions as an adapter protein in signal transduction cascades by binding to SH2 and SH3 domain-containing proteins. Role in G2-M progression in the cell cycle. Represses CBP-dependent transcriptional activation apparently by competing with other nuclear factors for binding to CBP. Also acts as a putative regulator of mRNA stability and/or translation rates and mediates mRNA nuclear export. Positively regulates the association of constitutive transport element (CTE)-containing mRNA with large polyribosomes and translation initiation. According to some authors, is not involved in the nucleocytoplasmic export of unspliced (CTE)-containing RNA species according to (PubMed:22253824). RNA-binding protein that plays a role in the regulation of alternative splicing and influences mRNA splice site selection and exon inclusion. Binds to RNA containing 5'-[AU]UAA-3' as a bipartite motif spaced by more than 15 nucleotides. Binds poly(A). Can regulate CD44 alternative splicing in a Ras pathway-dependent manner (PubMed:26080397). In cooperation with HNRNPA1 modulates alternative splicing of BCL2L1 by promoting splicing toward isoform Bcl-X(S), and of SMN1 (PubMed:17371836, PubMed:20186123). Can regulate alternative splicing of NRXN1 and NRXN3 in the laminin G-like domain 6 containing the evolutionary conserved neurexin alternative spliced segment 4 (AS4) involved in neurexin selective targeting to postsynaptic partners. In a neuronal activity-dependent manner cooperates synergistically with KHDRBS2/SLIM-1 in regulation of NRXN1 exon skipping at AS4. The cooperation with KHDRBS2/SLIM-1 is antagonistic for regulation of NXRN3 alternative splicing at AS4 (By similarity). {ECO:0000250|UniProtKB:Q60749, ECO:0000269|PubMed:15021911, ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20186123, ECO:0000269|PubMed:20610388, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:26080397, ECO:0000269|PubMed:26758068}.; FUNCTION: Isoform 3, which is expressed in growth-arrested cells only, inhibits S phase. {ECO:0000269|PubMed:9013542}. |
Q99832 | CCT7 | T300 | Sugiyama | T-complex protein 1 subunit eta (TCP-1-eta) (EC 3.6.1.-) (CCT-eta) (Chaperonin containing T-complex polypeptide 1 subunit 7) (HIV-1 Nef-interacting protein) [Cleaved into: T-complex protein 1 subunit eta, N-terminally processed] | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). {ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P53779 | MAPK10 | T131 | SIGNOR | Mitogen-activated protein kinase 10 (MAP kinase 10) (MAPK 10) (EC 2.7.11.24) (MAP kinase p49 3F12) (Stress-activated protein kinase 1b) (SAPK1b) (Stress-activated protein kinase JNK3) (c-Jun N-terminal kinase 3) | Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as pro-inflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the amyloid-beta precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Also participates in neurite growth in spiral ganglion neurons. Phosphorylates the CLOCK-BMAL1 heterodimer and plays a role in the photic regulation of the circadian clock (PubMed:22441692). Phosphorylates JUND and this phosphorylation is inhibited in the presence of MEN1 (PubMed:22327296). {ECO:0000269|PubMed:11718727, ECO:0000269|PubMed:22327296, ECO:0000269|PubMed:22441692}. |
Q13347 | EIF3I | T205 | Sugiyama | Eukaryotic translation initiation factor 3 subunit I (eIF3i) (Eukaryotic translation initiation factor 3 subunit 2) (TGF-beta receptor-interacting protein 1) (TRIP-1) (eIF-3-beta) (eIF3 p36) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03008, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
Q8NG66 | NEK11 | T249 | Sugiyama | Serine/threonine-protein kinase Nek11 (EC 2.7.11.1) (Never in mitosis A-related kinase 11) (NimA-related protein kinase 11) | Protein kinase which plays an important role in the G2/M checkpoint response to DNA damage. Controls degradation of CDC25A by directly phosphorylating it on residues whose phosphorylation is required for BTRC-mediated polyubiquitination and degradation. {ECO:0000269|PubMed:12154088, ECO:0000269|PubMed:19734889, ECO:0000269|PubMed:20090422}. |
Q9BXA7 | TSSK1B | T299 | Sugiyama | Testis-specific serine/threonine-protein kinase 1 (TSK-1) (TSK1) (TSSK-1) (Testis-specific kinase 1) (EC 2.7.11.1) (Serine/threonine-protein kinase 22A) | Testis-specific serine/threonine-protein kinase required during spermatid development. Phosphorylates 'Ser-288' of TSKS. Involved in the late stages of spermatogenesis, during the reconstruction of the cytoplasm. During spermatogenesis, required for the transformation of a ring-shaped structure around the base of the flagellum originating from the chromatoid body. {ECO:0000269|PubMed:15733851, ECO:0000269|PubMed:19530700}. |
P41223 | BUD31 | T111 | Sugiyama | Protein BUD31 homolog (Protein EDG-2) (Protein G10 homolog) | Involved in the pre-mRNA splicing process (PubMed:28076346, PubMed:28502770). May play a role as regulator of AR transcriptional activity; may increase AR transcriptional activity (PubMed:25091737). {ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000305|PubMed:25091737}. |
Q9Y6M4 | CSNK1G3 | T332 | Sugiyama | Casein kinase I isoform gamma-3 (CKI-gamma 3) (EC 2.7.11.1) | Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling. Regulates fast synaptic transmission mediated by glutamate (By similarity). {ECO:0000250}. |
A0A0J9YX86 | GOLGA8Q | T384 | ochoa | Golgin A8 family member Q | None |
A5YM69 | ARHGEF35 | T193 | ochoa | Rho guanine nucleotide exchange factor 35 (Rho guanine nucleotide exchange factor 5-like protein) | None |
A6NCL7 | ANKRD33B | T49 | ochoa | Ankyrin repeat domain-containing protein 33B | None |
A6NKT7 | RGPD3 | T1030 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
C9JH25 | PRRT4 | T717 | ochoa | Proline-rich transmembrane protein 4 | None |
H0Y626 | None | T55 | ochoa | RING-type E3 ubiquitin transferase (EC 2.3.2.27) | None |
H0YC42 | None | T162 | ochoa | Tumor protein D52 | None |
H0YHG0 | None | T373 | ochoa | DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}. |
H3BSY2 | GOLGA8M | T384 | ochoa | Golgin subfamily A member 8M | None |
I6L899 | GOLGA8R | T383 | ochoa | Golgin subfamily A member 8R | None |
O00161 | SNAP23 | T41 | ochoa | Synaptosomal-associated protein 23 (SNAP-23) (Vesicle-membrane fusion protein SNAP-23) | Essential component of the high affinity receptor for the general membrane fusion machinery and an important regulator of transport vesicle docking and fusion. |
O00401 | WASL | T171 | ochoa | Actin nucleation-promoting factor WASL (Neural Wiskott-Aldrich syndrome protein) (N-WASP) | Regulates actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex (PubMed:16767080, PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Involved in various processes, such as mitosis and cytokinesis, via its role in the regulation of actin polymerization (PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Together with CDC42, involved in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia (PubMed:9422512). In addition to its role in the cytoplasm, also plays a role in the nucleus by regulating gene transcription, probably by promoting nuclear actin polymerization (PubMed:16767080). Binds to HSF1/HSTF1 and forms a complex on heat shock promoter elements (HSE) that negatively regulates HSP90 expression (By similarity). Plays a role in dendrite spine morphogenesis (By similarity). Decreasing levels of DNMBP (using antisense RNA) alters apical junction morphology in cultured enterocytes, junctions curve instead of being nearly linear (PubMed:19767742). {ECO:0000250|UniProtKB:Q91YD9, ECO:0000269|PubMed:16767080, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:22847007, ECO:0000269|PubMed:22921828, ECO:0000269|PubMed:9422512}. |
O00461 | GOLIM4 | T640 | ochoa | Golgi integral membrane protein 4 (Golgi integral membrane protein, cis) (GIMPc) (Golgi phosphoprotein 4) (Golgi-localized phosphoprotein of 130 kDa) (Golgi phosphoprotein of 130 kDa) | Plays a role in endosome to Golgi protein trafficking; mediates protein transport along the late endosome-bypass pathway from the early endosome to the Golgi. {ECO:0000269|PubMed:15331763}. |
O00541 | PES1 | T302 | ochoa | Pescadillo homolog | Component of the PeBoW complex, which is required for maturation of 28S and 5.8S ribosomal RNAs and formation of the 60S ribosome. {ECO:0000255|HAMAP-Rule:MF_03028, ECO:0000269|PubMed:16738141, ECO:0000269|PubMed:17189298, ECO:0000269|PubMed:17353269}. |
O00562 | PITPNM1 | T369 | ochoa | Membrane-associated phosphatidylinositol transfer protein 1 (Drosophila retinal degeneration B homolog) (Phosphatidylinositol transfer protein, membrane-associated 1) (PITPnm 1) (Pyk2 N-terminal domain-interacting receptor 2) (NIR-2) | Catalyzes the transfer of phosphatidylinositol (PI) between membranes (PubMed:10531358, PubMed:22822086). Binds PI, phosphatidylcholine (PC) and phosphatidic acid (PA) with the binding affinity order of PI > PA > PC (PubMed:22822086). Regulates RHOA activity, and plays a role in cytoskeleton remodeling (PubMed:11909959). Necessary for normal completion of cytokinesis (PubMed:15125835). Plays a role in maintaining normal diacylglycerol levels in the Golgi apparatus (PubMed:15723057). Necessary for maintaining the normal structure of the endoplasmic reticulum and the Golgi apparatus (PubMed:15545272). Required for protein export from the endoplasmic reticulum and the Golgi (PubMed:15723057). Binds calcium ions (PubMed:10022914). {ECO:0000269|PubMed:10022914, ECO:0000269|PubMed:10531358, ECO:0000269|PubMed:11909959, ECO:0000269|PubMed:15545272, ECO:0000269|PubMed:15723057, ECO:0000269|PubMed:22822086}. |
O00567 | NOP56 | T525 | ochoa | Nucleolar protein 56 (Nucleolar protein 5A) | Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}. |
O14715 | RGPD8 | T1029 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14828 | SCAMP3 | T88 | ochoa | Secretory carrier-associated membrane protein 3 (Secretory carrier membrane protein 3) | Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface. |
O14950 | MYL12B | T129 | ochoa | Myosin regulatory light chain 12B (MLC-2A) (MLC-2) (Myosin regulatory light chain 2-B, smooth muscle isoform) (Myosin regulatory light chain 20 kDa) (MLC20) (Myosin regulatory light chain MRLC2) (SHUJUN-1) | Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Phosphorylation triggers actin polymerization in vascular smooth muscle. Implicated in cytokinesis, receptor capping, and cell locomotion. {ECO:0000269|PubMed:10965042}. |
O14974 | PPP1R12A | T305 | ochoa | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O14974 | PPP1R12A | T748 | ochoa | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O14983 | ATP2A1 | T242 | ochoa | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) (SR Ca(2+)-ATPase 1) (EC 7.2.2.10) (Calcium pump 1) (Calcium-transporting ATPase sarcoplasmic reticulum type, fast twitch skeletal muscle isoform) (Endoplasmic reticulum class 1/2 Ca(2+) ATPase) | Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction (PubMed:10914677). {ECO:0000250|UniProtKB:P04191, ECO:0000269|PubMed:10914677}. |
O15014 | ZNF609 | T619 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15062 | ZBTB5 | T297 | ochoa | Zinc finger and BTB domain-containing protein 5 | May be involved in transcriptional regulation. |
O15234 | CASC3 | T143 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15371 | EIF3D | T317 | ochoa | Eukaryotic translation initiation factor 3 subunit D (eIF3d) (Eukaryotic translation initiation factor 3 subunit 7) (eIF-3-zeta) (eIF3 p66) | mRNA cap-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, a complex required for several steps in the initiation of protein synthesis of a specialized repertoire of mRNAs (PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:18599441, PubMed:25849773). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). In the eIF-3 complex, EIF3D specifically recognizes and binds the 7-methylguanosine cap of a subset of mRNAs (PubMed:27462815). {ECO:0000269|PubMed:18599441, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
O15417 | TNRC18 | T1236 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15534 | PER1 | T1028 | ochoa | Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui) | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. {ECO:0000269|PubMed:24005054}. |
O43156 | TTI1 | T803 | ochoa | TELO2-interacting protein 1 homolog (Protein SMG10) | Regulator of the DNA damage response (DDR). Part of the TTT complex that is required to stabilize protein levels of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family proteins. The TTT complex is involved in the cellular resistance to DNA damage stresses, like ionizing radiation (IR), ultraviolet (UV) and mitomycin C (MMC). Together with the TTT complex and HSP90 may participate in the proper folding of newly synthesized PIKKs. Promotes assembly, stabilizes and maintains the activity of mTORC1 and mTORC2 complexes, which regulate cell growth and survival in response to nutrient and hormonal signals. {ECO:0000269|PubMed:20427287, ECO:0000269|PubMed:20801936, ECO:0000269|PubMed:20810650, ECO:0000269|PubMed:36724785}. |
O43164 | PJA2 | T213 | ochoa | E3 ubiquitin-protein ligase Praja-2 (Praja2) (EC 2.3.2.27) (RING finger protein 131) (RING-type E3 ubiquitin transferase Praja-2) | Has E2-dependent E3 ubiquitin-protein ligase activity (PubMed:12036302, PubMed:21423175). Responsible for ubiquitination of cAMP-dependent protein kinase type I and type II-alpha/beta regulatory subunits and for targeting them for proteasomal degradation. Essential for PKA-mediated long-term memory processes (PubMed:21423175). Through the ubiquitination of MFHAS1, positively regulates the TLR2 signaling pathway that leads to the activation of the downstream p38 and JNK MAP kinases and promotes the polarization of macrophages toward the pro-inflammatory M1 phenotype (PubMed:28471450). Plays a role in ciliogenesis by ubiquitinating OFD1 (PubMed:33934390). {ECO:0000269|PubMed:12036302, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:28471450, ECO:0000269|PubMed:33934390}. |
O43264 | ZW10 | T353 | ochoa | Centromere/kinetochore protein zw10 homolog | Essential component of the mitotic checkpoint, which prevents cells from prematurely exiting mitosis. Required for the assembly of the dynein-dynactin and MAD1-MAD2 complexes onto kinetochores. Its function related to the spindle assembly machinery is proposed to depend on its association in the mitotic RZZ complex (PubMed:11590237, PubMed:15485811, PubMed:15824131). Involved in regulation of membrane traffic between the Golgi and the endoplasmic reticulum (ER); the function is proposed to depend on its association in the interphase NRZ complex which is believed to play a role in SNARE assembly at the ER (PubMed:15029241). {ECO:0000269|PubMed:11590237, ECO:0000269|PubMed:15029241, ECO:0000269|PubMed:15094189, ECO:0000269|PubMed:15485811, ECO:0000269|PubMed:15824131, ECO:0000305}. |
O43298 | ZBTB43 | T208 | ochoa | Zinc finger and BTB domain-containing protein 43 (Zinc finger and BTB domain-containing protein 22B) (Zinc finger protein 297B) (ZnF-x) | May be involved in transcriptional regulation. |
O43353 | RIPK2 | T484 | ochoa | Receptor-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (CARD-containing interleukin-1 beta-converting enzyme-associated kinase) (CARD-containing IL-1 beta ICE-kinase) (RIP-like-interacting CLARP kinase) (Receptor-interacting protein 2) (RIP-2) (Tyrosine-protein kinase RIPK2) (EC 2.7.10.2) | Serine/threonine/tyrosine-protein kinase that plays an essential role in modulation of innate and adaptive immune responses (PubMed:14638696, PubMed:17054981, PubMed:21123652, PubMed:28656966, PubMed:9575181, PubMed:9642260). Acts as a key effector of NOD1 and NOD2 signaling pathways: upon activation by bacterial peptidoglycans, NOD1 and NOD2 oligomerize and recruit RIPK2 via CARD-CARD domains, leading to the formation of RIPK2 filaments (PubMed:17054981, PubMed:17562858, PubMed:21123652, PubMed:22607974, PubMed:28656966, PubMed:29452636, PubMed:30026309). Once recruited, RIPK2 autophosphorylates and undergoes 'Lys-63'-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3, as well as 'Met-1'-linked (linear) polyubiquitination by the LUBAC complex, becoming a scaffolding protein for downstream effectors (PubMed:22607974, PubMed:28545134, PubMed:29452636, PubMed:30026309, PubMed:30279485, PubMed:30478312). 'Met-1'-linked polyubiquitin chains attached to RIPK2 recruit IKBKG/NEMO, which undergoes 'Lys-63'-linked polyubiquitination in a RIPK2-dependent process (PubMed:17562858, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitin chains attached to RIPK2 serve as docking sites for TAB2 and TAB3 and mediate the recruitment of MAP3K7/TAK1 to IKBKG/NEMO, inducing subsequent activation of IKBKB/IKKB (PubMed:18079694). In turn, NF-kappa-B is released from NF-kappa-B inhibitors and translocates into the nucleus where it activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18079694). The protein kinase activity is dispensable for the NOD1 and NOD2 signaling pathways (PubMed:29452636, PubMed:30026309). Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappa-B activation by NOD2 (PubMed:21887730). Also involved in adaptive immunity: plays a role during engagement of the T-cell receptor (TCR) in promoting BCL10 phosphorylation and subsequent NF-kappa-B activation (PubMed:14638696). Plays a role in the inactivation of RHOA in response to NGFR signaling (PubMed:26646181). {ECO:0000269|PubMed:14638696, ECO:0000269|PubMed:17054981, ECO:0000269|PubMed:17562858, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:21123652, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:28545134, ECO:0000269|PubMed:28656966, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:30279485, ECO:0000269|PubMed:30478312, ECO:0000269|PubMed:9575181, ECO:0000269|PubMed:9642260}. |
O43390 | HNRNPR | T32 | ochoa | Heterogeneous nuclear ribonucleoprotein R (hnRNP R) | Component of ribonucleosomes, which are complexes of at least 20 other different heterogeneous nuclear ribonucleoproteins (hnRNP). hnRNP play an important role in processing of precursor mRNA in the nucleus. |
O43395 | PRPF3 | T138 | ochoa | U4/U6 small nuclear ribonucleoprotein Prp3 (Pre-mRNA-splicing factor 3) (hPrp3) (U4/U6 snRNP 90 kDa protein) | Plays a role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex). {ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28781166, ECO:0000305|PubMed:20595234}. |
O43491 | EPB41L2 | T686 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O43561 | LAT | T234 | ochoa | Linker for activation of T-cells family member 1 (36 kDa phosphotyrosine adapter protein) (pp36) (p36-38) | Required for TCR (T-cell antigen receptor)- and pre-TCR-mediated signaling, both in mature T-cells and during their development (PubMed:23514740, PubMed:25907557). Involved in FCGR3 (low affinity immunoglobulin gamma Fc region receptor III)-mediated signaling in natural killer cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Couples activation of these receptors and their associated kinases with distal intracellular events such as mobilization of intracellular calcium stores, PKC activation, MAPK activation or cytoskeletal reorganization through the recruitment of PLCG1, GRB2, GRAP2, and other signaling molecules. {ECO:0000269|PubMed:10072481, ECO:0000269|PubMed:23514740, ECO:0000269|PubMed:25907557}. |
O43815 | STRN | T123 | ochoa | Striatin | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000305|PubMed:26876214}. |
O60271 | SPAG9 | T280 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60271 | SPAG9 | T330 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60293 | ZFC3H1 | T272 | ochoa | Zinc finger C3H1 domain-containing protein (Coiled-coil domain-containing protein 131) (Proline/serine-rich coiled-coil protein 2) | Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters. {ECO:0000269|PubMed:27871484}. |
O60500 | NPHS1 | T1120 | psp | Nephrin (Renal glomerulus-specific cell adhesion receptor) | Seems to play a role in the development or function of the kidney glomerular filtration barrier. Regulates glomerular vascular permeability. May anchor the podocyte slit diaphragm to the actin cytoskeleton. Plays a role in skeletal muscle formation through regulation of myoblast fusion (By similarity). {ECO:0000250|UniProtKB:Q9QZS7, ECO:0000250|UniProtKB:Q9R044}. |
O60502 | OGA | T370 | ochoa | Protein O-GlcNAcase (OGA) (EC 3.2.1.169) (Beta-N-acetylglucosaminidase) (Beta-N-acetylhexosaminidase) (Beta-hexosaminidase) (Meningioma-expressed antigen 5) (N-acetyl-beta-D-glucosaminidase) (N-acetyl-beta-glucosaminidase) (Nuclear cytoplasmic O-GlcNAcase and acetyltransferase) (NCOAT) | [Isoform 1]: Cleaves GlcNAc but not GalNAc from O-glycosylated proteins (PubMed:11148210, PubMed:11788610, PubMed:20673219, PubMed:22365600, PubMed:24088714, PubMed:28939839, PubMed:37962578). Deglycosylates a large and diverse number of proteins, such as CRYAB, ELK1, GSDMD, LMNB1 and TAB1 (PubMed:28939839, PubMed:37962578). Can use p-nitrophenyl-beta-GlcNAc and 4-methylumbelliferone-GlcNAc as substrates but not p-nitrophenyl-beta-GalNAc or p-nitrophenyl-alpha-GlcNAc (in vitro) (PubMed:20673219). Does not bind acetyl-CoA and does not have histone acetyltransferase activity (PubMed:24088714). {ECO:0000269|PubMed:11148210, ECO:0000269|PubMed:11788610, ECO:0000269|PubMed:20673219, ECO:0000269|PubMed:22365600, ECO:0000269|PubMed:24088714, ECO:0000269|PubMed:28939839, ECO:0000269|PubMed:37962578}.; FUNCTION: [Isoform 3]: Cleaves GlcNAc but not GalNAc from O-glycosylated proteins. Can use p-nitrophenyl-beta-GlcNAc as substrate but not p-nitrophenyl-beta-GalNAc or p-nitrophenyl-alpha-GlcNAc (in vitro), but has about six times lower specific activity than isoform 1. {ECO:0000269|PubMed:20673219}. |
O60716 | CTNND1 | T611 | ochoa | Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) | Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}. |
O60841 | EIF5B | T498 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O75052 | NOS1AP | T216 | ochoa | Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein (C-terminal PDZ ligand of neuronal nitric oxide synthase protein) (Nitric oxide synthase 1 adaptor protein) | Adapter protein involved in neuronal nitric-oxide (NO) synthesis regulation via its association with nNOS/NOS1. The complex formed with NOS1 and synapsins is necessary for specific NO and synapsin functions at a presynaptic level. Mediates an indirect interaction between NOS1 and RASD1 leading to enhance the ability of NOS1 to activate RASD1. Competes with DLG4 for interaction with NOS1, possibly affecting NOS1 activity by regulating the interaction between NOS1 and DLG4 (By similarity). In kidney podocytes, plays a role in podosomes and filopodia formation through CDC42 activation (PubMed:33523862). {ECO:0000250|UniProtKB:O54960, ECO:0000269|PubMed:33523862}. |
O75116 | ROCK2 | T814 | ochoa | Rho-associated protein kinase 2 (EC 2.7.11.1) (Rho kinase 2) (Rho-associated, coiled-coil-containing protein kinase 2) (Rho-associated, coiled-coil-containing protein kinase II) (ROCK-II) (p164 ROCK-2) | Protein kinase which is a key regulator of actin cytoskeleton and cell polarity. Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of ADD1, BRCA2, CNN1, EZR, DPYSL2, EP300, MSN, MYL9/MLC2, NPM1, RDX, PPP1R12A and VIM. Phosphorylates SORL1 and IRF4. Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation. Positively regulates the activation of p42/MAPK1-p44/MAPK3 and of p90RSK/RPS6KA1 during myogenic differentiation. Plays an important role in the timely initiation of centrosome duplication. Inhibits keratinocyte terminal differentiation. May regulate closure of the eyelids and ventral body wall through organization of actomyosin bundles. Plays a critical role in the regulation of spine and synaptic properties in the hippocampus. Plays an important role in generating the circadian rhythm of the aortic myofilament Ca(2+) sensitivity and vascular contractility by modulating the myosin light chain phosphorylation. {ECO:0000269|PubMed:10579722, ECO:0000269|PubMed:15699075, ECO:0000269|PubMed:16574662, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21147781}. |
O75363 | BCAS1 | T67 | ochoa | Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) | Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}. |
O75475 | PSIP1 | T267 | ochoa | PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) | Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}. |
O94885 | SASH1 | T286 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O95104 | SCAF4 | T236 | ochoa | SR-related and CTD-associated factor 4 (CTD-binding SR-like protein RA4) (Splicing factor, arginine/serine-rich 15) | Anti-terminator protein required to prevent early mRNA termination during transcription (PubMed:31104839). Together with SCAF8, acts by suppressing the use of early, alternative poly(A) sites, thereby preventing the accumulation of non-functional truncated proteins (PubMed:31104839). Mechanistically, associates with the phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit (POLR2A), and subsequently binds nascent RNA upstream of early polyadenylation sites to prevent premature mRNA transcript cleavage and polyadenylation (PubMed:31104839). Independently of SCAF8, also acts as a suppressor of transcriptional readthrough (PubMed:31104839). {ECO:0000269|PubMed:31104839}. |
O95235 | KIF20A | T686 | ochoa | Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) | Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}. |
O95239 | KIF4A | T962 | ochoa | Chromosome-associated kinesin KIF4A (Chromokinesin-A) | Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}. |
O95361 | TRIM16 | T55 | ochoa | Tripartite motif-containing protein 16 (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM16) (Estrogen-responsive B box protein) | E3 ubiquitin ligase that plays an essential role in the organization of autophagic response and ubiquitination upon lysosomal and phagosomal damages. Plays a role in the stress-induced biogenesis and degradation of protein aggresomes by regulating the p62-KEAP1-NRF2 signaling and particularly by modulating the ubiquitination levels and thus stability of NRF2. Acts as a scaffold protein and facilitates autophagic degradation of protein aggregates by interacting with p62/SQSTM, ATG16L1 and LC3B/MAP1LC3B. In turn, protects the cell against oxidative stress-induced cell death as a consequence of endomembrane damage. {ECO:0000269|PubMed:22629402, ECO:0000269|PubMed:27693506, ECO:0000269|PubMed:30143514}. |
O95613 | PCNT | T2324 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95747 | OXSR1 | T430 | ochoa | Serine/threonine-protein kinase OSR1 (EC 2.7.11.1) (Oxidative stress-responsive 1 protein) | Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:17721439, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:17721439). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Also acts as a regulator of angiogenesis in endothelial cells downstream of WNK1 (PubMed:23386621, PubMed:25362046). Acts as an activator of inward rectifier potassium channels KCNJ2/Kir2.1 and KCNJ4/Kir2.3 downstream of WNK1: recognizes and binds the RXFXV/I variant motif on KCNJ2/Kir2.1 and KCNJ4/Kir2.3 and regulates their localization to the cell membrane without mediating their phosphorylation (PubMed:29581290). Phosphorylates RELL1, RELL2 and RELT (PubMed:16389068, PubMed:28688764). Phosphorylates PAK1 (PubMed:14707132). Phosphorylates PLSCR1 in the presence of RELT (PubMed:22052202). {ECO:0000269|PubMed:14707132, ECO:0000269|PubMed:16389068, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:17721439, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22052202, ECO:0000269|PubMed:23386621, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:28688764, ECO:0000269|PubMed:29581290, ECO:0000269|PubMed:34289367}. |
O95793 | STAU1 | T384 | ochoa | Double-stranded RNA-binding protein Staufen homolog 1 | Binds double-stranded RNA (regardless of the sequence) and tubulin. May play a role in specific positioning of mRNAs at given sites in the cell by cross-linking cytoskeletal and RNA components, and in stimulating their translation at the site.; FUNCTION: (Microbial infection) Plays a role in virus particles production of many viruses including of HIV-1, HERV-K, ebola virus and influenza virus. Acts by interacting with various viral proteins involved in particle budding process. {ECO:0000269|PubMed:10325410, ECO:0000269|PubMed:18498651, ECO:0000269|PubMed:23926355, ECO:0000269|PubMed:30301857}. |
O95810 | CAVIN2 | T196 | ochoa | Caveolae-associated protein 2 (Cavin-2) (PS-p68) (Phosphatidylserine-binding protein) (Serum deprivation-response protein) | Plays an important role in caveolar biogenesis and morphology. Regulates caveolae morphology by inducing membrane curvature within caveolae (PubMed:19525939). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in the lung and fat endothelia but not in the heart endothelia. Negatively regulates the size or stability of CAVIN complexes in the lung endothelial cells. May play a role in targeting PRKCA to caveolae (By similarity). {ECO:0000250|UniProtKB:Q66H98, ECO:0000269|PubMed:19525939}. |
P00558 | PGK1 | T385 | ochoa | Phosphoglycerate kinase 1 (EC 2.7.11.1) (EC 2.7.2.3) (Cell migration-inducing gene 10 protein) (Primer recognition protein 2) (PRP 2) | Catalyzes one of the two ATP producing reactions in the glycolytic pathway via the reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate (PubMed:30323285, PubMed:7391028). Both L- and D- forms of purine and pyrimidine nucleotides can be used as substrates, but the activity is much lower on pyrimidines (PubMed:18463139). In addition to its role as a glycolytic enzyme, it seems that PGK1 acts as a polymerase alpha cofactor protein (primer recognition protein) (PubMed:2324090). Acts as a protein kinase when localized to the mitochondrion where it phosphorylates pyruvate dehydrogenase kinase PDK1 to inhibit pyruvate dehydrogenase complex activity and suppress the formation of acetyl-coenzyme A from pyruvate, and consequently inhibit oxidative phosphorylation and promote glycolysis (PubMed:26942675, PubMed:36849569). May play a role in sperm motility (PubMed:26677959). {ECO:0000269|PubMed:18463139, ECO:0000269|PubMed:2324090, ECO:0000269|PubMed:26677959, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:30323285, ECO:0000269|PubMed:36849569, ECO:0000269|PubMed:7391028}. |
P01024 | C3 | T1031 | psp | Complement C3 (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 1) [Cleaved into: Complement C3 beta chain; C3-beta-c (C3bc); Complement C3 alpha chain; C3a anaphylatoxin; Acylation stimulating protein (ASP) (C3adesArg); Complement C3b (Complement C3b-alpha' chain); Complement C3c alpha' chain fragment 1; Complement C3dg fragment; Complement C3g fragment; Complement C3d fragment; Complement C3f fragment; Complement C3c alpha' chain fragment 2] | Precursor of non-enzymatic components of the classical, alternative, lectin and GZMK complement pathways, which consist in a cascade of proteins that leads to phagocytosis and breakdown of pathogens and signaling that strengthens the adaptive immune system. {ECO:0000269|PubMed:12878586, ECO:0000269|PubMed:18204047, ECO:0000269|PubMed:28264884, ECO:0000269|PubMed:31507604, ECO:0000269|PubMed:39914456, ECO:0000269|PubMed:624565, ECO:0000269|PubMed:6554279}.; FUNCTION: [Complement C3b]: Non-enzymatic component of C5 convertase (PubMed:28264884, PubMed:31507604, PubMed:3653927, PubMed:3897448). Generated following cleavage by C3 convertase, it covalently attaches to the surface of pathogens, where it acts as an opsonin that marks the surface of antigens for removal (PubMed:28264884, PubMed:31507604, PubMed:3653927, PubMed:3897448, PubMed:833545, PubMed:8349625). Complement C3b binds covalently via its reactive thioester, to cell surface carbohydrates or immune aggregates (PubMed:6903192). Together with complement C4b, it then recruits the serine protease complement C2b to form the C5 convertase, which cleaves and activate C5, the next component of the complement pathways (PubMed:12878586, PubMed:18204047, PubMed:2387864). In the alternative complement pathway, recruits the serine protease CFB to form the C5 convertase that cleaves and activates C5 (PubMed:624565, PubMed:6554279). {ECO:0000269|PubMed:12878586, ECO:0000269|PubMed:18204047, ECO:0000269|PubMed:2387864, ECO:0000269|PubMed:28264884, ECO:0000269|PubMed:31507604, ECO:0000269|PubMed:3653927, ECO:0000269|PubMed:3897448, ECO:0000269|PubMed:624565, ECO:0000269|PubMed:6554279, ECO:0000269|PubMed:6903192, ECO:0000269|PubMed:833545, ECO:0000269|PubMed:8349625}.; FUNCTION: [C3a anaphylatoxin]: Mediator of local inflammatory process released following cleavage by C3 convertase (PubMed:6968751). Acts by binding to its receptor, C3AR1, activating G protein-coupled receptor signaling, promoting the phosphorylation, ARRB2-mediated internalization and endocytosis of C3AR1 (PubMed:8702752). C3a anaphylatoxin stimulates the activation of immune cells such as mast cells and basophilic leukocytes to release inflammation agents, such as cytokines, chemokines and histamine, which promote inflammation development (PubMed:23383423). Also acts as potent chemoattractant for the migration of macrophages and neutrophils to the inflamed tissues, resulting in neutralization of the inflammatory triggers by multiple ways, such as phagocytosis and generation of reactive oxidants (PubMed:23383423). {ECO:0000269|PubMed:6968751, ECO:0000269|PubMed:8702752, ECO:0000303|PubMed:23383423}.; FUNCTION: [Acylation stimulating protein]: Adipogenic hormone that stimulates triglyceride synthesis and glucose transport in adipocytes, regulating fat storage and playing a role in postprandial triglyceride clearance (PubMed:10432298, PubMed:15833747, PubMed:16333141, PubMed:19615750, PubMed:2909530, PubMed:8376604, PubMed:9059512). Appears to stimulate triglyceride synthesis via activation of the PLC, MAPK and AKT signaling pathways (PubMed:16333141). Acts by binding to its receptor, C5AR2, activating G protein-coupled receptor signaling, promoting the phosphorylation, ARRB2-mediated internalization and endocytosis of C5AR2 (PubMed:11773063, PubMed:12540846, PubMed:19615750). {ECO:0000269|PubMed:10432298, ECO:0000269|PubMed:11773063, ECO:0000269|PubMed:12540846, ECO:0000269|PubMed:15833747, ECO:0000269|PubMed:16333141, ECO:0000269|PubMed:19615750, ECO:0000269|PubMed:2909530, ECO:0000269|PubMed:8376604, ECO:0000269|PubMed:9059512}.; FUNCTION: [C3-beta-c]: Acts as a chemoattractant for neutrophils in chronic inflammation. {ECO:0000250|UniProtKB:P01026}. |
P01106 | MYC | T415 | psp | Myc proto-oncogene protein (Class E basic helix-loop-helix protein 39) (bHLHe39) (Proto-oncogene c-Myc) (Transcription factor p64) | Transcription factor that binds DNA in a non-specific manner, yet also specifically recognizes the core sequence 5'-CAC[GA]TG-3' (PubMed:24940000, PubMed:25956029). Activates the transcription of growth-related genes (PubMed:24940000, PubMed:25956029). Binds to the VEGFA promoter, promoting VEGFA production and subsequent sprouting angiogenesis (PubMed:24940000, PubMed:25956029). Regulator of somatic reprogramming, controls self-renewal of embryonic stem cells (By similarity). Functions with TAF6L to activate target gene expression through RNA polymerase II pause release (By similarity). Positively regulates transcription of HNRNPA1, HNRNPA2 and PTBP1 which in turn regulate splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). {ECO:0000250|UniProtKB:P01108, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:25956029}. |
P01833 | PIGR | T704 | ochoa | Polymeric immunoglobulin receptor (PIgR) (Poly-Ig receptor) (Hepatocellular carcinoma-associated protein TB6) [Cleaved into: Secretory component] | [Polymeric immunoglobulin receptor]: Mediates selective transcytosis of polymeric IgA and IgM across mucosal epithelial cells. Binds polymeric IgA and IgM at the basolateral surface of epithelial cells. The complex is then transported across the cell to be secreted at the apical surface. During this process, a cleavage occurs that separates the extracellular (known as the secretory component) from the transmembrane segment. {ECO:0000269|PubMed:10229845, ECO:0000269|PubMed:15530357, ECO:0000269|PubMed:9379029}.; FUNCTION: [Secretory component]: Through its N-linked glycans ensures anchoring of secretory IgA (sIgA) molecules to mucus lining the epithelial surface to neutralize extracellular pathogens (PubMed:12150896). On its own (free form) may act as a non-specific microbial scavenger to prevent pathogen interaction with epithelial cells (PubMed:16543244). {ECO:0000269|PubMed:12150896, ECO:0000269|PubMed:16543244}. |
P02545 | LMNA | T157 | ochoa | Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] | [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}. |
P04075 | ALDOA | T37 | ochoa | Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase) | Catalyzes the reversible conversion of beta-D-fructose 1,6-bisphosphate (FBP) into two triose phosphate and plays a key role in glycolysis and gluconeogenesis (PubMed:14766013). In addition, may also function as scaffolding protein (By similarity). {ECO:0000250, ECO:0000269|PubMed:14766013}. |
P04792 | HSPB1 | T110 | ochoa | Heat shock protein beta-1 (HspB1) (28 kDa heat shock protein) (Estrogen-regulated 24 kDa protein) (Heat shock 27 kDa protein) (HSP 27) (Heat shock protein family B member 1) (Stress-responsive protein 27) (SRP27) | Small heat shock protein which functions as a molecular chaperone probably maintaining denatured proteins in a folding-competent state (PubMed:10383393, PubMed:20178975). Plays a role in stress resistance and actin organization (PubMed:19166925). Through its molecular chaperone activity may regulate numerous biological processes including the phosphorylation and the axonal transport of neurofilament proteins (PubMed:23728742). {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:20178975, ECO:0000269|PubMed:23728742}. |
P05121 | SERPINE1 | T219 | ochoa | Plasminogen activator inhibitor 1 (PAI) (PAI-1) (Endothelial plasminogen activator inhibitor) (Serpin E1) | Serine protease inhibitor. Inhibits TMPRSS7 (PubMed:15853774). Is a primary inhibitor of tissue-type plasminogen activator (PLAT) and urokinase-type plasminogen activator (PLAU). As PLAT inhibitor, it is required for fibrinolysis down-regulation and is responsible for the controlled degradation of blood clots (PubMed:17912461, PubMed:8481516, PubMed:9207454, PubMed:21925150). As PLAU inhibitor, it is involved in the regulation of cell adhesion and spreading (PubMed:9175705). Acts as a regulator of cell migration, independently of its role as protease inhibitor (PubMed:15001579, PubMed:9168821). It is required for stimulation of keratinocyte migration during cutaneous injury repair (PubMed:18386027). It is involved in cellular and replicative senescence (PubMed:16862142). Plays a role in alveolar type 2 cells senescence in the lung (By similarity). Is involved in the regulation of cementogenic differentiation of periodontal ligament stem cells, and regulates odontoblast differentiation and dentin formation during odontogenesis (PubMed:25808697, PubMed:27046084). {ECO:0000250|UniProtKB:P22777, ECO:0000269|PubMed:15001579, ECO:0000269|PubMed:15853774, ECO:0000269|PubMed:16862142, ECO:0000269|PubMed:17912461, ECO:0000269|PubMed:18386027, ECO:0000269|PubMed:21925150, ECO:0000269|PubMed:25808697, ECO:0000269|PubMed:27046084, ECO:0000269|PubMed:8481516, ECO:0000269|PubMed:9168821, ECO:0000269|PubMed:9175705, ECO:0000269|PubMed:9207454}. |
P05412 | JUN | T90 | ochoa | Transcription factor Jun (Activator protein 1) (AP1) (Proto-oncogene c-Jun) (Transcription factor AP-1 subunit Jun) (V-jun avian sarcoma virus 17 oncogene homolog) (p39) | Transcription factor that recognizes and binds to the AP-1 consensus motif 5'-TGA[GC]TCA-3' (PubMed:10995748, PubMed:22083952). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to the AP-1 consensus sequence 5'-TGA[GC]TCA-3' and enhancing its transcriptional activity (By similarity). Together with FOSB, plays a role in activation-induced cell death of T cells by binding to the AP-1 promoter site of FASLG/CD95L, and inducing its transcription in response to activation of the TCR/CD3 signaling pathway (PubMed:12618758). Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation (PubMed:17210646). Involved in activated KRAS-mediated transcriptional activation of USP28 in colorectal cancer (CRC) cells (PubMed:24623306). Binds to the USP28 promoter in colorectal cancer (CRC) cells (PubMed:24623306). {ECO:0000250|UniProtKB:P05627, ECO:0000269|PubMed:10995748, ECO:0000269|PubMed:12618758, ECO:0000269|PubMed:17210646, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24623306}.; FUNCTION: (Microbial infection) Upon Epstein-Barr virus (EBV) infection, binds to viral BZLF1 Z promoter and activates viral BZLF1 expression. {ECO:0000269|PubMed:31341047}. |
P06733 | ENO1 | T72 | ochoa | Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) | Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}. |
P06733 | ENO1 | T85 | ochoa | Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) | Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}. |
P06753 | TPM3 | T54 | ochoa | Tropomyosin alpha-3 chain (Gamma-tropomyosin) (Tropomyosin-3) (Tropomyosin-5) (hTM5) | Binds to actin filaments in muscle and non-muscle cells. Plays a central role, in association with the troponin complex, in the calcium dependent regulation of vertebrate striated muscle contraction. Smooth muscle contraction is regulated by interaction with caldesmon. In non-muscle cells is implicated in stabilizing cytoskeleton actin filaments. {ECO:0000250|UniProtKB:P09493}. |
P07195 | LDHB | T87 | ochoa | L-lactate dehydrogenase B chain (LDH-B) (EC 1.1.1.27) (LDH heart subunit) (LDH-H) (Renal carcinoma antigen NY-REN-46) | Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:27618187}. |
P07205 | PGK2 | T385 | ochoa | Phosphoglycerate kinase 2 (EC 2.7.2.3) (Phosphoglycerate kinase, testis specific) | Essential for sperm motility and male fertility (PubMed:26677959). Not required for the completion of spermatogenesis (By similarity). {ECO:0000250|UniProtKB:P09041, ECO:0000269|PubMed:26677959}. |
P07900 | HSP90AA1 | T713 | ochoa | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P08590 | MYL3 | T127 | ochoa | Myosin light chain 3 (Cardiac myosin light chain 1) (CMLC1) (Myosin light chain 1, slow-twitch muscle B/ventricular isoform) (MLC1SB) (Ventricular myosin alkali light chain) (Ventricular myosin light chain 1) (VLCl) (Ventricular/slow twitch myosin alkali light chain) (MLC-lV/sb) | Regulatory light chain of myosin. Does not bind calcium. |
P09651 | HNRNPA1 | T169 | ochoa | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P0DJD0 | RGPD1 | T1014 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | T1022 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P10451 | SPP1 | T237 | ochoa|psp | Osteopontin (Bone sialoprotein 1) (Nephropontin) (Secreted phosphoprotein 1) (SPP-1) (Urinary stone protein) (Uropontin) | Major non-collagenous bone protein that binds tightly to hydroxyapatite. Appears to form an integral part of the mineralized matrix. Probably important to cell-matrix interaction. {ECO:0000250|UniProtKB:P31096}.; FUNCTION: Acts as a cytokine involved in enhancing production of interferon-gamma and interleukin-12 and reducing production of interleukin-10 and is essential in the pathway that leads to type I immunity. {ECO:0000250|UniProtKB:P10923}. |
P11137 | MAP2 | T425 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11137 | MAP2 | T522 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11166 | SLC2A1 | T238 | ochoa | Solute carrier family 2, facilitated glucose transporter member 1 (Glucose transporter type 1, erythrocyte/brain) (GLUT-1) (HepG2 glucose transporter) | Facilitative glucose transporter, which is responsible for constitutive or basal glucose uptake (PubMed:10227690, PubMed:10954735, PubMed:18245775, PubMed:19449892, PubMed:25982116, PubMed:27078104, PubMed:32860739). Has a very broad substrate specificity; can transport a wide range of aldoses including both pentoses and hexoses (PubMed:18245775, PubMed:19449892). Most important energy carrier of the brain: present at the blood-brain barrier and assures the energy-independent, facilitative transport of glucose into the brain (PubMed:10227690). In association with BSG and NXNL1, promotes retinal cone survival by increasing glucose uptake into photoreceptors (By similarity). Required for mesendoderm differentiation (By similarity). {ECO:0000250|UniProtKB:P17809, ECO:0000250|UniProtKB:P46896, ECO:0000269|PubMed:10227690, ECO:0000269|PubMed:10954735, ECO:0000269|PubMed:18245775, ECO:0000269|PubMed:19449892, ECO:0000269|PubMed:25982116, ECO:0000269|PubMed:27078104, ECO:0000269|PubMed:32860739}. |
P12882 | MYH1 | T983 | ochoa | Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) | Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}. |
P12882 | MYH1 | T1023 | ochoa | Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) | Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}. |
P12883 | MYH7 | T1019 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P12883 | MYH7 | T1351 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P12883 | MYH7 | T1695 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P12883 | MYH7 | T1891 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P13533 | MYH6 | T1353 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13533 | MYH6 | T1697 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13533 | MYH6 | T1893 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13535 | MYH8 | T982 | ochoa | Myosin-8 (Myosin heavy chain 8) (Myosin heavy chain, skeletal muscle, perinatal) (MyHC-perinatal) | Muscle contraction. |
P15311 | EZR | T98 | ochoa | Ezrin (Cytovillin) (Villin-2) (p81) | Probably involved in connections of major cytoskeletal structures to the plasma membrane. In epithelial cells, required for the formation of microvilli and membrane ruffles on the apical pole. Along with PLEKHG6, required for normal macropinocytosis. {ECO:0000269|PubMed:17881735, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19111582}. |
P15941 | MUC1 | T1214 | ochoa | Mucin-1 (MUC-1) (Breast carcinoma-associated antigen DF3) (Cancer antigen 15-3) (CA 15-3) (Carcinoma-associated mucin) (Episialin) (H23AG) (Krebs von den Lungen-6) (KL-6) (PEMT) (Peanut-reactive urinary mucin) (PUM) (Polymorphic epithelial mucin) (PEM) (Tumor-associated epithelial membrane antigen) (EMA) (Tumor-associated mucin) (CD antigen CD227) [Cleaved into: Mucin-1 subunit alpha (MUC1-NT) (MUC1-alpha); Mucin-1 subunit beta (MUC1-beta) (MUC1-CT)] | The alpha subunit has cell adhesive properties. Can act both as an adhesion and an anti-adhesion protein. May provide a protective layer on epithelial cells against bacterial and enzyme attack.; FUNCTION: The beta subunit contains a C-terminal domain which is involved in cell signaling, through phosphorylations and protein-protein interactions. Modulates signaling in ERK, SRC and NF-kappa-B pathways. In activated T-cells, influences directly or indirectly the Ras/MAPK pathway. Promotes tumor progression. Regulates TP53-mediated transcription and determines cell fate in the genotoxic stress response. Binds, together with KLF4, the PE21 promoter element of TP53 and represses TP53 activity. |
P16150 | SPN | T318 | ochoa | Leukosialin (GPL115) (Galactoglycoprotein) (GALGP) (Leukocyte sialoglycoprotein) (Sialophorin) (CD antigen CD43) [Cleaved into: CD43 cytoplasmic tail (CD43-ct) (CD43ct)] | Predominant cell surface sialoprotein of leukocytes which regulates multiple T-cell functions, including T-cell activation, proliferation, differentiation, trafficking and migration. Positively regulates T-cell trafficking to lymph-nodes via its association with ERM proteins (EZR, RDX and MSN) (By similarity). Negatively regulates Th2 cell differentiation and predisposes the differentiation of T-cells towards a Th1 lineage commitment. Promotes the expression of IFN-gamma by T-cells during T-cell receptor (TCR) activation of naive cells and induces the expression of IFN-gamma by CD4(+) T-cells and to a lesser extent by CD8(+) T-cells (PubMed:18036228). Plays a role in preparing T-cells for cytokine sensing and differentiation into effector cells by inducing the expression of cytokine receptors IFNGR and IL4R, promoting IFNGR and IL4R signaling and by mediating the clustering of IFNGR with TCR (PubMed:24328034). Acts as a major E-selectin ligand responsible for Th17 cell rolling on activated vasculature and recruitment during inflammation. Mediates Th17 cells, but not Th1 cells, adhesion to E-selectin. Acts as a T-cell counter-receptor for SIGLEC1 (By similarity). {ECO:0000250|UniProtKB:P15702, ECO:0000269|PubMed:18036228, ECO:0000269|PubMed:24328034}.; FUNCTION: [CD43 cytoplasmic tail]: Protects cells from apoptotic signals, promoting cell survival. {ECO:0000250|UniProtKB:P15702}. |
P16157 | ANK1 | T1625 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P16157 | ANK1 | T1631 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P16284 | PECAM1 | T709 | ochoa | Platelet endothelial cell adhesion molecule (PECAM-1) (EndoCAM) (GPIIA') (PECA1) (CD antigen CD31) | Cell adhesion molecule which is required for leukocyte transendothelial migration (TEM) under most inflammatory conditions (PubMed:17580308, PubMed:19342684). Tyr-690 plays a critical role in TEM and is required for efficient trafficking of PECAM1 to and from the lateral border recycling compartment (LBRC) and is also essential for the LBRC membrane to be targeted around migrating leukocytes (PubMed:19342684). Trans-homophilic interaction may play a role in endothelial cell-cell adhesion via cell junctions (PubMed:27958302). Heterophilic interaction with CD177 plays a role in transendothelial migration of neutrophils (PubMed:17580308). Homophilic ligation of PECAM1 prevents macrophage-mediated phagocytosis of neighboring viable leukocytes by transmitting a detachment signal (PubMed:12110892). Promotes macrophage-mediated phagocytosis of apoptotic leukocytes by tethering them to the phagocytic cells; PECAM1-mediated detachment signal appears to be disabled in apoptotic leukocytes (PubMed:12110892). Modulates bradykinin receptor BDKRB2 activation (PubMed:18672896). Regulates bradykinin- and hyperosmotic shock-induced ERK1/2 activation in endothelial cells (PubMed:18672896). Induces susceptibility to atherosclerosis (By similarity). {ECO:0000250|UniProtKB:Q08481, ECO:0000269|PubMed:12110892, ECO:0000269|PubMed:17580308, ECO:0000269|PubMed:18672896, ECO:0000269|PubMed:19342684, ECO:0000269|PubMed:27958302}.; FUNCTION: [Isoform Delta15]: Does not protect against apoptosis. {ECO:0000269|PubMed:18388311}. |
P16671 | CD36 | T92 | psp | Platelet glycoprotein 4 (Fatty acid translocase) (FAT) (Glycoprotein IIIb) (GPIIIB) (Leukocyte differentiation antigen CD36) (PAS IV) (PAS-4) (Platelet collagen receptor) (Platelet glycoprotein IV) (GPIV) (Thrombospondin receptor) (CD antigen CD36) | Multifunctional glycoprotein that acts as a receptor for a broad range of ligands. Ligands can be of proteinaceous nature like thrombospondin, fibronectin, collagen or amyloid-beta as well as of lipidic nature such as oxidized low-density lipoprotein (oxLDL), anionic phospholipids, long-chain fatty acids and bacterial diacylated lipopeptides. They are generally multivalent and can therefore engage multiple receptors simultaneously, the resulting formation of CD36 clusters initiates signal transduction and internalization of receptor-ligand complexes. The dependency on coreceptor signaling is strongly ligand specific. Cellular responses to these ligands are involved in angiogenesis, inflammatory response, fatty acid metabolism, taste and dietary fat processing in the intestine (Probable). Binds long-chain fatty acids and facilitates their transport into cells, thus participating in muscle lipid utilization, adipose energy storage, and gut fat absorption (By similarity) (PubMed:18353783, PubMed:21610069). Mechanistically, binding of fatty acids activates downstream kinase LYN, which phosphorylates the palmitoyltransferase ZDHHC5 and inactivates it, resulting in the subsequent depalmitoylation of CD36 and caveolar endocytosis (PubMed:32958780). In the small intestine, plays a role in proximal absorption of dietary fatty acid and cholesterol for optimal chylomicron formation, possibly through the activation of MAPK1/3 (ERK1/2) signaling pathway (By similarity) (PubMed:18753675). Involved in oral fat perception and preferences (PubMed:22240721, PubMed:25822988). Detection into the tongue of long-chain fatty acids leads to a rapid and sustained rise in flux and protein content of pancreatobiliary secretions (By similarity). In taste receptor cells, mediates the induction of an increase in intracellular calcium levels by long-chain fatty acids, leading to the activation of the gustatory neurons in the nucleus of the solitary tract (By similarity). Important factor in both ventromedial hypothalamus neuronal sensing of long-chain fatty acid and the regulation of energy and glucose homeostasis (By similarity). Receptor for thrombospondins, THBS1 and THBS2, mediating their antiangiogenic effects (By similarity). Involved in inducing apoptosis in podocytes in response to elevated free fatty acids, acting together with THBS1 (By similarity). As a coreceptor for TLR4:TLR6 heterodimer, promotes inflammation in monocytes/macrophages. Upon ligand binding, such as oxLDL or amyloid-beta 42, interacts with the heterodimer TLR4:TLR6, the complex is internalized and triggers inflammatory response, leading to NF-kappa-B-dependent production of CXCL1, CXCL2 and CCL9 cytokines, via MYD88 signaling pathway, and CCL5 cytokine, via TICAM1 signaling pathway, as well as IL1B secretion, through the priming and activation of the NLRP3 inflammasome (By similarity) (PubMed:20037584). Selective and nonredundant sensor of microbial diacylated lipopeptide that signal via TLR2:TLR6 heterodimer, this cluster triggers signaling from the cell surface, leading to the NF-kappa-B-dependent production of TNF, via MYD88 signaling pathway and subsequently is targeted to the Golgi in a lipid-raft dependent pathway (By similarity) (PubMed:16880211). {ECO:0000250|UniProtKB:Q07969, ECO:0000250|UniProtKB:Q08857, ECO:0000269|PubMed:16880211, ECO:0000269|PubMed:18353783, ECO:0000269|PubMed:18753675, ECO:0000269|PubMed:20037584, ECO:0000269|PubMed:21395585, ECO:0000269|PubMed:21610069, ECO:0000269|PubMed:22240721, ECO:0000269|PubMed:25822988, ECO:0000305|PubMed:19471024}.; FUNCTION: (Microbial infection) Directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes and the internalization of particles independently of TLR signaling. {ECO:0000269|PubMed:10890433, ECO:0000269|PubMed:12506336, ECO:0000269|PubMed:19864601}. |
P17535 | JUND | T116 | ochoa | Transcription factor JunD (Transcription factor AP-1 subunit JunD) | Transcription factor binding AP-1 sites (PubMed:9989505). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription factor complex, thereby enhancing their DNA binding activity to an AP-1 consensus sequence 3'-TGA[GC]TCA-5' and enhancing their transcriptional activity (PubMed:28981703, PubMed:9989505). {ECO:0000269|PubMed:28981703, ECO:0000269|PubMed:9989505}. |
P18583 | SON | T1691 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P18858 | LIG1 | T182 | ochoa | DNA ligase 1 (EC 6.5.1.1) (DNA ligase I) (Polydeoxyribonucleotide synthase [ATP] 1) | DNA ligase that seals nicks in double-stranded during DNA repair (PubMed:30395541). Also involved in DNA replication and DNA recombination. {ECO:0000269|PubMed:30395541}. |
P19105 | MYL12A | T128 | ochoa | Myosin regulatory light chain 12A (Epididymis secretory protein Li 24) (HEL-S-24) (MLC-2B) (Myosin RLC) (Myosin regulatory light chain 2, nonsarcomeric) (Myosin regulatory light chain MRLC3) | Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Implicated in cytokinesis, receptor capping, and cell locomotion (By similarity). {ECO:0000250}. |
P19429 | TNNI3 | T51 | psp | Troponin I, cardiac muscle (Cardiac troponin I) | Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. |
P19525 | EIF2AK2 | T255 | psp | Interferon-induced, double-stranded RNA-activated protein kinase (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 2) (eIF-2A protein kinase 2) (Interferon-inducible RNA-dependent protein kinase) (P1/eIF-2A protein kinase) (Protein kinase RNA-activated) (PKR) (Protein kinase R) (Tyrosine-protein kinase EIF2AK2) (EC 2.7.10.2) (p68 kinase) | IFN-induced dsRNA-dependent serine/threonine-protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) and plays a key role in the innate immune response to viral infection (PubMed:18835251, PubMed:19189853, PubMed:19507191, PubMed:21072047, PubMed:21123651, PubMed:22381929, PubMed:22948139, PubMed:23229543). Inhibits viral replication via the integrated stress response (ISR): EIF2S1/eIF-2-alpha phosphorylation in response to viral infection converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, resulting to a shutdown of cellular and viral protein synthesis, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4 (PubMed:19189853, PubMed:21123651, PubMed:22948139, PubMed:23229543). Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1) (PubMed:11836380, PubMed:19189853, PubMed:19840259, PubMed:20171114, PubMed:21710204, PubMed:23115276, PubMed:23399035). Also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation: phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11 (PubMed:11836380, PubMed:19229320, PubMed:22214662). In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteasomal degradation (PubMed:20395957). Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding pro-inflammatory cytokines and IFNs (PubMed:22948139, PubMed:23084476, PubMed:23372823). Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6 (PubMed:10848580, PubMed:15121867, PubMed:15229216). Can act as both a positive and negative regulator of the insulin signaling pathway (ISP) (PubMed:20685959). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2) (PubMed:20685959). Can regulate NLRP3 inflammasome assembly and the activation of NLRP3, NLRP1, AIM2 and NLRC4 inflammasomes (PubMed:22801494). Plays a role in the regulation of the cytoskeleton by binding to gelsolin (GSN), sequestering the protein in an inactive conformation away from actin (By similarity). {ECO:0000250|UniProtKB:Q03963, ECO:0000269|PubMed:10848580, ECO:0000269|PubMed:11836380, ECO:0000269|PubMed:15121867, ECO:0000269|PubMed:15229216, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:19189853, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:19507191, ECO:0000269|PubMed:19840259, ECO:0000269|PubMed:20171114, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20685959, ECO:0000269|PubMed:21072047, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:21710204, ECO:0000269|PubMed:22214662, ECO:0000269|PubMed:22381929, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:22948139, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:23115276, ECO:0000269|PubMed:23229543, ECO:0000269|PubMed:23372823, ECO:0000269|PubMed:23399035, ECO:0000269|PubMed:32197074}. |
P20073 | ANXA7 | T286 | psp | Annexin A7 (Annexin VII) (Annexin-7) (Synexin) | Calcium/phospholipid-binding protein which promotes membrane fusion and is involved in exocytosis. |
P20700 | LMNB1 | T285 | ochoa | Lamin-B1 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:28716252, PubMed:32910914). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:28716252, PubMed:32910914). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:28716252, PubMed:32910914). {ECO:0000269|PubMed:28716252, ECO:0000269|PubMed:32910914}. |
P20823 | HNF1A | T74 | ochoa | Hepatocyte nuclear factor 1-alpha (HNF-1-alpha) (HNF-1A) (Liver-specific transcription factor LF-B1) (LFB1) (Transcription factor 1) (TCF-1) | Transcriptional activator that regulates the tissue specific expression of multiple genes, especially in pancreatic islet cells and in liver (By similarity). Binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (PubMed:10966642, PubMed:12453420). Activates the transcription of CYP1A2, CYP2E1 and CYP3A11 (By similarity). {ECO:0000250|UniProtKB:P22361, ECO:0000269|PubMed:10966642, ECO:0000269|PubMed:12453420}.; FUNCTION: (Microbial infection) Plays a crucial role for hepatitis B virus gene transcription and DNA replication. Mechanistically, synergistically cooperates with NR5A2 to up-regulate the activity of one of the critical cis-elements in the hepatitis B virus genome enhancer II (ENII). {ECO:0000269|PubMed:14728801, ECO:0000269|PubMed:38018242}. |
P21359 | NF1 | T2564 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P21728 | DRD1 | T360 | psp | D(1A) dopamine receptor (Dopamine D1 receptor) | Dopamine receptor whose activity is mediated by G proteins which activate adenylyl cyclase. |
P22626 | HNRNPA2B1 | T176 | ochoa|psp | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P24534 | EEF1B2 | T93 | ochoa | Elongation factor 1-beta (EF-1-beta) (eEF-1B alpha) | Catalytic subunit of the guanine nucleotide exchange factor (GEF) (eEF1B subcomplex) of the eukaryotic elongation factor 1 complex (eEF1) (By similarity). Stimulates the exchange of GDP for GTP on elongation factor 1A (eEF1A), probably by displacing GDP from the nucleotide binding pocket in eEF1A (By similarity). {ECO:0000250|UniProtKB:P32471}. |
P26038 | MSN | T469 | ochoa | Moesin (Membrane-organizing extension spike protein) | Ezrin-radixin-moesin (ERM) family protein that connects the actin cytoskeleton to the plasma membrane and thereby regulates the structure and function of specific domains of the cell cortex. Tethers actin filaments by oscillating between a resting and an activated state providing transient interactions between moesin and the actin cytoskeleton (PubMed:10212266). Once phosphorylated on its C-terminal threonine, moesin is activated leading to interaction with F-actin and cytoskeletal rearrangement (PubMed:10212266). These rearrangements regulate many cellular processes, including cell shape determination, membrane transport, and signal transduction (PubMed:12387735, PubMed:15039356). The role of moesin is particularly important in immunity acting on both T and B-cells homeostasis and self-tolerance, regulating lymphocyte egress from lymphoid organs (PubMed:9298994, PubMed:9616160). Modulates phagolysosomal biogenesis in macrophages (By similarity). Also participates in immunologic synapse formation (PubMed:27405666). {ECO:0000250|UniProtKB:P26041, ECO:0000269|PubMed:10212266, ECO:0000269|PubMed:12387735, ECO:0000269|PubMed:15039356, ECO:0000269|PubMed:27405666, ECO:0000269|PubMed:9298994, ECO:0000269|PubMed:9616160}. |
P26373 | RPL13 | T148 | ochoa | Large ribosomal subunit protein eL13 (60S ribosomal protein L13) (Breast basic conserved protein 1) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:31630789, PubMed:32669547). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (Probable). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (Probable). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (Probable). As part of the LSU, it is probably required for its formation and the maturation of rRNAs (PubMed:31630789). Plays a role in bone development (PubMed:31630789). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:31630789, ECO:0000269|PubMed:32669547}. |
P27361 | MAPK3 | T198 | ochoa|psp | Mitogen-activated protein kinase 3 (MAP kinase 3) (MAPK 3) (EC 2.7.11.24) (ERT2) (Extracellular signal-regulated kinase 1) (ERK-1) (Insulin-stimulated MAP2 kinase) (MAP kinase isoform p44) (p44-MAPK) (Microtubule-associated protein 2 kinase) (p44-ERK1) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway (PubMed:34497368). MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DEPTOR, FRS2 or GRB10) (PubMed:35216969). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. {ECO:0000269|PubMed:10393181, ECO:0000269|PubMed:10617468, ECO:0000269|PubMed:12110590, ECO:0000269|PubMed:12356731, ECO:0000269|PubMed:12974390, ECO:0000269|PubMed:15788397, ECO:0000269|PubMed:15952796, ECO:0000269|PubMed:16581800, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:34497368, ECO:0000269|PubMed:35216969, ECO:0000269|PubMed:8325880, ECO:0000269|PubMed:9155018, ECO:0000269|PubMed:9480836}. |
P28482 | MAPK1 | T181 | ochoa|psp | Mitogen-activated protein kinase 1 (MAP kinase 1) (MAPK 1) (EC 2.7.11.24) (ERT1) (Extracellular signal-regulated kinase 2) (ERK-2) (MAP kinase isoform p42) (p42-MAPK) (Mitogen-activated protein kinase 2) (MAP kinase 2) (MAPK 2) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1 and FXR1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Mediates phosphorylation of TPR in response to EGF stimulation. May play a role in the spindle assembly checkpoint. Phosphorylates PML and promotes its interaction with PIN1, leading to PML degradation. Phosphorylates CDK2AP2 (By similarity). Phosphorylates phosphoglycerate kinase PGK1 under hypoxic conditions to promote its targeting to the mitochondrion and suppress the formation of acetyl-coenzyme A from pyruvate (PubMed:26942675). {ECO:0000250|UniProtKB:P63086, ECO:0000269|PubMed:10617468, ECO:0000269|PubMed:10637505, ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:12110590, ECO:0000269|PubMed:12356731, ECO:0000269|PubMed:12792650, ECO:0000269|PubMed:12794087, ECO:0000269|PubMed:12974390, ECO:0000269|PubMed:15184391, ECO:0000269|PubMed:15241487, ECO:0000269|PubMed:15616583, ECO:0000269|PubMed:15664191, ECO:0000269|PubMed:15788397, ECO:0000269|PubMed:15952796, ECO:0000269|PubMed:16581800, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:19879846, ECO:0000269|PubMed:22033920, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:32721402, ECO:0000269|PubMed:7588608, ECO:0000269|PubMed:8622688, ECO:0000269|PubMed:9480836, ECO:0000269|PubMed:9596579, ECO:0000269|PubMed:9649500, ECO:0000269|PubMed:9687510, ECO:0000303|PubMed:15526160, ECO:0000303|PubMed:16393692, ECO:0000303|PubMed:19565474, ECO:0000303|PubMed:21779493}.; FUNCTION: Acts as a transcriptional repressor. Binds to a [GC]AAA[GC] consensus sequence. Repress the expression of interferon gamma-induced genes. Seems to bind to the promoter of CCL5, DMP1, IFIH1, IFITM1, IRF7, IRF9, LAMP3, OAS1, OAS2, OAS3 and STAT1. Transcriptional activity is independent of kinase activity. {ECO:0000269|PubMed:19879846}. |
P29317 | EPHA2 | T429 | psp | Ephrin type-A receptor 2 (EC 2.7.10.1) (Epithelial cell kinase) (Tyrosine-protein kinase receptor ECK) | Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:16236711, ECO:0000269|PubMed:18339848, ECO:0000269|PubMed:19573808, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:20861311, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:27385333}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.; FUNCTION: Acts as a receptor for human cytomegalovirus (HCMV) to mediate viral entry and fusion in glioblastoma cells. {ECO:0000269|PubMed:37146061}. |
P29320 | EPHA3 | T595 | ochoa | Ephrin type-A receptor 3 (EC 2.7.10.1) (EPH-like kinase 4) (EK4) (hEK4) (HEK) (Human embryo kinase) (Tyrosine-protein kinase TYRO4) (Tyrosine-protein kinase receptor ETK1) (Eph-like tyrosine kinase 1) | Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Highly promiscuous for ephrin-A ligands it binds preferentially EFNA5. Upon activation by EFNA5 regulates cell-cell adhesion, cytoskeletal organization and cell migration. Plays a role in cardiac cells migration and differentiation and regulates the formation of the atrioventricular canal and septum during development probably through activation by EFNA1. Involved in the retinotectal mapping of neurons. May also control the segregation but not the guidance of motor and sensory axons during neuromuscular circuit development. {ECO:0000269|PubMed:11870224}. |
P30260 | CDC27 | T444 | ochoa | Cell division cycle protein 27 homolog (Anaphase-promoting complex subunit 3) (APC3) (CDC27 homolog) (CDC27Hs) (H-NUC) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
P30530 | AXL | T508 | ochoa | Tyrosine-protein kinase receptor UFO (EC 2.7.10.1) (AXL oncogene) | Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding growth factor GAS6 and which is thus regulating many physiological processes including cell survival, cell proliferation, migration and differentiation. Ligand binding at the cell surface induces dimerization and autophosphorylation of AXL. Following activation by ligand, AXL binds and induces tyrosine phosphorylation of PI3-kinase subunits PIK3R1, PIK3R2 and PIK3R3; but also GRB2, PLCG1, LCK and PTPN11. Other downstream substrate candidates for AXL are CBL, NCK2, SOCS1 and TNS2. Recruitment of GRB2 and phosphatidylinositol 3 kinase regulatory subunits by AXL leads to the downstream activation of the AKT kinase. GAS6/AXL signaling plays a role in various processes such as endothelial cell survival during acidification by preventing apoptosis, optimal cytokine signaling during human natural killer cell development, hepatic regeneration, gonadotropin-releasing hormone neuron survival and migration, platelet activation, or regulation of thrombotic responses. Also plays an important role in inhibition of Toll-like receptors (TLRs)-mediated innate immune response. {ECO:0000269|PubMed:10403904, ECO:0000269|PubMed:11484958, ECO:0000269|PubMed:12364394, ECO:0000269|PubMed:12490074, ECO:0000269|PubMed:15507525, ECO:0000269|PubMed:15733062, ECO:0000269|PubMed:1656220, ECO:0000269|PubMed:18840707}.; FUNCTION: (Microbial infection) Acts as a receptor for lassa virus and lymphocytic choriomeningitis virus, possibly through GAS6 binding to phosphatidyl-serine at the surface of virion envelope. {ECO:0000269|PubMed:17005688, ECO:0000269|PubMed:21501828, ECO:0000269|PubMed:22156524, ECO:0000269|PubMed:25277499}.; FUNCTION: (Microbial infection) Acts as a receptor for Ebolavirus, possibly through GAS6 binding to phosphatidyl-serine at the surface of virion envelope. {ECO:0000269|PubMed:22673088}.; FUNCTION: (Microbial infection) Promotes Zika virus entry in glial cells, Sertoli cells and astrocytes (PubMed:28076778, PubMed:29379210, PubMed:31311882). Additionally, Zika virus potentiates AXL kinase activity to antagonize type I interferon signaling and thereby promotes infection (PubMed:28076778). Interferon signaling inhibition occurs via an SOCS1-dependent mechanism (PubMed:29379210). {ECO:0000269|PubMed:28076778, ECO:0000269|PubMed:29379210, ECO:0000269|PubMed:31311882}. |
P31314 | TLX1 | T247 | psp | T-cell leukemia homeobox protein 1 (Homeobox protein Hox-11) (Proto-oncogene TCL-3) (T-cell leukemia/lymphoma protein 3) | Controls the genesis of the spleen. Binds to the DNA sequence 5'-GGCGGTAAGTGG-3'. |
P31749 | AKT1 | T443 | ochoa | RAC-alpha serine/threonine-protein kinase (EC 2.7.11.1) (Protein kinase B) (PKB) (Protein kinase B alpha) (PKB alpha) (Proto-oncogene c-Akt) (RAC-PK-alpha) | AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis (PubMed:11882383, PubMed:15526160, PubMed:15861136, PubMed:21432781, PubMed:21620960, PubMed:31204173). This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960, PubMed:29343641, PubMed:31204173). Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960). AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface (By similarity). Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling (By similarity). Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport (PubMed:11994271). AKT also regulates the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity (By similarity). Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven (By similarity). AKT also regulates cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase) (PubMed:11154276). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis (PubMed:11154276). AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating the mTORC1 signaling pathway, and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1 (PubMed:12150915, PubMed:12172553). Also regulates the mTORC1 signaling pathway by catalyzing phosphorylation of CASTOR1 and DEPDC5 (PubMed:31548394, PubMed:33594058). AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Part of a positive feedback loop of mTORC2 signaling by mediating phosphorylation of MAPKAP1/SIN1, promoting mTORC2 activation (By similarity). AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization (PubMed:10358075). In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319' (PubMed:10358075). FOXO3 and FOXO4 are phosphorylated on equivalent sites (PubMed:10358075). AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein) (PubMed:9829964). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1 (PubMed:9829964). AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis (By similarity). Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis (By similarity). Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity (By similarity). The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth (By similarity). Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor 1 (IGF1) (PubMed:12176338, PubMed:12964941). AKT mediates the antiapoptotic effects of IGF1 (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). May be involved in the regulation of the placental development (By similarity). Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3 (PubMed:17726016). Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation (PubMed:20086174). Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation (PubMed:19592491). Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity (PubMed:10576742). Phosphorylation of BAD stimulates its pro-apoptotic activity (PubMed:10926925). Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53 (PubMed:23431171). Phosphorylates palladin (PALLD), modulating cytoskeletal organization and cell motility (PubMed:20471940). Phosphorylates prohibitin (PHB), playing an important role in cell metabolism and proliferation (PubMed:18507042). Phosphorylates CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization (PubMed:16982699). These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation (PubMed:16139227). Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation (PubMed:20682768). Phosphorylates PCK1 at 'Ser-90', reducing the binding affinity of PCK1 to oxaloacetate and changing PCK1 into an atypical protein kinase activity using GTP as donor (PubMed:32322062). Also acts as an activator of TMEM175 potassium channel activity in response to growth factors: forms the lysoK(GF) complex together with TMEM175 and acts by promoting TMEM175 channel activation, independently of its protein kinase activity (PubMed:32228865). Acts as a regulator of mitochondrial calcium uptake by mediating phosphorylation of MICU1 in the mitochondrial intermembrane space, impairing MICU1 maturation (PubMed:30504268). Acts as an inhibitor of tRNA methylation by mediating phosphorylation of the N-terminus of METTL1, thereby inhibiting METTL1 methyltransferase activity (PubMed:15861136). In response to LPAR1 receptor pathway activation, phosphorylates Rabin8/RAB3IP which alters its activity and phosphorylates WDR44 which induces WDR44 binding to Rab11, thereby switching Rab11 vesicular function from preciliary trafficking to endocytic recycling (PubMed:31204173). {ECO:0000250|UniProtKB:P31750, ECO:0000250|UniProtKB:P47196, ECO:0000269|PubMed:10358075, ECO:0000269|PubMed:10576742, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11154276, ECO:0000269|PubMed:11994271, ECO:0000269|PubMed:12150915, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12176338, ECO:0000269|PubMed:12964941, ECO:0000269|PubMed:15861136, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:16982699, ECO:0000269|PubMed:17726016, ECO:0000269|PubMed:18507042, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:19934221, ECO:0000269|PubMed:20086174, ECO:0000269|PubMed:20471940, ECO:0000269|PubMed:20682768, ECO:0000269|PubMed:23431171, ECO:0000269|PubMed:30504268, ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:32228865, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:33594058, ECO:0000269|PubMed:9829964, ECO:0000303|PubMed:11882383, ECO:0000303|PubMed:15526160, ECO:0000303|PubMed:21432781, ECO:0000303|PubMed:21620960}. |
P31946 | YWHAB | T217 | ochoa | 14-3-3 protein beta/alpha (Protein 1054) (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein beta/alpha, N-terminally processed] | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negative regulator of osteogenesis. Blocks the nuclear translocation of the phosphorylated form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on cyclin D1 expression resulting in blockage of neuronal apoptosis elicited by SRPK2. Negative regulator of signaling cascades that mediate activation of MAP kinases via AKAP13. {ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21224381}. |
P32004 | L1CAM | T1159 | ochoa | Neural cell adhesion molecule L1 (N-CAM-L1) (NCAM-L1) (CD antigen CD171) | Neural cell adhesion molecule involved in the dynamics of cell adhesion and in the generation of transmembrane signals at tyrosine kinase receptors. During brain development, critical in multiple processes, including neuronal migration, axonal growth and fasciculation, and synaptogenesis. In the mature brain, plays a role in the dynamics of neuronal structure and function, including synaptic plasticity. {ECO:0000269|PubMed:20621658, ECO:0000305}. |
P33981 | TTK | T360 | psp | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P35573 | AGL | T56 | ochoa | Glycogen debranching enzyme (Glycogen debrancher) [Includes: 4-alpha-glucanotransferase (EC 2.4.1.25) (Oligo-1,4-1,4-glucantransferase); Amylo-alpha-1,6-glucosidase (Amylo-1,6-glucosidase) (EC 3.2.1.33) (Dextrin 6-alpha-D-glucosidase)] | Multifunctional enzyme acting as 1,4-alpha-D-glucan:1,4-alpha-D-glucan 4-alpha-D-glycosyltransferase and amylo-1,6-glucosidase in glycogen degradation. |
P37275 | ZEB1 | T530 | ochoa | Zinc finger E-box-binding homeobox 1 (NIL-2-A zinc finger protein) (Negative regulator of IL2) (Transcription factor 8) (TCF-8) | Acts as a transcriptional repressor. Inhibits interleukin-2 (IL-2) gene expression. Enhances or represses the promoter activity of the ATP1A1 gene depending on the quantity of cDNA and on the cell type. Represses E-cadherin promoter and induces an epithelial-mesenchymal transition (EMT) by recruiting SMARCA4/BRG1. Represses BCL6 transcription in the presence of the corepressor CTBP1. Positively regulates neuronal differentiation. Represses RCOR1 transcription activation during neurogenesis. Represses transcription by binding to the E box (5'-CANNTG-3'). In the absence of TGFB1, acts as a repressor of COL1A2 transcription via binding to the E-box in the upstream enhancer region (By similarity). {ECO:0000250|UniProtKB:Q64318, ECO:0000269|PubMed:19935649, ECO:0000269|PubMed:20175752, ECO:0000269|PubMed:20418909}. |
P40763 | STAT3 | T622 | psp | Signal transducer and activator of transcription 3 (Acute-phase response factor) | Signal transducer and transcription activator that mediates cellular responses to interleukins, KITLG/SCF, LEP and other growth factors (PubMed:10688651, PubMed:12359225, PubMed:12873986, PubMed:15194700, PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18242580, PubMed:18782771, PubMed:22306293, PubMed:23084476, PubMed:28262505, PubMed:32929201, PubMed:38404237). Once activated, recruits coactivators, such as NCOA1 or MED1, to the promoter region of the target gene (PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18782771, PubMed:28262505, PubMed:32929201). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:12873986). Upon activation of IL6ST/gp130 signaling by interleukin-6 (IL6), binds to the IL6-responsive elements identified in the promoters of various acute-phase protein genes (PubMed:12359225). Activated by IL31 through IL31RA (PubMed:15194700). Acts as a regulator of inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17 or regulatory T-cells (Treg): acetylation promotes its transcription activity and cell differentiation while deacetylation and oxidation of lysine residues by LOXL3 inhibits differentiation (PubMed:28065600, PubMed:28262505). Involved in cell cycle regulation by inducing the expression of key genes for the progression from G1 to S phase, such as CCND1 (PubMed:17344214). Mediates the effects of LEP on melanocortin production, body energy homeostasis and lactation (By similarity). May play an apoptotic role by transctivating BIRC5 expression under LEP activation (PubMed:18242580). Cytoplasmic STAT3 represses macroautophagy by inhibiting EIF2AK2/PKR activity (PubMed:23084476). Plays a crucial role in basal beta cell functions, such as regulation of insulin secretion (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC3 and NFATC4, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:P42227, ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:12359225, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15194700, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:17344214, ECO:0000269|PubMed:18242580, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:28065600, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:32929201, ECO:0000269|PubMed:38404237}. |
P41236 | PPP1R2 | T92 | ochoa | Protein phosphatase inhibitor 2 (IPP-2) | Inhibitor of protein-phosphatase 1. |
P42224 | STAT1 | T387 | psp | Signal transducer and activator of transcription 1-alpha/beta (Transcription factor ISGF-3 components p91/p84) | Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors (PubMed:12764129, PubMed:12855578, PubMed:15322115, PubMed:23940278, PubMed:34508746, PubMed:35568036, PubMed:9724754). Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus (PubMed:28753426, PubMed:35568036). ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state (PubMed:28753426, PubMed:35568036). In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated (PubMed:26479788). It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state (PubMed:8156998). Becomes activated in response to KITLG/SCF and KIT signaling (PubMed:15526160). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:19088846). Following bacterial lipopolysaccharide (LPS)-induced TLR4 endocytosis, phosphorylated at Thr-749 by IKBKB which promotes binding of STAT1 to the 5'-TTTGAGGC-3' sequence in the ARID5A promoter, resulting in transcriptional activation of ARID5A and subsequent ARID5A-mediated stabilization of IL6 (PubMed:32209697). Phosphorylation at Thr-749 also promotes binding of STAT1 to the 5'-TTTGAGTC-3' sequence in the IL12B promoter and activation of IL12B transcription (PubMed:32209697). Involved in food tolerance in small intestine: associates with the Gasdermin-D, p13 cleavage product (13 kDa GSDMD) and promotes transcription of CIITA, inducing type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:P42225, ECO:0000269|PubMed:12764129, ECO:0000269|PubMed:12855578, ECO:0000269|PubMed:15322115, ECO:0000269|PubMed:19088846, ECO:0000269|PubMed:23940278, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28753426, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:34508746, ECO:0000269|PubMed:35568036, ECO:0000269|PubMed:8156998, ECO:0000269|PubMed:9724754, ECO:0000303|PubMed:15526160}. |
P45974 | USP5 | T292 | ochoa | Ubiquitin carboxyl-terminal hydrolase 5 (EC 3.4.19.12) (Deubiquitinating enzyme 5) (Isopeptidase T) (Ubiquitin thioesterase 5) (Ubiquitin-specific-processing protease 5) | Deubiquitinating enzyme that participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. Affects thereby important cellular signaling pathways such as NF-kappa-B, Wnt/beta-catenin, and cytokine production by regulating ubiquitin-dependent protein degradation. Participates in the activation of the Wnt signaling pathway by promoting FOXM1 deubiquitination and stabilization that induces the recruitment of beta-catenin to Wnt target gene promoter (PubMed:26912724). Regulates the assembly and disassembly of heat-induced stress granules by mediating the hydrolysis of unanchored ubiquitin chains (PubMed:29567855). Promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein (PubMed:37534934). Affects T-cell biology by stabilizing the inhibitory receptor on T-cells PDC1 (PubMed:37208329). Acts as a negative regulator of autophagy by regulating ULK1 at both protein and mRNA levels (PubMed:37607937). Acts also as a negative regulator of type I interferon production by simultaneously removing both 'Lys-48'-linked unanchored and 'Lys-63'-linked anchored polyubiquitin chains on the transcription factor IRF3 (PubMed:39761299). Modulates the stability of DNA mismatch repair protein MLH1 and counteracts the effect of the ubiquitin ligase UBR4 (PubMed:39032648). Upon activation by insulin, it gets phosphorylated through mTORC1-mediated phosphorylation to enhance YTHDF1 stability by removing 'Lys-11'-linked polyubiquitination (PubMed:39900921). May also deubiquitinate other substrates such as the calcium channel CACNA1H (By similarity). {ECO:0000250|UniProtKB:P56399, ECO:0000269|PubMed:19098288, ECO:0000269|PubMed:26912724, ECO:0000269|PubMed:29567855, ECO:0000269|PubMed:37208329, ECO:0000269|PubMed:37534934, ECO:0000269|PubMed:39032648, ECO:0000269|PubMed:39761299, ECO:0000269|PubMed:39900921}. |
P46013 | MKI67 | T1021 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | T1143 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | T1323 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | T2356 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | T2720 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46100 | ATRX | T724 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | T887 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | T1346 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46777 | RPL5 | T177 | ochoa | Large ribosomal subunit protein uL18 (60S ribosomal protein L5) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel. As part of the 5S RNP/5S ribonucleoprotein particle it is an essential component of the LSU, required for its formation and the maturation of rRNAs (PubMed:12962325, PubMed:19061985, PubMed:23636399, PubMed:24120868). It also couples ribosome biogenesis to p53/TP53 activation. As part of the 5S RNP it accumulates in the nucleoplasm and inhibits MDM2, when ribosome biogenesis is perturbed, mediating the stabilization and the activation of TP53 (PubMed:24120868). {ECO:0000269|PubMed:12962325, ECO:0000269|PubMed:19061985, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:24120868}. |
P46821 | MAP1B | T972 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46939 | UTRN | T2112 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P48681 | NES | T545 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P48681 | NES | T585 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49137 | MAPKAPK2 | T338 | psp | MAP kinase-activated protein kinase 2 (MAPK-activated protein kinase 2) (MAPKAP kinase 2) (MAPKAP-K2) (MAPKAPK-2) (MK-2) (MK2) (EC 2.7.11.1) | Stress-activated serine/threonine-protein kinase involved in cytokine production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling, DNA damage response and transcriptional regulation. Following stress, it is phosphorylated and activated by MAP kinase p38-alpha/MAPK14, leading to phosphorylation of substrates. Phosphorylates serine in the peptide sequence, Hyd-X-R-X(2)-S, where Hyd is a large hydrophobic residue. Phosphorylates ALOX5, CDC25B, CDC25C, CEP131, ELAVL1, HNRNPA0, HSP27/HSPB1, KRT18, KRT20, LIMK1, LSP1, PABPC1, PARN, PDE4A, RCSD1, RPS6KA3, TAB3 and TTP/ZFP36. Phosphorylates HSF1; leading to the interaction with HSP90 proteins and inhibiting HSF1 homotrimerization, DNA-binding and transactivation activities (PubMed:16278218). Mediates phosphorylation of HSP27/HSPB1 in response to stress, leading to the dissociation of HSP27/HSPB1 from large small heat-shock protein (sHsps) oligomers and impairment of their chaperone activities and ability to protect against oxidative stress effectively. Involved in inflammatory response by regulating tumor necrosis factor (TNF) and IL6 production post-transcriptionally: acts by phosphorylating AU-rich elements (AREs)-binding proteins ELAVL1, HNRNPA0, PABPC1 and TTP/ZFP36, leading to the regulation of the stability and translation of TNF and IL6 mRNAs. Phosphorylation of TTP/ZFP36, a major post-transcriptional regulator of TNF, promotes its binding to 14-3-3 proteins and reduces its ARE mRNA affinity, leading to inhibition of dependent degradation of ARE-containing transcripts. Phosphorylates CEP131 in response to cellular stress induced by ultraviolet irradiation which promotes binding of CEP131 to 14-3-3 proteins and inhibits formation of novel centriolar satellites (PubMed:26616734). Also involved in late G2/M checkpoint following DNA damage through a process of post-transcriptional mRNA stabilization: following DNA damage, relocalizes from nucleus to cytoplasm and phosphorylates HNRNPA0 and PARN, leading to stabilization of GADD45A mRNA. Involved in toll-like receptor signaling pathway (TLR) in dendritic cells: required for acute TLR-induced macropinocytosis by phosphorylating and activating RPS6KA3. {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:11844797, ECO:0000269|PubMed:12456657, ECO:0000269|PubMed:12565831, ECO:0000269|PubMed:14499342, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:15014438, ECO:0000269|PubMed:15629715, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:16456544, ECO:0000269|PubMed:17481585, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:20932473, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:8093612, ECO:0000269|PubMed:8280084, ECO:0000269|PubMed:8774846}. |
P49321 | NASP | T349 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49321 | NASP | T490 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49792 | RANBP2 | T1650 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | T2005 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49959 | MRE11 | T329 | psp | Double-strand break repair protein MRE11 (EC 3.1.-.-) (Meiotic recombination 11 homolog 1) (MRE11 homolog 1) (Meiotic recombination 11 homolog A) (MRE11 homolog A) | Core component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:11741547, PubMed:14657032, PubMed:22078559, PubMed:23080121, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:28867292, PubMed:29670289, PubMed:30464262, PubMed:30612738, PubMed:31353207, PubMed:37696958, PubMed:38128537, PubMed:9590181, PubMed:9651580, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:24316220, PubMed:28867292, PubMed:31353207, PubMed:38128537). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:24316220, PubMed:27889449, PubMed:28867292, PubMed:36050397, PubMed:38128537). Within the MRN complex, MRE11 possesses both single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity (PubMed:11741547, PubMed:22078559, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:29670289, PubMed:31353207, PubMed:36563124, PubMed:9590181, PubMed:9651580, PubMed:9705271). After DSBs, MRE11 is loaded onto DSBs sites and cleaves DNA by cooperating with RBBP8/CtIP to initiate end resection (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 first endonucleolytically cleaves the 5' strand at DNA DSB ends to prevent non-homologous end joining (NHEJ) and licence HR (PubMed:24316220). It then generates a single-stranded DNA gap via 3' to 5' exonucleolytic degradation to create entry sites for EXO1- and DNA2-mediated 5' to 3' long-range resection, which is required for single-strand invasion and recombination (PubMed:24316220, PubMed:28867292). RBBP8/CtIP specifically promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 endonuclease activity is also enhanced by AGER/RAGE (By similarity). The MRN complex is also required for DNA damage signaling via activation of the ATM and ATR kinases: the nuclease activity of MRE11 is not required to activate ATM and ATR (PubMed:14657032, PubMed:15064416, PubMed:15790808, PubMed:16622404). The MRN complex is also required for the processing of R-loops (PubMed:31537797). The MRN complex is involved in the activation of the cGAS-STING pathway induced by DNA damage during tumorigenesis: the MRN complex acts by displacing CGAS from nucleosome sequestration, thereby activating it (By similarity). In telomeres the MRN complex may modulate t-loop formation (PubMed:10888888). {ECO:0000250|UniProtKB:Q61216, ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:11741547, ECO:0000269|PubMed:14657032, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:22078559, ECO:0000269|PubMed:23080121, ECO:0000269|PubMed:24316220, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:29670289, ECO:0000269|PubMed:30464262, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:36050397, ECO:0000269|PubMed:36563124, ECO:0000269|PubMed:37696958, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9590181, ECO:0000269|PubMed:9651580, ECO:0000269|PubMed:9705271}.; FUNCTION: MRE11 contains two DNA-binding domains (DBDs), enabling it to bind both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). {ECO:0000305}. |
P50851 | LRBA | T986 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P50851 | LRBA | T1127 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P51114 | FXR1 | T411 | ochoa | RNA-binding protein FXR1 (FMR1 autosomal homolog 1) (hFXR1p) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for various processes, such as neurogenesis, muscle development and spermatogenesis (PubMed:17382880, PubMed:20417602, PubMed:30067974, PubMed:34731628, PubMed:35989368, PubMed:36306353). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:17382880, PubMed:34731628). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (By similarity). Required to activate translation of stored mRNAs during late spermatogenesis: acts by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules that recruit translation initiation factor EIF4G3 to activate translation of stored mRNAs in late spermatids (By similarity). Promotes translation of MYC transcripts by recruiting the eIF4F complex to the translation start site (PubMed:34731628). Acts as a negative regulator of inflammation in response to IL19 by promoting destabilization of pro-inflammatory transcripts (PubMed:30067974). Also acts as an inhibitor of inflammation by binding to TNF mRNA, decreasing TNF protein production (By similarity). Acts as a negative regulator of AMPA receptor GRIA2/GluA2 synthesis during long-lasting synaptic potentiation of hippocampal neurons by binding to GRIA2/GluA2 mRNA, thereby inhibiting its translation (By similarity). Regulates proliferation of adult neural stem cells by binding to CDKN1A mRNA and promoting its expression (By similarity). Acts as a regulator of sleep and synaptic homeostasis by regulating translation of transcripts in neurons (By similarity). Required for embryonic and postnatal development of muscle tissue by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules (PubMed:30770808). Involved in the nuclear pore complex localization to the nuclear envelope by preventing cytoplasmic aggregation of nucleoporins: acts by preventing ectopic phase separation of nucleoporins in the cytoplasm via a microtubule-dependent mechanism (PubMed:32706158). Plays a role in the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with PKP3 (PubMed:25225333). May also do the same for PKP2, PKP3 and DSP via its interaction with PKP1 (PubMed:25225333). Forms a cytoplasmic messenger ribonucleoprotein (mRNP) network by packaging long mRNAs, serving as a scaffold that recruits proteins and signaling molecules. This network facilitates signaling reactions by maintaining proximity between kinases and substrates, crucial for processes like actomyosin reorganization (PubMed:39106863). {ECO:0000250|UniProtKB:Q61584, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:30067974, ECO:0000269|PubMed:30770808, ECO:0000269|PubMed:32706158, ECO:0000269|PubMed:34731628, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36306353, ECO:0000269|PubMed:39106863}. |
P51788 | CLCN2 | T20 | ochoa | Chloride channel protein 2 (ClC-2) | Voltage-gated and osmosensitive chloride channel. Forms a homodimeric channel where each subunit has its own ion conduction pathway. Conducts double-barreled currents controlled by two types of gates, two fast glutamate gates that control each subunit independently and a slow common gate that opens and shuts off both subunits simultaneously. Displays inward rectification currents activated upon membrane hyperpolarization and extracellular hypotonicity (PubMed:16155254, PubMed:17567819, PubMed:19191339, PubMed:23632988, PubMed:29403011, PubMed:29403012, PubMed:36964785, PubMed:38345841). Contributes to chloride conductance involved in neuron excitability. In hippocampal neurons, generates a significant part of resting membrane conductance and provides an additional chloride efflux pathway to prevent chloride accumulation in dendrites upon GABA receptor activation. In glia, associates with the auxiliary subunit HEPACAM/GlialCAM at astrocytic processes and myelinated fiber tracts where it may regulate transcellular chloride flux buffering extracellular chloride and potassium concentrations (PubMed:19191339, PubMed:22405205, PubMed:23707145). Regulates aldosterone production in adrenal glands. The opening of CLCN2 channels at hyperpolarized membrane potentials in the glomerulosa causes cell membrane depolarization, activation of voltage-gated calcium channels and increased expression of aldosterone synthase, the rate-limiting enzyme for aldosterone biosynthesis (PubMed:29403011, PubMed:29403012). Contributes to chloride conductance in retinal pigment epithelium involved in phagocytosis of shed photoreceptor outer segments and photoreceptor renewal (PubMed:36964785). Conducts chloride currents at the basolateral membrane of epithelial cells with a role in chloride reabsorption rather than secretion (By similarity) (PubMed:16155254). Permeable to small monovalent anions with chloride > thiocyanate > bromide > nitrate > iodide ion selectivity (By similarity) (PubMed:29403012). {ECO:0000250|UniProtKB:P35525, ECO:0000250|UniProtKB:Q9R0A1, ECO:0000269|PubMed:16155254, ECO:0000269|PubMed:17567819, ECO:0000269|PubMed:19191339, ECO:0000269|PubMed:22405205, ECO:0000269|PubMed:23632988, ECO:0000269|PubMed:23707145, ECO:0000269|PubMed:29403011, ECO:0000269|PubMed:29403012, ECO:0000269|PubMed:36964785, ECO:0000269|PubMed:38345841}. |
P53618 | COPB1 | T520 | ochoa | Coatomer subunit beta (Beta-coat protein) (Beta-COP) | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors. Plays a functional role in facilitating the transport of kappa-type opioid receptor mRNAs into axons and enhances translation of these proteins. Required for limiting lipid storage in lipid droplets. Involved in lipid homeostasis by regulating the presence of perilipin family members PLIN2 and PLIN3 at the lipid droplet surface and promoting the association of adipocyte surface triglyceride lipase (PNPLA2) with the lipid droplet to mediate lipolysis (By similarity). Involved in the Golgi disassembly and reassembly processes during cell cycle. Involved in autophagy by playing a role in early endosome function. Plays a role in organellar compartmentalization of secretory compartments including endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC), Golgi, trans-Golgi network (TGN) and recycling endosomes, and in biosynthetic transport of CAV1. Promotes degradation of Nef cellular targets CD4 and MHC class I antigens by facilitating their trafficking to degradative compartments. {ECO:0000250, ECO:0000269|PubMed:18385291, ECO:0000269|PubMed:18725938, ECO:0000269|PubMed:19364919, ECO:0000269|PubMed:20056612}. |
P53985 | SLC16A1 | T466 | ochoa | Monocarboxylate transporter 1 (MCT 1) (Solute carrier family 16 member 1) | Bidirectional proton-coupled monocarboxylate transporter (PubMed:12946269, PubMed:32946811, PubMed:33333023). Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, acetate and the ketone bodies acetoacetate and beta-hydroxybutyrate, and thus contributes to the maintenance of intracellular pH (PubMed:12946269, PubMed:33333023). The transport direction is determined by the proton motive force and the concentration gradient of the substrate monocarboxylate. MCT1 is a major lactate exporter (By similarity). Plays a role in cellular responses to a high-fat diet by modulating the cellular levels of lactate and pyruvate that contribute to the regulation of central metabolic pathways and insulin secretion, with concomitant effects on plasma insulin levels and blood glucose homeostasis (By similarity). Facilitates the protonated monocarboxylate form of succinate export, that its transient protonation upon muscle cell acidification in exercising muscle and ischemic heart (PubMed:32946811). Functions via alternate outward- and inward-open conformation states. Protonation and deprotonation of 309-Asp is essential for the conformational transition (PubMed:33333023). {ECO:0000250|UniProtKB:P53986, ECO:0000250|UniProtKB:P53987, ECO:0000269|PubMed:12946269, ECO:0000269|PubMed:32946811, ECO:0000269|PubMed:33333023}. |
P54756 | EPHA5 | T649 | ochoa | Ephrin type-A receptor 5 (EC 2.7.10.1) (Brain-specific kinase) (EPH homology kinase 1) (EHK-1) (EPH-like kinase 7) (EK7) (hEK7) | Receptor tyrosine kinase which binds promiscuously GPI-anchored ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Among GPI-anchored ephrin-A ligands, EFNA5 most probably constitutes the cognate/functional ligand for EPHA5. Functions as an axon guidance molecule during development and may be involved in the development of the retinotectal, entorhino-hippocampal and hippocamposeptal pathways. Together with EFNA5 plays also a role in synaptic plasticity in adult brain through regulation of synaptogenesis. In addition to its function in the nervous system, the interaction of EPHA5 with EFNA5 mediates communication between pancreatic islet cells to regulate glucose-stimulated insulin secretion (By similarity). {ECO:0000250}. |
P54764 | EPHA4 | T595 | ochoa | Ephrin type-A receptor 4 (EC 2.7.10.1) (EPH-like kinase 8) (EK8) (hEK8) (Tyrosine-protein kinase TYRO1) (Tyrosine-protein kinase receptor SEK) | Receptor tyrosine kinase which binds membrane-bound ephrin family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Highly promiscuous, it has the unique property among Eph receptors to bind and to be physiologically activated by both GPI-anchored ephrin-A and transmembrane ephrin-B ligands including EFNA1 and EFNB3. Upon activation by ephrin ligands, modulates cell morphology and integrin-dependent cell adhesion through regulation of the Rac, Rap and Rho GTPases activity. Plays an important role in the development of the nervous system controlling different steps of axonal guidance including the establishment of the corticospinal projections. May also control the segregation of motor and sensory axons during neuromuscular circuit development. In addition to its role in axonal guidance plays a role in synaptic plasticity. Activated by EFNA1 phosphorylates CDK5 at 'Tyr-15' which in turn phosphorylates NGEF regulating RHOA and dendritic spine morphogenesis. In the nervous system, also plays a role in repair after injury preventing axonal regeneration and in angiogenesis playing a role in central nervous system vascular formation. Additionally, its promiscuity makes it available to participate in a variety of cell-cell signaling regulating for instance the development of the thymic epithelium. During development of the cochlear organ of Corti, regulates pillar cell separation by forming a ternary complex with ADAM10 and CADH1 which facilitates the cleavage of CADH1 by ADAM10 and disruption of adherens junctions (By similarity). Phosphorylates CAPRIN1, promoting CAPRIN1-dependent formation of a membraneless compartment (By similarity). {ECO:0000250|UniProtKB:Q03137, ECO:0000269|PubMed:17143272}. |
P54821 | PRRX1 | T71 | ochoa | Paired mesoderm homeobox protein 1 (Homeobox protein PHOX1) (Paired-related homeobox protein 1) (PRX-1) | Master transcription factor of stromal fibroblasts for myofibroblastic lineage progression. Orchestrates the functional drift of fibroblasts into myofibroblastic phenotype via TGF-beta signaling by remodeling a super-enhancer landscape. Through this function, plays an essential role in wound healing process (PubMed:35589735). Acts as a transcriptional regulator of muscle creatine kinase (MCK) and so has a role in the establishment of diverse mesodermal muscle types. The protein binds to an A/T-rich element in the muscle creatine enhancer (By similarity). May play a role in homeostasis and regeneration of bone, white adipose tissue and derm (By similarity). {ECO:0000250|UniProtKB:P63013, ECO:0000269|PubMed:35589735}.; FUNCTION: [Isoform 1]: Transcriptional activator, when transfected in fibroblastic or myoblastic cell lines. This activity may be masked by the C-terminal OAR domain. {ECO:0000250|UniProtKB:P63013}.; FUNCTION: [Isoform 2]: Transcriptional repressor, when transfected in fibroblastic or myoblastic cell lines. {ECO:0000250|UniProtKB:P63013}. |
P55081 | MFAP1 | T267 | ochoa | Microfibrillar-associated protein 1 (Spliceosome B complex protein MFAP1) | Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:28781166}. |
P55196 | AFDN | T909 | psp | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55201 | BRPF1 | T139 | ochoa | Peregrin (Bromodomain and PHD finger-containing protein 1) (Protein Br140) | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:24065767, PubMed:27939640). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac) (PubMed:24065767). Some HAT complexes preferentially mediate histone H3 'Lys-23' (H3K23ac) acetylation (PubMed:27939640). Positively regulates the transcription of RUNX1 and RUNX2 (PubMed:18794358). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:27939640}. |
P60709 | ACTB | T318 | ochoa | Actin, cytoplasmic 1 (EC 3.6.4.-) (Beta-actin) [Cleaved into: Actin, cytoplasmic 1, N-terminally processed] | Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells (PubMed:25255767, PubMed:29581253). Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction (PubMed:29581253). In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA (PubMed:29925947). Plays a role in the assembly of the gamma-tubulin ring complex (gTuRC), which regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments (PubMed:39321809, PubMed:38609661). Part of the ACTR1A/ACTB filament around which the dynactin complex is built (By similarity). The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:Q6QAQ1, ECO:0000269|PubMed:25255767, ECO:0000269|PubMed:29581253, ECO:0000269|PubMed:29925947, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
P62258 | YWHAE | T229 | ochoa | 14-3-3 protein epsilon (14-3-3E) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:21189250). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35343654). Binding generally results in the modulation of the activity of the binding partner (By similarity). Positively regulates phosphorylated protein HSF1 nuclear export to the cytoplasm (PubMed:12917326). Plays a positive role in the antiviral signaling pathway upstream of TBK1 via interaction with RIGI (PubMed:37555661). Mechanistically, directs RIGI redistribution from the cytosol to mitochondrial associated membranes where it mediates MAVS-dependent innate immune signaling during viral infection (PubMed:22607805). Plays a role in proliferation inhibition and cell cycle arrest by exporting HNRNPC from the nucleus to the cytoplasm to be degraded by ubiquitination (PubMed:37599448). {ECO:0000250|UniProtKB:P62261, ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:21189250, ECO:0000269|PubMed:22607805, ECO:0000269|PubMed:35343654, ECO:0000269|PubMed:37555661, ECO:0000269|PubMed:37599448}. |
P62736 | ACTA2 | T320 | ochoa | Actin, aortic smooth muscle (EC 3.6.4.-) (Alpha-actin-2) (Cell growth-inhibiting gene 46 protein) [Cleaved into: Actin, aortic smooth muscle, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P63261 | ACTG1 | T318 | ochoa | Actin, cytoplasmic 2 (EC 3.6.4.-) (Gamma-actin) [Cleaved into: Actin, cytoplasmic 2, N-terminally processed] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. May play a role in the repair of noise-induced stereocilia gaps thereby maintains hearing sensitivity following loud noise damage (By similarity). {ECO:0000250|UniProtKB:P63260, ECO:0000305|PubMed:29581253}. |
P63267 | ACTG2 | T319 | ochoa | Actin, gamma-enteric smooth muscle (EC 3.6.4.-) (Alpha-actin-3) (Gamma-2-actin) (Smooth muscle gamma-actin) [Cleaved into: Actin, gamma-enteric smooth muscle, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P68032 | ACTC1 | T320 | ochoa | Actin, alpha cardiac muscle 1 (EC 3.6.4.-) (Alpha-cardiac actin) [Cleaved into: Actin, alpha cardiac muscle 1, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P68133 | ACTA1 | T320 | ochoa | Actin, alpha skeletal muscle (EC 3.6.4.-) (Alpha-actin-1) [Cleaved into: Actin, alpha skeletal muscle, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P78371 | CCT2 | T261 | ochoa | T-complex protein 1 subunit beta (TCP-1-beta) (EC 3.6.1.-) (CCT-beta) (Chaperonin containing T-complex polypeptide 1 subunit 2) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P78524 | DENND2B | T482 | ochoa | DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) | [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}. |
P78559 | MAP1A | T616 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | T638 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P80303 | NUCB2 | T335 | ochoa | Nucleobindin-2 (DNA-binding protein NEFA) (Epididymis secretory protein Li 109) (Gastric cancer antigen Zg4) (Prepronesfatin) [Cleaved into: Nesfatin-1] | Calcium-binding protein which may have a role in calcium homeostasis (By similarity). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein (G-protein) alpha subunit GNAI3 (By similarity). {ECO:0000250|UniProtKB:P81117, ECO:0000250|UniProtKB:Q9JI85}.; FUNCTION: [Nesfatin-1]: Anorexigenic peptide, seems to play an important role in hypothalamic pathways regulating food intake and energy homeostasis, acting in a leptin-independent manner. May also exert hypertensive roles and modulate blood pressure through directly acting on peripheral arterial resistance. In intestinal epithelial cells, plays a role in the inhibition of hepatic glucose production via MC4R receptor leading to increased cyclic adenosine monophosphate (cAMP) levels and glucagon-like peptide 1 (GLP-1) secretion (PubMed:39562740). {ECO:0000250|UniProtKB:Q9JI85, ECO:0000269|PubMed:39562740}. |
P82094 | TMF1 | T215 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
P82979 | SARNP | T60 | ochoa | SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}. |
P83731 | RPL24 | T83 | ochoa | Large ribosomal subunit protein eL24 (60S ribosomal protein L24) (60S ribosomal protein L30) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q00013 | MPP1 | T123 | ochoa | 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) | Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}. |
Q00587 | CDC42EP1 | T372 | ochoa | Cdc42 effector protein 1 (Binder of Rho GTPases 5) (Serum protein MSE55) | Probably involved in the organization of the actin cytoskeleton. Induced membrane extensions in fibroblasts. {ECO:0000269|PubMed:10430899}. |
Q00987 | MDM2 | T158 | psp | E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) | E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}. |
Q01105 | SET | T27 | ochoa | Protein SET (HLA-DR-associated protein II) (Inhibitor of granzyme A-activated DNase) (IGAAD) (PHAPII) (Phosphatase 2A inhibitor I2PP2A) (I-2PP2A) (Template-activating factor I) (TAF-I) | Multitasking protein, involved in apoptosis, transcription, nucleosome assembly and histone chaperoning. Isoform 2 anti-apoptotic activity is mediated by inhibition of the GZMA-activated DNase, NME1. In the course of cytotoxic T-lymphocyte (CTL)-induced apoptosis, GZMA cleaves SET, disrupting its binding to NME1 and releasing NME1 inhibition. Isoform 1 and isoform 2 are potent inhibitors of protein phosphatase 2A. Isoform 1 and isoform 2 inhibit EP300/CREBBP and PCAF-mediated acetylation of histones (HAT) and nucleosomes, most probably by masking the accessibility of lysines of histones to the acetylases. The predominant target for inhibition is histone H4. HAT inhibition leads to silencing of HAT-dependent transcription and prevents active demethylation of DNA. Both isoforms stimulate DNA replication of the adenovirus genome complexed with viral core proteins; however, isoform 2 specific activity is higher. {ECO:0000269|PubMed:11555662, ECO:0000269|PubMed:12628186}. |
Q01484 | ANK2 | T2719 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q02447 | SP3 | T567 | ochoa | Transcription factor Sp3 (SPR-2) | Transcriptional factor that can act as an activator or repressor depending on isoform and/or post-translational modifications. Binds to GT and GC boxes promoter elements. Competes with SP1 for the GC-box promoters. Weak activator of transcription but can activate a number of genes involved in different processes such as cell-cycle regulation, hormone-induction and house-keeping. {ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11812829, ECO:0000269|PubMed:12419227, ECO:0000269|PubMed:12837748, ECO:0000269|PubMed:15247228, ECO:0000269|PubMed:15494207, ECO:0000269|PubMed:15554904, ECO:0000269|PubMed:16781829, ECO:0000269|PubMed:17548428, ECO:0000269|PubMed:18187045, ECO:0000269|PubMed:18617891, ECO:0000269|PubMed:9278495}. |
Q02952 | AKAP12 | T351 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02952 | AKAP12 | T646 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02952 | AKAP12 | T919 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02952 | AKAP12 | T1377 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q05209 | PTPN12 | T718 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q06481 | APLP2 | T723 | psp | Amyloid beta precursor like protein 2 (APPH) (Amyloid beta (A4) precursor-like protein 2) (Amyloid protein homolog) (Amyloid-like protein 2) (APLP-2) (CDEI box-binding protein) (CDEBP) (Sperm membrane protein YWK-II) | May play a role in the regulation of hemostasis. The soluble form may have inhibitory properties towards coagulation factors. May interact with cellular G-protein signaling pathways. May bind to the DNA 5'-GTCACATG-3'(CDEI box). Inhibits trypsin, chymotrypsin, plasmin, factor XIA and plasma and glandular kallikrein. Modulates the Cu/Zn nitric oxide-catalyzed autodegradation of GPC1 heparan sulfate side chains in fibroblasts (By similarity). {ECO:0000250, ECO:0000269|PubMed:8307156}. |
Q07157 | TJP1 | T772 | psp | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08AE8 | SPIRE1 | T163 | ochoa | Protein spire homolog 1 (Spir-1) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:11747823, PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (PubMed:11747823). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with FMN2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). In addition, promotes innate immune signaling downstream of dsRNA sensing (PubMed:35148361). Mechanistically, contributes to IRF3 phosphorylation and activation downstream of MAVS and upstream of TBK1 (PubMed:35148361). {ECO:0000269|PubMed:11747823, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480, ECO:0000269|PubMed:35148361}. |
Q0ZGT2 | NEXN | T363 | ochoa | Nexilin (F-actin-binding protein) (Nelin) | Involved in regulating cell migration through association with the actin cytoskeleton. Has an essential role in the maintenance of Z line and sarcomere integrity. {ECO:0000269|PubMed:12053183, ECO:0000269|PubMed:15823560, ECO:0000269|PubMed:19881492}. |
Q12774 | ARHGEF5 | T193 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q12873 | CHD3 | T1595 | ochoa | Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}. |
Q12888 | TP53BP1 | T593 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | T1688 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q13042 | CDC16 | T585 | ochoa | Cell division cycle protein 16 homolog (Anaphase-promoting complex subunit 6) (APC6) (CDC16 homolog) (CDC16Hs) (Cyclosome subunit 6) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q13043 | STK4 | T340 | ochoa|psp | Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}. |
Q13043 | STK4 | T387 | psp | Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}. |
Q13123 | IK | T329 | ochoa | Protein Red (Cytokine IK) (IK factor) (Protein RER) | Involved in pre-mRNA splicing as a component of the spliceosome (PubMed:28781166). Auxiliary spliceosomal protein that regulates selection of alternative splice sites in a small set of target pre-mRNA species (Probable). Required for normal mitotic cell cycle progression (PubMed:22351768, PubMed:24252166). Recruits MAD1L1 and MAD2L1 to kinetochores, and is required to trigger the spindle assembly checkpoint (PubMed:22351768). Required for normal accumulation of SMU1 (PubMed:24945353). {ECO:0000269|PubMed:22351768, ECO:0000269|PubMed:24252166, ECO:0000269|PubMed:24945353, ECO:0000269|PubMed:28781166, ECO:0000305}.; FUNCTION: (Microbial infection) Required, together with SMU1, for normal splicing of influenza A virus NS1 pre-mRNA, which is required for the production of the exportin NS2 and for the production of influenza A virus particles. Not required for the production of VSV virus particles. {ECO:0000269|PubMed:24945353}. |
Q13185 | CBX3 | T55 | psp | Chromobox protein homolog 3 (HECH) (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (Modifier 2 protein) | Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the recruitment of the methyltransferases SUV39H1 and/or SUV39H2 by the PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1. Mediates the recruitment of NIPBL to sites of DNA damage at double-strand breaks (DSBs) (PubMed:28167679). {ECO:0000250|UniProtKB:P23198, ECO:0000269|PubMed:28167679}. |
Q13188 | STK3 | T336 | ochoa | Serine/threonine-protein kinase 3 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 2) (MST-2) (STE20-like kinase MST2) (Serine/threonine-protein kinase Krs-1) [Cleaved into: Serine/threonine-protein kinase 3 36kDa subunit (MST2/N); Serine/threonine-protein kinase 3 20kDa subunit (MST2/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation (PubMed:11278283, PubMed:8566796, PubMed:8816758). Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714, PubMed:29063833, PubMed:30622739). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714). STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation. Phosphorylates NKX2-1 (By similarity). Phosphorylates NEK2 and plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosome, and its ability to phosphorylate CROCC and CEP250 (PubMed:21076410, PubMed:21723128). In conjunction with SAV1, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation (PubMed:21104395). Positively regulates RAF1 activation via suppression of the inhibitory phosphorylation of RAF1 on 'Ser-259' (PubMed:20212043). Phosphorylates MOBKL1A and RASSF2 (PubMed:19525978). Phosphorylates MOBKL1B on 'Thr-74'. Acts cooperatively with MOBKL1B to activate STK38 (PubMed:18328708, PubMed:18362890). {ECO:0000250|UniProtKB:Q9JI10, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:15688006, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18362890, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:20212043, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:21723128, ECO:0000269|PubMed:23972470, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:29063833, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:8566796, ECO:0000269|PubMed:8816758}. |
Q13428 | TCOF1 | T1385 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13464 | ROCK1 | T1024 | psp | Rho-associated protein kinase 1 (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-35) (Rho-associated, coiled-coil-containing protein kinase 1) (Rho-associated, coiled-coil-containing protein kinase I) (ROCK-I) (p160 ROCK-1) (p160ROCK) | Protein kinase which is a key regulator of the actin cytoskeleton and cell polarity (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:8617235, PubMed:9722579). Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of DAPK3, GFAP, LIMK1, LIMK2, MYL9/MLC2, TPPP, PFN1 and PPP1R12A (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:23093407, PubMed:23355470, PubMed:8617235, PubMed:9722579). Phosphorylates FHOD1 and acts synergistically with it to promote SRC-dependent non-apoptotic plasma membrane blebbing (PubMed:18694941). Phosphorylates JIP3 and regulates the recruitment of JNK to JIP3 upon UVB-induced stress (PubMed:19036714). Acts as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability (By similarity). Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation (PubMed:19181962). Required for centrosome positioning and centrosome-dependent exit from mitosis (By similarity). Plays a role in terminal erythroid differentiation (PubMed:21072057). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Promotes keratinocyte terminal differentiation (PubMed:19997641). Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process, essential for osteoblast mineralization (By similarity). May regulate closure of the eyelids and ventral body wall by inducing the assembly of actomyosin bundles (By similarity). {ECO:0000250|UniProtKB:P70335, ECO:0000250|UniProtKB:Q8MIT6, ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:10652353, ECO:0000269|PubMed:11018042, ECO:0000269|PubMed:11283607, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18573880, ECO:0000269|PubMed:18694941, ECO:0000269|PubMed:19036714, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19181962, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21072057, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:8617235, ECO:0000269|PubMed:9722579}. |
Q13464 | ROCK1 | T1189 | ochoa | Rho-associated protein kinase 1 (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-35) (Rho-associated, coiled-coil-containing protein kinase 1) (Rho-associated, coiled-coil-containing protein kinase I) (ROCK-I) (p160 ROCK-1) (p160ROCK) | Protein kinase which is a key regulator of the actin cytoskeleton and cell polarity (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:8617235, PubMed:9722579). Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of DAPK3, GFAP, LIMK1, LIMK2, MYL9/MLC2, TPPP, PFN1 and PPP1R12A (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:23093407, PubMed:23355470, PubMed:8617235, PubMed:9722579). Phosphorylates FHOD1 and acts synergistically with it to promote SRC-dependent non-apoptotic plasma membrane blebbing (PubMed:18694941). Phosphorylates JIP3 and regulates the recruitment of JNK to JIP3 upon UVB-induced stress (PubMed:19036714). Acts as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability (By similarity). Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation (PubMed:19181962). Required for centrosome positioning and centrosome-dependent exit from mitosis (By similarity). Plays a role in terminal erythroid differentiation (PubMed:21072057). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Promotes keratinocyte terminal differentiation (PubMed:19997641). Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process, essential for osteoblast mineralization (By similarity). May regulate closure of the eyelids and ventral body wall by inducing the assembly of actomyosin bundles (By similarity). {ECO:0000250|UniProtKB:P70335, ECO:0000250|UniProtKB:Q8MIT6, ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:10652353, ECO:0000269|PubMed:11018042, ECO:0000269|PubMed:11283607, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18573880, ECO:0000269|PubMed:18694941, ECO:0000269|PubMed:19036714, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19181962, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21072057, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:8617235, ECO:0000269|PubMed:9722579}. |
Q13610 | PWP1 | T86 | ochoa | Periodic tryptophan protein 1 homolog (Keratinocyte protein IEF SSP 9502) | Chromatin-associated factor that regulates transcription (PubMed:29065309). Regulates Pol I-mediated rRNA biogenesis and, probably, Pol III-mediated transcription (PubMed:29065309). Regulates the epigenetic status of rDNA (PubMed:29065309). {ECO:0000269|PubMed:29065309}. |
Q13905 | RAPGEF1 | T248 | ochoa | Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) | Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}. |
Q14005 | IL16 | T1040 | ochoa | Pro-interleukin-16 [Cleaved into: Interleukin-16 (IL-16) (Lymphocyte chemoattractant factor) (LCF)] | Interleukin-16 stimulates a migratory response in CD4+ lymphocytes, monocytes, and eosinophils. Primes CD4+ T-cells for IL-2 and IL-15 responsiveness. Also induces T-lymphocyte expression of interleukin 2 receptor. Ligand for CD4.; FUNCTION: [Isoform 1]: May act as a scaffolding protein that anchors ion channels in the membrane.; FUNCTION: Isoform 3 is involved in cell cycle progression in T-cells. Appears to be involved in transcriptional regulation of SKP2 and is probably part of a transcriptional repression complex on the core promoter of the SKP2 gene. May act as a scaffold for GABPB1 (the DNA-binding subunit the GABP transcription factor complex) and HDAC3 thus maintaining transcriptional repression and blocking cell cycle progression in resting T-cells. |
Q14126 | DSG2 | T973 | ochoa | Desmoglein-2 (Cadherin family member 5) (HDGC) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:38395410). Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion. Required for proliferation and viability of embryonic stem cells in the blastocyst, thereby crucial for progression of post-implantation embryonic development (By similarity). Maintains pluripotency by regulating epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via interacting with and sequestering CTNNB1 to sites of cell-cell contact, thereby reducing translocation of CTNNB1 to the nucleus and subsequent transcription of CTNNB1/TCF-target genes (PubMed:29910125). Promotes pluripotency and the multi-lineage differentiation potential of hematopoietic stem cells (PubMed:27338829). Plays a role in endothelial cell sprouting and elongation via mediating the junctional-association of cortical actin fibers and CDH5 (PubMed:27338829). Plays a role in limiting inflammatory infiltration and the apoptotic response to injury in kidney tubular epithelial cells, potentially via its role in maintaining cell-cell adhesion and the epithelial barrier (PubMed:38395410). {ECO:0000250|UniProtKB:O55111, ECO:0000269|PubMed:27338829, ECO:0000269|PubMed:29910125, ECO:0000269|PubMed:38395410}. |
Q14141 | SEPTIN6 | T323 | ochoa | Septin-6 | Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Involved in cytokinesis. May play a role in HCV RNA replication. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). {ECO:0000269|PubMed:17229681, ECO:0000269|PubMed:17803907, ECO:0000305|PubMed:25588830}. |
Q14151 | SAFB2 | T25 | ochoa | Scaffold attachment factor B2 (SAF-B2) | Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation. |
Q14155 | ARHGEF7 | T265 | ochoa | Rho guanine nucleotide exchange factor 7 (Beta-Pix) (COOL-1) (PAK-interacting exchange factor beta) (p85) | Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions (By similarity). May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons. {ECO:0000250, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750}. |
Q14444 | CAPRIN1 | T306 | ochoa | Caprin-1 (Cell cycle-associated protein 1) (Cytoplasmic activation- and proliferation-associated protein 1) (GPI-anchored membrane protein 1) (GPI-anchored protein p137) (GPI-p137) (p137GPI) (Membrane component chromosome 11 surface marker 1) (RNA granule protein 105) | mRNA-binding protein that acts as a regulator of mRNAs transport, translation and/or stability, and which is involved in neurogenesis, synaptic plasticity in neurons and cell proliferation and migration in multiple cell types (PubMed:17210633, PubMed:31439799, PubMed:35979925). Plays an essential role in cytoplasmic stress granule formation (PubMed:35977029). Acts as an mRNA regulator by mediating formation of some phase-separated membraneless compartment: undergoes liquid-liquid phase separation upon binding to target mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (PubMed:31439799, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34074792, PubMed:36040869, PubMed:36279435). Undergoes liquid-liquid phase separation following phosphorylation and interaction with FMR1, promoting formation of cytoplasmic ribonucleoprotein granules that concentrate mRNAs with factors that inhibit translation and mediate deadenylation of target mRNAs (PubMed:31439799). In these cytoplasmic ribonucleoprotein granules, CAPRIN1 mediates recruitment of CNOT7 deadenylase, leading to mRNA deadenylation and degradation (PubMed:31439799). Binds directly and selectively to MYC and CCND2 mRNAs (PubMed:17210633). In neuronal cells, directly binds to several mRNAs associated with RNA granules, including BDNF, CAMK2A, CREB1, MAP2, NTRK2 mRNAs, as well as to GRIN1 and KPNB1 mRNAs, but not to rRNAs (PubMed:17210633). {ECO:0000269|PubMed:17210633, ECO:0000269|PubMed:31439799, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:34074792, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:35979925, ECO:0000269|PubMed:36040869, ECO:0000269|PubMed:36279435}. |
Q14457 | BECN1 | T406 | psp | Beclin-1 (Coiled-coil myosin-like BCL2-interacting protein) (Protein GT197) [Cleaved into: Beclin-1-C 35 kDa; Beclin-1-C 37 kDa] | Plays a central role in autophagy (PubMed:18570871, PubMed:21358617, PubMed:23184933, PubMed:23974797, PubMed:25484083, PubMed:28445460, PubMed:37776275). Acts as a core subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and required for the abscission step in cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20208530, PubMed:20643123, PubMed:23974797, PubMed:26783301). Essential for the formation of PI3KC3-C2 but not PI3KC3-C1 PI3K complex forms. Involved in endocytosis (PubMed:25275521). May play a role in antiviral host defense. {ECO:0000269|PubMed:18570871, ECO:0000269|PubMed:20208530, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:21358617, ECO:0000269|PubMed:23184933, ECO:0000269|PubMed:23974797, ECO:0000269|PubMed:25275521, ECO:0000269|PubMed:25484083, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:28445460, ECO:0000269|PubMed:37776275, ECO:0000269|PubMed:9765397}.; FUNCTION: Beclin-1-C 35 kDa localized to mitochondria can promote apoptosis; it induces the mitochondrial translocation of BAX and the release of proapoptotic factors. {ECO:0000269|PubMed:21364619, ECO:0000269|PubMed:26263979}.; FUNCTION: (Microbial infection) Protects against infection by a neurovirulent strain of Sindbis virus. {ECO:0000269|PubMed:9765397}. |
Q14524 | SCN5A | T594 | psp | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
Q14644 | RASA3 | T203 | ochoa | Ras GTPase-activating protein 3 (GAP1(IP4BP)) (Ins P4-binding protein) | Inhibitory regulator of the Ras-cyclic AMP pathway. Binds inositol tetrakisphosphate (IP4) with high affinity. Might be a specific IP4 receptor. |
Q14676 | MDC1 | T449 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14738 | PPP2R5D | T536 | ochoa | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform (PP2A B subunit isoform B'-delta) (PP2A B subunit isoform B56-delta) (PP2A B subunit isoform PR61-delta) (PP2A B subunit isoform R5-delta) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q14761 | PTPRCAP | T113 | ochoa | Protein tyrosine phosphatase receptor type C-associated protein (PTPRC-associated protein) (CD45-associated protein) (CD45-AP) (Lymphocyte phosphatase-associated phosphoprotein) | None |
Q15003 | NCAPH | T208 | ochoa | Condensin complex subunit 2 (Barren homolog protein 1) (Chromosome-associated protein H) (hCAP-H) (Non-SMC condensin I complex subunit H) (XCAP-H homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases (PubMed:11136719). Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}. |
Q15029 | EFTUD2 | T90 | ochoa | 116 kDa U5 small nuclear ribonucleoprotein component (Elongation factor Tu GTP-binding domain-containing protein 2) (SNU114 homolog) (hSNU114) (U5 snRNP-specific protein, 116 kDa) (U5-116 kDa) | Required for pre-mRNA splicing as component of the spliceosome, including pre-catalytic, catalytic and post-catalytic spliceosomal complexes (PubMed:25092792, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30315277, PubMed:30705154). Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome (PubMed:16723661). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:16723661, ECO:0000269|PubMed:25092792, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:30705154, ECO:0000305|PubMed:33509932}. |
Q15046 | KARS1 | T52 | psp | Lysine--tRNA ligase (EC 2.7.7.-) (EC 6.1.1.6) (Lysyl-tRNA synthetase) (LysRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:18029264, PubMed:18272479, PubMed:9278442). When secreted, acts as a signaling molecule that induces immune response through the activation of monocyte/macrophages (PubMed:15851690). Catalyzes the synthesis of the signaling molecule diadenosine tetraphosphate (Ap4A), and thereby mediates disruption of the complex between HINT1 and MITF and the concomitant activation of MITF transcriptional activity (PubMed:14975237, PubMed:19524539, PubMed:23159739, PubMed:5338216). {ECO:0000269|PubMed:14975237, ECO:0000269|PubMed:15851690, ECO:0000269|PubMed:18029264, ECO:0000269|PubMed:19524539, ECO:0000269|PubMed:28887846, ECO:0000269|PubMed:5338216, ECO:0000269|PubMed:9278442}.; FUNCTION: (Microbial infection) Interacts with HIV-1 virus GAG protein, facilitating the selective packaging of tRNA(3)(Lys), the primer for reverse transcription initiation. {ECO:0000269|PubMed:15220430}. |
Q15149 | PLEC | T1282 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15208 | STK38 | T74 | psp | Serine/threonine-protein kinase 38 (EC 2.7.11.1) (NDR1 protein kinase) (Nuclear Dbf2-related kinase 1) | Serine/threonine-protein kinase that acts as a negative regulator of MAP3K1/2 signaling (PubMed:12493777, PubMed:15197186, PubMed:17906693, PubMed:7761441). Converts MAP3K2 from its phosphorylated form to its non-phosphorylated form and inhibits autophosphorylation of MAP3K2 (PubMed:12493777, PubMed:15197186, PubMed:17906693, PubMed:7761441). Acts as an ufmylation 'reader' in a kinase-independent manner: specifically recognizes and binds mono-ufmylated histone H4 in response to DNA damage, promoting the recruitment of SUV39H1 to the double-strand breaks, resulting in ATM activation (PubMed:32537488). {ECO:0000269|PubMed:12493777, ECO:0000269|PubMed:15197186, ECO:0000269|PubMed:17906693, ECO:0000269|PubMed:32537488, ECO:0000269|PubMed:7761441}. |
Q15303 | ERBB4 | T1215 | ochoa | Receptor tyrosine-protein kinase erbB-4 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-4) (Tyrosine kinase-type cell surface receptor HER4) (p180erbB4) [Cleaved into: ERBB4 intracellular domain (4ICD) (E4ICD) (s80HER4)] | Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins and EGF family members and regulates development of the heart, the central nervous system and the mammary gland, gene transcription, cell proliferation, differentiation, migration and apoptosis. Required for normal cardiac muscle differentiation during embryonic development, and for postnatal cardiomyocyte proliferation. Required for normal development of the embryonic central nervous system, especially for normal neural crest cell migration and normal axon guidance. Required for mammary gland differentiation, induction of milk proteins and lactation. Acts as cell-surface receptor for the neuregulins NRG1, NRG2, NRG3 and NRG4 and the EGF family members BTC, EREG and HBEGF. Ligand binding triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Ligand specificity and signaling is modulated by alternative splicing, proteolytic processing, and by the formation of heterodimers with other ERBB family members, thereby creating multiple combinations of intracellular phosphotyrosines that trigger ligand- and context-specific cellular responses. Mediates phosphorylation of SHC1 and activation of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1. Isoform JM-A CYT-1 and isoform JM-B CYT-1 phosphorylate PIK3R1, leading to the activation of phosphatidylinositol 3-kinase and AKT1 and protect cells against apoptosis. Isoform JM-A CYT-1 and isoform JM-B CYT-1 mediate reorganization of the actin cytoskeleton and promote cell migration in response to NRG1. Isoform JM-A CYT-2 and isoform JM-B CYT-2 lack the phosphotyrosine that mediates interaction with PIK3R1, and hence do not phosphorylate PIK3R1, do not protect cells against apoptosis, and do not promote reorganization of the actin cytoskeleton and cell migration. Proteolytic processing of isoform JM-A CYT-1 and isoform JM-A CYT-2 gives rise to the corresponding soluble intracellular domains (4ICD) that translocate to the nucleus, promote nuclear import of STAT5A, activation of STAT5A, mammary epithelium differentiation, cell proliferation and activation of gene expression. The ERBB4 soluble intracellular domains (4ICD) colocalize with STAT5A at the CSN2 promoter to regulate transcription of milk proteins during lactation. The ERBB4 soluble intracellular domains can also translocate to mitochondria and promote apoptosis. {ECO:0000269|PubMed:10348342, ECO:0000269|PubMed:10353604, ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:10722704, ECO:0000269|PubMed:10867024, ECO:0000269|PubMed:11178955, ECO:0000269|PubMed:11390655, ECO:0000269|PubMed:12807903, ECO:0000269|PubMed:15534001, ECO:0000269|PubMed:15746097, ECO:0000269|PubMed:16251361, ECO:0000269|PubMed:16778220, ECO:0000269|PubMed:16837552, ECO:0000269|PubMed:17486069, ECO:0000269|PubMed:17638867, ECO:0000269|PubMed:19098003, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:8383326, ECO:0000269|PubMed:8617750, ECO:0000269|PubMed:9135143, ECO:0000269|PubMed:9168115, ECO:0000269|PubMed:9334263}. |
Q15424 | SAFB | T188 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15527 | SURF2 | T184 | ochoa | Surfeit locus protein 2 (Surf-2) | None |
Q15545 | TAF7 | T172 | ochoa | Transcription initiation factor TFIID subunit 7 (RNA polymerase II TBP-associated factor subunit F) (Transcription initiation factor TFIID 55 kDa subunit) (TAF(II)55) (TAFII-55) (TAFII55) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10438527, PubMed:33795473). TAF7 forms a promoter DNA binding subcomplex of TFIID, together with TAF1 and TAF2 (PubMed:33795473). Part of a TFIID complex containing TAF10 (TFIID alpha) and a TFIID complex lacking TAF10 (TFIID beta) (PubMed:10438527). {ECO:0000269|PubMed:10438527, ECO:0000269|PubMed:33795473}. |
Q15596 | NCOA2 | T773 | ochoa | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q16181 | SEPTIN7 | T198 | psp | Septin-7 (CDC10 protein homolog) | Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Required for normal progress through mitosis. Involved in cytokinesis. Required for normal association of CENPE with the kinetochore. Plays a role in ciliogenesis and collective cell movements. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). {ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18460473, ECO:0000305|PubMed:25588830}. |
Q16586 | SGCA | T336 | ochoa | Alpha-sarcoglycan (Alpha-SG) (50 kDa dystrophin-associated glycoprotein) (50DAG) (Adhalin) (Dystroglycan-2) | Component of the sarcoglycan complex, a subcomplex of the dystrophin-glycoprotein complex which forms a link between the F-actin cytoskeleton and the extracellular matrix. |
Q16643 | DBN1 | T162 | ochoa | Drebrin (Developmentally-regulated brain protein) | Actin cytoskeleton-organizing protein that plays a role in the formation of cell projections (PubMed:20215400). Required for actin polymerization at immunological synapses (IS) and for the recruitment of the chemokine receptor CXCR4 to IS (PubMed:20215400). Plays a role in dendritic spine morphogenesis and organization, including the localization of the dopamine receptor DRD1 to the dendritic spines (By similarity). Involved in memory-related synaptic plasticity in the hippocampus (By similarity). {ECO:0000250|UniProtKB:Q9QXS6, ECO:0000269|PubMed:20215400}. |
Q16644 | MAPKAPK3 | T317 | psp | MAP kinase-activated protein kinase 3 (MAPK-activated protein kinase 3) (MAPKAP kinase 3) (MAPKAP-K3) (MAPKAPK-3) (MK-3) (EC 2.7.11.1) (Chromosome 3p kinase) (3pK) | Stress-activated serine/threonine-protein kinase involved in cytokines production, endocytosis, cell migration, chromatin remodeling and transcriptional regulation. Following stress, it is phosphorylated and activated by MAP kinase p38-alpha/MAPK14, leading to phosphorylation of substrates. Phosphorylates serine in the peptide sequence, Hyd-X-R-X(2)-S, where Hyd is a large hydrophobic residue. MAPKAPK2 and MAPKAPK3, share the same function and substrate specificity, but MAPKAPK3 kinase activity and level in protein expression are lower compared to MAPKAPK2. Phosphorylates HSP27/HSPB1, KRT18, KRT20, RCSD1, RPS6KA3, TAB3 and TTP/ZFP36. Mediates phosphorylation of HSP27/HSPB1 in response to stress, leading to dissociate HSP27/HSPB1 from large small heat-shock protein (sHsps) oligomers and impair their chaperone activities and ability to protect against oxidative stress effectively. Involved in inflammatory response by regulating tumor necrosis factor (TNF) and IL6 production post-transcriptionally: acts by phosphorylating AU-rich elements (AREs)-binding proteins, such as TTP/ZFP36, leading to regulate the stability and translation of TNF and IL6 mRNAs. Phosphorylation of TTP/ZFP36, a major post-transcriptional regulator of TNF, promotes its binding to 14-3-3 proteins and reduces its ARE mRNA affinity leading to inhibition of dependent degradation of ARE-containing transcript. Involved in toll-like receptor signaling pathway (TLR) in dendritic cells: required for acute TLR-induced macropinocytosis by phosphorylating and activating RPS6KA3. Also acts as a modulator of Polycomb-mediated repression. {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:15563468, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:20599781, ECO:0000269|PubMed:8626550, ECO:0000269|PubMed:8774846}. |
Q1ED39 | KNOP1 | T308 | ochoa | Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) | None |
Q2M2I8 | AAK1 | T694 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q32MZ4 | LRRFIP1 | T537 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q49A88 | CCDC14 | T699 | ochoa | Coiled-coil domain-containing protein 14 | Negatively regulates centriole duplication. Negatively regulates CEP63 and CDK2 centrosomal localization. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806}. |
Q4VCS5 | AMOT | T536 | psp | Angiomotin | Plays a central role in tight junction maintenance via the complex formed with ARHGAP17, which acts by regulating the uptake of polarity proteins at tight junctions. Appears to regulate endothelial cell migration and tube formation. May also play a role in the assembly of endothelial cell-cell junctions. Repressor of YAP1 and WWTR1/TAZ transcription of target genes, potentially via regulation of Hippo signaling-mediated phosphorylation of YAP1 which results in its recruitment to tight junctions (PubMed:21205866). {ECO:0000269|PubMed:11257124, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21205866}. |
Q587J8 | KHDC3L | T145 | psp | KH domain-containing protein 3 (ES cell-associated transcript 1 protein) (KHDC3-like protein) | Component of the subcortical maternal complex (SCMC), a multiprotein complex that plays a key role in early embryonic development (By similarity). The SCMC complex is a structural constituent of cytoplasmic lattices, which consist in fibrous structures found in the cytoplasm of oocytes and preimplantation embryos (By similarity). They are required to store maternal proteins critical for embryonic development, such as proteins that control epigenetic reprogramming of the preimplantation embryo, and prevent their degradation or activation (By similarity). KHDC3 ensures proper spindle assembly by regulating the localization of AURKA via RHOA signaling and of PLK1 via a RHOA-independent process (By similarity). Required for the localization of MAD2L1 to kinetochores to enable spindle assembly checkpoint function (By similarity). As part of the OOEP-KHDC3 scaffold, recruits BLM and TRIM25 to DNA replication forks, thereby promoting the ubiquitination of BLM by TRIM25, enhancing BLM retainment at replication forks and therefore promoting stalled replication fork restart (By similarity). Regulates homologous recombination-mediated DNA repair via recruitment of RAD51 to sites of DNA double-strand breaks, and sustainment of PARP1 activity, which in turn modulates downstream ATM or ATR activation (PubMed:31609975). Activation of ATM or ATR in response to DNA double-strand breaks may be cell-type specific (By similarity). Its role in DNA double-strand break repair is independent of its role in restarting stalled replication forks (By similarity). Promotes neural stem cell neurogenesis and neuronal differentiation in the hippocampus (By similarity). May regulate normal development of learning, memory and anxiety (By similarity). Capable of binding RNA (By similarity). {ECO:0000250|UniProtKB:Q9CWU5, ECO:0000269|PubMed:31609975}. |
Q5F1R6 | DNAJC21 | T417 | ochoa | DnaJ homolog subfamily C member 21 (DnaJ homolog subfamily A member 5) (Protein GS3) | May act as a co-chaperone for HSP70. May play a role in ribosomal RNA (rRNA) biogenesis, possibly in the maturation of the 60S subunit. Binds the precursor 45S rRNA. {ECO:0000269|PubMed:27346687}. |
Q5JS13 | RALGPS1 | T360 | ochoa | Ras-specific guanine nucleotide-releasing factor RalGPS1 (Ral GEF with PH domain and SH3-binding motif 1) (Ral guanine nucleotide exchange factor 2) (RalGEF 2) (RalA exchange factor RalGPS1) | Guanine nucleotide exchange factor (GEF) for the small GTPase RALA. May be involved in cytoskeletal organization (By similarity). Guanine nucleotide exchange factor for. {ECO:0000250, ECO:0000269|PubMed:10747847, ECO:0000269|PubMed:10889189}. |
Q5JSH3 | WDR44 | T129 | ochoa | WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) | Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
Q5JSH3 | WDR44 | T163 | ochoa | WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) | Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
Q5JSZ5 | PRRC2B | T847 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5S007 | LRRK2 | T1491 | psp | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q5SSJ5 | HP1BP3 | T85 | ochoa | Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) | Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}. |
Q5T3I0 | GPATCH4 | T283 | ochoa | G patch domain-containing protein 4 | None |
Q5T4S7 | UBR4 | T3360 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5T8I3 | EEIG2 | T274 | ochoa | EEIG family member 2 (EEIG2) | None |
Q5T8P6 | RBM26 | T590 | ochoa | RNA-binding protein 26 (CTCL tumor antigen se70-2) (RNA-binding motif protein 26) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}. |
Q5TB30 | DEPDC1 | T342 | ochoa | DEP domain-containing protein 1A | May be involved in transcriptional regulation as a transcriptional corepressor. The DEPDC1A-ZNF224 complex may play a critical role in bladder carcinogenesis by repressing the transcription of the A20 gene, leading to transport of NF-KB protein into the nucleus, resulting in suppression of apoptosis of bladder cancer cells. {ECO:0000269|PubMed:20587513}. |
Q5TCX8 | MAP3K21 | T592 | ochoa | Mitogen-activated protein kinase kinase kinase 21 (EC 2.7.11.25) (Mitogen-activated protein kinase kinase kinase MLK4) (Mixed lineage kinase 4) | Negative regulator of TLR4 signaling. Does not activate JNK1/MAPK8 pathway, p38/MAPK14, nor ERK2/MAPK1 pathways. {ECO:0000269|PubMed:21602844}. |
Q5TH69 | ARFGEF3 | T1849 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5UIP0 | RIF1 | T1493 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VU43 | PDE4DIP | T289 | ochoa | Myomegalin (Cardiomyopathy-associated protein 2) (Phosphodiesterase 4D-interacting protein) | Functions as an anchor sequestering components of the cAMP-dependent pathway to Golgi and/or centrosomes (By similarity). {ECO:0000250|UniProtKB:Q9WUJ3}.; FUNCTION: [Isoform 13]: Participates in microtubule dynamics, promoting microtubule assembly. Depending upon the cell context, may act at the level of the Golgi apparatus or that of the centrosome (PubMed:25217626, PubMed:27666745, PubMed:28814570, PubMed:29162697). In complex with AKAP9, recruits CAMSAP2 to the Golgi apparatus and tethers non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745, PubMed:28814570). In complex with AKAP9, EB1/MAPRE1 and CDK5RAP2, contributes to microtubules nucleation and extension from the centrosome to the cell periphery, a crucial process for directed cell migration, mitotic spindle orientation and cell-cycle progression (PubMed:29162697). {ECO:0000269|PubMed:25217626, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28814570, ECO:0000269|PubMed:29162697}. |
Q5VUB5 | FAM171A1 | T421 | ochoa | Protein FAM171A1 (Astroprincin) (APCN) | Involved in the regulation of the cytoskeletal dynamics, plays a role in actin stress fiber formation. {ECO:0000269|PubMed:30312582}. |
Q5VYK3 | ECPAS | T550 | ochoa | Proteasome adapter and scaffold protein ECM29 (Ecm29 proteasome adapter and scaffold) (Proteasome-associated protein ECM29 homolog) | Adapter/scaffolding protein that binds to the 26S proteasome, motor proteins and other compartment specific proteins. May couple the proteasome to different compartments including endosome, endoplasmic reticulum and centrosome. May play a role in ERAD and other enhanced proteolysis (PubMed:15496406). Promotes proteasome dissociation under oxidative stress (By similarity). {ECO:0000250|UniProtKB:Q6PDI5, ECO:0000269|PubMed:15496406, ECO:0000269|PubMed:20682791}. |
Q5XKL5 | BTBD8 | T593 | ochoa | BTB/POZ domain-containing protein 8 (AP2-interacting clathrin-endocytosis) (APache) | Involved in clathrin-mediated endocytosis at the synapse. Plays a role in neuronal development and in synaptic vesicle recycling in mature neurons, a process required for normal synaptic transmission. {ECO:0000250|UniProtKB:Q80TK0}. |
Q6FIF0 | ZFAND6 | T117 | ochoa | AN1-type zinc finger protein 6 (Associated with PRK1 protein) (Zinc finger A20 domain-containing protein 3) | Involved in regulation of TNF-alpha induced NF-kappa-B activation and apoptosis. Involved in modulation of 'Lys-48'-linked polyubiquitination status of TRAF2 and decreases association of TRAF2 with RIPK1. Required for PTS1 target sequence-dependent protein import into peroxisomes and PEX5 stability; may cooperate with PEX6. In vitro involved in PEX5 export from the cytosol to peroxisomes (By similarity). {ECO:0000250, ECO:0000269|PubMed:19285159, ECO:0000269|PubMed:21810480}. |
Q6KC79 | NIPBL | T1198 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6NUP7 | PPP4R4 | T156 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 4 | Putative regulatory subunit of serine/threonine-protein phosphatase 4. |
Q6P995 | FAM171B | T406 | ochoa | Protein FAM171B | None |
Q6P996 | PDXDC1 | T749 | ochoa | Pyridoxal-dependent decarboxylase domain-containing protein 1 (EC 4.1.1.-) | None |
Q6PDB4 | ZNF880 | T424 | ochoa | Zinc finger protein 880 | None |
Q6VMQ6 | ATF7IP | T516 | ochoa | Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}. |
Q6WKZ4 | RAB11FIP1 | T281 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6ZS30 | NBEAL1 | T1844 | ochoa | Neurobeachin-like protein 1 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 16 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 17 protein) | None |
Q6ZSS7 | MFSD6 | T650 | ochoa | Major facilitator superfamily domain-containing protein 6 (Macrophage MHC class I receptor 2 homolog) | None |
Q6ZU80 | CEP128 | T304 | ochoa | Centrosomal protein of 128 kDa (Cep128) | None |
Q71F23 | CENPU | T159 | ochoa | Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}. |
Q7Z3J3 | RGPD4 | T1030 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z4V5 | HDGFL2 | T596 | ochoa | Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) | Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}. |
Q7Z5J4 | RAI1 | T847 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z5K2 | WAPL | T1075 | ochoa | Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) | Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}. |
Q7Z6E9 | RBBP6 | T1173 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z7C8 | TAF8 | T270 | ochoa | Transcription initiation factor TFIID subunit 8 (Protein taube nuss) (TBP-associated factor 43 kDa) (TBP-associated factor 8) (Transcription initiation factor TFIID 43 kDa subunit) (TAFII-43) (TAFII43) (hTAFII43) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF8 is involved in forming the TFIID-B module, together with TAF5 (PubMed:33795473). Mediates both basal and activator-dependent transcription (PubMed:14580349). Plays a role in the differentiation of preadipocyte fibroblasts to adipocytes, however, does not seem to play a role in differentiation of myoblasts (PubMed:14580349). Required for the integration of TAF10 in the TAF complex (PubMed:14580349). May be important for survival of cells of the inner cell mass which constitute the pluripotent cell population of the early embryo (By similarity). {ECO:0000250|UniProtKB:Q9EQH4, ECO:0000269|PubMed:14580349, ECO:0000269|PubMed:33795473}. |
Q86T82 | USP37 | T772 | ochoa | Ubiquitin carboxyl-terminal hydrolase 37 (EC 3.4.19.12) (Deubiquitinating enzyme 37) (Ubiquitin thioesterase 37) (Ubiquitin-specific-processing protease 37) | Deubiquitinase that plays a role in different processes including cell cycle regulation, DNA replication or DNA damage response (PubMed:26299517, PubMed:27296872, PubMed:31911859, PubMed:34509474). Antagonizes the anaphase-promoting complex (APC/C) during G1/S transition by mediating deubiquitination of cyclin-A (CCNA1 and CCNA2), thereby promoting S phase entry. Specifically mediates deubiquitination of 'Lys-11'-linked polyubiquitin chains, a specific ubiquitin-linkage type mediated by the APC/C complex. Phosphorylation at Ser-628 during G1/S phase maximizes the deubiquitinase activity, leading to prevent degradation of cyclin-A (CCNA1 and CCNA2) (PubMed:21596315). Plays an important role in the regulation of DNA replication by stabilizing the licensing factor CDT1 (PubMed:27296872). Also plays an essential role beyond S-phase entry to promote the efficiency and fidelity of replication by deubiquitinating checkpoint kinase 1/CHK1, promoting its stability (PubMed:34509474). Sustains the DNA damage response (DDR) by deubiquitinating and stabilizing the ATP-dependent DNA helicase BLM (PubMed:34606619). Mechanistically, DNA double-strand breaks (DSB) promotes ATM-mediated phosphorylation of USP37 and enhances the binding between USP37 and BLM (PubMed:34606619). Promotes cell migration by deubiquitinating and stabilizing the epithelial-mesenchymal transition (EMT)-inducing transcription factor SNAI (PubMed:31911859). Plays a role in the regulation of mitotic spindle assembly and mitotic progression by associating with chromatin-associated WAPL and stabilizing it through deubiquitination (PubMed:26299517). {ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:26299517, ECO:0000269|PubMed:27296872, ECO:0000269|PubMed:31911859, ECO:0000269|PubMed:34509474, ECO:0000269|PubMed:34606619}. |
Q86TV6 | TTC7B | T161 | ochoa | Tetratricopeptide repeat protein 7B (TPR repeat protein 7B) (Tetratricopeptide repeat protein 7-like-1) (TPR repeat protein 7-like-1) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (PubMed:26571211). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:26571211}. |
Q86VM9 | ZC3H18 | T162 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q86W92 | PPFIBP1 | T798 | ochoa | Liprin-beta-1 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 1) (PTPRF-interacting protein-binding protein 1) (hSGT2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q86X95 | CIR1 | T88 | ochoa | Corepressor interacting with RBPJ 1 (CBF1-interacting corepressor) (Recepin) | May modulate splice site selection during alternative splicing of pre-mRNAs (By similarity). Regulates transcription and acts as corepressor for RBPJ. Recruits RBPJ to the Sin3-histone deacetylase complex (HDAC). Required for RBPJ-mediated repression of transcription. {ECO:0000250, ECO:0000269|PubMed:19409814, ECO:0000269|PubMed:9874765}. |
Q8IV48 | ERI1 | T38 | ochoa | 3'-5' exoribonuclease 1 (EC 3.1.13.1) (3'-5' exonuclease ERI1) (Eri-1 homolog) (Histone mRNA 3'-end-specific exoribonuclease) (Histone mRNA 3'-exonuclease 1) (Protein 3'hExo) (HEXO) | RNA exonuclease that binds to the 3'-end of histone mRNAs and degrades them, suggesting that it plays an essential role in histone mRNA decay after replication (PubMed:14536070, PubMed:16912046, PubMed:17135487, PubMed:37352860). A 2' and 3'-hydroxyl groups at the last nucleotide of the histone 3'-end is required for efficient 3'-end histone mRNA exonuclease activity and degradation of RNA substrates (PubMed:14536070, PubMed:16912046, PubMed:17135487). Also able to degrade the 3'-overhangs of short interfering RNAs (siRNAs) in vitro, suggesting a possible role as regulator of RNA interference (RNAi) (PubMed:14961122). Required for binding the 5'-ACCCA-3' sequence present in stem-loop structure (PubMed:14536070, PubMed:16912046). Able to bind other mRNAs (PubMed:14536070, PubMed:16912046). Required for 5.8S rRNA 3'-end processing (PubMed:37352860). Also binds to 5.8s ribosomal RNA (By similarity). Binds with high affinity to the stem-loop structure of replication-dependent histone pre-mRNAs (PubMed:14536070, PubMed:16912046, PubMed:17135487). In vitro, does not have sequence specificity (PubMed:17135487). In vitro, has weak DNA exonuclease activity (PubMed:17135487). In vitro, shows biphasic kinetics such that there is rapid hydrolysis of the last three unpaired RNA nucleotides in the 39 flanking sequence followed by a much slower cleavage through the stem that occurs over a longer incubation period in the order of hours (PubMed:17135487). ERI1-mediated RNA metabolism plays a key role in chondrogenesis (PubMed:37352860). {ECO:0000250|UniProtKB:Q7TMF2, ECO:0000269|PubMed:14536070, ECO:0000269|PubMed:14961122, ECO:0000269|PubMed:16912046, ECO:0000269|PubMed:17135487, ECO:0000269|PubMed:37352860}. |
Q8IVM0 | CCDC50 | T280 | ochoa | Coiled-coil domain-containing protein 50 (Protein Ymer) | Involved in EGFR signaling. {ECO:0000269|PubMed:15314609}. |
Q8IWS0 | PHF6 | T134 | ochoa | PHD finger protein 6 (PHD-like zinc finger protein) | Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}. |
Q8IZD2 | KMT2E | T619 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZD4 | DCP1B | T142 | ochoa | mRNA-decapping enzyme 1B (EC 3.6.1.62) | May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}. |
Q8IZL8 | PELP1 | T1069 | ochoa | Proline-, glutamic acid- and leucine-rich protein 1 (Modulator of non-genomic activity of estrogen receptor) (Transcription factor HMX3) | Coactivator of estrogen receptor-mediated transcription and a corepressor of other nuclear hormone receptors and sequence-specific transcription factors (PubMed:14963108). Plays a role in estrogen receptor (ER) genomic activity when present in the nuclear compartment by activating the ER target genes in a hormonal stimulation dependent manner. Can facilitate ER non-genomic signaling via SRC and PI3K interaction in the cytosol. Plays a role in E2-mediated cell cycle progression by interacting with RB1. May have important functional implications in ER/growth factor cross-talk. Interacts with several growth factor signaling components including EGFR and HRS. Functions as the key stabilizing component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes. Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit. Regulates pre-60S association of the critical remodeling factor MDN1 (PubMed:21326211). May promote tumorigenesis via its interaction with and modulation of several oncogenes including SRC, PI3K, STAT3 and EGFR. Plays a role in cancer cell metastasis via its ability to modulate E2-mediated cytoskeleton changes and cell migration via its interaction with SRC and PI3K. {ECO:0000269|PubMed:11481323, ECO:0000269|PubMed:12682072, ECO:0000269|PubMed:14963108, ECO:0000269|PubMed:15374949, ECO:0000269|PubMed:15456770, ECO:0000269|PubMed:15579769, ECO:0000269|PubMed:15994929, ECO:0000269|PubMed:16140940, ECO:0000269|PubMed:16352611, ECO:0000269|PubMed:16574651, ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}. |
Q8IZP2 | ST13P4 | T103 | ochoa | Putative protein FAM10A4 (Suppression of tumorigenicity 13 pseudogene 4) | None |
Q8N3X1 | FNBP4 | T516 | ochoa | Formin-binding protein 4 (Formin-binding protein 30) | None |
Q8N4C6 | NIN | T1303 | ochoa | Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) | Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}. |
Q8N5A5 | ZGPAT | T103 | ochoa | Zinc finger CCCH-type with G patch domain-containing protein (G patch domain-containing protein 6) (Zinc finger CCCH domain-containing protein 9) (Zinc finger and G patch domain-containing protein) | Transcription repressor that specifically binds the 5'-GGAG[GA]A[GA]A-3' consensus sequence. Represses transcription by recruiting the chromatin multiprotein complex NuRD to target promoters. Negatively regulates expression of EGFR, a gene involved in cell proliferation, survival and migration. Its ability to repress genes of the EGFR pathway suggest it may act as a tumor suppressor. Able to suppress breast carcinogenesis. {ECO:0000269|PubMed:19644445}.; FUNCTION: [Isoform 4]: Antagonizes the transcription repression by isoform 1 by competing for the binding of the NuRD complex. Does not bind DNA. {ECO:0000269|PubMed:19644445}. |
Q8N5P1 | ZC3H8 | T20 | ochoa | Zinc finger CCCH domain-containing protein 8 | Acts as a transcriptional repressor of the GATA3 promoter. Sequence-specific DNA-binding factor that binds to the 5'-AGGTCTC-3' sequence within the negative cis-acting element intronic regulatory region (IRR) of the GATA3 gene (By similarity). Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:23932780). Induces thymocyte apoptosis when overexpressed, which may indicate a role in regulation of thymocyte homeostasis. {ECO:0000250, ECO:0000269|PubMed:12077251, ECO:0000269|PubMed:12153508, ECO:0000269|PubMed:23932780}. |
Q8N9T8 | KRI1 | T140 | ochoa | Protein KRI1 homolog | None |
Q8NBF6 | AVL9 | T312 | ochoa | Late secretory pathway protein AVL9 homolog | Functions in cell migration. {ECO:0000269|PubMed:22595670}. |
Q8NC51 | SERBP1 | T255 | ochoa | SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) | Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}. |
Q8NCN2 | ZBTB34 | T467 | ochoa | Zinc finger and BTB domain-containing protein 34 | May be a transcriptional repressor. {ECO:0000269|PubMed:16718364}. |
Q8NCN4 | RNF169 | T528 | ochoa | E3 ubiquitin-protein ligase RNF169 (EC 2.3.2.27) (RING finger protein 169) (RING-type E3 ubiquitin transferase RNF169) | Probable E3 ubiquitin-protein ligase that acts as a regulator of double-strand breaks (DSBs) repair following DNA damage. Functions in a non-canonical fashion to harness RNF168-mediated protein recruitment to DSB-containing chromatin, thereby contributing to regulation of DSB repair pathway utilization (PubMed:22492721, PubMed:30773093). Once recruited to DSB repair sites by recognizing and binding ubiquitin catalyzed by RNF168, competes with TP53BP1 and BRCA1 for association with RNF168-modified chromatin, thereby favouring homologous recombination repair (HRR) and single-strand annealing (SSA) instead of non-homologous end joining (NHEJ) mediated by TP53BP1 (PubMed:30104380, PubMed:30773093). E3 ubiquitin-protein ligase activity is not required for regulation of DSBs repair. {ECO:0000269|PubMed:22492721, ECO:0000269|PubMed:22733822, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:30104380, ECO:0000269|PubMed:30773093}. |
Q8NE00 | TMEM104 | T92 | ochoa | Transmembrane protein 104 | None |
Q8NEZ4 | KMT2C | T75 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NFC6 | BOD1L1 | T263 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFC6 | BOD1L1 | T273 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFC6 | BOD1L1 | T2480 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFZ5 | TNIP2 | T193 | ochoa | TNFAIP3-interacting protein 2 (A20-binding inhibitor of NF-kappa-B activation 2) (ABIN-2) (Fetal liver LKB1-interacting protein) | Inhibits NF-kappa-B activation by blocking the interaction of RIPK1 with its downstream effector NEMO/IKBKG. Forms a ternary complex with NFKB1 and MAP3K8 but appears to function upstream of MAP3K8 in the TLR4 signaling pathway that regulates MAP3K8 activation. Involved in activation of the MEK/ERK signaling pathway during innate immune response; this function seems to be stimulus- and cell type specific. Required for stability of MAP3K8. Involved in regulation of apoptosis in endothelial cells; promotes TEK agonist-stimulated endothelial survival. May act as transcriptional coactivator when translocated to the nucleus. Enhances CHUK-mediated NF-kappa-B activation involving NF-kappa-B p50-p65 and p50-c-Rel complexes. {ECO:0000269|PubMed:11389905, ECO:0000269|PubMed:12595760, ECO:0000269|PubMed:12753905, ECO:0000269|PubMed:12933576, ECO:0000269|PubMed:14653779, ECO:0000269|PubMed:15169888, ECO:0000269|PubMed:21784860}. |
Q8NG31 | KNL1 | T1155 | psp | Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) | Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}. |
Q8WXE0 | CASKIN2 | T256 | ochoa | Caskin-2 (CASK-interacting protein 2) | None |
Q92545 | TMEM131 | T1427 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92576 | PHF3 | T356 | ochoa | PHD finger protein 3 | None |
Q92619 | ARHGAP45 | T444 | ochoa | Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}. |
Q92766 | RREB1 | T1471 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92794 | KAT6A | T891 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q96A65 | EXOC4 | T249 | ochoa | Exocyst complex component 4 (Exocyst complex component Sec8) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. {ECO:0000250|UniProtKB:Q62824}. |
Q96CV9 | OPTN | T282 | ochoa | Optineurin (E3-14.7K-interacting protein) (FIP-2) (Huntingtin yeast partner L) (Huntingtin-interacting protein 7) (HIP-7) (Huntingtin-interacting protein L) (NEMO-related protein) (Optic neuropathy-inducing protein) (Transcription factor IIIA-interacting protein) (TFIIIA-IntP) | Plays an important role in the maintenance of the Golgi complex, in membrane trafficking, in exocytosis, through its interaction with myosin VI and Rab8 (PubMed:27534431). Links myosin VI to the Golgi complex and plays an important role in Golgi ribbon formation (PubMed:27534431). Plays a role in the activation of innate immune response during viral infection. Mechanistically, recruits TBK1 at the Golgi apparatus, promoting its trans-phosphorylation after RLR or TLR3 stimulation (PubMed:27538435). In turn, activated TBK1 phosphorylates its downstream partner IRF3 to produce IFN-beta/IFNB1. Plays a neuroprotective role in the eye and optic nerve. May act by regulating membrane trafficking and cellular morphogenesis via a complex that contains Rab8 and huntingtin (HD). Mediates the interaction of Rab8 with the probable GTPase-activating protein TBC1D17 during Rab8-mediated endocytic trafficking, such as that of transferrin receptor (TFRC/TfR); regulates Rab8 recruitment to tubules emanating from the endocytic recycling compartment (PubMed:22854040). Autophagy receptor that interacts directly with both the cargo to become degraded and an autophagy modifier of the MAP1 LC3 family; targets ubiquitin-coated bacteria (xenophagy), such as cytoplasmic Salmonella enterica, and appears to function in the same pathway as SQSTM1 and CALCOCO2/NDP52. {ECO:0000269|PubMed:11834836, ECO:0000269|PubMed:15837803, ECO:0000269|PubMed:20085643, ECO:0000269|PubMed:20174559, ECO:0000269|PubMed:21617041, ECO:0000269|PubMed:22854040, ECO:0000269|PubMed:27534431, ECO:0000269|PubMed:27538435}.; FUNCTION: (Microbial infection) May constitute a cellular target for various viruses, such as adenovirus E3 14.7 or Bluetongue virus, to inhibit innate immune response (PubMed:27538435, PubMed:9488477). During RNA virus infection, such as that of Sendai virus, negatively regulates the induction of IFNB1 (PubMed:20174559). {ECO:0000269|PubMed:20174559, ECO:0000269|PubMed:27538435, ECO:0000269|PubMed:9488477}. |
Q96CW1 | AP2M1 | T156 | ochoa|psp | AP-2 complex subunit mu (AP-2 mu chain) (Adaptin-mu2) (Adaptor protein complex AP-2 subunit mu) (Adaptor-related protein complex 2 subunit mu) (Clathrin assembly protein complex 2 mu medium chain) (Clathrin coat assembly protein AP50) (Clathrin coat-associated protein AP50) (HA2 50 kDa subunit) (Plasma membrane adaptor AP-2 50 kDa protein) | Component of the adaptor protein complex 2 (AP-2) (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis (PubMed:16581796). AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules (By similarity). AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway (PubMed:19033387). During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 mu subunit binds to transmembrane cargo proteins; it recognizes the Y-X-X-Phi motifs (By similarity). The surface region interacting with to the Y-X-X-Phi motif is inaccessible in cytosolic AP-2, but becomes accessible through a conformational change following phosphorylation of AP-2 mu subunit at Thr-156 in membrane-associated AP-2 (PubMed:11877457). The membrane-specific phosphorylation event appears to involve assembled clathrin which activates the AP-2 mu kinase AAK1 (PubMed:11877457). Plays a role in endocytosis of frizzled family members upon Wnt signaling (By similarity). {ECO:0000250|UniProtKB:P84092, ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:12694563, ECO:0000269|PubMed:12952941, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:14985334, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:16581796, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497, ECO:0000269|PubMed:31104773}. |
Q96FF9 | CDCA5 | T105 | ochoa | Sororin (Cell division cycle-associated protein 5) (p35) | Regulator of sister chromatid cohesion in mitosis stabilizing cohesin complex association with chromatin. May antagonize the action of WAPL which stimulates cohesin dissociation from chromatin. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Required for efficient DNA double-stranded break repair. {ECO:0000269|PubMed:15837422, ECO:0000269|PubMed:17349791, ECO:0000269|PubMed:21111234}. |
Q96II8 | LRCH3 | T329 | ochoa | DISP complex protein LRCH3 (Leucine-rich repeat and calponin homology domain-containing protein 3) | As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton. {ECO:0000269|PubMed:29467281}. |
Q96MW1 | CCDC43 | T155 | ochoa | Coiled-coil domain-containing protein 43 | None |
Q96RU2 | USP28 | T70 | ochoa | Ubiquitin carboxyl-terminal hydrolase 28 (EC 3.4.19.12) (Deubiquitinating enzyme 28) (Ubiquitin thioesterase 28) (Ubiquitin-specific-processing protease 28) | Deubiquitinase involved in DNA damage response checkpoint and MYC proto-oncogene stability. Involved in DNA damage induced apoptosis by specifically deubiquitinating proteins of the DNA damage pathway such as CLSPN. Also involved in G2 DNA damage checkpoint, by deubiquitinating CLSPN, and preventing its degradation by the anaphase promoting complex/cyclosome (APC/C). In contrast, it does not deubiquitinate PLK1. Specifically deubiquitinates MYC in the nucleoplasm, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm and counteracting ubiquitination of MYC by the SCF(FBW7) complex. In contrast, it does not interact with isoform 4 of FBXW7 (FBW7gamma) in the nucleolus, allowing MYC degradation and explaining the selective MYC degradation in the nucleolus. Deubiquitinates ZNF304, hence preventing ZNF304 degradation by the proteasome and leading to the activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) in a subset of colorectal cancers (CRC) cells (PubMed:24623306). {ECO:0000269|PubMed:16901786, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:24623306}. |
Q96ST2 | IWS1 | T721 | ochoa|psp | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96T23 | RSF1 | T241 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q99549 | MPHOSPH8 | T401 | ochoa | M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) | Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q99590 | SCAF11 | T695 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99666 | RGPD5 | T1029 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99708 | RBBP8 | T788 | ochoa | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99808 | SLC29A1 | T248 | psp | Equilibrative nucleoside transporter 1 (hENT1) (Equilibrative nitrobenzylmercaptopurine riboside-sensitive nucleoside transporter) (Equilibrative NBMPR-sensitive nucleoside transporter) (es nucleoside transporter) (Nucleoside transporter, es-type) (Solute carrier family 29 member 1) | Uniporter involved in the facilitative transport of nucleosides and nucleobases, and contributes to maintaining their cellular homeostasis (PubMed:10722669, PubMed:10755314, PubMed:12527552, PubMed:14759222, PubMed:15037197, PubMed:17379602, PubMed:21795683, PubMed:26406980, PubMed:27995448, PubMed:35790189, PubMed:8986748). Functions as a Na(+)-independent transporter (PubMed:8986748). Involved in the transport of nucleosides such as adenosine, guanosine, inosine, uridine, thymidine and cytidine (PubMed:10722669, PubMed:10755314, PubMed:12527552, PubMed:14759222, PubMed:15037197, PubMed:17379602, PubMed:26406980, PubMed:8986748). Also transports purine nucleobases (hypoxanthine, adenine, guanine) and pyrimidine nucleobases (thymine, uracil) (PubMed:21795683, PubMed:27995448). Mediates basolateral nucleoside uptake into Sertoli cells, thereby regulating the transport of nucleosides in testis across the blood-testis barrier (By similarity). Regulates inosine levels in brown adipocytes tissues (BAT) and extracellular inosine levels, which controls BAT-dependent energy expenditure (PubMed:35790189). {ECO:0000250|UniProtKB:O54698, ECO:0000269|PubMed:10722669, ECO:0000269|PubMed:10755314, ECO:0000269|PubMed:12527552, ECO:0000269|PubMed:14759222, ECO:0000269|PubMed:15037197, ECO:0000269|PubMed:17379602, ECO:0000269|PubMed:21795683, ECO:0000269|PubMed:23639800, ECO:0000269|PubMed:26406980, ECO:0000269|PubMed:27995448, ECO:0000269|PubMed:35790189, ECO:0000269|PubMed:8986748}. |
Q99986 | VRK1 | T355 | psp | Serine/threonine-protein kinase VRK1 (EC 2.7.11.1) (Vaccinia-related kinase 1) | Serine/threonine kinase involved in the regulation of key cellular processes including the cell cycle, nuclear condensation, transcription regulation, and DNA damage response (PubMed:14645249, PubMed:18617507, PubMed:19103756, PubMed:33076429). Controls chromatin organization and remodeling by mediating phosphorylation of histone H3 on 'Thr-4' and histone H2AX (H2aXT4ph) (PubMed:31527692, PubMed:37179361). It also phosphorylates KAT5 in response to DNA damage, promoting KAT5 association with chromatin and histone acetyltransferase activity (PubMed:33076429). Is involved in the regulation of cell cycle progression of neural progenitors, and is required for proper cortical neuronal migration (By similarity). Is involved in neurite elongation and branching in motor neurons, and has an essential role in Cajal bodies assembly, acting through COIL phosphorylation and the control of coilin degradation (PubMed:21920476, PubMed:31090908, PubMed:31527692). Involved in Golgi disassembly during the cell cycle: following phosphorylation by PLK3 during mitosis, it is required to induce Golgi fragmentation (PubMed:19103756). Phosphorylates BANF1: disrupts its ability to bind DNA, reduces its binding to LEM domain-containing proteins and causes its relocalization from the nucleus to the cytoplasm (PubMed:16495336). Phosphorylates TP53BP1 and p53/TP53 on 'Thr-18', preventing the interaction between p53/TP53 and MDM2 (PubMed:10951572, PubMed:31527692). Phosphorylates ATF2 which activates its transcriptional activity (PubMed:15105425). Phosphorylates JUN (PubMed:31527692). {ECO:0000250|UniProtKB:Q80X41, ECO:0000269|PubMed:10951572, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:15105425, ECO:0000269|PubMed:16495336, ECO:0000269|PubMed:18617507, ECO:0000269|PubMed:19103756, ECO:0000269|PubMed:21920476, ECO:0000269|PubMed:31090908, ECO:0000269|PubMed:31527692, ECO:0000269|PubMed:33076429, ECO:0000269|PubMed:37179361}. |
Q9BRP8 | PYM1 | T25 | ochoa | Partner of Y14 and mago (PYM homolog 1 exon junction complex-associated factor) (Protein wibg homolog) | Key regulator of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. Acts as an EJC disassembly factor, allowing translation-dependent EJC removal and recycling by disrupting mature EJC from spliced mRNAs. Its association with the 40S ribosomal subunit probably prevents a translation-independent disassembly of the EJC from spliced mRNAs, by restricting its activity to mRNAs that have been translated. Interferes with NMD and enhances translation of spliced mRNAs, probably by antagonizing EJC functions. May bind RNA; the relevance of RNA-binding remains unclear in vivo, RNA-binding was detected by PubMed:14968132, while PubMed:19410547 did not detect RNA-binding activity independently of the EJC. {ECO:0000269|PubMed:18026120, ECO:0000269|PubMed:19410547}. |
Q9BV44 | THUMPD3 | T220 | ochoa | tRNA (guanine(6)-N(2))-methyltransferase THUMP3 (EC 2.1.1.256) (THUMP domain-containing protein 3) (tRNA(Trp) (guanine(7)-N(2))-methyltransferase THUMP3) (EC 2.1.1.-) | Catalytic subunit of the THUMPD3-TRM112 methyltransferase complex, that specifically mediates the S-adenosyl-L-methionine-dependent N(2)-methylation of guanosine nucleotide at position 6 (m2G6) in tRNAs (PubMed:34669960, PubMed:37283053). This is one of the major tRNA (guanine-N(2))-methyltransferases (PubMed:37283053). Also catalyzes the S-adenosyl-L-methionine-dependent N(2)-methylation of guanosine nucleotide at position 7 of tRNA(Trp) (PubMed:34669960). {ECO:0000269|PubMed:34669960, ECO:0000269|PubMed:37283053}. |
Q9BW04 | SARG | T535 | ochoa | Specifically androgen-regulated gene protein | Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}. |
Q9BXK5 | BCL2L13 | T366 | ochoa | Bcl-2-like protein 13 (Bcl2-L-13) (Bcl-rambo) (Protein Mil1) | May promote the activation of caspase-3 and apoptosis. |
Q9BXL6 | CARD14 | T253 | ochoa | Caspase recruitment domain-containing protein 14 (CARD-containing MAGUK protein 2) (Carma 2) | Acts as a scaffolding protein that can activate the inflammatory transcription factor NF-kappa-B and p38/JNK MAP kinase signaling pathways. Forms a signaling complex with BCL10 and MALT1, and activates MALT1 proteolytic activity and inflammatory gene expression. MALT1 is indispensable for CARD14-induced activation of NF-kappa-B and p38/JNK MAP kinases (PubMed:11278692, PubMed:21302310, PubMed:27071417, PubMed:27113748). May play a role in signaling mediated by TRAF2, TRAF3 and TRAF6 and protects cells against apoptosis. {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:21302310, ECO:0000269|PubMed:27071417, ECO:0000269|PubMed:27113748}.; FUNCTION: [Isoform 3]: Not able to activate the inflammatory transcription factor NF-kappa-B and may function as a dominant negative regulator (PubMed:21302310, PubMed:26358359). {ECO:0000269|PubMed:21302310, ECO:0000269|PubMed:26358359}. |
Q9BXS5 | AP1M1 | T154 | ochoa | AP-1 complex subunit mu-1 (AP-mu chain family member mu1A) (Adaptor protein complex AP-1 subunit mu-1) (Adaptor-related protein complex 1 subunit mu-1) (Clathrin assembly protein complex 1 mu-1 medium chain 1) (Clathrin coat assembly protein AP47) (Clathrin coat-associated protein AP47) (Golgi adaptor HA1/AP1 adaptin mu-1 subunit) (Mu-adaptin 1) (Mu1A-adaptin) | Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the trans-Golgi network (TGN) and endosomes. The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. |
Q9BZF1 | OSBPL8 | T819 | ochoa | Oxysterol-binding protein-related protein 8 (ORP-8) (OSBP-related protein 8) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:26206935). Binds oxysterol, 25-hydroxycholesterol and cholesterol (PubMed:17428193, PubMed:17991739, PubMed:21698267). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:17991739, ECO:0000269|PubMed:21698267, ECO:0000269|PubMed:26206935}. |
Q9C0C9 | UBE2O | T404 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9GZM8 | NDEL1 | T132 | psp | Nuclear distribution protein nudE-like 1 (Protein Nudel) (Mitosin-associated protein 1) | Required for organization of the cellular microtubule array and microtubule anchoring at the centrosome. May regulate microtubule organization at least in part by targeting the microtubule severing protein KATNA1 to the centrosome. Also positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus ends. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the centripetal motion of secretory vesicles and the coupling of the nucleus and centrosome. Also required during brain development for the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Plays a role, together with DISC1, in the regulation of neurite outgrowth. Required for mitosis in some cell types but appears to be dispensible for mitosis in cortical neuronal progenitors, which instead requires NDE1. Facilitates the polymerization of neurofilaments from the individual subunits NEFH and NEFL. Positively regulates lysosome peripheral distribution and ruffled border formation in osteoclasts (By similarity). Plays a role, together with DISC1, in the regulation of neurite outgrowth (By similarity). May act as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000250|UniProtKB:Q78PB6, ECO:0000250|UniProtKB:Q9ERR1, ECO:0000269|PubMed:12556484, ECO:0000269|PubMed:14970193, ECO:0000269|PubMed:16291865, ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:34793709}. |
Q9H000 | MKRN2 | T265 | ochoa | E3 ubiquitin-protein ligase makorin-2 (EC 2.3.2.27) (RING finger protein 62) (RING-type E3 ubiquitin transferase makorin-2) | E3 ubiquitin ligase catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (By similarity). Promotes the polyubiquitination and proteasome-dependent degradation of RELA/p65, thereby suppressing RELA-mediated NF-kappaB transactivation and negatively regulating inflammatory responses (By similarity). Plays a role in the regulation of spermiation and in male fertility (By similarity). {ECO:0000250|UniProtKB:Q9ERV1}. |
Q9H0E9 | BRD8 | T617 | ochoa | Bromodomain-containing protein 8 (Skeletal muscle abundant protein) (Skeletal muscle abundant protein 2) (Thyroid hormone receptor coactivating protein of 120 kDa) (TrCP120) (p120) | May act as a coactivator during transcriptional activation by hormone-activated nuclear receptors (NR). Isoform 2 stimulates transcriptional activation by AR/DHTR, ESR1/NR3A1, RXRA/NR2B1 and THRB/ERBA2. At least isoform 1 and isoform 2 are components of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:10517671, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q9H2G2 | SLK | T367 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2G2 | SLK | T494 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2G2 | SLK | T551 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2G2 | SLK | T814 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2H9 | SLC38A1 | T32 | ochoa | Sodium-coupled neutral amino acid symporter 1 (Amino acid transporter A1) (N-system amino acid transporter 2) (Solute carrier family 38 member 1) (System A amino acid transporter 1) (System N amino acid transporter 1) | Symporter that cotransports short-chain neutral amino acids and sodium ions from the extraccellular to the intracellular side of the cell membrane (PubMed:10891391, PubMed:20599747). The transport is elctrogenic, pH dependent and driven by the Na(+) electrochemical gradient (PubMed:10891391). Participates in the astroglia-derived glutamine transport into GABAergic interneurons for neurotransmitter GABA de novo synthesis (By similarity). May also contributes to amino acid transport in placental trophoblasts (PubMed:20599747). Also regulates synaptic plasticity (PubMed:12388062). {ECO:0000250|UniProtKB:Q8K2P7, ECO:0000250|UniProtKB:Q9JM15, ECO:0000269|PubMed:10891391, ECO:0000269|PubMed:12388062, ECO:0000269|PubMed:20599747}. |
Q9H2K0 | MTIF3 | T123 | ochoa | Translation initiation factor IF-3, mitochondrial (IF-3(Mt)) (IF-3Mt) (IF3(mt)) (IF3mt) | IF-3 binds to the 28S ribosomal subunit and shifts the equilibrium between 55S ribosomes and their 39S and 28S subunits in favor of the free subunits, thus enhancing the availability of 28S subunits on which protein synthesis initiation begins. {ECO:0000269|PubMed:12095986}. |
Q9H3P7 | ACBD3 | T340 | ochoa | Golgi resident protein GCP60 (Acyl-CoA-binding domain-containing protein 3) (Golgi complex-associated protein 1) (GOCAP1) (Golgi phosphoprotein 1) (GOLPH1) (PBR- and PKA-associated protein 7) (Peripheral benzodiazepine receptor-associated protein PAP7) [Cleaved into: Golgi resident protein GCP60, N-terminally processed] | Involved in the maintenance of Golgi structure by interacting with giantin, affecting protein transport between the endoplasmic reticulum and Golgi (PubMed:11590181). Involved in hormone-induced steroid biosynthesis in testicular Leydig cells (By similarity). Recruits PI4KB to the Golgi apparatus membrane; enhances the enzyme activity of PI4KB activity via its membrane recruitment thereby increasing the local concentration of the substrate in the vicinity of the kinase (PubMed:27009356). {ECO:0000250|UniProtKB:Q8BMP6, ECO:0000269|PubMed:11590181, ECO:0000269|PubMed:27009356}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication by recruiting PI4KB at the viral replication sites. {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}. |
Q9H501 | ESF1 | T319 | ochoa | ESF1 homolog (ABT1-associated protein) | May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}. |
Q9H814 | PHAX | T358 | ochoa | Phosphorylated adapter RNA export protein (RNA U small nuclear RNA export adapter protein) | A phosphoprotein adapter involved in the XPO1-mediated U snRNA export from the nucleus (PubMed:39011894). Bridge components required for U snRNA export, the cap binding complex (CBC)-bound snRNA on the one hand and the GTPase Ran in its active GTP-bound form together with the export receptor XPO1 on the other. Its phosphorylation in the nucleus is required for U snRNA export complex assembly and export, while its dephosphorylation in the cytoplasm causes export complex disassembly. It is recycled back to the nucleus via the importin alpha/beta heterodimeric import receptor. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Its compartmentalized phosphorylation cycle may also contribute to the directionality of export. Binds strongly to m7G-capped U1 and U5 small nuclear RNAs (snRNAs) in a sequence-unspecific manner and phosphorylation-independent manner (By similarity). Also plays a role in the biogenesis of U3 small nucleolar RNA (snoRNA). Involved in the U3 snoRNA transport from nucleoplasm to Cajal bodies. Binds strongly to m7G-capped U3, U8 and U13 precursor snoRNAs and weakly to trimethylated (TMG)-capped U3, U8 and U13 snoRNAs. Also binds to telomerase RNA. {ECO:0000250, ECO:0000269|PubMed:15574332, ECO:0000269|PubMed:15574333}. |
Q9H8M2 | BRD9 | T103 | ochoa | Bromodomain-containing protein 9 (Rhabdomyosarcoma antigen MU-RMS-40.8) | Plays a role in chromatin remodeling and regulation of transcription (PubMed:22464331, PubMed:26365797). Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:26365797). Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). Also orchestrates the RAD51-RAD54 complex formation and thereby plays a role in homologous recombination (HR) (PubMed:32457312). {ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:32457312}. |
Q9H9A7 | RMI1 | T359 | ochoa | RecQ-mediated genome instability protein 1 (BLM-associated protein of 75 kDa) (BLAP75) (FAAP75) | Essential component of the RMI complex, a complex that plays an important role in the processing of homologous recombination intermediates to limit DNA crossover formation in cells. Promotes TOP3A binding to double Holliday junctions (DHJ) and hence stimulates TOP3A-mediated dissolution. Required for BLM phosphorylation during mitosis. Within the BLM complex, required for BLM and TOP3A stability. {ECO:0000269|PubMed:15775963, ECO:0000269|PubMed:16537486, ECO:0000269|PubMed:16595695}. |
Q9HAU0 | PLEKHA5 | T399 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HAW4 | CLSPN | T69 | ochoa | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HCK1 | ZDBF2 | T956 | ochoa | DBF4-type zinc finger-containing protein 2 | None |
Q9NQV6 | PRDM10 | T428 | ochoa | PR domain zinc finger protein 10 (PR domain-containing protein 10) (Tristanin) | Transcriptional activator, essential for early embryonic development and survival of embryonic stem cells (ESCs) (By similarity). Supports cell growth and survival during early development by transcriptionally activating the expression of the translation initiation factor EIF3B, to sustain global translation (By similarity). Activates the transcription of FLNC (PubMed:36440963). {ECO:0000250|UniProtKB:Q3UTQ7, ECO:0000269|PubMed:36440963}. |
Q9NVA2 | SEPTIN11 | T322 | ochoa | Septin-11 | Filament-forming cytoskeletal GTPase. May play a role in cytokinesis (Potential). May play a role in the cytoarchitecture of neurons, including dendritic arborization and dendritic spines, and in GABAergic synaptic connectivity (By similarity). During Listeria monocytogenes infection, not required for the bacterial entry process, but restricts its efficacy. {ECO:0000250, ECO:0000269|PubMed:15196925, ECO:0000269|PubMed:19234302, ECO:0000305}. |
Q9NVM1 | EVA1B | T87 | ochoa | Protein eva-1 homolog B (Protein FAM176B) | None |
Q9NWH9 | SLTM | T72 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWQ8 | PAG1 | T287 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NWZ3 | IRAK4 | T208 | psp | Interleukin-1 receptor-associated kinase 4 (IRAK-4) (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-64) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways (PubMed:17878374). Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation to form the Myddosome together with IRAK2. Phosphorylates initially IRAK1, thus stimulating the kinase activity and intensive autophosphorylation of IRAK1. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates NCF1 and regulates NADPH oxidase activation after LPS stimulation suggesting a similar mechanism during microbial infections. {ECO:0000269|PubMed:11960013, ECO:0000269|PubMed:12538665, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:17217339, ECO:0000269|PubMed:17337443, ECO:0000269|PubMed:17878374, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509, ECO:0000269|PubMed:24316379}. |
Q9NWZ3 | IRAK4 | T209 | psp | Interleukin-1 receptor-associated kinase 4 (IRAK-4) (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-64) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways (PubMed:17878374). Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation to form the Myddosome together with IRAK2. Phosphorylates initially IRAK1, thus stimulating the kinase activity and intensive autophosphorylation of IRAK1. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates NCF1 and regulates NADPH oxidase activation after LPS stimulation suggesting a similar mechanism during microbial infections. {ECO:0000269|PubMed:11960013, ECO:0000269|PubMed:12538665, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:17217339, ECO:0000269|PubMed:17337443, ECO:0000269|PubMed:17878374, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509, ECO:0000269|PubMed:24316379}. |
Q9NWZ3 | IRAK4 | T342 | ochoa|psp | Interleukin-1 receptor-associated kinase 4 (IRAK-4) (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-64) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways (PubMed:17878374). Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation to form the Myddosome together with IRAK2. Phosphorylates initially IRAK1, thus stimulating the kinase activity and intensive autophosphorylation of IRAK1. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates NCF1 and regulates NADPH oxidase activation after LPS stimulation suggesting a similar mechanism during microbial infections. {ECO:0000269|PubMed:11960013, ECO:0000269|PubMed:12538665, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:17217339, ECO:0000269|PubMed:17337443, ECO:0000269|PubMed:17878374, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509, ECO:0000269|PubMed:24316379}. |
Q9NXR1 | NDE1 | T131 | psp | Nuclear distribution protein nudE homolog 1 (NudE) | Required for centrosome duplication and formation and function of the mitotic spindle. Essential for the development of the cerebral cortex. May regulate the production of neurons by controlling the orientation of the mitotic spindle during division of cortical neuronal progenitors of the proliferative ventricular zone of the brain. Orientation of the division plane perpendicular to the layers of the cortex gives rise to two proliferative neuronal progenitors whereas parallel orientation of the division plane yields one proliferative neuronal progenitor and a postmitotic neuron. A premature shift towards a neuronal fate within the progenitor population may result in an overall reduction in the final number of neurons and an increase in the number of neurons in the deeper layers of the cortex. Acts as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:21529752, ECO:0000269|PubMed:34793709}. |
Q9NYL9 | TMOD3 | T60 | ochoa | Tropomodulin-3 (Ubiquitous tropomodulin) (U-Tmod) | Blocks the elongation and depolymerization of the actin filaments at the pointed end. The Tmod/TM complex contributes to the formation of the short actin protofilament, which in turn defines the geometry of the membrane skeleton (By similarity). {ECO:0000250}. |
Q9NZ63 | C9orf78 | T106 | ochoa | Splicing factor C9orf78 (Hepatocellular carcinoma-associated antigen 59) | Plays a role in pre-mRNA splicing by promoting usage of the upstream 3'-splice site at alternative NAGNAG splice sites; these are sites featuring alternative acceptor motifs separated by only a few nucleotides (PubMed:35241646). May also modulate exon inclusion events (PubMed:35241646). Plays a role in spliceosomal remodeling by displacing WBP4 from SNRNP200 and may act to inhibit SNRNP200 helicase activity (PubMed:35241646). Binds U5 snRNA (PubMed:35241646). Required for proper chromosome segregation (PubMed:35167828). Not required for splicing of shelterin components (PubMed:35167828). {ECO:0000269|PubMed:35167828, ECO:0000269|PubMed:35241646}. |
Q9NZU5 | LMCD1 | T228 | ochoa | LIM and cysteine-rich domains protein 1 (Dyxin) | Transcriptional cofactor that restricts GATA6 function by inhibiting DNA-binding, resulting in repression of GATA6 transcriptional activation of downstream target genes. Represses GATA6-mediated trans activation of lung- and cardiac tissue-specific promoters. Inhibits DNA-binding by GATA4 and GATA1 to the cTNC promoter (By similarity). Plays a critical role in the development of cardiac hypertrophy via activation of calcineurin/nuclear factor of activated T-cells signaling pathway. {ECO:0000250, ECO:0000269|PubMed:20026769}. |
Q9P0V9 | SEPTIN10 | T347 | ochoa | Septin-10 | Filament-forming cytoskeletal GTPase. May play a role in cytokinesis (Potential). {ECO:0000305}. |
Q9P1Y6 | PHRF1 | T951 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P260 | RELCH | T183 | ochoa | RAB11-binding protein RELCH (LisH domain and HEAT repeat-containing protein KIAA1468) (RAB11 binding and LisH domain, coiled-coil and HEAT repeat-containing) (RAB11-binding protein containing LisH, coiled-coil, and HEAT repeats) | Regulates intracellular cholesterol distribution from recycling endosomes to the trans-Golgi network through interactions with RAB11 and OSBP (PubMed:29514919). Functions in membrane tethering and promotes OSBP-mediated cholesterol transfer between RAB11-bound recycling endosomes and OSBP-bound Golgi-like membranes (PubMed:29514919). {ECO:0000269|PubMed:29514919}. |
Q9P2D1 | CHD7 | T2227 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2G1 | ANKIB1 | T749 | ochoa | Ankyrin repeat and IBR domain-containing protein 1 (EC 2.3.2.31) | Might act as an E3 ubiquitin-protein ligase, or as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. {ECO:0000250}. |
Q9P2N5 | RBM27 | T658 | ochoa | RNA-binding protein 27 (RNA-binding motif protein 27) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}. |
Q9UBU7 | DBF4 | T273 | ochoa|psp | Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) | Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}. |
Q9UEY8 | ADD3 | T653 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UHB6 | LIMA1 | T714 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UHR4 | BAIAP2L1 | T118 | ochoa | BAR/IMD domain-containing adapter protein 2-like 1 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1) (BAI1-associated protein 2-like protein 1) (Insulin receptor tyrosine kinase substrate) | May function as adapter protein. Involved in the formation of clusters of actin bundles. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. {ECO:0000269|PubMed:17430976, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:22921828}. |
Q9UJA5 | TRMT6 | T468 | ochoa | tRNA (adenine(58)-N(1))-methyltransferase non-catalytic subunit TRM6 (mRNA methyladenosine-N(1)-methyltransferase non-catalytic subunit TRM6) (tRNA(m1A58)-methyltransferase subunit TRM6) (tRNA(m1A58)MTase subunit TRM6) | Substrate-binding subunit of tRNA (adenine-N(1)-)-methyltransferase, which catalyzes the formation of N(1)-methyladenine at position 58 (m1A58) in initiator methionyl-tRNA (PubMed:16043508). Together with the TRMT61A catalytic subunit, part of a mRNA N(1)-methyltransferase complex that mediates methylation of adenosine residues at the N(1) position of a small subset of mRNAs: N(1) methylation takes place in tRNA T-loop-like structures of mRNAs and is only present at low stoichiometries (PubMed:29072297, PubMed:29107537). {ECO:0000269|PubMed:16043508, ECO:0000269|PubMed:29072297, ECO:0000269|PubMed:29107537}. |
Q9UK59 | DBR1 | T482 | ochoa | Lariat debranching enzyme (EC 3.1.4.-) | Cleaves the 2'-5' phosphodiester linkage at the branch point of excised lariat intron RNA and converts them into linear molecules that can be subsequently degraded, thereby facilitating ribonucleotide turnover (PubMed:10982890, PubMed:16232320, PubMed:2435736). Linked to its role in pre-mRNA processing mechanism, may also participate in retrovirus replication via an RNA lariat intermediate in cDNA synthesis and have an antiviral cell-intrinsic defense function in the brainstem (PubMed:16232320, PubMed:29474921). {ECO:0000269|PubMed:10982890, ECO:0000269|PubMed:16232320, ECO:0000269|PubMed:2435736, ECO:0000269|PubMed:29474921}. |
Q9UK61 | TASOR | T921 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UKK3 | PARP4 | T1493 | ochoa | Protein mono-ADP-ribosyltransferase PARP4 (EC 2.4.2.-) (193 kDa vault protein) (ADP-ribosyltransferase diphtheria toxin-like 4) (ARTD4) (PARP-related/IalphaI-related H5/proline-rich) (PH5P) (Poly [ADP-ribose] polymerase 4) (PARP-4) (Vault poly(ADP-ribose) polymerase) (VPARP) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}. |
Q9UKN8 | GTF3C4 | T655 | ochoa | General transcription factor 3C polypeptide 4 (EC 2.3.1.48) (TF3C-delta) (Transcription factor IIIC 90 kDa subunit) (TFIIIC 90 kDa subunit) (TFIIIC90) (Transcription factor IIIC subunit delta) | Essential for RNA polymerase III to make a number of small nuclear and cytoplasmic RNAs, including 5S RNA, tRNA, and adenovirus-associated (VA) RNA of both cellular and viral origin (PubMed:10523658). Has histone acetyltransferase activity (HAT) with unique specificity for free and nucleosomal H3 (PubMed:10523658). May cooperate with GTF3C5 in facilitating the recruitment of TFIIIB and RNA polymerase through direct interactions with BRF1, POLR3C and POLR3F (PubMed:10523658). May be localized close to the A box (PubMed:10523658). {ECO:0000269|PubMed:10523658}. |
Q9UKS6 | PACSIN3 | T306 | ochoa | Protein kinase C and casein kinase substrate in neurons protein 3 (SH3 domain-containing protein 6511) | Plays a role in endocytosis and regulates internalization of plasma membrane proteins. Overexpression impairs internalization of SLC2A1/GLUT1 and TRPV4 and increases the levels of SLC2A1/GLUT1 and TRPV4 at the cell membrane. Inhibits the TRPV4 calcium channel activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11082044}. |
Q9UKV3 | ACIN1 | T697 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKX2 | MYH2 | T985 | ochoa | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9UKX2 | MYH2 | T1025 | ochoa | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9UKX2 | MYH2 | T1243 | ochoa | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9UKX2 | MYH2 | T1897 | ochoa | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9UKX3 | MYH13 | T380 | ochoa | Myosin-13 (Myosin heavy chain 13) (Myosin heavy chain, skeletal muscle, extraocular) (MyHC-EO) (Myosin heavy chain, skeletal muscle, laryngeal) (MyHC-IIL) (Superfast myosin) | Fast twitching myosin mediating the high-velocity and low-tension contractions of specific striated muscles. {ECO:0000269|PubMed:23908353}. |
Q9UKX7 | NUP50 | T228 | ochoa | Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) | Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}. |
Q9ULF5 | SLC39A10 | T615 | ochoa | Zinc transporter ZIP10 (Solute carrier family 39 member 10) (Zrt- and Irt-like protein 10) (ZIP-10) | Zinc-influx transporter (PubMed:17359283, PubMed:27274087, PubMed:30520657). When associated with SLC39A6, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial-to-mesenchymal transition (EMT) (PubMed:23186163). SLC39A10-SLC39A6 heterodimers play also an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis (PubMed:32797246). Plays an important for both mature B-cell maintenance and humoral immune responses (By similarity). When associated with SLC39A10, the heterodimer controls NCAM1 phosphorylation and integration into focal adhesion complexes during EMT (By similarity). {ECO:0000250|UniProtKB:Q6P5F6, ECO:0000269|PubMed:17359283, ECO:0000269|PubMed:23186163, ECO:0000269|PubMed:27274087, ECO:0000269|PubMed:30520657, ECO:0000269|PubMed:32797246}. |
Q9ULH0 | KIDINS220 | T1534 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULI0 | ATAD2B | T1320 | ochoa | ATPase family AAA domain-containing protein 2B | None |
Q9ULV3 | CIZ1 | T225 | ochoa | Cip1-interacting zinc finger protein (CDKN1A-interacting zinc finger protein 1) (Nuclear protein NP94) (Zinc finger protein 356) | May regulate the subcellular localization of CIP/WAF1. |
Q9UNF0 | PACSIN2 | T373 | ochoa | Protein kinase C and casein kinase substrate in neurons protein 2 (Syndapin-2) (Syndapin-II) (SdpII) | Regulates the morphogenesis and endocytosis of caveolae (By similarity). Lipid-binding protein that is able to promote the tubulation of the phosphatidic acid-containing membranes it preferentially binds. Plays a role in intracellular vesicle-mediated transport. Involved in the endocytosis of cell-surface receptors like the EGF receptor, contributing to its internalization in the absence of EGF stimulus (PubMed:21693584, PubMed:23129763, PubMed:23236520, PubMed:23596323). Essential for endothelial organization in sprouting angiogenesis, modulates CDH5-based junctions. Facilitates endothelial front-rear polarity during migration by recruiting EHD4 and MICALL1 to asymmetric adherens junctions between leader and follower cells (By similarity). {ECO:0000250|UniProtKB:Q9WVE8, ECO:0000269|PubMed:21693584, ECO:0000269|PubMed:23129763, ECO:0000269|PubMed:23236520, ECO:0000269|PubMed:23596323}.; FUNCTION: (Microbial infection) Specifically enhances the efficiency of HIV-1 virion spread by cell-to-cell transfer (PubMed:29891700). Also promotes the protrusion engulfment during cell-to-cell spread of bacterial pathogens like Listeria monocytogenes (PubMed:31242077). Involved in lipid droplet formation, which is important for HCV virion assembly (PubMed:31801866). {ECO:0000269|PubMed:29891700, ECO:0000269|PubMed:31242077, ECO:0000269|PubMed:31801866}. |
Q9UPM8 | AP4E1 | T723 | ochoa | AP-4 complex subunit epsilon-1 (AP-4 adaptor complex subunit epsilon) (Adaptor-related protein complex 4 subunit epsilon-1) (Epsilon subunit of AP-4) (Epsilon-adaptin) | Component of the adaptor protein complex 4 (AP-4). Adaptor protein complexes are vesicle coat components involved both in vesicle formation and cargo selection. They control the vesicular transport of proteins in different trafficking pathways (PubMed:10066790, PubMed:10436028). AP-4 forms a non clathrin-associated coat on vesicles departing the trans-Golgi network (TGN) and may be involved in the targeting of proteins from the trans-Golgi network (TGN) to the endosomal-lysosomal system. It is also involved in protein sorting to the basolateral membrane in epithelial cells and the proper asymmetric localization of somatodendritic proteins in neurons. AP-4 is involved in the recognition and binding of tyrosine-based sorting signals found in the cytoplasmic part of cargos, but may also recognize other types of sorting signal (Probable). {ECO:0000269|PubMed:10066790, ECO:0000269|PubMed:10436028, ECO:0000305|PubMed:10066790, ECO:0000305|PubMed:10436028}. |
Q9UPS6 | SETD1B | T1124 | ochoa | Histone-lysine N-methyltransferase SETD1B (EC 2.1.1.364) (Lysine N-methyltransferase 2G) (SET domain-containing protein 1B) (hSET1B) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:17355966, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17355966, PubMed:25561738). Plays an essential role in regulating the transcriptional programming of multipotent hematopoietic progenitor cells and lymphoid lineage specification during hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CFT2, ECO:0000269|PubMed:17355966, ECO:0000269|PubMed:25561738}. |
Q9UPT8 | ZC3H4 | T72 | ochoa | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q9UQ35 | SRRM2 | T1205 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | T1231 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQB8 | BAIAP2 | T356 | ochoa | BAR/IMD domain-containing adapter protein 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2) (BAI-associated protein 2) (BAI1-associated protein 2) (Protein BAP2) (Fas ligand-associated factor 3) (FLAF3) (Insulin receptor substrate p53/p58) (IRS-58) (IRSp53/58) (Insulin receptor substrate protein of 53 kDa) (IRSp53) (Insulin receptor substrate p53) | Adapter protein that links membrane-bound small G-proteins to cytoplasmic effector proteins. Necessary for CDC42-mediated reorganization of the actin cytoskeleton and for RAC1-mediated membrane ruffling. Involved in the regulation of the actin cytoskeleton by WASF family members and the Arp2/3 complex. Plays a role in neurite growth. Acts syngeristically with ENAH to promote filipodia formation. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. Participates in actin bundling when associated with EPS8, promoting filopodial protrusions. {ECO:0000269|PubMed:11130076, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:14752106, ECO:0000269|PubMed:17115031, ECO:0000269|PubMed:19366662}. |
Q9UQC2 | GAB2 | T408 | ochoa | GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) | Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}. |
Q9Y250 | LZTS1 | T258 | ochoa | Leucine zipper putative tumor suppressor 1 (F37/esophageal cancer-related gene-coding leucine-zipper motif) (Fez1) | Involved in the regulation of cell growth. May stabilize the active CDC2-cyclin B1 complex and thereby contribute to the regulation of the cell cycle and the prevention of uncontrolled cell proliferation. May act as a tumor suppressor. {ECO:0000269|PubMed:10097140, ECO:0000269|PubMed:11464283, ECO:0000269|PubMed:11504921}. |
Q9Y2D8 | SSX2IP | T454 | ochoa | Afadin- and alpha-actinin-binding protein (ADIP) (Afadin DIL domain-interacting protein) (SSX2-interacting protein) | Belongs to an adhesion system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs). May connect the nectin-afadin and E-cadherin-catenin system through alpha-actinin and may be involved in organization of the actin cytoskeleton at AJs through afadin and alpha-actinin (By similarity). Involved in cell movement: localizes at the leading edge of moving cells in response to PDGF and is required for the formation of the leading edge and the promotion of cell movement, possibly via activation of Rac signaling (By similarity). Acts as a centrosome maturation factor, probably by maintaining the integrity of the pericentriolar material and proper microtubule nucleation at mitotic spindle poles. The function seems to implicate at least in part WRAP73; the SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome (PubMed:23816619, PubMed:26545777). Involved in ciliogenesis (PubMed:24356449). It is required for targeted recruitment of the BBSome, CEP290, RAB8, and SSTR3 to the cilia (PubMed:24356449). {ECO:0000250|UniProtKB:Q8VC66, ECO:0000269|PubMed:23816619, ECO:0000269|PubMed:24356449, ECO:0000305|PubMed:26545777}. |
Q9Y2H1 | STK38L | T75 | psp | Serine/threonine-protein kinase 38-like (EC 2.7.11.1) (NDR2 protein kinase) (Nuclear Dbf2-related kinase 2) | Involved in the regulation of structural processes in differentiating and mature neuronal cells. {ECO:0000250, ECO:0000269|PubMed:15037617, ECO:0000269|PubMed:15067004}. |
Q9Y2J2 | EPB41L3 | T706 | ochoa | Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] | Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}. |
Q9Y2K6 | USP20 | T254 | ochoa | Ubiquitin carboxyl-terminal hydrolase 20 (EC 3.4.19.12) (Deubiquitinating enzyme 20) (Ubiquitin thioesterase 20) (Ubiquitin-specific-processing protease 20) (VHL-interacting deubiquitinating enzyme 2) (hVDU2) | Deubiquitinating enzyme that plays a role in many cellular processes including autophagy, cellular antiviral response or membrane protein biogenesis (PubMed:27801882, PubMed:29487085). Attenuates TLR4-mediated NF-kappa-B signaling by cooperating with beta-arrestin-2/ARRB2 and inhibiting TRAF6 autoubiquitination (PubMed:26839314). Promotes cellular antiviral responses by deconjugating 'Lys-33' and 'Lys-48'-linked ubiquitination of STING1 leading to its stabilization (PubMed:27801882). Plays an essential role in autophagy induction by regulating the ULK1 stability through deubiquitination of ULK1 (PubMed:29487085). Acts as a positive regulator for NF-kappa-B activation by TNF-alpha through deubiquitinating 'Lys-48'-linked polyubiquitination of SQSTM1, leading to its increased stability (PubMed:32354117). Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination beta-2 adrenergic receptor (ADRB2) (PubMed:19424180). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, possibly leading to beta-arrestins deubiquitination and disengagement from ADRB2 (PubMed:19424180). This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Deubiquitinates HIF1A, leading to stabilize HIF1A and enhance HIF1A-mediated activity (PubMed:15776016). Deubiquitinates MCL1, a pivotal member of the anti-apoptotic Bcl-2 protein family to regulate its stability (PubMed:35063767). Within the endoplasmic reticulum, participates with USP33 in the rescue of post-translationally targeted membrane proteins that are inappropriately ubiquitinated by the cytosolic protein quality control in the cytosol (PubMed:33792613). {ECO:0000269|PubMed:12056827, ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:15776016, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:26839314, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:32354117, ECO:0000269|PubMed:33792613, ECO:0000269|PubMed:35063767}. |
Q9Y2K6 | USP20 | T309 | ochoa | Ubiquitin carboxyl-terminal hydrolase 20 (EC 3.4.19.12) (Deubiquitinating enzyme 20) (Ubiquitin thioesterase 20) (Ubiquitin-specific-processing protease 20) (VHL-interacting deubiquitinating enzyme 2) (hVDU2) | Deubiquitinating enzyme that plays a role in many cellular processes including autophagy, cellular antiviral response or membrane protein biogenesis (PubMed:27801882, PubMed:29487085). Attenuates TLR4-mediated NF-kappa-B signaling by cooperating with beta-arrestin-2/ARRB2 and inhibiting TRAF6 autoubiquitination (PubMed:26839314). Promotes cellular antiviral responses by deconjugating 'Lys-33' and 'Lys-48'-linked ubiquitination of STING1 leading to its stabilization (PubMed:27801882). Plays an essential role in autophagy induction by regulating the ULK1 stability through deubiquitination of ULK1 (PubMed:29487085). Acts as a positive regulator for NF-kappa-B activation by TNF-alpha through deubiquitinating 'Lys-48'-linked polyubiquitination of SQSTM1, leading to its increased stability (PubMed:32354117). Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination beta-2 adrenergic receptor (ADRB2) (PubMed:19424180). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, possibly leading to beta-arrestins deubiquitination and disengagement from ADRB2 (PubMed:19424180). This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Deubiquitinates HIF1A, leading to stabilize HIF1A and enhance HIF1A-mediated activity (PubMed:15776016). Deubiquitinates MCL1, a pivotal member of the anti-apoptotic Bcl-2 protein family to regulate its stability (PubMed:35063767). Within the endoplasmic reticulum, participates with USP33 in the rescue of post-translationally targeted membrane proteins that are inappropriately ubiquitinated by the cytosolic protein quality control in the cytosol (PubMed:33792613). {ECO:0000269|PubMed:12056827, ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:15776016, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:26839314, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:32354117, ECO:0000269|PubMed:33792613, ECO:0000269|PubMed:35063767}. |
Q9Y2S7 | POLDIP2 | T295 | ochoa | Polymerase delta-interacting protein 2 (38 kDa DNA polymerase delta interaction protein) (p38) | Involved in DNA damage tolerance by regulating translesion synthesis (TLS) of templates carrying DNA damage lesions such as 8oxoG and abasic sites (PubMed:24191025). May act by stimulating activity of DNA polymerases involved in TLS, such as PRIMPOL and polymerase delta (POLD1) (PubMed:24191025, PubMed:26984527). {ECO:0000269|PubMed:24191025, ECO:0000269|PubMed:26984527}. |
Q9Y2U8 | LEMD3 | T32 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2X9 | ZNF281 | T777 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y3E5 | PTRH2 | T48 | ochoa | Peptidyl-tRNA hydrolase 2, mitochondrial (PTH 2) (EC 3.1.1.29) (Bcl-2 inhibitor of transcription 1) | Peptidyl-tRNA hydrolase which releases tRNAs from the ribosome during protein synthesis (PubMed:14660562). Promotes caspase-independent apoptosis by regulating the function of two transcriptional regulators, AES and TLE1. {ECO:0000269|PubMed:14660562, ECO:0000269|PubMed:15006356}. |
Q9Y4H4 | GPSM3 | T62 | ochoa | G-protein-signaling modulator 3 (Activator of G-protein signaling 4) (G18.1b) (Protein G18) | Interacts with subunit of G(i) alpha proteins and regulates the activation of G(i) alpha proteins. {ECO:0000269|PubMed:14656218, ECO:0000269|PubMed:15096500}. |
Q9Y5K6 | CD2AP | T468 | ochoa | CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) | Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}. |
Q9Y623 | MYH4 | T983 | ochoa | Myosin-4 (Myosin heavy chain 2b) (MyHC-2b) (Myosin heavy chain 4) (Myosin heavy chain IIb) (MyHC-IIb) (Myosin heavy chain, skeletal muscle, fetal) | Muscle contraction. |
Q9Y666 | SLC12A7 | T968 | ochoa | Solute carrier family 12 member 7 (Electroneutral potassium-chloride cotransporter 4) (K-Cl cotransporter 4) | Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:10913127). May mediate K(+) uptake into Deiters' cells in the cochlea and contribute to K(+) recycling in the inner ear. Important for the survival of cochlear outer and inner hair cells and the maintenance of the organ of Corti. May be required for basolateral Cl(-) extrusion in the kidney and contribute to renal acidification (By similarity). {ECO:0000250, ECO:0000269|PubMed:10913127}. |
Q9Y6J0 | CABIN1 | T1379 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
Q9Y6X4 | FAM169A | T409 | ochoa | Soluble lamin-associated protein of 75 kDa (SLAP75) (Protein FAM169A) | None |
Q9Y6Y8 | SEC23IP | T896 | ochoa | SEC23-interacting protein (p125) | Plays a role in the organization of endoplasmic reticulum exit sites. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 5-phosphate (PI(5)P). {ECO:0000269|PubMed:10400679, ECO:0000269|PubMed:15623529, ECO:0000269|PubMed:22922100}. |
U3KPZ7 | LOC127814297 | T603 | ochoa | RNA-binding protein 27 (RNA-binding motif protein 27) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000256|ARBA:ARBA00043866}. |
Q99613 | EIF3C | T880 | Sugiyama | Eukaryotic translation initiation factor 3 subunit C (eIF3c) (Eukaryotic translation initiation factor 3 subunit 8) (eIF3 p110) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03002, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
Q13561 | DCTN2 | T114 | Sugiyama | Dynactin subunit 2 (50 kDa dynein-associated polypeptide) (Dynactin complex 50 kDa subunit) (DCTN-50) (p50 dynamitin) | Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules. In the dynactin soulder domain, binds the ACTR1A filament and acts as a molecular ruler to determine the length (By similarity). Modulates cytoplasmic dynein binding to an organelle, and plays a role in prometaphase chromosome alignment and spindle organization during mitosis. Involved in anchoring microtubules to centrosomes. May play a role in synapse formation during brain development (By similarity). {ECO:0000250|UniProtKB:A0A5G2QD80, ECO:0000250|UniProtKB:Q99KJ8}. |
P35241 | RDX | T425 | Sugiyama | Radixin | Probably plays a crucial role in the binding of the barbed end of actin filaments to the plasma membrane. |
P38646 | HSPA9 | T116 | Sugiyama | Stress-70 protein, mitochondrial (EC 3.6.4.10) (75 kDa glucose-regulated protein) (GRP-75) (Heat shock 70 kDa protein 9) (Heat shock protein family A member 9) (Mortalin) (MOT) (Peptide-binding protein 74) (PBP74) | Mitochondrial chaperone that plays a key role in mitochondrial protein import, folding, and assembly. Plays an essential role in the protein quality control system, the correct folding of proteins, the re-folding of misfolded proteins, and the targeting of proteins for subsequent degradation. These processes are achieved through cycles of ATP binding, ATP hydrolysis, and ADP release, mediated by co-chaperones (PubMed:18632665, PubMed:25615450, PubMed:28848044, PubMed:30933555, PubMed:31177526). In mitochondria, it associates with the TIM (translocase of the inner membrane) protein complex to assist in the import and folding of mitochondrial proteins (By similarity). Plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis, interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU (PubMed:26702583). Regulates erythropoiesis via stabilization of ISC assembly (PubMed:21123823, PubMed:26702583). Regulates mitochondrial calcium-dependent apoptosis by coupling two calcium channels, ITPR1 and VDAC1, at the mitochondria-associated endoplasmic reticulum (ER) membrane to facilitate calcium transport from the ER lumen to the mitochondria intermembrane space, providing calcium for the downstream calcium channel MCU, which releases it into the mitochondrial matrix (By similarity). Although primarily located in the mitochondria, it is also found in other cellular compartments. In the cytosol, it associates with proteins involved in signaling, apoptosis, or senescence. It may play a role in cell cycle regulation via its interaction with and promotion of degradation of TP53 (PubMed:24625977, PubMed:26634371). May play a role in the control of cell proliferation and cellular aging (By similarity). Protects against reactive oxygen species (ROS) (By similarity). Extracellular HSPA9 plays a cytoprotective role by preventing cell lysis following immune attack by the membrane attack complex by disrupting formation of the complex (PubMed:16091382). {ECO:0000250|UniProtKB:P0CS90, ECO:0000250|UniProtKB:P38647, ECO:0000269|PubMed:16091382, ECO:0000269|PubMed:18632665, ECO:0000269|PubMed:21123823, ECO:0000269|PubMed:24625977, ECO:0000269|PubMed:25615450, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:26702583, ECO:0000269|PubMed:28848044, ECO:0000269|PubMed:30933555, ECO:0000269|PubMed:31177526}. |
P62424 | RPL7A | T93 | Sugiyama | Large ribosomal subunit protein eL8 (60S ribosomal protein L7a) (PLA-X polypeptide) (Surfeit locus protein 3) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q14444 | CAPRIN1 | T303 | Sugiyama | Caprin-1 (Cell cycle-associated protein 1) (Cytoplasmic activation- and proliferation-associated protein 1) (GPI-anchored membrane protein 1) (GPI-anchored protein p137) (GPI-p137) (p137GPI) (Membrane component chromosome 11 surface marker 1) (RNA granule protein 105) | mRNA-binding protein that acts as a regulator of mRNAs transport, translation and/or stability, and which is involved in neurogenesis, synaptic plasticity in neurons and cell proliferation and migration in multiple cell types (PubMed:17210633, PubMed:31439799, PubMed:35979925). Plays an essential role in cytoplasmic stress granule formation (PubMed:35977029). Acts as an mRNA regulator by mediating formation of some phase-separated membraneless compartment: undergoes liquid-liquid phase separation upon binding to target mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (PubMed:31439799, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34074792, PubMed:36040869, PubMed:36279435). Undergoes liquid-liquid phase separation following phosphorylation and interaction with FMR1, promoting formation of cytoplasmic ribonucleoprotein granules that concentrate mRNAs with factors that inhibit translation and mediate deadenylation of target mRNAs (PubMed:31439799). In these cytoplasmic ribonucleoprotein granules, CAPRIN1 mediates recruitment of CNOT7 deadenylase, leading to mRNA deadenylation and degradation (PubMed:31439799). Binds directly and selectively to MYC and CCND2 mRNAs (PubMed:17210633). In neuronal cells, directly binds to several mRNAs associated with RNA granules, including BDNF, CAMK2A, CREB1, MAP2, NTRK2 mRNAs, as well as to GRIN1 and KPNB1 mRNAs, but not to rRNAs (PubMed:17210633). {ECO:0000269|PubMed:17210633, ECO:0000269|PubMed:31439799, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:34074792, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:35979925, ECO:0000269|PubMed:36040869, ECO:0000269|PubMed:36279435}. |
A0MZ66 | SHTN1 | T455 | Sugiyama | Shootin-1 (Shootin1) | Involved in the generation of internal asymmetric signals required for neuronal polarization and neurite outgrowth. Mediates netrin-1-induced F-actin-substrate coupling or 'clutch engagement' within the axon growth cone through activation of CDC42, RAC1 and PAK1-dependent signaling pathway, thereby converting the F-actin retrograde flow into traction forces, concomitantly with filopodium extension and axon outgrowth. Plays a role in cytoskeletal organization by regulating the subcellular localization of phosphoinositide 3-kinase (PI3K) activity at the axonal growth cone. Also plays a role in regenerative neurite outgrowth. In the developing cortex, cooperates with KIF20B to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in the accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the growth cone of primary hippocampal neurons. {ECO:0000250|UniProtKB:A0MZ67, ECO:0000250|UniProtKB:Q8K2Q9}. |
P16083 | NQO2 | T72 | Sugiyama | Ribosyldihydronicotinamide dehydrogenase [quinone] (EC 1.10.5.1) (NRH dehydrogenase [quinone] 2) (NRH:quinone oxidoreductase 2) (Quinone reductase 2) (QR2) | The enzyme apparently serves as a quinone reductase in connection with conjugation reactions of hydroquinones involved in detoxification pathways as well as in biosynthetic processes such as the vitamin K-dependent gamma-carboxylation of glutamate residues in prothrombin synthesis. {ECO:0000269|PubMed:18254726}. |
P20674 | COX5A | T105 | Sugiyama | Cytochrome c oxidase subunit 5A, mitochondrial (Cytochrome c oxidase polypeptide Va) | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. {ECO:0000250|UniProtKB:P00427}. |
P62081 | RPS7 | T172 | Sugiyama | Small ribosomal subunit protein eS7 (40S ribosomal protein S7) | Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for rRNA maturation (PubMed:19061985). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:19061985, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
Q99426 | TBCB | T120 | Sugiyama | Tubulin-folding cofactor B (Cytoskeleton-associated protein 1) (Cytoskeleton-associated protein CKAPI) (Tubulin-specific chaperone B) | Binds to alpha-tubulin folding intermediates after their interaction with cytosolic chaperonin in the pathway leading from newly synthesized tubulin to properly folded heterodimer (PubMed:9265649). Involved in regulation of tubulin heterodimer dissociation. May function as a negative regulator of axonal growth (By similarity). {ECO:0000250|UniProtKB:Q9D1E6, ECO:0000269|PubMed:9265649}. |
Q9Y4L1 | HYOU1 | T750 | Sugiyama | Hypoxia up-regulated protein 1 (150 kDa oxygen-regulated protein) (ORP-150) (170 kDa glucose-regulated protein) (GRP-170) (Heat shock protein family H member 4) | Has a pivotal role in cytoprotective cellular mechanisms triggered by oxygen deprivation. Promotes HSPA5/BiP-mediated ATP nucleotide exchange and thereby activates the unfolded protein response (UPR) pathway in the presence of endoplasmic reticulum stress (By similarity). May play a role as a molecular chaperone and participate in protein folding. {ECO:0000250|UniProtKB:Q9JKR6, ECO:0000269|PubMed:10037731}. |
O43852 | CALU | T196 | Sugiyama | Calumenin (Crocalbin) (IEF SSP 9302) | Involved in regulation of vitamin K-dependent carboxylation of multiple N-terminal glutamate residues. Seems to inhibit gamma-carboxylase GGCX. Binds 7 calcium ions with a low affinity (By similarity). {ECO:0000250}. |
P53350 | PLK1 | T539 | SIGNOR | Serine/threonine-protein kinase PLK1 (EC 2.7.11.21) (Polo-like kinase 1) (PLK-1) (Serine/threonine-protein kinase 13) (STPK13) | Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase-promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Polo-like kinase proteins act by binding and phosphorylating proteins that are already phosphorylated on a specific motif recognized by the POLO box domains (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Phosphorylates BORA, BUB1B/BUBR1, CCNB1, CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, CENPU, NEDD1, NINL, NPM1, NUDC, PKMYT1/MYT1, KIZ, MRE11, PPP1R12A/MYPT1, POLQ, PRC1, RACGAP1/CYK4, RAD51, RHNO1, SGO1, STAG2/SA2, TEX14, TOPORS, p73/TP73, TPT1, WEE1 and HNRNPU (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17218258, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:22325354, PubMed:23455478, PubMed:23509069, PubMed:25986610, PubMed:26811421, PubMed:28512243, PubMed:37440612, PubMed:37674080, PubMed:8991084). Plays a key role in centrosome functions and the assembly of bipolar spindles by phosphorylating KIZ, NEDD1 and NINL (PubMed:16980960, PubMed:19509060). NEDD1 phosphorylation promotes subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation (PubMed:19509060). Phosphorylation of NINL component of the centrosome leads to NINL dissociation from other centrosomal proteins (PubMed:12852856). Involved in mitosis exit and cytokinesis by phosphorylating CEP55, ECT2, KIF20A/MKLP2, CENPU, PRC1 and RACGAP1 (PubMed:12939256, PubMed:16247472, PubMed:17351640, PubMed:19468300, PubMed:19468302). Recruited at the central spindle by phosphorylating and docking PRC1 and KIF20A/MKLP2; creates its own docking sites on PRC1 and KIF20A/MKLP2 by mediating phosphorylation of sites subsequently recognized by the POLO box domains (PubMed:12939256, PubMed:17351640). Phosphorylates RACGAP1, thereby creating a docking site for the Rho GTP exchange factor ECT2 that is essential for the cleavage furrow formation (PubMed:19468300, PubMed:19468302). Promotes the central spindle recruitment of ECT2 (PubMed:16247472). Plays a central role in G2/M transition of mitotic cell cycle by phosphorylating CCNB1, CDC25C, FOXM1, CENPU, PKMYT1/MYT1, PPP1R12A/MYPT1 and WEE1 (PubMed:11202906, PubMed:12447691, PubMed:12524548, PubMed:19160488). Part of a regulatory circuit that promotes the activation of CDK1 by phosphorylating the positive regulator CDC25C and inhibiting the negative regulators WEE1 and PKMYT1/MYT1 (PubMed:11202906). Also acts by mediating phosphorylation of cyclin-B1 (CCNB1) on centrosomes in prophase (PubMed:12447691, PubMed:12524548). Phosphorylates FOXM1, a key mitotic transcription regulator, leading to enhance FOXM1 transcriptional activity (PubMed:19160488). Involved in kinetochore functions and sister chromatid cohesion by phosphorylating BUB1B/BUBR1, FBXO5/EMI1 and STAG2/SA2 (PubMed:15148369, PubMed:15469984, PubMed:17376779, PubMed:18331714). PLK1 is high on non-attached kinetochores suggesting a role of PLK1 in kinetochore attachment or in spindle assembly checkpoint (SAC) regulation (PubMed:17617734). Required for kinetochore localization of BUB1B (PubMed:17376779). Regulates the dissociation of cohesin from chromosomes by phosphorylating cohesin subunits such as STAG2/SA2 (By similarity). Phosphorylates SGO1: required for spindle pole localization of isoform 3 of SGO1 and plays a role in regulating its centriole cohesion function (PubMed:18331714). Mediates phosphorylation of FBXO5/EMI1, a negative regulator of the APC/C complex during prophase, leading to FBXO5/EMI1 ubiquitination and degradation by the proteasome (PubMed:15148369, PubMed:15469984). Acts as a negative regulator of p53 family members: phosphorylates TOPORS, leading to inhibit the sumoylation of p53/TP53 and simultaneously enhance the ubiquitination and subsequent degradation of p53/TP53 (PubMed:19473992). Phosphorylates the transactivation domain of the transcription factor p73/TP73, leading to inhibit p73/TP73-mediated transcriptional activation and pro-apoptotic functions. Phosphorylates BORA, and thereby promotes the degradation of BORA (PubMed:18521620). Contributes to the regulation of AURKA function (PubMed:18615013, PubMed:18662541). Also required for recovery after DNA damage checkpoint and entry into mitosis (PubMed:18615013, PubMed:18662541). Phosphorylates MISP, leading to stabilization of cortical and astral microtubule attachments required for proper spindle positioning (PubMed:23509069). Together with MEIKIN, acts as a regulator of kinetochore function during meiosis I: required both for mono-orientation of kinetochores on sister chromosomes and protection of centromeric cohesin from separase-mediated cleavage (By similarity). Phosphorylates CEP68 and is required for its degradation (PubMed:25503564). Regulates nuclear envelope breakdown during prophase by phosphorylating DCTN1 resulting in its localization in the nuclear envelope (PubMed:20679239). Phosphorylates the heat shock transcription factor HSF1, promoting HSF1 nuclear translocation upon heat shock (PubMed:15661742). Phosphorylates HSF1 also in the early mitotic period; this phosphorylation regulates HSF1 localization to the spindle pole, the recruitment of the SCF(BTRC) ubiquitin ligase complex induicing HSF1 degradation, and hence mitotic progression (PubMed:18794143). Regulates mitotic progression by phosphorylating RIOK2 (PubMed:21880710). Through the phosphorylation of DZIP1 regulates the localization during mitosis of the BBSome, a ciliary protein complex involved in cilium biogenesis (PubMed:27979967). Regulates DNA repair during mitosis by mediating phosphorylation of POLQ and RHNO1, thereby promoting POLQ recruitment to DNA damage sites (PubMed:37440612, PubMed:37674080). Phosphorylates ATXN10 which may play a role in the regulation of cytokinesis and may stimulate the proteasome-mediated degradation of ATXN10 (PubMed:21857149). {ECO:0000250|UniProtKB:P70032, ECO:0000250|UniProtKB:Q5F2C3, ECO:0000269|PubMed:11202906, ECO:0000269|PubMed:12207013, ECO:0000269|PubMed:12447691, ECO:0000269|PubMed:12524548, ECO:0000269|PubMed:12738781, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:12939256, ECO:0000269|PubMed:14532005, ECO:0000269|PubMed:14734534, ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:15148369, ECO:0000269|PubMed:15469984, ECO:0000269|PubMed:15661742, ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:16247472, ECO:0000269|PubMed:16980960, ECO:0000269|PubMed:17081991, ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:17351640, ECO:0000269|PubMed:17376779, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:18418051, ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:18521620, ECO:0000269|PubMed:18615013, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:19351716, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:19509060, ECO:0000269|PubMed:19597481, ECO:0000269|PubMed:20679239, ECO:0000269|PubMed:21857149, ECO:0000269|PubMed:21880710, ECO:0000269|PubMed:22325354, ECO:0000269|PubMed:23455478, ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:25986610, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:27979967, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080, ECO:0000269|PubMed:8991084}. |
P24844 | MYL9 | T129 | Sugiyama | Myosin regulatory light polypeptide 9 (20 kDa myosin light chain) (LC20) (MLC-2C) (Myosin RLC) (Myosin regulatory light chain 2, smooth muscle isoform) (Myosin regulatory light chain 9) (Myosin regulatory light chain MRLC1) | Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Implicated in cytokinesis, receptor capping, and cell locomotion (PubMed:11942626, PubMed:2526655). In myoblasts, may regulate PIEZO1-dependent cortical actomyosin assembly involved in myotube formation (By similarity). {ECO:0000250|UniProtKB:Q9CQ19, ECO:0000269|PubMed:11942626, ECO:0000269|PubMed:2526655}. |
Q96G46 | DUS3L | T53 | Sugiyama | tRNA-dihydrouridine(47) synthase [NAD(P)(+)]-like (EC 1.3.1.89) (mRNA-dihydrouridine synthase DUS3L) (EC 1.3.1.-) (tRNA-dihydrouridine synthase 3-like) | Catalyzes the synthesis of dihydrouridine, a modified base, in various RNAs, such as tRNAs, mRNAs and some long non-coding RNAs (lncRNAs) (PubMed:34556860). Mainly modifies the uridine in position 47 (U47) in the D-loop of most cytoplasmic tRNAs (PubMed:34556860). Also able to mediate the formation of dihydrouridine in some mRNAs, thereby regulating their translation (PubMed:34556860). {ECO:0000269|PubMed:34556860}. |
P49411 | TUFM | T433 | Sugiyama | Elongation factor Tu, mitochondrial (EF-Tu) (EC 3.6.5.3) (P43) | GTP hydrolase that promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. Also plays a role in the regulation of autophagy and innate immunity. Recruits ATG5-ATG12 and NLRX1 at mitochondria and serves as a checkpoint of the RIGI-MAVS pathway. In turn, inhibits RLR-mediated type I interferon while promoting autophagy. {ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:28407488}. |
O43781 | DYRK3 | T66 | Sugiyama | Dual specificity tyrosine-phosphorylation-regulated kinase 3 (EC 2.7.12.1) (Regulatory erythroid kinase) (REDK) | Dual-specificity protein kinase that promotes disassembly of several types of membraneless organelles during mitosis, such as stress granules, nuclear speckles and pericentriolar material (PubMed:29973724). Dual-specificity tyrosine-regulated kinases (DYRKs) autophosphorylate a critical tyrosine residue in their activation loop and phosphorylate their substrate on serine and threonine residues (PubMed:29634919, PubMed:9748265). Acts as a central dissolvase of membraneless organelles during the G2-to-M transition, after the nuclear-envelope breakdown: acts by mediating phosphorylation of multiple serine and threonine residues in unstructured domains of proteins, such as SRRM1 and PCM1 (PubMed:29973724). Does not mediate disassembly of all membraneless organelles: disassembly of P-body and nucleolus is not regulated by DYRK3 (PubMed:29973724). Dissolution of membraneless organelles at the onset of mitosis is also required to release mitotic regulators, such as ZNF207, from liquid-unmixed organelles where they are sequestered and keep them dissolved during mitosis (PubMed:29973724). Regulates mTORC1 by mediating the dissolution of stress granules: during stressful conditions, DYRK3 partitions from the cytosol to the stress granule, together with mTORC1 components, which prevents mTORC1 signaling (PubMed:23415227). When stress signals are gone, the kinase activity of DYRK3 is required for the dissolution of stress granule and mTORC1 relocation to the cytosol: acts by mediating the phosphorylation of the mTORC1 inhibitor AKT1S1, allowing full reactivation of mTORC1 signaling (PubMed:23415227). Also acts as a negative regulator of EPO-dependent erythropoiesis: may place an upper limit on red cell production during stress erythropoiesis (PubMed:10779429). Inhibits cell death due to cytokine withdrawal in hematopoietic progenitor cells (PubMed:10779429). Promotes cell survival upon genotoxic stress through phosphorylation of SIRT1: this in turn inhibits p53/TP53 activity and apoptosis (PubMed:20167603). {ECO:0000269|PubMed:10779429, ECO:0000269|PubMed:20167603, ECO:0000269|PubMed:23415227, ECO:0000269|PubMed:29634919, ECO:0000269|PubMed:29973724, ECO:0000269|PubMed:9748265}. |
O60566 | BUB1B | T608 | Sugiyama | Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) | Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}. |
Q14157 | UBAP2L | T256 | Sugiyama | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q13442 | PDAP1 | T97 | Sugiyama | 28 kDa heat- and acid-stable phosphoprotein (PDGF-associated protein) (PAP) (PDGFA-associated protein 1) (PAP1) | Enhances PDGFA-stimulated cell growth in fibroblasts, but inhibits the mitogenic effect of PDGFB. {ECO:0000250}. |
O75582 | RPS6KA5 | T34 | Sugiyama | Ribosomal protein S6 kinase alpha-5 (S6K-alpha-5) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 5) (Nuclear mitogen- and stress-activated protein kinase 1) (RSK-like protein kinase) (RSKL) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factors RELA, STAT3 and ETV1/ER81, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes (PubMed:11909979, PubMed:12569367, PubMed:12763138, PubMed:18511904, PubMed:9687510, PubMed:9873047). Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin (PubMed:11909979, PubMed:9873047). Plays an essential role in the control of RELA transcriptional activity in response to TNF and upon glucocorticoid, associates in the cytoplasm with the glucocorticoid receptor NR3C1 and contributes to RELA inhibition and repression of inflammatory gene expression (PubMed:12628924, PubMed:18511904). In skeletal myoblasts is required for phosphorylation of RELA at 'Ser-276' during oxidative stress (PubMed:12628924). In erythropoietin-stimulated cells, is necessary for the 'Ser-727' phosphorylation of STAT3 and regulation of its transcriptional potential (PubMed:12763138). Phosphorylates ETV1/ER81 at 'Ser-191' and 'Ser-216', and thereby regulates its ability to stimulate transcription, which may be important during development and breast tumor formation (PubMed:12569367). Directly represses transcription via phosphorylation of 'Ser-1' of histone H2A (PubMed:15010469). Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN (PubMed:12773393). May also phosphorylate 'Ser-28' of histone H3 (PubMed:12773393). Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14) (PubMed:12773393). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines (By similarity). Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors (By similarity). Plays a role in neuronal cell death by mediating the downstream effects of excitotoxic injury (By similarity). Phosphorylates TRIM7 at 'Ser-107' in response to growth factor signaling via the MEK/ERK pathway, thereby stimulating its ubiquitin ligase activity (PubMed:25851810). {ECO:0000250|UniProtKB:Q8C050, ECO:0000269|PubMed:11909979, ECO:0000269|PubMed:12569367, ECO:0000269|PubMed:12628924, ECO:0000269|PubMed:12763138, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:15010469, ECO:0000269|PubMed:18511904, ECO:0000269|PubMed:25851810, ECO:0000269|PubMed:9687510, ECO:0000269|PubMed:9873047}. |
O75914 | PAK3 | T252 | Sugiyama | Serine/threonine-protein kinase PAK 3 (EC 2.7.11.1) (Beta-PAK) (Oligophrenin-3) (p21-activated kinase 3) (PAK-3) | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, or cell cycle regulation. Plays a role in dendrite spine morphogenesis as well as synapse formation and plasticity. Acts as a downstream effector of the small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. Additionally, phosphorylates TNNI3/troponin I to modulate calcium sensitivity and relaxation kinetics of thin myofilaments. May also be involved in early neuronal development. In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). {ECO:0000250|UniProtKB:Q61036, ECO:0000269|PubMed:21177870}. |
P27348 | YWHAQ | T24 | Sugiyama | 14-3-3 protein theta (14-3-3 protein T-cell) (14-3-3 protein tau) (Protein HS1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}. |
P53634 | CTSC | T431 | Sugiyama | Dipeptidyl peptidase 1 (EC 3.4.14.1) (Cathepsin C) (Cathepsin J) (Dipeptidyl peptidase I) (DPP-I) (DPPI) (Dipeptidyl transferase) [Cleaved into: Dipeptidyl peptidase 1 exclusion domain chain (Dipeptidyl peptidase I exclusion domain chain); Dipeptidyl peptidase 1 heavy chain (Dipeptidyl peptidase I heavy chain); Dipeptidyl peptidase 1 light chain (Dipeptidyl peptidase I light chain)] | Thiol protease (PubMed:1586157). Has dipeptidylpeptidase activity (PubMed:1586157). Active against a broad range of dipeptide substrates composed of both polar and hydrophobic amino acids (PubMed:1586157). Proline cannot occupy the P1 position and arginine cannot occupy the P2 position of the substrate (PubMed:1586157). Can act as both an exopeptidase and endopeptidase (PubMed:1586157). Activates serine proteases such as elastase, cathepsin G and granzymes A and B (PubMed:8428921). {ECO:0000269|PubMed:1586157, ECO:0000269|PubMed:8428921}. |
Q8WU90 | ZC3H15 | T348 | Sugiyama | Zinc finger CCCH domain-containing protein 15 (DRG family-regulatory protein 1) (Likely ortholog of mouse immediate early response erythropoietin 4) | Protects DRG1 from proteolytic degradation (PubMed:19819225). Stimulates DRG1 GTPase activity likely by increasing the affinity for the potassium ions (PubMed:23711155). {ECO:0000269|PubMed:19819225, ECO:0000269|PubMed:23711155}. |
Q99832 | CCT7 | T98 | Sugiyama | T-complex protein 1 subunit eta (TCP-1-eta) (EC 3.6.1.-) (CCT-eta) (Chaperonin containing T-complex polypeptide 1 subunit 7) (HIV-1 Nef-interacting protein) [Cleaved into: T-complex protein 1 subunit eta, N-terminally processed] | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). {ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
Q9BTC0 | DIDO1 | T355 | Sugiyama | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BY43 | CHMP4A | T85 | Sugiyama | Charged multivesicular body protein 4a (Chromatin-modifying protein 4a) (CHMP4a) (SNF7 homolog associated with Alix-2) (SNF7-1) (hSnf-1) (Vacuolar protein sorting-associated protein 32-1) (Vps32-1) (hVps32-1) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. When overexpressed, membrane-assembled circular arrays of CHMP4A filaments can promote or stabilize negative curvature and outward budding. Via its interaction with PDCD6IP involved in HIV-1 p6- and p9-dependent virus release. CHMP4A/B/C are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). {ECO:0000269|PubMed:12860994, ECO:0000269|PubMed:14505569, ECO:0000269|PubMed:14519844, ECO:0000269|PubMed:14583093, ECO:0000269|PubMed:18209100, ECO:0000269|PubMed:22660413}. |
P00519 | ABL1 | T776 | Sugiyama | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P20618 | PSMB1 | T217 | Sugiyama | Proteasome subunit beta type-1 (Macropain subunit C5) (Multicatalytic endopeptidase complex subunit C5) (Proteasome component C5) (Proteasome gamma chain) (Proteasome subunit beta-6) (beta-6) | Non-catalytic component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
Q15398 | DLGAP5 | T401 | GPS6|EPSD | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
O60282 | KIF5C | T81 | Sugiyama | Kinesin heavy chain isoform 5C (EC 3.6.4.-) (Kinesin heavy chain neuron-specific 2) (Kinesin-1) | Microtubule-associated force-producing protein that may play a role in organelle transport. Has ATPase activity (By similarity). Involved in synaptic transmission (PubMed:24812067). Mediates dendritic trafficking of mRNAs (By similarity). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). {ECO:0000250|UniProtKB:P28738, ECO:0000250|UniProtKB:P56536, ECO:0000269|PubMed:24812067}. |
P33176 | KIF5B | T80 | Sugiyama | Kinesin-1 heavy chain (Conventional kinesin heavy chain) (Ubiquitous kinesin heavy chain) (UKHC) | Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes. Can induce formation of neurite-like membrane protrusions in non-neuronal cells in a ZFYVE27-dependent manner (By similarity). Regulates centrosome and nuclear positioning during mitotic entry. During the G2 phase of the cell cycle in a BICD2-dependent manner, antagonizes dynein function and drives the separation of nuclei and centrosomes (PubMed:20386726). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). Through binding with PLEKHM2 and ARL8B, directs lysosome movement toward microtubule plus ends (Probable). Involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). {ECO:0000250|UniProtKB:Q2PQA9, ECO:0000250|UniProtKB:Q61768, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:24088571, ECO:0000305|PubMed:22172677, ECO:0000305|PubMed:24088571}. |
O95336 | PGLS | T91 | Sugiyama | 6-phosphogluconolactonase (6PGL) (EC 3.1.1.31) | Hydrolysis of 6-phosphogluconolactone to 6-phosphogluconate. {ECO:0000269|PubMed:10518023}. |
P23246 | SFPQ | T485 | Sugiyama | Splicing factor, proline- and glutamine-rich (100 kDa DNA-pairing protein) (hPOMp100) (DNA-binding p52/p100 complex, 100 kDa subunit) (Polypyrimidine tract-binding protein-associated-splicing factor) (PSF) (PTB-associated-splicing factor) | DNA- and RNA binding protein, involved in several nuclear processes. Essential pre-mRNA splicing factor required early in spliceosome formation and for splicing catalytic step II, probably as a heteromer with NONO. Binds to pre-mRNA in spliceosome C complex, and specifically binds to intronic polypyrimidine tracts. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45, a phosphorylated form is sequestered by THRAP3 from the pre-mRNA in resting T-cells; T-cell activation and subsequent reduced phosphorylation is proposed to lead to release from THRAP3 allowing binding to pre-mRNA splicing regulatotry elements which represses exon inclusion. Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. May be involved in a pre-mRNA coupled splicing and polyadenylation process as component of a snRNP-free complex with SNRPA/U1A. The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs. SFPQ may be involved in homologous DNA pairing; in vitro, promotes the invasion of ssDNA between a duplex DNA and produces a D-loop formation. The SFPQ-NONO heteromer may be involved in DNA unwinding by modulating the function of topoisomerase I/TOP1; in vitro, stimulates dissociation of TOP1 from DNA after cleavage and enhances its jumping between separate DNA helices. The SFPQ-NONO heteromer binds DNA (PubMed:25765647). The SFPQ-NONO heteromer may be involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination and may stabilize paired DNA ends; in vitro, the complex strongly stimulates DNA end joining, binds directly to the DNA substrates and cooperates with the Ku70/G22P1-Ku80/XRCC5 (Ku) dimer to establish a functional preligation complex. SFPQ is involved in transcriptional regulation. Functions as a transcriptional activator (PubMed:25765647). Transcriptional repression is mediated by an interaction of SFPQ with SIN3A and subsequent recruitment of histone deacetylases (HDACs). The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional activity. SFPQ isoform Long binds to the DNA binding domains (DBD) of nuclear hormone receptors, like RXRA and probably THRA, and acts as a transcriptional corepressor in absence of hormone ligands. Binds the DNA sequence 5'-CTGAGTC-3' in the insulin-like growth factor response element (IGFRE) and inhibits IGF1-stimulated transcriptional activity. Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation (By similarity). Required for the assembly of nuclear speckles (PubMed:25765647). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000250|UniProtKB:Q8VIJ6, ECO:0000269|PubMed:10847580, ECO:0000269|PubMed:10858305, ECO:0000269|PubMed:10931916, ECO:0000269|PubMed:11259580, ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:11897684, ECO:0000269|PubMed:15590677, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:25765647, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:8045264, ECO:0000269|PubMed:8449401}. |
Q86VM9 | ZC3H18 | T395 | Sugiyama | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
P08253 | MMP2 | T250 | EPSD|PSP | 72 kDa type IV collagenase (EC 3.4.24.24) (72 kDa gelatinase) (Gelatinase A) (Matrix metalloproteinase-2) (MMP-2) (TBE-1) [Cleaved into: PEX] | Ubiquitinous metalloproteinase that is involved in diverse functions such as remodeling of the vasculature, angiogenesis, tissue repair, tumor invasion, inflammation, and atherosclerotic plaque rupture. As well as degrading extracellular matrix proteins, can also act on several nonmatrix proteins such as big endothelial 1 and beta-type CGRP promoting vasoconstriction. Also cleaves KISS at a Gly-|-Leu bond. Appears to have a role in myocardial cell death pathways. Contributes to myocardial oxidative stress by regulating the activity of GSK3beta. Cleaves GSK3beta in vitro. Involved in the formation of the fibrovascular tissues in association with MMP14.; FUNCTION: PEX, the C-terminal non-catalytic fragment of MMP2, possesses anti-angiogenic and anti-tumor properties and inhibits cell migration and cell adhesion to FGF2 and vitronectin. Ligand for integrinv/beta3 on the surface of blood vessels.; FUNCTION: [Isoform 2]: Mediates the proteolysis of CHUK/IKKA and initiates a primary innate immune response by inducing mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-kappaB, NFAT and IRF transcriptional pathways. |
P00338 | LDHA | T220 | Sugiyama | L-lactate dehydrogenase A chain (LDH-A) (EC 1.1.1.27) (Cell proliferation-inducing gene 19 protein) (LDH muscle subunit) (LDH-M) (Renal carcinoma antigen NY-REN-59) | Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:11276087}. |
O75400 | PRPF40A | T923 | Sugiyama | Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) | Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
P20248 | CCNA2 | T100 | Sugiyama | Cyclin-A2 (Cyclin-A) (Cyclin A) | Cyclin which controls both the G1/S and the G2/M transition phases of the cell cycle. Functions through the formation of specific serine/threonine protein kinase holoenzyme complexes with the cyclin-dependent protein kinases CDK1 or CDK2. The cyclin subunit confers the substrate specificity of these complexes and differentially interacts with and activates CDK1 and CDK2 throughout the cell cycle. {ECO:0000269|PubMed:1312467}. |
P49588 | AARS1 | T689 | Sugiyama | Alanine--tRNA ligase, cytoplasmic (EC 6.1.1.7) (Alanyl-tRNA synthetase) (AlaRS) (Protein lactyltransferase AARS1) (EC 6.-.-.-) (Renal carcinoma antigen NY-REN-42) | Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala) (PubMed:27622773, PubMed:27911835, PubMed:28493438, PubMed:33909043). Also edits incorrectly charged tRNA(Ala) via its editing domain (PubMed:27622773, PubMed:27911835, PubMed:28493438, PubMed:29273753). In presence of high levels of lactate, also acts as a protein lactyltransferase that mediates lactylation of lysine residues in target proteins, such as TEAD1, TP53/p53 and YAP1 (PubMed:38512451, PubMed:38653238). Protein lactylation takes place in a two-step reaction: lactate is first activated by ATP to form lactate-AMP and then transferred to lysine residues of target proteins (PubMed:38512451, PubMed:38653238, PubMed:39322678). Acts as an inhibitor of TP53/p53 activity by catalyzing lactylation of TP53/p53 (PubMed:38653238). Acts as a positive regulator of the Hippo pathway by mediating lactylation of TEAD1 and YAP1 (PubMed:38512451). {ECO:0000269|PubMed:27622773, ECO:0000269|PubMed:27911835, ECO:0000269|PubMed:28493438, ECO:0000269|PubMed:29273753, ECO:0000269|PubMed:33909043, ECO:0000269|PubMed:38512451, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:39322678}. |
Q15293 | RCN1 | T211 | Sugiyama | Reticulocalbin-1 | May regulate calcium-dependent activities in the endoplasmic reticulum lumen or post-ER compartment. |
P40227 | CCT6A | T147 | Sugiyama | T-complex protein 1 subunit zeta (TCP-1-zeta) (EC 3.6.1.-) (Acute morphine dependence-related protein 2) (CCT-zeta-1) (Chaperonin containing T-complex polypeptide 1 subunit 6A) (HTR3) (Tcp20) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). {ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
Q14203 | DCTN1 | T422 | Sugiyama | Dynactin subunit 1 (150 kDa dynein-associated polypeptide) (DAP-150) (DP-150) (p135) (p150-glued) | Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Plays a key role in dynein-mediated retrograde transport of vesicles and organelles along microtubules by recruiting and tethering dynein to microtubules. Binds to both dynein and microtubules providing a link between specific cargos, microtubules and dynein. Essential for targeting dynein to microtubule plus ends, recruiting dynein to membranous cargos and enhancing dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Can also act as a brake to slow the dynein motor during motility along the microtubule (PubMed:25185702). Can regulate microtubule stability by promoting microtubule formation, nucleation and polymerization and by inhibiting microtubule catastrophe in neurons. Inhibits microtubule catastrophe by binding both to microtubules and to tubulin, leading to enhanced microtubule stability along the axon (PubMed:23874158). Plays a role in metaphase spindle orientation (PubMed:22327364). Plays a role in centriole cohesion and subdistal appendage organization and function. Its recruitment to the centriole in a KIF3A-dependent manner is essential for the maintenance of centriole cohesion and the formation of subdistal appendage. Also required for microtubule anchoring at the mother centriole (PubMed:23386061). Plays a role in primary cilia formation (PubMed:25774020). {ECO:0000250|UniProtKB:A0A287B8J2, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23386061, ECO:0000269|PubMed:23874158, ECO:0000269|PubMed:25185702, ECO:0000269|PubMed:25774020}. |
Q9UBU7 | DBF4 | T390 | Sugiyama | Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) | Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}. |
P05362 | ICAM1 | T436 | Sugiyama | Intercellular adhesion molecule 1 (ICAM-1) (Major group rhinovirus receptor) (CD antigen CD54) | ICAM proteins are ligands for the leukocyte adhesion protein LFA-1 (integrin alpha-L/beta-2). During leukocyte trans-endothelial migration, ICAM1 engagement promotes the assembly of endothelial apical cups through ARHGEF26/SGEF and RHOG activation. {ECO:0000269|PubMed:11173916, ECO:0000269|PubMed:17875742}.; FUNCTION: (Microbial infection) Acts as a receptor for major receptor group rhinovirus A-B capsid proteins. {ECO:0000269|PubMed:1968231, ECO:0000269|PubMed:2538243}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus A21 capsid proteins. {ECO:0000269|PubMed:11160747, ECO:0000269|PubMed:16004874, ECO:0000269|PubMed:9539703}.; FUNCTION: (Microbial infection) Upon Kaposi's sarcoma-associated herpesvirus/HHV-8 infection, is degraded by viral E3 ubiquitin ligase MIR2, presumably to prevent lysis of infected cells by cytotoxic T-lymphocytes and NK cell. {ECO:0000269|PubMed:11413168}. |
P00966 | ASS1 | T210 | Sugiyama | Argininosuccinate synthase (EC 6.3.4.5) (Citrulline--aspartate ligase) | One of the enzymes of the urea cycle, the metabolic pathway transforming neurotoxic amonia produced by protein catabolism into inocuous urea in the liver of ureotelic animals. Catalyzes the formation of arginosuccinate from aspartate, citrulline and ATP and together with ASL it is responsible for the biosynthesis of arginine in most body tissues. {ECO:0000305|PubMed:18473344, ECO:0000305|PubMed:27287393, ECO:0000305|PubMed:8792870}. |
Q14157 | UBAP2L | T239 | Sugiyama | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14320 | FAM50A | T69 | Sugiyama | Protein FAM50A (Protein HXC-26) (Protein XAP-5) | Probably involved in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:32703943}. |
Q9Y247 | FAM50B | T69 | Sugiyama | Protein FAM50B (Protein XAP-5-like) | None |
P50395 | GDI2 | T412 | Sugiyama | Rab GDP dissociation inhibitor beta (Rab GDI beta) (Guanosine diphosphate dissociation inhibitor 2) (GDI-2) | GDP-dissociation inhibitor preventing the GDP to GTP exchange of most Rab proteins. By keeping these small GTPases in their inactive GDP-bound form regulates intracellular membrane trafficking (PubMed:25860027). Negatively regulates protein transport to the cilium and ciliogenesis through the inhibition of RAB8A (PubMed:25860027). {ECO:0000269|PubMed:25860027}. |
P14314 | PRKCSH | T363 | Sugiyama | Glucosidase 2 subunit beta (80K-H protein) (Glucosidase II subunit beta) (Protein kinase C substrate 60.1 kDa protein heavy chain) (PKCSH) | Regulatory subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:O08795, ECO:0000269|PubMed:10929008}. |
P57059 | SIK1 | T460 | Sugiyama | Serine/threonine-protein kinase SIK1 (EC 2.7.11.1) (Salt-inducible kinase 1) (SIK-1) (Serine/threonine-protein kinase SNF1-like kinase 1) (Serine/threonine-protein kinase SNF1LK) | Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, gluconeogenesis and lipogenesis regulation, muscle growth and differentiation and tumor suppression. Phosphorylates HDAC4, HDAC5, PPME1, SREBF1, CRTC1/TORC1. Inhibits CREB activity by phosphorylating and inhibiting activity of TORCs, the CREB-specific coactivators, like CRTC2/TORC2 and CRTC3/TORC3 in response to cAMP signaling (PubMed:29211348). Acts as a tumor suppressor and plays a key role in p53/TP53-dependent anoikis, a type of apoptosis triggered by cell detachment: required for phosphorylation of p53/TP53 in response to loss of adhesion and is able to suppress metastasis. Part of a sodium-sensing signaling network, probably by mediating phosphorylation of PPME1: following increases in intracellular sodium, SIK1 is activated by CaMK1 and phosphorylates PPME1 subunit of protein phosphatase 2A (PP2A), leading to dephosphorylation of sodium/potassium-transporting ATPase ATP1A1 and subsequent increase activity of ATP1A1. Acts as a regulator of muscle cells by phosphorylating and inhibiting class II histone deacetylases HDAC4 and HDAC5, leading to promote expression of MEF2 target genes in myocytes. Also required during cardiomyogenesis by regulating the exit of cardiomyoblasts from the cell cycle via down-regulation of CDKN1C/p57Kip2. Acts as a regulator of hepatic gluconeogenesis by phosphorylating and repressing the CREB-specific coactivators CRTC1/TORC1 and CRTC2/TORC2, leading to inhibit CREB activity. Also regulates hepatic lipogenesis by phosphorylating and inhibiting SREBF1. In concert with CRTC1/TORC1, regulates the light-induced entrainment of the circadian clock by attenuating PER1 induction; represses CREB-mediated transcription of PER1 by phosphorylating and deactivating CRTC1/TORC1 (By similarity). {ECO:0000250|UniProtKB:Q60670, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:16306228, ECO:0000269|PubMed:18348280, ECO:0000269|PubMed:19622832, ECO:0000269|PubMed:29211348}. |
P78362 | SRPK2 | T328 | Sugiyama | SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] | Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}. |
O94804 | STK10 | T896 | Sugiyama | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
P24752 | ACAT1 | T239 | Sugiyama | Acetyl-CoA acetyltransferase, mitochondrial (EC 2.3.1.9) (Acetoacetyl-CoA thiolase) (T2) | This is one of the enzymes that catalyzes the last step of the mitochondrial beta-oxidation pathway, an aerobic process breaking down fatty acids into acetyl-CoA (PubMed:1715688, PubMed:7728148, PubMed:9744475). Using free coenzyme A/CoA, catalyzes the thiolytic cleavage of medium- to long-chain 3-oxoacyl-CoAs into acetyl-CoA and a fatty acyl-CoA shortened by two carbon atoms (PubMed:1715688, PubMed:7728148, PubMed:9744475). The activity of the enzyme is reversible and it can also catalyze the condensation of two acetyl-CoA molecules into acetoacetyl-CoA (PubMed:17371050). Thereby, it plays a major role in ketone body metabolism (PubMed:1715688, PubMed:17371050, PubMed:7728148, PubMed:9744475). {ECO:0000269|PubMed:1715688, ECO:0000269|PubMed:17371050, ECO:0000269|PubMed:7728148, ECO:0000269|PubMed:9744475}. |
Q00610 | CLTC | T875 | Sugiyama | Clathrin heavy chain 1 (Clathrin heavy chain on chromosome 17) (CLH-17) | Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge (PubMed:15858577, PubMed:16968737, PubMed:21297582). The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Plays a role in early autophagosome formation (PubMed:20639872). Interaction with DNAJC6 mediates the recruitment of HSPA8 to the clathrin lattice and creates local destabilization of the lattice promoting uncoating (By similarity). {ECO:0000250|UniProtKB:P49951, ECO:0000269|PubMed:15858577, ECO:0000269|PubMed:16968737, ECO:0000269|PubMed:20639872, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q9H2G2 | SLK | T1161 | Sugiyama | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9Y266 | NUDC | T266 | Sugiyama | Nuclear migration protein nudC (Nuclear distribution protein C homolog) | Plays a role in neurogenesis and neuronal migration (By similarity). Necessary for correct formation of mitotic spindles and chromosome separation during mitosis (PubMed:12679384, PubMed:12852857, PubMed:25789526). Necessary for cytokinesis and cell proliferation (PubMed:12679384, PubMed:12852857). {ECO:0000250|UniProtKB:O35685, ECO:0000269|PubMed:12679384, ECO:0000269|PubMed:12852857, ECO:0000269|PubMed:25789526}. |
Q9Y266 | NUDC | T56 | Sugiyama | Nuclear migration protein nudC (Nuclear distribution protein C homolog) | Plays a role in neurogenesis and neuronal migration (By similarity). Necessary for correct formation of mitotic spindles and chromosome separation during mitosis (PubMed:12679384, PubMed:12852857, PubMed:25789526). Necessary for cytokinesis and cell proliferation (PubMed:12679384, PubMed:12852857). {ECO:0000250|UniProtKB:O35685, ECO:0000269|PubMed:12679384, ECO:0000269|PubMed:12852857, ECO:0000269|PubMed:25789526}. |
A0MZ66 | SHTN1 | T298 | Sugiyama | Shootin-1 (Shootin1) | Involved in the generation of internal asymmetric signals required for neuronal polarization and neurite outgrowth. Mediates netrin-1-induced F-actin-substrate coupling or 'clutch engagement' within the axon growth cone through activation of CDC42, RAC1 and PAK1-dependent signaling pathway, thereby converting the F-actin retrograde flow into traction forces, concomitantly with filopodium extension and axon outgrowth. Plays a role in cytoskeletal organization by regulating the subcellular localization of phosphoinositide 3-kinase (PI3K) activity at the axonal growth cone. Also plays a role in regenerative neurite outgrowth. In the developing cortex, cooperates with KIF20B to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in the accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the growth cone of primary hippocampal neurons. {ECO:0000250|UniProtKB:A0MZ67, ECO:0000250|UniProtKB:Q8K2Q9}. |
P41208 | CETN2 | T47 | Sugiyama | Centrin-2 (Caltractin isoform 1) | Plays a fundamental role in microtubule organizing center structure and function. Required for centriole duplication and correct spindle formation. Has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CCP110.; FUNCTION: Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with RAD23B appears to stabilize XPC. In vitro, stimulates DNA binding of the XPC:RAD23B dimer.; FUNCTION: The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair.; FUNCTION: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores. {ECO:0000269|PubMed:22307388, ECO:0000305|PubMed:23591820}. |
Q9H444 | CHMP4B | T88 | Sugiyama | Charged multivesicular body protein 4b (Chromatin-modifying protein 4b) (CHMP4b) (SNF7 homolog associated with Alix 1) (SNF7-2) (hSnf7-2) (Vacuolar protein sorting-associated protein 32-2) (Vps32-2) (hVps32-2) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released (PubMed:12860994, PubMed:18209100). The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:21310966). Together with SPAST, the ESCRT-III complex promotes nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Plays a role in the endosomal sorting pathway. ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. When overexpressed, membrane-assembled circular arrays of CHMP4B filaments can promote or stabilize negative curvature and outward budding. CHMP4A/B/C are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). Majority of the protein exists in a folded closed conformation (PubMed:33349255). {ECO:0000269|PubMed:12860994, ECO:0000269|PubMed:18209100, ECO:0000269|PubMed:21310966, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:33349255}.; FUNCTION: (Microbial infection) The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the budding of enveloped viruses (HIV-1 and other lentiviruses). Via its interaction with PDCD6IP involved in HIV-1 p6- and p9-dependent virus release. {ECO:0000269|PubMed:14505569, ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844, ECO:0000269|PubMed:22422861}. |
Q96BJ3 | AIDA | T68 | Sugiyama | Axin interactor, dorsalization-associated protein (Axin interaction partner and dorsalization antagonist) | Acts as a ventralizing factor during embryogenesis. Inhibits axin-mediated JNK activation by binding axin and disrupting axin homodimerization. This in turn antagonizes a Wnt/beta-catenin-independent dorsalization pathway activated by AXIN/JNK-signaling (By similarity). {ECO:0000250}. |
Q99460 | PSMD1 | T836 | Sugiyama | 26S proteasome non-ATPase regulatory subunit 1 (26S proteasome regulatory subunit RPN2) (26S proteasome regulatory subunit S1) (26S proteasome subunit p112) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
O60610 | DIAPH1 | T545 | Sugiyama | Protein diaphanous homolog 1 (Diaphanous-related formin-1) (DRF1) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers (By similarity). Binds to the barbed end of the actin filament and slows down actin polymerization and depolymerization (By similarity). Required for cytokinesis, and transcriptional activation of the serum response factor (By similarity). DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics (By similarity). Functions as a scaffold protein for MAPRE1 and APC to stabilize microtubules and promote cell migration (By similarity). Has neurite outgrowth promoting activity. Acts in a Rho-dependent manner to recruit PFY1 to the membrane (By similarity). In hear cells, it may play a role in the regulation of actin polymerization in hair cells (PubMed:20937854, PubMed:21834987, PubMed:26912466). The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854, PubMed:21834987). It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity (PubMed:20937854, PubMed:21834987). In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization (PubMed:20937854, PubMed:21834987). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape (PubMed:20937854, PubMed:21834987). Plays a role in brain development (PubMed:24781755). Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity (By similarity). {ECO:0000250|UniProtKB:O08808, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24781755, ECO:0000269|PubMed:26912466}. |
P38646 | HSPA9 | T474 | Sugiyama | Stress-70 protein, mitochondrial (EC 3.6.4.10) (75 kDa glucose-regulated protein) (GRP-75) (Heat shock 70 kDa protein 9) (Heat shock protein family A member 9) (Mortalin) (MOT) (Peptide-binding protein 74) (PBP74) | Mitochondrial chaperone that plays a key role in mitochondrial protein import, folding, and assembly. Plays an essential role in the protein quality control system, the correct folding of proteins, the re-folding of misfolded proteins, and the targeting of proteins for subsequent degradation. These processes are achieved through cycles of ATP binding, ATP hydrolysis, and ADP release, mediated by co-chaperones (PubMed:18632665, PubMed:25615450, PubMed:28848044, PubMed:30933555, PubMed:31177526). In mitochondria, it associates with the TIM (translocase of the inner membrane) protein complex to assist in the import and folding of mitochondrial proteins (By similarity). Plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis, interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU (PubMed:26702583). Regulates erythropoiesis via stabilization of ISC assembly (PubMed:21123823, PubMed:26702583). Regulates mitochondrial calcium-dependent apoptosis by coupling two calcium channels, ITPR1 and VDAC1, at the mitochondria-associated endoplasmic reticulum (ER) membrane to facilitate calcium transport from the ER lumen to the mitochondria intermembrane space, providing calcium for the downstream calcium channel MCU, which releases it into the mitochondrial matrix (By similarity). Although primarily located in the mitochondria, it is also found in other cellular compartments. In the cytosol, it associates with proteins involved in signaling, apoptosis, or senescence. It may play a role in cell cycle regulation via its interaction with and promotion of degradation of TP53 (PubMed:24625977, PubMed:26634371). May play a role in the control of cell proliferation and cellular aging (By similarity). Protects against reactive oxygen species (ROS) (By similarity). Extracellular HSPA9 plays a cytoprotective role by preventing cell lysis following immune attack by the membrane attack complex by disrupting formation of the complex (PubMed:16091382). {ECO:0000250|UniProtKB:P0CS90, ECO:0000250|UniProtKB:P38647, ECO:0000269|PubMed:16091382, ECO:0000269|PubMed:18632665, ECO:0000269|PubMed:21123823, ECO:0000269|PubMed:24625977, ECO:0000269|PubMed:25615450, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:26702583, ECO:0000269|PubMed:28848044, ECO:0000269|PubMed:30933555, ECO:0000269|PubMed:31177526}. |
P51659 | HSD17B4 | T191 | Sugiyama | Peroxisomal multifunctional enzyme type 2 (MFE-2) (17-beta-hydroxysteroid dehydrogenase 4) (17-beta-HSD 4) (D-bifunctional protein) (DBP) (Multifunctional protein 2) (MFP-2) (Short chain dehydrogenase/reductase family 8C member 1) [Cleaved into: (3R)-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.n12); Enoyl-CoA hydratase 2 (EC 4.2.1.107) (EC 4.2.1.119) (3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholest-24-enoyl-CoA hydratase)] | Bifunctional enzyme acting on the peroxisomal fatty acid beta-oxidation pathway. Catalyzes two of the four reactions in fatty acid degradation: hydration of 2-enoyl-CoA (trans-2-enoyl-CoA) to produce (3R)-3-hydroxyacyl-CoA, and dehydrogenation of (3R)-3-hydroxyacyl-CoA to produce 3-ketoacyl-CoA (3-oxoacyl-CoA), which is further metabolized by SCPx. Can use straight-chain and branched-chain fatty acids, as well as bile acid intermediates as substrates. {ECO:0000269|PubMed:10671535, ECO:0000269|PubMed:15060085, ECO:0000269|PubMed:8902629, ECO:0000269|PubMed:9089413}. |
P30040 | ERP29 | T62 | Sugiyama | Endoplasmic reticulum resident protein 29 (ERp29) (Endoplasmic reticulum resident protein 28) (ERp28) (Endoplasmic reticulum resident protein 31) (ERp31) | Does not seem to be a disulfide isomerase. Plays an important role in the processing of secretory proteins within the endoplasmic reticulum (ER), possibly by participating in the folding of proteins in the ER. |
Q9P031 | CCDC59 | T86 | Sugiyama | Thyroid transcription factor 1-associated protein 26 (TTF-1-associated protein 26) (Coiled-coil domain-containing protein 59) (TTF-1-associated protein BR2) | Component of the transcription complexes of the pulmonary surfactant-associated protein-B (SFTPB) and -C (SFTPC). Enhances homeobox protein Nkx-2.1-activated SFTPB and SFTPC promoter activities. {ECO:0000269|PubMed:12882447, ECO:0000269|PubMed:16630564}. |
Q14012 | CAMK1 | T310 | Sugiyama | Calcium/calmodulin-dependent protein kinase type 1 (EC 2.7.11.17) (CaM kinase I) (CaM-KI) (CaM kinase I alpha) (CaMKI-alpha) | Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK1 signaling cascade and, upon calcium influx, regulates transcription activators activity, cell cycle, hormone production, cell differentiation, actin filament organization and neurite outgrowth. Recognizes the substrate consensus sequence [MVLIF]-x-R-x(2)-[ST]-x(3)-[MVLIF]. Regulates axonal extension and growth cone motility in hippocampal and cerebellar nerve cells. Upon NMDA receptor-mediated Ca(2+) elevation, promotes dendritic growth in hippocampal neurons and is essential in synapses for full long-term potentiation (LTP) and ERK2-dependent translational activation. Downstream of NMDA receptors, promotes the formation of spines and synapses in hippocampal neurons by phosphorylating ARHGEF7/BETAPIX on 'Ser-694', which results in the enhancement of ARHGEF7 activity and activation of RAC1. Promotes neuronal differentiation and neurite outgrowth by activation and phosphorylation of MARK2 on 'Ser-91', 'Ser-92', 'Ser-93' and 'Ser-294'. Promotes nuclear export of HDAC5 and binding to 14-3-3 by phosphorylation of 'Ser-259' and 'Ser-498' in the regulation of muscle cell differentiation. Regulates NUMB-mediated endocytosis by phosphorylation of NUMB on 'Ser-276' and 'Ser-295'. Involved in the regulation of basal and estrogen-stimulated migration of medulloblastoma cells through ARHGEF7/BETAPIX phosphorylation (By similarity). Is required for proper activation of cyclin-D1/CDK4 complex during G1 progression in diploid fibroblasts. Plays a role in K(+) and ANG2-mediated regulation of the aldosterone synthase (CYP11B2) to produce aldosterone in the adrenal cortex. Phosphorylates EIF4G3/eIF4GII. In vitro phosphorylates CREB1, ATF1, CFTR, MYL9 and SYN1/synapsin I. {ECO:0000250, ECO:0000269|PubMed:11114197, ECO:0000269|PubMed:12193581, ECO:0000269|PubMed:14507913, ECO:0000269|PubMed:14754892, ECO:0000269|PubMed:17056143, ECO:0000269|PubMed:17442826, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:20181577}. |
Q86VM9 | ZC3H18 | T393 | Sugiyama | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q15375 | EPHA7 | T945 | Sugiyama | Ephrin type-A receptor 7 (EC 2.7.10.1) (EPH homology kinase 3) (EHK-3) (EPH-like kinase 11) (EK11) (hEK11) | Receptor tyrosine kinase which binds promiscuously GPI-anchored ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Among GPI-anchored ephrin-A ligands, EFNA5 is a cognate/functional ligand for EPHA7 and their interaction regulates brain development modulating cell-cell adhesion and repulsion. Has a repellent activity on axons and is for instance involved in the guidance of corticothalamic axons and in the proper topographic mapping of retinal axons to the colliculus. May also regulate brain development through a caspase(CASP3)-dependent proapoptotic activity. Forward signaling may result in activation of components of the ERK signaling pathway including MAP2K1, MAP2K2, MAPK1 and MAPK3 which are phosphorylated upon activation of EPHA7. {ECO:0000269|PubMed:17726105}. |
Q16881 | TXNRD1 | T522 | Sugiyama | Thioredoxin reductase 1, cytoplasmic (TR) (EC 1.8.1.9) (Gene associated with retinoic and interferon-induced mortality 12 protein) (GRIM-12) (Gene associated with retinoic and IFN-induced mortality 12 protein) (KM-102-derived reductase-like factor) (Peroxidase TXNRD1) (EC 1.11.1.2) (Thioredoxin reductase TR1) | Reduces disulfideprotein thioredoxin (Trx) to its dithiol-containing form (PubMed:8577704). Homodimeric flavoprotein involved in the regulation of cellular redox reactions, growth and differentiation. Contains a selenocysteine residue at the C-terminal active site that is essential for catalysis (Probable). Also has reductase activity on hydrogen peroxide (H2O2) (PubMed:10849437). {ECO:0000269|PubMed:10849437, ECO:0000269|PubMed:8577704, ECO:0000305|PubMed:17512005}.; FUNCTION: [Isoform 1]: Induces actin and tubulin polymerization, leading to formation of cell membrane protrusions. {ECO:0000269|PubMed:18042542, ECO:0000269|PubMed:8577704}.; FUNCTION: [Isoform 4]: Enhances the transcriptional activity of estrogen receptors ESR1 and ESR2. {ECO:0000269|PubMed:15199063}.; FUNCTION: [Isoform 5]: Enhances the transcriptional activity of the estrogen receptor ESR2 only (PubMed:15199063). Mediates cell death induced by a combination of interferon-beta and retinoic acid (PubMed:9774665). {ECO:0000269|PubMed:15199063, ECO:0000269|PubMed:9774665}. |
Q96EK9 | KTI12 | T157 | Sugiyama | Protein KTI12 homolog | None |
P30622 | CLIP1 | T36 | PSP | CAP-Gly domain-containing linker protein 1 (Cytoplasmic linker protein 1) (Cytoplasmic linker protein 170 alpha-2) (CLIP-170) (Reed-Sternberg intermediate filament-associated protein) (Restin) | Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes microtubule growth and microtubule bundling. Links cytoplasmic vesicles to microtubules and thereby plays an important role in intracellular vesicle trafficking. Plays a role macropinocytosis and endosome trafficking. {ECO:0000269|PubMed:12433698, ECO:0000269|PubMed:17563362, ECO:0000269|PubMed:17889670}. |
P35606 | COPB2 | T792 | Sugiyama | Coatomer subunit beta' (Beta'-coat protein) (Beta'-COP) (p102) | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors. {ECO:0000269|PubMed:34450031}.; FUNCTION: This coatomer complex protein, essential for Golgi budding and vesicular trafficking, is a selective binding protein (RACK) for protein kinase C, epsilon type. It binds to Golgi membranes in a GTP-dependent manner (By similarity). {ECO:0000250}. |
Q6XUX3 | DSTYK | T423 | Sugiyama | Dual serine/threonine and tyrosine protein kinase (EC 2.7.12.1) (Dusty protein kinase) (Dusty PK) (RIP-homologous kinase) (Receptor-interacting serine/threonine-protein kinase 5) (Sugen kinase 496) (SgK496) | Acts as a positive regulator of ERK phosphorylation downstream of fibroblast growth factor-receptor activation (PubMed:23862974, PubMed:28157540). Involved in the regulation of both caspase-dependent apoptosis and caspase-independent cell death (PubMed:15178406). In the skin, it plays a predominant role in suppressing caspase-dependent apoptosis in response to UV stress in a range of dermal cell types (PubMed:28157540). {ECO:0000269|PubMed:15178406, ECO:0000269|PubMed:23862974, ECO:0000269|PubMed:28157540}. |
P34741 | SDC2 | T128 | Sugiyama | Syndecan-2 (SYND2) (Fibroglycan) (Heparan sulfate proteoglycan core protein) (HSPG) (CD antigen CD362) | Cell surface proteoglycan which regulates dendritic arbor morphogenesis. {ECO:0000250|UniProtKB:P43407}. |
Q15398 | DLGAP5 | T784 | Sugiyama | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
P46013 | MKI67 | T2117 | Sugiyama | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
Q9UPU5 | USP24 | T2570 | Sugiyama | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q8N568 | DCLK2 | T173 | Sugiyama | Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) | Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}. |
Q9UQN3 | CHMP2B | T124 | Sugiyama | Charged multivesicular body protein 2b (CHMP2.5) (Chromatin-modifying protein 2b) (CHMP2b) (Vacuolar protein sorting-associated protein 2-2) (Vps2-2) (hVps2-2) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. |
Q15459 | SF3A1 | T474 | Sugiyama | Splicing factor 3A subunit 1 (SF3a120) (Spliceosome-associated protein 114) (SAP 114) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006). Within the 17S U2 SnRNP complex, SF3A1 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes (PubMed:29360106, PubMed:30315277). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006}. |
Q96D15 | RCN3 | T208 | Sugiyama | Reticulocalbin-3 (EF-hand calcium-binding protein RLP49) | Probable molecular chaperone assisting protein biosynthesis and transport in the endoplasmic reticulum (PubMed:16433634, PubMed:28939891). Required for the proper biosynthesis and transport of pulmonary surfactant-associated protein A/SP-A, pulmonary surfactant-associated protein D/SP-D and the lipid transporter ABCA3 (By similarity). By regulating both the proper expression and the degradation through the endoplasmic reticulum-associated protein degradation pathway of these proteins plays a crucial role in pulmonary surfactant homeostasis (By similarity). Has an anti-fibrotic activity by negatively regulating the secretion of type I and type III collagens (PubMed:28939891). This calcium-binding protein also transiently associates with immature PCSK6 and regulates its secretion (PubMed:16433634). {ECO:0000250|UniProtKB:Q8BH97, ECO:0000269|PubMed:16433634, ECO:0000269|PubMed:28939891}. |
Q9P0L2 | MARK1 | T465 | Sugiyama | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9UK32 | RPS6KA6 | T58 | Sugiyama | Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) | Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}. |
Q9UQ80 | PA2G4 | T279 | Sugiyama | Proliferation-associated protein 2G4 (Cell cycle protein p38-2G4 homolog) (hG4-1) (ErbB3-binding protein 1) | May play a role in a ERBB3-regulated signal transduction pathway. Seems be involved in growth regulation. Acts a corepressor of the androgen receptor (AR) and is regulated by the ERBB3 ligand neuregulin-1/heregulin (HRG). Inhibits transcription of some E2F1-regulated promoters, probably by recruiting histone acetylase (HAT) activity. Binds RNA. Associates with 28S, 18S and 5.8S mature rRNAs, several rRNA precursors and probably U3 small nucleolar RNA. May be involved in regulation of intermediate and late steps of rRNA processing. May be involved in ribosome assembly. Mediates cap-independent translation of specific viral IRESs (internal ribosomal entry site) (By similarity). Regulates cell proliferation, differentiation, and survival. Isoform 1 suppresses apoptosis whereas isoform 2 promotes cell differentiation (By similarity). {ECO:0000250|UniProtKB:P50580, ECO:0000250|UniProtKB:Q6AYD3, ECO:0000269|PubMed:11268000, ECO:0000269|PubMed:12682367, ECO:0000269|PubMed:15064750, ECO:0000269|PubMed:15583694, ECO:0000269|PubMed:16832058}. |
P08174 | CD55 | T59 | Sugiyama | Complement decay-accelerating factor (CD antigen CD55) | This protein recognizes C4b and C3b fragments that condense with cell-surface hydroxyl or amino groups when nascent C4b and C3b are locally generated during C4 and c3 activation. Interaction of daf with cell-associated C4b and C3b polypeptides interferes with their ability to catalyze the conversion of C2 and factor B to enzymatically active C2a and Bb and thereby prevents the formation of C4b2a and C3bBb, the amplification convertases of the complement cascade (PubMed:7525274). Inhibits complement activation by destabilizing and preventing the formation of C3 and C5 convertases, which prevents complement damage (PubMed:28657829). {ECO:0000269|PubMed:7525274, ECO:0000305|PubMed:28657829}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus A21, coxsackieviruses B1, B3 and B5. {ECO:0000269|PubMed:9151867}.; FUNCTION: (Microbial infection) Acts as a receptor for Human enterovirus 70 and D68 (Probable). {ECO:0000269|PubMed:8764022}.; FUNCTION: (Microbial infection) Acts as a receptor for Human echoviruses 6, 7, 11, 12, 20 and 21. {ECO:0000269|PubMed:7525274, ECO:0000305|PubMed:12409401}. |
P46013 | MKI67 | T2093 | Sugiyama | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
Q02952 | AKAP12 | T577 | Sugiyama | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q32MZ4 | LRRFIP1 | T477 | Sugiyama | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
P23588 | EIF4B | T369 | Sugiyama | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-1640170 | Cell Cycle | 1.617595e-12 | 11.791 |
R-HSA-69278 | Cell Cycle, Mitotic | 2.434936e-10 | 9.614 |
R-HSA-68886 | M Phase | 8.712384e-09 | 8.060 |
R-HSA-2682334 | EPH-Ephrin signaling | 5.974594e-08 | 7.224 |
R-HSA-449147 | Signaling by Interleukins | 5.646315e-08 | 7.248 |
R-HSA-422475 | Axon guidance | 1.166884e-07 | 6.933 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 2.043980e-07 | 6.690 |
R-HSA-9700206 | Signaling by ALK in cancer | 2.043980e-07 | 6.690 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 4.440189e-07 | 6.353 |
R-HSA-9675108 | Nervous system development | 4.562703e-07 | 6.341 |
R-HSA-69620 | Cell Cycle Checkpoints | 6.007393e-07 | 6.221 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 5.176258e-06 | 5.286 |
R-HSA-68877 | Mitotic Prometaphase | 5.835725e-06 | 5.234 |
R-HSA-68882 | Mitotic Anaphase | 6.230831e-06 | 5.205 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 6.761466e-06 | 5.170 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 8.533446e-06 | 5.069 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 9.273409e-06 | 5.033 |
R-HSA-373760 | L1CAM interactions | 1.038582e-05 | 4.984 |
R-HSA-437239 | Recycling pathway of L1 | 1.143887e-05 | 4.942 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 1.963937e-05 | 4.707 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 2.420716e-05 | 4.616 |
R-HSA-450294 | MAP kinase activation | 2.827027e-05 | 4.549 |
R-HSA-194138 | Signaling by VEGF | 3.021488e-05 | 4.520 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 3.171029e-05 | 4.499 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 5.290252e-05 | 4.277 |
R-HSA-75153 | Apoptotic execution phase | 4.420379e-05 | 4.355 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 8.664871e-05 | 4.062 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 8.664871e-05 | 4.062 |
R-HSA-1227986 | Signaling by ERBB2 | 9.695947e-05 | 4.013 |
R-HSA-448424 | Interleukin-17 signaling | 1.021997e-04 | 3.991 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 1.059353e-04 | 3.975 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 1.059353e-04 | 3.975 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 1.059353e-04 | 3.975 |
R-HSA-5357801 | Programmed Cell Death | 1.069160e-04 | 3.971 |
R-HSA-199991 | Membrane Trafficking | 1.331315e-04 | 3.876 |
R-HSA-109581 | Apoptosis | 1.399338e-04 | 3.854 |
R-HSA-2467813 | Separation of Sister Chromatids | 1.636386e-04 | 3.786 |
R-HSA-9008059 | Interleukin-37 signaling | 1.649533e-04 | 3.783 |
R-HSA-8953854 | Metabolism of RNA | 1.738788e-04 | 3.760 |
R-HSA-2028269 | Signaling by Hippo | 2.086568e-04 | 3.681 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 2.400189e-04 | 3.620 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 3.194156e-04 | 3.496 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 3.194156e-04 | 3.496 |
R-HSA-390522 | Striated Muscle Contraction | 3.537346e-04 | 3.451 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 3.690522e-04 | 3.433 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 3.690522e-04 | 3.433 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 3.505088e-04 | 3.455 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 3.841869e-04 | 3.415 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 3.841869e-04 | 3.415 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 3.932006e-04 | 3.405 |
R-HSA-2262752 | Cellular responses to stress | 4.144037e-04 | 3.383 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 4.458077e-04 | 3.351 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 4.383545e-04 | 3.358 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 4.770397e-04 | 3.321 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 4.770397e-04 | 3.321 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 5.025261e-04 | 3.299 |
R-HSA-8848021 | Signaling by PTK6 | 5.273212e-04 | 3.278 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 5.273212e-04 | 3.278 |
R-HSA-373755 | Semaphorin interactions | 5.273212e-04 | 3.278 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 5.281554e-04 | 3.277 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 6.105415e-04 | 3.214 |
R-HSA-141424 | Amplification of signal from the kinetochores | 6.488466e-04 | 3.188 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 6.488466e-04 | 3.188 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 6.509786e-04 | 3.186 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 6.696589e-04 | 3.174 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 6.707623e-04 | 3.173 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 7.081892e-04 | 3.150 |
R-HSA-390450 | Folding of actin by CCT/TriC | 7.280506e-04 | 3.138 |
R-HSA-69242 | S Phase | 7.580538e-04 | 3.120 |
R-HSA-72613 | Eukaryotic Translation Initiation | 7.696015e-04 | 3.114 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 7.520986e-04 | 3.124 |
R-HSA-72737 | Cap-dependent Translation Initiation | 7.696015e-04 | 3.114 |
R-HSA-69481 | G2/M Checkpoints | 7.768953e-04 | 3.110 |
R-HSA-447115 | Interleukin-12 family signaling | 7.921302e-04 | 3.101 |
R-HSA-8939211 | ESR-mediated signaling | 8.080089e-04 | 3.093 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 8.888746e-04 | 3.051 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 8.723478e-04 | 3.059 |
R-HSA-9764561 | Regulation of CDH1 Function | 8.766970e-04 | 3.057 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 8.400222e-04 | 3.076 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 9.549438e-04 | 3.020 |
R-HSA-8953897 | Cellular responses to stimuli | 9.598902e-04 | 3.018 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 1.052078e-03 | 2.978 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 1.194397e-03 | 2.923 |
R-HSA-9909396 | Circadian clock | 1.225677e-03 | 2.912 |
R-HSA-3214841 | PKMTs methylate histone lysines | 1.261508e-03 | 2.899 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 1.444922e-03 | 2.840 |
R-HSA-400685 | Sema4D in semaphorin signaling | 1.533716e-03 | 2.814 |
R-HSA-4839726 | Chromatin organization | 1.541157e-03 | 2.812 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 1.740359e-03 | 2.759 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 1.748758e-03 | 2.757 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 1.748758e-03 | 2.757 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 1.800732e-03 | 2.745 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 1.809220e-03 | 2.743 |
R-HSA-69275 | G2/M Transition | 1.823541e-03 | 2.739 |
R-HSA-453274 | Mitotic G2-G2/M phases | 2.049206e-03 | 2.688 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 2.096364e-03 | 2.679 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 2.145060e-03 | 2.669 |
R-HSA-9020591 | Interleukin-12 signaling | 2.150175e-03 | 2.668 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 2.153574e-03 | 2.667 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 2.343383e-03 | 2.630 |
R-HSA-8854518 | AURKA Activation by TPX2 | 2.396709e-03 | 2.620 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 2.522006e-03 | 2.598 |
R-HSA-2559583 | Cellular Senescence | 2.771922e-03 | 2.557 |
R-HSA-3247509 | Chromatin modifying enzymes | 2.894633e-03 | 2.538 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 2.987556e-03 | 2.525 |
R-HSA-196025 | Formation of annular gap junctions | 3.025080e-03 | 2.519 |
R-HSA-5653656 | Vesicle-mediated transport | 3.177571e-03 | 2.498 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 3.750626e-03 | 2.426 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 3.491575e-03 | 2.457 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 3.491575e-03 | 2.457 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 3.497948e-03 | 2.456 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 3.750626e-03 | 2.426 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 3.750626e-03 | 2.426 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 3.869270e-03 | 2.412 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 3.960929e-03 | 2.402 |
R-HSA-983189 | Kinesins | 3.985038e-03 | 2.400 |
R-HSA-166520 | Signaling by NTRKs | 4.075808e-03 | 2.390 |
R-HSA-9018519 | Estrogen-dependent gene expression | 4.076060e-03 | 2.390 |
R-HSA-190873 | Gap junction degradation | 4.110855e-03 | 2.386 |
R-HSA-162582 | Signal Transduction | 4.161353e-03 | 2.381 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 4.272635e-03 | 2.369 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 4.272635e-03 | 2.369 |
R-HSA-169893 | Prolonged ERK activation events | 4.644032e-03 | 2.333 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 4.675758e-03 | 2.330 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 4.783755e-03 | 2.320 |
R-HSA-446652 | Interleukin-1 family signaling | 5.166209e-03 | 2.287 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 5.433212e-03 | 2.265 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 5.679090e-03 | 2.246 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 5.828282e-03 | 2.234 |
R-HSA-380287 | Centrosome maturation | 5.572248e-03 | 2.254 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 5.882258e-03 | 2.230 |
R-HSA-72649 | Translation initiation complex formation | 6.645388e-03 | 2.177 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 6.697809e-03 | 2.174 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 7.013048e-03 | 2.154 |
R-HSA-3928662 | EPHB-mediated forward signaling | 7.360033e-03 | 2.133 |
R-HSA-2132295 | MHC class II antigen presentation | 7.606890e-03 | 2.119 |
R-HSA-202670 | ERKs are inactivated | 8.869658e-03 | 2.052 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 8.072723e-03 | 2.093 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 8.868393e-03 | 2.052 |
R-HSA-187687 | Signalling to ERKs | 7.861225e-03 | 2.105 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 8.218251e-03 | 2.085 |
R-HSA-1500931 | Cell-Cell communication | 8.429831e-03 | 2.074 |
R-HSA-381070 | IRE1alpha activates chaperones | 8.865442e-03 | 2.052 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 9.096504e-03 | 2.041 |
R-HSA-156842 | Eukaryotic Translation Elongation | 9.524147e-03 | 2.021 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 9.722083e-03 | 2.012 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 9.743563e-03 | 2.011 |
R-HSA-72172 | mRNA Splicing | 9.977052e-03 | 2.001 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 1.075864e-02 | 1.968 |
R-HSA-453276 | Regulation of mitotic cell cycle | 1.075864e-02 | 1.968 |
R-HSA-212165 | Epigenetic regulation of gene expression | 1.090479e-02 | 1.962 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 1.102059e-02 | 1.958 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 1.115358e-02 | 1.953 |
R-HSA-9636667 | Manipulation of host energy metabolism | 1.138026e-02 | 1.944 |
R-HSA-352238 | Breakdown of the nuclear lamina | 1.138026e-02 | 1.944 |
R-HSA-9842640 | Signaling by LTK in cancer | 1.269518e-02 | 1.896 |
R-HSA-434313 | Intracellular metabolism of fatty acids regulates insulin secretion | 1.269518e-02 | 1.896 |
R-HSA-198753 | ERK/MAPK targets | 1.335541e-02 | 1.874 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 1.181649e-02 | 1.928 |
R-HSA-6802957 | Oncogenic MAPK signaling | 1.225856e-02 | 1.912 |
R-HSA-69052 | Switching of origins to a post-replicative state | 1.260466e-02 | 1.899 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 1.263506e-02 | 1.898 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 1.340326e-02 | 1.873 |
R-HSA-170968 | Frs2-mediated activation | 1.348156e-02 | 1.870 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 1.348156e-02 | 1.870 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 1.376742e-02 | 1.861 |
R-HSA-68875 | Mitotic Prophase | 1.401332e-02 | 1.853 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 1.412600e-02 | 1.850 |
R-HSA-397014 | Muscle contraction | 1.420127e-02 | 1.848 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 1.467946e-02 | 1.833 |
R-HSA-5683057 | MAPK family signaling cascades | 1.482264e-02 | 1.829 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 1.534535e-02 | 1.814 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 1.546028e-02 | 1.811 |
R-HSA-9671555 | Signaling by PDGFR in disease | 1.546028e-02 | 1.811 |
R-HSA-68949 | Orc1 removal from chromatin | 1.614207e-02 | 1.792 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 1.614207e-02 | 1.792 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 1.617358e-02 | 1.791 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 1.617358e-02 | 1.791 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 1.620056e-02 | 1.790 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 1.954104e-02 | 1.709 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 1.954104e-02 | 1.709 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 1.954104e-02 | 1.709 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 1.954104e-02 | 1.709 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 1.954104e-02 | 1.709 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 1.954104e-02 | 1.709 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 1.954104e-02 | 1.709 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 1.954104e-02 | 1.709 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 1.954104e-02 | 1.709 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 1.954104e-02 | 1.709 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 1.954104e-02 | 1.709 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 1.938688e-02 | 1.712 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 1.869625e-02 | 1.728 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 1.753342e-02 | 1.756 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 1.849521e-02 | 1.733 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 1.839231e-02 | 1.735 |
R-HSA-9930044 | Nuclear RNA decay | 1.901554e-02 | 1.721 |
R-HSA-445355 | Smooth Muscle Contraction | 1.761787e-02 | 1.754 |
R-HSA-168898 | Toll-like Receptor Cascades | 1.905748e-02 | 1.720 |
R-HSA-418990 | Adherens junctions interactions | 1.821344e-02 | 1.740 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 1.825532e-02 | 1.739 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 1.938688e-02 | 1.712 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 1.901554e-02 | 1.721 |
R-HSA-1266738 | Developmental Biology | 1.960351e-02 | 1.708 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 2.030920e-02 | 1.692 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 2.119836e-02 | 1.674 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 2.145835e-02 | 1.668 |
R-HSA-444257 | RSK activation | 2.145835e-02 | 1.668 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 2.145835e-02 | 1.668 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 2.262347e-02 | 1.645 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 2.262347e-02 | 1.645 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 2.262347e-02 | 1.645 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 2.262347e-02 | 1.645 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 2.354460e-02 | 1.628 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 2.452515e-02 | 1.610 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 2.488804e-02 | 1.604 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 2.539681e-02 | 1.595 |
R-HSA-9700645 | ALK mutants bind TKIs | 2.680953e-02 | 1.572 |
R-HSA-164843 | 2-LTR circle formation | 3.280591e-02 | 1.484 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 2.667284e-02 | 1.574 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 3.085238e-02 | 1.511 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 2.874526e-02 | 1.541 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 3.175527e-02 | 1.498 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 2.928426e-02 | 1.533 |
R-HSA-1500620 | Meiosis | 2.902954e-02 | 1.537 |
R-HSA-6804757 | Regulation of TP53 Degradation | 2.874526e-02 | 1.541 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 2.914996e-02 | 1.535 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 3.070988e-02 | 1.513 |
R-HSA-69239 | Synthesis of DNA | 2.755078e-02 | 1.560 |
R-HSA-389356 | Co-stimulation by CD28 | 3.175527e-02 | 1.498 |
R-HSA-69473 | G2/M DNA damage checkpoint | 3.327511e-02 | 1.478 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 3.116508e-02 | 1.506 |
R-HSA-5633007 | Regulation of TP53 Activity | 3.112177e-02 | 1.507 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 3.173882e-02 | 1.498 |
R-HSA-446728 | Cell junction organization | 3.132451e-02 | 1.504 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 2.667284e-02 | 1.574 |
R-HSA-376176 | Signaling by ROBO receptors | 3.097382e-02 | 1.509 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 3.187927e-02 | 1.496 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 3.160774e-02 | 1.500 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 3.060689e-02 | 1.514 |
R-HSA-438064 | Post NMDA receptor activation events | 3.480415e-02 | 1.458 |
R-HSA-421270 | Cell-cell junction organization | 3.534840e-02 | 1.452 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 3.539595e-02 | 1.451 |
R-HSA-3928664 | Ephrin signaling | 3.539595e-02 | 1.451 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 3.539595e-02 | 1.451 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 3.539595e-02 | 1.451 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 3.548239e-02 | 1.450 |
R-HSA-156902 | Peptide chain elongation | 3.689511e-02 | 1.433 |
R-HSA-9711123 | Cellular response to chemical stress | 3.729246e-02 | 1.428 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 3.787434e-02 | 1.422 |
R-HSA-69206 | G1/S Transition | 3.927787e-02 | 1.406 |
R-HSA-9635465 | Suppression of apoptosis | 3.943963e-02 | 1.404 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 4.030604e-02 | 1.395 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 4.103676e-02 | 1.387 |
R-HSA-9652169 | Signaling by MAP2K mutants | 4.103676e-02 | 1.387 |
R-HSA-211163 | AKT-mediated inactivation of FOXO1A | 4.103676e-02 | 1.387 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 4.285314e-02 | 1.368 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 4.321996e-02 | 1.364 |
R-HSA-72187 | mRNA 3'-end processing | 4.321996e-02 | 1.364 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 4.368598e-02 | 1.360 |
R-HSA-162906 | HIV Infection | 4.413890e-02 | 1.355 |
R-HSA-114452 | Activation of BH3-only proteins | 4.464124e-02 | 1.350 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 4.464129e-02 | 1.350 |
R-HSA-373753 | Nephrin family interactions | 4.558343e-02 | 1.341 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 4.558343e-02 | 1.341 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 4.558343e-02 | 1.341 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 4.558343e-02 | 1.341 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 4.558343e-02 | 1.341 |
R-HSA-445144 | Signal transduction by L1 | 4.558343e-02 | 1.341 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 4.612649e-02 | 1.336 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 4.612963e-02 | 1.336 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 4.622513e-02 | 1.335 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 4.645389e-02 | 1.333 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 4.645389e-02 | 1.333 |
R-HSA-162592 | Integration of provirus | 4.669814e-02 | 1.331 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 4.802295e-02 | 1.319 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 4.910729e-02 | 1.309 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 4.921777e-02 | 1.308 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 5.122730e-02 | 1.290 |
R-HSA-9661070 | Defective translocation of RB1 mutants to the nucleus | 5.165341e-02 | 1.287 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 5.230834e-02 | 1.281 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 5.397495e-02 | 1.268 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 6.813526e-02 | 1.167 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 5.456492e-02 | 1.263 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 5.456492e-02 | 1.263 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 6.302015e-02 | 1.201 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 6.302015e-02 | 1.201 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 6.360359e-02 | 1.197 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 7.032705e-02 | 1.153 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 6.950784e-02 | 1.158 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 5.337540e-02 | 1.273 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 5.680242e-02 | 1.246 |
R-HSA-5693537 | Resolution of D-Loop Structures | 6.402818e-02 | 1.194 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 5.970450e-02 | 1.224 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 5.880088e-02 | 1.231 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 7.040640e-02 | 1.152 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 7.040640e-02 | 1.152 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 6.543933e-02 | 1.184 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 6.302015e-02 | 1.201 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 6.813526e-02 | 1.167 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 5.880088e-02 | 1.231 |
R-HSA-72764 | Eukaryotic Translation Termination | 5.970450e-02 | 1.224 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 5.376886e-02 | 1.269 |
R-HSA-8849468 | PTK6 Regulates Proteins Involved in RNA Processing | 5.397495e-02 | 1.268 |
R-HSA-9818025 | NFE2L2 regulating TCA cycle genes | 5.397495e-02 | 1.268 |
R-HSA-68689 | CDC6 association with the ORC:origin complex | 6.813526e-02 | 1.167 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 5.456492e-02 | 1.263 |
R-HSA-5689880 | Ub-specific processing proteases | 5.427389e-02 | 1.265 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 5.397495e-02 | 1.268 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 6.813526e-02 | 1.167 |
R-HSA-1059683 | Interleukin-6 signaling | 6.302015e-02 | 1.201 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 5.382709e-02 | 1.269 |
R-HSA-176187 | Activation of ATR in response to replication stress | 5.880088e-02 | 1.231 |
R-HSA-9694516 | SARS-CoV-2 Infection | 6.183768e-02 | 1.209 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 6.490906e-02 | 1.188 |
R-HSA-982772 | Growth hormone receptor signaling | 7.032705e-02 | 1.153 |
R-HSA-9678108 | SARS-CoV-1 Infection | 5.835750e-02 | 1.234 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 6.360359e-02 | 1.197 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 7.048657e-02 | 1.152 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 7.048657e-02 | 1.152 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 7.048657e-02 | 1.152 |
R-HSA-6802949 | Signaling by RAS mutants | 7.048657e-02 | 1.152 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 7.093230e-02 | 1.149 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 7.204118e-02 | 1.142 |
R-HSA-3214847 | HATs acetylate histones | 7.226674e-02 | 1.141 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 7.337347e-02 | 1.134 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 7.357355e-02 | 1.133 |
R-HSA-9948299 | Ribosome-associated quality control | 7.400638e-02 | 1.131 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 7.670613e-02 | 1.115 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 7.686137e-02 | 1.114 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 7.739929e-02 | 1.111 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 7.739929e-02 | 1.111 |
R-HSA-8863678 | Neurodegenerative Diseases | 7.739929e-02 | 1.111 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 7.739929e-02 | 1.111 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 7.783876e-02 | 1.109 |
R-HSA-6798695 | Neutrophil degranulation | 7.882894e-02 | 1.103 |
R-HSA-2408557 | Selenocysteine synthesis | 7.912689e-02 | 1.102 |
R-HSA-114608 | Platelet degranulation | 8.014327e-02 | 1.096 |
R-HSA-1257604 | PIP3 activates AKT signaling | 8.102060e-02 | 1.091 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 8.160312e-02 | 1.088 |
R-HSA-1295596 | Spry regulation of FGF signaling | 8.160312e-02 | 1.088 |
R-HSA-9842860 | Regulation of endogenous retroelements | 8.270277e-02 | 1.082 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 8.270277e-02 | 1.082 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 8.278127e-02 | 1.082 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 8.335722e-02 | 1.079 |
R-HSA-177539 | Autointegration results in viral DNA circles | 8.335722e-02 | 1.079 |
R-HSA-69478 | G2/M DNA replication checkpoint | 8.335722e-02 | 1.079 |
R-HSA-113507 | E2F-enabled inhibition of pre-replication complex formation | 8.335722e-02 | 1.079 |
R-HSA-199920 | CREB phosphorylation | 8.335722e-02 | 1.079 |
R-HSA-175567 | Integration of viral DNA into host genomic DNA | 8.335722e-02 | 1.079 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 8.481276e-02 | 1.072 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 8.481276e-02 | 1.072 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 8.481276e-02 | 1.072 |
R-HSA-9620244 | Long-term potentiation | 8.481276e-02 | 1.072 |
R-HSA-192823 | Viral mRNA Translation | 8.637601e-02 | 1.064 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 8.723386e-02 | 1.059 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 8.743944e-02 | 1.058 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 1.006417e-01 | 0.997 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 1.006417e-01 | 0.997 |
R-HSA-211728 | Regulation of PAK-2p34 activity by PS-GAP/RHG10 | 1.006417e-01 | 0.997 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 1.006417e-01 | 0.997 |
R-HSA-9763198 | Impaired BRCA2 binding to SEM1 (DSS1) | 1.006417e-01 | 0.997 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 1.006417e-01 | 0.997 |
R-HSA-5619043 | Defective SLC2A1 causes GLUT1 deficiency syndrome 1 (GLUT1DS1) | 1.006417e-01 | 0.997 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 1.006417e-01 | 0.997 |
R-HSA-9709275 | Impaired BRCA2 translocation to the nucleus | 1.006417e-01 | 0.997 |
R-HSA-8849473 | PTK6 Expression | 9.949367e-02 | 1.002 |
R-HSA-114516 | Disinhibition of SNARE formation | 9.949367e-02 | 1.002 |
R-HSA-446107 | Type I hemidesmosome assembly | 1.164098e-01 | 0.934 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 1.339822e-01 | 0.873 |
R-HSA-170984 | ARMS-mediated activation | 1.339822e-01 | 0.873 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 1.339822e-01 | 0.873 |
R-HSA-176412 | Phosphorylation of the APC/C | 9.167924e-02 | 1.038 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 9.167924e-02 | 1.038 |
R-HSA-2892247 | POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation | 1.022414e-01 | 0.990 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 1.022414e-01 | 0.990 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 1.022414e-01 | 0.990 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 1.247062e-01 | 0.904 |
R-HSA-9615710 | Late endosomal microautophagy | 1.176935e-01 | 0.929 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 1.176935e-01 | 0.929 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 1.075395e-01 | 0.968 |
R-HSA-5674135 | MAP2K and MAPK activation | 1.220831e-01 | 0.913 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 1.220831e-01 | 0.913 |
R-HSA-1221632 | Meiotic synapsis | 1.090527e-01 | 0.962 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 1.061995e-01 | 0.974 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 1.266666e-01 | 0.897 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 9.767491e-02 | 1.010 |
R-HSA-68962 | Activation of the pre-replicative complex | 1.266666e-01 | 0.897 |
R-HSA-5693538 | Homology Directed Repair | 9.767491e-02 | 1.010 |
R-HSA-9656223 | Signaling by RAF1 mutants | 1.220831e-01 | 0.913 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 1.006281e-01 | 0.997 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 1.220831e-01 | 0.913 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 1.022414e-01 | 0.990 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 1.152991e-01 | 0.938 |
R-HSA-6807878 | COPI-mediated anterograde transport | 1.203344e-01 | 0.920 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 1.006055e-01 | 0.997 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 1.248861e-01 | 0.903 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 1.339822e-01 | 0.873 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 1.022414e-01 | 0.990 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 1.147006e-01 | 0.940 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 9.255887e-02 | 1.034 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 9.167924e-02 | 1.038 |
R-HSA-69306 | DNA Replication | 1.281200e-01 | 0.892 |
R-HSA-169131 | Inhibition of PKR | 1.006417e-01 | 0.997 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 9.949367e-02 | 1.002 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 1.075395e-01 | 0.968 |
R-HSA-156711 | Polo-like kinase mediated events | 1.247062e-01 | 0.904 |
R-HSA-8985947 | Interleukin-9 signaling | 1.164098e-01 | 0.934 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 1.339822e-01 | 0.873 |
R-HSA-162909 | Host Interactions of HIV factors | 1.217409e-01 | 0.915 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 9.949367e-02 | 1.002 |
R-HSA-9020958 | Interleukin-21 signaling | 1.339822e-01 | 0.873 |
R-HSA-1474165 | Reproduction | 9.329718e-02 | 1.030 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 9.949367e-02 | 1.002 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 9.804643e-02 | 1.009 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 1.090100e-01 | 0.963 |
R-HSA-389948 | Co-inhibition by PD-1 | 1.275251e-01 | 0.894 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 1.283161e-01 | 0.892 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 1.163855e-01 | 0.934 |
R-HSA-8949275 | RUNX3 Regulates Immune Response and Cell Migration | 9.949367e-02 | 1.002 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 9.949367e-02 | 1.002 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 1.164098e-01 | 0.934 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 1.339822e-01 | 0.873 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 1.014720e-01 | 0.994 |
R-HSA-168255 | Influenza Infection | 1.107980e-01 | 0.955 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 1.006281e-01 | 0.997 |
R-HSA-6807070 | PTEN Regulation | 1.315944e-01 | 0.881 |
R-HSA-9659379 | Sensory processing of sound | 9.569940e-02 | 1.019 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 1.133886e-01 | 0.945 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 1.093240e-01 | 0.961 |
R-HSA-9856651 | MITF-M-dependent gene expression | 1.166067e-01 | 0.933 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 1.359171e-01 | 0.867 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 1.359519e-01 | 0.867 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 1.361388e-01 | 0.866 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 1.365485e-01 | 0.865 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 1.365485e-01 | 0.865 |
R-HSA-449836 | Other interleukin signaling | 1.365485e-01 | 0.865 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 1.367748e-01 | 0.864 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 1.369506e-01 | 0.863 |
R-HSA-1433557 | Signaling by SCF-KIT | 1.374876e-01 | 0.862 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 1.374876e-01 | 0.862 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 1.429407e-01 | 0.845 |
R-HSA-162587 | HIV Life Cycle | 1.444278e-01 | 0.840 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 1.454319e-01 | 0.837 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 1.454963e-01 | 0.837 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 1.454963e-01 | 0.837 |
R-HSA-9020702 | Interleukin-1 signaling | 1.458770e-01 | 0.836 |
R-HSA-9915355 | Beta-ketothiolase deficiency | 1.471023e-01 | 0.832 |
R-HSA-164939 | Nef mediated downregulation of CD28 cell surface expression | 1.471023e-01 | 0.832 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 1.487566e-01 | 0.828 |
R-HSA-389513 | Co-inhibition by CTLA4 | 1.487566e-01 | 0.828 |
R-HSA-9013694 | Signaling by NOTCH4 | 1.495613e-01 | 0.825 |
R-HSA-5688426 | Deubiquitination | 1.505196e-01 | 0.822 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 1.512904e-01 | 0.820 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 1.512904e-01 | 0.820 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 1.520981e-01 | 0.818 |
R-HSA-9762292 | Regulation of CDH11 function | 1.520981e-01 | 0.818 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 1.520981e-01 | 0.818 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 1.520981e-01 | 0.818 |
R-HSA-74749 | Signal attenuation | 1.520981e-01 | 0.818 |
R-HSA-9020956 | Interleukin-27 signaling | 1.520981e-01 | 0.818 |
R-HSA-9627069 | Regulation of the apoptosome activity | 1.520981e-01 | 0.818 |
R-HSA-111458 | Formation of apoptosome | 1.520981e-01 | 0.818 |
R-HSA-5673001 | RAF/MAP kinase cascade | 1.523840e-01 | 0.817 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 1.536997e-01 | 0.813 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 1.536997e-01 | 0.813 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 1.536997e-01 | 0.813 |
R-HSA-9824272 | Somitogenesis | 1.536997e-01 | 0.813 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 1.551978e-01 | 0.809 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 1.551978e-01 | 0.809 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 1.551978e-01 | 0.809 |
R-HSA-1169408 | ISG15 antiviral mechanism | 1.560642e-01 | 0.807 |
R-HSA-211736 | Stimulation of the cell death response by PAK-2p34 | 1.911653e-01 | 0.719 |
R-HSA-198765 | Signalling to ERK5 | 1.911653e-01 | 0.719 |
R-HSA-68881 | Mitotic Metaphase/Anaphase Transition | 1.911653e-01 | 0.719 |
R-HSA-8875791 | MET activates STAT3 | 2.329545e-01 | 0.633 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 2.329545e-01 | 0.633 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 2.329545e-01 | 0.633 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 2.329545e-01 | 0.633 |
R-HSA-5603037 | IRAK4 deficiency (TLR5) | 2.329545e-01 | 0.633 |
R-HSA-198745 | Signalling to STAT3 | 2.329545e-01 | 0.633 |
R-HSA-173736 | Alternative complement activation | 2.725870e-01 | 0.564 |
R-HSA-69200 | Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 ... | 2.725870e-01 | 0.564 |
R-HSA-2978092 | Abnormal conversion of 2-oxoglutarate to 2-hydroxyglutarate | 2.725870e-01 | 0.564 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 2.725870e-01 | 0.564 |
R-HSA-2644605 | FBXW7 Mutants and NOTCH1 in Cancer | 2.725870e-01 | 0.564 |
R-HSA-2644607 | Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling | 2.725870e-01 | 0.564 |
R-HSA-68911 | G2 Phase | 3.101740e-01 | 0.508 |
R-HSA-1250342 | PI3K events in ERBB4 signaling | 1.895584e-01 | 0.722 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 1.895584e-01 | 0.722 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 2.087237e-01 | 0.680 |
R-HSA-3000484 | Scavenging by Class F Receptors | 2.087237e-01 | 0.680 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 1.612999e-01 | 0.792 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 1.741479e-01 | 0.759 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 2.475376e-01 | 0.606 |
R-HSA-177504 | Retrograde neurotrophin signalling | 2.475376e-01 | 0.606 |
R-HSA-418885 | DCC mediated attractive signaling | 2.670527e-01 | 0.573 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 2.670527e-01 | 0.573 |
R-HSA-69183 | Processive synthesis on the lagging strand | 2.670527e-01 | 0.573 |
R-HSA-429947 | Deadenylation of mRNA | 2.142219e-01 | 0.669 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 1.754277e-01 | 0.756 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 1.858636e-01 | 0.731 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 1.858636e-01 | 0.731 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 1.620905e-01 | 0.790 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 1.706608e-01 | 0.768 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 2.073059e-01 | 0.683 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 2.559909e-01 | 0.592 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 2.294131e-01 | 0.639 |
R-HSA-5658442 | Regulation of RAS by GAPs | 1.973685e-01 | 0.705 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 2.406801e-01 | 0.619 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 2.987389e-01 | 0.525 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 2.049586e-01 | 0.688 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 3.103923e-01 | 0.508 |
R-HSA-774815 | Nucleosome assembly | 3.103923e-01 | 0.508 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 2.430018e-01 | 0.614 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 2.946038e-01 | 0.531 |
R-HSA-8957275 | Post-translational protein phosphorylation | 2.258660e-01 | 0.646 |
R-HSA-1236394 | Signaling by ERBB4 | 2.711939e-01 | 0.567 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 1.976378e-01 | 0.704 |
R-HSA-182971 | EGFR downregulation | 3.130932e-01 | 0.504 |
R-HSA-171319 | Telomere Extension By Telomerase | 2.701646e-01 | 0.568 |
R-HSA-73886 | Chromosome Maintenance | 1.852210e-01 | 0.732 |
R-HSA-177929 | Signaling by EGFR | 2.545074e-01 | 0.594 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 2.475376e-01 | 0.606 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 1.964945e-01 | 0.707 |
R-HSA-180786 | Extension of Telomeres | 2.844687e-01 | 0.546 |
R-HSA-390466 | Chaperonin-mediated protein folding | 2.508685e-01 | 0.601 |
R-HSA-174577 | Activation of C3 and C5 | 3.101740e-01 | 0.508 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 1.741479e-01 | 0.759 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 1.872705e-01 | 0.728 |
R-HSA-169911 | Regulation of Apoptosis | 1.858636e-01 | 0.731 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 2.109944e-01 | 0.676 |
R-HSA-69002 | DNA Replication Pre-Initiation | 1.979719e-01 | 0.703 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 1.754277e-01 | 0.756 |
R-HSA-8866911 | TFAP2 (AP-2) family regulates transcription of cell cycle factors | 2.725870e-01 | 0.564 |
R-HSA-191650 | Regulation of gap junction activity | 2.725870e-01 | 0.564 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 2.006382e-01 | 0.698 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 2.073059e-01 | 0.683 |
R-HSA-399719 | Trafficking of AMPA receptors | 3.130932e-01 | 0.504 |
R-HSA-68867 | Assembly of the pre-replicative complex | 1.853005e-01 | 0.732 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 1.754277e-01 | 0.756 |
R-HSA-74158 | RNA Polymerase III Transcription | 1.964945e-01 | 0.707 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 1.858636e-01 | 0.731 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 2.182836e-01 | 0.661 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 1.964945e-01 | 0.707 |
R-HSA-3371556 | Cellular response to heat stress | 1.852210e-01 | 0.732 |
R-HSA-8849474 | PTK6 Activates STAT3 | 3.101740e-01 | 0.508 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 1.754277e-01 | 0.756 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 2.400734e-01 | 0.620 |
R-HSA-391251 | Protein folding | 1.788648e-01 | 0.747 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 1.760556e-01 | 0.754 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 3.101740e-01 | 0.508 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 2.006382e-01 | 0.698 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 1.652011e-01 | 0.782 |
R-HSA-9766229 | Degradation of CDH1 | 1.883081e-01 | 0.725 |
R-HSA-4641265 | Repression of WNT target genes | 2.087237e-01 | 0.680 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 2.294131e-01 | 0.639 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 1.724199e-01 | 0.763 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 2.987389e-01 | 0.525 |
R-HSA-69541 | Stabilization of p53 | 2.294131e-01 | 0.639 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 2.844219e-01 | 0.546 |
R-HSA-72766 | Translation | 2.843681e-01 | 0.546 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 2.725870e-01 | 0.564 |
R-HSA-8866427 | VLDLR internalisation and degradation | 2.087237e-01 | 0.680 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 2.670527e-01 | 0.573 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 2.670527e-01 | 0.573 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 2.701646e-01 | 0.568 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 2.294131e-01 | 0.639 |
R-HSA-210745 | Regulation of gene expression in beta cells | 2.844219e-01 | 0.546 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 2.844219e-01 | 0.546 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 2.406801e-01 | 0.619 |
R-HSA-6811438 | Intra-Golgi traffic | 2.635705e-01 | 0.579 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 2.635705e-01 | 0.579 |
R-HSA-162588 | Budding and maturation of HIV virion | 3.130932e-01 | 0.504 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 3.161521e-01 | 0.500 |
R-HSA-8984722 | Interleukin-35 Signalling | 2.087237e-01 | 0.680 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 2.635705e-01 | 0.579 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 3.103923e-01 | 0.508 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 2.193011e-01 | 0.659 |
R-HSA-8983432 | Interleukin-15 signaling | 2.087237e-01 | 0.680 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 1.883081e-01 | 0.725 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 1.883081e-01 | 0.725 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 2.065756e-01 | 0.685 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 2.635705e-01 | 0.579 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 2.635705e-01 | 0.579 |
R-HSA-9707616 | Heme signaling | 3.150450e-01 | 0.502 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 3.150450e-01 | 0.502 |
R-HSA-9682385 | FLT3 signaling in disease | 1.964945e-01 | 0.707 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 2.302142e-01 | 0.638 |
R-HSA-2559585 | Oncogene Induced Senescence | 1.858636e-01 | 0.731 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 1.872705e-01 | 0.728 |
R-HSA-451927 | Interleukin-2 family signaling | 2.406801e-01 | 0.619 |
R-HSA-376172 | DSCAM interactions | 1.911653e-01 | 0.719 |
R-HSA-205025 | NADE modulates death signalling | 2.725870e-01 | 0.564 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 1.895584e-01 | 0.722 |
R-HSA-9675151 | Disorders of Developmental Biology | 3.060130e-01 | 0.514 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 2.406801e-01 | 0.619 |
R-HSA-416482 | G alpha (12/13) signalling events | 1.763245e-01 | 0.754 |
R-HSA-9006925 | Intracellular signaling by second messengers | 1.597628e-01 | 0.797 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 2.279934e-01 | 0.642 |
R-HSA-202403 | TCR signaling | 2.041985e-01 | 0.690 |
R-HSA-210991 | Basigin interactions | 1.612999e-01 | 0.792 |
R-HSA-157858 | Gap junction trafficking and regulation | 1.883081e-01 | 0.725 |
R-HSA-4086400 | PCP/CE pathway | 1.763245e-01 | 0.754 |
R-HSA-168256 | Immune System | 3.108526e-01 | 0.507 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 2.987389e-01 | 0.525 |
R-HSA-1280218 | Adaptive Immune System | 2.059888e-01 | 0.686 |
R-HSA-74160 | Gene expression (Transcription) | 2.026540e-01 | 0.693 |
R-HSA-390651 | Dopamine receptors | 2.725870e-01 | 0.564 |
R-HSA-447038 | NrCAM interactions | 3.101740e-01 | 0.508 |
R-HSA-428540 | Activation of RAC1 | 1.895584e-01 | 0.722 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 2.280735e-01 | 0.642 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 2.006382e-01 | 0.698 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 2.865616e-01 | 0.543 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 2.448436e-01 | 0.611 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 3.047987e-01 | 0.516 |
R-HSA-5617833 | Cilium Assembly | 2.253669e-01 | 0.647 |
R-HSA-209543 | p75NTR recruits signalling complexes | 2.087237e-01 | 0.680 |
R-HSA-8876725 | Protein methylation | 2.670527e-01 | 0.573 |
R-HSA-8941326 | RUNX2 regulates bone development | 1.964945e-01 | 0.707 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 2.701646e-01 | 0.568 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 2.844219e-01 | 0.546 |
R-HSA-2408522 | Selenoamino acid metabolism | 1.754948e-01 | 0.756 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 2.431433e-01 | 0.614 |
R-HSA-8874177 | ATF6B (ATF6-beta) activates chaperones | 1.911653e-01 | 0.719 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 3.101740e-01 | 0.508 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 1.895584e-01 | 0.722 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 2.280735e-01 | 0.642 |
R-HSA-8964038 | LDL clearance | 1.872705e-01 | 0.728 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 2.670527e-01 | 0.573 |
R-HSA-171007 | p38MAPK events | 2.670527e-01 | 0.573 |
R-HSA-190828 | Gap junction trafficking | 2.985901e-01 | 0.525 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 2.559909e-01 | 0.592 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 2.142219e-01 | 0.669 |
R-HSA-6783589 | Interleukin-6 family signaling | 2.142219e-01 | 0.669 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 1.583187e-01 | 0.800 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 2.280735e-01 | 0.642 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 2.865616e-01 | 0.543 |
R-HSA-9031628 | NGF-stimulated transcription | 1.794027e-01 | 0.746 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 1.706547e-01 | 0.768 |
R-HSA-9669938 | Signaling by KIT in disease | 1.872705e-01 | 0.728 |
R-HSA-193639 | p75NTR signals via NF-kB | 2.670527e-01 | 0.573 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 2.253952e-01 | 0.647 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 2.006382e-01 | 0.698 |
R-HSA-8941332 | RUNX2 regulates genes involved in cell migration | 1.706547e-01 | 0.768 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 2.670527e-01 | 0.573 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 2.670527e-01 | 0.573 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 1.652011e-01 | 0.782 |
R-HSA-193648 | NRAGE signals death through JNK | 2.545074e-01 | 0.594 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 2.364764e-01 | 0.626 |
R-HSA-186797 | Signaling by PDGF | 3.150450e-01 | 0.502 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 2.188879e-01 | 0.660 |
R-HSA-186763 | Downstream signal transduction | 3.130932e-01 | 0.504 |
R-HSA-157118 | Signaling by NOTCH | 2.245646e-01 | 0.649 |
R-HSA-264876 | Insulin processing | 2.559909e-01 | 0.592 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 2.623308e-01 | 0.581 |
R-HSA-9793380 | Formation of paraxial mesoderm | 3.047987e-01 | 0.516 |
R-HSA-9679506 | SARS-CoV Infections | 1.792757e-01 | 0.746 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 2.280735e-01 | 0.642 |
R-HSA-446353 | Cell-extracellular matrix interactions | 2.670527e-01 | 0.573 |
R-HSA-1502540 | Signaling by Activin | 2.670527e-01 | 0.573 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 2.280735e-01 | 0.642 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 1.895584e-01 | 0.722 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 2.918421e-01 | 0.535 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 2.329235e-01 | 0.633 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 2.475376e-01 | 0.606 |
R-HSA-5620971 | Pyroptosis | 2.701646e-01 | 0.568 |
R-HSA-9675135 | Diseases of DNA repair | 3.222376e-01 | 0.492 |
R-HSA-9664407 | Parasite infection | 3.241683e-01 | 0.489 |
R-HSA-9664417 | Leishmania phagocytosis | 3.241683e-01 | 0.489 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 3.241683e-01 | 0.489 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 3.253607e-01 | 0.488 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 3.253607e-01 | 0.488 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 3.253607e-01 | 0.488 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 3.253607e-01 | 0.488 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 3.253607e-01 | 0.488 |
R-HSA-2408550 | Metabolism of ingested H2SeO4 and H2SeO3 into H2Se | 3.253607e-01 | 0.488 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 3.253607e-01 | 0.488 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 3.253607e-01 | 0.488 |
R-HSA-9827857 | Specification of primordial germ cells | 3.253607e-01 | 0.488 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 3.253607e-01 | 0.488 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 3.273751e-01 | 0.485 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 3.273751e-01 | 0.485 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 3.273751e-01 | 0.485 |
R-HSA-69190 | DNA strand elongation | 3.274632e-01 | 0.485 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 3.274632e-01 | 0.485 |
R-HSA-1538133 | G0 and Early G1 | 3.274632e-01 | 0.485 |
R-HSA-9711097 | Cellular response to starvation | 3.338093e-01 | 0.477 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 3.341137e-01 | 0.476 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 3.418284e-01 | 0.466 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 3.418284e-01 | 0.466 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 3.418284e-01 | 0.466 |
R-HSA-397795 | G-protein beta:gamma signalling | 3.418284e-01 | 0.466 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 3.418284e-01 | 0.466 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 3.445637e-01 | 0.463 |
R-HSA-180292 | GAB1 signalosome | 3.445637e-01 | 0.463 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 3.445637e-01 | 0.463 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 3.445637e-01 | 0.463 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 3.445637e-01 | 0.463 |
R-HSA-432142 | Platelet sensitization by LDL | 3.445637e-01 | 0.463 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 3.445637e-01 | 0.463 |
R-HSA-5358508 | Mismatch Repair | 3.445637e-01 | 0.463 |
R-HSA-111471 | Apoptotic factor-mediated response | 3.445637e-01 | 0.463 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 3.458210e-01 | 0.461 |
R-HSA-182218 | Nef Mediated CD8 Down-regulation | 3.458210e-01 | 0.461 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 3.458210e-01 | 0.461 |
R-HSA-5638303 | Inhibition of Signaling by Overexpressed EGFR | 3.458210e-01 | 0.461 |
R-HSA-5638302 | Signaling by Overexpressed Wild-Type EGFR in Cancer | 3.458210e-01 | 0.461 |
R-HSA-9652817 | Signaling by MAPK mutants | 3.458210e-01 | 0.461 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 3.458210e-01 | 0.461 |
R-HSA-176417 | Phosphorylation of Emi1 | 3.458210e-01 | 0.461 |
R-HSA-9033500 | TYSND1 cleaves peroxisomal proteins | 3.458210e-01 | 0.461 |
R-HSA-70263 | Gluconeogenesis | 3.460086e-01 | 0.461 |
R-HSA-9006936 | Signaling by TGFB family members | 3.468857e-01 | 0.460 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 3.561693e-01 | 0.448 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 3.579108e-01 | 0.446 |
R-HSA-72312 | rRNA processing | 3.620059e-01 | 0.441 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 3.635853e-01 | 0.439 |
R-HSA-9754189 | Germ layer formation at gastrulation | 3.635853e-01 | 0.439 |
R-HSA-9694631 | Maturation of nucleoprotein | 3.635853e-01 | 0.439 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 3.635853e-01 | 0.439 |
R-HSA-1834941 | STING mediated induction of host immune responses | 3.635853e-01 | 0.439 |
R-HSA-73894 | DNA Repair | 3.684028e-01 | 0.434 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 3.704677e-01 | 0.431 |
R-HSA-5673000 | RAF activation | 3.704677e-01 | 0.431 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 3.704677e-01 | 0.431 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 3.704677e-01 | 0.431 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 3.704677e-01 | 0.431 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 3.704677e-01 | 0.431 |
R-HSA-70171 | Glycolysis | 3.754462e-01 | 0.425 |
R-HSA-9645135 | STAT5 Activation | 3.796279e-01 | 0.421 |
R-HSA-5263617 | Metabolism of ingested MeSeO2H into MeSeH | 3.796279e-01 | 0.421 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 3.796279e-01 | 0.421 |
R-HSA-5619070 | Defective SLC16A1 causes symptomatic deficiency in lactate transport (SDLT) | 3.796279e-01 | 0.421 |
R-HSA-389542 | NADPH regeneration | 3.796279e-01 | 0.421 |
R-HSA-447043 | Neurofascin interactions | 3.796279e-01 | 0.421 |
R-HSA-5653890 | Lactose synthesis | 3.796279e-01 | 0.421 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 3.796279e-01 | 0.421 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 3.796279e-01 | 0.421 |
R-HSA-164944 | Nef and signal transduction | 3.796279e-01 | 0.421 |
R-HSA-912446 | Meiotic recombination | 3.816921e-01 | 0.418 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 3.816921e-01 | 0.418 |
R-HSA-6807004 | Negative regulation of MET activity | 3.823930e-01 | 0.417 |
R-HSA-1181150 | Signaling by NODAL | 3.823930e-01 | 0.417 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 3.847061e-01 | 0.415 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 3.978981e-01 | 0.400 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 3.978981e-01 | 0.400 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 3.978981e-01 | 0.400 |
R-HSA-3371511 | HSF1 activation | 3.988685e-01 | 0.399 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 3.988685e-01 | 0.399 |
R-HSA-8853659 | RET signaling | 3.988685e-01 | 0.399 |
R-HSA-114604 | GPVI-mediated activation cascade | 3.988685e-01 | 0.399 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 4.009582e-01 | 0.397 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 4.009582e-01 | 0.397 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 4.009582e-01 | 0.397 |
R-HSA-69186 | Lagging Strand Synthesis | 4.009582e-01 | 0.397 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 4.009582e-01 | 0.397 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 4.009582e-01 | 0.397 |
R-HSA-167044 | Signalling to RAS | 4.009582e-01 | 0.397 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 4.009582e-01 | 0.397 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 4.053727e-01 | 0.392 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 4.082515e-01 | 0.389 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 4.116897e-01 | 0.385 |
R-HSA-163767 | PP2A-mediated dephosphorylation of key metabolic factors | 4.116897e-01 | 0.385 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 4.116897e-01 | 0.385 |
R-HSA-418886 | Netrin mediated repulsion signals | 4.116897e-01 | 0.385 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 4.116897e-01 | 0.385 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 4.116897e-01 | 0.385 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 4.116897e-01 | 0.385 |
R-HSA-426117 | Cation-coupled Chloride cotransporters | 4.116897e-01 | 0.385 |
R-HSA-447041 | CHL1 interactions | 4.116897e-01 | 0.385 |
R-HSA-4641258 | Degradation of DVL | 4.129395e-01 | 0.384 |
R-HSA-4641257 | Degradation of AXIN | 4.129395e-01 | 0.384 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 4.129395e-01 | 0.384 |
R-HSA-1236974 | ER-Phagosome pathway | 4.187186e-01 | 0.378 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 4.192557e-01 | 0.378 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 4.192557e-01 | 0.378 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 4.192557e-01 | 0.378 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 4.192557e-01 | 0.378 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 4.192557e-01 | 0.378 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 4.234559e-01 | 0.373 |
R-HSA-163685 | Integration of energy metabolism | 4.234559e-01 | 0.373 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 4.269049e-01 | 0.370 |
R-HSA-73887 | Death Receptor Signaling | 4.287175e-01 | 0.368 |
R-HSA-3214815 | HDACs deacetylate histones | 4.288743e-01 | 0.368 |
R-HSA-9012852 | Signaling by NOTCH3 | 4.288743e-01 | 0.368 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 4.288787e-01 | 0.368 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 4.320788e-01 | 0.364 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 4.372637e-01 | 0.359 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 4.372637e-01 | 0.359 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 4.372637e-01 | 0.359 |
R-HSA-166208 | mTORC1-mediated signalling | 4.372637e-01 | 0.359 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 4.372637e-01 | 0.359 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 4.372637e-01 | 0.359 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 4.372637e-01 | 0.359 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 4.391399e-01 | 0.357 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 4.407241e-01 | 0.356 |
R-HSA-201556 | Signaling by ALK | 4.407514e-01 | 0.356 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 4.407514e-01 | 0.356 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 4.407514e-01 | 0.356 |
R-HSA-8964043 | Plasma lipoprotein clearance | 4.407514e-01 | 0.356 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 4.407514e-01 | 0.356 |
R-HSA-212718 | EGFR interacts with phospholipase C-gamma | 4.420963e-01 | 0.354 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 4.420963e-01 | 0.354 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 4.420963e-01 | 0.354 |
R-HSA-164940 | Nef mediated downregulation of MHC class I complex cell surface expression | 4.420963e-01 | 0.354 |
R-HSA-9020933 | Interleukin-23 signaling | 4.420963e-01 | 0.354 |
R-HSA-9927354 | Co-stimulation by ICOS | 4.420963e-01 | 0.354 |
R-HSA-9010642 | ROBO receptors bind AKAP5 | 4.420963e-01 | 0.354 |
R-HSA-210455 | Astrocytic Glutamate-Glutamine Uptake And Metabolism | 4.420963e-01 | 0.354 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 4.420963e-01 | 0.354 |
R-HSA-111995 | phospho-PLA2 pathway | 4.420963e-01 | 0.354 |
R-HSA-112313 | Neurotransmitter uptake and metabolism In glial cells | 4.420963e-01 | 0.354 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 4.420963e-01 | 0.354 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 4.420963e-01 | 0.354 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 4.544668e-01 | 0.342 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 4.544668e-01 | 0.342 |
R-HSA-202433 | Generation of second messenger molecules | 4.544668e-01 | 0.342 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 4.544668e-01 | 0.342 |
R-HSA-5260271 | Diseases of Immune System | 4.544668e-01 | 0.342 |
R-HSA-8854691 | Interleukin-20 family signaling | 4.549632e-01 | 0.342 |
R-HSA-3000170 | Syndecan interactions | 4.549632e-01 | 0.342 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 4.589852e-01 | 0.338 |
R-HSA-9824446 | Viral Infection Pathways | 4.597795e-01 | 0.337 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 4.636358e-01 | 0.334 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 4.680397e-01 | 0.330 |
R-HSA-9607240 | FLT3 Signaling | 4.680397e-01 | 0.330 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 4.680397e-01 | 0.330 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 4.680397e-01 | 0.330 |
R-HSA-112411 | MAPK1 (ERK2) activation | 4.709331e-01 | 0.327 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 4.709331e-01 | 0.327 |
R-HSA-176974 | Unwinding of DNA | 4.709331e-01 | 0.327 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 4.709331e-01 | 0.327 |
R-HSA-448706 | Interleukin-1 processing | 4.709331e-01 | 0.327 |
R-HSA-9834752 | Respiratory syncytial virus genome replication | 4.709331e-01 | 0.327 |
R-HSA-442380 | Zinc influx into cells by the SLC39 gene family | 4.709331e-01 | 0.327 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 4.723380e-01 | 0.326 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 4.723380e-01 | 0.326 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 4.750601e-01 | 0.323 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 4.750601e-01 | 0.323 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 4.752163e-01 | 0.323 |
R-HSA-167161 | HIV Transcription Initiation | 4.814596e-01 | 0.317 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 4.814596e-01 | 0.317 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 4.814596e-01 | 0.317 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 4.814596e-01 | 0.317 |
R-HSA-2871796 | FCERI mediated MAPK activation | 4.857829e-01 | 0.314 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 4.863907e-01 | 0.313 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 4.863907e-01 | 0.313 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 4.863907e-01 | 0.313 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 4.863907e-01 | 0.313 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 4.863907e-01 | 0.313 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 4.863907e-01 | 0.313 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 4.893745e-01 | 0.310 |
R-HSA-1482801 | Acyl chain remodelling of PS | 4.893745e-01 | 0.310 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 4.893745e-01 | 0.310 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 4.893745e-01 | 0.310 |
R-HSA-165159 | MTOR signalling | 4.947169e-01 | 0.306 |
R-HSA-110056 | MAPK3 (ERK1) activation | 4.982811e-01 | 0.303 |
R-HSA-1236973 | Cross-presentation of particulate exogenous antigens (phagosomes) | 4.982811e-01 | 0.303 |
R-HSA-390666 | Serotonin receptors | 4.982811e-01 | 0.303 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 4.982811e-01 | 0.303 |
R-HSA-2586552 | Signaling by Leptin | 4.982811e-01 | 0.303 |
R-HSA-9683686 | Maturation of spike protein | 4.982811e-01 | 0.303 |
R-HSA-9820962 | Assembly and release of respiratory syncytial virus (RSV) virions | 4.982811e-01 | 0.303 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 4.982811e-01 | 0.303 |
R-HSA-9664873 | Pexophagy | 4.982811e-01 | 0.303 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 5.023679e-01 | 0.299 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 5.060611e-01 | 0.296 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 5.060611e-01 | 0.296 |
R-HSA-525793 | Myogenesis | 5.060611e-01 | 0.296 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 5.060611e-01 | 0.296 |
R-HSA-70635 | Urea cycle | 5.060611e-01 | 0.296 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 5.066667e-01 | 0.295 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 5.078029e-01 | 0.294 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 5.078029e-01 | 0.294 |
R-HSA-5654743 | Signaling by FGFR4 | 5.078029e-01 | 0.294 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 5.087449e-01 | 0.293 |
R-HSA-6784531 | tRNA processing in the nucleus | 5.087449e-01 | 0.293 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 5.087449e-01 | 0.293 |
R-HSA-157579 | Telomere Maintenance | 5.100518e-01 | 0.292 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 5.128895e-01 | 0.290 |
R-HSA-422356 | Regulation of insulin secretion | 5.189190e-01 | 0.285 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 5.197563e-01 | 0.284 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 5.197563e-01 | 0.284 |
R-HSA-373752 | Netrin-1 signaling | 5.207096e-01 | 0.283 |
R-HSA-9907900 | Proteasome assembly | 5.207096e-01 | 0.283 |
R-HSA-69231 | Cyclin D associated events in G1 | 5.207096e-01 | 0.283 |
R-HSA-69236 | G1 Phase | 5.207096e-01 | 0.283 |
R-HSA-210990 | PECAM1 interactions | 5.242169e-01 | 0.280 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 5.242169e-01 | 0.280 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 5.242169e-01 | 0.280 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 5.242169e-01 | 0.280 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 5.242169e-01 | 0.280 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 5.242169e-01 | 0.280 |
R-HSA-192905 | vRNP Assembly | 5.242169e-01 | 0.280 |
R-HSA-4839744 | Signaling by APC mutants | 5.242169e-01 | 0.280 |
R-HSA-9754560 | SARS-CoV-2 modulates autophagy | 5.242169e-01 | 0.280 |
R-HSA-1483226 | Synthesis of PI | 5.242169e-01 | 0.280 |
R-HSA-77108 | Utilization of Ketone Bodies | 5.242169e-01 | 0.280 |
R-HSA-75205 | Dissolution of Fibrin Clot | 5.242169e-01 | 0.280 |
R-HSA-9020558 | Interleukin-2 signaling | 5.242169e-01 | 0.280 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 5.288983e-01 | 0.277 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 5.288983e-01 | 0.277 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 5.334298e-01 | 0.273 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 5.334298e-01 | 0.273 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 5.334298e-01 | 0.273 |
R-HSA-5654741 | Signaling by FGFR3 | 5.334298e-01 | 0.273 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 5.358110e-01 | 0.271 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 5.384933e-01 | 0.269 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 5.384933e-01 | 0.269 |
R-HSA-1234174 | Cellular response to hypoxia | 5.414204e-01 | 0.266 |
R-HSA-70326 | Glucose metabolism | 5.430035e-01 | 0.265 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 5.459571e-01 | 0.263 |
R-HSA-6794362 | Protein-protein interactions at synapses | 5.479971e-01 | 0.261 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 5.488136e-01 | 0.261 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 5.488136e-01 | 0.261 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 5.488136e-01 | 0.261 |
R-HSA-433692 | Proton-coupled monocarboxylate transport | 5.488136e-01 | 0.261 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 5.488136e-01 | 0.261 |
R-HSA-113501 | Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 5.488136e-01 | 0.261 |
R-HSA-4839735 | Signaling by AXIN mutants | 5.488136e-01 | 0.261 |
R-HSA-4839748 | Signaling by AMER1 mutants | 5.488136e-01 | 0.261 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 5.488136e-01 | 0.261 |
R-HSA-418359 | Reduction of cytosolic Ca++ levels | 5.488136e-01 | 0.261 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 5.488136e-01 | 0.261 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 5.488136e-01 | 0.261 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 5.488136e-01 | 0.261 |
R-HSA-1483255 | PI Metabolism | 5.537250e-01 | 0.257 |
R-HSA-180024 | DARPP-32 events | 5.539382e-01 | 0.257 |
R-HSA-9006335 | Signaling by Erythropoietin | 5.539382e-01 | 0.257 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 5.539382e-01 | 0.257 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 5.574062e-01 | 0.254 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 5.582857e-01 | 0.253 |
R-HSA-73857 | RNA Polymerase II Transcription | 5.583931e-01 | 0.253 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 5.610635e-01 | 0.251 |
R-HSA-5693606 | DNA Double Strand Break Response | 5.625740e-01 | 0.250 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 5.670442e-01 | 0.246 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 5.691503e-01 | 0.245 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 5.691503e-01 | 0.245 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 5.691503e-01 | 0.245 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 5.706885e-01 | 0.244 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 5.706885e-01 | 0.244 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 5.721401e-01 | 0.242 |
R-HSA-3656237 | Defective EXT2 causes exostoses 2 | 5.721401e-01 | 0.242 |
R-HSA-3656253 | Defective EXT1 causes exostoses 1, TRPS2 and CHDS | 5.721401e-01 | 0.242 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 5.721401e-01 | 0.242 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 5.721401e-01 | 0.242 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 5.721401e-01 | 0.242 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 5.721401e-01 | 0.242 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 5.721401e-01 | 0.242 |
R-HSA-179812 | GRB2 events in EGFR signaling | 5.721401e-01 | 0.242 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 5.721401e-01 | 0.242 |
R-HSA-877312 | Regulation of IFNG signaling | 5.721401e-01 | 0.242 |
R-HSA-418890 | Role of second messengers in netrin-1 signaling | 5.721401e-01 | 0.242 |
R-HSA-69091 | Polymerase switching | 5.721401e-01 | 0.242 |
R-HSA-69109 | Leading Strand Synthesis | 5.721401e-01 | 0.242 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 5.721401e-01 | 0.242 |
R-HSA-9005895 | Pervasive developmental disorders | 5.721401e-01 | 0.242 |
R-HSA-9697154 | Disorders of Nervous System Development | 5.721401e-01 | 0.242 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 5.729487e-01 | 0.242 |
R-HSA-167172 | Transcription of the HIV genome | 5.729487e-01 | 0.242 |
R-HSA-5218859 | Regulated Necrosis | 5.729487e-01 | 0.242 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 5.839832e-01 | 0.234 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 5.839832e-01 | 0.234 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 5.839832e-01 | 0.234 |
R-HSA-9645723 | Diseases of programmed cell death | 5.850327e-01 | 0.233 |
R-HSA-5696398 | Nucleotide Excision Repair | 5.873309e-01 | 0.231 |
R-HSA-204005 | COPII-mediated vesicle transport | 5.932756e-01 | 0.227 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 5.932756e-01 | 0.227 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 5.932756e-01 | 0.227 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 5.942619e-01 | 0.226 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 5.942619e-01 | 0.226 |
R-HSA-9683610 | Maturation of nucleoprotein | 5.942619e-01 | 0.226 |
R-HSA-1632852 | Macroautophagy | 5.995184e-01 | 0.222 |
R-HSA-202424 | Downstream TCR signaling | 6.029210e-01 | 0.220 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 6.055220e-01 | 0.218 |
R-HSA-1236975 | Antigen processing-Cross presentation | 6.116526e-01 | 0.213 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 6.125067e-01 | 0.213 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 6.125067e-01 | 0.213 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 6.125067e-01 | 0.213 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 6.125067e-01 | 0.213 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 6.125067e-01 | 0.213 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 6.134708e-01 | 0.212 |
R-HSA-69166 | Removal of the Flap Intermediate | 6.152412e-01 | 0.211 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 6.152412e-01 | 0.211 |
R-HSA-1170546 | Prolactin receptor signaling | 6.152412e-01 | 0.211 |
R-HSA-5578768 | Physiological factors | 6.152412e-01 | 0.211 |
R-HSA-1433559 | Regulation of KIT signaling | 6.152412e-01 | 0.211 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 6.152412e-01 | 0.211 |
R-HSA-391160 | Signal regulatory protein family interactions | 6.152412e-01 | 0.211 |
R-HSA-435354 | Zinc transporters | 6.152412e-01 | 0.211 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 6.167938e-01 | 0.210 |
R-HSA-6794361 | Neurexins and neuroligins | 6.167938e-01 | 0.210 |
R-HSA-195721 | Signaling by WNT | 6.179029e-01 | 0.209 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 6.261977e-01 | 0.203 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 6.261977e-01 | 0.203 |
R-HSA-109582 | Hemostasis | 6.267272e-01 | 0.203 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 6.287583e-01 | 0.202 |
R-HSA-1226099 | Signaling by FGFR in disease | 6.321573e-01 | 0.199 |
R-HSA-9027284 | Erythropoietin activates RAS | 6.351370e-01 | 0.197 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 6.351370e-01 | 0.197 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 6.351370e-01 | 0.197 |
R-HSA-180336 | SHC1 events in EGFR signaling | 6.351370e-01 | 0.197 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 6.351370e-01 | 0.197 |
R-HSA-416700 | Other semaphorin interactions | 6.351370e-01 | 0.197 |
R-HSA-9823739 | Formation of the anterior neural plate | 6.351370e-01 | 0.197 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 6.386760e-01 | 0.195 |
R-HSA-9734767 | Developmental Cell Lineages | 6.392986e-01 | 0.194 |
R-HSA-203615 | eNOS activation | 6.395103e-01 | 0.194 |
R-HSA-180746 | Nuclear import of Rev protein | 6.395103e-01 | 0.194 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 6.395103e-01 | 0.194 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 6.506760e-01 | 0.187 |
R-HSA-5689603 | UCH proteinases | 6.506760e-01 | 0.187 |
R-HSA-1980143 | Signaling by NOTCH1 | 6.506760e-01 | 0.187 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 6.524468e-01 | 0.185 |
R-HSA-168275 | Entry of Influenza Virion into Host Cell via Endocytosis | 6.540051e-01 | 0.184 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 6.540051e-01 | 0.184 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 6.540051e-01 | 0.184 |
R-HSA-9708530 | Regulation of BACH1 activity | 6.540051e-01 | 0.184 |
R-HSA-9634600 | Regulation of glycolysis by fructose 2,6-bisphosphate metabolism | 6.540051e-01 | 0.184 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 6.540051e-01 | 0.184 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 6.540051e-01 | 0.184 |
R-HSA-9945266 | Differentiation of T cells | 6.540051e-01 | 0.184 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 6.540051e-01 | 0.184 |
R-HSA-9664420 | Killing mechanisms | 6.540051e-01 | 0.184 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 6.540051e-01 | 0.184 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 6.596671e-01 | 0.181 |
R-HSA-5654736 | Signaling by FGFR1 | 6.596671e-01 | 0.181 |
R-HSA-9843745 | Adipogenesis | 6.621293e-01 | 0.179 |
R-HSA-9679191 | Potential therapeutics for SARS | 6.666121e-01 | 0.176 |
R-HSA-73864 | RNA Polymerase I Transcription | 6.685635e-01 | 0.175 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 6.698601e-01 | 0.174 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 6.698601e-01 | 0.174 |
R-HSA-3560783 | Defective B4GALT7 causes EDS, progeroid type | 6.718985e-01 | 0.173 |
R-HSA-4420332 | Defective B3GALT6 causes EDSP2 and SEMDJL1 | 6.718985e-01 | 0.173 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 6.718985e-01 | 0.173 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 6.718985e-01 | 0.173 |
R-HSA-3000471 | Scavenging by Class B Receptors | 6.718985e-01 | 0.173 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 6.718985e-01 | 0.173 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 6.718985e-01 | 0.173 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 6.718985e-01 | 0.173 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 6.718985e-01 | 0.173 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 6.770821e-01 | 0.169 |
R-HSA-5689896 | Ovarian tumor domain proteases | 6.772056e-01 | 0.169 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 6.772680e-01 | 0.169 |
R-HSA-9833482 | PKR-mediated signaling | 6.858123e-01 | 0.164 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 6.858123e-01 | 0.164 |
R-HSA-6806834 | Signaling by MET | 6.858123e-01 | 0.164 |
R-HSA-5654738 | Signaling by FGFR2 | 6.858123e-01 | 0.164 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 6.888676e-01 | 0.162 |
R-HSA-3560801 | Defective B3GAT3 causes JDSSDHD | 6.888676e-01 | 0.162 |
R-HSA-1614517 | Sulfide oxidation to sulfate | 6.888676e-01 | 0.162 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 6.888676e-01 | 0.162 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 6.888676e-01 | 0.162 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 6.888676e-01 | 0.162 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 6.890364e-01 | 0.162 |
R-HSA-194441 | Metabolism of non-coding RNA | 6.894750e-01 | 0.161 |
R-HSA-191859 | snRNP Assembly | 6.894750e-01 | 0.161 |
R-HSA-9033241 | Peroxisomal protein import | 6.894750e-01 | 0.161 |
R-HSA-186712 | Regulation of beta-cell development | 6.894750e-01 | 0.161 |
R-HSA-9007101 | Rab regulation of trafficking | 6.935548e-01 | 0.159 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 6.941959e-01 | 0.159 |
R-HSA-379724 | tRNA Aminoacylation | 6.989644e-01 | 0.156 |
R-HSA-351202 | Metabolism of polyamines | 6.989644e-01 | 0.156 |
R-HSA-9612973 | Autophagy | 7.034491e-01 | 0.153 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 7.049601e-01 | 0.152 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 7.116258e-01 | 0.148 |
R-HSA-9646399 | Aggrephagy | 7.116258e-01 | 0.148 |
R-HSA-3371568 | Attenuation phase | 7.116258e-01 | 0.148 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 7.116258e-01 | 0.148 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 7.116258e-01 | 0.148 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 7.116258e-01 | 0.148 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 7.116258e-01 | 0.148 |
R-HSA-8982491 | Glycogen metabolism | 7.116258e-01 | 0.148 |
R-HSA-379726 | Mitochondrial tRNA aminoacylation | 7.116258e-01 | 0.148 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 7.172788e-01 | 0.144 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 7.202211e-01 | 0.143 |
R-HSA-392517 | Rap1 signalling | 7.202211e-01 | 0.143 |
R-HSA-9834899 | Specification of the neural plate border | 7.202211e-01 | 0.143 |
R-HSA-912631 | Regulation of signaling by CBL | 7.202211e-01 | 0.143 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 7.202211e-01 | 0.143 |
R-HSA-844456 | The NLRP3 inflammasome | 7.202211e-01 | 0.143 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 7.223958e-01 | 0.141 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 7.223958e-01 | 0.141 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 7.223958e-01 | 0.141 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 7.223958e-01 | 0.141 |
R-HSA-112315 | Transmission across Chemical Synapses | 7.306935e-01 | 0.136 |
R-HSA-168249 | Innate Immune System | 7.319485e-01 | 0.136 |
R-HSA-9683701 | Translation of Structural Proteins | 7.328243e-01 | 0.135 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 7.330625e-01 | 0.135 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 7.337049e-01 | 0.134 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 7.346937e-01 | 0.134 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 7.346937e-01 | 0.134 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 7.346937e-01 | 0.134 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 7.346937e-01 | 0.134 |
R-HSA-77111 | Synthesis of Ketone Bodies | 7.346937e-01 | 0.134 |
R-HSA-9629569 | Protein hydroxylation | 7.346937e-01 | 0.134 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 7.346937e-01 | 0.134 |
R-HSA-74751 | Insulin receptor signalling cascade | 7.347175e-01 | 0.134 |
R-HSA-6809371 | Formation of the cornified envelope | 7.392829e-01 | 0.131 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 7.429176e-01 | 0.129 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 7.429176e-01 | 0.129 |
R-HSA-111996 | Ca-dependent events | 7.429176e-01 | 0.129 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 7.429176e-01 | 0.129 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 7.484184e-01 | 0.126 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 7.484184e-01 | 0.126 |
R-HSA-196836 | Vitamin C (ascorbate) metabolism | 7.484184e-01 | 0.126 |
R-HSA-75876 | Synthesis of very long-chain fatty acyl-CoAs | 7.526826e-01 | 0.123 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 7.526826e-01 | 0.123 |
R-HSA-9663891 | Selective autophagy | 7.555001e-01 | 0.122 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 7.614339e-01 | 0.118 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 7.614339e-01 | 0.118 |
R-HSA-9694614 | Attachment and Entry | 7.614339e-01 | 0.118 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 7.614339e-01 | 0.118 |
R-HSA-9755088 | Ribavirin ADME | 7.614339e-01 | 0.118 |
R-HSA-1474244 | Extracellular matrix organization | 7.619364e-01 | 0.118 |
R-HSA-5683826 | Surfactant metabolism | 7.621262e-01 | 0.118 |
R-HSA-3214858 | RMTs methylate histone arginines | 7.621262e-01 | 0.118 |
R-HSA-375280 | Amine ligand-binding receptors | 7.621262e-01 | 0.118 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 7.712555e-01 | 0.113 |
R-HSA-6803529 | FGFR2 alternative splicing | 7.737768e-01 | 0.111 |
R-HSA-350054 | Notch-HLH transcription pathway | 7.737768e-01 | 0.111 |
R-HSA-189200 | Cellular hexose transport | 7.737768e-01 | 0.111 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 7.737768e-01 | 0.111 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 7.737768e-01 | 0.111 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 7.800777e-01 | 0.108 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 7.800777e-01 | 0.108 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 7.800777e-01 | 0.108 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 7.800777e-01 | 0.108 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 7.800777e-01 | 0.108 |
R-HSA-9758941 | Gastrulation | 7.812650e-01 | 0.107 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 7.854818e-01 | 0.105 |
R-HSA-912526 | Interleukin receptor SHC signaling | 7.854818e-01 | 0.105 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 7.854818e-01 | 0.105 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 7.854818e-01 | 0.105 |
R-HSA-74182 | Ketone body metabolism | 7.854818e-01 | 0.105 |
R-HSA-879518 | Organic anion transport by SLCO transporters | 7.854818e-01 | 0.105 |
R-HSA-212436 | Generic Transcription Pathway | 7.858962e-01 | 0.105 |
R-HSA-8978934 | Metabolism of cofactors | 7.891055e-01 | 0.103 |
R-HSA-5632684 | Hedgehog 'on' state | 7.891055e-01 | 0.103 |
R-HSA-5576891 | Cardiac conduction | 7.906131e-01 | 0.102 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 7.965819e-01 | 0.099 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 7.965819e-01 | 0.099 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 7.965819e-01 | 0.099 |
R-HSA-9865881 | Complex III assembly | 7.965819e-01 | 0.099 |
R-HSA-4086398 | Ca2+ pathway | 8.028352e-01 | 0.095 |
R-HSA-9658195 | Leishmania infection | 8.069209e-01 | 0.093 |
R-HSA-9824443 | Parasitic Infection Pathways | 8.069209e-01 | 0.093 |
R-HSA-420029 | Tight junction interactions | 8.071082e-01 | 0.093 |
R-HSA-389887 | Beta-oxidation of pristanoyl-CoA | 8.071082e-01 | 0.093 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 8.071082e-01 | 0.093 |
R-HSA-1266695 | Interleukin-7 signaling | 8.071082e-01 | 0.093 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 8.071082e-01 | 0.093 |
R-HSA-1989781 | PPARA activates gene expression | 8.101525e-01 | 0.091 |
R-HSA-9748787 | Azathioprine ADME | 8.124432e-01 | 0.090 |
R-HSA-909733 | Interferon alpha/beta signaling | 8.131493e-01 | 0.090 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 8.158064e-01 | 0.088 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 8.170905e-01 | 0.088 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 8.170905e-01 | 0.088 |
R-HSA-3295583 | TRP channels | 8.170905e-01 | 0.088 |
R-HSA-9845614 | Sphingolipid catabolism | 8.170905e-01 | 0.088 |
R-HSA-9865118 | Diseases of branched-chain amino acid catabolism | 8.170905e-01 | 0.088 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 8.191014e-01 | 0.087 |
R-HSA-3371571 | HSF1-dependent transactivation | 8.198408e-01 | 0.086 |
R-HSA-1592230 | Mitochondrial biogenesis | 8.232776e-01 | 0.084 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 8.249086e-01 | 0.084 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 8.265567e-01 | 0.083 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 8.265567e-01 | 0.083 |
R-HSA-171306 | Packaging Of Telomere Ends | 8.265567e-01 | 0.083 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 8.265567e-01 | 0.083 |
R-HSA-8949613 | Cristae formation | 8.265567e-01 | 0.083 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 8.265567e-01 | 0.083 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 8.265567e-01 | 0.083 |
R-HSA-83936 | Transport of nucleosides and free purine and pyrimidine bases across the plasma ... | 8.265567e-01 | 0.083 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 8.265567e-01 | 0.083 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 8.265567e-01 | 0.083 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 8.265567e-01 | 0.083 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 8.269758e-01 | 0.083 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 8.269758e-01 | 0.083 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 8.280461e-01 | 0.082 |
R-HSA-9694635 | Translation of Structural Proteins | 8.280461e-01 | 0.082 |
R-HSA-190236 | Signaling by FGFR | 8.290617e-01 | 0.081 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 8.338554e-01 | 0.079 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 8.338554e-01 | 0.079 |
R-HSA-8956320 | Nucleotide biosynthesis | 8.338554e-01 | 0.079 |
R-HSA-6783783 | Interleukin-10 signaling | 8.339004e-01 | 0.079 |
R-HSA-216083 | Integrin cell surface interactions | 8.339004e-01 | 0.079 |
R-HSA-5619084 | ABC transporter disorders | 8.339004e-01 | 0.079 |
R-HSA-9614085 | FOXO-mediated transcription | 8.342672e-01 | 0.079 |
R-HSA-167287 | HIV elongation arrest and recovery | 8.355335e-01 | 0.078 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 8.355335e-01 | 0.078 |
R-HSA-113418 | Formation of the Early Elongation Complex | 8.355335e-01 | 0.078 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 8.355335e-01 | 0.078 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 8.355335e-01 | 0.078 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 8.355335e-01 | 0.078 |
R-HSA-622312 | Inflammasomes | 8.355335e-01 | 0.078 |
R-HSA-5610787 | Hedgehog 'off' state | 8.393397e-01 | 0.076 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 8.422015e-01 | 0.075 |
R-HSA-72086 | mRNA Capping | 8.440463e-01 | 0.074 |
R-HSA-1592389 | Activation of Matrix Metalloproteinases | 8.440463e-01 | 0.074 |
R-HSA-5334118 | DNA methylation | 8.440463e-01 | 0.074 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 8.440463e-01 | 0.074 |
R-HSA-418360 | Platelet calcium homeostasis | 8.440463e-01 | 0.074 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 8.468779e-01 | 0.072 |
R-HSA-2424491 | DAP12 signaling | 8.521189e-01 | 0.069 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 8.521189e-01 | 0.069 |
R-HSA-5578775 | Ion homeostasis | 8.530351e-01 | 0.069 |
R-HSA-75893 | TNF signaling | 8.530351e-01 | 0.069 |
R-HSA-111885 | Opioid Signalling | 8.583439e-01 | 0.066 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 8.589657e-01 | 0.066 |
R-HSA-5694530 | Cargo concentration in the ER | 8.597741e-01 | 0.066 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 8.597741e-01 | 0.066 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 8.627846e-01 | 0.064 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 8.627846e-01 | 0.064 |
R-HSA-9833110 | RSV-host interactions | 8.627846e-01 | 0.064 |
R-HSA-6782135 | Dual incision in TC-NER | 8.646767e-01 | 0.063 |
R-HSA-4791275 | Signaling by WNT in cancer | 8.670335e-01 | 0.062 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 8.670335e-01 | 0.062 |
R-HSA-2024096 | HS-GAG degradation | 8.670335e-01 | 0.062 |
R-HSA-159418 | Recycling of bile acids and salts | 8.739175e-01 | 0.059 |
R-HSA-5675482 | Regulation of necroptotic cell death | 8.739175e-01 | 0.059 |
R-HSA-354192 | Integrin signaling | 8.739175e-01 | 0.059 |
R-HSA-211000 | Gene Silencing by RNA | 8.753982e-01 | 0.058 |
R-HSA-1482788 | Acyl chain remodelling of PC | 8.804455e-01 | 0.055 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 8.804455e-01 | 0.055 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 8.804455e-01 | 0.055 |
R-HSA-5223345 | Miscellaneous transport and binding events | 8.804455e-01 | 0.055 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 8.804455e-01 | 0.055 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 8.805596e-01 | 0.055 |
R-HSA-112043 | PLC beta mediated events | 8.805596e-01 | 0.055 |
R-HSA-1268020 | Mitochondrial protein import | 8.854591e-01 | 0.053 |
R-HSA-1971475 | Glycosaminoglycan-protein linkage region biosynthesis | 8.866359e-01 | 0.052 |
R-HSA-5696400 | Dual Incision in GG-NER | 8.866359e-01 | 0.052 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 8.866359e-01 | 0.052 |
R-HSA-5205647 | Mitophagy | 8.866359e-01 | 0.052 |
R-HSA-901042 | Calnexin/calreticulin cycle | 8.866359e-01 | 0.052 |
R-HSA-5686938 | Regulation of TLR by endogenous ligand | 8.866359e-01 | 0.052 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 8.866359e-01 | 0.052 |
R-HSA-9609507 | Protein localization | 8.896962e-01 | 0.051 |
R-HSA-6799198 | Complex I biogenesis | 8.901719e-01 | 0.051 |
R-HSA-8951664 | Neddylation | 8.915867e-01 | 0.050 |
R-HSA-1482839 | Acyl chain remodelling of PE | 8.925061e-01 | 0.049 |
R-HSA-381042 | PERK regulates gene expression | 8.925061e-01 | 0.049 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 8.947043e-01 | 0.048 |
R-HSA-73884 | Base Excision Repair | 8.956324e-01 | 0.048 |
R-HSA-5663205 | Infectious disease | 8.967006e-01 | 0.047 |
R-HSA-2022928 | HS-GAG biosynthesis | 8.980726e-01 | 0.047 |
R-HSA-212300 | PRC2 methylates histones and DNA | 8.980726e-01 | 0.047 |
R-HSA-111933 | Calmodulin induced events | 8.980726e-01 | 0.047 |
R-HSA-111997 | CaM pathway | 8.980726e-01 | 0.047 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 8.993996e-01 | 0.046 |
R-HSA-110331 | Cleavage of the damaged purine | 9.033513e-01 | 0.044 |
R-HSA-390247 | Beta-oxidation of very long chain fatty acids | 9.033513e-01 | 0.044 |
R-HSA-112316 | Neuronal System | 9.044927e-01 | 0.044 |
R-HSA-74752 | Signaling by Insulin receptor | 9.065686e-01 | 0.043 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 9.065686e-01 | 0.043 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 9.065686e-01 | 0.043 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 9.072778e-01 | 0.042 |
R-HSA-112040 | G-protein mediated events | 9.072778e-01 | 0.042 |
R-HSA-196807 | Nicotinate metabolism | 9.072778e-01 | 0.042 |
R-HSA-913531 | Interferon Signaling | 9.075652e-01 | 0.042 |
R-HSA-73927 | Depurination | 9.083568e-01 | 0.042 |
R-HSA-8875878 | MET promotes cell motility | 9.083568e-01 | 0.042 |
R-HSA-2046106 | alpha-linolenic acid (ALA) metabolism | 9.083568e-01 | 0.042 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 9.083568e-01 | 0.042 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 9.083568e-01 | 0.042 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 9.131034e-01 | 0.039 |
R-HSA-71336 | Pentose phosphate pathway | 9.131034e-01 | 0.039 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 9.131034e-01 | 0.039 |
R-HSA-9837999 | Mitochondrial protein degradation | 9.132719e-01 | 0.039 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 9.164570e-01 | 0.038 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 9.176044e-01 | 0.037 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 9.176044e-01 | 0.037 |
R-HSA-167169 | HIV Transcription Elongation | 9.176044e-01 | 0.037 |
R-HSA-9854311 | Maturation of TCA enzymes and regulation of TCA cycle | 9.176044e-01 | 0.037 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 9.218657e-01 | 0.035 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 9.218657e-01 | 0.035 |
R-HSA-9694548 | Maturation of spike protein | 9.218726e-01 | 0.035 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 9.218726e-01 | 0.035 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 9.218726e-01 | 0.035 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 9.251594e-01 | 0.034 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 9.251594e-01 | 0.034 |
R-HSA-3000480 | Scavenging by Class A Receptors | 9.259199e-01 | 0.033 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 9.259199e-01 | 0.033 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 9.297577e-01 | 0.032 |
R-HSA-73928 | Depyrimidination | 9.297577e-01 | 0.032 |
R-HSA-9710421 | Defective pyroptosis | 9.333970e-01 | 0.030 |
R-HSA-8854214 | TBC/RABGAPs | 9.333970e-01 | 0.030 |
R-HSA-382556 | ABC-family proteins mediated transport | 9.334268e-01 | 0.030 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 9.342719e-01 | 0.030 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 9.342719e-01 | 0.030 |
R-HSA-1643685 | Disease | 9.362339e-01 | 0.029 |
R-HSA-2172127 | DAP12 interactions | 9.368479e-01 | 0.028 |
R-HSA-2142691 | Synthesis of Leukotrienes (LT) and Eoxins (EX) | 9.368479e-01 | 0.028 |
R-HSA-6783310 | Fanconi Anemia Pathway | 9.401202e-01 | 0.027 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 9.401202e-01 | 0.027 |
R-HSA-1614558 | Degradation of cysteine and homocysteine | 9.401202e-01 | 0.027 |
R-HSA-1489509 | DAG and IP3 signaling | 9.401202e-01 | 0.027 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 9.401202e-01 | 0.027 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 9.423266e-01 | 0.026 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 9.432232e-01 | 0.025 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 9.432232e-01 | 0.025 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 9.432232e-01 | 0.025 |
R-HSA-2046104 | alpha-linolenic (omega3) and linoleic (omega6) acid metabolism | 9.461655e-01 | 0.024 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 9.471653e-01 | 0.024 |
R-HSA-5620924 | Intraflagellar transport | 9.489555e-01 | 0.023 |
R-HSA-425410 | Metal ion SLC transporters | 9.489555e-01 | 0.023 |
R-HSA-418346 | Platelet homeostasis | 9.491843e-01 | 0.023 |
R-HSA-73893 | DNA Damage Bypass | 9.516011e-01 | 0.022 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 9.516011e-01 | 0.022 |
R-HSA-109704 | PI3K Cascade | 9.541097e-01 | 0.020 |
R-HSA-9610379 | HCMV Late Events | 9.546308e-01 | 0.020 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 9.561237e-01 | 0.019 |
R-HSA-9864848 | Complex IV assembly | 9.564884e-01 | 0.019 |
R-HSA-70895 | Branched-chain amino acid catabolism | 9.564884e-01 | 0.019 |
R-HSA-2514856 | The phototransduction cascade | 9.564884e-01 | 0.019 |
R-HSA-877300 | Interferon gamma signaling | 9.575716e-01 | 0.019 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 9.587440e-01 | 0.018 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 9.614099e-01 | 0.017 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 9.629108e-01 | 0.016 |
R-HSA-70268 | Pyruvate metabolism | 9.629176e-01 | 0.016 |
R-HSA-5358351 | Signaling by Hedgehog | 9.641320e-01 | 0.016 |
R-HSA-418597 | G alpha (z) signalling events | 9.648338e-01 | 0.016 |
R-HSA-112310 | Neurotransmitter release cycle | 9.675714e-01 | 0.014 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 9.675714e-01 | 0.014 |
R-HSA-112399 | IRS-mediated signalling | 9.683861e-01 | 0.014 |
R-HSA-5621480 | Dectin-2 family | 9.683861e-01 | 0.014 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 9.689938e-01 | 0.014 |
R-HSA-2980736 | Peptide hormone metabolism | 9.696324e-01 | 0.013 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 9.700256e-01 | 0.013 |
R-HSA-392499 | Metabolism of proteins | 9.700317e-01 | 0.013 |
R-HSA-1638091 | Heparan sulfate/heparin (HS-GAG) metabolism | 9.715800e-01 | 0.013 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 9.715800e-01 | 0.013 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 9.715800e-01 | 0.013 |
R-HSA-72306 | tRNA processing | 9.718436e-01 | 0.012 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 9.722907e-01 | 0.012 |
R-HSA-1442490 | Collagen degradation | 9.744516e-01 | 0.011 |
R-HSA-211976 | Endogenous sterols | 9.744516e-01 | 0.011 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 9.744516e-01 | 0.011 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 9.778665e-01 | 0.010 |
R-HSA-936837 | Ion transport by P-type ATPases | 9.782247e-01 | 0.010 |
R-HSA-2428924 | IGF1R signaling cascade | 9.782247e-01 | 0.010 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 9.793544e-01 | 0.009 |
R-HSA-6805567 | Keratinization | 9.801015e-01 | 0.009 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 9.802774e-01 | 0.009 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 9.804256e-01 | 0.009 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 9.814412e-01 | 0.008 |
R-HSA-913709 | O-linked glycosylation of mucins | 9.824042e-01 | 0.008 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 9.833173e-01 | 0.007 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 9.850039e-01 | 0.007 |
R-HSA-975634 | Retinoid metabolism and transport | 9.850039e-01 | 0.007 |
R-HSA-3000178 | ECM proteoglycans | 9.850039e-01 | 0.007 |
R-HSA-1483257 | Phospholipid metabolism | 9.858292e-01 | 0.006 |
R-HSA-9749641 | Aspirin ADME | 9.865202e-01 | 0.006 |
R-HSA-425397 | Transport of vitamins, nucleosides, and related molecules | 9.872199e-01 | 0.006 |
R-HSA-2672351 | Stimuli-sensing channels | 9.875345e-01 | 0.005 |
R-HSA-5619115 | Disorders of transmembrane transporters | 9.876336e-01 | 0.005 |
R-HSA-917937 | Iron uptake and transport | 9.878833e-01 | 0.005 |
R-HSA-8852135 | Protein ubiquitination | 9.878833e-01 | 0.005 |
R-HSA-597592 | Post-translational protein modification | 9.879932e-01 | 0.005 |
R-HSA-5619102 | SLC transporter disorders | 9.884728e-01 | 0.005 |
R-HSA-194068 | Bile acid and bile salt metabolism | 9.886352e-01 | 0.005 |
R-HSA-9609646 | HCMV Infection | 9.888074e-01 | 0.005 |
R-HSA-1483249 | Inositol phosphate metabolism | 9.896410e-01 | 0.005 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 9.896742e-01 | 0.005 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 9.902104e-01 | 0.004 |
R-HSA-977225 | Amyloid fiber formation | 9.912007e-01 | 0.004 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 9.912007e-01 | 0.004 |
R-HSA-390918 | Peroxisomal lipid metabolism | 9.925017e-01 | 0.003 |
R-HSA-446203 | Asparagine N-linked glycosylation | 9.935146e-01 | 0.003 |
R-HSA-1614635 | Sulfur amino acid metabolism | 9.936106e-01 | 0.003 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 9.936106e-01 | 0.003 |
R-HSA-977606 | Regulation of Complement cascade | 9.948624e-01 | 0.002 |
R-HSA-1474290 | Collagen formation | 9.960474e-01 | 0.002 |
R-HSA-9609690 | HCMV Early Events | 9.965284e-01 | 0.002 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 9.965768e-01 | 0.001 |
R-HSA-5389840 | Mitochondrial translation elongation | 9.966323e-01 | 0.001 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 9.966323e-01 | 0.001 |
R-HSA-1474228 | Degradation of the extracellular matrix | 9.966432e-01 | 0.001 |
R-HSA-5368286 | Mitochondrial translation initiation | 9.969734e-01 | 0.001 |
R-HSA-418555 | G alpha (s) signalling events | 9.974994e-01 | 0.001 |
R-HSA-5368287 | Mitochondrial translation | 9.975945e-01 | 0.001 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 9.977616e-01 | 0.001 |
R-HSA-611105 | Respiratory electron transport | 9.981650e-01 | 0.001 |
R-HSA-166658 | Complement cascade | 9.983599e-01 | 0.001 |
R-HSA-2187338 | Visual phototransduction | 9.985102e-01 | 0.001 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 9.988290e-01 | 0.001 |
R-HSA-166663 | Initial triggering of complement | 9.988430e-01 | 0.001 |
R-HSA-983712 | Ion channel transport | 9.988766e-01 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 9.989196e-01 | 0.000 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 9.989604e-01 | 0.000 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 9.991965e-01 | 0.000 |
R-HSA-416476 | G alpha (q) signalling events | 9.992409e-01 | 0.000 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 9.993222e-01 | 0.000 |
R-HSA-15869 | Metabolism of nucleotides | 9.993784e-01 | 0.000 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 9.994028e-01 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 9.994548e-01 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 9.995781e-01 | 0.000 |
R-HSA-9717189 | Sensory perception of taste | 9.996031e-01 | 0.000 |
R-HSA-9748784 | Drug ADME | 9.997125e-01 | 0.000 |
R-HSA-5173105 | O-linked glycosylation | 9.997271e-01 | 0.000 |
R-HSA-3781865 | Diseases of glycosylation | 9.997654e-01 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 9.998012e-01 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 9.998167e-01 | 0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 9.998269e-01 | 0.000 |
R-HSA-2142753 | Arachidonate metabolism | 9.998842e-01 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 9.999279e-01 | 0.000 |
R-HSA-8957322 | Metabolism of steroids | 9.999386e-01 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 9.999482e-01 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.999554e-01 | 0.000 |
R-HSA-375276 | Peptide ligand-binding receptors | 9.999823e-01 | 0.000 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 9.999878e-01 | 0.000 |
R-HSA-428157 | Sphingolipid metabolism | 9.999921e-01 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 9.999927e-01 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 9.999927e-01 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 9.999980e-01 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 9.999999e-01 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 9.999999e-01 | 0.000 |
R-HSA-382551 | Transport of small molecules | 1.000000e+00 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000e+00 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000e+00 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000e+00 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
JNK2 |
0.894 | 0.670 | 1 | 0.891 |
JNK3 |
0.891 | 0.656 | 1 | 0.910 |
GAK |
0.891 | -0.001 | 1 | 0.714 |
P38B |
0.885 | 0.628 | 1 | 0.895 |
P38A |
0.881 | 0.588 | 1 | 0.904 |
TAK1 |
0.879 | -0.132 | 1 | 0.682 |
VRK2 |
0.879 | -0.169 | 1 | 0.769 |
PKR |
0.878 | -0.064 | 1 | 0.697 |
P38G |
0.878 | 0.652 | 1 | 0.856 |
TTK |
0.876 | 0.011 | -2 | 0.897 |
ALPHAK3 |
0.875 | 0.012 | -1 | 0.796 |
NLK |
0.875 | 0.514 | 1 | 0.891 |
TNIK |
0.875 | -0.032 | 3 | 0.889 |
GCK |
0.875 | -0.068 | 1 | 0.664 |
EEF2K |
0.874 | -0.012 | 3 | 0.865 |
ALK4 |
0.874 | 0.106 | -2 | 0.922 |
BRAF |
0.874 | -0.078 | -4 | 0.856 |
P38D |
0.874 | 0.641 | 1 | 0.868 |
BMPR2 |
0.873 | -0.066 | -2 | 0.938 |
MST2 |
0.872 | -0.092 | 1 | 0.674 |
ALK2 |
0.872 | 0.168 | -2 | 0.910 |
CDK1 |
0.872 | 0.646 | 1 | 0.894 |
LRRK2 |
0.872 | -0.164 | 2 | 0.871 |
MINK |
0.872 | -0.125 | 1 | 0.646 |
PRP4 |
0.871 | 0.327 | -3 | 0.778 |
MOS |
0.871 | 0.154 | 1 | 0.780 |
VRK1 |
0.870 | -0.266 | 2 | 0.862 |
MST1 |
0.870 | -0.128 | 1 | 0.652 |
ERK2 |
0.870 | 0.586 | 1 | 0.891 |
BMPR1B |
0.870 | 0.213 | 1 | 0.697 |
MEKK2 |
0.869 | -0.120 | 2 | 0.831 |
ASK1 |
0.869 | -0.209 | 1 | 0.638 |
NIK |
0.869 | -0.085 | -3 | 0.919 |
TAO2 |
0.869 | -0.102 | 2 | 0.881 |
TAO3 |
0.868 | -0.026 | 1 | 0.680 |
JNK1 |
0.868 | 0.574 | 1 | 0.887 |
MEK1 |
0.868 | -0.210 | 2 | 0.858 |
ERK1 |
0.868 | 0.615 | 1 | 0.886 |
OSR1 |
0.868 | -0.049 | 2 | 0.823 |
CDK5 |
0.868 | 0.603 | 1 | 0.914 |
KHS1 |
0.867 | -0.071 | 1 | 0.649 |
TGFBR1 |
0.866 | 0.147 | -2 | 0.905 |
BIKE |
0.866 | -0.044 | 1 | 0.612 |
KHS2 |
0.866 | -0.023 | 1 | 0.659 |
CLK3 |
0.866 | 0.518 | 1 | 0.905 |
HGK |
0.865 | -0.112 | 3 | 0.884 |
NEK1 |
0.865 | -0.238 | 1 | 0.641 |
LATS1 |
0.865 | 0.072 | -3 | 0.894 |
NEK5 |
0.865 | -0.177 | 1 | 0.670 |
ICK |
0.865 | 0.253 | -3 | 0.869 |
MAP3K15 |
0.864 | -0.179 | 1 | 0.642 |
MEK5 |
0.864 | -0.289 | 2 | 0.848 |
PDK1 |
0.864 | -0.162 | 1 | 0.675 |
DAPK2 |
0.863 | -0.099 | -3 | 0.902 |
PRPK |
0.863 | -0.105 | -1 | 0.859 |
MST3 |
0.863 | -0.051 | 2 | 0.863 |
CDKL1 |
0.862 | 0.119 | -3 | 0.831 |
LKB1 |
0.862 | -0.155 | -3 | 0.865 |
DLK |
0.862 | -0.180 | 1 | 0.699 |
HIPK1 |
0.862 | 0.490 | 1 | 0.898 |
HPK1 |
0.861 | -0.111 | 1 | 0.651 |
ACVR2B |
0.861 | 0.112 | -2 | 0.897 |
CAMKK1 |
0.861 | -0.209 | -2 | 0.794 |
CAMLCK |
0.861 | -0.078 | -2 | 0.852 |
CAMKK2 |
0.861 | -0.197 | -2 | 0.786 |
PASK |
0.861 | -0.011 | -3 | 0.893 |
ERK5 |
0.861 | 0.309 | 1 | 0.838 |
MYO3A |
0.860 | -0.119 | 1 | 0.640 |
ANKRD3 |
0.860 | -0.177 | 1 | 0.705 |
MPSK1 |
0.860 | -0.015 | 1 | 0.668 |
BMPR1A |
0.859 | 0.193 | 1 | 0.689 |
MEKK1 |
0.859 | -0.199 | 1 | 0.675 |
CDK3 |
0.859 | 0.594 | 1 | 0.870 |
NEK8 |
0.859 | -0.184 | 2 | 0.847 |
ACVR2A |
0.859 | 0.090 | -2 | 0.886 |
GRK7 |
0.858 | 0.160 | 1 | 0.690 |
MEKK3 |
0.858 | -0.148 | 1 | 0.665 |
CAMK1B |
0.858 | -0.045 | -3 | 0.899 |
MEKK6 |
0.857 | -0.221 | 1 | 0.662 |
CDK16 |
0.857 | 0.621 | 1 | 0.866 |
STLK3 |
0.857 | -0.235 | 1 | 0.622 |
NEK11 |
0.857 | -0.222 | 1 | 0.664 |
ATR |
0.857 | -0.045 | 1 | 0.722 |
YSK4 |
0.857 | -0.153 | 1 | 0.644 |
MYO3B |
0.856 | -0.138 | 2 | 0.849 |
CDK14 |
0.856 | 0.570 | 1 | 0.890 |
CDK17 |
0.856 | 0.622 | 1 | 0.857 |
MAK |
0.856 | 0.392 | -2 | 0.757 |
AAK1 |
0.856 | -0.002 | 1 | 0.536 |
DYRK2 |
0.856 | 0.531 | 1 | 0.899 |
CDK6 |
0.855 | 0.554 | 1 | 0.881 |
ZAK |
0.855 | -0.170 | 1 | 0.650 |
YSK1 |
0.854 | -0.170 | 2 | 0.837 |
PBK |
0.854 | -0.100 | 1 | 0.647 |
NEK4 |
0.854 | -0.252 | 1 | 0.638 |
CDK4 |
0.853 | 0.559 | 1 | 0.887 |
CDK18 |
0.852 | 0.618 | 1 | 0.880 |
CDK2 |
0.852 | 0.469 | 1 | 0.898 |
COT |
0.851 | 0.135 | 2 | 0.911 |
MEK2 |
0.850 | -0.352 | 2 | 0.825 |
DAPK3 |
0.849 | -0.058 | -3 | 0.840 |
RAF1 |
0.849 | -0.147 | 1 | 0.707 |
DMPK1 |
0.849 | -0.010 | -3 | 0.803 |
MLK2 |
0.848 | -0.169 | 2 | 0.849 |
GRK6 |
0.848 | 0.008 | 1 | 0.720 |
PLK1 |
0.847 | -0.045 | -2 | 0.881 |
CDK8 |
0.847 | 0.588 | 1 | 0.907 |
LOK |
0.847 | -0.138 | -2 | 0.778 |
PERK |
0.847 | -0.162 | -2 | 0.908 |
DYRK1A |
0.847 | 0.413 | 1 | 0.911 |
DYRK1B |
0.847 | 0.506 | 1 | 0.889 |
CAMK2G |
0.846 | -0.029 | 2 | 0.853 |
ERK7 |
0.846 | 0.208 | 2 | 0.583 |
MOK |
0.846 | 0.324 | 1 | 0.848 |
MLK1 |
0.846 | -0.088 | 2 | 0.850 |
HIPK3 |
0.846 | 0.432 | 1 | 0.879 |
SMMLCK |
0.846 | -0.114 | -3 | 0.851 |
TLK2 |
0.845 | -0.078 | 1 | 0.661 |
SKMLCK |
0.845 | -0.053 | -2 | 0.856 |
CDK13 |
0.845 | 0.562 | 1 | 0.902 |
HIPK2 |
0.844 | 0.559 | 1 | 0.869 |
ROCK2 |
0.844 | -0.047 | -3 | 0.828 |
DSTYK |
0.844 | 0.035 | 2 | 0.924 |
GRK5 |
0.844 | -0.103 | -3 | 0.898 |
CHAK2 |
0.843 | -0.043 | -1 | 0.851 |
HRI |
0.842 | -0.201 | -2 | 0.913 |
DYRK4 |
0.842 | 0.553 | 1 | 0.892 |
CDK7 |
0.842 | 0.557 | 1 | 0.914 |
TLK1 |
0.842 | -0.092 | -2 | 0.912 |
CDK12 |
0.841 | 0.556 | 1 | 0.891 |
CDKL5 |
0.841 | 0.135 | -3 | 0.821 |
CLK4 |
0.841 | 0.279 | -3 | 0.803 |
PKN3 |
0.840 | -0.029 | -3 | 0.864 |
PIM1 |
0.840 | 0.055 | -3 | 0.824 |
TAO1 |
0.840 | -0.159 | 1 | 0.608 |
SLK |
0.840 | -0.110 | -2 | 0.733 |
PDHK4 |
0.839 | -0.279 | 1 | 0.742 |
MTOR |
0.839 | 0.112 | 1 | 0.756 |
NEK9 |
0.839 | -0.235 | 2 | 0.863 |
CDC7 |
0.839 | 0.024 | 1 | 0.754 |
CDK10 |
0.839 | 0.548 | 1 | 0.884 |
MLK3 |
0.838 | -0.006 | 2 | 0.782 |
PINK1 |
0.838 | 0.005 | 1 | 0.784 |
MLK4 |
0.837 | -0.055 | 2 | 0.761 |
PIM3 |
0.837 | 0.016 | -3 | 0.875 |
HASPIN |
0.836 | -0.025 | -1 | 0.688 |
GRK1 |
0.836 | 0.146 | -2 | 0.836 |
GSK3A |
0.836 | 0.167 | 4 | 0.475 |
HIPK4 |
0.835 | 0.318 | 1 | 0.855 |
DAPK1 |
0.835 | -0.079 | -3 | 0.820 |
MASTL |
0.835 | -0.351 | -2 | 0.847 |
SRPK1 |
0.835 | 0.274 | -3 | 0.776 |
CDK9 |
0.835 | 0.524 | 1 | 0.902 |
PKCD |
0.835 | -0.013 | 2 | 0.829 |
DNAPK |
0.835 | -0.012 | 1 | 0.618 |
CDK19 |
0.835 | 0.583 | 1 | 0.892 |
TSSK2 |
0.834 | -0.095 | -5 | 0.845 |
DYRK3 |
0.834 | 0.351 | 1 | 0.881 |
WNK1 |
0.833 | -0.107 | -2 | 0.872 |
PDHK1 |
0.833 | -0.297 | 1 | 0.726 |
ATM |
0.833 | -0.007 | 1 | 0.672 |
SRPK3 |
0.833 | 0.190 | -3 | 0.748 |
MST4 |
0.832 | -0.014 | 2 | 0.884 |
IRAK4 |
0.832 | -0.205 | 1 | 0.636 |
WNK4 |
0.832 | -0.235 | -2 | 0.865 |
PLK3 |
0.832 | -0.060 | 2 | 0.799 |
GRK2 |
0.832 | -0.058 | -2 | 0.778 |
CLK1 |
0.832 | 0.317 | -3 | 0.783 |
NUAK2 |
0.831 | -0.012 | -3 | 0.884 |
AMPKA1 |
0.831 | -0.087 | -3 | 0.897 |
NEK2 |
0.831 | -0.216 | 2 | 0.836 |
TGFBR2 |
0.831 | -0.004 | -2 | 0.889 |
BUB1 |
0.830 | -0.021 | -5 | 0.787 |
RIPK3 |
0.830 | -0.178 | 3 | 0.769 |
CHK1 |
0.829 | -0.088 | -3 | 0.873 |
NEK7 |
0.829 | -0.134 | -3 | 0.868 |
DCAMKL1 |
0.829 | -0.075 | -3 | 0.831 |
RIPK1 |
0.828 | -0.338 | 1 | 0.648 |
PIM2 |
0.828 | -0.008 | -3 | 0.781 |
ROCK1 |
0.828 | -0.068 | -3 | 0.792 |
PKN2 |
0.828 | -0.073 | -3 | 0.877 |
P70S6KB |
0.828 | -0.040 | -3 | 0.832 |
NEK6 |
0.827 | -0.012 | -2 | 0.916 |
TBK1 |
0.827 | -0.149 | 1 | 0.612 |
CLK2 |
0.827 | 0.365 | -3 | 0.784 |
DRAK1 |
0.826 | -0.165 | 1 | 0.614 |
GSK3B |
0.826 | 0.017 | 4 | 0.464 |
HUNK |
0.826 | -0.206 | 2 | 0.825 |
NEK3 |
0.825 | -0.275 | 1 | 0.627 |
MARK4 |
0.824 | -0.088 | 4 | 0.856 |
CHAK1 |
0.824 | -0.198 | 2 | 0.783 |
MRCKA |
0.824 | -0.059 | -3 | 0.795 |
DCAMKL2 |
0.824 | -0.095 | -3 | 0.853 |
ULK2 |
0.824 | -0.227 | 2 | 0.812 |
KIS |
0.823 | 0.597 | 1 | 0.919 |
TSSK1 |
0.823 | -0.077 | -3 | 0.913 |
CAMK2B |
0.823 | 0.038 | 2 | 0.833 |
IRE2 |
0.823 | -0.093 | 2 | 0.786 |
PLK2 |
0.822 | 0.003 | -3 | 0.834 |
MRCKB |
0.822 | -0.052 | -3 | 0.777 |
CAMK2D |
0.822 | -0.101 | -3 | 0.876 |
SMG1 |
0.822 | -0.114 | 1 | 0.673 |
CRIK |
0.821 | -0.047 | -3 | 0.741 |
IKKE |
0.820 | -0.159 | 1 | 0.611 |
GRK4 |
0.820 | -0.093 | -2 | 0.885 |
IKKB |
0.820 | -0.087 | -2 | 0.794 |
WNK3 |
0.819 | -0.314 | 1 | 0.669 |
IRE1 |
0.819 | -0.153 | 1 | 0.641 |
SGK3 |
0.819 | -0.052 | -3 | 0.800 |
AMPKA2 |
0.818 | -0.077 | -3 | 0.865 |
TTBK2 |
0.817 | -0.217 | 2 | 0.718 |
IKKA |
0.817 | 0.014 | -2 | 0.796 |
AKT2 |
0.817 | -0.009 | -3 | 0.722 |
PKCA |
0.816 | -0.044 | 2 | 0.770 |
MYLK4 |
0.816 | -0.094 | -2 | 0.756 |
SRPK2 |
0.815 | 0.228 | -3 | 0.699 |
CAMK2A |
0.815 | 0.018 | 2 | 0.840 |
PKCZ |
0.815 | -0.108 | 2 | 0.811 |
RSK2 |
0.815 | -0.010 | -3 | 0.805 |
PKCH |
0.815 | -0.092 | 2 | 0.760 |
PKCB |
0.814 | -0.029 | 2 | 0.778 |
PDHK3_TYR |
0.814 | 0.208 | 4 | 0.914 |
IRAK1 |
0.814 | -0.355 | -1 | 0.757 |
PAK1 |
0.813 | -0.104 | -2 | 0.765 |
PAK2 |
0.812 | -0.169 | -2 | 0.750 |
P90RSK |
0.812 | -0.050 | -3 | 0.803 |
CAMK4 |
0.812 | -0.182 | -3 | 0.868 |
NDR1 |
0.811 | -0.083 | -3 | 0.876 |
SGK1 |
0.810 | -0.010 | -3 | 0.637 |
MELK |
0.810 | -0.136 | -3 | 0.844 |
MAPKAPK3 |
0.810 | -0.082 | -3 | 0.813 |
ULK1 |
0.809 | -0.215 | -3 | 0.844 |
CK2A2 |
0.809 | 0.113 | 1 | 0.618 |
MARK2 |
0.809 | -0.082 | 4 | 0.750 |
GCN2 |
0.808 | -0.194 | 2 | 0.827 |
CAMK1D |
0.808 | -0.073 | -3 | 0.728 |
PKCG |
0.808 | -0.061 | 2 | 0.774 |
PDHK4_TYR |
0.808 | 0.137 | 2 | 0.909 |
CHK2 |
0.808 | -0.072 | -3 | 0.668 |
SSTK |
0.807 | -0.094 | 4 | 0.819 |
PLK4 |
0.807 | -0.165 | 2 | 0.643 |
RIPK2 |
0.807 | -0.353 | 1 | 0.612 |
QIK |
0.807 | -0.183 | -3 | 0.875 |
PRKD1 |
0.807 | -0.029 | -3 | 0.857 |
PRKD3 |
0.806 | -0.054 | -3 | 0.779 |
AKT1 |
0.806 | -0.034 | -3 | 0.744 |
MAP2K6_TYR |
0.806 | 0.103 | -1 | 0.892 |
NIM1 |
0.806 | -0.171 | 3 | 0.806 |
RSK4 |
0.805 | 0.001 | -3 | 0.779 |
PAK3 |
0.805 | -0.164 | -2 | 0.763 |
GRK3 |
0.805 | -0.048 | -2 | 0.737 |
LATS2 |
0.805 | -0.034 | -5 | 0.775 |
CK1D |
0.804 | 0.032 | -3 | 0.552 |
CAMK1G |
0.804 | -0.110 | -3 | 0.796 |
PDHK1_TYR |
0.804 | 0.075 | -1 | 0.918 |
AURB |
0.804 | -0.072 | -2 | 0.627 |
QSK |
0.804 | -0.078 | 4 | 0.832 |
NDR2 |
0.804 | -0.010 | -3 | 0.888 |
BMPR2_TYR |
0.804 | 0.077 | -1 | 0.899 |
MAP2K4_TYR |
0.803 | 0.002 | -1 | 0.881 |
PKCE |
0.803 | -0.038 | 2 | 0.759 |
TESK1_TYR |
0.803 | -0.021 | 3 | 0.906 |
SBK |
0.803 | 0.039 | -3 | 0.599 |
BCKDK |
0.803 | -0.212 | -1 | 0.805 |
PKACG |
0.802 | -0.079 | -2 | 0.726 |
MARK1 |
0.802 | -0.120 | 4 | 0.811 |
MARK3 |
0.801 | -0.068 | 4 | 0.792 |
FAM20C |
0.801 | 0.144 | 2 | 0.690 |
STK33 |
0.801 | -0.240 | 2 | 0.631 |
MSK1 |
0.801 | -0.063 | -3 | 0.777 |
RSK3 |
0.800 | -0.063 | -3 | 0.797 |
MAPKAPK2 |
0.800 | 0.006 | -3 | 0.770 |
PKCI |
0.800 | -0.109 | 2 | 0.779 |
MNK1 |
0.800 | -0.071 | -2 | 0.785 |
PRKD2 |
0.800 | -0.002 | -3 | 0.812 |
PKCT |
0.799 | -0.112 | 2 | 0.769 |
AURA |
0.799 | -0.065 | -2 | 0.601 |
NUAK1 |
0.799 | -0.070 | -3 | 0.833 |
MAP2K7_TYR |
0.798 | -0.184 | 2 | 0.885 |
MSK2 |
0.798 | -0.097 | -3 | 0.771 |
PKG2 |
0.798 | -0.064 | -2 | 0.650 |
CK2A1 |
0.798 | 0.075 | 1 | 0.593 |
PKMYT1_TYR |
0.798 | -0.057 | 3 | 0.872 |
EPHA6 |
0.798 | 0.039 | -1 | 0.901 |
PINK1_TYR |
0.797 | -0.135 | 1 | 0.726 |
MNK2 |
0.796 | -0.092 | -2 | 0.772 |
PHKG1 |
0.796 | -0.105 | -3 | 0.868 |
PKACB |
0.795 | -0.007 | -2 | 0.649 |
AURC |
0.794 | -0.022 | -2 | 0.629 |
LIMK2_TYR |
0.794 | -0.016 | -3 | 0.926 |
CK1A2 |
0.793 | -0.005 | -3 | 0.551 |
SIK |
0.793 | -0.083 | -3 | 0.804 |
EPHB4 |
0.793 | -0.025 | -1 | 0.871 |
TXK |
0.793 | 0.058 | 1 | 0.700 |
CK1E |
0.792 | 0.010 | -3 | 0.603 |
CAMK1A |
0.791 | -0.080 | -3 | 0.691 |
RET |
0.791 | -0.155 | 1 | 0.684 |
P70S6K |
0.791 | -0.103 | -3 | 0.736 |
TTBK1 |
0.789 | -0.236 | 2 | 0.636 |
CSF1R |
0.788 | -0.092 | 3 | 0.810 |
EPHA4 |
0.788 | -0.004 | 2 | 0.801 |
YES1 |
0.788 | -0.049 | -1 | 0.853 |
ABL2 |
0.787 | -0.051 | -1 | 0.830 |
BLK |
0.787 | 0.065 | -1 | 0.873 |
MST1R |
0.786 | -0.179 | 3 | 0.827 |
YANK3 |
0.786 | -0.097 | 2 | 0.416 |
TYK2 |
0.786 | -0.243 | 1 | 0.680 |
LIMK1_TYR |
0.786 | -0.191 | 2 | 0.879 |
ROS1 |
0.786 | -0.154 | 3 | 0.791 |
LCK |
0.786 | 0.020 | -1 | 0.862 |
FER |
0.786 | -0.115 | 1 | 0.747 |
INSRR |
0.786 | -0.069 | 3 | 0.770 |
JAK2 |
0.786 | -0.172 | 1 | 0.687 |
TYRO3 |
0.785 | -0.188 | 3 | 0.817 |
JAK3 |
0.785 | -0.098 | 1 | 0.668 |
FGR |
0.784 | -0.125 | 1 | 0.696 |
HCK |
0.784 | -0.068 | -1 | 0.853 |
SRMS |
0.783 | -0.083 | 1 | 0.725 |
SNRK |
0.783 | -0.285 | 2 | 0.703 |
AKT3 |
0.783 | -0.027 | -3 | 0.655 |
EPHB2 |
0.783 | -0.032 | -1 | 0.859 |
FGFR2 |
0.783 | -0.075 | 3 | 0.817 |
EPHB1 |
0.783 | -0.088 | 1 | 0.724 |
PKN1 |
0.783 | -0.096 | -3 | 0.757 |
BRSK1 |
0.781 | -0.115 | -3 | 0.831 |
DDR1 |
0.781 | -0.216 | 4 | 0.832 |
ABL1 |
0.781 | -0.092 | -1 | 0.819 |
EPHB3 |
0.781 | -0.078 | -1 | 0.860 |
ITK |
0.781 | -0.087 | -1 | 0.819 |
PAK6 |
0.781 | -0.059 | -2 | 0.676 |
PKACA |
0.781 | -0.040 | -2 | 0.594 |
MAPKAPK5 |
0.781 | -0.179 | -3 | 0.738 |
KIT |
0.781 | -0.116 | 3 | 0.810 |
FYN |
0.780 | 0.035 | -1 | 0.841 |
KDR |
0.780 | -0.085 | 3 | 0.779 |
BRSK2 |
0.780 | -0.176 | -3 | 0.857 |
PRKX |
0.778 | 0.041 | -3 | 0.727 |
TEK |
0.778 | -0.082 | 3 | 0.754 |
FLT3 |
0.778 | -0.164 | 3 | 0.814 |
YANK2 |
0.777 | -0.114 | 2 | 0.435 |
FGFR1 |
0.777 | -0.117 | 3 | 0.786 |
MET |
0.776 | -0.096 | 3 | 0.799 |
PHKG2 |
0.776 | -0.124 | -3 | 0.843 |
FLT1 |
0.776 | -0.063 | -1 | 0.883 |
TNK2 |
0.776 | -0.158 | 3 | 0.773 |
TEC |
0.775 | -0.090 | -1 | 0.748 |
BMX |
0.775 | -0.080 | -1 | 0.740 |
EPHA7 |
0.775 | -0.062 | 2 | 0.803 |
PDGFRB |
0.775 | -0.235 | 3 | 0.821 |
FGFR3 |
0.774 | -0.071 | 3 | 0.790 |
NEK10_TYR |
0.774 | -0.179 | 1 | 0.576 |
FRK |
0.773 | -0.066 | -1 | 0.878 |
JAK1 |
0.772 | -0.148 | 1 | 0.627 |
TNNI3K_TYR |
0.772 | -0.106 | 1 | 0.695 |
MERTK |
0.772 | -0.159 | 3 | 0.793 |
SYK |
0.771 | 0.065 | -1 | 0.833 |
ERBB2 |
0.771 | -0.152 | 1 | 0.658 |
EPHA5 |
0.770 | -0.047 | 2 | 0.791 |
BTK |
0.770 | -0.220 | -1 | 0.773 |
LYN |
0.770 | -0.081 | 3 | 0.729 |
EPHA3 |
0.770 | -0.140 | 2 | 0.774 |
EPHA8 |
0.770 | -0.041 | -1 | 0.860 |
EGFR |
0.769 | -0.052 | 1 | 0.587 |
AXL |
0.769 | -0.228 | 3 | 0.793 |
TNK1 |
0.769 | -0.199 | 3 | 0.796 |
PTK2 |
0.768 | 0.024 | -1 | 0.836 |
ALK |
0.768 | -0.200 | 3 | 0.736 |
NTRK1 |
0.767 | -0.245 | -1 | 0.828 |
LTK |
0.767 | -0.198 | 3 | 0.758 |
FLT4 |
0.766 | -0.177 | 3 | 0.769 |
PDGFRA |
0.766 | -0.305 | 3 | 0.817 |
WEE1_TYR |
0.766 | -0.162 | -1 | 0.750 |
SRC |
0.765 | -0.079 | -1 | 0.830 |
MATK |
0.765 | -0.118 | -1 | 0.766 |
PTK6 |
0.764 | -0.263 | -1 | 0.735 |
INSR |
0.764 | -0.197 | 3 | 0.744 |
PAK5 |
0.763 | -0.124 | -2 | 0.611 |
EPHA1 |
0.763 | -0.186 | 3 | 0.779 |
PTK2B |
0.763 | -0.119 | -1 | 0.782 |
DDR2 |
0.762 | -0.101 | 3 | 0.757 |
FGFR4 |
0.762 | -0.088 | -1 | 0.800 |
NTRK3 |
0.762 | -0.182 | -1 | 0.783 |
NTRK2 |
0.761 | -0.271 | 3 | 0.769 |
CSK |
0.758 | -0.169 | 2 | 0.802 |
EPHA2 |
0.758 | -0.067 | -1 | 0.824 |
ERBB4 |
0.758 | -0.030 | 1 | 0.609 |
CK1G1 |
0.755 | -0.068 | -3 | 0.590 |
PAK4 |
0.753 | -0.114 | -2 | 0.619 |
CK1G3 |
0.752 | -0.035 | -3 | 0.409 |
IGF1R |
0.751 | -0.166 | 3 | 0.683 |
MUSK |
0.750 | -0.171 | 1 | 0.569 |
PKG1 |
0.746 | -0.122 | -2 | 0.558 |
ZAP70 |
0.745 | -0.021 | -1 | 0.735 |
FES |
0.735 | -0.195 | -1 | 0.713 |
CK1G2 |
0.735 | -0.020 | -3 | 0.507 |
CK1A |
0.725 | -0.035 | -3 | 0.458 |