Motif 1060 (n=845)

Position-wise Probabilities

Download
uniprot genes site source protein function
A0AVT1 UBA6 T944 ochoa Ubiquitin-like modifier-activating enzyme 6 (Ubiquitin-activating enzyme 6) (EC 6.2.1.45) (Monocyte protein 4) (MOP-4) (Ubiquitin-activating enzyme E1-like protein 2) (E1-L2) Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:35970836, PubMed:35986001). Specific for ubiquitin, does not activate ubiquitin-like peptides. Also activates UBD/FAT10 conjugation via adenylation of its C-terminal glycine (PubMed:17889673, PubMed:35970836, PubMed:35986001). Differs from UBE1 in its specificity for substrate E2 charging. Does not charge cell cycle E2s, such as CDC34. Essential for embryonic development. Isoform 2 may play a key role in ubiquitin system and may influence spermatogenesis and male fertility. {ECO:0000269|PubMed:15202508, ECO:0000269|PubMed:17597759, ECO:0000269|PubMed:17889673, ECO:0000269|PubMed:35970836, ECO:0000269|PubMed:35986001}.
A0JNW5 BLTP3B T775 ochoa Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}.
A0MZ66 SHTN1 T475 ochoa Shootin-1 (Shootin1) Involved in the generation of internal asymmetric signals required for neuronal polarization and neurite outgrowth. Mediates netrin-1-induced F-actin-substrate coupling or 'clutch engagement' within the axon growth cone through activation of CDC42, RAC1 and PAK1-dependent signaling pathway, thereby converting the F-actin retrograde flow into traction forces, concomitantly with filopodium extension and axon outgrowth. Plays a role in cytoskeletal organization by regulating the subcellular localization of phosphoinositide 3-kinase (PI3K) activity at the axonal growth cone. Also plays a role in regenerative neurite outgrowth. In the developing cortex, cooperates with KIF20B to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in the accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the growth cone of primary hippocampal neurons. {ECO:0000250|UniProtKB:A0MZ67, ECO:0000250|UniProtKB:Q8K2Q9}.
A6NDB9 PALM3 T301 ochoa Paralemmin-3 ATP-binding protein, which may act as a adapter in the Toll-like receptor (TLR) signaling. {ECO:0000269|PubMed:21187075}.
A6NI28 ARHGAP42 T377 ochoa Rho GTPase-activating protein 42 (Rho GTPase-activating protein 10-like) (Rho-type GTPase-activating protein 42) May influence blood pressure by functioning as a GTPase-activating protein for RHOA in vascular smooth muscle. {ECO:0000269|PubMed:24335996}.
A6NKT7 RGPD3 T1325 ochoa RanBP2-like and GRIP domain-containing protein 3 None
A6NMY6 ANXA2P2 T153 ochoa Putative annexin A2-like protein (Annexin A2 pseudogene 2) (Lipocortin II pseudogene) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. {ECO:0000250}.
H3BRB1 None T329 ochoa polynucleotide adenylyltransferase (EC 2.7.7.19) None
O00170 AIP T162 ochoa AH receptor-interacting protein (AIP) (Aryl-hydrocarbon receptor-interacting protein) (HBV X-associated protein 2) (XAP-2) (Immunophilin homolog ARA9) May play a positive role in AHR-mediated (aromatic hydrocarbon receptor) signaling, possibly by influencing its receptivity for ligand and/or its nuclear targeting.; FUNCTION: Cellular negative regulator of the hepatitis B virus (HBV) X protein.
O00192 ARVCF T885 ochoa Splicing regulator ARVCF (Armadillo repeat protein deleted in velo-cardio-facial syndrome) Contributes to the regulation of alternative splicing of pre-mRNAs. {ECO:0000269|PubMed:24644279}.
O00471 EXOC5 T122 ochoa Exocyst complex component 5 (Exocyst complex component Sec10) (hSec10) Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane.
O00515 LAD1 T387 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O14494 PLPP1 T266 ochoa Phospholipid phosphatase 1 (EC 3.1.3.-) (EC 3.1.3.106) (EC 3.1.3.4) (EC 3.6.1.75) (Lipid phosphate phosphohydrolase 1) (PAP2-alpha) (Phosphatidate phosphohydrolase type 2a) (Phosphatidic acid phosphatase 2a) (PAP-2a) (PAP2a) Magnesium-independent phospholipid phosphatase of the plasma membrane that catalyzes the dephosphorylation of a variety of glycerolipid and sphingolipid phosphate esters including phosphatidate/PA, lysophosphatidate/LPA, diacylglycerol pyrophosphate/DGPP, sphingosine 1-phosphate/S1P and ceramide 1-phosphate/C1P (PubMed:10962286, PubMed:17379599, PubMed:9305923, PubMed:9607309, PubMed:9705349). Also acts on N-oleoyl ethanolamine phosphate/N-(9Z-octadecenoyl)-ethanolamine phosphate, a potential physiological compound (PubMed:9607309). Through its extracellular phosphatase activity allows both the hydrolysis and the cellular uptake of these bioactive lipid mediators from the milieu, regulating signal transduction in different cellular processes (PubMed:10962286, PubMed:12909631, PubMed:15461590, PubMed:17379599). It is for instance essential for the extracellular hydrolysis of S1P and subsequent conversion into intracellular S1P (PubMed:17379599). Involved in the regulation of inflammation, platelets activation, cell proliferation and migration among other processes (PubMed:12909631, PubMed:15461590). May also have an intracellular activity to regulate phospholipid-mediated signaling pathways (By similarity). {ECO:0000250|UniProtKB:O08564, ECO:0000269|PubMed:10962286, ECO:0000269|PubMed:12909631, ECO:0000269|PubMed:15461590, ECO:0000269|PubMed:17379599, ECO:0000269|PubMed:9305923, ECO:0000269|PubMed:9607309, ECO:0000269|PubMed:9705349}.
O14523 C2CD2L T624 ochoa Phospholipid transfer protein C2CD2L (C2 domain-containing protein 2-like) (C2CD2-like) (Transmembrane protein 24) Lipid-binding protein that transports phosphatidylinositol, the precursor of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), from its site of synthesis in the endoplasmic reticulum to the cell membrane (PubMed:28209843). It thereby maintains the pool of cell membrane phosphoinositides, which are degraded during phospholipase C (PLC) signaling (PubMed:28209843). Plays a key role in the coordination of Ca(2+) and phosphoinositide signaling: localizes to sites of contact between the endoplasmic reticulum and the cell membrane, where it tethers the two bilayers (PubMed:28209843). In response to elevation of cytosolic Ca(2+), it is phosphorylated at its C-terminus and dissociates from the cell membrane, abolishing phosphatidylinositol transport to the cell membrane (PubMed:28209843). Positively regulates insulin secretion in response to glucose: phosphatidylinositol transfer to the cell membrane allows replenishment of PI(4,5)P2 pools and calcium channel opening, priming a new population of insulin granules (PubMed:28209843). {ECO:0000269|PubMed:28209843}.
O14641 DVL2 T206 psp Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}.
O14686 KMT2D T2650 ochoa Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}.
O15027 SEC16A T545 psp Protein transport protein Sec16A (SEC16 homolog A) (p250) Acts as a molecular scaffold that plays a key role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). SAR1A-GTP-dependent assembly of SEC16A on the ER membrane forms an organized scaffold defining an ERES. Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17005010, PubMed:17192411, PubMed:17428803, PubMed:21768384, PubMed:22355596). Mediates the recruitment of MIA3/TANGO to ERES (PubMed:28442536). Regulates both conventional (ER/Golgi-dependent) and GORASP2-mediated unconventional (ER/Golgi-independent) trafficking of CFTR to cell membrane (PubMed:28067262). Positively regulates the protein stability of E3 ubiquitin-protein ligases RNF152 and RNF183 and the ER localization of RNF183 (PubMed:29300766). Acts as a RAB10 effector in the regulation of insulin-induced SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the cell membrane in adipocytes (By similarity). {ECO:0000250|UniProtKB:E9QAT4, ECO:0000269|PubMed:17005010, ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:17428803, ECO:0000269|PubMed:21768384, ECO:0000269|PubMed:22355596, ECO:0000269|PubMed:28067262, ECO:0000269|PubMed:28442536, ECO:0000269|PubMed:29300766}.
O15156 ZBTB7B T168 ochoa Zinc finger and BTB domain-containing protein 7B (Krueppel-related zinc finger protein cKrox) (hcKrox) (T-helper-inducing POZ/Krueppel-like factor) (Zinc finger and BTB domain-containing protein 15) (Zinc finger protein 67 homolog) (Zfp-67) (Zinc finger protein 857B) (Zinc finger protein Th-POK) Transcription regulator that acts as a key regulator of lineage commitment of immature T-cell precursors. Exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Necessary and sufficient for commitment of CD4 lineage, while its absence causes CD8 commitment. Development of immature T-cell precursors (thymocytes) to either the CD4 helper or CD8 killer T-cell lineages correlates precisely with their T-cell receptor specificity for major histocompatibility complex class II or class I molecules, respectively. Cross-antagonism between ZBTB7B and CBF complexes are determinative to CD4 versus CD8 cell fate decision. Suppresses RUNX3 expression and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. induces, as a transcriptional activator, SOCS genes expression which represses RUNX3 expression and promotes the CD4+ lineage fate. During CD4 lineage commitment, associates with multiple sites at the CD8 locus, acting as a negative regulator of the CD8 promoter and enhancers by epigenetic silencing through the recruitment of class II histone deacetylases, such as HDAC4 and HDAC5, to these loci. Regulates the development of IL17-producing CD1d-restricted naural killer (NK) T cells. Also functions as an important metabolic regulator in the lactating mammary glands. Critical feed-forward regulator of insulin signaling in mammary gland lactation, directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling (By similarity). Transcriptional repressor of the collagen COL1A1 and COL1A2 genes. May also function as a repressor of fibronectin and possibly other extracellular matrix genes (PubMed:9370309). Potent driver of brown fat development, thermogenesis and cold-induced beige fat formation. Recruits the brown fat lncRNA 1 (Blnc1):HNRNPU ribonucleoprotein complex to activate thermogenic gene expression in brown and beige adipocytes (By similarity). {ECO:0000250|UniProtKB:Q64321, ECO:0000269|PubMed:9370309}.
O15350 TP73 T27 psp Tumor protein p73 (p53-like transcription factor) (p53-related protein) Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}.
O15355 PPM1G T207 ochoa Protein phosphatase 1G (EC 3.1.3.16) (Protein phosphatase 1C) (Protein phosphatase 2C isoform gamma) (PP2C-gamma) (Protein phosphatase magnesium-dependent 1 gamma) None
O15403 SLC16A6 T231 ochoa Monocarboxylate transporter 7 (MCT 7) (Monocarboxylate transporter 6) (MCT 6) (Solute carrier family 16 member 6) Monocarboxylate transporter selective for taurine. May associate with BSG/CD147 or EMB/GP70 ancillary proteins to mediate facilitative efflux or influx of taurine across the plasma membrane. The transport is pH- and sodium-independent. Rather low-affinity, is likely effective for taurine transport in tissues where taurine is present at high concentrations. {ECO:0000250|UniProtKB:Q7TMR7}.
O15417 TNRC18 T1913 ochoa Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) None
O15439 ABCC4 T679 ochoa ATP-binding cassette sub-family C member 4 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (MRP/cMOAT-related ABC transporter) (Multi-specific organic anion transporter B) (MOAT-B) (Multidrug resistance-associated protein 4) ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds and xenobiotics from cells. Transports a range of endogenous molecules that have a key role in cellular communication and signaling, including cyclic nucleotides such as cyclic AMP (cAMP) and cyclic GMP (cGMP), bile acids, steroid conjugates, urate, and prostaglandins (PubMed:11856762, PubMed:12523936, PubMed:12835412, PubMed:12883481, PubMed:15364914, PubMed:15454390, PubMed:16282361, PubMed:17959747, PubMed:18300232, PubMed:26721430). Mediates the ATP-dependent efflux of glutathione conjugates such as leukotriene C4 (LTC4) and leukotriene B4 (LTB4) too. The presence of GSH is necessary for the ATP-dependent transport of LTB4, whereas GSH is not required for the transport of LTC4 (PubMed:17959747). Mediates the cotransport of bile acids with reduced glutathione (GSH) (PubMed:12523936, PubMed:12883481, PubMed:16282361). Transports a wide range of drugs and their metabolites, including anticancer, antiviral and antibiotics molecules (PubMed:11856762, PubMed:12105214, PubMed:15454390, PubMed:17344354, PubMed:18300232). Confers resistance to anticancer agents such as methotrexate (PubMed:11106685). {ECO:0000269|PubMed:11106685, ECO:0000269|PubMed:11856762, ECO:0000269|PubMed:12105214, ECO:0000269|PubMed:12523936, ECO:0000269|PubMed:12835412, ECO:0000269|PubMed:12883481, ECO:0000269|PubMed:15364914, ECO:0000269|PubMed:15454390, ECO:0000269|PubMed:16282361, ECO:0000269|PubMed:17344354, ECO:0000269|PubMed:17959747, ECO:0000269|PubMed:18300232, ECO:0000269|PubMed:26721430}.
O15551 CLDN3 T192 psp Claudin-3 (Clostridium perfringens enterotoxin receptor 2) (CPE-R 2) (CPE-receptor 2) (Rat ventral prostate.1 protein homolog) (hRVP1) Barrier-forming claudin. Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell-adhesion activity. {ECO:0000269|PubMed:36008380}.
O43390 HNRNPR T21 ochoa Heterogeneous nuclear ribonucleoprotein R (hnRNP R) Component of ribonucleosomes, which are complexes of at least 20 other different heterogeneous nuclear ribonucleoproteins (hnRNP). hnRNP play an important role in processing of precursor mRNA in the nucleus.
O43390 HNRNPR T32 ochoa Heterogeneous nuclear ribonucleoprotein R (hnRNP R) Component of ribonucleosomes, which are complexes of at least 20 other different heterogeneous nuclear ribonucleoproteins (hnRNP). hnRNP play an important role in processing of precursor mRNA in the nucleus.
O43583 DENR T86 ochoa Density-regulated protein (DRP) (Protein DRP1) (Smooth muscle cell-associated protein 3) (SMAP-3) Translation regulator forming a complex with MCTS1 to promote translation reinitiation. Translation reinitiation is the process where the small ribosomal subunit remains attached to the mRNA following termination of translation of a regulatory upstream ORF (uORF), and resume scanning on the same mRNA molecule to initiate translation of a downstream ORF, usually the main ORF (mORF). The MCTS1/DENR complex is pivotal to two linked mechanisms essential for translation reinitiation. Firstly, the dissociation of deacylated tRNAs from post-termination 40S ribosomal complexes during ribosome recycling. Secondly, the recruitment in an EIF2-independent manner of aminoacylated initiator tRNA to P site of 40S ribosomes for a new round of translation. This regulatory mechanism governs the translation of more than 150 genes which translation reinitiation is MCTS1/DENR complex-dependent. {ECO:0000269|PubMed:16982740, ECO:0000269|PubMed:20713520, ECO:0000269|PubMed:37875108}.
O43663 PRC1 T95 ochoa Protein regulator of cytokinesis 1 Key regulator of cytokinesis that cross-links antiparrallel microtubules at an average distance of 35 nM. Essential for controlling the spatiotemporal formation of the midzone and successful cytokinesis. Required for KIF14 localization to the central spindle and midbody. Required to recruit PLK1 to the spindle. Stimulates PLK1 phosphorylation of RACGAP1 to allow recruitment of ECT2 to the central spindle. Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000269|PubMed:12082078, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:17409436, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:20691902, ECO:0000269|PubMed:9885575}.
O43719 HTATSF1 T408 ochoa 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}.
O43741 PRKAB2 T176 ochoa 5'-AMP-activated protein kinase subunit beta-2 (AMPK subunit beta-2) Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).
O43815 STRN T143 ochoa Striatin Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000305|PubMed:26876214}.
O60306 AQR T771 ochoa RNA helicase aquarius (EC 3.6.4.13) (Intron-binding protein of 160 kDa) (IBP160) Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:25599396, PubMed:28076346, PubMed:28502770). Intron-binding spliceosomal protein required to link pre-mRNA splicing and snoRNP (small nucleolar ribonucleoprotein) biogenesis (PubMed:16949364). Plays a key role in position-dependent assembly of intron-encoded box C/D small snoRNP, splicing being required for snoRNP assembly (PubMed:16949364). May act by helping the folding of the snoRNA sequence. Binds to intron of pre-mRNAs in a sequence-independent manner, contacting the region between snoRNA and the branchpoint of introns (40 nucleotides upstream of the branchpoint) during the late stages of splicing (PubMed:16949364). Has ATP-dependent RNA helicase activity and can unwind double-stranded RNA molecules with a 3' overhang (in vitro) (PubMed:25599396). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:16949364, ECO:0000269|PubMed:25599396, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770}.
O60336 MAPKBP1 T796 ochoa Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}.
O60500 NPHS1 T1120 psp Nephrin (Renal glomerulus-specific cell adhesion receptor) Seems to play a role in the development or function of the kidney glomerular filtration barrier. Regulates glomerular vascular permeability. May anchor the podocyte slit diaphragm to the actin cytoskeleton. Plays a role in skeletal muscle formation through regulation of myoblast fusion (By similarity). {ECO:0000250|UniProtKB:Q9QZS7, ECO:0000250|UniProtKB:Q9R044}.
O60502 OGA T370 ochoa Protein O-GlcNAcase (OGA) (EC 3.2.1.169) (Beta-N-acetylglucosaminidase) (Beta-N-acetylhexosaminidase) (Beta-hexosaminidase) (Meningioma-expressed antigen 5) (N-acetyl-beta-D-glucosaminidase) (N-acetyl-beta-glucosaminidase) (Nuclear cytoplasmic O-GlcNAcase and acetyltransferase) (NCOAT) [Isoform 1]: Cleaves GlcNAc but not GalNAc from O-glycosylated proteins (PubMed:11148210, PubMed:11788610, PubMed:20673219, PubMed:22365600, PubMed:24088714, PubMed:28939839, PubMed:37962578). Deglycosylates a large and diverse number of proteins, such as CRYAB, ELK1, GSDMD, LMNB1 and TAB1 (PubMed:28939839, PubMed:37962578). Can use p-nitrophenyl-beta-GlcNAc and 4-methylumbelliferone-GlcNAc as substrates but not p-nitrophenyl-beta-GalNAc or p-nitrophenyl-alpha-GlcNAc (in vitro) (PubMed:20673219). Does not bind acetyl-CoA and does not have histone acetyltransferase activity (PubMed:24088714). {ECO:0000269|PubMed:11148210, ECO:0000269|PubMed:11788610, ECO:0000269|PubMed:20673219, ECO:0000269|PubMed:22365600, ECO:0000269|PubMed:24088714, ECO:0000269|PubMed:28939839, ECO:0000269|PubMed:37962578}.; FUNCTION: [Isoform 3]: Cleaves GlcNAc but not GalNAc from O-glycosylated proteins. Can use p-nitrophenyl-beta-GlcNAc as substrate but not p-nitrophenyl-beta-GalNAc or p-nitrophenyl-alpha-GlcNAc (in vitro), but has about six times lower specific activity than isoform 1. {ECO:0000269|PubMed:20673219}.
O60784 TOM1 T154 ochoa Target of Myb1 membrane trafficking protein (Target of Myb protein 1) Adapter protein that plays a role in the intracellular membrane trafficking of ubiquitinated proteins, thereby participating in autophagy, ubiquitination-dependent signaling and receptor recycling pathways (PubMed:14563850, PubMed:15047686, PubMed:23023224, PubMed:25588840, PubMed:26320582, PubMed:31371777). Acts as a MYO6/Myosin VI adapter protein that targets MYO6 to endocytic structures (PubMed:23023224). Together with MYO6, required for autophagosomal delivery of endocytic cargo, the maturation of autophagosomes and their fusion with lysosomes (PubMed:23023224). MYO6 links TOM1 with autophagy receptors, such as TAX1BP1; CALCOCO2/NDP52 and OPTN (PubMed:31371777). Binds to polyubiquitinated proteins via its GAT domain (PubMed:14563850). In a complex with TOLLIP, recruits ubiquitin-conjugated proteins onto early endosomes (PubMed:15047686). The Tom1-Tollip complex may regulate endosomal trafficking by linking polyubiquitinated proteins to clathrin (PubMed:14563850, PubMed:15047686). Mediates clathrin recruitment to early endosomes by ZFYVE16 (PubMed:15657082). Modulates binding of TOLLIP to phosphatidylinositol 3-phosphate (PtdIns(3)P) via binding competition; the association with TOLLIP may favor the release of TOLLIP from endosomal membranes, allowing TOLLIP to commit to cargo trafficking (PubMed:26320582). Acts as a phosphatidylinositol 5-phosphate (PtdIns(5)P) effector by binding to PtdIns(5)P, thereby regulating endosomal maturation (PubMed:25588840). PtdIns(5)P-dependent recruitment to signaling endosomes may block endosomal maturation (PubMed:25588840). Also inhibits Toll-like receptor (TLR) signaling and participates in immune receptor recycling (PubMed:15047686, PubMed:26320582). {ECO:0000269|PubMed:14563850, ECO:0000269|PubMed:15047686, ECO:0000269|PubMed:15657082, ECO:0000269|PubMed:23023224, ECO:0000269|PubMed:25588840, ECO:0000269|PubMed:26320582, ECO:0000269|PubMed:31371777}.
O60869 EDF1 T40 ochoa Endothelial differentiation-related factor 1 (EDF-1) (Multiprotein-bridging factor 1) (MBF1) Transcriptional coactivator stimulating NR5A1 and ligand-dependent NR1H3/LXRA and PPARG transcriptional activities. Enhances the DNA-binding activity of ATF1, ATF2, CREB1 and NR5A1. Regulates nitric oxid synthase activity probably by sequestering calmodulin in the cytoplasm. May function in endothelial cells differentiation, hormone-induced cardiomyocytes hypertrophy and lipid metabolism. {ECO:0000269|PubMed:10567391, ECO:0000269|PubMed:12040021, ECO:0000269|PubMed:15112053, ECO:0000269|PubMed:9813014}.
O60934 NBN T409 ochoa Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}.
O60934 NBN T516 ochoa Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}.
O60934 NBN T602 ochoa Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}.
O75052 NOS1AP T210 ochoa Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein (C-terminal PDZ ligand of neuronal nitric oxide synthase protein) (Nitric oxide synthase 1 adaptor protein) Adapter protein involved in neuronal nitric-oxide (NO) synthesis regulation via its association with nNOS/NOS1. The complex formed with NOS1 and synapsins is necessary for specific NO and synapsin functions at a presynaptic level. Mediates an indirect interaction between NOS1 and RASD1 leading to enhance the ability of NOS1 to activate RASD1. Competes with DLG4 for interaction with NOS1, possibly affecting NOS1 activity by regulating the interaction between NOS1 and DLG4 (By similarity). In kidney podocytes, plays a role in podosomes and filopodia formation through CDC42 activation (PubMed:33523862). {ECO:0000250|UniProtKB:O54960, ECO:0000269|PubMed:33523862}.
O75152 ZC3H11A T177 ochoa Zinc finger CCCH domain-containing protein 11A Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.
O75469 NR1I2 T135 psp Nuclear receptor subfamily 1 group I member 2 (Orphan nuclear receptor PAR1) (Orphan nuclear receptor PXR) (Pregnane X receptor) (Steroid and xenobiotic receptor) (SXR) Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes. {ECO:0000269|PubMed:11297522, ECO:0000269|PubMed:11668216, ECO:0000269|PubMed:12578355, ECO:0000269|PubMed:18768384, ECO:0000269|PubMed:19297428, ECO:0000269|PubMed:9727070}.
O75554 WBP4 T324 ochoa WW domain-binding protein 4 (WBP-4) (Formin-binding protein 21) (WW domain-containing-binding protein 4) Involved in pre-mRNA splicing as a component of the spliceosome (PubMed:19592703, PubMed:28781166, PubMed:9724750). May play a role in cross-intron bridging of U1 and U2 snRNPs in the mammalian A complex (PubMed:9724750). {ECO:0000269|PubMed:19592703, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:9724750}.
O75674 TOM1L1 T306 ochoa TOM1-like protein 1 (Src-activating and signaling molecule protein) (Target of Myb-like protein 1) Probable adapter protein involved in signaling pathways. Interacts with the SH2 and SH3 domains of various signaling proteins when it is phosphorylated. May promote FYN activation, possibly by disrupting intramolecular SH3-dependent interactions (By similarity). {ECO:0000250}.
O75676 RPS6KA4 T22 ochoa Ribosomal protein S6 kinase alpha-4 (S6K-alpha-4) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 4) (Nuclear mitogen- and stress-activated protein kinase 2) (Ribosomal protein kinase B) (RSKB) Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factor RELA, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes. Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin. Plays an essential role in the control of RELA transcriptional activity in response to TNF. Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN. May also phosphorylate 'Ser-28' of histone H3. Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines. Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors. {ECO:0000269|PubMed:11035004, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:9792677}.
O75937 DNAJC8 T22 ochoa DnaJ homolog subfamily C member 8 (Splicing protein spf31) Suppresses polyglutamine (polyQ) aggregation of ATXN3 in neuronal cells (PubMed:27133716). {ECO:0000269|PubMed:27133716}.
O75995 SASH3 T103 ochoa SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}.
O94782 USP1 T390 ochoa Ubiquitin carboxyl-terminal hydrolase 1 (EC 3.4.19.12) (Deubiquitinating enzyme 1) (hUBP) (Ubiquitin thioesterase 1) (Ubiquitin-specific-processing protease 1) [Cleaved into: Ubiquitin carboxyl-terminal hydrolase 1, N-terminal fragment] Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2 (PubMed:15694335). Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:16531995, PubMed:20147293). Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a high activity (PubMed:18082604, PubMed:26388029). {ECO:0000269|PubMed:15694335, ECO:0000269|PubMed:16531995, ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:26388029}.
O95271 TNKS T1128 psp Poly [ADP-ribose] polymerase tankyrase-1 (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 5) (ARTD5) (Poly [ADP-ribose] polymerase 5A) (Protein poly-ADP-ribosyltransferase tankyrase-1) (EC 2.4.2.-) (TNKS-1) (TRF1-interacting ankyrin-related ADP-ribose polymerase) (Tankyrase I) (Tankyrase-1) (TANK1) Poly-ADP-ribosyltransferase involved in various processes such as Wnt signaling pathway, telomere length and vesicle trafficking (PubMed:10988299, PubMed:11739745, PubMed:16076287, PubMed:19759537, PubMed:21478859, PubMed:22864114, PubMed:23622245, PubMed:25043379, PubMed:28619731). Acts as an activator of the Wnt signaling pathway by mediating poly-ADP-ribosylation (PARsylation) of AXIN1 and AXIN2, 2 key components of the beta-catenin destruction complex: poly-ADP-ribosylated target proteins are recognized by RNF146, which mediates their ubiquitination and subsequent degradation (PubMed:19759537, PubMed:21478859). Also mediates PARsylation of BLZF1 and CASC3, followed by recruitment of RNF146 and subsequent ubiquitination (PubMed:21478859). Mediates PARsylation of TERF1, thereby contributing to the regulation of telomere length (PubMed:11739745). Involved in centrosome maturation during prometaphase by mediating PARsylation of HEPACAM2/MIKI (PubMed:22864114). May also regulate vesicle trafficking and modulate the subcellular distribution of SLC2A4/GLUT4-vesicles (PubMed:10988299). May be involved in spindle pole assembly through PARsylation of NUMA1 (PubMed:16076287). Stimulates 26S proteasome activity (PubMed:23622245). {ECO:0000269|PubMed:10988299, ECO:0000269|PubMed:11739745, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:19759537, ECO:0000269|PubMed:21478859, ECO:0000269|PubMed:22864114, ECO:0000269|PubMed:23622245, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:28619731}.
O95294 RASAL1 T334 ochoa RasGAP-activating-like protein 1 (RAS protein activator like 1) (Ras GTPase-activating-like protein) Probable inhibitory regulator of the Ras-cyclic AMP pathway (PubMed:9751798). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:23999003, ECO:0000269|PubMed:9751798}.
O95425 SVIL T657 ochoa Supervillin (Archvillin) (p205/p250) [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}.
O95453 PARN T589 ochoa Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}.
O95613 PCNT T1221 psp Pericentrin (Kendrin) (Pericentrin-B) Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}.
O95714 HERC2 T1944 ochoa E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}.
O95810 CAVIN2 T199 ochoa Caveolae-associated protein 2 (Cavin-2) (PS-p68) (Phosphatidylserine-binding protein) (Serum deprivation-response protein) Plays an important role in caveolar biogenesis and morphology. Regulates caveolae morphology by inducing membrane curvature within caveolae (PubMed:19525939). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in the lung and fat endothelia but not in the heart endothelia. Negatively regulates the size or stability of CAVIN complexes in the lung endothelial cells. May play a role in targeting PRKCA to caveolae (By similarity). {ECO:0000250|UniProtKB:Q66H98, ECO:0000269|PubMed:19525939}.
O96028 NSD2 T544 ochoa Histone-lysine N-methyltransferase NSD2 (EC 2.1.1.357) (Multiple myeloma SET domain-containing protein) (MMSET) (Nuclear SET domain-containing protein 2) (Protein trithorax-5) (Wolf-Hirschhorn syndrome candidate 1 protein) Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:19808676, PubMed:22099308, PubMed:27571355, PubMed:29728617, PubMed:33941880). Also monomethylates nucleosomal histone H3 at 'Lys-36' (H3K36me) in vitro (PubMed:22099308). Does not trimethylate nucleosomal histone H3 at 'Lys-36' (H3K36me3) (PubMed:22099308). However, specifically trimethylates histone H3 at 'Lys-36' (H3K36me3) at euchromatic regions in embryonic stem (ES) cells (By similarity). By methylating histone H3 at 'Lys-36', involved in the regulation of gene transcription during various biological processes (PubMed:16115125, PubMed:22099308, PubMed:29728617). In ES cells, associates with developmental transcription factors such as SALL1 and represses inappropriate gene transcription mediated by histone deacetylation (By similarity). During heart development, associates with transcription factor NKX2-5 to repress transcription of NKX2-5 target genes (By similarity). Plays an essential role in adipogenesis, by regulating expression of genes involved in pre-adipocyte differentiation (PubMed:29728617). During T-cell receptor (TCR) and CD28-mediated T-cell activation, promotes the transcription of transcription factor BCL6 which is required for follicular helper T (Tfh) cell differentiation (By similarity). During B-cell development, required for the generation of the B1 lineage (By similarity). During B2 cell activation, may contribute to the control of isotype class switch recombination (CRS), splenic germinal center formation, and the humoral immune response (By similarity). Plays a role in class switch recombination of the immunoglobulin heavy chain (IgH) locus during B-cell activation (By similarity). By regulating the methylation of histone H3 at 'Lys-36' and histone H4 at 'Lys-20' at the IgH locus, involved in TP53BP1 recruitment to the IgH switch region and promotes the transcription of IgA (By similarity). {ECO:0000250|UniProtKB:Q8BVE8, ECO:0000269|PubMed:16115125, ECO:0000269|PubMed:19808676, ECO:0000269|PubMed:22099308, ECO:0000269|PubMed:27571355, ECO:0000269|PubMed:29728617, ECO:0000269|PubMed:33941880}.; FUNCTION: [Isoform 1]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:22099308}.; FUNCTION: [Isoform 4]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:22099308). Methylation of histone H3 at 'Lys-27' is controversial (PubMed:18172012, PubMed:22099308). Mono-, di- or tri-methylates histone H3 at 'Lys-27' (H3K27me, H3K27me2 and H3K27me3) (PubMed:18172012). Does not methylate histone H3 at 'Lys-27' (PubMed:22099308). May act as a transcription regulator that binds DNA and suppresses IL5 transcription through HDAC recruitment (PubMed:11152655, PubMed:18172012). {ECO:0000269|PubMed:11152655, ECO:0000269|PubMed:18172012, ECO:0000269|PubMed:22099308}.
P01112 HRAS T35 psp GTPase HRas (EC 3.6.5.2) (H-Ras-1) (Ha-Ras) (Transforming protein p21) (c-H-ras) (p21ras) [Cleaved into: GTPase HRas, N-terminally processed] Involved in the activation of Ras protein signal transduction (PubMed:22821884). Ras proteins bind GDP/GTP and possess intrinsic GTPase activity (PubMed:12740440, PubMed:14500341, PubMed:9020151). {ECO:0000269|PubMed:12740440, ECO:0000269|PubMed:14500341, ECO:0000269|PubMed:22821884, ECO:0000269|PubMed:9020151}.
P02545 LMNA T218 ochoa Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}.
P02730 SLC4A1 T44 psp Band 3 anion transport protein (Anion exchange protein 1) (AE 1) (Anion exchanger 1) (Solute carrier family 4 member 1) (CD antigen CD233) Functions both as a transporter that mediates electroneutral anion exchange across the cell membrane and as a structural protein (PubMed:10926824, PubMed:14734552, PubMed:1538405, PubMed:16227998, PubMed:20151848, PubMed:24121512, PubMed:28387307, PubMed:35835865). Component of the ankyrin-1 complex of the erythrocyte membrane; required for normal flexibility and stability of the erythrocyte membrane and for normal erythrocyte shape via the interactions of its cytoplasmic domain with cytoskeletal proteins, glycolytic enzymes, and hemoglobin (PubMed:1538405, PubMed:20151848, PubMed:35835865). Functions as a transporter that mediates the 1:1 exchange of inorganic anions across the erythrocyte membrane. Mediates chloride-bicarbonate exchange in the kidney, and is required for normal acidification of the urine (PubMed:10926824, PubMed:14734552, PubMed:16227998, PubMed:24121512, PubMed:28387307). {ECO:0000269|PubMed:10926824, ECO:0000269|PubMed:14734552, ECO:0000269|PubMed:1538405, ECO:0000269|PubMed:16227998, ECO:0000269|PubMed:20151848, ECO:0000269|PubMed:24121512, ECO:0000269|PubMed:28387307, ECO:0000269|PubMed:35835865}.; FUNCTION: (Microbial infection) Acts as a receptor for P.falciparum (isolate 3D7) MSP9 and thus, facilitates merozoite invasion of erythrocytes (PubMed:14630931). Acts as a receptor for P.falciparum (isolate 3D7) MSP1 and thus, facilitates merozoite invasion of erythrocytes (PubMed:12692305). {ECO:0000269|PubMed:12692305, ECO:0000269|PubMed:14630931}.
P04083 ANXA1 T24 psp Annexin A1 (Annexin I) (Annexin-1) (Calpactin II) (Calpactin-2) (Chromobindin-9) (Lipocortin I) (Phospholipase A2 inhibitory protein) (p35) [Cleaved into: Annexin Ac2-26] Plays important roles in the innate immune response as effector of glucocorticoid-mediated responses and regulator of the inflammatory process. Has anti-inflammatory activity (PubMed:8425544). Plays a role in glucocorticoid-mediated down-regulation of the early phase of the inflammatory response (By similarity). Contributes to the adaptive immune response by enhancing signaling cascades that are triggered by T-cell activation, regulates differentiation and proliferation of activated T-cells (PubMed:17008549). Promotes the differentiation of T-cells into Th1 cells and negatively regulates differentiation into Th2 cells (PubMed:17008549). Has no effect on unstimulated T cells (PubMed:17008549). Negatively regulates hormone exocytosis via activation of the formyl peptide receptors and reorganization of the actin cytoskeleton (PubMed:19625660). Has high affinity for Ca(2+) and can bind up to eight Ca(2+) ions (By similarity). Displays Ca(2+)-dependent binding to phospholipid membranes (PubMed:2532504, PubMed:8557678). Plays a role in the formation of phagocytic cups and phagosomes. Plays a role in phagocytosis by mediating the Ca(2+)-dependent interaction between phagosomes and the actin cytoskeleton (By similarity). {ECO:0000250|UniProtKB:P10107, ECO:0000250|UniProtKB:P19619, ECO:0000269|PubMed:17008549, ECO:0000269|PubMed:19625660, ECO:0000269|PubMed:2532504, ECO:0000269|PubMed:2936963, ECO:0000269|PubMed:8425544, ECO:0000269|PubMed:8557678}.; FUNCTION: [Annexin Ac2-26]: Functions at least in part by activating the formyl peptide receptors and downstream signaling cascades (PubMed:15187149, PubMed:22879591, PubMed:25664854). Promotes chemotaxis of granulocytes and monocytes via activation of the formyl peptide receptors (PubMed:15187149). Promotes rearrangement of the actin cytoskeleton, cell polarization and cell migration (PubMed:15187149). Promotes resolution of inflammation and wound healing (PubMed:25664854). Acts via neutrophil N-formyl peptide receptors to enhance the release of CXCL2 (PubMed:22879591). {ECO:0000269|PubMed:15187149, ECO:0000269|PubMed:22879591, ECO:0000269|PubMed:25664854}.
P04150 NR3C1 T299 ochoa Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.
P04275 VWF T1859 ochoa von Willebrand factor (vWF) [Cleaved into: von Willebrand antigen 2 (von Willebrand antigen II)] Important in the maintenance of hemostasis, it promotes adhesion of platelets to the sites of vascular injury by forming a molecular bridge between sub-endothelial collagen matrix and platelet-surface receptor complex GPIb-IX-V. Also acts as a chaperone for coagulation factor VIII, delivering it to the site of injury, stabilizing its heterodimeric structure and protecting it from premature clearance from plasma.
P04406 GAPDH T176 ochoa Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) (Peptidyl-cysteine S-nitrosylase GAPDH) (EC 2.6.99.-) Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively (PubMed:11724794, PubMed:3170585). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate (PubMed:11724794, PubMed:3170585). Modulates the organization and assembly of the cytoskeleton (By similarity). Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes (PubMed:23071094). Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation (PubMed:23071094). Also plays a role in innate immunity by promoting TNF-induced NF-kappa-B activation and type I interferon production, via interaction with TRAF2 and TRAF3, respectively (PubMed:23332158, PubMed:27387501). Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis (By similarity). Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC (By similarity). {ECO:0000250|UniProtKB:P04797, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23332158, ECO:0000269|PubMed:27387501, ECO:0000269|PubMed:3170585}.
P04637 TP53 T55 psp Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}.
P05062 ALDOB T39 ochoa Fructose-bisphosphate aldolase B (EC 4.1.2.13) (Liver-type aldolase) Catalyzes the aldol cleavage of fructose 1,6-biphosphate to form two triosephosphates dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate in glycolysis as well as the reverse stereospecific aldol addition reaction in gluconeogenesis. In fructolysis, metabolizes fructose 1-phosphate derived from the phosphorylation of dietary fructose by fructokinase into dihydroxyacetone phosphate and D-glyceraldehyde (PubMed:10970798, PubMed:12205126, PubMed:20848650). Acts as an adapter independently of its enzymatic activity, exerts a tumor suppressor role by stabilizing the ternary complex with G6PD and TP53 to inhibit G6PD activity and keep oxidative pentose phosphate metabolism in check (PubMed:35122041). {ECO:0000269|PubMed:10970798, ECO:0000269|PubMed:12205126, ECO:0000269|PubMed:20848650, ECO:0000269|PubMed:35122041}.
P05114 HMGN1 T81 ochoa Non-histone chromosomal protein HMG-14 (High mobility group nucleosome-binding domain-containing protein 1) Binds to the inner side of the nucleosomal DNA thus altering the interaction between the DNA and the histone octamer. May be involved in the process which maintains transcribable genes in a unique chromatin conformation. Inhibits the phosphorylation of nucleosomal histones H3 and H2A by RPS6KA5/MSK1 and RPS6KA3/RSK2 (By similarity). {ECO:0000250}.
P05771 PRKCB T644 ochoa Protein kinase C beta type (PKC-B) (PKC-beta) (EC 2.7.11.13) Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity (PubMed:11598012). Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A (PubMed:20228790). In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. Participates in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4. Phosphorylates SLC2A1/GLUT1, promoting glucose uptake by SLC2A1/GLUT1 (PubMed:25982116). Under high glucose in pancreatic beta-cells, is probably involved in the inhibition of the insulin gene transcription, via regulation of MYC expression. In endothelial cells, activation of PRKCB induces increased phosphorylation of RB1, increased VEGFA-induced cell proliferation, and inhibits PI3K/AKT-dependent nitric oxide synthase (NOS3/eNOS) regulation by insulin, which causes endothelial dysfunction. Also involved in triglyceride homeostasis (By similarity). Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription (PubMed:19176525). Phosphorylates KLHL3 in response to angiotensin II signaling, decreasing the interaction between KLHL3 and WNK4 (PubMed:25313067). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P68404, ECO:0000269|PubMed:11598012, ECO:0000269|PubMed:19176525, ECO:0000269|PubMed:20228790, ECO:0000269|PubMed:25313067, ECO:0000269|PubMed:25982116, ECO:0000269|PubMed:36040231}.
P05783 KRT18 T302 ochoa Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}.
P06400 RB1 T356 ochoa|psp Retinoblastoma-associated protein (p105-Rb) (p110-RB1) (pRb) (Rb) (pp110) Tumor suppressor that is a key regulator of the G1/S transition of the cell cycle (PubMed:10499802). The hypophosphorylated form binds transcription regulators of the E2F family, preventing transcription of E2F-responsive genes (PubMed:10499802). Both physically blocks E2Fs transactivating domain and recruits chromatin-modifying enzymes that actively repress transcription (PubMed:10499802). Cyclin and CDK-dependent phosphorylation of RB1 induces its dissociation from E2Fs, thereby activating transcription of E2F responsive genes and triggering entry into S phase (PubMed:10499802). RB1 also promotes the G0-G1 transition upon phosphorylation and activation by CDK3/cyclin-C (PubMed:15084261). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity). {ECO:0000250|UniProtKB:P13405, ECO:0000250|UniProtKB:P33568, ECO:0000269|PubMed:10499802, ECO:0000269|PubMed:15084261}.; FUNCTION: (Microbial infection) In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity. {ECO:0000269|PubMed:1316611, ECO:0000269|PubMed:17974914, ECO:0000269|PubMed:18701596, ECO:0000269|PubMed:2839300, ECO:0000269|PubMed:8892909}.
P06733 ENO1 T100 ochoa Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}.
P06733 ENO1 T379 ochoa Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}.
P07355 ANXA2 T153 ochoa Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) (Protein I) (p36) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9 (PubMed:18799458, PubMed:22848640, PubMed:24808179). Binds to endosomes damaged by phagocytosis of particulate wear debris and participates in endosomal membrane stabilization, thereby limiting NLRP3 inflammasome activation (By similarity). Required for endothelial cell surface plasmin generation and may support fibrinolytic surveillance and neoangiogenesis (By similarity). {ECO:0000250|UniProtKB:P07356, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22848640, ECO:0000269|PubMed:24808179}.; FUNCTION: (Microbial infection) Binds M.pneumoniae CARDS toxin, probably serves as one receptor for this pathogen. When ANXA2 is down-regulated by siRNA, less toxin binds to human cells and less vacuolization (a symptom of M.pneumoniae infection) is seen. {ECO:0000269|PubMed:25139904}.
P07900 HSP90AA1 T704 ochoa Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}.
P08047 SP1 T737 psp Transcription factor Sp1 Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Also binds the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component BMAL1 (PubMed:10391891, PubMed:11371615, PubMed:11904305, PubMed:14593115, PubMed:16377629, PubMed:16478997, PubMed:16943418, PubMed:17049555, PubMed:18171990, PubMed:18199680, PubMed:18239466, PubMed:18513490, PubMed:18619531, PubMed:19193796, PubMed:20091743, PubMed:21046154, PubMed:21798247). Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112 (By similarity). {ECO:0000250|UniProtKB:O89090, ECO:0000250|UniProtKB:Q01714, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11371615, ECO:0000269|PubMed:11904305, ECO:0000269|PubMed:14593115, ECO:0000269|PubMed:16377629, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16943418, ECO:0000269|PubMed:17049555, ECO:0000269|PubMed:18171990, ECO:0000269|PubMed:18199680, ECO:0000269|PubMed:18239466, ECO:0000269|PubMed:18513490, ECO:0000269|PubMed:18619531, ECO:0000269|PubMed:19193796, ECO:0000269|PubMed:20091743, ECO:0000269|PubMed:21046154, ECO:0000269|PubMed:21798247}.
P08133 ANXA6 T31 ochoa Annexin A6 (67 kDa calelectrin) (Annexin VI) (Annexin-6) (Calphobindin-II) (CPB-II) (Chromobindin-20) (Lipocortin VI) (Protein III) (p68) (p70) May associate with CD21. May regulate the release of Ca(2+) from intracellular stores.
P08235 NR3C2 T800 psp Mineralocorticoid receptor (MR) (Nuclear receptor subfamily 3 group C member 2) Receptor for both mineralocorticoids (MC) such as aldosterone and glucocorticoids (GC) such as corticosterone or cortisol. Binds to mineralocorticoid response elements (MRE) and transactivates target genes. The effect of MC is to increase ion and water transport and thus raise extracellular fluid volume and blood pressure and lower potassium levels. {ECO:0000269|PubMed:3037703}.
P08670 VIM T202 ochoa Vimentin Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. Plays a role in cell directional movement, orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Protects SCRIB from proteasomal degradation and facilitates its localization to intermediate filaments in a cell contact-mediated manner (By similarity). {ECO:0000250|UniProtKB:A0A8C0N8E3, ECO:0000250|UniProtKB:P31000}.; FUNCTION: Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. {ECO:0000269|PubMed:21746880}.
P08758 ANXA5 T40 ochoa Annexin A5 (Anchorin CII) (Annexin V) (Annexin-5) (Calphobindin I) (CPB-I) (Endonexin II) (Lipocortin V) (Placental anticoagulant protein 4) (PP4) (Placental anticoagulant protein I) (PAP-I) (Thromboplastin inhibitor) (Vascular anticoagulant-alpha) (VAC-alpha) This protein is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade.
P08865 RPSA T241 ochoa Small ribosomal subunit protein uS2 (37 kDa laminin receptor precursor) (37LRP) (37/67 kDa laminin receptor) (LRP/LR) (40S ribosomal protein SA) (67 kDa laminin receptor) (67LR) (Colon carcinoma laminin-binding protein) (Laminin receptor 1) (LamR) (Laminin-binding protein precursor p40) (LBP/p40) (Multidrug resistance-associated protein MGr1-Ag) (NEM/1CHD4) Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Also functions as a cell surface receptor for laminin. Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways. May play a role in cell fate determination and tissue morphogenesis. Acts as a PPP1R16B-dependent substrate of PPP1CA. {ECO:0000255|HAMAP-Rule:MF_03016, ECO:0000269|PubMed:16263087, ECO:0000269|PubMed:6300843}.; FUNCTION: (Microbial infection) Acts as a receptor for the Adeno-associated viruses 2,3,8 and 9. {ECO:0000269|PubMed:16973587}.; FUNCTION: (Microbial infection) Acts as a receptor for the Dengue virus. {ECO:0000269|PubMed:15507651}.; FUNCTION: (Microbial infection) Acts as a receptor for the Sindbis virus. {ECO:0000269|PubMed:1385835}.; FUNCTION: (Microbial infection) Acts as a receptor for the Venezuelan equine encephalitis virus. {ECO:0000269|PubMed:1385835}.; FUNCTION: (Microbial infection) Acts as a receptor for the pathogenic prion protein. {ECO:0000269|PubMed:11689427, ECO:0000269|PubMed:9396609}.; FUNCTION: (Microbial infection) Acts as a receptor for bacteria. {ECO:0000269|PubMed:15516338}.
P08908 HTR1A T314 psp 5-hydroxytryptamine receptor 1A (5-HT-1A) (5-HT1A) (G-21) (Serotonin receptor 1A) G-protein coupled receptor for 5-hydroxytryptamine (serotonin) (PubMed:22957663, PubMed:3138543, PubMed:33762731, PubMed:37935376, PubMed:37935377, PubMed:8138923, PubMed:8393041). Also functions as a receptor for various drugs and psychoactive substances (PubMed:22957663, PubMed:3138543, PubMed:33762731, PubMed:38552625, PubMed:8138923, PubMed:8393041). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors, such as adenylate cyclase (PubMed:22957663, PubMed:3138543, PubMed:33762731, PubMed:8138923, PubMed:8393041). HTR1A is coupled to G(i)/G(o) G alpha proteins and mediates inhibitory neurotransmission: signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second messenger system that regulates the release of Ca(2+) ions from intracellular stores (PubMed:33762731, PubMed:35610220). Beta-arrestin family members regulate signaling by mediating both receptor desensitization and resensitization processes (PubMed:18476671, PubMed:20363322, PubMed:20945968). Plays a role in the regulation of 5-hydroxytryptamine release and in the regulation of dopamine and 5-hydroxytryptamine metabolism (PubMed:18476671, PubMed:20363322, PubMed:20945968). Plays a role in the regulation of dopamine and 5-hydroxytryptamine levels in the brain, and thereby affects neural activity, mood and behavior (PubMed:18476671, PubMed:20363322, PubMed:20945968). Plays a role in the response to anxiogenic stimuli (PubMed:18476671, PubMed:20363322, PubMed:20945968). {ECO:0000269|PubMed:22957663, ECO:0000269|PubMed:3138543, ECO:0000269|PubMed:33762731, ECO:0000269|PubMed:35610220, ECO:0000269|PubMed:37935376, ECO:0000269|PubMed:37935377, ECO:0000269|PubMed:38552625, ECO:0000269|PubMed:8138923, ECO:0000269|PubMed:8393041, ECO:0000303|PubMed:18476671, ECO:0000303|PubMed:20363322, ECO:0000303|PubMed:20945968}.
P09104 ENO2 T379 ochoa Gamma-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Enolase 2) (Neural enolase) (Neuron-specific enolase) (NSE) Has neurotrophic and neuroprotective properties on a broad spectrum of central nervous system (CNS) neurons. Binds, in a calcium-dependent manner, to cultured neocortical neurons and promotes cell survival (By similarity). {ECO:0000250}.
P09429 HMGB1 T51 psp High mobility group protein B1 (High mobility group protein 1) (HMG-1) Multifunctional redox sensitive protein with various roles in different cellular compartments. In the nucleus is one of the major chromatin-associated non-histone proteins and acts as a DNA chaperone involved in replication, transcription, chromatin remodeling, V(D)J recombination, DNA repair and genome stability (PubMed:33147444). Proposed to be an universal biosensor for nucleic acids. Promotes host inflammatory response to sterile and infectious signals and is involved in the coordination and integration of innate and adaptive immune responses. In the cytoplasm functions as a sensor and/or chaperone for immunogenic nucleic acids implicating the activation of TLR9-mediated immune responses, and mediates autophagy. Acts as a danger-associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury (PubMed:27362237). Released to the extracellular environment can bind DNA, nucleosomes, IL-1 beta, CXCL12, AGER isoform 2/sRAGE, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and activates cells through engagement of multiple surface receptors (PubMed:34743181). In the extracellular compartment fully reduced HMGB1 (released by necrosis) acts as a chemokine, disulfide HMGB1 (actively secreted) as a cytokine, and sulfonyl HMGB1 (released from apoptotic cells) promotes immunological tolerance (PubMed:23446148, PubMed:23519706, PubMed:23994764, PubMed:25048472). Has proangiogdenic activity (By similarity). May be involved in platelet activation (By similarity). Binds to phosphatidylserine and phosphatidylethanolamide (By similarity). Bound to RAGE mediates signaling for neuronal outgrowth (By similarity). May play a role in accumulation of expanded polyglutamine (polyQ) proteins such as huntingtin (HTT) or TBP (PubMed:23303669, PubMed:25549101). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P12682, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:23303669, ECO:0000269|PubMed:25549101, ECO:0000269|PubMed:27362237, ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:34743181, ECO:0000305|PubMed:23446148, ECO:0000305|PubMed:23519706, ECO:0000305|PubMed:23994764, ECO:0000305|PubMed:25048472}.; FUNCTION: Nuclear functions are attributed to fully reduced HGMB1. Associates with chromatin and binds DNA with a preference to non-canonical DNA structures such as single-stranded DNA, DNA-containing cruciforms or bent structures, supercoiled DNA and ZDNA. Can bent DNA and enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters by enhancing transcription factor binding and/or bringing distant regulatory sequences into close proximity (PubMed:20123072). May have an enhancing role in nucleotide excision repair (NER) (By similarity). However, effects in NER using in vitro systems have been reported conflictingly (PubMed:19360789, PubMed:19446504). May be involved in mismatch repair (MMR) and base excision repair (BER) pathways (PubMed:15014079, PubMed:16143102, PubMed:17803946). May be involved in double strand break repair such as non-homologous end joining (NHEJ) (By similarity). Involved in V(D)J recombination by acting as a cofactor of the RAG complex: acts by stimulating cleavage and RAG protein binding at the 23 bp spacer of conserved recombination signal sequences (RSS) (By similarity). In vitro can displace histone H1 from highly bent DNA (By similarity). Can restructure the canonical nucleosome leading to relaxation of structural constraints for transcription factor-binding (By similarity). Enhances binding of sterol regulatory element-binding proteins (SREBPs) such as SREBF1 to their cognate DNA sequences and increases their transcriptional activities (By similarity). Facilitates binding of TP53 to DNA (PubMed:23063560). Proposed to be involved in mitochondrial quality control and autophagy in a transcription-dependent fashion implicating HSPB1; however, this function has been questioned (By similarity). Can modulate the activity of the telomerase complex and may be involved in telomere maintenance (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:15014079, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:17803946, ECO:0000269|PubMed:19446504, ECO:0000269|PubMed:23063560, ECO:0000305|PubMed:19360789, ECO:0000305|PubMed:20123072}.; FUNCTION: In the cytoplasm proposed to dissociate the BECN1:BCL2 complex via competitive interaction with BECN1 leading to autophagy activation (PubMed:20819940). Involved in oxidative stress-mediated autophagy (PubMed:21395369). Can protect BECN1 and ATG5 from calpain-mediated cleavage and thus proposed to control their proautophagic and proapoptotic functions and to regulate the extent and severity of inflammation-associated cellular injury (By similarity). In myeloid cells has a protective role against endotoxemia and bacterial infection by promoting autophagy (By similarity). Involved in endosomal translocation and activation of TLR9 in response to CpG-DNA in macrophages (By similarity). {ECO:0000250|UniProtKB:P63158, ECO:0000269|PubMed:20819940, ECO:0000269|PubMed:21395369}.; FUNCTION: In the extracellular compartment (following either active secretion or passive release) involved in regulation of the inflammatory response. Fully reduced HGMB1 (which subsequently gets oxidized after release) in association with CXCL12 mediates the recruitment of inflammatory cells during the initial phase of tissue injury; the CXCL12:HMGB1 complex triggers CXCR4 homodimerization (PubMed:22370717). Induces the migration of monocyte-derived immature dendritic cells and seems to regulate adhesive and migratory functions of neutrophils implicating AGER/RAGE and ITGAM (By similarity). Can bind to various types of DNA and RNA including microbial unmethylated CpG-DNA to enhance the innate immune response to nucleic acids. Proposed to act in promiscuous DNA/RNA sensing which cooperates with subsequent discriminative sensing by specific pattern recognition receptors (By similarity). Promotes extracellular DNA-induced AIM2 inflammasome activation implicating AGER/RAGE (PubMed:24971542). Disulfide HMGB1 binds to transmembrane receptors, such as AGER/RAGE, TLR2, TLR4 and probably TREM1, thus activating their signal transduction pathways. Mediates the release of cytokines/chemokines such as TNF, IL-1, IL-6, IL-8, CCL2, CCL3, CCL4 and CXCL10 (PubMed:12765338, PubMed:18354232, PubMed:19264983, PubMed:20547845, PubMed:24474694). Promotes secretion of interferon-gamma by macrophage-stimulated natural killer (NK) cells in concert with other cytokines like IL-2 or IL-12 (PubMed:15607795). TLR4 is proposed to be the primary receptor promoting macrophage activation and signaling through TLR4 seems to implicate LY96/MD-2 (PubMed:20547845). In bacterial LPS- or LTA-mediated inflammatory responses binds to the endotoxins and transfers them to CD14 for signaling to the respective TLR4:LY96 and TLR2 complexes (PubMed:18354232, PubMed:21660935, PubMed:25660311). Contributes to tumor proliferation by association with ACER/RAGE (By similarity). Can bind to IL1-beta and signals through the IL1R1:IL1RAP receptor complex (PubMed:18250463). Binding to class A CpG activates cytokine production in plasmacytoid dendritic cells implicating TLR9, MYD88 and AGER/RAGE and can activate autoreactive B cells. Via HMGB1-containing chromatin immune complexes may also promote B cell responses to endogenous TLR9 ligands through a B-cell receptor (BCR)-dependent and ACER/RAGE-independent mechanism (By similarity). Inhibits phagocytosis of apoptotic cells by macrophages; the function is dependent on poly-ADP-ribosylation and involves binding to phosphatidylserine on the cell surface of apoptotic cells (By similarity). In adaptive immunity may be involved in enhancing immunity through activation of effector T cells and suppression of regulatory T (TReg) cells (PubMed:15944249, PubMed:22473704). In contrast, without implicating effector or regulatory T-cells, required for tumor infiltration and activation of T-cells expressing the lymphotoxin LTA:LTB heterotrimer thus promoting tumor malignant progression (By similarity). Also reported to limit proliferation of T-cells (By similarity). Released HMGB1:nucleosome complexes formed during apoptosis can signal through TLR2 to induce cytokine production (PubMed:19064698). Involved in induction of immunological tolerance by apoptotic cells; its pro-inflammatory activities when released by apoptotic cells are neutralized by reactive oxygen species (ROS)-dependent oxidation specifically on Cys-106 (PubMed:18631454). During macrophage activation by activated lymphocyte-derived self apoptotic DNA (ALD-DNA) promotes recruitment of ALD-DNA to endosomes (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:12765338, ECO:0000269|PubMed:15607795, ECO:0000269|PubMed:15944249, ECO:0000269|PubMed:18250463, ECO:0000269|PubMed:18354232, ECO:0000269|PubMed:18631454, ECO:0000269|PubMed:19064698, ECO:0000269|PubMed:19264983, ECO:0000269|PubMed:20547845, ECO:0000269|PubMed:21660935, ECO:0000269|PubMed:22370717, ECO:0000269|PubMed:22473704, ECO:0000269|PubMed:24474694, ECO:0000269|PubMed:24971542, ECO:0000269|PubMed:25660311, ECO:0000269|Ref.8}.; FUNCTION: (Microbial infection) Critical for entry of human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63 (PubMed:33147444). Regulates the expression of the pro-viral genes ACE2 and CTSL through chromatin modulation (PubMed:33147444). Required for SARS-CoV-2 ORF3A-induced reticulophagy which induces endoplasmic reticulum stress and inflammatory responses and facilitates viral infection (PubMed:35239449). {ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:35239449}.; FUNCTION: (Microbial infection) Associates with the influenza A viral protein NP in the nucleus of infected cells, promoting viral growth and enhancing the activity of the viral polymerase. {ECO:0000269|PubMed:22696656}.; FUNCTION: (Microbial infection) Promotes Epstein-Barr virus (EBV) latent-to-lytic switch by sustaining the expression of the viral transcription factor BZLF1 that acts as a molecular switch to induce the transition from the latent to the lytic or productive phase of the virus cycle. Mechanistically, participates in EBV reactivation through the NLRP3 inflammasome. {ECO:0000269|PubMed:34922257}.; FUNCTION: (Microbial infection) Facilitates dengue virus propagation via interaction with the untranslated regions of viral genome. In turn, this interaction with viral RNA may regulate secondary structure of dengue RNA thus facilitating its recognition by the replication complex. {ECO:0000269|PubMed:34971702}.
P0CG47 UBB T55 ochoa Polyubiquitin-B [Cleaved into: Ubiquitin] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.
P0CG48 UBC T55 ochoa Polyubiquitin-C [Cleaved into: Ubiquitin] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. During ubiquitination, the acceptor ubiquitin is positioned in the active site via direct interaction with the E2 ubiquitin-conjugating enzymes such as UBE2R2 (PubMed:38326650). As a monoubiquitin, its C-terminal glycine is recognized as a C-degron by Cul2-RING (CRL2) E3 ubiquitin-protein ligase complexes (PubMed:39548056). {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000269|PubMed:38326650, ECO:0000269|PubMed:39548056, ECO:0000303|PubMed:19754430}.
P0DJD0 RGPD1 T1309 ochoa RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) None
P0DJD1 RGPD2 T1317 ochoa RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) None
P0DPH7 TUBA3C T94 ochoa Tubulin alpha-3C chain (EC 3.6.5.-) (Alpha-tubulin 2) (Alpha-tubulin 3C) (Tubulin alpha-2 chain) [Cleaved into: Detyrosinated tubulin alpha-3C chain] Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
P0DPH8 TUBA3D T94 ochoa Tubulin alpha-3D chain (EC 3.6.5.-) (Alpha-tubulin 3D) [Cleaved into: Detyrosinated tubulin alpha-3D chain] Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
P10114 RAP2A T58 ochoa Ras-related protein Rap-2a (EC 3.6.5.2) (RbBP-30) Small GTP-binding protein which cycles between a GDP-bound inactive and a GTP-bound active form (PubMed:14966141, PubMed:15342639, PubMed:16246175, PubMed:16540189, PubMed:18930710, PubMed:20159449, PubMed:35293963). In its active form interacts with and regulates several effectors including MAP4K4, MINK1 and TNIK (PubMed:14966141, PubMed:15342639, PubMed:18930710, PubMed:20159449). Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development (PubMed:20159449). More generally, it is part of several signaling cascades and regulates cytoskeletal rearrangements, cell migration, cell adhesion and cell spreading (PubMed:14966141, PubMed:15342639, PubMed:16246175, PubMed:16540189, PubMed:18930710, PubMed:20159449, PubMed:35293963). {ECO:0000269|PubMed:14966141, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:16246175, ECO:0000269|PubMed:16540189, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:35293963}.
P10809 HSPD1 T351 ochoa 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}.
P10916 MYL2 T125 ochoa Myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC-2) (MLC-2v) (Cardiac myosin light chain 2) (Myosin light chain 2, slow skeletal/ventricular muscle isoform) (MLC-2s/v) (Ventricular myosin light chain 2) Contractile protein that plays a role in heart development and function (PubMed:23365102, PubMed:32453731). Following phosphorylation, plays a role in cross-bridge cycling kinetics and cardiac muscle contraction by increasing myosin lever arm stiffness and promoting myosin head diffusion; as a consequence of the increase in maximum contraction force and calcium sensitivity of contraction force. These events altogether slow down myosin kinetics and prolong duty cycle resulting in accumulated myosins being cooperatively recruited to actin binding sites to sustain thin filament activation as a means to fine-tune myofilament calcium sensitivity to force (By similarity). During cardiogenesis plays an early role in cardiac contractility by promoting cardiac myofibril assembly (By similarity). {ECO:0000250|UniProtKB:P08733, ECO:0000269|PubMed:23365102, ECO:0000269|PubMed:32453731}.
P11021 HSPA5 T473 ochoa Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein) Endoplasmic reticulum chaperone that plays a key role in protein folding and quality control in the endoplasmic reticulum lumen (PubMed:2294010, PubMed:23769672, PubMed:23990668, PubMed:28332555). Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10/ERdj5, probably to facilitate the release of DNAJC10/ERdj5 from its substrate (By similarity). Acts as a key repressor of the EIF2AK3/PERK and ERN1/IRE1-mediated unfolded protein response (UPR) (PubMed:11907036, PubMed:1550958, PubMed:19538957, PubMed:36739529). In the unstressed endoplasmic reticulum, recruited by DNAJB9/ERdj4 to the luminal region of ERN1/IRE1, leading to disrupt the dimerization of ERN1/IRE1, thereby inactivating ERN1/IRE1 (By similarity). Also binds and inactivates EIF2AK3/PERK in unstressed cells (PubMed:11907036). Accumulation of misfolded protein in the endoplasmic reticulum causes release of HSPA5/BiP from ERN1/IRE1 and EIF2AK3/PERK, allowing their homodimerization and subsequent activation (PubMed:11907036). Plays an auxiliary role in post-translational transport of small presecretory proteins across endoplasmic reticulum (ER). May function as an allosteric modulator for SEC61 channel-forming translocon complex, likely cooperating with SEC62 to enable the productive insertion of these precursors into SEC61 channel. Appears to specifically regulate translocation of precursors having inhibitory residues in their mature region that weaken channel gating. May also play a role in apoptosis and cell proliferation (PubMed:26045166). {ECO:0000250|UniProtKB:G3I8R9, ECO:0000250|UniProtKB:P20029, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:1550958, ECO:0000269|PubMed:19538957, ECO:0000269|PubMed:2294010, ECO:0000269|PubMed:23769672, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:26045166, ECO:0000269|PubMed:28332555, ECO:0000269|PubMed:29719251, ECO:0000269|PubMed:36739529}.; FUNCTION: (Microbial infection) Plays an important role in viral binding to the host cell membrane and entry for several flaviruses such as Dengue virus, Zika virus and Japanese encephalitis virus (PubMed:15098107, PubMed:28053106, PubMed:33432092). Acts as a component of the cellular receptor for Dengue virus serotype 2/DENV-2 on human liver cells (PubMed:15098107). {ECO:0000269|PubMed:15098107, ECO:0000269|PubMed:28053106, ECO:0000269|PubMed:33432092}.; FUNCTION: (Microbial infection) Acts as a receptor for CotH proteins expressed by fungi of the order mucorales, the causative agent of mucormycosis, which plays an important role in epithelial cell invasion by the fungi (PubMed:20484814, PubMed:24355926, PubMed:32487760). Acts as a receptor for R.delemar CotH3 in nasal epithelial cells, which may be an early step in rhinoorbital/cerebral mucormycosis (RCM) disease progression (PubMed:32487760). {ECO:0000269|PubMed:20484814, ECO:0000269|PubMed:24355926, ECO:0000269|PubMed:32487760}.
P11021 HSPA5 T518 ochoa Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein) Endoplasmic reticulum chaperone that plays a key role in protein folding and quality control in the endoplasmic reticulum lumen (PubMed:2294010, PubMed:23769672, PubMed:23990668, PubMed:28332555). Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10/ERdj5, probably to facilitate the release of DNAJC10/ERdj5 from its substrate (By similarity). Acts as a key repressor of the EIF2AK3/PERK and ERN1/IRE1-mediated unfolded protein response (UPR) (PubMed:11907036, PubMed:1550958, PubMed:19538957, PubMed:36739529). In the unstressed endoplasmic reticulum, recruited by DNAJB9/ERdj4 to the luminal region of ERN1/IRE1, leading to disrupt the dimerization of ERN1/IRE1, thereby inactivating ERN1/IRE1 (By similarity). Also binds and inactivates EIF2AK3/PERK in unstressed cells (PubMed:11907036). Accumulation of misfolded protein in the endoplasmic reticulum causes release of HSPA5/BiP from ERN1/IRE1 and EIF2AK3/PERK, allowing their homodimerization and subsequent activation (PubMed:11907036). Plays an auxiliary role in post-translational transport of small presecretory proteins across endoplasmic reticulum (ER). May function as an allosteric modulator for SEC61 channel-forming translocon complex, likely cooperating with SEC62 to enable the productive insertion of these precursors into SEC61 channel. Appears to specifically regulate translocation of precursors having inhibitory residues in their mature region that weaken channel gating. May also play a role in apoptosis and cell proliferation (PubMed:26045166). {ECO:0000250|UniProtKB:G3I8R9, ECO:0000250|UniProtKB:P20029, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:1550958, ECO:0000269|PubMed:19538957, ECO:0000269|PubMed:2294010, ECO:0000269|PubMed:23769672, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:26045166, ECO:0000269|PubMed:28332555, ECO:0000269|PubMed:29719251, ECO:0000269|PubMed:36739529}.; FUNCTION: (Microbial infection) Plays an important role in viral binding to the host cell membrane and entry for several flaviruses such as Dengue virus, Zika virus and Japanese encephalitis virus (PubMed:15098107, PubMed:28053106, PubMed:33432092). Acts as a component of the cellular receptor for Dengue virus serotype 2/DENV-2 on human liver cells (PubMed:15098107). {ECO:0000269|PubMed:15098107, ECO:0000269|PubMed:28053106, ECO:0000269|PubMed:33432092}.; FUNCTION: (Microbial infection) Acts as a receptor for CotH proteins expressed by fungi of the order mucorales, the causative agent of mucormycosis, which plays an important role in epithelial cell invasion by the fungi (PubMed:20484814, PubMed:24355926, PubMed:32487760). Acts as a receptor for R.delemar CotH3 in nasal epithelial cells, which may be an early step in rhinoorbital/cerebral mucormycosis (RCM) disease progression (PubMed:32487760). {ECO:0000269|PubMed:20484814, ECO:0000269|PubMed:24355926, ECO:0000269|PubMed:32487760}.
P11055 MYH3 T379 ochoa Myosin-3 (Muscle embryonic myosin heavy chain) (Myosin heavy chain 3) (Myosin heavy chain, fast skeletal muscle, embryonic) (SMHCE) Muscle contraction.
P11055 MYH3 T1692 ochoa Myosin-3 (Muscle embryonic myosin heavy chain) (Myosin heavy chain 3) (Myosin heavy chain, fast skeletal muscle, embryonic) (SMHCE) Muscle contraction.
P11137 MAP2 T522 ochoa Microtubule-associated protein 2 (MAP-2) The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules.
P12882 MYH1 T381 ochoa Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}.
P12882 MYH1 T1695 ochoa Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}.
P12883 MYH7 T378 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P12883 MYH7 T1709 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P12931 SRC T183 ochoa Proto-oncogene tyrosine-protein kinase Src (EC 2.7.10.2) (Proto-oncogene c-Src) (pp60c-src) (p60-Src) Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors (PubMed:34234773). Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates such as AFAP1. Phosphorylation of AFAP1 allows the SRC SH2 domain to bind AFAP1 and to localize to actin filaments. Cytoskeletal reorganization is also controlled through the phosphorylation of cortactin (CTTN) (Probable). When cells adhere via focal adhesions to the extracellular matrix, signals are transmitted by integrins into the cell resulting in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN) (PubMed:21411625). In addition to phosphorylating focal adhesion proteins, SRC is also active at the sites of cell-cell contact adherens junctions and phosphorylates substrates such as beta-catenin (CTNNB1), delta-catenin (CTNND1), and plakoglobin (JUP). Another type of cell-cell junction, the gap junction, is also a target for SRC, which phosphorylates connexin-43 (GJA1). SRC is implicated in regulation of pre-mRNA-processing and phosphorylates RNA-binding proteins such as KHDRBS1 (Probable). Phosphorylates PKP3 at 'Tyr-195' in response to reactive oxygen species, which may cause the release of PKP3 from desmosome cell junctions into the cytoplasm (PubMed:25501895). Also plays a role in PDGF-mediated tyrosine phosphorylation of both STAT1 and STAT3, leading to increased DNA binding activity of these transcription factors (By similarity). Involved in the RAS pathway through phosphorylation of RASA1 and RASGRF1 (PubMed:11389730). Plays a role in EGF-mediated calcium-activated chloride channel activation (PubMed:18586953). Required for epidermal growth factor receptor (EGFR) internalization through phosphorylation of clathrin heavy chain (CLTC and CLTCL1) at 'Tyr-1477'. Involved in beta-arrestin (ARRB1 and ARRB2) desensitization through phosphorylation and activation of GRK2, leading to beta-arrestin phosphorylation and internalization. Has a critical role in the stimulation of the CDK20/MAPK3 mitogen-activated protein kinase cascade by epidermal growth factor (Probable). Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus (PubMed:7853507). Plays an important role in osteoclastic bone resorption in conjunction with PTK2B/PYK2. Both the formation of a SRC-PTK2B/PYK2 complex and SRC kinase activity are necessary for this function. Recruited to activated integrins by PTK2B/PYK2, thereby phosphorylating CBL, which in turn induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14585963, PubMed:8755529). Promotes energy production in osteoclasts by activating mitochondrial cytochrome C oxidase (PubMed:12615910). Phosphorylates DDR2 on tyrosine residues, thereby promoting its subsequent autophosphorylation (PubMed:16186108). Phosphorylates RUNX3 and COX2 on tyrosine residues, TNK2 on 'Tyr-284' and CBL on 'Tyr-731' (PubMed:20100835, PubMed:21309750). Enhances RIGI-elicited antiviral signaling (PubMed:19419966). Phosphorylates PDPK1 at 'Tyr-9', 'Tyr-373' and 'Tyr-376' (PubMed:14585963). Phosphorylates BCAR1 at 'Tyr-128' (PubMed:22710723). Phosphorylates CBLC at multiple tyrosine residues, phosphorylation at 'Tyr-341' activates CBLC E3 activity (PubMed:20525694). Phosphorylates synaptic vesicle protein synaptophysin (SYP) (By similarity). Involved in anchorage-independent cell growth (PubMed:19307596). Required for podosome formation (By similarity). Mediates IL6 signaling by activating YAP1-NOTCH pathway to induce inflammation-induced epithelial regeneration (PubMed:25731159). Phosphorylates OTUB1, promoting deubiquitination of RPTOR (PubMed:35927303). Phosphorylates caspase CASP8 at 'Tyr-380' which negatively regulates CASP8 processing and activation, down-regulating CASP8 proapoptotic function (PubMed:16619028). {ECO:0000250|UniProtKB:P05480, ECO:0000250|UniProtKB:Q9WUD9, ECO:0000269|PubMed:11389730, ECO:0000269|PubMed:12615910, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:16186108, ECO:0000269|PubMed:16619028, ECO:0000269|PubMed:18586953, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:19419966, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:21309750, ECO:0000269|PubMed:21411625, ECO:0000269|PubMed:22710723, ECO:0000269|PubMed:25501895, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:34234773, ECO:0000269|PubMed:35927303, ECO:0000269|PubMed:7853507, ECO:0000269|PubMed:8755529, ECO:0000269|PubMed:8759729, ECO:0000305|PubMed:11964124, ECO:0000305|PubMed:8672527, ECO:0000305|PubMed:9442882}.; FUNCTION: [Isoform 1]: Non-receptor protein tyrosine kinase which phosphorylates synaptophysin with high affinity. {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 2]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in L1CAM-mediated neurite elongation, possibly by acting downstream of L1CAM to drive cytoskeletal rearrangements involved in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 3]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in neurite elongation (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.
P13533 MYH6 T1711 ochoa Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) Muscle contraction.
P13535 MYH8 T381 ochoa Myosin-8 (Myosin heavy chain 8) (Myosin heavy chain, skeletal muscle, perinatal) (MyHC-perinatal) Muscle contraction.
P13611 VCAN T2115 ochoa Versican core protein (Chondroitin sulfate proteoglycan core protein 2) (Chondroitin sulfate proteoglycan 2) (Glial hyaluronate-binding protein) (GHAP) (Large fibroblast proteoglycan) (PG-M) May play a role in intercellular signaling and in connecting cells with the extracellular matrix. May take part in the regulation of cell motility, growth and differentiation. Binds hyaluronic acid.
P13929 ENO3 T379 ochoa Beta-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Enolase 3) (Muscle-specific enolase) (MSE) (Skeletal muscle enolase) Glycolytic enzyme that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate. Appears to have a function in striated muscle development and regeneration. {ECO:0000250|UniProtKB:P15429}.
P14625 HSP90B1 T44 ochoa Endoplasmin (EC 3.6.4.-) (94 kDa glucose-regulated protein) (GRP-94) (Heat shock protein 90 kDa beta member 1) (Heat shock protein family C member 4) (Tumor rejection antigen 1) (gp96 homolog) ATP-dependent chaperone involved in the processing of proteins in the endoplasmic reticulum, regulating their transport (PubMed:23572575, PubMed:39509507). Together with MESD, acts as a modulator of the Wnt pathway by promoting the folding of LRP6, a coreceptor of the canonical Wnt pathway (PubMed:23572575, PubMed:39509507). When associated with CNPY3, required for proper folding of Toll-like receptors (PubMed:11584270). Promotes folding and trafficking of TLR4 to the cell surface (PubMed:11584270). May participate in the unfolding of cytosolic leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1 to facilitate their translocation into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) and secretion; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:11584270, ECO:0000269|PubMed:23572575, ECO:0000269|PubMed:32272059, ECO:0000269|PubMed:39509507}.
P14635 CCNB1 T364 ochoa G2/mitotic-specific cyclin-B1 Essential for the control of the cell cycle at the G2/M (mitosis) transition. {ECO:0000269|PubMed:17495531, ECO:0000269|PubMed:17495533, ECO:0000269|PubMed:27030811}.
P14923 JUP T19 ochoa Junction plakoglobin (Catenin gamma) (Desmoplakin III) (Desmoplakin-3) Common junctional plaque protein. The membrane-associated plaques are architectural elements in an important strategic position to influence the arrangement and function of both the cytoskeleton and the cells within the tissue. The presence of plakoglobin in both the desmosomes and in the intermediate junctions suggests that it plays a central role in the structure and function of submembranous plaques. Acts as a substrate for VE-PTP and is required by it to stimulate VE-cadherin function in endothelial cells. Can replace beta-catenin in E-cadherin/catenin adhesion complexes which are proposed to couple cadherins to the actin cytoskeleton (By similarity). {ECO:0000250}.
P16070 CD44 T720 ochoa CD44 antigen (CDw44) (Epican) (Extracellular matrix receptor III) (ECMR-III) (GP90 lymphocyte homing/adhesion receptor) (HUTCH-I) (Heparan sulfate proteoglycan) (Hermes antigen) (Hyaluronate receptor) (Phagocytic glycoprotein 1) (PGP-1) (Phagocytic glycoprotein I) (PGP-I) (CD antigen CD44) Cell-surface receptor that plays a role in cell-cell interactions, cell adhesion and migration, helping them to sense and respond to changes in the tissue microenvironment (PubMed:16541107, PubMed:19703720, PubMed:22726066). Participates thereby in a wide variety of cellular functions including the activation, recirculation and homing of T-lymphocytes, hematopoiesis, inflammation and response to bacterial infection (PubMed:7528188). Engages, through its ectodomain, extracellular matrix components such as hyaluronan/HA, collagen, growth factors, cytokines or proteases and serves as a platform for signal transduction by assembling, via its cytoplasmic domain, protein complexes containing receptor kinases and membrane proteases (PubMed:18757307, PubMed:23589287). Such effectors include PKN2, the RhoGTPases RAC1 and RHOA, Rho-kinases and phospholipase C that coordinate signaling pathways promoting calcium mobilization and actin-mediated cytoskeleton reorganization essential for cell migration and adhesion (PubMed:15123640). {ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:16541107, ECO:0000269|PubMed:18757307, ECO:0000269|PubMed:19703720, ECO:0000269|PubMed:22726066, ECO:0000269|PubMed:23589287, ECO:0000269|PubMed:7528188}.
P16885 PLCG2 T1045 psp 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-gamma-2) (Phospholipase C-IV) (PLC-IV) (Phospholipase C-gamma-2) (PLC-gamma-2) The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. It is a crucial enzyme in transmembrane signaling. {ECO:0000269|PubMed:23000145}.
P17612 PRKACA T49 ochoa cAMP-dependent protein kinase catalytic subunit alpha (PKA C-alpha) (EC 2.7.11.11) Phosphorylates a large number of substrates in the cytoplasm and the nucleus (PubMed:15642694, PubMed:15905176, PubMed:16387847, PubMed:17333334, PubMed:17565987, PubMed:17693412, PubMed:18836454, PubMed:19949837, PubMed:20356841, PubMed:21085490, PubMed:21514275, PubMed:21812984, PubMed:31112131). Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA, SOX9 and VASP (PubMed:15642694, PubMed:15905176, PubMed:16387847, PubMed:17333334, PubMed:17565987, PubMed:17693412, PubMed:18836454, PubMed:19949837, PubMed:20356841, PubMed:21085490, PubMed:21514275, PubMed:21812984). Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis (PubMed:21423175). RORA is activated by phosphorylation (PubMed:21514275). Required for glucose-mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts (PubMed:19949837). Involved in chondrogenesis by mediating phosphorylation of SOX9 (By similarity). Involved in the regulation of platelets in response to thrombin and collagen; maintains circulating platelets in a resting state by phosphorylating proteins in numerous platelet inhibitory pathways when in complex with NF-kappa-B (NFKB1 and NFKB2) and I-kappa-B-alpha (NFKBIA), but thrombin and collagen disrupt these complexes and free active PRKACA stimulates platelets and leads to platelet aggregation by phosphorylating VASP (PubMed:15642694, PubMed:20356841). Prevents the antiproliferative and anti-invasive effects of alpha-difluoromethylornithine in breast cancer cells when activated (PubMed:17333334). RYR2 channel activity is potentiated by phosphorylation in presence of luminal Ca(2+), leading to reduced amplitude and increased frequency of store overload-induced Ca(2+) release (SOICR) characterized by an increased rate of Ca(2+) release and propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+) (PubMed:17693412). PSMC5/RPT6 activation by phosphorylation stimulates proteasome (PubMed:17565987). Negatively regulates tight junctions (TJs) in ovarian cancer cells via CLDN3 phosphorylation (PubMed:15905176). NFKB1 phosphorylation promotes NF-kappa-B p50-p50 DNA binding (PubMed:15642694). Required for phosphorylation of GLI transcription factors which inhibits them and prevents transcriptional activation of Hedgehog signaling pathway target genes (By similarity). GLI transcription factor phosphorylation is inhibited by interaction of PRKACA with SMO which sequesters PRKACA at the cell membrane (By similarity). Involved in embryonic development by down-regulating the Hedgehog (Hh) signaling pathway that determines embryo pattern formation and morphogenesis most probably through the regulation of OFD1 in ciliogenesis (PubMed:33934390). Prevents meiosis resumption in prophase-arrested oocytes via CDC25B inactivation by phosphorylation (By similarity). May also regulate rapid eye movement (REM) sleep in the pedunculopontine tegmental (PPT) (By similarity). Phosphorylates APOBEC3G and AICDA (PubMed:16387847, PubMed:18836454). Phosphorylates HSF1; this phosphorylation promotes HSF1 nuclear localization and transcriptional activity upon heat shock (PubMed:21085490). Acts as a negative regulator of mTORC1 by mediating phosphorylation of RPTOR (PubMed:31112131). {ECO:0000250|UniProtKB:P05132, ECO:0000250|UniProtKB:P27791, ECO:0000269|PubMed:15642694, ECO:0000269|PubMed:15905176, ECO:0000269|PubMed:16387847, ECO:0000269|PubMed:17333334, ECO:0000269|PubMed:17565987, ECO:0000269|PubMed:17693412, ECO:0000269|PubMed:18836454, ECO:0000269|PubMed:19949837, ECO:0000269|PubMed:20356841, ECO:0000269|PubMed:21085490, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:21514275, ECO:0000269|PubMed:21812984, ECO:0000269|PubMed:31112131, ECO:0000269|PubMed:33934390}.; FUNCTION: [Isoform 2]: Phosphorylates and activates ABL1 in sperm flagellum to promote spermatozoa capacitation. {ECO:0000250|UniProtKB:P05132}.
P18583 SON T1691 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P19338 NCL T452 ochoa Nucleolin (Protein C23) Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}.
P20073 ANXA7 T286 psp Annexin A7 (Annexin VII) (Annexin-7) (Synexin) Calcium/phospholipid-binding protein which promotes membrane fusion and is involved in exocytosis.
P20336 RAB3A T193 ochoa Ras-related protein Rab-3A (EC 3.6.5.2) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:2501306). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:2501306). RAB3A plays a central role in regulated exocytosis and secretion. Controls the recruitment, tethering and docking of secretory vesicles to the plasma membrane (PubMed:2501306). Upon stimulation, switches to its active GTP-bound form, cycles to vesicles and recruits effectors such as RIMS1, RIMS2, Rabphilin-3A/RPH3A, RPH3AL or SYTL4 to help the docking of vesicules onto the plasma membrane (By similarity). Upon GTP hydrolysis by GTPase-activating protein, dissociates from the vesicle membrane allowing the exocytosis to proceed (By similarity). Stimulates insulin secretion through interaction with RIMS2 or RPH3AL effectors in pancreatic beta cells (By similarity). Regulates calcium-dependent lysosome exocytosis and plasma membrane repair (PMR) via the interaction with 2 effectors, SYTL4 and myosin-9/MYH9 (PubMed:27325790). Acts as a positive regulator of acrosome content secretion in sperm cells by interacting with RIMS1 (PubMed:22248876, PubMed:30599141). Also plays a role in the regulation of dopamine release by interacting with synaptotagmin I/SYT (By similarity). {ECO:0000250|UniProtKB:P63011, ECO:0000250|UniProtKB:P63012, ECO:0000269|PubMed:22248876, ECO:0000269|PubMed:2501306, ECO:0000269|PubMed:27325790, ECO:0000269|PubMed:30599141}.
P20929 NEB T1867 ochoa Nebulin This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin.
P20929 NEB T2111 ochoa Nebulin This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin.
P20936 RASA1 T462 ochoa Ras GTPase-activating protein 1 (GAP) (GTPase-activating protein) (RasGAP) (Ras p21 protein activator) (p120GAP) Inhibitory regulator of the Ras-cyclic AMP pathway. Stimulates the GTPase of normal but not oncogenic Ras p21; this stimulation may be further increased in the presence of NCK1. {ECO:0000269|PubMed:11389730, ECO:0000269|PubMed:8360177}.
P21333 FLNA T2381 ochoa Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}.
P21359 NF1 T2564 ochoa Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}.
P21462 FPR1 T325 psp fMet-Leu-Phe receptor (fMLP receptor) (N-formyl peptide receptor) (FPR) (N-formylpeptide chemoattractant receptor) High affinity receptor for N-formyl-methionyl peptides (fMLP), which are powerful neutrophil chemotactic factors (PubMed:10514456, PubMed:15153520, PubMed:2161213, PubMed:2176894). Binding of fMLP to the receptor stimulates intracellular calcium mobilization and superoxide anion release (PubMed:15153520, PubMed:15210802, PubMed:1712023, PubMed:2161213). This response is mediated via a G-protein that activates a phosphatidylinositol-calcium second messenger system (PubMed:10514456, PubMed:1712023). Receptor for TAFA4, mediates its effects on chemoattracting macrophages, promoting phagocytosis and increasing ROS release (PubMed:25109685). Receptor for cathepsin CTSG, leading to increased phagocyte chemotaxis (PubMed:15210802). {ECO:0000269|PubMed:10514456, ECO:0000269|PubMed:15153520, ECO:0000269|PubMed:2161213, ECO:0000269|PubMed:2176894, ECO:0000269|PubMed:25109685, ECO:0000303|PubMed:10514456, ECO:0000303|PubMed:1712023, ECO:0000303|PubMed:2161213, ECO:0000303|PubMed:2176894}.
P21964 COMT T81 ochoa Catechol O-methyltransferase (EC 2.1.1.6) Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol. {ECO:0000269|PubMed:11559542, ECO:0000269|PubMed:21846718}.
P21980 TGM2 T162 psp Protein-glutamine gamma-glutamyltransferase 2 (EC 2.3.2.13) (Erythrocyte transglutaminase) (Heart G alpha(h)) (hhG alpha(h)) (Isopeptidase TGM2) (EC 3.4.-.-) (Protein G alpha(h)) (G(h)) (Protein-glutamine deamidase TGM2) (EC 3.5.1.44) (Protein-glutamine dopaminyltransferase TGM2) (EC 2.3.1.-) (Protein-glutamine histaminyltransferase TGM2) (EC 2.3.1.-) (Protein-glutamine noradrenalinyltransferase TGM2) (EC 2.3.1.-) (Protein-glutamine serotonyltransferase TGM2) (EC 2.3.1.-) (Tissue transglutaminase) (tTG) (tTgase) (Transglutaminase C) (TG(C)) (TGC) (TGase C) (Transglutaminase H) (TGase H) (Transglutaminase II) (TGase II) (Transglutaminase-2) (TG2) (TGase-2) (hTG2) Calcium-dependent acyltransferase that catalyzes the formation of covalent bonds between peptide-bound glutamine and various primary amines, such as gamma-amino group of peptide-bound lysine, or mono- and polyamines, thereby producing cross-linked or aminated proteins, respectively (PubMed:23941696, PubMed:31991788, PubMed:9252372). Involved in many biological processes, such as bone development, angiogenesis, wound healing, cellular differentiation, chromatin modification and apoptosis (PubMed:1683874, PubMed:27270573, PubMed:28198360, PubMed:7935379, PubMed:9252372). Acts as a protein-glutamine gamma-glutamyltransferase by mediating the cross-linking of proteins, such as ACO2, HSPB6, FN1, HMGB1, RAP1GDS1, SLC25A4/ANT1, SPP1 and WDR54 (PubMed:23941696, PubMed:24349085, PubMed:29618516, PubMed:30458214). Under physiological conditions, the protein cross-linking activity is inhibited by GTP; inhibition is relieved by Ca(2+) in response to various stresses (PubMed:18092889, PubMed:7592956, PubMed:7649299). When secreted, catalyzes cross-linking of proteins of the extracellular matrix, such as FN1 and SPP1 resulting in the formation of scaffolds (PubMed:12506096). Plays a key role during apoptosis, both by (1) promoting the cross-linking of cytoskeletal proteins resulting in condensation of the cytoplasm, and by (2) mediating cross-linking proteins of the extracellular matrix, resulting in the irreversible formation of scaffolds that stabilize the integrity of the dying cells before their clearance by phagocytosis, thereby preventing the leakage of harmful intracellular components (PubMed:7935379, PubMed:9252372). In addition to protein cross-linking, can use different monoamine substrates to catalyze a vast array of protein post-translational modifications: mediates aminylation of serotonin, dopamine, noradrenaline or histamine into glutamine residues of target proteins to generate protein serotonylation, dopaminylation, noradrenalinylation or histaminylation, respectively (PubMed:23797785, PubMed:30867594). Mediates protein serotonylation of small GTPases during activation and aggregation of platelets, leading to constitutive activation of these GTPases (By similarity). Plays a key role in chromatin organization by mediating serotonylation and dopaminylation of histone H3 (PubMed:30867594, PubMed:32273471). Catalyzes serotonylation of 'Gln-5' of histone H3 (H3Q5ser) during serotonergic neuron differentiation, thereby facilitating transcription (PubMed:30867594). Acts as a mediator of neurotransmission-independent role of nuclear dopamine in ventral tegmental area (VTA) neurons: catalyzes dopaminylation of 'Gln-5' of histone H3 (H3Q5dop), thereby regulating relapse-related transcriptional plasticity in the reward system (PubMed:32273471). Regulates vein remodeling by mediating serotonylation and subsequent inactivation of ATP2A2/SERCA2 (By similarity). Also acts as a protein deamidase by mediating the side chain deamidation of specific glutamine residues of proteins to glutamate (PubMed:20547769, PubMed:9623982). Catalyzes specific deamidation of protein gliadin, a component of wheat gluten in the diet (PubMed:9623982). May also act as an isopeptidase cleaving the previously formed cross-links (PubMed:26250429, PubMed:27131890). Also able to participate in signaling pathways independently of its acyltransferase activity: acts as a signal transducer in alpha-1 adrenergic receptor-mediated stimulation of phospholipase C-delta (PLCD) activity and is required for coupling alpha-1 adrenergic agonists to the stimulation of phosphoinositide lipid metabolism (PubMed:8943303). {ECO:0000250|UniProtKB:P08587, ECO:0000250|UniProtKB:P21981, ECO:0000269|PubMed:12506096, ECO:0000269|PubMed:1683874, ECO:0000269|PubMed:18092889, ECO:0000269|PubMed:20547769, ECO:0000269|PubMed:23797785, ECO:0000269|PubMed:23941696, ECO:0000269|PubMed:24349085, ECO:0000269|PubMed:26250429, ECO:0000269|PubMed:27131890, ECO:0000269|PubMed:28198360, ECO:0000269|PubMed:29618516, ECO:0000269|PubMed:30458214, ECO:0000269|PubMed:30867594, ECO:0000269|PubMed:31991788, ECO:0000269|PubMed:32273471, ECO:0000269|PubMed:7592956, ECO:0000269|PubMed:7649299, ECO:0000269|PubMed:7935379, ECO:0000269|PubMed:8943303, ECO:0000269|PubMed:9252372, ECO:0000269|PubMed:9623982, ECO:0000303|PubMed:27270573}.; FUNCTION: [Isoform 2]: Has cytotoxic activity: is able to induce apoptosis independently of its acyltransferase activity. {ECO:0000269|PubMed:17116873}.
P22694 PRKACB T49 ochoa cAMP-dependent protein kinase catalytic subunit beta (PKA C-beta) (EC 2.7.11.11) Mediates cAMP-dependent signaling triggered by receptor binding to GPCRs (PubMed:12420224, PubMed:21423175, PubMed:31112131). PKA activation regulates diverse cellular processes such as cell proliferation, the cell cycle, differentiation and regulation of microtubule dynamics, chromatin condensation and decondensation, nuclear envelope disassembly and reassembly, as well as regulation of intracellular transport mechanisms and ion flux (PubMed:12420224, PubMed:21423175). Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis (PubMed:12420224, PubMed:21423175). Phosphorylates GPKOW which regulates its ability to bind RNA (PubMed:21880142). Acts as a negative regulator of mTORC1 by mediating phosphorylation of RPTOR (PubMed:31112131). {ECO:0000269|PubMed:12420224, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:21880142, ECO:0000269|PubMed:31112131}.
P23471 PTPRZ1 T2054 ochoa Receptor-type tyrosine-protein phosphatase zeta (R-PTP-zeta) (EC 3.1.3.48) (Protein-tyrosine phosphatase receptor type Z polypeptide 1) (Protein-tyrosine phosphatase receptor type Z polypeptide 2) (R-PTP-zeta-2) Protein tyrosine phosphatase that negatively regulates oligodendrocyte precursor proliferation in the embryonic spinal cord. Required for normal differentiation of the precursor cells into mature, fully myelinating oligodendrocytes. May play a role in protecting oligondendrocytes against apoptosis. May play a role in the establishment of contextual memory, probably via the dephosphorylation of proteins that are part of important signaling cascades (By similarity). {ECO:0000250}.
P23508 MCC T713 ochoa Colorectal mutant cancer protein (Protein MCC) Candidate for the putative colorectal tumor suppressor gene located at 5q21. Suppresses cell proliferation and the Wnt/b-catenin pathway in colorectal cancer cells. Inhibits DNA binding of b-catenin/TCF/LEF transcription factors. Involved in cell migration independently of RAC1, CDC42 and p21-activated kinase (PAK) activation (PubMed:18591935, PubMed:19555689, PubMed:22480440). Represses the beta-catenin pathway (canonical Wnt signaling pathway) in a CCAR2-dependent manner by sequestering CCAR2 to the cytoplasm, thereby impairing its ability to inhibit SIRT1 which is involved in the deacetylation and negative regulation of beta-catenin (CTNB1) transcriptional activity (PubMed:24824780). {ECO:0000269|PubMed:18591935, ECO:0000269|PubMed:19555689, ECO:0000269|PubMed:22480440, ECO:0000269|PubMed:24824780}.
P23588 EIF4B T427 ochoa Eukaryotic translation initiation factor 4B (eIF-4B) Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F.
P25054 APC T1313 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P25963 NFKBIA T291 psp NF-kappa-B inhibitor alpha (I-kappa-B-alpha) (IkB-alpha) (IkappaBalpha) (Major histocompatibility complex enhancer-binding protein MAD3) Inhibits the activity of dimeric NF-kappa-B/REL complexes by trapping REL (RELA/p65 and NFKB1/p50) dimers in the cytoplasm by masking their nuclear localization signals (PubMed:1493333, PubMed:36651806, PubMed:7479976). On cellular stimulation by immune and pro-inflammatory responses, becomes phosphorylated promoting ubiquitination and degradation, enabling the dimeric RELA to translocate to the nucleus and activate transcription (PubMed:7479976, PubMed:7628694, PubMed:7796813, PubMed:7878466). {ECO:0000269|PubMed:1493333, ECO:0000269|PubMed:36651806, ECO:0000269|PubMed:7479976, ECO:0000269|PubMed:7628694, ECO:0000269|PubMed:7796813, ECO:0000269|PubMed:7878466}.
P27361 MAPK3 T198 ochoa|psp Mitogen-activated protein kinase 3 (MAP kinase 3) (MAPK 3) (EC 2.7.11.24) (ERT2) (Extracellular signal-regulated kinase 1) (ERK-1) (Insulin-stimulated MAP2 kinase) (MAP kinase isoform p44) (p44-MAPK) (Microtubule-associated protein 2 kinase) (p44-ERK1) Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway (PubMed:34497368). MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DEPTOR, FRS2 or GRB10) (PubMed:35216969). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. {ECO:0000269|PubMed:10393181, ECO:0000269|PubMed:10617468, ECO:0000269|PubMed:12110590, ECO:0000269|PubMed:12356731, ECO:0000269|PubMed:12974390, ECO:0000269|PubMed:15788397, ECO:0000269|PubMed:15952796, ECO:0000269|PubMed:16581800, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:34497368, ECO:0000269|PubMed:35216969, ECO:0000269|PubMed:8325880, ECO:0000269|PubMed:9155018, ECO:0000269|PubMed:9480836}.
P27816 MAP4 T597 ochoa Microtubule-associated protein 4 (MAP-4) Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}.
P28290 ITPRID2 T475 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P29317 EPHA2 T773 ochoa Ephrin type-A receptor 2 (EC 2.7.10.1) (Epithelial cell kinase) (Tyrosine-protein kinase receptor ECK) Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:16236711, ECO:0000269|PubMed:18339848, ECO:0000269|PubMed:19573808, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:20861311, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:27385333}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.; FUNCTION: Acts as a receptor for human cytomegalovirus (HCMV) to mediate viral entry and fusion in glioblastoma cells. {ECO:0000269|PubMed:37146061}.
P29320 EPHA3 T780 ochoa Ephrin type-A receptor 3 (EC 2.7.10.1) (EPH-like kinase 4) (EK4) (hEK4) (HEK) (Human embryo kinase) (Tyrosine-protein kinase TYRO4) (Tyrosine-protein kinase receptor ETK1) (Eph-like tyrosine kinase 1) Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Highly promiscuous for ephrin-A ligands it binds preferentially EFNA5. Upon activation by EFNA5 regulates cell-cell adhesion, cytoskeletal organization and cell migration. Plays a role in cardiac cells migration and differentiation and regulates the formation of the atrioventricular canal and septum during development probably through activation by EFNA1. Involved in the retinotectal mapping of neurons. May also control the segregation but not the guidance of motor and sensory axons during neuromuscular circuit development. {ECO:0000269|PubMed:11870224}.
P29374 ARID4A T1105 ochoa AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}.
P30050 RPL12 T128 ochoa Large ribosomal subunit protein uL11 (60S ribosomal protein L12) Component of the large ribosomal subunit (PubMed:25901680). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25901680). Binds directly to 26S ribosomal RNA (PubMed:25901680). {ECO:0000269|PubMed:25901680}.
P30050 RPL12 T135 ochoa Large ribosomal subunit protein uL11 (60S ribosomal protein L12) Component of the large ribosomal subunit (PubMed:25901680). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25901680). Binds directly to 26S ribosomal RNA (PubMed:25901680). {ECO:0000269|PubMed:25901680}.
P31146 CORO1A T424 ochoa Coronin-1A (Coronin-like protein A) (Clipin-A) (Coronin-like protein p57) (Tryptophan aspartate-containing coat protein) (TACO) May be a crucial component of the cytoskeleton of highly motile cells, functioning both in the invagination of large pieces of plasma membrane, as well as in forming protrusions of the plasma membrane involved in cell locomotion. In mycobacteria-infected cells, its retention on the phagosomal membrane prevents fusion between phagosomes and lysosomes. {ECO:0000269|PubMed:10338208}.
P31327 CPS1 T1022 ochoa Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell.
P32245 MC4R T312 psp Melanocortin receptor 4 (MC4-R) Hormone receptor that acts as a key component of the leptin-melanocortin pathway at the intersection of homeostatic maintenance of energetic state (PubMed:32327598, PubMed:33858992). Plays a role in regulating food intake: activation by a stimulating hormone such as anorexigenic alpha-melanocyte stimulating hormone (alpha-MSH) inhibits appetite, whereas binding to a natural antagonist like Agouti-related protein/AGRP promotes appetite. G-protein-coupled receptor that activates conventional Galphas signaling leading to induction of anorexogenic signaling in the hypothalamus to result in negative energy balance (PubMed:33858992). Regulates the firing activity of neurons from the hypothalamus by alpha-MSH and AGRP independently of Galphas signaling by ligand-induced coupling of closure of inwardly rectifying potassium channel KCNJ13 (By similarity). In intestinal epithelial cells, plays a role in the inhibition of hepatic glucose production via nesfatin-1/NUCB2 leading to increased cyclic adenosine monophosphate (cAMP) levels and glucagon-like peptide 1 (GLP-1) secretion in the intestinal epithelium (PubMed:39562740). {ECO:0000250|UniProtKB:P56450, ECO:0000269|PubMed:12646665, ECO:0000269|PubMed:25163632, ECO:0000269|PubMed:32327598, ECO:0000269|PubMed:33858992, ECO:0000269|PubMed:39562740}.
P35222 CTNNB1 T653 ochoa|psp Catenin beta-1 (Beta-catenin) Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}.
P35251 RFC1 T76 ochoa|psp Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35408 PTGER4 T391 ochoa Prostaglandin E2 receptor EP4 subtype (PGE receptor EP4 subtype) (PGE2 receptor EP4 subtype) (Prostanoid EP4 receptor) Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. Has a relaxing effect on smooth muscle. May play an important role in regulating renal hemodynamics, intestinal epithelial transport, adrenal aldosterone secretion, and uterine function.
P35579 MYH9 T1058 ochoa Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA) Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis (By similarity). Promotes cell motility in conjunction with S100A4 (PubMed:16707441). During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10 (PubMed:20052411). {ECO:0000250|UniProtKB:Q8VDD5, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:20052411}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000269|PubMed:20944748, ECO:0000269|PubMed:39048823}.
P35610 SOAT1 T36 ochoa Sterol O-acyltransferase 1 (EC 2.3.1.26) (Acyl-coenzyme A:cholesterol acyltransferase 1) (ACAT-1) (Cholesterol acyltransferase 1) Catalyzes the formation of fatty acid-cholesterol esters, which are less soluble in membranes than cholesterol (PubMed:16154994, PubMed:16647063, PubMed:32433613, PubMed:32433614, PubMed:32944968, PubMed:9020103). Plays a role in lipoprotein assembly and dietary cholesterol absorption (PubMed:16154994, PubMed:9020103). Preferentially utilizes oleoyl-CoA ((9Z)-octadecenoyl-CoA) as a substrate: shows a higher activity towards an acyl-CoA substrate with a double bond at the delta-9 position (9Z) than towards saturated acyl-CoA or an unsaturated acyl-CoA with a double bond at the delta-7 (7Z) or delta-11 (11Z) positions (PubMed:11294643, PubMed:32433614). {ECO:0000269|PubMed:11294643, ECO:0000269|PubMed:16154994, ECO:0000269|PubMed:16647063, ECO:0000269|PubMed:32433613, ECO:0000269|PubMed:32433614, ECO:0000269|PubMed:32944968, ECO:0000269|PubMed:9020103}.
P36508 ZNF76 T286 ochoa Zinc finger protein 76 (Zinc finger protein 523) May be involved in transcriptional regulation.
P36776 LONP1 T188 ochoa Lon protease homolog, mitochondrial (EC 3.4.21.53) (LONHs) (Lon protease-like protein) (LONP) (Mitochondrial ATP-dependent protease Lon) (Serine protease 15) ATP-dependent serine protease that mediates the selective degradation of misfolded, unassembled or oxidatively damaged polypeptides as well as certain short-lived regulatory proteins in the mitochondrial matrix (PubMed:12198491, PubMed:15870080, PubMed:17579211, PubMed:37327776, PubMed:8248235). Endogenous substrates include mitochondrial steroidogenic acute regulatory (StAR) protein, DELE1, helicase Twinkle (TWNK) and the large ribosomal subunit protein MRPL32/bL32m (PubMed:17579211, PubMed:28377575, PubMed:37327776). MRPL32/bL32m is protected from degradation by LONP1 when it is bound to a nucleic acid (RNA), but TWNK is not (PubMed:17579211, PubMed:28377575). May also have a chaperone function in the assembly of inner membrane protein complexes (By similarity). Participates in the regulation of mitochondrial gene expression and in the maintenance of the integrity of the mitochondrial genome (PubMed:17420247). Binds to mitochondrial promoters and RNA in a single-stranded, site-specific, and strand-specific manner (PubMed:17420247). May regulate mitochondrial DNA replication and/or gene expression using site-specific, single-stranded DNA binding to target the degradation of regulatory proteins binding to adjacent sites in mitochondrial promoters (PubMed:14739292, PubMed:17420247). {ECO:0000255|HAMAP-Rule:MF_03120, ECO:0000269|PubMed:12198491, ECO:0000269|PubMed:14739292, ECO:0000269|PubMed:15870080, ECO:0000269|PubMed:17420247, ECO:0000269|PubMed:17579211, ECO:0000269|PubMed:28377575, ECO:0000269|PubMed:37327776, ECO:0000269|PubMed:8248235}.
P36915 GNL1 T50 ochoa Guanine nucleotide-binding protein-like 1 (GTP-binding protein HSR1) Possible regulatory or functional link with the histocompatibility cluster.
P37275 ZEB1 T996 ochoa Zinc finger E-box-binding homeobox 1 (NIL-2-A zinc finger protein) (Negative regulator of IL2) (Transcription factor 8) (TCF-8) Acts as a transcriptional repressor. Inhibits interleukin-2 (IL-2) gene expression. Enhances or represses the promoter activity of the ATP1A1 gene depending on the quantity of cDNA and on the cell type. Represses E-cadherin promoter and induces an epithelial-mesenchymal transition (EMT) by recruiting SMARCA4/BRG1. Represses BCL6 transcription in the presence of the corepressor CTBP1. Positively regulates neuronal differentiation. Represses RCOR1 transcription activation during neurogenesis. Represses transcription by binding to the E box (5'-CANNTG-3'). In the absence of TGFB1, acts as a repressor of COL1A2 transcription via binding to the E-box in the upstream enhancer region (By similarity). {ECO:0000250|UniProtKB:Q64318, ECO:0000269|PubMed:19935649, ECO:0000269|PubMed:20175752, ECO:0000269|PubMed:20418909}.
P38432 COIL T122 ochoa|psp Coilin (p80-coilin) Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}.
P38646 HSPA9 T86 ochoa Stress-70 protein, mitochondrial (EC 3.6.4.10) (75 kDa glucose-regulated protein) (GRP-75) (Heat shock 70 kDa protein 9) (Heat shock protein family A member 9) (Mortalin) (MOT) (Peptide-binding protein 74) (PBP74) Mitochondrial chaperone that plays a key role in mitochondrial protein import, folding, and assembly. Plays an essential role in the protein quality control system, the correct folding of proteins, the re-folding of misfolded proteins, and the targeting of proteins for subsequent degradation. These processes are achieved through cycles of ATP binding, ATP hydrolysis, and ADP release, mediated by co-chaperones (PubMed:18632665, PubMed:25615450, PubMed:28848044, PubMed:30933555, PubMed:31177526). In mitochondria, it associates with the TIM (translocase of the inner membrane) protein complex to assist in the import and folding of mitochondrial proteins (By similarity). Plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis, interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU (PubMed:26702583). Regulates erythropoiesis via stabilization of ISC assembly (PubMed:21123823, PubMed:26702583). Regulates mitochondrial calcium-dependent apoptosis by coupling two calcium channels, ITPR1 and VDAC1, at the mitochondria-associated endoplasmic reticulum (ER) membrane to facilitate calcium transport from the ER lumen to the mitochondria intermembrane space, providing calcium for the downstream calcium channel MCU, which releases it into the mitochondrial matrix (By similarity). Although primarily located in the mitochondria, it is also found in other cellular compartments. In the cytosol, it associates with proteins involved in signaling, apoptosis, or senescence. It may play a role in cell cycle regulation via its interaction with and promotion of degradation of TP53 (PubMed:24625977, PubMed:26634371). May play a role in the control of cell proliferation and cellular aging (By similarity). Protects against reactive oxygen species (ROS) (By similarity). Extracellular HSPA9 plays a cytoprotective role by preventing cell lysis following immune attack by the membrane attack complex by disrupting formation of the complex (PubMed:16091382). {ECO:0000250|UniProtKB:P0CS90, ECO:0000250|UniProtKB:P38647, ECO:0000269|PubMed:16091382, ECO:0000269|PubMed:18632665, ECO:0000269|PubMed:21123823, ECO:0000269|PubMed:24625977, ECO:0000269|PubMed:25615450, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:26702583, ECO:0000269|PubMed:28848044, ECO:0000269|PubMed:30933555, ECO:0000269|PubMed:31177526}.
P40189 IL6ST T890 psp Interleukin-6 receptor subunit beta (IL-6 receptor subunit beta) (IL-6R subunit beta) (IL-6R-beta) (IL-6RB) (CDw130) (Interleukin-6 signal transducer) (Membrane glycoprotein 130) (gp130) (Oncostatin-M receptor subunit alpha) (CD antigen CD130) Signal-transducing molecule (PubMed:2261637). The receptor systems for IL6, LIF, OSM, CNTF, IL11, CTF1 and BSF3 can utilize IL6ST for initiating signal transmission. Binding of IL6 to IL6R induces IL6ST homodimerization and formation of a high-affinity receptor complex, which activates the intracellular JAK-MAPK and JAK-STAT3 signaling pathways (PubMed:19915009, PubMed:2261637, PubMed:23294003). That causes phosphorylation of IL6ST tyrosine residues which in turn activates STAT3 (PubMed:19915009, PubMed:23294003, PubMed:25731159). In parallel, the IL6 signaling pathway induces the expression of two cytokine receptor signaling inhibitors, SOCS1 and SOCS3, which inhibit JAK and terminate the activity of the IL6 signaling pathway as a negative feedback loop (By similarity). Also activates the yes-associated protein 1 (YAP) and NOTCH pathways to control inflammation-induced epithelial regeneration, independently of STAT3 (By similarity). Acts as a receptor for the neuroprotective peptide humanin as part of a complex with IL27RA/WSX1 and CNTFR (PubMed:19386761). Mediates signals which regulate immune response, hematopoiesis, pain control and bone metabolism (By similarity). Has a role in embryonic development (By similarity). Essential for survival of motor and sensory neurons and for differentiation of astrocytes (By similarity). Required for expression of TRPA1 in nociceptive neurons (By similarity). Required for the maintenance of PTH1R expression in the osteoblast lineage and for the stimulation of PTH-induced osteoblast differentiation (By similarity). Required for normal trabecular bone mass and cortical bone composition (By similarity). {ECO:0000250|UniProtKB:Q00560, ECO:0000269|PubMed:19386761, ECO:0000269|PubMed:19915009, ECO:0000269|PubMed:2261637, ECO:0000269|PubMed:23294003, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:28747427, ECO:0000269|PubMed:30309848}.; FUNCTION: [Isoform 2]: Binds to the soluble IL6:sIL6R complex (hyper-IL6), thereby blocking IL6 trans-signaling. Inhibits sIL6R-dependent acute phase response (PubMed:11121117, PubMed:21990364, PubMed:30279168). Also blocks IL11 cluster signaling through IL11R (PubMed:30279168). {ECO:0000269|PubMed:11121117, ECO:0000269|PubMed:21990364, ECO:0000269|PubMed:30279168}.
P46013 MKI67 T1017 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46100 ATRX T684 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46109 CRKL T130 ochoa Crk-like protein May mediate the transduction of intracellular signals.
P46940 IQGAP1 T1413 ochoa Ras GTPase-activating-like protein IQGAP1 (p195) Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}.
P47712 PLA2G4A T447 ochoa Cytosolic phospholipase A2 (cPLA2) (Phospholipase A2 group IVA) [Includes: Phospholipase A2 (EC 3.1.1.4) (Phosphatidylcholine 2-acylhydrolase); Lysophospholipase (EC 3.1.1.5)] Has primarily calcium-dependent phospholipase and lysophospholipase activities, with a major role in membrane lipid remodeling and biosynthesis of lipid mediators of the inflammatory response (PubMed:10358058, PubMed:14709560, PubMed:16617059, PubMed:17472963, PubMed:18451993, PubMed:27642067, PubMed:7794891, PubMed:8619991, PubMed:8702602, PubMed:9425121). Plays an important role in embryo implantation and parturition through its ability to trigger prostanoid production (By similarity). Preferentially hydrolyzes the ester bond of the fatty acyl group attached at sn-2 position of phospholipids (phospholipase A2 activity) (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:8619991, PubMed:9425121). Selectively hydrolyzes sn-2 arachidonoyl group from membrane phospholipids, providing the precursor for eicosanoid biosynthesis via the cyclooxygenase pathway (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:9425121). In an alternative pathway of eicosanoid biosynthesis, hydrolyzes sn-2 fatty acyl chain of eicosanoid lysophopholipids to release free bioactive eicosanoids (PubMed:27642067). Hydrolyzes the ester bond of the fatty acyl group attached at sn-1 position of phospholipids (phospholipase A1 activity) only if an ether linkage rather than an ester linkage is present at the sn-2 position. This hydrolysis is not stereospecific (PubMed:7794891). Has calcium-independent phospholipase A2 and lysophospholipase activities in the presence of phosphoinositides (PubMed:12672805). Has O-acyltransferase activity. Catalyzes the transfer of fatty acyl chains from phospholipids to a primary hydroxyl group of glycerol (sn-1 or sn-3), potentially contributing to monoacylglycerol synthesis (PubMed:7794891). {ECO:0000250|UniProtKB:P47713, ECO:0000269|PubMed:10358058, ECO:0000269|PubMed:12672805, ECO:0000269|PubMed:14709560, ECO:0000269|PubMed:16617059, ECO:0000269|PubMed:17472963, ECO:0000269|PubMed:18451993, ECO:0000269|PubMed:27642067, ECO:0000269|PubMed:7794891, ECO:0000269|PubMed:8619991, ECO:0000269|PubMed:8702602, ECO:0000269|PubMed:9425121}.
P48681 NES T559 ochoa Nestin Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}.
P48681 NES T585 ochoa Nestin Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}.
P49321 NASP T123 ochoa Nuclear autoantigenic sperm protein (NASP) Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.
P49321 NASP T490 ochoa Nuclear autoantigenic sperm protein (NASP) Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.
P49327 FASN T2255 ochoa Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}.
P49368 CCT3 T86 psp T-complex protein 1 subunit gamma (TCP-1-gamma) (EC 3.6.1.-) (CCT-gamma) (Chaperonin containing T-complex polypeptide 1 subunit 3) (hTRiC5) Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}.
P49674 CSNK1E T44 psp Casein kinase I isoform epsilon (CKI-epsilon) (CKIe) (EC 2.7.11.1) Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates (Probable). Participates in Wnt signaling (PubMed:12556519, PubMed:23413191). Phosphorylates DVL1 (PubMed:12556519). Phosphorylates DVL2 (PubMed:23413191). Phosphorylates NEDD9/HEF1 (By similarity). Central component of the circadian clock (PubMed:16790549). In balance with PP1, determines the circadian period length, through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation (PubMed:15917222, PubMed:16790549). Controls PER1 and PER2 nuclear transport and degradation (By similarity). Inhibits cytokine-induced granuloytic differentiation (PubMed:15070676). {ECO:0000250|UniProtKB:Q9JMK2, ECO:0000269|PubMed:12556519, ECO:0000269|PubMed:15070676, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:16790549, ECO:0000269|PubMed:23413191, ECO:0000305|PubMed:7797465}.
P49768 PSEN1 T327 ochoa Presenilin-1 (PS-1) (EC 3.4.23.-) (Protein S182) [Cleaved into: Presenilin-1 NTF subunit; Presenilin-1 CTF subunit; Presenilin-1 CTF12 (PS1-CTF12)] Catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein) (PubMed:10206644, PubMed:10545183, PubMed:10593990, PubMed:10811883, PubMed:10899933, PubMed:12679784, PubMed:12740439, PubMed:15274632, PubMed:20460383, PubMed:25043039, PubMed:26280335, PubMed:28269784, PubMed:30598546, PubMed:30630874). Requires the presence of the other members of the gamma-secretase complex for protease activity (PubMed:15274632, PubMed:25043039, PubMed:26280335, PubMed:30598546, PubMed:30630874). Plays a role in Notch and Wnt signaling cascades and regulation of downstream processes via its role in processing key regulatory proteins, and by regulating cytosolic CTNNB1 levels (PubMed:10593990, PubMed:10811883, PubMed:10899933, PubMed:9738936). Stimulates cell-cell adhesion via its interaction with CDH1; this stabilizes the complexes between CDH1 (E-cadherin) and its interaction partners CTNNB1 (beta-catenin), CTNND1 and JUP (gamma-catenin) (PubMed:11953314). Under conditions of apoptosis or calcium influx, cleaves CDH1 (PubMed:11953314). This promotes the disassembly of the complexes between CDH1 and CTNND1, JUP and CTNNB1, increases the pool of cytoplasmic CTNNB1, and thereby negatively regulates Wnt signaling (PubMed:11953314, PubMed:9738936). Required for normal embryonic brain and skeleton development, and for normal angiogenesis (By similarity). Mediates the proteolytic cleavage of EphB2/CTF1 into EphB2/CTF2 (PubMed:17428795, PubMed:28269784). The holoprotein functions as a calcium-leak channel that allows the passive movement of calcium from endoplasmic reticulum to cytosol and is therefore involved in calcium homeostasis (PubMed:16959576, PubMed:25394380). Involved in the regulation of neurite outgrowth (PubMed:15004326, PubMed:20460383). Is a regulator of presynaptic facilitation, spike transmission and synaptic vesicles replenishment in a process that depends on gamma-secretase activity. It acts through the control of SYT7 presynaptic expression (By similarity). {ECO:0000250|UniProtKB:P49769, ECO:0000269|PubMed:10206644, ECO:0000269|PubMed:10545183, ECO:0000269|PubMed:10593990, ECO:0000269|PubMed:10811883, ECO:0000269|PubMed:10899933, ECO:0000269|PubMed:11953314, ECO:0000269|PubMed:12679784, ECO:0000269|PubMed:12740439, ECO:0000269|PubMed:15004326, ECO:0000269|PubMed:15274632, ECO:0000269|PubMed:15341515, ECO:0000269|PubMed:16305624, ECO:0000269|PubMed:16959576, ECO:0000269|PubMed:17428795, ECO:0000269|PubMed:20460383, ECO:0000269|PubMed:25043039, ECO:0000269|PubMed:25394380, ECO:0000269|PubMed:26280335, ECO:0000269|PubMed:28269784, ECO:0000269|PubMed:30598546, ECO:0000269|PubMed:30630874, ECO:0000269|PubMed:9738936}.
P49792 RANBP2 T1497 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 T2300 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P50552 VASP T315 ochoa Vasodilator-stimulated phosphoprotein (VASP) Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance, lamellipodial and filopodial dynamics, platelet activation and cell migration. VASP promotes actin filament elongation. It protects the barbed end of growing actin filaments against capping and increases the rate of actin polymerization in the presence of capping protein. VASP stimulates actin filament elongation by promoting the transfer of profilin-bound actin monomers onto the barbed end of growing actin filaments. Plays a role in actin-based mobility of Listeria monocytogenes in host cells. Regulates actin dynamics in platelets and plays an important role in regulating platelet aggregation. {ECO:0000269|PubMed:10087267, ECO:0000269|PubMed:10438535, ECO:0000269|PubMed:15939738, ECO:0000269|PubMed:17082196, ECO:0000269|PubMed:18559661}.
P50851 LRBA T1120 ochoa Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}.
P51003 PAPOLA T694 ochoa Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}.
P51114 FXR1 T488 ochoa RNA-binding protein FXR1 (FMR1 autosomal homolog 1) (hFXR1p) mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for various processes, such as neurogenesis, muscle development and spermatogenesis (PubMed:17382880, PubMed:20417602, PubMed:30067974, PubMed:34731628, PubMed:35989368, PubMed:36306353). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:17382880, PubMed:34731628). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (By similarity). Required to activate translation of stored mRNAs during late spermatogenesis: acts by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules that recruit translation initiation factor EIF4G3 to activate translation of stored mRNAs in late spermatids (By similarity). Promotes translation of MYC transcripts by recruiting the eIF4F complex to the translation start site (PubMed:34731628). Acts as a negative regulator of inflammation in response to IL19 by promoting destabilization of pro-inflammatory transcripts (PubMed:30067974). Also acts as an inhibitor of inflammation by binding to TNF mRNA, decreasing TNF protein production (By similarity). Acts as a negative regulator of AMPA receptor GRIA2/GluA2 synthesis during long-lasting synaptic potentiation of hippocampal neurons by binding to GRIA2/GluA2 mRNA, thereby inhibiting its translation (By similarity). Regulates proliferation of adult neural stem cells by binding to CDKN1A mRNA and promoting its expression (By similarity). Acts as a regulator of sleep and synaptic homeostasis by regulating translation of transcripts in neurons (By similarity). Required for embryonic and postnatal development of muscle tissue by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules (PubMed:30770808). Involved in the nuclear pore complex localization to the nuclear envelope by preventing cytoplasmic aggregation of nucleoporins: acts by preventing ectopic phase separation of nucleoporins in the cytoplasm via a microtubule-dependent mechanism (PubMed:32706158). Plays a role in the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with PKP3 (PubMed:25225333). May also do the same for PKP2, PKP3 and DSP via its interaction with PKP1 (PubMed:25225333). Forms a cytoplasmic messenger ribonucleoprotein (mRNP) network by packaging long mRNAs, serving as a scaffold that recruits proteins and signaling molecules. This network facilitates signaling reactions by maintaining proximity between kinases and substrates, crucial for processes like actomyosin reorganization (PubMed:39106863). {ECO:0000250|UniProtKB:Q61584, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:30067974, ECO:0000269|PubMed:30770808, ECO:0000269|PubMed:32706158, ECO:0000269|PubMed:34731628, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36306353, ECO:0000269|PubMed:39106863}.
P51587 BRCA2 T363 ochoa Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}.
P52564 MAP2K6 T25 ochoa Dual specificity mitogen-activated protein kinase kinase 6 (MAP kinase kinase 6) (MAPKK 6) (EC 2.7.12.2) (MAPK/ERK kinase 6) (MEK 6) (Stress-activated protein kinase kinase 3) (SAPK kinase 3) (SAPKK-3) (SAPKK3) Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. With MAP3K3/MKK3, catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in the MAP kinases p38 MAPK11, MAPK12, MAPK13 and MAPK14 and plays an important role in the regulation of cellular responses to cytokines and all kinds of stresses. Especially, MAP2K3/MKK3 and MAP2K6/MKK6 are both essential for the activation of MAPK11 and MAPK13 induced by environmental stress, whereas MAP2K6/MKK6 is the major MAPK11 activator in response to TNF. MAP2K6/MKK6 also phosphorylates and activates PAK6. The p38 MAP kinase signal transduction pathway leads to direct activation of transcription factors. Nuclear targets of p38 MAP kinase include the transcription factors ATF2 and ELK1. Within the p38 MAPK signal transduction pathway, MAP3K6/MKK6 mediates phosphorylation of STAT4 through MAPK14 activation, and is therefore required for STAT4 activation and STAT4-regulated gene expression in response to IL-12 stimulation. The pathway is also crucial for IL-6-induced SOCS3 expression and down-regulation of IL-6-mediated gene induction; and for IFNG-dependent gene transcription. Has a role in osteoclast differentiation through NF-kappa-B transactivation by TNFSF11, and in endochondral ossification and since SOX9 is another likely downstream target of the p38 MAPK pathway. MAP2K6/MKK6 mediates apoptotic cell death in thymocytes. Acts also as a regulator for melanocytes dendricity, through the modulation of Rho family GTPases. {ECO:0000269|PubMed:10961885, ECO:0000269|PubMed:11727828, ECO:0000269|PubMed:15550393, ECO:0000269|PubMed:20869211, ECO:0000269|PubMed:8622669, ECO:0000269|PubMed:8626699, ECO:0000269|PubMed:8663074, ECO:0000269|PubMed:9218798}.
P53041 PPP5C T362 psp Serine/threonine-protein phosphatase 5 (PP5) (EC 3.1.3.16) (Protein phosphatase T) (PP-T) (PPT) Serine/threonine-protein phosphatase that dephosphorylates a myriad of proteins involved in different signaling pathways including the kinases CSNK1E, ASK1/MAP3K5, PRKDC and RAF1, the nuclear receptors NR3C1, PPARG, ESR1 and ESR2, SMAD proteins and TAU/MAPT (PubMed:14734805, PubMed:14764652, PubMed:14871926, PubMed:15383005, PubMed:15546861, PubMed:16260606, PubMed:16790549, PubMed:16892053, PubMed:19176521, PubMed:19948726, PubMed:21144835, PubMed:22399290, PubMed:22781750, PubMed:23102700, PubMed:30699359, PubMed:9000529). Implicated in wide ranging cellular processes, including apoptosis, differentiation, DNA damage response, cell survival, regulation of ion channels or circadian rhythms, in response to steroid and thyroid hormones, calcium, fatty acids, TGF-beta as well as oxidative and genotoxic stresses (PubMed:14734805, PubMed:14764652, PubMed:14871926, PubMed:15383005, PubMed:15546861, PubMed:16260606, PubMed:16790549, PubMed:16892053, PubMed:19176521, PubMed:19948726, PubMed:21144835, PubMed:22399290, PubMed:22781750, PubMed:23102700, PubMed:30699359, PubMed:9000529). Participates in the control of DNA damage response mechanisms such as checkpoint activation and DNA damage repair through, for instance, the regulation ATM/ATR-signaling and dephosphorylation of PRKDC and TP53BP1 (PubMed:14871926, PubMed:16260606, PubMed:21144835). Inhibits ASK1/MAP3K5-mediated apoptosis induced by oxidative stress (PubMed:23102700). Plays a positive role in adipogenesis, mainly through the dephosphorylation and activation of PPARG transactivation function (By similarity). Also dephosphorylates and inhibits the anti-adipogenic effect of NR3C1 (By similarity). Regulates the circadian rhythms, through the dephosphorylation and activation of CSNK1E (PubMed:16790549). May modulate TGF-beta signaling pathway by the regulation of SMAD3 phosphorylation and protein expression levels (PubMed:22781750). Dephosphorylates and may play a role in the regulation of TAU/MAPT (PubMed:15546861). Through their dephosphorylation, may play a role in the regulation of ions channels such as KCNH2 (By similarity). Dephosphorylate FNIP1, disrupting interaction with HSP90AA1/Hsp90 (PubMed:30699359). {ECO:0000250|UniProtKB:P53042, ECO:0000250|UniProtKB:Q60676, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:14764652, ECO:0000269|PubMed:14871926, ECO:0000269|PubMed:15383005, ECO:0000269|PubMed:15546861, ECO:0000269|PubMed:16260606, ECO:0000269|PubMed:16790549, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:19176521, ECO:0000269|PubMed:19948726, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22399290, ECO:0000269|PubMed:22781750, ECO:0000269|PubMed:23102700, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:9000529}.
P54132 BLM T283 ochoa RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P54756 EPHA5 T834 ochoa Ephrin type-A receptor 5 (EC 2.7.10.1) (Brain-specific kinase) (EPH homology kinase 1) (EHK-1) (EPH-like kinase 7) (EK7) (hEK7) Receptor tyrosine kinase which binds promiscuously GPI-anchored ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Among GPI-anchored ephrin-A ligands, EFNA5 most probably constitutes the cognate/functional ligand for EPHA5. Functions as an axon guidance molecule during development and may be involved in the development of the retinotectal, entorhino-hippocampal and hippocamposeptal pathways. Together with EFNA5 plays also a role in synaptic plasticity in adult brain through regulation of synaptogenesis. In addition to its function in the nervous system, the interaction of EPHA5 with EFNA5 mediates communication between pancreatic islet cells to regulate glucose-stimulated insulin secretion (By similarity). {ECO:0000250}.
P54764 EPHA4 T780 ochoa Ephrin type-A receptor 4 (EC 2.7.10.1) (EPH-like kinase 8) (EK8) (hEK8) (Tyrosine-protein kinase TYRO1) (Tyrosine-protein kinase receptor SEK) Receptor tyrosine kinase which binds membrane-bound ephrin family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Highly promiscuous, it has the unique property among Eph receptors to bind and to be physiologically activated by both GPI-anchored ephrin-A and transmembrane ephrin-B ligands including EFNA1 and EFNB3. Upon activation by ephrin ligands, modulates cell morphology and integrin-dependent cell adhesion through regulation of the Rac, Rap and Rho GTPases activity. Plays an important role in the development of the nervous system controlling different steps of axonal guidance including the establishment of the corticospinal projections. May also control the segregation of motor and sensory axons during neuromuscular circuit development. In addition to its role in axonal guidance plays a role in synaptic plasticity. Activated by EFNA1 phosphorylates CDK5 at 'Tyr-15' which in turn phosphorylates NGEF regulating RHOA and dendritic spine morphogenesis. In the nervous system, also plays a role in repair after injury preventing axonal regeneration and in angiogenesis playing a role in central nervous system vascular formation. Additionally, its promiscuity makes it available to participate in a variety of cell-cell signaling regulating for instance the development of the thymic epithelium. During development of the cochlear organ of Corti, regulates pillar cell separation by forming a ternary complex with ADAM10 and CADH1 which facilitates the cleavage of CADH1 by ADAM10 and disruption of adherens junctions (By similarity). Phosphorylates CAPRIN1, promoting CAPRIN1-dependent formation of a membraneless compartment (By similarity). {ECO:0000250|UniProtKB:Q03137, ECO:0000269|PubMed:17143272}.
P55011 SLC12A2 T268 ochoa Solute carrier family 12 member 2 (Basolateral Na-K-Cl symporter) (Bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2) (BSC2) (Na-K-2Cl cotransporter 1) (hNKCC1) Cation-chloride cotransporter which mediates the electroneutral transport of chloride, potassium and/or sodium ions across the membrane (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:33597714, PubMed:35585053, PubMed:36239040, PubMed:36306358, PubMed:7629105). Plays a vital role in the regulation of ionic balance and cell volume (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:7629105). {ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:32081947, ECO:0000269|PubMed:32294086, ECO:0000269|PubMed:33597714, ECO:0000269|PubMed:35585053, ECO:0000269|PubMed:36239040, ECO:0000269|PubMed:36306358, ECO:0000269|PubMed:7629105}.
P55201 BRPF1 T141 ochoa Peregrin (Bromodomain and PHD finger-containing protein 1) (Protein Br140) Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:24065767, PubMed:27939640). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac) (PubMed:24065767). Some HAT complexes preferentially mediate histone H3 'Lys-23' (H3K23ac) acetylation (PubMed:27939640). Positively regulates the transcription of RUNX1 and RUNX2 (PubMed:18794358). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:27939640}.
P55201 BRPF1 T234 ochoa Peregrin (Bromodomain and PHD finger-containing protein 1) (Protein Br140) Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:24065767, PubMed:27939640). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac) (PubMed:24065767). Some HAT complexes preferentially mediate histone H3 'Lys-23' (H3K23ac) acetylation (PubMed:27939640). Positively regulates the transcription of RUNX1 and RUNX2 (PubMed:18794358). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:27939640}.
P56182 RRP1 T412 ochoa Ribosomal RNA processing protein 1 homolog A (Novel nuclear protein 1) (NNP-1) (Nucleolar protein Nop52) (RRP1-like protein) Plays a critical role in the generation of 28S rRNA. {ECO:0000269|PubMed:10341208}.
P56545 CTBP2 T364 ochoa C-terminal-binding protein 2 (CtBP2) Corepressor targeting diverse transcription regulators. Functions in brown adipose tissue (BAT) differentiation (By similarity). {ECO:0000250}.; FUNCTION: Isoform 2 probably acts as a scaffold for specialized synapses.
P61225 RAP2B T58 ochoa Ras-related protein Rap-2b (EC 3.6.5.2) Small GTP-binding protein which cycles between a GDP-bound inactive and a GTP-bound active form. Involved in EGFR and CHRM3 signaling pathways through stimulation of PLCE1. May play a role in cytoskeletal rearrangements and regulate cell spreading through activation of the effector TNIK. May regulate membrane vesiculation in red blood cells. {ECO:0000269|PubMed:11877431, ECO:0000269|PubMed:15143162, ECO:0000269|PubMed:16540189}.
P62979 RPS27A T55 ochoa Ubiquitin-ribosomal protein eS31 fusion protein (Ubiquitin carboxyl extension protein 80) [Cleaved into: Ubiquitin; Small ribosomal subunit protein eS31 (40S ribosomal protein S27a)] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.; FUNCTION: [Small ribosomal subunit protein eS31]: Component of the 40S subunit of the ribosome (PubMed:23636399, PubMed:9582194). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:23636399, PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797, ECO:0000305|PubMed:9582194}.
P62987 UBA52 T55 ochoa Ubiquitin-ribosomal protein eL40 fusion protein (CEP52) (Ubiquitin A-52 residue ribosomal protein fusion product 1) [Cleaved into: Ubiquitin; Large ribosomal subunit protein eL40 (60S ribosomal protein L40) (rpL40)] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.; FUNCTION: [Large ribosomal subunit protein eL40]: Component of the 60S subunit of the ribosome (PubMed:23169626, PubMed:23636399, PubMed:32669547, PubMed:39048817, PubMed:39103523). Ribosomal protein L40 is essential for translation of a subset of cellular transcripts, and especially for cap-dependent translation of vesicular stomatitis virus mRNAs (PubMed:23169626, PubMed:23636399, PubMed:32669547, PubMed:39048817, PubMed:39103523). {ECO:0000269|PubMed:23169626, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000269|PubMed:39048817, ECO:0000269|PubMed:39103523}.
P63104 YWHAZ T88 ochoa 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}.
P63244 RACK1 T277 ochoa Small ribosomal subunit protein RACK1 (Cell proliferation-inducing gene 21 protein) (Guanine nucleotide-binding protein subunit beta-2-like 1) (Guanine nucleotide-binding protein subunit beta-like protein 12.3) (Human lung cancer oncogene 7 protein) (HLC-7) (Receptor for activated C kinase) (Receptor of activated protein C kinase 1) [Cleaved into: Small ribosomal subunit protein RACK1, N-terminally processed (Guanine nucleotide-binding protein subunit beta-2-like 1, N-terminally processed) (Receptor of activated protein C kinase 1, N-terminally processed)] Scaffolding protein involved in the recruitment, assembly and/or regulation of a variety of signaling molecules. Interacts with a wide variety of proteins and plays a role in many cellular processes. Component of the 40S ribosomal subunit involved in translational repression (PubMed:23636399). Involved in the initiation of the ribosome quality control (RQC), a pathway that takes place when a ribosome has stalled during translation, by promoting ubiquitination of a subset of 40S ribosomal subunits (PubMed:28132843). Binds to and stabilizes activated protein kinase C (PKC), increasing PKC-mediated phosphorylation. May recruit activated PKC to the ribosome, leading to phosphorylation of EIF6. Inhibits the activity of SRC kinases including SRC, LCK and YES1. Inhibits cell growth by prolonging the G0/G1 phase of the cell cycle. Enhances phosphorylation of BMAL1 by PRKCA and inhibits transcriptional activity of the BMAL1-CLOCK heterodimer. Facilitates ligand-independent nuclear translocation of AR following PKC activation, represses AR transactivation activity and is required for phosphorylation of AR by SRC. Modulates IGF1R-dependent integrin signaling and promotes cell spreading and contact with the extracellular matrix. Involved in PKC-dependent translocation of ADAM12 to the cell membrane. Promotes the ubiquitination and proteasome-mediated degradation of proteins such as CLEC1B and HIF1A. Required for VANGL2 membrane localization, inhibits Wnt signaling, and regulates cellular polarization and oriented cell division during gastrulation. Required for PTK2/FAK1 phosphorylation and dephosphorylation. Regulates internalization of the muscarinic receptor CHRM2. Promotes apoptosis by increasing oligomerization of BAX and disrupting the interaction of BAX with the anti-apoptotic factor BCL2L. Inhibits TRPM6 channel activity. Regulates cell surface expression of some GPCRs such as TBXA2R. Plays a role in regulation of FLT1-mediated cell migration. Involved in the transport of ABCB4 from the Golgi to the apical bile canalicular membrane (PubMed:19674157). Promotes migration of breast carcinoma cells by binding to and activating RHOA (PubMed:20499158). Acts as an adapter for the dephosphorylation and inactivation of AKT1 by promoting recruitment of PP2A phosphatase to AKT1 (By similarity). {ECO:0000250|UniProtKB:P68040, ECO:0000269|PubMed:11884618, ECO:0000269|PubMed:12589061, ECO:0000269|PubMed:12958311, ECO:0000269|PubMed:17108144, ECO:0000269|PubMed:17244529, ECO:0000269|PubMed:17956333, ECO:0000269|PubMed:18088317, ECO:0000269|PubMed:18258429, ECO:0000269|PubMed:18621736, ECO:0000269|PubMed:19423701, ECO:0000269|PubMed:19674157, ECO:0000269|PubMed:19785988, ECO:0000269|PubMed:20499158, ECO:0000269|PubMed:20541605, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:20976005, ECO:0000269|PubMed:21212275, ECO:0000269|PubMed:21347310, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:28132843, ECO:0000269|PubMed:9584165}.; FUNCTION: (Microbial infection) Binds to Y.pseudotuberculosis yopK which leads to inhibition of phagocytosis and survival of bacteria following infection of host cells. {ECO:0000269|PubMed:21347310}.; FUNCTION: (Microbial infection) Enhances phosphorylation of HIV-1 Nef by PKCs. {ECO:0000269|PubMed:11312657}.; FUNCTION: (Microbial infection) In case of poxvirus infection, remodels the ribosomes so that they become optimal for the viral mRNAs (containing poly-A leaders) translation but not for host mRNAs. {ECO:0000269|PubMed:28636603}.; FUNCTION: (Microbial infection) Contributes to the cap-independent internal ribosome entry site (IRES)-mediated translation by some RNA viruses. {ECO:0000269|PubMed:25416947}.
P68363 TUBA1B T94 ochoa Tubulin alpha-1B chain (EC 3.6.5.-) (Alpha-tubulin ubiquitous) (Tubulin K-alpha-1) (Tubulin alpha-ubiquitous chain) [Cleaved into: Detyrosinated tubulin alpha-1B chain] Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:38305685, PubMed:34996871, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:38305685, PubMed:34996871, PubMed:38609661). Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). {ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}.
P68366 TUBA4A T94 ochoa Tubulin alpha-4A chain (EC 3.6.5.-) (Alpha-tubulin 1) (Testis-specific alpha-tubulin) (Tubulin H2-alpha) (Tubulin alpha-1 chain) Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
P78316 NOP14 T155 ochoa Nucleolar protein 14 (Nucleolar complex protein 14) Involved in nucleolar processing of pre-18S ribosomal RNA. Has a role in the nuclear export of 40S pre-ribosomal subunit to the cytoplasm (By similarity). {ECO:0000250}.
P78345 RPP38 T234 ochoa Ribonuclease P protein subunit p38 (RNaseP protein p38) Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:10444065, PubMed:30454648, PubMed:9037013, PubMed:9630247). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:10444065, ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:9037013, ECO:0000269|PubMed:9630247}.
P78347 GTF2I T687 ochoa General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}.
P78563 ADARB1 T553 psp Double-stranded RNA-specific editase 1 (EC 3.5.4.37) (RNA-editing deaminase 1) (RNA-editing enzyme 1) (dsRNA adenosine deaminase) Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C), GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis. {ECO:0000269|PubMed:18178553, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159}.; FUNCTION: [Isoform 1]: Has a lower catalytic activity than isoform 2. {ECO:0000269|PubMed:9149227}.; FUNCTION: [Isoform 2]: Has a higher catalytic activity than isoform 1. {ECO:0000269|PubMed:9149227}.
P80723 BASP1 T31 ochoa Brain acid soluble protein 1 (22 kDa neuronal tissue-enriched acidic protein) (Neuronal axonal membrane protein NAP-22) None
P98196 ATP11A T733 ochoa Phospholipid-transporting ATPase IH (EC 7.6.2.1) (ATPase IS) (ATPase class VI type 11A) (P4-ATPase flippase complex alpha subunit ATP11A) Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids, phosphatidylserines (PS) and phosphatidylethanolamines (PE), from the outer to the inner leaflet of the plasma membrane (PubMed:25315773, PubMed:25947375, PubMed:26567335, PubMed:29799007, PubMed:30018401, PubMed:36300302). Does not show flippase activity toward phosphatidylcholine (PC) (PubMed:34403372). Contributes to the maintenance of membrane lipid asymmetry with a specific role in morphogenesis of muscle cells. In myoblasts, mediates PS enrichment at the inner leaflet of plasma membrane, triggering PIEZO1-dependent Ca2+ influx and Rho GTPases signal transduction, subsequently leading to the assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). May be involved in the uptake of farnesyltransferase inhibitor drugs, such as lonafarnib. {ECO:0000269|PubMed:15860663, ECO:0000269|PubMed:25315773, ECO:0000269|PubMed:25947375, ECO:0000269|PubMed:26567335, ECO:0000269|PubMed:29799007, ECO:0000269|PubMed:30018401, ECO:0000269|PubMed:34403372, ECO:0000269|PubMed:36300302, ECO:0000305}.
Q00013 MPP1 T123 ochoa 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}.
Q00577 PURA T252 ochoa Transcriptional activator protein Pur-alpha (Purine-rich single-stranded DNA-binding protein alpha) This is a probable transcription activator that specifically binds the purine-rich single strand of the PUR element located upstream of the MYC gene (PubMed:1448097, PubMed:20976240). May play a role in the initiation of DNA replication and in recombination. {ECO:0000269|PubMed:1448097, ECO:0000269|PubMed:20976240}.
Q00872 MYBPC1 T165 ochoa Myosin-binding protein C, slow-type (Slow MyBP-C) (C-protein, skeletal muscle slow isoform) Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. Slow skeletal protein that binds to both myosin and actin (PubMed:31025394, PubMed:31264822). In vitro, binds to native thin filaments and modifies the activity of actin-activated myosin ATPase. May modulate muscle contraction or may play a more structural role. {ECO:0000269|PubMed:31025394, ECO:0000269|PubMed:31264822}.
Q01484 ANK2 T853 ochoa Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}.
Q01543 FLI1 T312 psp Friend leukemia integration 1 transcription factor (Proto-oncogene Fli-1) (Transcription factor ERGB) Sequence-specific transcriptional activator (PubMed:24100448, PubMed:26316623, PubMed:28255014). Recognizes the DNA sequence 5'-C[CA]GGAAGT-3'. {ECO:0000269|PubMed:24100448, ECO:0000269|PubMed:26316623, ECO:0000269|PubMed:28255014}.
Q02156 PRKCE T710 ochoa|psp Protein kinase C epsilon type (EC 2.7.11.13) (nPKC-epsilon) Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells (PubMed:19542546). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11884385, ECO:0000269|PubMed:1374067, ECO:0000269|PubMed:15355962, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:17603037, ECO:0000269|PubMed:17875639, ECO:0000269|PubMed:17875724, ECO:0000269|PubMed:19542546, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:36040231}.
Q02241 KIF23 T927 ochoa Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}.
Q02952 AKAP12 T295 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q03188 CENPC T516 ochoa Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}.
Q03701 CEBPZ T155 ochoa CCAAT/enhancer-binding protein zeta (CCAAT-box-binding transcription factor) (CBF) (CCAAT-binding factor) Stimulates transcription from the HSP70 promoter.
Q04721 NOTCH2 T2262 ochoa Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}.
Q05209 PTPN12 T718 ochoa Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}.
Q05397 PTK2 T408 ochoa Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}.
Q06124 PTPN11 T73 psp Tyrosine-protein phosphatase non-receptor type 11 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1D) (PTP-1D) (Protein-tyrosine phosphatase 2C) (PTP-2C) (SH-PTP2) (SHP-2) (Shp2) (SH-PTP3) Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus (PubMed:10655584, PubMed:14739280, PubMed:18559669, PubMed:18829466, PubMed:26742426, PubMed:28074573). Positively regulates MAPK signal transduction pathway (PubMed:28074573). Dephosphorylates GAB1, ARHGAP35 and EGFR (PubMed:28074573). Dephosphorylates ROCK2 at 'Tyr-722' resulting in stimulation of its RhoA binding activity (PubMed:18559669). Dephosphorylates CDC73 (PubMed:26742426). Dephosphorylates SOX9 on tyrosine residues, leading to inactivate SOX9 and promote ossification (By similarity). Dephosphorylates tyrosine-phosphorylated NEDD9/CAS-L (PubMed:19275884). {ECO:0000250|UniProtKB:P35235, ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:14739280, ECO:0000269|PubMed:18559669, ECO:0000269|PubMed:18829466, ECO:0000269|PubMed:19275884, ECO:0000269|PubMed:26742426, ECO:0000269|PubMed:28074573}.
Q07065 CKAP4 T231 ochoa Cytoskeleton-associated protein 4 (63-kDa cytoskeleton-linking membrane protein) (Climp-63) (p63) Mediates the anchoring of the endoplasmic reticulum to microtubules. {ECO:0000269|PubMed:15703217}.; FUNCTION: High-affinity epithelial cell surface receptor for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF antiproliferative signaling within cells. {ECO:0000269|PubMed:17030514, ECO:0000269|PubMed:19144824}.
Q08211 DHX9 T160 ochoa ATP-dependent RNA helicase A (EC 3.6.4.13) (DEAH box protein 9) (DExH-box helicase 9) (Leukophysin) (LKP) (Nuclear DNA helicase II) (NDH II) (RNA helicase A) Multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3' to 5' direction and that plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation and RNA-mediated gene silencing (PubMed:11416126, PubMed:12711669, PubMed:15355351, PubMed:16680162, PubMed:17531811, PubMed:20669935, PubMed:21561811, PubMed:24049074, PubMed:24990949, PubMed:25062910, PubMed:28221134, PubMed:9111062, PubMed:37467750). Requires a 3'-single-stranded tail as entry site for acid nuclei unwinding activities as well as the binding and hydrolyzing of any of the four ribo- or deoxyribo-nucleotide triphosphates (NTPs) (PubMed:1537828). Unwinds numerous nucleic acid substrates such as double-stranded (ds) DNA and RNA, DNA:RNA hybrids, DNA and RNA forks composed of either partially complementary DNA duplexes or DNA:RNA hybrids, respectively, and also DNA and RNA displacement loops (D- and R-loops), triplex-helical DNA (H-DNA) structure and DNA and RNA-based G-quadruplexes (PubMed:20669935, PubMed:21561811, PubMed:24049074). Binds dsDNA, single-stranded DNA (ssDNA), dsRNA, ssRNA and poly(A)-containing RNA (PubMed:10198287, PubMed:9111062). Also binds to circular dsDNA or dsRNA of either linear and/or circular forms and stimulates the relaxation of supercoiled DNAs catalyzed by topoisomerase TOP2A (PubMed:12711669). Plays a role in DNA replication at origins of replication and cell cycle progression (PubMed:24990949). Plays a role as a transcriptional coactivator acting as a bridging factor between polymerase II holoenzyme and transcription factors or cofactors, such as BRCA1, CREBBP, RELA and SMN1 (PubMed:11038348, PubMed:11149922, PubMed:11416126, PubMed:15355351, PubMed:28221134, PubMed:9323138, PubMed:9662397). Binds to the CDKN2A promoter (PubMed:11038348). Plays several roles in post-transcriptional regulation of gene expression (PubMed:28221134, PubMed:28355180). In cooperation with NUP98, promotes pre-mRNA alternative splicing activities of a subset of genes (PubMed:11402034, PubMed:16680162, PubMed:28221134, PubMed:28355180). As component of a large PER complex, is involved in the negative regulation of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms (By similarity). Also acts as a nuclear resolvase that is able to bind and neutralize harmful massive secondary double-stranded RNA structures formed by inverted-repeat Alu retrotransposon elements that are inserted and transcribed as parts of genes during the process of gene transposition (PubMed:28355180). Involved in the positive regulation of nuclear export of constitutive transport element (CTE)-containing unspliced mRNA (PubMed:10924507, PubMed:11402034, PubMed:9162007). Component of the coding region determinant (CRD)-mediated complex that promotes cytoplasmic MYC mRNA stability (PubMed:19029303). Plays a role in mRNA translation (PubMed:28355180). Positively regulates translation of selected mRNAs through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Involved with LARP6 in the translation stimulation of type I collagen mRNAs for CO1A1 and CO1A2 through binding of a specific stem-loop structure in their 5'-UTRs (PubMed:22190748). Stimulates LIN28A-dependent mRNA translation probably by facilitating ribonucleoprotein remodeling during the process of translation (PubMed:21247876). Plays also a role as a small interfering (siRNA)-loading factor involved in the RNA-induced silencing complex (RISC) loading complex (RLC) assembly, and hence functions in the RISC-mediated gene silencing process (PubMed:17531811). Binds preferentially to short double-stranded RNA, such as those produced during rotavirus intestinal infection (PubMed:28636595). This interaction may mediate NLRP9 inflammasome activation and trigger inflammatory response, including IL18 release and pyroptosis (PubMed:28636595). Finally, mediates the attachment of heterogeneous nuclear ribonucleoproteins (hnRNPs) to actin filaments in the nucleus (PubMed:11687588). {ECO:0000250|UniProtKB:O70133, ECO:0000269|PubMed:10198287, ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:11038348, ECO:0000269|PubMed:11149922, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11416126, ECO:0000269|PubMed:11687588, ECO:0000269|PubMed:12711669, ECO:0000269|PubMed:15355351, ECO:0000269|PubMed:1537828, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:20669935, ECO:0000269|PubMed:21247876, ECO:0000269|PubMed:21561811, ECO:0000269|PubMed:22190748, ECO:0000269|PubMed:24049074, ECO:0000269|PubMed:24990949, ECO:0000269|PubMed:25062910, ECO:0000269|PubMed:28221134, ECO:0000269|PubMed:28355180, ECO:0000269|PubMed:28636595, ECO:0000269|PubMed:37467750, ECO:0000269|PubMed:9111062, ECO:0000269|PubMed:9162007, ECO:0000269|PubMed:9323138, ECO:0000269|PubMed:9662397}.; FUNCTION: (Microbial infection) Plays a role in HIV-1 replication and virion infectivity (PubMed:11096080, PubMed:19229320, PubMed:25149208, PubMed:27107641). Enhances HIV-1 transcription by facilitating the binding of RNA polymerase II holoenzyme to the proviral DNA (PubMed:11096080, PubMed:25149208). Binds (via DRBM domain 2) to the HIV-1 TAR RNA and stimulates HIV-1 transcription of transactivation response element (TAR)-containing mRNAs (PubMed:11096080, PubMed:9892698). Involved also in HIV-1 mRNA splicing and transport (PubMed:25149208). Positively regulates HIV-1 gag mRNA translation, through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Binds (via DRBM domains) to a HIV-1 double-stranded RNA region of the primer binding site (PBS)-segment of the 5'-UTR, and hence stimulates DHX9 incorporation into virions and virion infectivity (PubMed:27107641). Also plays a role as a cytosolic viral MyD88-dependent DNA and RNA sensors in plasmacytoid dendritic cells (pDCs), and hence induce antiviral innate immune responses (PubMed:20696886, PubMed:21957149). Binds (via the OB-fold region) to viral single-stranded DNA unmethylated C-phosphate-G (CpG) oligonucleotide (PubMed:20696886). {ECO:0000269|PubMed:11096080, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:20696886, ECO:0000269|PubMed:21957149, ECO:0000269|PubMed:25149208, ECO:0000269|PubMed:27107641, ECO:0000269|PubMed:9892698}.
Q09472 EP300 T992 ochoa Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}.
Q09666 AHNAK T553 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK T1885 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK T2147 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK T3625 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q0ZGT2 NEXN T363 ochoa Nexilin (F-actin-binding protein) (Nelin) Involved in regulating cell migration through association with the actin cytoskeleton. Has an essential role in the maintenance of Z line and sarcomere integrity. {ECO:0000269|PubMed:12053183, ECO:0000269|PubMed:15823560, ECO:0000269|PubMed:19881492}.
Q12789 GTF3C1 T1873 ochoa General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element.
Q12802 AKAP13 T1953 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12834 CDC20 T106 ochoa Cell division cycle protein 20 homolog (p55CDC) Substrate-specific adapter of the anaphase promoting complex/cyclosome (APC/C) complex that confers substrate specificity by binding to substrates and targeting them to the APC/C complex for ubiquitination and degradation (PubMed:9734353, PubMed:27030811, PubMed:29343641). Recognizes and binds the destruction box (D box) on protein substrates (PubMed:29343641). Involved in the metaphase/anaphase transition of cell cycle (PubMed:32666501). Is regulated by MAD2L1: in metaphase the MAD2L1-CDC20-APC/C ternary complex is inactive and in anaphase the CDC20-APC/C binary complex is active in degrading substrates (PubMed:9811605, PubMed:9637688). The CDC20-APC/C complex positively regulates the formation of synaptic vesicle clustering at active zone to the presynaptic membrane in postmitotic neurons (By similarity). CDC20-APC/C-induced degradation of NEUROD2 induces presynaptic differentiation (By similarity). The CDC20-APC/C complex promotes proper dilation formation and radial migration by degrading CCDC41 (By similarity). {ECO:0000250|UniProtKB:Q9JJ66, ECO:0000269|PubMed:27030811, ECO:0000269|PubMed:29343641, ECO:0000269|PubMed:32666501, ECO:0000269|PubMed:9637688, ECO:0000269|PubMed:9734353, ECO:0000269|PubMed:9811605}.
Q12873 CHD3 T1595 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q12874 SF3A3 T298 ochoa Splicing factor 3A subunit 3 (SF3a60) (Spliceosome-associated protein 61) (SAP 61) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310, PubMed:8022796). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3A3 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes (PubMed:29360106, PubMed:30315277). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:8022796}.
Q12888 TP53BP1 T302 ochoa|psp TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12888 TP53BP1 T492 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12888 TP53BP1 T1012 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12888 TP53BP1 T1122 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12929 EPS8 T317 ochoa Epidermal growth factor receptor kinase substrate 8 Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}.
Q13017 ARHGAP5 T1183 ochoa Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}.
Q13033 STRN3 T528 ochoa Striatin-3 (Cell cycle autoantigen SG2NA) (S/G2 antigen) Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:30622739, PubMed:33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:33633399, ECO:0000305|PubMed:26876214}.
Q13042 CDC16 T581 ochoa Cell division cycle protein 16 homolog (Anaphase-promoting complex subunit 6) (APC6) (CDC16 homolog) (CDC16Hs) (Cyclosome subunit 6) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}.
Q13148 TARDBP T25 psp TAR DNA-binding protein 43 (TDP-43) RNA-binding protein that is involved in various steps of RNA biogenesis and processing (PubMed:23519609). Preferentially binds, via its two RNA recognition motifs RRM1 and RRM2, to GU-repeats on RNA molecules predominantly localized within long introns and in the 3'UTR of mRNAs (PubMed:23519609, PubMed:24240615, PubMed:24464995). In turn, regulates the splicing of many non-coding and protein-coding RNAs including proteins involved in neuronal survival, as well as mRNAs that encode proteins relevant for neurodegenerative diseases (PubMed:21358640, PubMed:29438978). Plays a role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts (PubMed:28794432). Also regulates mRNA stability by recruiting CNOT7/CAF1 deadenylase on mRNA 3'UTR leading to poly(A) tail deadenylation and thus shortening (PubMed:30520513). In response to oxidative insult, associates with stalled ribosomes localized to stress granules (SGs) and contributes to cell survival (PubMed:19765185, PubMed:23398327). Also participates in the normal skeletal muscle formation and regeneration, forming cytoplasmic myo-granules and binding mRNAs that encode sarcomeric proteins (PubMed:30464263). Plays a role in the maintenance of the circadian clock periodicity via stabilization of the CRY1 and CRY2 proteins in a FBXL3-dependent manner (PubMed:27123980). Negatively regulates the expression of CDK6 (PubMed:19760257). Regulates the expression of HDAC6, ATG7 and VCP in a PPIA/CYPA-dependent manner (PubMed:25678563). {ECO:0000269|PubMed:11285240, ECO:0000269|PubMed:17481916, ECO:0000269|PubMed:19760257, ECO:0000269|PubMed:19765185, ECO:0000269|PubMed:21358640, ECO:0000269|PubMed:23398327, ECO:0000269|PubMed:23519609, ECO:0000269|PubMed:24240615, ECO:0000269|PubMed:24464995, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28794432, ECO:0000269|PubMed:29438978, ECO:0000269|PubMed:30464263, ECO:0000269|PubMed:30520513}.
Q13185 CBX3 T89 psp Chromobox protein homolog 3 (HECH) (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (Modifier 2 protein) Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the recruitment of the methyltransferases SUV39H1 and/or SUV39H2 by the PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1. Mediates the recruitment of NIPBL to sites of DNA damage at double-strand breaks (DSBs) (PubMed:28167679). {ECO:0000250|UniProtKB:P23198, ECO:0000269|PubMed:28167679}.
Q13206 DDX10 T717 ochoa Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}.
Q13555 CAMK2G T369 ochoa Calcium/calmodulin-dependent protein kinase type II subunit gamma (CaM kinase II subunit gamma) (CaMK-II subunit gamma) (EC 2.7.11.17) Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-coupling factor triadin (PubMed:16690701). In the central nervous system, it is involved in the regulation of neurite formation and arborization (PubMed:30184290). It may participate in the promotion of dendritic spine and synapse formation and maintenance of synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q923T9, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:30184290}.
Q13557 CAMK2D T336 ochoa|psp Calcium/calmodulin-dependent protein kinase type II subunit delta (CaM kinase II subunit delta) (CaMK-II subunit delta) (EC 2.7.11.17) Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca(2+) release via direct phosphorylation of RYR2 Ca(2+) channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program (PubMed:17179159). Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca(2+) influx to myocytes by binding and phosphorylating the L-type Ca(2+) channel subunit beta-2 CACNB2. In addition to Ca(2+) channels, can target and regulate the cardiac sarcolemmal Na(+) channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca(2+) uptake that may be important in frequency-dependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis (PubMed:16690701). May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca(2+) transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6PHZ2, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:17179159}.
Q13596 SNX1 T48 ochoa Sorting nexin-1 Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:12198132). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:19816406, PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptors (IGF2R, M6PR and SORT1) and Shiginella dysenteria toxin stxB. Plays a role in targeting ligand-activated EGFR to the lysosomes for degradation after endocytosis from the cell surface and release from the Golgi (PubMed:12198132, PubMed:15498486, PubMed:17101778, PubMed:17550970, PubMed:18088323, PubMed:21040701). Involvement in retromer-independent endocytic trafficking of P2RY1 and lysosomal degradation of protease-activated receptor-1/F2R (PubMed:16407403, PubMed:20070609). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). Required for endocytosis of DRD5 upon agonist stimulation but not for basal receptor trafficking (PubMed:23152498). {ECO:0000269|PubMed:12198132, ECO:0000269|PubMed:15498486, ECO:0000269|PubMed:16407403, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:17550970, ECO:0000269|PubMed:18088323, ECO:0000269|PubMed:19816406, ECO:0000269|PubMed:20070609, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:21040701, ECO:0000269|PubMed:23085988, ECO:0000269|PubMed:23152498, ECO:0000303|PubMed:15498486}.
Q13610 PWP1 T86 ochoa Periodic tryptophan protein 1 homolog (Keratinocyte protein IEF SSP 9502) Chromatin-associated factor that regulates transcription (PubMed:29065309). Regulates Pol I-mediated rRNA biogenesis and, probably, Pol III-mediated transcription (PubMed:29065309). Regulates the epigenetic status of rDNA (PubMed:29065309). {ECO:0000269|PubMed:29065309}.
Q13642 FHL1 T120 ochoa Four and a half LIM domains protein 1 (FHL-1) (Skeletal muscle LIM-protein 1) (SLIM) (SLIM-1) May have an involvement in muscle development or hypertrophy.
Q14558 PRPSAP1 T205 ochoa Phosphoribosyl pyrophosphate synthase-associated protein 1 (PRPP synthase-associated protein 1) (39 kDa phosphoribosypyrophosphate synthase-associated protein) (PAP39) Seems to play a negative regulatory role in 5-phosphoribose 1-diphosphate synthesis.
Q14676 MDC1 T301 ochoa|psp Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14676 MDC1 T765 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14692 BMS1 T708 ochoa Ribosome biogenesis protein BMS1 homolog (EC 3.6.5.-) (Ribosome assembly protein BMS1 homolog) GTPase required for the synthesis of 40S ribosomal subunits and for processing of pre-ribosomal RNA (pre-rRNA) at sites A0, A1, and A2. Controls access of pre-rRNA intermediates to RCL1 during ribosome biogenesis by binding RCL1 in a GTP-dependent manner, and delivering it to pre-ribosomes. GTP-binding and/or GTP hydrolysis may induce conformational rearrangements within the BMS1-RCL1 complex allowing the interaction of RCL1 with its RNA substrate. Required for RCL1 import into the nucleus. {ECO:0000250|UniProtKB:Q08965}.
Q15003 NCAPH T208 ochoa Condensin complex subunit 2 (Barren homolog protein 1) (Chromosome-associated protein H) (hCAP-H) (Non-SMC condensin I complex subunit H) (XCAP-H homolog) Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases (PubMed:11136719). Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}.
Q15013 MAD2L1BP T36 ochoa MAD2L1-binding protein (Caught by MAD2 protein) (p31(comet)) May function to silence the spindle checkpoint and allow mitosis to proceed through anaphase by binding MAD2L1 after it has become dissociated from the MAD2L1-CDC20 complex. {ECO:0000269|PubMed:18022368}.
Q15013 MAD2L1BP T39 ochoa MAD2L1-binding protein (Caught by MAD2 protein) (p31(comet)) May function to silence the spindle checkpoint and allow mitosis to proceed through anaphase by binding MAD2L1 after it has become dissociated from the MAD2L1-CDC20 complex. {ECO:0000269|PubMed:18022368}.
Q15061 WDR43 T656 ochoa WD repeat-containing protein 43 (U3 small nucleolar RNA-associated protein 5 homolog) Ribosome biogenesis factor that coordinates hyperactive transcription and ribogenesis (PubMed:17699751). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I (PubMed:17699751, PubMed:34516797). Essential for stem cell pluripotency and embryonic development. In the nucleoplasm, recruited by promoter-associated/nascent transcripts and transcription to active promoters where it facilitates releases of elongation factor P-TEFb and paused RNA polymerase II to allow transcription elongation and maintain high-level expression of its targets genes (By similarity). {ECO:0000250|UniProtKB:Q6ZQL4, ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797}.
Q15111 PLCL1 T556 ochoa Inactive phospholipase C-like protein 1 (PLC-L1) (Phospholipase C-deleted in lung carcinoma) (Phospholipase C-related but catalytically inactive protein) (PRIP) Involved in an inositol phospholipid-based intracellular signaling cascade. Shows no PLC activity to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol. Component in the phospho-dependent endocytosis process of GABA A receptor (By similarity). Regulates the turnover of receptors and thus contributes to the maintenance of GABA-mediated synaptic inhibition. Its aberrant expression could contribute to the genesis and progression of lung carcinoma. Acts as an inhibitor of PPP1C. {ECO:0000250, ECO:0000269|PubMed:17254016}.
Q15276 RABEP1 T454 ochoa Rab GTPase-binding effector protein 1 (Rabaptin-4) (Rabaptin-5) (Rabaptin-5alpha) (Renal carcinoma antigen NY-REN-17) Rab effector protein acting as linker between gamma-adaptin, RAB4A and RAB5A. Involved in endocytic membrane fusion and membrane trafficking of recycling endosomes. Involved in KCNH1 channels trafficking to and from the cell membrane (PubMed:22841712). Stimulates RABGEF1 mediated nucleotide exchange on RAB5A. Mediates the traffic of PKD1:PKD2 complex from the endoplasmic reticulum through the Golgi to the cilium (By similarity). {ECO:0000250|UniProtKB:O35551, ECO:0000269|PubMed:10698684, ECO:0000269|PubMed:11452015, ECO:0000269|PubMed:12773381, ECO:0000269|PubMed:22841712, ECO:0000269|PubMed:8521472}.
Q15293 RCN1 T71 ochoa Reticulocalbin-1 May regulate calcium-dependent activities in the endoplasmic reticulum lumen or post-ER compartment.
Q15303 ERBB4 T1125 ochoa Receptor tyrosine-protein kinase erbB-4 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-4) (Tyrosine kinase-type cell surface receptor HER4) (p180erbB4) [Cleaved into: ERBB4 intracellular domain (4ICD) (E4ICD) (s80HER4)] Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins and EGF family members and regulates development of the heart, the central nervous system and the mammary gland, gene transcription, cell proliferation, differentiation, migration and apoptosis. Required for normal cardiac muscle differentiation during embryonic development, and for postnatal cardiomyocyte proliferation. Required for normal development of the embryonic central nervous system, especially for normal neural crest cell migration and normal axon guidance. Required for mammary gland differentiation, induction of milk proteins and lactation. Acts as cell-surface receptor for the neuregulins NRG1, NRG2, NRG3 and NRG4 and the EGF family members BTC, EREG and HBEGF. Ligand binding triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Ligand specificity and signaling is modulated by alternative splicing, proteolytic processing, and by the formation of heterodimers with other ERBB family members, thereby creating multiple combinations of intracellular phosphotyrosines that trigger ligand- and context-specific cellular responses. Mediates phosphorylation of SHC1 and activation of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1. Isoform JM-A CYT-1 and isoform JM-B CYT-1 phosphorylate PIK3R1, leading to the activation of phosphatidylinositol 3-kinase and AKT1 and protect cells against apoptosis. Isoform JM-A CYT-1 and isoform JM-B CYT-1 mediate reorganization of the actin cytoskeleton and promote cell migration in response to NRG1. Isoform JM-A CYT-2 and isoform JM-B CYT-2 lack the phosphotyrosine that mediates interaction with PIK3R1, and hence do not phosphorylate PIK3R1, do not protect cells against apoptosis, and do not promote reorganization of the actin cytoskeleton and cell migration. Proteolytic processing of isoform JM-A CYT-1 and isoform JM-A CYT-2 gives rise to the corresponding soluble intracellular domains (4ICD) that translocate to the nucleus, promote nuclear import of STAT5A, activation of STAT5A, mammary epithelium differentiation, cell proliferation and activation of gene expression. The ERBB4 soluble intracellular domains (4ICD) colocalize with STAT5A at the CSN2 promoter to regulate transcription of milk proteins during lactation. The ERBB4 soluble intracellular domains can also translocate to mitochondria and promote apoptosis. {ECO:0000269|PubMed:10348342, ECO:0000269|PubMed:10353604, ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:10722704, ECO:0000269|PubMed:10867024, ECO:0000269|PubMed:11178955, ECO:0000269|PubMed:11390655, ECO:0000269|PubMed:12807903, ECO:0000269|PubMed:15534001, ECO:0000269|PubMed:15746097, ECO:0000269|PubMed:16251361, ECO:0000269|PubMed:16778220, ECO:0000269|PubMed:16837552, ECO:0000269|PubMed:17486069, ECO:0000269|PubMed:17638867, ECO:0000269|PubMed:19098003, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:8383326, ECO:0000269|PubMed:8617750, ECO:0000269|PubMed:9135143, ECO:0000269|PubMed:9168115, ECO:0000269|PubMed:9334263}.
Q15375 EPHA7 T792 ochoa Ephrin type-A receptor 7 (EC 2.7.10.1) (EPH homology kinase 3) (EHK-3) (EPH-like kinase 11) (EK11) (hEK11) Receptor tyrosine kinase which binds promiscuously GPI-anchored ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Among GPI-anchored ephrin-A ligands, EFNA5 is a cognate/functional ligand for EPHA7 and their interaction regulates brain development modulating cell-cell adhesion and repulsion. Has a repellent activity on axons and is for instance involved in the guidance of corticothalamic axons and in the proper topographic mapping of retinal axons to the colliculus. May also regulate brain development through a caspase(CASP3)-dependent proapoptotic activity. Forward signaling may result in activation of components of the ERK signaling pathway including MAP2K1, MAP2K2, MAPK1 and MAPK3 which are phosphorylated upon activation of EPHA7. {ECO:0000269|PubMed:17726105}.
Q15424 SAFB T188 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q15545 TAF7 T274 ochoa Transcription initiation factor TFIID subunit 7 (RNA polymerase II TBP-associated factor subunit F) (Transcription initiation factor TFIID 55 kDa subunit) (TAF(II)55) (TAFII-55) (TAFII55) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10438527, PubMed:33795473). TAF7 forms a promoter DNA binding subcomplex of TFIID, together with TAF1 and TAF2 (PubMed:33795473). Part of a TFIID complex containing TAF10 (TFIID alpha) and a TFIID complex lacking TAF10 (TFIID beta) (PubMed:10438527). {ECO:0000269|PubMed:10438527, ECO:0000269|PubMed:33795473}.
Q15762 CD226 T293 ochoa CD226 antigen (DNAX accessory molecule 1) (DNAM-1) (CD antigen CD226) Cell surface receptor that plays an important role in the immune system, particularly in intercellular adhesion, lymphocyte signaling, cytotoxicity and lymphokine secretion mediated by cytotoxic T-cells and NK cells (PubMed:8673704, PubMed:9712030). Functions as a costimulatory receptor upon recognition of target cells, such as virus-infected or tumor cells. Upon binding to its ligands PVR/CD155 or NECTIN2/CD112 on target cells, promotes the cytotoxic activity of NK cells and CTLs, enhancing their ability to kill these cells (PubMed:26755705, PubMed:31253644, PubMed:30591568). Mechanistically, phosphorylation by Src kinases such as LYN of FYN, enables binding to adapter GRB2, leading to activation of VAV1, PI3K and PLCG1. Promotes also activation of kinases ERK and AKT, as well as calcium fluxes (By similarity). {ECO:0000250|UniProtKB:Q8K4F0, ECO:0000269|PubMed:26755705, ECO:0000269|PubMed:30591568, ECO:0000269|PubMed:31253644, ECO:0000269|PubMed:8673704, ECO:0000269|PubMed:9712030}.
Q15776 ZKSCAN8 T166 ochoa Zinc finger protein with KRAB and SCAN domains 8 (LD5-1) (Zinc finger protein 192) May be involved in transcriptional regulation.
Q16181 SEPTIN7 T228 ochoa Septin-7 (CDC10 protein homolog) Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Required for normal progress through mitosis. Involved in cytokinesis. Required for normal association of CENPE with the kinetochore. Plays a role in ciliogenesis and collective cell movements. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). {ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18460473, ECO:0000305|PubMed:25588830}.
Q16584 MAP3K11 T277 psp Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}.
Q16625 OCLN T403 ochoa|psp Occludin May play a role in the formation and regulation of the tight junction (TJ) paracellular permeability barrier. It is able to induce adhesion when expressed in cells lacking tight junctions. {ECO:0000269|PubMed:19114660}.; FUNCTION: (Microbial infection) Acts as a coreceptor for hepatitis C virus (HCV) in hepatocytes. {ECO:0000269|PubMed:19182773, ECO:0000269|PubMed:20375010}.
Q17RH5 RAPGEF2 T632 psp Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (Neural RAP guanine nucleotide exchange protein) (PDZ domain-containing guanine nucleotide exchange factor 1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) None
Q2T9K0 TMEM44 T336 ochoa Transmembrane protein 44 None
Q2TAZ0 ATG2A T1641 ochoa Autophagy-related protein 2 homolog A Lipid transfer protein involved in autophagosome assembly (PubMed:28561066, PubMed:30952800, PubMed:31271352). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:30952800, PubMed:31271352). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (PubMed:30952800, PubMed:31271352). Lipid transfer activity is enhanced by WIPI1 and WDR45/WIPI4, which promote ATG2A-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31271352). Also regulates lipid droplets morphology and distribution within the cell (PubMed:22219374, PubMed:28561066). {ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:30952800, ECO:0000269|PubMed:31271352}.
Q3KR16 PLEKHG6 T666 ochoa Pleckstrin homology domain-containing family G member 6 (PH domain-containing family G member 6) (Myosin-interacting guanine nucleotide exchange factor) (MyoGEF) Guanine nucleotide exchange factor activating the small GTPase RHOA, which, in turn, induces myosin filament formation. Also activates RHOG. Does not activate RAC1, or to a much lower extent than RHOA and RHOG. Part of a functional unit, involving PLEKHG6, MYH10 and RHOA, at the cleavage furrow to advance furrow ingression during cytokinesis. In epithelial cells, required for the formation of microvilli and membrane ruffles on the apical pole. Along with EZR, required for normal macropinocytosis. {ECO:0000269|PubMed:16721066, ECO:0000269|PubMed:17881735}.
Q3T8J9 GON4L T418 ochoa GON-4-like protein (GON-4 homolog) Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}.
Q49A88 CCDC14 T723 ochoa Coiled-coil domain-containing protein 14 Negatively regulates centriole duplication. Negatively regulates CEP63 and CDK2 centrosomal localization. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806}.
Q4G0J3 LARP7 T243 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q53HL2 CDCA8 T230 psp Borealin (Cell division cycle-associated protein 8) (Dasra-B) (hDasra-B) (Pluripotent embryonic stem cell-related gene 3 protein) Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Major effector of the TTK kinase in the control of attachment-error-correction and chromosome alignment. {ECO:0000269|PubMed:15249581, ECO:0000269|PubMed:15260989, ECO:0000269|PubMed:16571674, ECO:0000269|PubMed:18243099}.
Q562F6 SGO2 T497 ochoa Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}.
Q5JQS6 GCSAML T108 ochoa Germinal center-associated signaling and motility-like protein None
Q5JSH3 WDR44 T129 ochoa WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}.
Q5JSZ5 PRRC2B T982 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5JTH9 RRP12 T88 ochoa RRP12-like protein None
Q5QJE6 DNTTIP2 T329 ochoa Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}.
Q5SSJ5 HP1BP3 T77 ochoa Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}.
Q5SW79 CEP170 T914 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5T1M5 FKBP15 T1146 ochoa FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}.
Q5TCX8 MAP3K21 T567 ochoa Mitogen-activated protein kinase kinase kinase 21 (EC 2.7.11.25) (Mitogen-activated protein kinase kinase kinase MLK4) (Mixed lineage kinase 4) Negative regulator of TLR4 signaling. Does not activate JNK1/MAPK8 pathway, p38/MAPK14, nor ERK2/MAPK1 pathways. {ECO:0000269|PubMed:21602844}.
Q5UIP0 RIF1 T1665 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5VST9 OBSCN T4788 ochoa Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}.
Q5VVJ2 MYSM1 T226 ochoa Deubiquitinase MYSM1 (2A-DUB) (EC 3.4.19.-) (Myb-like, SWIRM and MPN domain-containing protein 1) Metalloprotease with deubiquitinase activity that plays important regulator roles in hematopoietic stem cell function, blood cell production and immune response (PubMed:24062447, PubMed:26220525, PubMed:28115216). Participates in the normal programming of B-cell responses to antigen after the maturation process (By similarity). Within the cytoplasm, plays critical roles in the repression of innate immunity and autoimmunity (PubMed:33086059). Removes 'Lys-63'-linked polyubiquitins from TRAF3 and TRAF6 complexes (By similarity). Attenuates NOD2-mediated inflammation and tissue injury by promoting 'Lys-63'-linked deubiquitination of RIPK2 component (By similarity). Suppresses the CGAS-STING1 signaling pathway by cleaving STING1 'Lys-63'-linked ubiquitin chains (PubMed:33086059). In the nucleus, acts as a hematopoietic transcription regulator derepressing a range of genes essential for normal stem cell differentiation including EBF1 and PAX5 in B-cells, ID2 in NK-cell progenitor or FLT3 in dendritic cell precursors (PubMed:24062447). Deubiquitinates monoubiquitinated histone H2A, a specific tag for epigenetic transcriptional repression, leading to dissociation of histone H1 from the nucleosome (PubMed:17707232). {ECO:0000250|UniProtKB:Q69Z66, ECO:0000269|PubMed:17707232, ECO:0000269|PubMed:22169041, ECO:0000269|PubMed:24062447, ECO:0000269|PubMed:26220525, ECO:0000269|PubMed:28115216, ECO:0000269|PubMed:33086059}.
Q5VZK9 CARMIL1 T912 ochoa F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}.
Q5VZL5 ZMYM4 T118 ochoa Zinc finger MYM-type protein 4 (Zinc finger protein 262) Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}.
Q5VZL5 ZMYM4 T212 ochoa Zinc finger MYM-type protein 4 (Zinc finger protein 262) Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}.
Q63HQ0 AP1AR T228 ochoa AP-1 complex-associated regulatory protein (2c18) (Adaptor-related protein complex 1-associated regulatory protein) (Gamma-1-adaptin brefeldin A resistance protein) (GBAR) (Gamma-BAR) (Gamma-A1-adaptin and kinesin interactor) (Gadkin) Necessary for adaptor protein complex 1 (AP-1)-dependent transport between the trans-Golgi network and endosomes. Regulates the membrane association of AP1G1/gamma1-adaptin, one of the subunits of the AP-1 adaptor complex. The direct interaction with AP1G1/gamma1-adaptin attenuates the release of the AP-1 complex from membranes. Regulates endosomal membrane traffic via association with AP-1 and KIF5B thus linking kinesin-based plus-end-directed microtubular transport to AP-1-dependent membrane traffic. May act as effector of AP-1 in calcium-induced endo-lysosome secretion. Inhibits Arp2/3 complex function; negatively regulates cell spreading, size and motility via intracellular sequestration of the Arp2/3 complex. {ECO:0000269|PubMed:15775984, ECO:0000269|PubMed:19706427, ECO:0000269|PubMed:21525240, ECO:0000269|PubMed:22689987}.
Q641Q2 WASHC2A T1056 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q68CZ2 TNS3 T712 ochoa Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}.
Q68CZ2 TNS3 T718 ochoa Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}.
Q6IQ23 PLEKHA7 T472 ochoa Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}.
Q6JBY9 RCSD1 T287 ochoa CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}.
Q6NSI4 RADX T263 ochoa RPA-related protein RADX (RPA-related and RAD51-antagonist, X-chromosome) Single-stranded DNA-binding protein recruited to replication forks to maintain genome stability (PubMed:28735897). Prevents fork collapse by antagonizing the accumulation of RAD51 at forks to ensure the proper balance of fork remodeling and protection without interfering with the capacity of cells to complete homologous recombination of double-strand breaks (PubMed:28735897). {ECO:0000269|PubMed:28735897}.
Q6NT76 HMBOX1 T127 ochoa Homeobox-containing protein 1 (Homeobox telomere-binding protein 1) (Telomere-associated homeobox-containing protein 1) Binds directly to 5'-TTAGGG-3' repeats in telomeric DNA (PubMed:23685356, PubMed:23813958). Associates with the telomerase complex at sites of active telomere processing and positively regulates telomere elongation (PubMed:23685356). Important for TERT binding to chromatin, indicating a role in recruitment of the telomerase complex to telomeres (By similarity). Also plays a role in the alternative lengthening of telomeres (ALT) pathway in telomerase-negative cells where it promotes formation and/or maintenance of ALT-associated promyelocytic leukemia bodies (APBs) (PubMed:23813958). Enhances formation of telomere C-circles in ALT cells, suggesting a possible role in telomere recombination (PubMed:23813958). Might also be involved in the DNA damage response at telomeres (PubMed:23813958). {ECO:0000250|UniProtKB:Q8BJA3, ECO:0000269|PubMed:23685356, ECO:0000269|PubMed:23813958}.
Q6P996 PDXDC1 T749 ochoa Pyridoxal-dependent decarboxylase domain-containing protein 1 (EC 4.1.1.-) None
Q6PKG0 LARP1 T223 ochoa La-related protein 1 (La ribonucleoprotein domain family member 1) RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}.
Q6PKG0 LARP1 T722 ochoa La-related protein 1 (La ribonucleoprotein domain family member 1) RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}.
Q6QNY0 BLOC1S3 T25 ochoa Biogenesis of lysosome-related organelles complex 1 subunit 3 (BLOC-1 subunit 3) Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes. In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Plays a role in intracellular vesicle trafficking. {ECO:0000269|PubMed:16385460, ECO:0000269|PubMed:17182842}.
Q6T4R5 NHS T1264 ochoa Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}.
Q6W2J9 BCOR T770 ochoa BCL-6 corepressor (BCoR) Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}.
Q6W2J9 BCOR T773 ochoa BCL-6 corepressor (BCoR) Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}.
Q6Y7W6 GIGYF2 T188 ochoa GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}.
Q6ZU80 CEP128 T1035 ochoa Centrosomal protein of 128 kDa (Cep128) None
Q6ZVM7 TOM1L2 T401 ochoa TOM1-like protein 2 (Target of Myb-like protein 2) Acts as a MYO6/Myosin VI adapter protein that targets myosin VI to endocytic structures (PubMed:23023224). May also play a role in recruiting clathrin to endosomes (PubMed:16412388). May regulate growth factor-induced mitogenic signaling (PubMed:16479011). {ECO:0000269|PubMed:16412388, ECO:0000269|PubMed:16479011, ECO:0000269|PubMed:23023224}.
Q711Q0 CEFIP T293 ochoa Cardiac-enriched FHL2-interacting protein Plays an important role in cardiomyocyte hypertrophy via activation of the calcineurin/NFAT signaling pathway. {ECO:0000250|UniProtKB:M0RD54}.
Q71F23 CENPU T159 ochoa Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}.
Q71F23 CENPU T167 ochoa Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}.
Q71U36 TUBA1A T94 ochoa Tubulin alpha-1A chain (EC 3.6.5.-) (Alpha-tubulin 3) (Tubulin B-alpha-1) (Tubulin alpha-3 chain) [Cleaved into: Detyrosinated tubulin alpha-1A chain] Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
Q76N89 HECW1 T558 ochoa E3 ubiquitin-protein ligase HECW1 (EC 2.3.2.26) (HECT, C2 and WW domain-containing protein 1) (HECT-type E3 ubiquitin transferase HECW1) (NEDD4-like E3 ubiquitin-protein ligase 1) (hNEDL1) E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent degradation of DVL1. Also targets the mutant SOD1 protein involved in familial amyotrophic lateral sclerosis (FALS). Forms cytotoxic aggregates with DVL1, SSR3 and mutant SOD1 that lead to motor neuron death in FALS. {ECO:0000269|PubMed:14684739}.
Q7L576 CYFIP1 T1068 ochoa Cytoplasmic FMR1-interacting protein 1 (Specifically Rac1-associated protein 1) (Sra-1) (p140sra-1) Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit is an adapter between EIF4E and FMR1. Promotes the translation repression activity of FMR1 in brain probably by mediating its association with EIF4E and mRNA (By similarity). Regulates formation of membrane ruffles and lamellipodia. Plays a role in axon outgrowth. Binds to F-actin but not to RNA. Part of the WAVE complex that regulates actin filament reorganization via its interaction with the Arp2/3 complex. Actin remodeling activity is regulated by RAC1. Regulator of epithelial morphogenesis. As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). May act as an invasion suppressor in cancers. {ECO:0000250|UniProtKB:Q7TMB8, ECO:0000269|PubMed:16260607, ECO:0000269|PubMed:19524508, ECO:0000269|PubMed:21107423, ECO:0000269|PubMed:9417078}.
Q7L590 MCM10 T76 ochoa Protein MCM10 homolog (HsMCM10) Acts as a replication initiation factor that brings together the MCM2-7 helicase and the DNA polymerase alpha/primase complex in order to initiate DNA replication. Additionally, plays a role in preventing DNA damage during replication. Key effector of the RBBP6 and ZBTB38-mediated regulation of DNA-replication and common fragile sites stability; acts as a direct target of transcriptional repression by ZBTB38 (PubMed:24726359). {ECO:0000269|PubMed:11095689, ECO:0000269|PubMed:15136575, ECO:0000269|PubMed:17699597, ECO:0000269|PubMed:19608746, ECO:0000269|PubMed:24726359, ECO:0000269|PubMed:32865517}.
Q7L7X3 TAOK1 T440 ochoa|psp Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}.
Q7L7X3 TAOK1 T576 ochoa Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}.
Q7L7X3 TAOK1 T785 psp Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}.
Q7Z3J3 RGPD4 T1325 ochoa RanBP2-like and GRIP domain-containing protein 4 None
Q7Z417 NUFIP2 T219 ochoa FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) Binds RNA. {ECO:0000269|PubMed:12837692}.
Q7Z4H7 HAUS6 T590 ochoa HAUS augmin-like complex subunit 6 Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}.
Q7Z5K2 WAPL T436 ochoa Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}.
Q7Z5K2 WAPL T1075 ochoa Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}.
Q7Z6E9 RBBP6 T956 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6Z7 HUWE1 T1731 ochoa E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}.
Q86T65 DAAM2 T657 ochoa Disheveled-associated activator of morphogenesis 2 Key regulator of the Wnt signaling pathway, which is required for various processes during development, such as dorsal patterning, determination of left/right symmetry or myelination in the central nervous system. Acts downstream of Wnt ligands and upstream of beta-catenin (CTNNB1). Required for canonical Wnt signaling pathway during patterning in the dorsal spinal cord by promoting the aggregation of Disheveled (Dvl) complexes, thereby clustering and formation of Wnt receptor signalosomes and potentiating Wnt activity. During dorsal patterning of the spinal cord, inhibits oligodendrocytes differentiation via interaction with PIP5K1A. Also regulates non-canonical Wnt signaling pathway. Acts downstream of PITX2 in the developing gut and is required for left/right asymmetry within dorsal mesentery: affects mesenchymal condensation by lengthening cadherin-based junctions through WNT5A and non-canonical Wnt signaling, inducing polarized condensation in the left dorsal mesentery necessary to initiate gut rotation. Together with DAAM1, required for myocardial maturation and sarcomere assembly. Is a regulator of actin nucleation and elongation, filopodia formation and podocyte migration (PubMed:33232676). {ECO:0000250|UniProtKB:Q80U19, ECO:0000269|PubMed:33232676}.
Q86V15 CASZ1 T1717 ochoa Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}.
Q86V21 AACS T83 ochoa Acetoacetyl-CoA synthetase (EC 6.2.1.16) (Acyl-CoA synthetase family member 1) (Protein sur-5 homolog) Converts acetoacetate to acetoacetyl-CoA in the cytosol (By similarity). Ketone body-utilizing enzyme, responsible for the synthesis of cholesterol and fatty acids (By similarity). {ECO:0000250|UniProtKB:Q9D2R0, ECO:0000250|UniProtKB:Q9JMI1}.
Q86VP1 TAX1BP1 T702 ochoa Tax1-binding protein 1 (TRAF6-binding protein) Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}.
Q86XX4 FRAS1 T3983 ochoa Extracellular matrix organizing protein FRAS1 (Fraser syndrome 1 protein) Involved in extracellular matrix organization (By similarity). Required for the regulation of epidermal-basement membrane adhesion responsible for proper organogenesis during embryonic development (By similarity). Involved in brain organization and function (By similarity). {ECO:0000250|UniProtKB:Q80T14}.
Q86YT9 JAML T258 ochoa Junctional adhesion molecule-like (Adhesion molecule interacting with CXADR antigen 1) (Dendritic cell-specific protein CREA7-1) Transmembrane protein of the plasma membrane of leukocytes that control their migration and activation through interaction with CXADR, a plasma membrane receptor found on adjacent epithelial and endothelial cells. The interaction between both receptors mediates the activation of gamma-delta T-cells, a subpopulation of T-cells residing in epithelia and involved in tissue homeostasis and repair. Upon epithelial CXADR-binding, JAML induces downstream cell signaling events in gamma-delta T-cells through PI3-kinase and MAP kinases. It results in proliferation and production of cytokines and growth factors by T-cells that in turn stimulate epithelial tissues repair. It also controls the transmigration of leukocytes within epithelial and endothelial tissues through adhesive interactions with epithelial and endothelial CXADR. {ECO:0000269|PubMed:12869515, ECO:0000269|PubMed:15800062, ECO:0000269|PubMed:18948633, ECO:0000269|PubMed:19064666}.
Q86YV0 RASAL3 T234 ochoa RAS protein activator like-3 Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}.
Q8IUW5 RELL1 T116 ochoa RELT-like protein 1 Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}.
Q8IVG5 SAMD9L T486 ochoa Sterile alpha motif domain-containing protein 9-like (SAM domain-containing protein 9-like) May be involved in endosome fusion. Mediates down-regulation of growth factor signaling via internalization of growth factor receptors. {ECO:0000250|UniProtKB:Q69Z37}.
Q8IW35 CEP97 T725 ochoa Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}.
Q8IWU2 LMTK2 T789 ochoa Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) Phosphorylates PPP1C, phosphorylase b and CFTR.
Q8IX90 SKA3 T254 ochoa Spindle and kinetochore-associated protein 3 Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:19289083, PubMed:19360002, PubMed:23085020). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083, PubMed:19360002). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:19289083). In the complex, it mediates the microtubule-stimulated oligomerization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:19360002, ECO:0000269|PubMed:23085020}.
Q8IXS8 HYCC2 T308 ochoa Hyccin 2 Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. {ECO:0000305|PubMed:26571211}.
Q8IXW5 RPAP2 T489 ochoa Putative RNA polymerase II subunit B1 CTD phosphatase RPAP2 (EC 3.1.3.16) (RNA polymerase II-associated protein 2) Protein phosphatase that displays CTD phosphatase activity and regulates transcription of snRNA genes. Recognizes and binds phosphorylated 'Ser-7' of the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and mediates dephosphorylation of 'Ser-5' of the CTD, thereby promoting transcription of snRNA genes (PubMed:17643375, PubMed:22137580, PubMed:24997600). Downstream of EIF2AK3/PERK, dephosphorylates ERN1, a sensor for the endoplasmic reticulum unfolded protein response (UPR), to abort failed ER-stress adaptation and trigger apoptosis (PubMed:30118681). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:22137580, ECO:0000269|PubMed:24997600, ECO:0000269|PubMed:30118681}.
Q8IYJ3 SYTL1 T140 psp Synaptotagmin-like protein 1 (Exophilin-7) (Protein JFC1) May play a role in vesicle trafficking (By similarity). Binds phosphatidylinositol 3,4,5-trisphosphate. Acts as a RAB27A effector protein and may play a role in cytotoxic granule exocytosis in lymphocytes (By similarity). {ECO:0000250, ECO:0000269|PubMed:11278853, ECO:0000269|PubMed:18266782}.
Q8IZ21 PHACTR4 T27 ochoa Phosphatase and actin regulator 4 Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}.
Q8IZD2 KMT2E T619 ochoa Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}.
Q8IZL8 PELP1 T1014 ochoa Proline-, glutamic acid- and leucine-rich protein 1 (Modulator of non-genomic activity of estrogen receptor) (Transcription factor HMX3) Coactivator of estrogen receptor-mediated transcription and a corepressor of other nuclear hormone receptors and sequence-specific transcription factors (PubMed:14963108). Plays a role in estrogen receptor (ER) genomic activity when present in the nuclear compartment by activating the ER target genes in a hormonal stimulation dependent manner. Can facilitate ER non-genomic signaling via SRC and PI3K interaction in the cytosol. Plays a role in E2-mediated cell cycle progression by interacting with RB1. May have important functional implications in ER/growth factor cross-talk. Interacts with several growth factor signaling components including EGFR and HRS. Functions as the key stabilizing component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes. Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit. Regulates pre-60S association of the critical remodeling factor MDN1 (PubMed:21326211). May promote tumorigenesis via its interaction with and modulation of several oncogenes including SRC, PI3K, STAT3 and EGFR. Plays a role in cancer cell metastasis via its ability to modulate E2-mediated cytoskeleton changes and cell migration via its interaction with SRC and PI3K. {ECO:0000269|PubMed:11481323, ECO:0000269|PubMed:12682072, ECO:0000269|PubMed:14963108, ECO:0000269|PubMed:15374949, ECO:0000269|PubMed:15456770, ECO:0000269|PubMed:15579769, ECO:0000269|PubMed:15994929, ECO:0000269|PubMed:16140940, ECO:0000269|PubMed:16352611, ECO:0000269|PubMed:16574651, ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}.
Q8IZX4 TAF1L T1325 ochoa Transcription initiation factor TFIID subunit 1-like (TAF(II)210) (TBP-associated factor 1-like) (TBP-associated factor 210 kDa) (Transcription initiation factor TFIID 210 kDa subunit) May act as a functional substitute for TAF1/TAFII250 during male meiosis, when sex chromosomes are transcriptionally silenced. {ECO:0000269|PubMed:12217962}.
Q8N163 CCAR2 T609 ochoa Cell cycle and apoptosis regulator protein 2 (Cell division cycle and apoptosis regulator protein 2) (DBIRD complex subunit KIAA1967) (Deleted in breast cancer gene 1 protein) (DBC-1) (DBC.1) (NET35) (p30 DBC) Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions (PubMed:22446626). Inhibits SIRT1 deacetylase activity leading to increasing levels of p53/TP53 acetylation and p53-mediated apoptosis (PubMed:18235501, PubMed:18235502, PubMed:23352644). Inhibits SUV39H1 methyltransferase activity (PubMed:19218236). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). Plays a critical role in maintaining genomic stability and cellular integrity following UV-induced genotoxic stress (PubMed:23398316). Regulates the circadian expression of the core clock components NR1D1 and BMAL1 (PubMed:23398316). Enhances the transcriptional repressor activity of NR1D1 through stabilization of NR1D1 protein levels by preventing its ubiquitination and subsequent degradation (PubMed:23398316). Represses the ligand-dependent transcriptional activation function of ESR2 (PubMed:20074560). Acts as a regulator of PCK1 expression and gluconeogenesis by a mechanism that involves, at least in part, both NR1D1 and SIRT1 (PubMed:24415752). Negatively regulates the deacetylase activity of HDAC3 and can alter its subcellular localization (PubMed:21030595). Positively regulates the beta-catenin pathway (canonical Wnt signaling pathway) and is required for MCC-mediated repression of the beta-catenin pathway (PubMed:24824780). Represses ligand-dependent transcriptional activation function of NR1H2 and NR1H3 and inhibits the interaction of SIRT1 with NR1H3 (PubMed:25661920). Plays an important role in tumor suppression through p53/TP53 regulation; stabilizes p53/TP53 by affecting its interaction with ubiquitin ligase MDM2 (PubMed:25732823). Represses the transcriptional activator activity of BRCA1 (PubMed:20160719). Inhibits SIRT1 in a CHEK2 and PSEM3-dependent manner and inhibits the activity of CHEK2 in vitro (PubMed:25361978). {ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18235502, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19218236, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:22446626, ECO:0000269|PubMed:23352644, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25661920, ECO:0000269|PubMed:25732823}.
Q8N3X1 FNBP4 T485 ochoa Formin-binding protein 4 (Formin-binding protein 30) None
Q8N4C6 NIN T149 ochoa Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}.
Q8N4C6 NIN T1303 ochoa Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}.
Q8N4C9 C17orf78 T151 ochoa Uncharacterized protein C17orf78 None
Q8N5F7 NKAP T298 ochoa NF-kappa-B-activating protein Acts as a transcriptional repressor (PubMed:14550261, PubMed:19409814, PubMed:31587868). Plays a role as a transcriptional corepressor of the Notch-mediated signaling required for T-cell development (PubMed:19409814). Also involved in the TNF and IL-1 induced NF-kappa-B activation. Associates with chromatin at the Notch-regulated SKP2 promoter. {ECO:0000269|PubMed:14550261, ECO:0000269|PubMed:19409814, ECO:0000269|PubMed:31587868}.
Q8N8S7 ENAH T464 ochoa Protein enabled homolog Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. ENAH induces the formation of F-actin rich outgrowths in fibroblasts. Acts synergistically with BAIAP2-alpha and downstream of NTN1 to promote filipodia formation (By similarity). {ECO:0000250, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:18158903}.
Q8N8S7 ENAH T502 ochoa Protein enabled homolog Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. ENAH induces the formation of F-actin rich outgrowths in fibroblasts. Acts synergistically with BAIAP2-alpha and downstream of NTN1 to promote filipodia formation (By similarity). {ECO:0000250, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:18158903}.
Q8N9B8 RASGEF1A T157 ochoa Ras-GEF domain-containing family member 1A Guanine nucleotide exchange factor (GEF) with specificity for RAP2A, KRAS, HRAS, and NRAS (in vitro). Plays a role in cell migration. {ECO:0000269|PubMed:17121879, ECO:0000269|PubMed:19645719}.
Q8N9I0 SYT2 T125 ochoa Synaptotagmin-2 (Synaptotagmin II) (SytII) Exhibits calcium-dependent phospholipid and inositol polyphosphate binding properties (By similarity). May have a regulatory role in the membrane interactions during trafficking of synaptic vesicles at the active zone of the synapse (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:P46097, ECO:0000269|PubMed:23999003}.
Q8NBF6 AVL9 T312 ochoa Late secretory pathway protein AVL9 homolog Functions in cell migration. {ECO:0000269|PubMed:22595670}.
Q8NC54 KCT2 T168 ochoa Keratinocyte-associated transmembrane protein 2 None
Q8NCF5 NFATC2IP T190 ochoa NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}.
Q8NE01 CNNM3 T684 ochoa Metal transporter CNNM3 (Ancient conserved domain-containing protein 3) (Cyclin-M3) Probable metal transporter. {ECO:0000250}.
Q8NEM7 SUPT20H T445 ochoa Transcription factor SPT20 homolog (p38-interacting protein) (p38IP) Required for MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) activation during gastrulation. Required for down-regulation of E-cadherin during gastrulation by regulating E-cadherin protein level downstream from NCK-interacting kinase (NIK) and independently of the regulation of transcription by FGF signaling and Snail (By similarity). Required for starvation-induced ATG9A trafficking during autophagy. {ECO:0000250, ECO:0000269|PubMed:19893488}.
Q8NEN9 PDZD8 T982 ochoa PDZ domain-containing protein 8 (Sarcoma antigen NY-SAR-84/NY-SAR-104) Molecular tethering protein that connects endoplasmic reticulum and mitochondria membranes (PubMed:29097544). PDZD8-dependent endoplasmic reticulum-mitochondria membrane tethering is essential for endoplasmic reticulum-mitochondria Ca(2+) transfer (PubMed:29097544). In neurons, involved in the regulation of dendritic Ca(2+) dynamics by regulating mitochondrial Ca(2+) uptake in neurons (PubMed:29097544). Plays an indirect role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987). May inhibit herpes simplex virus 1 infection at an early stage (PubMed:21549406). {ECO:0000269|PubMed:21549406, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29097544}.
Q8NFC6 BOD1L1 T273 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NFC6 BOD1L1 T733 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NFC6 BOD1L1 T2810 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NFJ5 GPRC5A T315 ochoa Retinoic acid-induced protein 3 (G-protein coupled receptor family C group 5 member A) (Phorbol ester induced gene 1) (PEIG-1) (Retinoic acid-induced gene 1 protein) (RAIG-1) Orphan receptor. Could be involved in modulating differentiation and maintaining homeostasis of epithelial cells. This retinoic acid-inducible GPCR provide evidence for a possible interaction between retinoid and G-protein signaling pathways. Functions as a negative modulator of EGFR signaling (By similarity). May act as a lung tumor suppressor (PubMed:18000218). {ECO:0000250|UniProtKB:Q8BHL4, ECO:0000269|PubMed:18000218}.
Q8NFQ8 TOR1AIP2 T66 ochoa Torsin-1A-interacting protein 2 (Lumenal domain-like LAP1) Required for endoplasmic reticulum integrity. Regulates the distribution of TOR1A between the endoplasmic reticulum and the nuclear envelope as well as induces TOR1A, TOR1B and TOR3A ATPase activity. {ECO:0000269|PubMed:19339278, ECO:0000269|PubMed:23569223, ECO:0000269|PubMed:24275647}.
Q8NFQ8 TOR1AIP2 T156 ochoa Torsin-1A-interacting protein 2 (Lumenal domain-like LAP1) Required for endoplasmic reticulum integrity. Regulates the distribution of TOR1A between the endoplasmic reticulum and the nuclear envelope as well as induces TOR1A, TOR1B and TOR3A ATPase activity. {ECO:0000269|PubMed:19339278, ECO:0000269|PubMed:23569223, ECO:0000269|PubMed:24275647}.
Q8NHP6 MOSPD2 T281 ochoa Motile sperm domain-containing protein 2 Endoplasmic reticulum-anchored protein that mediates the formation of contact sites between the endoplasmic (ER) and endosomes, mitochondria or Golgi through interaction with conventional- and phosphorylated-FFAT-containing organelle-bound proteins (PubMed:29858488, PubMed:33124732, PubMed:35389430). In addition, forms endoplasmic reticulum (ER)-lipid droplets (LDs) contacts through a direct protein-membrane interaction and participates in LDs homeostasis (PubMed:35389430). The attachment mechanism involves an amphipathic helix that has an affinity for lipid packing defects present at the surface of LDs (PubMed:35389430). Promotes migration of primary monocytes and neutrophils, in response to various chemokines (PubMed:28137892). {ECO:0000269|PubMed:28137892, ECO:0000269|PubMed:29858488, ECO:0000269|PubMed:33124732, ECO:0000269|PubMed:35389430}.
Q8NI35 PATJ T504 ochoa InaD-like protein (Inadl protein) (hINADL) (Channel-interacting PDZ domain-containing protein) (Pals1-associated tight junction protein) (Protein associated to tight junctions) Scaffolding protein that facilitates the localization of proteins to the cell membrane (PubMed:11927608, PubMed:16678097, PubMed:22006950). Required for the correct formation of tight junctions and epithelial apico-basal polarity (PubMed:11927608, PubMed:16678097). Acts (via its L27 domain) as an apical connector and elongation factor for multistranded TJP1/ZO1 condensates that form a tight junction belt, thereby required for the formation of the tight junction-mediated cell barrier (By similarity). Positively regulates epithelial cell microtubule elongation and cell migration, possibly via facilitating localization of PRKCI/aPKC and PAR3D/PAR3 at the leading edge of migrating cells (By similarity). Plays a role in the correct reorientation of the microtubule-organizing center during epithelial migration (By similarity). May regulate the surface expression and/or function of ASIC3 in sensory neurons (By similarity). May recruit ARHGEF18 to apical cell-cell boundaries (PubMed:22006950). {ECO:0000250|UniProtKB:E2QYC9, ECO:0000250|UniProtKB:Q63ZW7, ECO:0000269|PubMed:11927608, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:22006950}.
Q8TAA9 VANGL1 T47 ochoa Vang-like protein 1 (Loop-tail protein 2 homolog) (LPP2) (Strabismus 2) (Van Gogh-like protein 1) None
Q8TAQ2 SMARCC2 T390 ochoa SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q8TD26 CHD6 T1339 ochoa Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}.
Q8TD55 PLEKHO2 T250 ochoa Pleckstrin homology domain-containing family O member 2 (PH domain-containing family O member 2) (Pleckstrin homology domain-containing family Q member 1) (PH domain-containing family Q member 1) None
Q8TDM6 DLG5 T1249 ochoa Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}.
Q8TDW5 SYTL5 T168 ochoa Synaptotagmin-like protein 5 May act as Rab effector protein and play a role in vesicle trafficking. Binds phospholipids.
Q8TDY2 RB1CC1 T631 ochoa RB1-inducible coiled-coil protein 1 (FAK family kinase-interacting protein of 200 kDa) (FIP200) Involved in autophagy (PubMed:21775823). Regulates early events but also late events of autophagosome formation through direct interaction with Atg16L1 (PubMed:23392225). Required for the formation of the autophagosome-like double-membrane structure that surrounds the Salmonella-containing vacuole (SCV) during S.typhimurium infection and subsequent xenophagy (By similarity). Involved in repair of DNA damage caused by ionizing radiation, which subsequently improves cell survival by decreasing apoptosis (By similarity). Inhibits PTK2/FAK1 and PTK2B/PYK2 kinase activity, affecting their downstream signaling pathways (PubMed:10769033, PubMed:12221124). Plays a role as a modulator of TGF-beta-signaling by restricting substrate specificity of RNF111 (By similarity). Functions as a DNA-binding transcription factor (PubMed:12095676). Is a potent regulator of the RB1 pathway through induction of RB1 expression (PubMed:14533007). Plays a crucial role in muscular differentiation (PubMed:12163359). Plays an indispensable role in fetal hematopoiesis and in the regulation of neuronal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9ESK9, ECO:0000269|PubMed:10769033, ECO:0000269|PubMed:12095676, ECO:0000269|PubMed:12163359, ECO:0000269|PubMed:12221124, ECO:0000269|PubMed:14533007, ECO:0000269|PubMed:21775823, ECO:0000269|PubMed:23392225}.
Q8TE68 EPS8L1 T305 ochoa Epidermal growth factor receptor kinase substrate 8-like protein 1 (EPS8-like protein 1) (Epidermal growth factor receptor pathway substrate 8-related protein 1) (EPS8-related protein 1) Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. {ECO:0000269|PubMed:14565974}.
Q8TF44 C2CD4C T159 ochoa C2 calcium-dependent domain-containing protein 4C (Nuclear-localized factor 3) (Protein FAM148C) None
Q8WU17 RNF139 T635 ochoa E3 ubiquitin-protein ligase RNF139 (EC 2.3.2.27) (RING finger protein 139) (RING-type E3 ubiquitin transferase RNF139) (Translocation in renal carcinoma on chromosome 8 protein) E3-ubiquitin ligase; acts as a negative regulator of cell proliferation through mechanisms involving G2/M arrest and cell death (PubMed:10500182, PubMed:12032852, PubMed:17016439). Required for MHC class I ubiquitination in cells expressing the cytomegalovirus protein US2 before dislocation from the endoplasmic reticulum (ER) (PubMed:19720873). Affects SREBP processing by hindering the SREBP-SCAP complex translocation from the ER to the Golgi, thereby reducing SREBF2 target gene expression (PubMed:19706601, PubMed:20068067). Involved in the sterol-accelerated degradation of HMGCR (PubMed:22143767, PubMed:23223569). This is achieved through binding of RNF139 to INSIG1 and/or INSIG2 at the ER membrane (PubMed:22143767). In addition, interaction of RNF139 with AUP1 facilitates interaction of RNF139 with ubiquitin-conjugating enzyme UBE2G2 and ubiquitin ligase AMFR, leading to ubiquitination of HMGCR (PubMed:23223569). The ubiquitinated HMGCR is then released from the ER into the cytosol for subsequent destruction (PubMed:22143767, PubMed:23223569). Required for INSIG1 ubiquitination (PubMed:20068067). May be required for EIF3 complex ubiquitination (PubMed:20068067). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:12032852, ECO:0000269|PubMed:17016439, ECO:0000269|PubMed:19706601, ECO:0000269|PubMed:19720873, ECO:0000269|PubMed:20068067, ECO:0000269|PubMed:22143767, ECO:0000269|PubMed:23223569}.
Q8WUI4 HDAC7 T411 ochoa Histone deacetylase 7 (HD7) (EC 3.5.1.98) (Histone deacetylase 7A) (HD7a) (Protein deacetylase HDAC7) (EC 3.5.1.-) Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (By similarity). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (By similarity). Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Involved in muscle maturation by repressing transcription of myocyte enhancer factors such as MEF2A, MEF2B and MEF2C (By similarity). During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors (By similarity). May be involved in Epstein-Barr virus (EBV) latency, possibly by repressing the viral BZLF1 gene (PubMed:12239305). Positively regulates the transcriptional repressor activity of FOXP3 (PubMed:17360565). Serves as a corepressor of RARA, causing its deacetylation and inhibition of RARE DNA element binding (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). Also acetylates non-histone proteins, such as ALKBH5 (PubMed:37369679). {ECO:0000250|UniProtKB:Q8C2B3, ECO:0000269|PubMed:12239305, ECO:0000269|PubMed:17360565, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:37369679}.
Q8WUY3 PRUNE2 T1651 ochoa Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}.
Q8WVM7 STAG1 T29 ochoa Cohesin subunit SA-1 (SCC3 homolog 1) (Stromal antigen 1) Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis.
Q8WWH5 TRUB1 T27 ochoa Pseudouridylate synthase TRUB1 (EC 5.4.99.-) (TruB pseudouridine synthase homolog 1) (tRNA pseudouridine 55 synthase TRUB1) (Psi55 synthase TRUB1) (EC 5.4.99.25) Pseudouridine synthase that catalyzes pseudouridylation of mRNAs and tRNAs (PubMed:28073919, PubMed:31477916, PubMed:32926445). Mediates pseudouridylation of mRNAs with the consensus sequence 5'-GUUCNANNC-3', harboring a stem-loop structure (PubMed:28073919, PubMed:31477916). Constitutes the major pseudouridine synthase acting on mRNAs (PubMed:28073919). Also catalyzes pseudouridylation of some tRNAs, including synthesis of pseudouridine(55) from uracil-55, in the psi GC loop of a subset of tRNAs (PubMed:32926445, PubMed:33023933). Promotes the processing of pri-let-7 microRNAs (pri-miRNAs) independently of its RNA pseudouridylate synthase activity (PubMed:32926445). Acts by binding to the stem-loop structure on pri-let-7, preventing LIN28-binding (LIN28A and/or LIN28B), thereby enhancing the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation (PubMed:32926445). {ECO:0000269|PubMed:28073919, ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:32926445, ECO:0000269|PubMed:33023933}.
Q8WWQ0 PHIP T423 ochoa PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}.
Q8WWQ0 PHIP T1523 ochoa PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}.
Q92560 BAP1 T273 psp Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}.
Q92560 BAP1 T310 ochoa Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}.
Q92576 PHF3 T1730 ochoa PHD finger protein 3 None
Q92619 ARHGAP45 T600 ochoa Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}.
Q92667 AKAP1 T562 ochoa A-kinase anchor protein 1, mitochondrial (A-kinase anchor protein 149 kDa) (AKAP 149) (Dual specificity A-kinase-anchoring protein 1) (D-AKAP-1) (Protein kinase A-anchoring protein 1) (PRKA1) (Spermatid A-kinase anchor protein 84) (S-AKAP84) Binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane (By similarity). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Promotes translocation of NDUFS1 into mitochondria to regulate mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) activity (By similarity). {ECO:0000250|UniProtKB:O08715, ECO:0000269|PubMed:31522117}.
Q92733 PRCC T165 ochoa Proline-rich protein PRCC (Papillary renal cell carcinoma translocation-associated gene protein) May regulate cell cycle progression through interaction with MAD2L2. {ECO:0000269|PubMed:11717438}.
Q92823 NRCAM T1221 ochoa Neuronal cell adhesion molecule (Nr-CAM) (Neuronal surface protein Bravo) (hBravo) (NgCAM-related cell adhesion molecule) (Ng-CAM-related) Cell adhesion protein that is required for normal responses to cell-cell contacts in brain and in the peripheral nervous system. Plays a role in neurite outgrowth in response to contactin binding. Plays a role in mediating cell-cell contacts between Schwann cells and axons. Plays a role in the formation and maintenance of the nodes of Ranvier on myelinated axons. Nodes of Ranvier contain clustered sodium channels that are crucial for the saltatory propagation of action potentials along myelinated axons. During development, nodes of Ranvier are formed by the fusion of two heminodes. Required for normal clustering of sodium channels at heminodes; not required for the formation of mature nodes with normal sodium channel clusters. Required, together with GLDN, for maintaining NFASC and sodium channel clusters at mature nodes of Ranvier. {ECO:0000250|UniProtKB:Q810U4}.
Q92930 RAB8B T164 ochoa Ras-related protein Rab-8B (EC 3.6.5.2) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). RAB8B may be involved in polarized vesicular trafficking and neurotransmitter release (Probable). May participate in cell junction dynamics in Sertoli cells (By similarity). May also participate in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). {ECO:0000250|UniProtKB:P61006, ECO:0000250|UniProtKB:P70550, ECO:0000269|PubMed:32344433, ECO:0000305}.
Q92974 ARHGEF2 T679 ochoa|psp Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}.
Q96AC1 FERMT2 T362 ochoa Fermitin family homolog 2 (Kindlin-2) (Mitogen-inducible gene 2 protein) (MIG-2) (Pleckstrin homology domain-containing family C member 1) (PH domain-containing family C member 1) Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling. {ECO:0000269|PubMed:12679033, ECO:0000269|PubMed:18458155, ECO:0000269|PubMed:21325030, ECO:0000269|PubMed:22030399, ECO:0000269|PubMed:22078565, ECO:0000269|PubMed:22699938}.
Q96C92 ENTR1 T301 ochoa Endosome-associated-trafficking regulator 1 (Antigen NY-CO-3) (Serologically defined colon cancer antigen 3) Endosome-associated protein that plays a role in membrane receptor sorting, cytokinesis and ciliogenesis (PubMed:23108400, PubMed:25278552, PubMed:27767179). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552). Involved in the regulation of cytokinesis; the function may involve PTPN13 and GIT1 (PubMed:23108400). Plays a role in the formation of cilia (PubMed:27767179). Involved in cargo protein localization, such as PKD2, at primary cilia (PubMed:27767179). Involved in the presentation of the tumor necrosis factor (TNF) receptor TNFRSF1A on the cell surface, and hence in the modulation of the TNF-induced apoptosis (By similarity). {ECO:0000250|UniProtKB:A2AIW0, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25278552, ECO:0000269|PubMed:27767179}.
Q96DF8 ESS2 T333 ochoa Splicing factor ESS-2 homolog (DiGeorge syndrome critical region 13) (DiGeorge syndrome critical region 14) (DiGeorge syndrome protein H) (DGS-H) (Protein ES2) May be involved in pre-mRNA splicing. {ECO:0000250|UniProtKB:P34420}.
Q96DX7 TRIM44 T319 ochoa Tripartite motif-containing protein 44 (Protein DIPB) May play a role in the process of differentiation and maturation of neuronal cells (By similarity). May regulate the activity of TRIM17. Is a negative regulator of PAX6 expression (PubMed:26394807). {ECO:0000250, ECO:0000269|PubMed:19358823, ECO:0000269|PubMed:26394807}.
Q96F07 CYFIP2 T1092 ochoa Cytoplasmic FMR1-interacting protein 2 (p53-inducible protein 121) Involved in T-cell adhesion and p53/TP53-dependent induction of apoptosis. Does not bind RNA. As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). {ECO:0000250|UniProtKB:Q5SQX6, ECO:0000269|PubMed:10449408, ECO:0000269|PubMed:15048733, ECO:0000269|PubMed:17245118}.
Q96GQ7 DDX27 T755 ochoa Probable ATP-dependent RNA helicase DDX27 (EC 3.6.4.13) (DEAD box protein 27) Probable ATP-dependent RNA helicase. Component of the nucleolar ribosomal RNA (rRNA) processing machinery that regulates 3' end formation of ribosomal 47S rRNA (PubMed:25825154). {ECO:0000269|PubMed:25825154}.
Q96HE9 PRR11 T321 ochoa Proline-rich protein 11 Plays a critical role in cell cycle progression. {ECO:0000269|PubMed:23246489}.
Q96II8 LRCH3 T59 ochoa DISP complex protein LRCH3 (Leucine-rich repeat and calponin homology domain-containing protein 3) As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton. {ECO:0000269|PubMed:29467281}.
Q96IY1 NSL1 T244 ochoa Kinetochore-associated protein NSL1 homolog Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:16585270}.
Q96K76 USP47 T1008 ochoa Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}.
Q96K76 USP47 T1015 ochoa Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}.
Q96KC8 DNAJC1 T438 ochoa DnaJ homolog subfamily C member 1 (DnaJ protein homolog MTJ1) May modulate protein synthesis. {ECO:0000250}.
Q96MG7 NSMCE3 T50 ochoa Non-structural maintenance of chromosomes element 3 homolog (Non-SMC element 3 homolog) (Hepatocellular carcinoma-associated protein 4) (MAGE-G1 antigen) (Melanoma-associated antigen G1) (Necdin-like protein 2) Component of the SMC5-SMC6 complex, a complex involved in repair of DNA double-strand breaks by homologous recombination (PubMed:20864041, PubMed:27427983). The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks. The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs). In vitro enhances ubiquitin ligase activity of NSMCE1. Proposed to act through recruitment and/or stabilization of the Ubl-conjugating enzyme (E2) at the E3:substrate complex (PubMed:20864041). May be a growth suppressor that facilitates the entry of the cell into cell cycle arrest (By similarity). {ECO:0000250|UniProtKB:Q9CPR8, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:27427983}.
Q96NY8 NECTIN4 T393 ochoa Nectin-4 (Ig superfamily receptor LNIR) (Nectin cell adhesion molecule 4) (Poliovirus receptor-related protein 4) [Cleaved into: Processed poliovirus receptor-related protein 4] Seems to be involved in cell adhesion through trans-homophilic and -heterophilic interactions, the latter including specifically interactions with NECTIN1. Does not act as receptor for alpha-herpesvirus entry into cells.; FUNCTION: (Microbial infection) Acts as a receptor for measles virus. {ECO:0000269|PubMed:22048310, ECO:0000269|PubMed:23202587}.
Q96PM5 RCHY1 T154 psp RING finger and CHY zinc finger domain-containing protein 1 (EC 2.3.2.27) (Androgen receptor N-terminal-interacting protein) (CH-rich-interacting match with PLAG1) (E3 ubiquitin-protein ligase Pirh2) (RING finger protein 199) (RING-type E3 ubiquitin transferase RCHY1) (Zinc finger protein 363) (p53-induced RING-H2 protein) (hPirh2) E3 ubiquitin-protein ligase that mediates ubiquitination of target proteins, including p53/TP53, TP73, HDAC1 and CDKN1B (PubMed:16914734, PubMed:17721809, PubMed:18006823, PubMed:19043414, PubMed:19483087, PubMed:21994467). Mediates ubiquitination and degradation of p53/TP53; preferentially acts on tetrameric p53/TP53 (PubMed:19043414, PubMed:19483087). Catalyzes monoubiquitinates the translesion DNA polymerase POLH (PubMed:21791603). Involved in the ribosome-associated quality control (RQC) pathway, which mediates the extraction of incompletely synthesized nascent chains from stalled ribosomes: RCHY1 acts downstream of NEMF and recognizes CAT tails associated with stalled nascent chains, leading to their ubiquitination and degradation (PubMed:33909987). {ECO:0000269|PubMed:16914734, ECO:0000269|PubMed:17721809, ECO:0000269|PubMed:18006823, ECO:0000269|PubMed:19043414, ECO:0000269|PubMed:19483087, ECO:0000269|PubMed:21791603, ECO:0000269|PubMed:21994467, ECO:0000269|PubMed:33909987}.; FUNCTION: [Isoform 4]: Has no E3 ubiquitin-protein ligase activity. {ECO:0000269|PubMed:20452352}.
Q96Q45 TMEM237 T98 ochoa Transmembrane protein 237 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 4 protein) Component of the transition zone in primary cilia. Required for ciliogenesis. {ECO:0000269|PubMed:22152675}.
Q96QT4 TRPM7 T1435 psp Transient receptor potential cation channel subfamily M member 7 (EC 2.7.11.1) (Channel-kinase 1) (Long transient receptor potential channel 7) (LTrpC-7) (LTrpC7) [Cleaved into: TRPM7 kinase, cleaved form (M7CK); TRPM7 channel, cleaved form] Bifunctional protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. The channel is highly permeable to divalent cations, specifically calcium (Ca2+), magnesium (Mg2+) and zinc (Zn2+) and mediates their influx (PubMed:11385574, PubMed:12887921, PubMed:15485879, PubMed:24316671, PubMed:35561741, PubMed:36027648). Controls a wide range of biological processes such as Ca2(+), Mg(2+) and Zn(2+) homeostasis, vesicular Zn(2+) release channel and intracellular Ca(2+) signaling, embryonic development, immune responses, cell motility, proliferation and differentiation (By similarity). The C-terminal alpha-kinase domain autophosphorylates cytoplasmic residues of TRPM7 (PubMed:18365021). In vivo, TRPM7 phosphorylates SMAD2, suggesting that TRPM7 kinase may play a role in activating SMAD signaling pathways. In vitro, TRPM7 kinase phosphorylates ANXA1 (annexin A1), myosin II isoforms and a variety of proteins with diverse cellular functions (PubMed:15485879, PubMed:18394644). {ECO:0000250|UniProtKB:Q923J1, ECO:0000269|PubMed:11385574, ECO:0000269|PubMed:12887921, ECO:0000269|PubMed:15485879, ECO:0000269|PubMed:18365021, ECO:0000269|PubMed:18394644, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:35561741, ECO:0000269|PubMed:36027648}.; FUNCTION: [TRPM7 channel, cleaved form]: The cleaved channel exhibits substantially higher current and potentiates Fas receptor signaling. {ECO:0000250|UniProtKB:Q923J1}.; FUNCTION: [TRPM7 kinase, cleaved form]: The C-terminal kinase domain can be cleaved from the channel segment in a cell-type-specific fashion. In immune cells, the TRPM7 kinase domain is clipped from the channel domain by caspases in response to Fas-receptor stimulation. The cleaved kinase fragments can translocate to the nucleus, and bind chromatin-remodeling complex proteins in a Zn(2+)-dependent manner to ultimately phosphorylate specific Ser/Thr residues of histones known to be functionally important for cell differentiation and embryonic development. {ECO:0000250|UniProtKB:Q923J1}.
Q96RL1 UIMC1 T396 ochoa BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}.
Q96T88 UHRF1 T93 ochoa E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}.
Q99459 CDC5L T510 ochoa Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5-related protein) DNA-binding protein involved in cell cycle control. May act as a transcription activator. Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:11991638, PubMed:20176811, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154, PubMed:30728453). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR) (PubMed:20176811). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:10570151, ECO:0000269|PubMed:11082045, ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:18583928, ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:9038199, ECO:0000269|PubMed:9468527, ECO:0000269|PubMed:9632794, ECO:0000305|PubMed:33509932}.
Q99543 DNAJC2 T549 ochoa DnaJ homolog subfamily C member 2 (M-phase phosphoprotein 11) (Zuotin-related factor 1) [Cleaved into: DnaJ homolog subfamily C member 2, N-terminally processed] Acts both as a chaperone in the cytosol and as a chromatin regulator in the nucleus. When cytosolic, acts as a molecular chaperone: component of the ribosome-associated complex (RAC), a complex involved in folding or maintaining nascent polypeptides in a folding-competent state. In the RAC complex, stimulates the ATPase activity of the ribosome-associated pool of Hsp70-type chaperones HSPA14 that bind to the nascent polypeptide chain. When nuclear, mediates the switching from polycomb-repressed genes to an active state: specifically recruited at histone H2A ubiquitinated at 'Lys-119' (H2AK119ub), and promotes the displacement of the polycomb PRC1 complex from chromatin, thereby facilitating transcription activation. {ECO:0000269|PubMed:15802566, ECO:0000269|PubMed:16002468, ECO:0000269|PubMed:21179169}.
Q99575 POP1 T373 ochoa Ribonucleases P/MRP protein subunit POP1 (hPOP1) Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}.
Q99814 EPAS1 T324 psp Endothelial PAS domain-containing protein 1 (EPAS-1) (Basic-helix-loop-helix-PAS protein MOP2) (Class E basic helix-loop-helix protein 73) (bHLHe73) (HIF-1-alpha-like factor) (HLF) (Hypoxia-inducible factor 2-alpha) (HIF-2-alpha) (HIF2-alpha) (Member of PAS protein 2) (PAS domain-containing protein 2) Transcription factor involved in the induction of oxygen regulated genes. Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Regulates the vascular endothelial growth factor (VEGF) expression and seems to be implicated in the development of blood vessels and the tubular system of lung. May also play a role in the formation of the endothelium that gives rise to the blood brain barrier. Potent activator of the Tie-2 tyrosine kinase expression. Activation requires recruitment of transcriptional coactivators such as CREBBP and probably EP300. Interaction with redox regulatory protein APEX1 seems to activate CTAD (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:P97481}.
Q99986 VRK1 T378 ochoa Serine/threonine-protein kinase VRK1 (EC 2.7.11.1) (Vaccinia-related kinase 1) Serine/threonine kinase involved in the regulation of key cellular processes including the cell cycle, nuclear condensation, transcription regulation, and DNA damage response (PubMed:14645249, PubMed:18617507, PubMed:19103756, PubMed:33076429). Controls chromatin organization and remodeling by mediating phosphorylation of histone H3 on 'Thr-4' and histone H2AX (H2aXT4ph) (PubMed:31527692, PubMed:37179361). It also phosphorylates KAT5 in response to DNA damage, promoting KAT5 association with chromatin and histone acetyltransferase activity (PubMed:33076429). Is involved in the regulation of cell cycle progression of neural progenitors, and is required for proper cortical neuronal migration (By similarity). Is involved in neurite elongation and branching in motor neurons, and has an essential role in Cajal bodies assembly, acting through COIL phosphorylation and the control of coilin degradation (PubMed:21920476, PubMed:31090908, PubMed:31527692). Involved in Golgi disassembly during the cell cycle: following phosphorylation by PLK3 during mitosis, it is required to induce Golgi fragmentation (PubMed:19103756). Phosphorylates BANF1: disrupts its ability to bind DNA, reduces its binding to LEM domain-containing proteins and causes its relocalization from the nucleus to the cytoplasm (PubMed:16495336). Phosphorylates TP53BP1 and p53/TP53 on 'Thr-18', preventing the interaction between p53/TP53 and MDM2 (PubMed:10951572, PubMed:31527692). Phosphorylates ATF2 which activates its transcriptional activity (PubMed:15105425). Phosphorylates JUN (PubMed:31527692). {ECO:0000250|UniProtKB:Q80X41, ECO:0000269|PubMed:10951572, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:15105425, ECO:0000269|PubMed:16495336, ECO:0000269|PubMed:18617507, ECO:0000269|PubMed:19103756, ECO:0000269|PubMed:21920476, ECO:0000269|PubMed:31090908, ECO:0000269|PubMed:31527692, ECO:0000269|PubMed:33076429, ECO:0000269|PubMed:37179361}.
Q9BQ39 DDX50 T47 ochoa ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}.
Q9BQE3 TUBA1C T94 ochoa Tubulin alpha-1C chain (EC 3.6.5.-) (Alpha-tubulin 6) (Tubulin alpha-6 chain) [Cleaved into: Detyrosinated tubulin alpha-1C chain] Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
Q9BRZ2 TRIM56 T434 ochoa E3 ubiquitin-protein ligase TRIM56 (EC 2.3.2.27) (RING finger protein 109) (Tripartite motif-containing protein 56) E3 ubiquitin-protein ligase that plays a key role in innate antiviral immunity by mediating ubiquitination of CGAS and STING1 (PubMed:21289118, PubMed:29426904). In response to pathogen- and host-derived double-stranded DNA (dsDNA), targets STING1 to 'Lys-63'-linked ubiquitination, thereby promoting its homodimerization, a step required for the production of type I interferon IFN-beta (By similarity). Also mediate monoubiquitination of CGAS, thereby promoting CGAS oligomerization and subsequent activation (PubMed:29426904). Promotes also TNFalpha-induced NF-kappa-B signaling by mediating 'Lys-63'-linked ubiquitination TAK1, leading to enhanced interaction between TAK1 and CHUK/IKKalpha (PubMed:35952808). Independently of its E3 ubiquitin ligase activity, positive regulator of TLR3 signaling. Potentiates extracellular double stranded RNA (dsRNA)-induced expression of IFNB1 and interferon-stimulated genes ISG15, IFIT1/ISG56, CXCL10, OASL and CCL5/RANTES (PubMed:22948160). Promotes establishment of an antiviral state by TLR3 ligand and TLR3-mediated chemokine induction following infection by hepatitis C virus (PubMed:22948160). Acts as a restriction factor of Zika virus through direct interaction with the viral RNA via its C-terminal region (PubMed:31251739). {ECO:0000250|UniProtKB:Q80VI1, ECO:0000269|PubMed:21289118, ECO:0000269|PubMed:22948160, ECO:0000269|PubMed:29426904, ECO:0000269|PubMed:31251739, ECO:0000269|PubMed:35952808}.
Q9BT25 HAUS8 T235 psp HAUS augmin-like complex subunit 8 (HEC1/NDC80-interacting centrosome-associated protein 1) (Sarcoma antigen NY-SAR-48) Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. {ECO:0000269|PubMed:18362163, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}.
Q9BTE3 MCMBP T290 ochoa Mini-chromosome maintenance complex-binding protein (MCM-BP) (MCM-binding protein) Associated component of the MCM complex that acts as a regulator of DNA replication. Binds to the MCM complex during late S phase and promotes the disassembly of the MCM complex from chromatin, thereby acting as a key regulator of pre-replication complex (pre-RC) unloading from replicated DNA. Can dissociate the MCM complex without addition of ATP; probably acts by destabilizing interactions of each individual subunits of the MCM complex. Required for sister chromatid cohesion. {ECO:0000269|PubMed:20090939, ECO:0000269|PubMed:21196493}.
Q9BU64 CENPO T85 ochoa Centromere protein O (CENP-O) (Interphase centromere complex protein 36) Component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. Modulates the kinetochore-bound levels of NDC80 complex. {ECO:0000269|PubMed:16622420, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:16932742, ECO:0000269|PubMed:18007590}.
Q9BW04 SARG T465 ochoa Specifically androgen-regulated gene protein Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}.
Q9BW19 KIFC1 T359 ochoa Kinesin-like protein KIFC1 (Kinesin-like protein 2) (Kinesin-related protein HSET) Minus end-directed microtubule-dependent motor required for bipolar spindle formation (PubMed:15843429). May contribute to movement of early endocytic vesicles (By similarity). Regulates cilium formation and structure (By similarity). {ECO:0000250|UniProtKB:Q9QWT9, ECO:0000269|PubMed:15843429}.
Q9BXF3 CECR2 T546 ochoa Chromatin remodeling regulator CECR2 (Cat eye syndrome critical region protein 2) Regulatory subunit of the ATP-dependent CERF-1 and CERF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:15640247, PubMed:22464331, PubMed:26365797, PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The CERF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the CERF-5 ISWI chromatin remodeling complex (PubMed:28801535). Plays a role in various processes during development: required during embryogenesis for neural tube closure and inner ear development. In adults, required for spermatogenesis, via the formation of ISWI-type chromatin complexes (By similarity). In histone-modifying complexes, CECR2 recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:22464331, PubMed:26365797). May also be involved through its interaction with LRPPRC in the integration of cytoskeletal network with vesicular trafficking, nucleocytosolic shuttling, transcription, chromosome remodeling and cytokinesis (PubMed:11827465). {ECO:0000250|UniProtKB:E9Q2Z1, ECO:0000269|PubMed:11827465, ECO:0000269|PubMed:15640247, ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:28801535}.
Q9BXW9 FANCD2 T691 ochoa|psp Fanconi anemia group D2 protein (Protein FACD2) Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}.
Q9BZC7 ABCA2 T2412 ochoa ATP-binding cassette sub-family A member 2 (EC 7.6.2.-) (ATP-binding cassette transporter 2) (ATP-binding cassette 2) Probable lipid transporter that modulates cholesterol sequestration in the late endosome/lysosome by regulating the intracellular sphingolipid metabolism, in turn participates in cholesterol homeostasis (Probable) (PubMed:15238223, PubMed:21810484, PubMed:24201375). May alter the transbilayer distribution of ceramide in the intraluminal membrane lipid bilayer, favoring its retention in the outer leaflet that results in increased acid ceramidase activity in the late endosome/lysosome, facilitating ceramide deacylation to sphingosine leading to the sequestration of free cholesterol in lysosomes (PubMed:24201375). In addition regulates amyloid-beta production either by activating a signaling pathway that regulates amyloid precursor protein transcription through the modulation of sphingolipid metabolism or through its role in gamma-secretase processing of APP (PubMed:22086926, PubMed:26510981). May play a role in myelin formation (By similarity). {ECO:0000250|UniProtKB:P41234, ECO:0000269|PubMed:15238223, ECO:0000269|PubMed:21810484, ECO:0000269|PubMed:22086926, ECO:0000269|PubMed:24201375, ECO:0000269|PubMed:26510981, ECO:0000305|PubMed:15999530}.
Q9BZI7 UPF3B T169 ochoa Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q9C0D5 TANC1 T1587 ochoa Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) May be a scaffold component in the postsynaptic density. {ECO:0000250}.
Q9GZQ8 MAP1LC3B T29 psp Microtubule-associated protein 1 light chain 3 beta (Autophagy-related protein LC3 B) (Autophagy-related ubiquitin-like modifier LC3 B) (MAP1 light chain 3-like protein 2) (Microtubule-associated proteins 1A/1B light chain 3B) (MAP1A/MAP1B LC3 B) (MAP1A/MAP1B light chain 3 B) Ubiquitin-like modifier involved in formation of autophagosomal vacuoles (autophagosomes) (PubMed:20418806, PubMed:23209295, PubMed:28017329). Plays a role in mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production (PubMed:23209295, PubMed:28017329). In response to cellular stress and upon mitochondria fission, binds C-18 ceramides and anchors autophagolysosomes to outer mitochondrial membranes to eliminate damaged mitochondria (PubMed:22922758). While LC3s are involved in elongation of the phagophore membrane, the GABARAP/GATE-16 subfamily is essential for a later stage in autophagosome maturation (PubMed:20418806, PubMed:23209295, PubMed:28017329). Promotes primary ciliogenesis by removing OFD1 from centriolar satellites via the autophagic pathway (PubMed:24089205). Through its interaction with the reticulophagy receptor TEX264, participates in the remodeling of subdomains of the endoplasmic reticulum into autophagosomes upon nutrient stress, which then fuse with lysosomes for endoplasmic reticulum turnover (PubMed:31006537, PubMed:31006538). Upon nutrient stress, directly recruits cofactor JMY to the phagophore membrane surfaces and promotes JMY's actin nucleation activity and autophagosome biogenesis during autophagy (PubMed:30420355). {ECO:0000269|PubMed:20418806, ECO:0000269|PubMed:22922758, ECO:0000269|PubMed:23209295, ECO:0000269|PubMed:24089205, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:30420355, ECO:0000269|PubMed:31006537, ECO:0000269|PubMed:31006538}.
Q9GZR7 DDX24 T114 ochoa ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}.
Q9H0E3 SAP130 T856 ochoa Histone deacetylase complex subunit SAP130 (130 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p130) Acts as a transcriptional repressor. May function in the assembly and/or enzymatic activity of the mSin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes. {ECO:0000269|PubMed:12724404}.
Q9H0E9 BRD8 T74 ochoa Bromodomain-containing protein 8 (Skeletal muscle abundant protein) (Skeletal muscle abundant protein 2) (Thyroid hormone receptor coactivating protein of 120 kDa) (TrCP120) (p120) May act as a coactivator during transcriptional activation by hormone-activated nuclear receptors (NR). Isoform 2 stimulates transcriptional activation by AR/DHTR, ESR1/NR3A1, RXRA/NR2B1 and THRB/ERBA2. At least isoform 1 and isoform 2 are components of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:10517671, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}.
Q9H0X9 OSBPL5 T314 ochoa Oxysterol-binding protein-related protein 5 (ORP-5) (OSBP-related protein 5) (Oxysterol-binding protein homolog 1) Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:23934110, PubMed:26206935). May cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes (PubMed:21220512). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:21220512, ECO:0000269|PubMed:23934110, ECO:0000269|PubMed:26206935}.
Q9H1A4 ANAPC1 T291 ochoa Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}.
Q9H223 EHD4 T457 ochoa EH domain-containing protein 4 (Hepatocellular carcinoma-associated protein 10/11) (PAST homolog 4) ATP- and membrane-binding protein that probably controls membrane reorganization/tubulation upon ATP hydrolysis. Plays a role in early endosomal transport (PubMed:17233914, PubMed:18331452). During sprouting angiogenesis, in complex with PACSIN2 and MICALL1, forms recycling endosome-like tubular structure at asymmetric adherens junctions to control CDH5 trafficking (By similarity). {ECO:0000250|UniProtKB:Q9EQP2, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:18331452}.
Q9H2G2 SLK T441 ochoa STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}.
Q9H2G2 SLK T494 ochoa STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}.
Q9H2J7 SLC6A15 T674 ochoa Sodium-dependent neutral amino acid transporter B(0)AT2 (Sodium- and chloride-dependent neurotransmitter transporter NTT73) (Sodium-coupled branched-chain amino-acid transporter 1) (Solute carrier family 6 member 15) (Transporter v7-3) Functions as a sodium-dependent neutral amino acid transporter. Exhibits preference for the branched-chain amino acids, particularly leucine, valine and isoleucine and methionine. Can also transport low-affinity substrates such as alanine, phenylalanine, glutamine and pipecolic acid. Mediates the saturable, pH-sensitive and electrogenic cotransport of proline and sodium ions with a stoichiometry of 1:1. May have a role as transporter for neurotransmitter precursors into neurons. In contrast to other members of the neurotransmitter transporter family, does not appear to be chloride-dependent. {ECO:0000269|PubMed:16226721}.
Q9H2K8 TAOK3 T573 ochoa Serine/threonine-protein kinase TAO3 (EC 2.7.11.1) (Cutaneous T-cell lymphoma-associated antigen HD-CL-09) (CTCL-associated antigen HD-CL-09) (Dendritic cell-derived protein kinase) (JNK/SAPK-inhibitory kinase) (Jun kinase-inhibitory kinase) (Kinase from chicken homolog A) (hKFC-A) (Thousand and one amino acid protein 3) Serine/threonine-protein kinase that acts as a regulator of the p38/MAPK14 stress-activated MAPK cascade and of the MAPK8/JNK cascade. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Inhibits basal activity of the MAPK8/JNK cascade and diminishes its activation in response to epidermal growth factor (EGF). Positively regulates canonical T cell receptor (TCR) signaling by preventing early PTPN6/SHP1-mediated inactivation of LCK, ensuring sustained TCR signaling that is required for optimal activation and differentiation of T cells (PubMed:30373850). Phosphorylates PTPN6/SHP1 on 'Thr-394', leading to its polyubiquitination and subsequent proteasomal degradation (PubMed:38166031). Required for cell surface expression of metalloprotease ADAM10 on type 1 transitional B cells which is necessary for their NOTCH-mediated development into marginal zone B cells (By similarity). Also required for the NOTCH-mediated terminal differentiation of splenic conventional type 2 dendritic cells (By similarity). Positively regulates osteoblast differentiation by acting as an upstream activator of the JNK pathway (PubMed:32807497). Promotes JNK signaling in hepatocytes and positively regulates hepatocyte lipid storage by inhibiting beta-oxidation and triacylglycerol secretion while enhancing lipid synthesis (PubMed:34634521). Restricts age-associated inflammation by negatively regulating differentiation of macrophages and their production of pro-inflammatory cytokines (By similarity). Plays a role in negatively regulating the abundance of regulatory T cells in white adipose tissue (By similarity). {ECO:0000250|UniProtKB:Q8BYC6, ECO:0000269|PubMed:10559204, ECO:0000269|PubMed:10924369, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:30373850, ECO:0000269|PubMed:32807497, ECO:0000269|PubMed:34634521, ECO:0000269|PubMed:38166031}.
Q9H2V7 SPNS1 T506 ochoa Protein spinster homolog 1 (HSpin1) (SPNS1) (Spinster-like protein 1) Plays a critical role in the phospholipid salvage pathway from lysosomes to the cytosol (PubMed:36161949, PubMed:37075117). Mediates the rate-limiting, proton-dependent, lysosomal efflux of lysophospholipids, which can then be reacylated by acyltransferases in the endoplasmic reticulum to form phospholipids (PubMed:36161949, PubMed:37075117). Selective for zwitterionic headgroups such as lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), can also transport lysophosphatidylglycerol (LPG), but not other anionic lysophospholipids, sphingosine, nor sphingomyelin (PubMed:36161949). Transports lysophospholipids with saturated, monounsaturated, and polyunsaturated fatty acids, such as 1-hexadecanoyl-sn-glycero-3-phosphocholine, 1-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine and 1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine, respectively (PubMed:36161949, PubMed:37075117). Can also transport lysoplasmalogen (LPC with a fatty alcohol) such as 1-(1Z-hexadecenyl)-sn-glycero-3-phosphocholine (PubMed:36161949). Lysosomal LPC could function as intracellular signaling messenger (PubMed:37075117). Essential player in lysosomal homeostasis (PubMed:36161949). Crucial for cell survival under conditions of nutrient limitation (PubMed:37075117). May be involved in necrotic or autophagic cell death (PubMed:12815463). {ECO:0000269|PubMed:12815463, ECO:0000269|PubMed:36161949, ECO:0000269|PubMed:37075117, ECO:0000303|PubMed:37075117}.
Q9H2Y7 ZNF106 T1372 ochoa Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}.
Q9H2Y7 ZNF106 T1478 ochoa Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}.
Q9H3K6 BOLA2 T26 ochoa BolA-like protein 2 Acts as a cytosolic iron-sulfur (Fe-S) cluster assembly factor that facilitates [2Fe-2S] cluster insertion into a subset of cytosolic proteins (PubMed:26613676, PubMed:27519415). Acts together with the monothiol glutaredoxin GLRX3 (PubMed:26613676, PubMed:27519415). {ECO:0000269|PubMed:26613676, ECO:0000269|PubMed:27519415}.
Q9H425 C1orf198 T247 ochoa Uncharacterized protein C1orf198 None
Q9H4M9 EHD1 T454 ochoa EH domain-containing protein 1 (PAST homolog 1) (hPAST1) (Testilin) ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis. In vitro causes vesiculation of endocytic membranes (PubMed:24019528). Acts in early endocytic membrane fusion and membrane trafficking of recycling endosomes (PubMed:15020713, PubMed:17233914, PubMed:20801876). Recruited to endosomal membranes upon nerve growth factor stimulation, indirectly regulates neurite outgrowth (By similarity). Plays a role in myoblast fusion (By similarity). Involved in the unidirectional retrograde dendritic transport of endocytosed BACE1 and in efficient sorting of BACE1 to axons implicating a function in neuronal APP processing (By similarity). Plays a role in the formation of the ciliary vesicle (CV), an early step in cilium biogenesis (PubMed:31615969). Proposed to be required for the fusion of distal appendage vesicles (DAVs) to form the CV by recruiting SNARE complex component SNAP29. Is required for recruitment of transition zone proteins CEP290, RPGRIP1L, TMEM67 and B9D2, and of IFT20 following DAV reorganization before Rab8-dependent ciliary membrane extension. Required for the loss of CCP110 form the mother centriole essential for the maturation of the basal body during ciliogenesis (PubMed:25686250). {ECO:0000250|UniProtKB:Q641Z6, ECO:0000250|UniProtKB:Q9WVK4, ECO:0000269|PubMed:15020713, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:24019528, ECO:0000269|PubMed:25686250, ECO:0000269|PubMed:31615969}.
Q9H4Z2 ZNF335 T1160 ochoa Zinc finger protein 335 (NRC-interacting factor 1) (NIF-1) Component or associated component of some histone methyltransferase complexes may regulate transcription through recruitment of those complexes on gene promoters (PubMed:19131338, PubMed:23178126). Enhances ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:12215545, PubMed:18180299, PubMed:19131338). Plays an important role in neural progenitor cell proliferation and self-renewal through the regulation of specific genes involved brain development, including REST (PubMed:23178126). Also controls the expression of genes involved in somatic development and regulates, for instance, lymphoblast proliferation (PubMed:23178126). {ECO:0000269|PubMed:12215545, ECO:0000269|PubMed:18180299, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:23178126}.
Q9H6E5 TUT1 T329 ochoa Speckle targeted PIP5K1A-regulated poly(A) polymerase (Star-PAP) (EC 2.7.7.19) (RNA-binding motif protein 21) (RNA-binding protein 21) (U6 snRNA-specific terminal uridylyltransferase 1) (U6-TUTase) (EC 2.7.7.52) Poly(A) polymerase that creates the 3'-poly(A) tail of specific pre-mRNAs (PubMed:18288197, PubMed:21102410). Localizes to nuclear speckles together with PIP5K1A and mediates polyadenylation of a select set of mRNAs, such as HMOX1 (PubMed:18288197). In addition to polyadenylation, it is also required for the 3'-end cleavage of pre-mRNAs: binds to the 3'UTR of targeted pre-mRNAs and promotes the recruitment and assembly of the CPSF complex on the 3'UTR of pre-mRNAs (PubMed:21102410). In addition to adenylyltransferase activity, also has uridylyltransferase activity (PubMed:16790842, PubMed:18288197, PubMed:28589955). However, the ATP ratio is higher than UTP in cells, suggesting that it functions primarily as a poly(A) polymerase (PubMed:18288197). Acts as a specific terminal uridylyltransferase for U6 snRNA in vitro: responsible for a controlled elongation reaction that results in the restoration of the four 3'-terminal UMP-residues found in newly transcribed U6 snRNA (PubMed:16790842, PubMed:18288197, PubMed:28589955). Not involved in replication-dependent histone mRNA degradation. {ECO:0000269|PubMed:16790842, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:21102410, ECO:0000269|PubMed:28589955}.
Q9H6S3 EPS8L2 T303 ochoa Epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8-like protein 2) (Epidermal growth factor receptor pathway substrate 8-related protein 2) (EPS8-related protein 2) Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. In the cochlea, is required for stereocilia maintenance in adult hair cells (By similarity). {ECO:0000250|UniProtKB:Q99K30, ECO:0000269|PubMed:14565974}.
Q9H814 PHAX T349 ochoa Phosphorylated adapter RNA export protein (RNA U small nuclear RNA export adapter protein) A phosphoprotein adapter involved in the XPO1-mediated U snRNA export from the nucleus (PubMed:39011894). Bridge components required for U snRNA export, the cap binding complex (CBC)-bound snRNA on the one hand and the GTPase Ran in its active GTP-bound form together with the export receptor XPO1 on the other. Its phosphorylation in the nucleus is required for U snRNA export complex assembly and export, while its dephosphorylation in the cytoplasm causes export complex disassembly. It is recycled back to the nucleus via the importin alpha/beta heterodimeric import receptor. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Its compartmentalized phosphorylation cycle may also contribute to the directionality of export. Binds strongly to m7G-capped U1 and U5 small nuclear RNAs (snRNAs) in a sequence-unspecific manner and phosphorylation-independent manner (By similarity). Also plays a role in the biogenesis of U3 small nucleolar RNA (snoRNA). Involved in the U3 snoRNA transport from nucleoplasm to Cajal bodies. Binds strongly to m7G-capped U3, U8 and U13 precursor snoRNAs and weakly to trimethylated (TMG)-capped U3, U8 and U13 snoRNAs. Also binds to telomerase RNA. {ECO:0000250, ECO:0000269|PubMed:15574332, ECO:0000269|PubMed:15574333}.
Q9H8M2 BRD9 T103 ochoa Bromodomain-containing protein 9 (Rhabdomyosarcoma antigen MU-RMS-40.8) Plays a role in chromatin remodeling and regulation of transcription (PubMed:22464331, PubMed:26365797). Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:26365797). Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). Also orchestrates the RAD51-RAD54 complex formation and thereby plays a role in homologous recombination (HR) (PubMed:32457312). {ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:32457312}.
Q9HAU0 PLEKHA5 T460 ochoa Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) None
Q9HC44 GPBP1L1 T354 ochoa Vasculin-like protein 1 (GC-rich promoter-binding protein 1-like 1) Possible transcription factor. {ECO:0000305}.
Q9HCG8 CWC22 T104 ochoa Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}.
Q9HCH5 SYTL2 T541 ochoa Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}.
Q9NPI6 DCP1A T225 ochoa mRNA-decapping enzyme 1A (EC 3.6.1.62) (Smad4-interacting transcriptional co-activator) (Transcription factor SMIF) Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:12417715). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12417715). Contributes to the transactivation of target genes after stimulation by TGFB1 (PubMed:11836524). Essential for embryonic development (PubMed:33813271). {ECO:0000269|PubMed:11836524, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:33813271}.
Q9NPQ8 RIC8A T441 ochoa Chaperone Ric-8A (Synembryn-A) Chaperone that specifically binds and folds nascent G alpha proteins prior to G protein heterotrimer formation, promoting their stability and activity: folds GNAI1, GNAO1, GNA13 and GNAQ (By similarity). Does not fold G(s) G-alpha proteins GNAS nor GNAL (By similarity). Also acts as a guanine nucleotide exchange factor (GEF) for G alpha proteins by stimulating exchange of bound GDP for free GTP (By similarity). Involved in regulation of microtubule pulling forces during mitotic movement of chromosomes by stimulating G(i)-alpha protein (GNAI1), possibly leading to release G(i)-alpha-GTP and NuMA proteins from the NuMA-GPSM2-G(i)-alpha-GDP complex (By similarity). Also acts as an activator for G(q)-alpha (GNAQ) protein by enhancing the G(q)-coupled receptor-mediated ERK activation (PubMed:16629901). {ECO:0000250|UniProtKB:Q80ZG1, ECO:0000269|PubMed:16629901}.
Q9NPQ8 RIC8A T443 ochoa Chaperone Ric-8A (Synembryn-A) Chaperone that specifically binds and folds nascent G alpha proteins prior to G protein heterotrimer formation, promoting their stability and activity: folds GNAI1, GNAO1, GNA13 and GNAQ (By similarity). Does not fold G(s) G-alpha proteins GNAS nor GNAL (By similarity). Also acts as a guanine nucleotide exchange factor (GEF) for G alpha proteins by stimulating exchange of bound GDP for free GTP (By similarity). Involved in regulation of microtubule pulling forces during mitotic movement of chromosomes by stimulating G(i)-alpha protein (GNAI1), possibly leading to release G(i)-alpha-GTP and NuMA proteins from the NuMA-GPSM2-G(i)-alpha-GDP complex (By similarity). Also acts as an activator for G(q)-alpha (GNAQ) protein by enhancing the G(q)-coupled receptor-mediated ERK activation (PubMed:16629901). {ECO:0000250|UniProtKB:Q80ZG1, ECO:0000269|PubMed:16629901}.
Q9NQR1 KMT5A T118 ochoa N-lysine methyltransferase KMT5A (EC 2.1.1.-) (H4-K20-HMTase KMT5A) (Histone-lysine N-methyltransferase KMT5A) (EC 2.1.1.361) (Lysine N-methyltransferase 5A) (Lysine-specific methylase 5A) (PR/SET domain-containing protein 07) (PR-Set7) (PR/SET07) (SET domain-containing protein 8) Protein-lysine N-methyltransferase that monomethylates both histones and non-histone proteins (PubMed:12086618, PubMed:12121615, PubMed:15964846, PubMed:17707234, PubMed:27338793). Specifically monomethylates 'Lys-20' of histone H4 (H4K20me1) (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599, PubMed:27338793). H4K20me1 is enriched during mitosis and represents a specific tag for epigenetic transcriptional repression (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Required for cell proliferation, probably by contributing to the maintenance of proper higher-order structure of DNA during mitosis (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Involved in chromosome condensation and proper cytokinesis (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Nucleosomes are preferred as substrate compared to free histones (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Mediates monomethylation of p53/TP53 at 'Lys-382', leading to repress p53/TP53-target genes (PubMed:17707234). Plays a negative role in TGF-beta response regulation and a positive role in cell migration (PubMed:23478445). {ECO:0000269|PubMed:12086618, ECO:0000269|PubMed:12121615, ECO:0000269|PubMed:15200950, ECO:0000269|PubMed:15933069, ECO:0000269|PubMed:15933070, ECO:0000269|PubMed:15964846, ECO:0000269|PubMed:16517599, ECO:0000269|PubMed:17707234, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:27338793}.
Q9NRY4 ARHGAP35 T963 ochoa Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}.
Q9NS69 TOMM22 T43 ochoa Mitochondrial import receptor subunit TOM22 homolog (hTom22) (1C9-2) (Translocase of outer membrane 22 kDa subunit homolog) Central receptor component of the translocase of the outer membrane of mitochondria (TOM complex) responsible for the recognition and translocation of cytosolically synthesized mitochondrial preproteins. Together with the peripheral receptor TOM20 functions as the transit peptide receptor and facilitates the movement of preproteins into the translocation pore (PubMed:10982837). Required for the translocation across the mitochondrial outer membrane of cytochrome P450 monooxygenases (By similarity). {ECO:0000250|UniProtKB:Q75Q41, ECO:0000269|PubMed:10982837}.
Q9NU22 MDN1 T5017 ochoa Midasin (Dynein-related AAA-ATPase MDN1) (MIDAS-containing protein) Nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits (PubMed:27814492). Functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus (By similarity). At an early stage in 60S maturation, mediates the dissociation of the PeBoW complex (PES1-BOP1-WDR12) from early pre-60S particles, rendering them competent for export from the nucleolus to the nucleoplasm (By similarity). Subsequently recruited to the nucleoplasmic particles through interaction with SUMO-conjugated PELP1 complex (PubMed:27814492). This binding is only possible if the 5S RNP at the central protuberance has undergone the rotation to complete its maturation (By similarity). {ECO:0000250|UniProtKB:Q12019, ECO:0000269|PubMed:27814492}.
Q9NVM1 EVA1B T87 ochoa Protein eva-1 homolog B (Protein FAM176B) None
Q9NVU0 POLR3E T521 ochoa DNA-directed RNA polymerase III subunit RPC5 (RNA polymerase III subunit C5) (DNA-directed RNA polymerase III 80 kDa polypeptide) DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:12391170, PubMed:20413673, PubMed:35637192). Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. Assembles with POLR3D/RPC4 forming a subcomplex that binds the Pol III core. Enables recruitment of Pol III at transcription initiation site and drives transcription initiation from both type 2 and type 3 DNA promoters. Required for efficient transcription termination and reinitiation (By similarity) (PubMed:12391170, PubMed:20413673, PubMed:35637192). Plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway (PubMed:19609254, PubMed:19631370). {ECO:0000250|UniProtKB:P36121, ECO:0000269|PubMed:12391170, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:35637192}.
Q9NWQ8 PAG1 T392 ochoa Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}.
Q9NY65 TUBA8 T94 ochoa Tubulin alpha-8 chain (EC 3.6.5.-) (Alpha-tubulin 8) (Tubulin alpha chain-like 2) [Cleaved into: Dephenylalaninated tubulin alpha-8 chain] Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
Q9NYF8 BCLAF1 T190 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NYF8 BCLAF1 T402 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NYF8 BCLAF1 T473 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NYI0 PSD3 T563 ochoa PH and SEC7 domain-containing protein 3 (Epididymis tissue protein Li 20mP) (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6 D) (Exchange factor for ARF6 D) (Hepatocellular carcinoma-associated antigen 67) (Pleckstrin homology and SEC7 domain-containing protein 3) Guanine nucleotide exchange factor for ARF6. {ECO:0000250}.
Q9NZM5 NOP53 T289 psp Ribosome biogenesis protein NOP53 (Glioma tumor suppressor candidate region gene 2 protein) (Protein interacting with carboxyl terminus 1) (PICT-1) (p60) Nucleolar protein which is involved in the integration of the 5S RNP into the ribosomal large subunit during ribosome biogenesis (PubMed:24120868). In ribosome biogenesis, may also play a role in rRNA transcription (PubMed:27729611). Also functions as a nucleolar sensor that regulates the activation of p53/TP53 in response to ribosome biogenesis perturbation, DNA damage and other stress conditions (PubMed:21741933, PubMed:24120868, PubMed:27829214). DNA damage or perturbation of ribosome biogenesis disrupt the interaction between NOP53 and RPL11 allowing RPL11 transport to the nucleoplasm where it can inhibit MDM2 and allow p53/TP53 activation (PubMed:24120868, PubMed:27829214). It may also positively regulate the function of p53/TP53 in cell cycle arrest and apoptosis through direct interaction, preventing its MDM2-dependent ubiquitin-mediated proteasomal degradation (PubMed:22522597). Originally identified as a tumor suppressor, it may also play a role in cell proliferation and apoptosis by positively regulating the stability of PTEN, thereby antagonizing the PI3K-AKT/PKB signaling pathway (PubMed:15355975, PubMed:16971513, PubMed:27729611). May also inhibit cell proliferation and increase apoptosis through its interaction with NF2 (PubMed:21167305). May negatively regulate NPM1 by regulating its nucleoplasmic localization, oligomerization and ubiquitin-mediated proteasomal degradation (PubMed:25818168). Thereby, may prevent NPM1 interaction with MYC and negatively regulate transcription mediated by the MYC-NPM1 complex (PubMed:25956029). May also regulate cellular aerobic respiration (PubMed:24556985). In the cellular response to viral infection, may play a role in the attenuation of interferon-beta through the inhibition of RIGI (PubMed:27824081). {ECO:0000269|PubMed:15355975, ECO:0000269|PubMed:16971513, ECO:0000269|PubMed:21167305, ECO:0000269|PubMed:21741933, ECO:0000269|PubMed:22522597, ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:24556985, ECO:0000269|PubMed:25818168, ECO:0000269|PubMed:25956029, ECO:0000269|PubMed:27729611, ECO:0000269|PubMed:27824081, ECO:0000269|PubMed:27829214}.
Q9P1Y6 PHRF1 T1218 ochoa PHD and RING finger domain-containing protein 1 None
Q9P289 STK26 T327 ochoa|psp Serine/threonine-protein kinase 26 (EC 2.7.11.1) (MST3 and SOK1-related kinase) (Mammalian STE20-like protein kinase 4) (MST-4) (STE20-like kinase MST4) (Serine/threonine-protein kinase MASK) Serine/threonine-protein kinase that acts as a mediator of cell growth (PubMed:11641781, PubMed:17360971). Modulates apoptosis (PubMed:11641781, PubMed:17360971). In association with STK24 negatively regulates Golgi reorientation in polarized cell migration upon RHO activation (PubMed:27807006). Phosphorylates ATG4B at 'Ser-383', thereby increasing autophagic flux (PubMed:29232556). Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:11641781, ECO:0000269|PubMed:17360971, ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:27807006, ECO:0000269|PubMed:29232556}.
Q9P291 ARMCX1 T47 ochoa Armadillo repeat-containing X-linked protein 1 (ARM protein lost in epithelial cancers on chromosome X 1) (Protein ALEX1) Regulates mitochondrial transport during axon regeneration. Increases the proportion of motile mitochondria by recruiting stationary mitochondria into the motile pool. Enhances mitochondria movement and neurite growth in both adult axons and embryonic neurons. Promotes neuronal survival and axon regeneration after nerve injury. May link mitochondria to the Trak1-kinesin motor complex via its interaction with MIRO1. {ECO:0000250|UniProtKB:Q9CX83}.
Q9UBC2 EPS15L1 T653 ochoa Epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) Seems to be a constitutive component of clathrin-coated pits that is required for receptor-mediated endocytosis. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:9407958}.
Q9UBF8 PI4KB T438 ochoa Phosphatidylinositol 4-kinase beta (PI4K-beta) (PI4Kbeta) (PtdIns 4-kinase beta) (EC 2.7.1.67) (NPIK) (PI4K92) (PI4KIII) Phosphorylates phosphatidylinositol (PI) in the first committed step in the production of the second messenger inositol-1,4,5,-trisphosphate (PIP). May regulate Golgi disintegration/reorganization during mitosis, possibly via its phosphorylation. Involved in Golgi-to-plasma membrane trafficking (By similarity) (PubMed:10559940, PubMed:11277933, PubMed:12749687, PubMed:9405935). May play an important role in the inner ear development. {ECO:0000250|UniProtKB:O08561, ECO:0000269|PubMed:10559940, ECO:0000269|PubMed:11277933, ECO:0000269|PubMed:12749687, ECO:0000269|PubMed:33358777, ECO:0000269|PubMed:9405935}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication (PubMed:22124328, PubMed:22258260, PubMed:27989622). Recruited by ACBD3 at the viral replication sites (PubMed:22124328, PubMed:27989622). {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}.; FUNCTION: (Microbial infection) Required for cellular spike-mediated entry of human coronavirus SARS-CoV. {ECO:0000269|PubMed:22253445}.
Q9UBS5 GABBR1 T873 ochoa Gamma-aminobutyric acid type B receptor subunit 1 (GABA-B receptor 1) (GABA-B-R1) (GABA-BR1) (GABABR1) (Gb1) Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2 (PubMed:15617512, PubMed:18165688, PubMed:22660477, PubMed:24305054, PubMed:36103875, PubMed:9872316, PubMed:9872744). Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins (PubMed:18165688). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase (PubMed:10075644, PubMed:10773016, PubMed:10906333, PubMed:24305054, PubMed:9872744). Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipid hydrolysis (PubMed:10075644). Calcium is required for high affinity binding to GABA (By similarity). Plays a critical role in the fine-tuning of inhibitory synaptic transmission (PubMed:9844003). Pre-synaptic GABA receptor inhibits neurotransmitter release by down-regulating high-voltage activated calcium channels, whereas postsynaptic GABA receptor decreases neuronal excitability by activating a prominent inwardly rectifying potassium (Kir) conductance that underlies the late inhibitory postsynaptic potentials (PubMed:10075644, PubMed:22660477, PubMed:9844003, PubMed:9872316, PubMed:9872744). Not only implicated in synaptic inhibition but also in hippocampal long-term potentiation, slow wave sleep, muscle relaxation and antinociception (Probable). Activated by (-)-baclofen, cgp27492 and blocked by phaclofen (PubMed:24305054, PubMed:9844003, PubMed:9872316). {ECO:0000250|UniProtKB:Q9Z0U4, ECO:0000269|PubMed:10075644, ECO:0000269|PubMed:10773016, ECO:0000269|PubMed:10906333, ECO:0000269|PubMed:15617512, ECO:0000269|PubMed:18165688, ECO:0000269|PubMed:22660477, ECO:0000269|PubMed:24305054, ECO:0000269|PubMed:36103875, ECO:0000269|PubMed:9844003, ECO:0000269|PubMed:9872316, ECO:0000269|PubMed:9872744, ECO:0000305}.; FUNCTION: Isoform 1E may regulate the formation of functional GABBR1/GABBR2 heterodimers by competing for GABBR2 binding. This could explain the observation that certain small molecule ligands exhibit differential affinity for central versus peripheral sites.
Q9UBW8 COPS7A T240 ochoa COP9 signalosome complex subunit 7a (SGN7a) (Signalosome subunit 7a) (Dermal papilla-derived protein 10) (JAB1-containing signalosome subunit 7a) Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, JUN, I-kappa-B-alpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:9535219}.
Q9UEW8 STK39 T352 ochoa STE20/SPS1-related proline-alanine-rich protein kinase (Ste-20-related kinase) (EC 2.7.11.1) (DCHT) (Serine/threonine-protein kinase 39) Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:21321328). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:12740379, PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Mediates the inhibition of SLC4A4, SLC26A6 as well as CFTR activities (By similarity). Phosphorylates RELT (By similarity). {ECO:0000250|UniProtKB:Q9Z1W9, ECO:0000269|PubMed:12740379, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:34289367}.
Q9UEY8 ADD3 T409 ochoa Gamma-adducin (Adducin-like protein 70) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}.
Q9UGY1 NOL12 T141 ochoa Nucleolar protein 12 Multifunctional RNA binding protein that plays a role in RNA metabolism and DNA maintenance. Participates in the resolution of DNA stress and the maintenance of genome integrity by localizing to sites of DNA insults (PubMed:29069457). Also plays a role in proper nucleolar organization by limiting nucleolar size and regulating nucleolar number. Mechanistically, regulates the nucleolar levels of fibrillarin and nucleolin, two key players in pre-rRNA processing and ribosome assembly (PubMed:30988155). {ECO:0000269|PubMed:29069457, ECO:0000269|PubMed:30988155}.
Q9UHR4 BAIAP2L1 T166 ochoa BAR/IMD domain-containing adapter protein 2-like 1 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1) (BAI1-associated protein 2-like protein 1) (Insulin receptor tyrosine kinase substrate) May function as adapter protein. Involved in the formation of clusters of actin bundles. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. {ECO:0000269|PubMed:17430976, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:22921828}.
Q9UHW9 SLC12A6 T1038 ochoa Solute carrier family 12 member 6 (Electroneutral potassium-chloride cotransporter 3) (K-Cl cotransporter 3) [Isoform 1]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:10600773, PubMed:11551954, PubMed:16048901, PubMed:18566107, PubMed:19665974, PubMed:21628467, PubMed:27485015). May contribute to cell volume homeostasis in single cells (PubMed:16048901, PubMed:27485015). {ECO:0000269|PubMed:10600773, ECO:0000269|PubMed:11551954, ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:18566107, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21628467, ECO:0000269|PubMed:27485015, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 2]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901, PubMed:33199848, PubMed:34031912). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:33199848, ECO:0000269|PubMed:34031912, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 3]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 4]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 5]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 6]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.
Q9UIB8 CD84 T314 ochoa SLAM family member 5 (Cell surface antigen MAX.3) (Hly9-beta) (Leukocyte differentiation antigen CD84) (Signaling lymphocytic activation molecule 5) (CD antigen CD84) Self-ligand receptor of the signaling lymphocytic activation molecule (SLAM) family. SLAM receptors triggered by homo- or heterotypic cell-cell interactions are modulating the activation and differentiation of a wide variety of immune cells and thus are involved in the regulation and interconnection of both innate and adaptive immune response. Activities are controlled by presence or absence of small cytoplasmic adapter proteins, SH2D1A/SAP and/or SH2D1B/EAT-2. Can mediate natural killer (NK) cell cytotoxicity dependent on SH2D1A and SH2D1B (By similarity). Increases proliferative responses of activated T-cells and SH2D1A/SAP does not seem be required for this process. Homophilic interactions enhance interferon gamma/IFNG secretion in lymphocytes and induce platelet stimulation via a SH2D1A-dependent pathway. May serve as a marker for hematopoietic progenitor cells (PubMed:11564780, PubMed:12115647, PubMed:12928397, PubMed:12962726, PubMed:16037392) Required for a prolonged T-cell:B-cell contact, optimal T follicular helper function, and germinal center formation. In germinal centers involved in maintaining B-cell tolerance and in preventing autoimmunity (By similarity). In mast cells negatively regulates high affinity immunoglobulin epsilon receptor signaling; independent of SH2D1A and SH2D1B but implicating FES and PTPN6/SHP-1 (PubMed:22068234). In macrophages enhances LPS-induced MAPK phosphorylation and NF-kappaB activation and modulates LPS-induced cytokine secretion; involving ITSM 2 (By similarity). Positively regulates macroautophagy in primary dendritic cells via stabilization of IRF8; inhibits TRIM21-mediated proteasomal degradation of IRF8 (PubMed:29434592). {ECO:0000250|UniProtKB:Q18PI6, ECO:0000269|PubMed:11564780, ECO:0000269|PubMed:12115647, ECO:0000269|PubMed:12928397, ECO:0000269|PubMed:12962726, ECO:0000269|PubMed:16037392, ECO:0000269|PubMed:22068234, ECO:0000269|PubMed:29434592, ECO:0000305}.
Q9UIS9 MBD1 T505 ochoa Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}.
Q9UJA5 TRMT6 T291 ochoa tRNA (adenine(58)-N(1))-methyltransferase non-catalytic subunit TRM6 (mRNA methyladenosine-N(1)-methyltransferase non-catalytic subunit TRM6) (tRNA(m1A58)-methyltransferase subunit TRM6) (tRNA(m1A58)MTase subunit TRM6) Substrate-binding subunit of tRNA (adenine-N(1)-)-methyltransferase, which catalyzes the formation of N(1)-methyladenine at position 58 (m1A58) in initiator methionyl-tRNA (PubMed:16043508). Together with the TRMT61A catalytic subunit, part of a mRNA N(1)-methyltransferase complex that mediates methylation of adenosine residues at the N(1) position of a small subset of mRNAs: N(1) methylation takes place in tRNA T-loop-like structures of mRNAs and is only present at low stoichiometries (PubMed:29072297, PubMed:29107537). {ECO:0000269|PubMed:16043508, ECO:0000269|PubMed:29072297, ECO:0000269|PubMed:29107537}.
Q9UKL3 CASP8AP2 T1828 ochoa CASP8-associated protein 2 (FLICE-associated huge protein) Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}.
Q9UKM9 RALY T286 ochoa RNA-binding protein Raly (Autoantigen p542) (Heterogeneous nuclear ribonucleoprotein C-like 2) (hnRNP core protein C-like 2) (hnRNP associated with lethal yellow protein homolog) RNA-binding protein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the liver. Binds the lipid-responsive non-coding RNA LeXis and is required for LeXis-mediated effect on cholesterogenesis (By similarity). May be a heterogeneous nuclear ribonucleoprotein (hnRNP) (PubMed:9376072). {ECO:0000250|UniProtKB:Q64012, ECO:0000269|PubMed:9376072}.
Q9UKV8 AGO2 T303 psp Protein argonaute-2 (Argonaute2) (hAgo2) (EC 3.1.26.n2) (Argonaute RISC catalytic component 2) (Eukaryotic translation initiation factor 2C 2) (eIF-2C 2) (eIF2C 2) (PAZ Piwi domain protein) (PPD) (Protein slicer) Required for RNA-mediated gene silencing (RNAi) by the RNA-induced silencing complex (RISC). The 'minimal RISC' appears to include AGO2 bound to a short guide RNA such as a microRNA (miRNA) or short interfering RNA (siRNA). These guide RNAs direct RISC to complementary mRNAs that are targets for RISC-mediated gene silencing. The precise mechanism of gene silencing depends on the degree of complementarity between the miRNA or siRNA and its target. Binding of RISC to a perfectly complementary mRNA generally results in silencing due to endonucleolytic cleavage of the mRNA specifically by AGO2. Binding of RISC to a partially complementary mRNA results in silencing through inhibition of translation, and this is independent of endonuclease activity. May inhibit translation initiation by binding to the 7-methylguanosine cap, thereby preventing the recruitment of the translation initiation factor eIF4-E. May also inhibit translation initiation via interaction with EIF6, which itself binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The inhibition of translational initiation leads to the accumulation of the affected mRNA in cytoplasmic processing bodies (P-bodies), where mRNA degradation may subsequently occur. In some cases RISC-mediated translational repression is also observed for miRNAs that perfectly match the 3' untranslated region (3'-UTR). Can also up-regulate the translation of specific mRNAs under certain growth conditions. Binds to the AU element of the 3'-UTR of the TNF (TNF-alpha) mRNA and up-regulates translation under conditions of serum starvation. Also required for transcriptional gene silencing (TGS), in which short RNAs known as antigene RNAs or agRNAs direct the transcriptional repression of complementary promoter regions. {ECO:0000250|UniProtKB:Q8CJG0, ECO:0000255|HAMAP-Rule:MF_03031, ECO:0000269|PubMed:15105377, ECO:0000269|PubMed:15260970, ECO:0000269|PubMed:15284456, ECO:0000269|PubMed:15337849, ECO:0000269|PubMed:15800637, ECO:0000269|PubMed:16081698, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16756390, ECO:0000269|PubMed:16936728, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:17507929, ECO:0000269|PubMed:17524464, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:18048652, ECO:0000269|PubMed:18178619, ECO:0000269|PubMed:18690212, ECO:0000269|PubMed:18771919, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:23746446, ECO:0000269|PubMed:37328606}.; FUNCTION: (Microbial infection) Upon Sars-CoV-2 infection, associates with viral miRNA-like small RNA, CoV2-miR-O7a, and may repress mRNAs, such as BATF2, to evade the IFN response. {ECO:0000269|PubMed:34903581}.
Q9UKV8 AGO2 T830 psp Protein argonaute-2 (Argonaute2) (hAgo2) (EC 3.1.26.n2) (Argonaute RISC catalytic component 2) (Eukaryotic translation initiation factor 2C 2) (eIF-2C 2) (eIF2C 2) (PAZ Piwi domain protein) (PPD) (Protein slicer) Required for RNA-mediated gene silencing (RNAi) by the RNA-induced silencing complex (RISC). The 'minimal RISC' appears to include AGO2 bound to a short guide RNA such as a microRNA (miRNA) or short interfering RNA (siRNA). These guide RNAs direct RISC to complementary mRNAs that are targets for RISC-mediated gene silencing. The precise mechanism of gene silencing depends on the degree of complementarity between the miRNA or siRNA and its target. Binding of RISC to a perfectly complementary mRNA generally results in silencing due to endonucleolytic cleavage of the mRNA specifically by AGO2. Binding of RISC to a partially complementary mRNA results in silencing through inhibition of translation, and this is independent of endonuclease activity. May inhibit translation initiation by binding to the 7-methylguanosine cap, thereby preventing the recruitment of the translation initiation factor eIF4-E. May also inhibit translation initiation via interaction with EIF6, which itself binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The inhibition of translational initiation leads to the accumulation of the affected mRNA in cytoplasmic processing bodies (P-bodies), where mRNA degradation may subsequently occur. In some cases RISC-mediated translational repression is also observed for miRNAs that perfectly match the 3' untranslated region (3'-UTR). Can also up-regulate the translation of specific mRNAs under certain growth conditions. Binds to the AU element of the 3'-UTR of the TNF (TNF-alpha) mRNA and up-regulates translation under conditions of serum starvation. Also required for transcriptional gene silencing (TGS), in which short RNAs known as antigene RNAs or agRNAs direct the transcriptional repression of complementary promoter regions. {ECO:0000250|UniProtKB:Q8CJG0, ECO:0000255|HAMAP-Rule:MF_03031, ECO:0000269|PubMed:15105377, ECO:0000269|PubMed:15260970, ECO:0000269|PubMed:15284456, ECO:0000269|PubMed:15337849, ECO:0000269|PubMed:15800637, ECO:0000269|PubMed:16081698, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16756390, ECO:0000269|PubMed:16936728, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:17507929, ECO:0000269|PubMed:17524464, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:18048652, ECO:0000269|PubMed:18178619, ECO:0000269|PubMed:18690212, ECO:0000269|PubMed:18771919, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:23746446, ECO:0000269|PubMed:37328606}.; FUNCTION: (Microbial infection) Upon Sars-CoV-2 infection, associates with viral miRNA-like small RNA, CoV2-miR-O7a, and may repress mRNAs, such as BATF2, to evade the IFN response. {ECO:0000269|PubMed:34903581}.
Q9UKX2 MYH2 T381 ochoa Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}.
Q9UKX2 MYH2 T1697 ochoa Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}.
Q9UKX3 MYH13 T380 ochoa Myosin-13 (Myosin heavy chain 13) (Myosin heavy chain, skeletal muscle, extraocular) (MyHC-EO) (Myosin heavy chain, skeletal muscle, laryngeal) (MyHC-IIL) (Superfast myosin) Fast twitching myosin mediating the high-velocity and low-tension contractions of specific striated muscles. {ECO:0000269|PubMed:23908353}.
Q9ULF5 SLC39A10 T583 ochoa Zinc transporter ZIP10 (Solute carrier family 39 member 10) (Zrt- and Irt-like protein 10) (ZIP-10) Zinc-influx transporter (PubMed:17359283, PubMed:27274087, PubMed:30520657). When associated with SLC39A6, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial-to-mesenchymal transition (EMT) (PubMed:23186163). SLC39A10-SLC39A6 heterodimers play also an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis (PubMed:32797246). Plays an important for both mature B-cell maintenance and humoral immune responses (By similarity). When associated with SLC39A10, the heterodimer controls NCAM1 phosphorylation and integration into focal adhesion complexes during EMT (By similarity). {ECO:0000250|UniProtKB:Q6P5F6, ECO:0000269|PubMed:17359283, ECO:0000269|PubMed:23186163, ECO:0000269|PubMed:27274087, ECO:0000269|PubMed:30520657, ECO:0000269|PubMed:32797246}.
Q9ULI0 ATAD2B T1320 ochoa ATPase family AAA domain-containing protein 2B None
Q9ULI0 ATAD2B T1377 ochoa ATPase family AAA domain-containing protein 2B None
Q9ULL8 SHROOM4 T590 ochoa Protein Shroom4 (Second homolog of apical protein) Probable regulator of cytoskeletal architecture that plays an important role in development. May regulate cellular and cytoskeletal architecture by modulating the spatial distribution of myosin II (By similarity). {ECO:0000250, ECO:0000269|PubMed:16684770}.
Q9ULM3 YEATS2 T1255 ochoa YEATS domain-containing protein 2 Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}.
Q9ULU4 ZMYND8 T1120 ochoa MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}.
Q9UNF0 PACSIN2 T380 ochoa Protein kinase C and casein kinase substrate in neurons protein 2 (Syndapin-2) (Syndapin-II) (SdpII) Regulates the morphogenesis and endocytosis of caveolae (By similarity). Lipid-binding protein that is able to promote the tubulation of the phosphatidic acid-containing membranes it preferentially binds. Plays a role in intracellular vesicle-mediated transport. Involved in the endocytosis of cell-surface receptors like the EGF receptor, contributing to its internalization in the absence of EGF stimulus (PubMed:21693584, PubMed:23129763, PubMed:23236520, PubMed:23596323). Essential for endothelial organization in sprouting angiogenesis, modulates CDH5-based junctions. Facilitates endothelial front-rear polarity during migration by recruiting EHD4 and MICALL1 to asymmetric adherens junctions between leader and follower cells (By similarity). {ECO:0000250|UniProtKB:Q9WVE8, ECO:0000269|PubMed:21693584, ECO:0000269|PubMed:23129763, ECO:0000269|PubMed:23236520, ECO:0000269|PubMed:23596323}.; FUNCTION: (Microbial infection) Specifically enhances the efficiency of HIV-1 virion spread by cell-to-cell transfer (PubMed:29891700). Also promotes the protrusion engulfment during cell-to-cell spread of bacterial pathogens like Listeria monocytogenes (PubMed:31242077). Involved in lipid droplet formation, which is important for HCV virion assembly (PubMed:31801866). {ECO:0000269|PubMed:29891700, ECO:0000269|PubMed:31242077, ECO:0000269|PubMed:31801866}.
Q9UPP1 PHF8 T706 ochoa Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}.
Q9UPR0 PLCL2 T584 ochoa Inactive phospholipase C-like protein 2 (PLC-L(2)) (PLC-L2) (Phospholipase C-L2) (Phospholipase C-epsilon-2) (PLC-epsilon-2) May play an role in the regulation of Ins(1,4,5)P3 around the endoplasmic reticulum. {ECO:0000250}.
Q9UQ13 SHOC2 T507 psp Leucine-rich repeat protein SHOC-2 (Protein soc-2 homolog) (Protein sur-8 homolog) Core component of the SHOC2-MRAS-PP1c (SMP) holophosphatase complex that regulates activation of the MAPK pathway (PubMed:10783161, PubMed:16630891, PubMed:25137548, PubMed:35768504, PubMed:35830882, PubMed:35831509, PubMed:36175670). Acts as a scaffolding protein in the SMP complex (PubMed:35768504, PubMed:35830882, PubMed:35831509, PubMed:36175670). The SMP complex specifically dephosphorylates the inhibitory phosphorylation at 'Ser-259' of RAF1 kinase, 'Ser-365' of BRAF kinase and 'Ser-214' of ARAF kinase, stimulating their kinase activities (PubMed:10783161, PubMed:16630891, PubMed:35768504, PubMed:35830882, PubMed:35831509, PubMed:36175670). The SMP complex enhances the dephosphorylation activity and substrate specificity of PP1c (PubMed:35768504, PubMed:36175670). {ECO:0000269|PubMed:10783161, ECO:0000269|PubMed:16630891, ECO:0000269|PubMed:25137548, ECO:0000269|PubMed:35768504, ECO:0000269|PubMed:35830882, ECO:0000269|PubMed:35831509, ECO:0000269|PubMed:36175670}.
Q9UQC2 GAB2 T294 ochoa GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}.
Q9UQP3 TNN T938 ochoa Tenascin-N (TN-N) (Tenascin-W) (TN-W) Extracellular matrix protein that seems to be a ligand for ITGA8:ITGB1, ITGAV:ITGB1 and ITGA4:ITGB1 (By similarity) (PubMed:17909022). Involved in neurite outgrowth and cell migration in hippocampal explants (By similarity). During endochondral bone formation, inhibits proliferation and differentiation of proteoblasts mediated by canonical WNT signaling (By similarity). In tumors, stimulates angiogenesis by elongation, migration and sprouting of endothelial cells (PubMed:19884327). Expressed in most mammary tumors, may facilitate tumorigenesis by supporting the migratory behavior of breast cancer cells (PubMed:17909022). {ECO:0000250|UniProtKB:Q80YX1, ECO:0000250|UniProtKB:Q80Z71, ECO:0000269|PubMed:17909022, ECO:0000269|PubMed:19884327}.
Q9Y3L5 RAP2C T58 ochoa Ras-related protein Rap-2c (EC 3.6.5.2) Small GTP-binding protein which cycles between a GDP-bound inactive and a GTP-bound active form. May play a role in cytoskeletal rearrangements and regulate cell spreading through activation of the effector TNIK. May play a role in SRE-mediated gene transcription. {ECO:0000269|PubMed:17447155}.
Q9Y3P9 RABGAP1 T38 ochoa Rab GTPase-activating protein 1 (GAP and centrosome-associated protein) (Rab6 GTPase-activating protein GAPCenA) May act as a GTPase-activating protein of RAB6A. May play a role in microtubule nucleation by centrosome. May participate in a RAB6A-mediated pathway involved in the metaphase-anaphase transition. {ECO:0000269|PubMed:10202141, ECO:0000269|PubMed:16395330}.
Q9Y487 ATP6V0A2 T148 ochoa V-type proton ATPase 116 kDa subunit a 2 (V-ATPase 116 kDa subunit a 2) (Lysosomal H(+)-transporting ATPase V0 subunit a 2) (TJ6) (Vacuolar proton translocating ATPase 116 kDa subunit a isoform 2) Subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (By similarity). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Essential component of the endosomal pH-sensing machinery (PubMed:16415858). May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH (PubMed:18157129). In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation (PubMed:28296633). {ECO:0000250|UniProtKB:Q29466, ECO:0000250|UniProtKB:Q93050, ECO:0000269|PubMed:16415858, ECO:0000269|PubMed:18157129, ECO:0000269|PubMed:28296633}.
Q9Y490 TLN1 T354 ochoa Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y496 KIF3A T672 psp Kinesin-like protein KIF3A (Microtubule plus end-directed kinesin motor 3A) Microtubule-based anterograde translocator for membranous organelles. Plus end-directed microtubule sliding activity in vitro. Plays a role in primary cilia formation. Plays a role in centriole cohesion and subdistal appendage organization and function. Regulates the formation of the subdistal appendage via recruitment of DCTN1 to the centriole. Also required for ciliary basal feet formation and microtubule anchoring to mother centriole. {ECO:0000250|UniProtKB:P28741}.
Q9Y4L1 HYOU1 T962 ochoa Hypoxia up-regulated protein 1 (150 kDa oxygen-regulated protein) (ORP-150) (170 kDa glucose-regulated protein) (GRP-170) (Heat shock protein family H member 4) Has a pivotal role in cytoprotective cellular mechanisms triggered by oxygen deprivation. Promotes HSPA5/BiP-mediated ATP nucleotide exchange and thereby activates the unfolded protein response (UPR) pathway in the presence of endoplasmic reticulum stress (By similarity). May play a role as a molecular chaperone and participate in protein folding. {ECO:0000250|UniProtKB:Q9JKR6, ECO:0000269|PubMed:10037731}.
Q9Y561 LRP12 T655 ochoa Low-density lipoprotein receptor-related protein 12 (LDLR-related protein 12) (LRP-12) (Suppressor of tumorigenicity 7 protein) Probable receptor, which may be involved in the internalization of lipophilic molecules and/or signal transduction. May act as a tumor suppressor. {ECO:0000269|PubMed:12809483}.
Q9Y613 FHOD1 T690 ochoa FH1/FH2 domain-containing protein 1 (Formin homolog overexpressed in spleen 1) (FHOS) (Formin homology 2 domain-containing protein 1) Required for the assembly of F-actin structures, such as stress fibers. Depends on the Rho-ROCK cascade for its activity. Contributes to the coordination of microtubules with actin fibers and plays a role in cell elongation. Acts synergistically with ROCK1 to promote SRC-dependent non-apoptotic plasma membrane blebbing. {ECO:0000269|PubMed:14576350, ECO:0000269|PubMed:15878344, ECO:0000269|PubMed:18694941}.
Q9Y623 MYH4 T381 ochoa Myosin-4 (Myosin heavy chain 2b) (MyHC-2b) (Myosin heavy chain 4) (Myosin heavy chain IIb) (MyHC-IIb) (Myosin heavy chain, skeletal muscle, fetal) Muscle contraction.
Q9Y6B7 AP4B1 T591 ochoa AP-4 complex subunit beta-1 (AP-4 adaptor complex subunit beta) (Adaptor-related protein complex 4 subunit beta-1) (Beta subunit of AP-4) (Beta4-adaptin) Component of the adaptor protein complex 4 (AP-4). Adaptor protein complexes are vesicle coat components involved both in vesicle formation and cargo selection. They control the vesicular transport of proteins in different trafficking pathways (PubMed:10066790, PubMed:10436028). AP-4 forms a non clathrin-associated coat on vesicles departing the trans-Golgi network (TGN) and may be involved in the targeting of proteins from the trans-Golgi network (TGN) to the endosomal-lysosomal system. It is also involved in protein sorting to the basolateral membrane in epithelial cells and the proper asymmetric localization of somatodendritic proteins in neurons. AP-4 is involved in the recognition and binding of tyrosine-based sorting signals found in the cytoplasmic part of cargos, but may also recognize other types of sorting signal (Probable). {ECO:0000269|PubMed:10066790, ECO:0000269|PubMed:10436028, ECO:0000305|PubMed:10066790, ECO:0000305|PubMed:10436028}.
Q9Y6D9 MAD1L1 T624 psp Mitotic spindle assembly checkpoint protein MAD1 (Mitotic arrest deficient 1-like protein 1) (MAD1-like protein 1) (Mitotic checkpoint MAD1 protein homolog) (HsMAD1) (hMAD1) (Tax-binding protein 181) Component of the spindle-assembly checkpoint that prevents the onset of anaphase until all chromosomes are properly aligned at the metaphase plate (PubMed:10049595, PubMed:20133940, PubMed:29162720). Forms a heterotetrameric complex with the closed conformation form of MAD2L1 (C-MAD2) at unattached kinetochores during prometaphase, recruits an open conformation of MAD2L1 (O-MAD2) and promotes the conversion of O-MAD2 to C-MAD2, which ensures mitotic checkpoint signaling (PubMed:29162720). {ECO:0000269|PubMed:10049595, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:36322655}.; FUNCTION: [Isoform 3]: Sequesters MAD2L1 in the cytoplasm preventing its function as an activator of the mitotic spindle assembly checkpoint (SAC) resulting in SAC impairment and chromosomal instability in hepatocellular carcinomas. {ECO:0000269|PubMed:19010891}.
Q9Y6X4 FAM169A T357 ochoa Soluble lamin-associated protein of 75 kDa (SLAP75) (Protein FAM169A) None
V9GYY5 None T134 ochoa Nucleolar protein 12 Multifunctional RNA binding protein that plays a role in RNA metabolism and DNA maintenance. Participates in the resolution of DNA stress and the maintenance of genome integrity by localizing to sites of DNA insults. Also plays a role in proper nucleolar organization by limiting nucleolar size and regulating nucleolar number. Mechanistically, regulates the nucleolar levels of fibrillarin and nucleolin, two key players in pre-rRNA processing and ribosome assembly. {ECO:0000256|ARBA:ARBA00057078}.
Q8ND56 LSM14A T384 Sugiyama Protein LSM14 homolog A (Protein FAM61A) (Protein SCD6 homolog) (Putative alpha-synuclein-binding protein) (AlphaSNBP) (RNA-associated protein 55A) (hRAP55) (hRAP55A) Essential for formation of P-bodies, cytoplasmic structures that provide storage sites for translationally inactive mRNAs and protect them from degradation (PubMed:16484376, PubMed:17074753, PubMed:29510985). Acts as a repressor of mRNA translation (PubMed:29510985). May play a role in mitotic spindle assembly (PubMed:26339800). {ECO:0000269|PubMed:16484376, ECO:0000269|PubMed:17074753, ECO:0000269|PubMed:26339800, ECO:0000269|PubMed:29510985}.
P35579 MYH9 T1745 Sugiyama Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA) Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis (By similarity). Promotes cell motility in conjunction with S100A4 (PubMed:16707441). During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10 (PubMed:20052411). {ECO:0000250|UniProtKB:Q8VDD5, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:20052411}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000269|PubMed:20944748, ECO:0000269|PubMed:39048823}.
Q12906 ILF3 T300 Sugiyama Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}.
P62917 RPL8 T146 Sugiyama Large ribosomal subunit protein uL2 (60S ribosomal protein L8) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
Q96G46 DUS3L T99 Sugiyama tRNA-dihydrouridine(47) synthase [NAD(P)(+)]-like (EC 1.3.1.89) (mRNA-dihydrouridine synthase DUS3L) (EC 1.3.1.-) (tRNA-dihydrouridine synthase 3-like) Catalyzes the synthesis of dihydrouridine, a modified base, in various RNAs, such as tRNAs, mRNAs and some long non-coding RNAs (lncRNAs) (PubMed:34556860). Mainly modifies the uridine in position 47 (U47) in the D-loop of most cytoplasmic tRNAs (PubMed:34556860). Also able to mediate the formation of dihydrouridine in some mRNAs, thereby regulating their translation (PubMed:34556860). {ECO:0000269|PubMed:34556860}.
O95218 ZRANB2 T55 Sugiyama Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}.
P39019 RPS19 T36 Sugiyama Small ribosomal subunit protein eS19 (40S ribosomal protein S19) Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for pre-rRNA processing and maturation of 40S ribosomal subunits (PubMed:16990592). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:16990592, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P51858 HDGF T94 Sugiyama Hepatoma-derived growth factor (HDGF) (High mobility group protein 1-like 2) (HMG-1L2) [Isoform 1]: Acts as a transcriptional repressor (PubMed:17974029). Has mitogenic activity for fibroblasts (PubMed:11751870, PubMed:26845719). Heparin-binding protein (PubMed:15491618). {ECO:0000269|PubMed:11751870, ECO:0000269|PubMed:15491618, ECO:0000269|PubMed:17974029, ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 2]: Does not have mitogenic activity for fibroblasts (PubMed:26845719). Does not bind heparin (PubMed:26845719). {ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 3]: Has mitogenic activity for fibroblasts (PubMed:26845719). Heparin-binding protein (PubMed:26845719). {ECO:0000269|PubMed:26845719}.
P60660 MYL6 T103 Sugiyama Myosin light polypeptide 6 (17 kDa myosin light chain) (LC17) (Myosin light chain 3) (MLC-3) (Myosin light chain alkali 3) (Myosin light chain A3) (Smooth muscle and nonmuscle myosin light chain alkali 6) Regulatory light chain of myosin. Does not bind calcium.
Q9H2U1 DHX36 T179 Sugiyama ATP-dependent DNA/RNA helicase DHX36 (EC 3.6.4.12) (EC 3.6.4.13) (DEAD/H box polypeptide 36) (DEAH-box protein 36) (G4-resolvase-1) (G4R1) (MLE-like protein 1) (RNA helicase associated with AU-rich element protein) Multifunctional ATP-dependent helicase that unwinds G-quadruplex (G4) structures (PubMed:16150737, PubMed:18854321, PubMed:20472641, PubMed:21586581). Plays a role in many biological processes such as genomic integrity, gene expression regulations and as a sensor to initiate antiviral responses (PubMed:14731398, PubMed:18279852, PubMed:21993297, PubMed:22238380, PubMed:25579584). G4 structures correspond to helical structures containing guanine tetrads (By similarity). Binds with high affinity to and unwinds G4 structures that are formed in nucleic acids (G4-DNA and G4-RNA) (PubMed:16150737, PubMed:18842585, PubMed:20472641, PubMed:21586581, PubMed:24369427, PubMed:26195789). Plays a role in genomic integrity (PubMed:22238380). Converts the G4-RNA structure present in telomerase RNA template component (TREC) into a double-stranded RNA to promote P1 helix formation that acts as a template boundary ensuring accurate reverse transcription (PubMed:20472641, PubMed:21149580, PubMed:21846770, PubMed:22238380, PubMed:24151078, PubMed:25579584). Plays a role in transcriptional regulation (PubMed:21586581, PubMed:21993297). Resolves G4-DNA structures in promoters of genes, such as YY1, KIT/c-kit and ALPL and positively regulates their expression (PubMed:21993297). Plays a role in post-transcriptional regulation (PubMed:27940037). Unwinds a G4-RNA structure located in the 3'-UTR polyadenylation site of the pre-mRNA TP53 and stimulates TP53 pre-mRNA 3'-end processing in response to ultraviolet (UV)-induced DNA damage (PubMed:27940037). Binds to the precursor-microRNA-134 (pre-miR-134) terminal loop and regulates its transport into the synapto-dendritic compartment (By similarity). Involved in the pre-miR-134-dependent inhibition of target gene expression and the control of dendritic spine size (By similarity). Plays a role in the regulation of cytoplasmic mRNA translation and mRNA stability (PubMed:24369427, PubMed:26489465). Binds to both G4-RNA structures and alternative non-quadruplex-forming sequence within the 3'-UTR of the PITX1 mRNA regulating negatively PITX1 protein expression (PubMed:24369427). Binds to both G4-RNA structure in the 5'-UTR and AU-rich elements (AREs) localized in the 3'-UTR of NKX2-5 mRNA to either stimulate protein translation or induce mRNA decay in an ELAVL1-dependent manner, respectively (PubMed:26489465). Also binds to ARE sequences present in several mRNAs mediating exosome-mediated 3'-5' mRNA degradation (PubMed:14731398, PubMed:18279852). Involved in cytoplasmic urokinase-type plasminogen activator (uPA) mRNA decay (PubMed:14731398). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). Required for early embryonic development and hematopoiesis. Involved in the regulation of cardioblast differentiation and proliferation during heart development. Involved in spermatogonia differentiation. May play a role in ossification (By similarity). {ECO:0000250|UniProtKB:D4A2Z8, ECO:0000250|UniProtKB:Q05B79, ECO:0000250|UniProtKB:Q8VHK9, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:16150737, ECO:0000269|PubMed:18279852, ECO:0000269|PubMed:18842585, ECO:0000269|PubMed:18854321, ECO:0000269|PubMed:20472641, ECO:0000269|PubMed:21149580, ECO:0000269|PubMed:21586581, ECO:0000269|PubMed:21846770, ECO:0000269|PubMed:21993297, ECO:0000269|PubMed:22238380, ECO:0000269|PubMed:24151078, ECO:0000269|PubMed:24369427, ECO:0000269|PubMed:25579584, ECO:0000269|PubMed:26195789, ECO:0000269|PubMed:26489465, ECO:0000269|PubMed:27940037}.
P36507 MAP2K2 T59 EPSD|PSP Dual specificity mitogen-activated protein kinase kinase 2 (MAP kinase kinase 2) (MAPKK 2) (EC 2.7.12.2) (ERK activator kinase 2) (MAPK/ERK kinase 2) (MEK 2) Catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in MAP kinases. Activates the ERK1 and ERK2 MAP kinases (By similarity). Activates BRAF in a KSR1 or KSR2-dependent manner; by binding to KSR1 or KSR2 releases the inhibitory intramolecular interaction between KSR1 or KSR2 protein kinase and N-terminal domains which promotes KSR1 or KSR2-BRAF dimerization and BRAF activation (PubMed:29433126). {ECO:0000250|UniProtKB:Q63932, ECO:0000269|PubMed:29433126}.
Q02750 MAP2K1 T55 EPSD|PSP Dual specificity mitogen-activated protein kinase kinase 1 (MAP kinase kinase 1) (MAPKK 1) (MKK1) (EC 2.7.12.2) (ERK activator kinase 1) (MAPK/ERK kinase 1) (MEK 1) Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2, leading to their activation and further transduction of the signal within the MAPK/ERK cascade. Activates BRAF in a KSR1 or KSR2-dependent manner; by binding to KSR1 or KSR2 releases the inhibitory intramolecular interaction between KSR1 or KSR2 protein kinase and N-terminal domains which promotes KSR1 or KSR2-BRAF dimerization and BRAF activation (PubMed:29433126). Depending on the cellular context, this pathway mediates diverse biological functions such as cell growth, adhesion, survival and differentiation, predominantly through the regulation of transcription, metabolism and cytoskeletal rearrangements. One target of the MAPK/ERK cascade is peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that promotes differentiation and apoptosis. MAP2K1/MEK1 has been shown to export PPARG from the nucleus. The MAPK/ERK cascade is also involved in the regulation of endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC), as well as in the fragmentation of the Golgi apparatus during mitosis. {ECO:0000269|PubMed:14737111, ECO:0000269|PubMed:17101779, ECO:0000269|PubMed:29433126}.
Q9P2D1 CHD7 T1227 EPSD|PSP Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9P2J5 LARS1 T386 Sugiyama Leucine--tRNA ligase, cytoplasmic (EC 6.1.1.4) (Leucyl-tRNA synthetase) (LeuRS) (cLRS) Aminoacyl-tRNA synthetase that catalyzes the specific attachment of leucine to its cognate tRNA (tRNA(Leu)) (PubMed:25051973, PubMed:32232361). It performs tRNA aminoacylation in a two-step reaction: Leu is initially activated by ATP to form a leucyl-adenylate (Leu-AMP) intermediate; then the leucyl moiety is transferred to the acceptor 3' end of the tRNA to yield leucyl-tRNA (PubMed:25051973). To improve the fidelity of catalytic reactions, it is also able to hydrolyze misactivated aminoacyl-adenylate intermediates (pre-transfer editing) and mischarged aminoacyl-tRNAs (post-transfer editing) (PubMed:25051973). {ECO:0000269|PubMed:19426743, ECO:0000269|PubMed:25051973, ECO:0000269|PubMed:32232361}.
Q9Y2B0 CNPY2 T79 Sugiyama Protein canopy homolog 2 (MIR-interacting saposin-like protein) (Putative secreted protein Zsig9) (Transmembrane protein 4) Positive regulator of neurite outgrowth by stabilizing myosin regulatory light chain (MRLC). It prevents MIR-mediated MRLC ubiquitination and its subsequent proteasomal degradation.
Q92598 HSPH1 T795 Sugiyama Heat shock protein 105 kDa (Antigen NY-CO-25) (Heat shock 110 kDa protein) (Heat shock protein family H member 1) Acts as a nucleotide-exchange factor (NEF) for chaperone proteins HSPA1A and HSPA1B, promoting the release of ADP from HSPA1A/B thereby triggering client/substrate protein release (PubMed:24318877). Prevents the aggregation of denatured proteins in cells under severe stress, on which the ATP levels decrease markedly. Inhibits HSPA8/HSC70 ATPase and chaperone activities (By similarity). {ECO:0000250|UniProtKB:Q60446, ECO:0000250|UniProtKB:Q61699, ECO:0000269|PubMed:24318877}.
Q9BRS2 RIOK1 T509 Sugiyama Serine/threonine-protein kinase RIO1 (EC 2.7.11.1) (EC 3.6.1.-) (RIO kinase 1) Involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in processing of 18S-E pre-rRNA to the mature 18S rRNA. Required for the recycling of NOB1 and PNO1 from the late 40S precursor (PubMed:22072790). The association with the very late 40S subunit intermediate may involve a translation-like checkpoint point cycle preceeding the binding to the 60S ribosomal subunit (By similarity). Despite the protein kinase domain is proposed to act predominantly as an ATPase (By similarity). The catalytic activity regulates its dynamic association with the 40S subunit (By similarity). In addition to its role in ribosomal biogenesis acts as an adapter protein by recruiting NCL/nucleolin the to PRMT5 complex for its symmetrical methylation (PubMed:21081503). {ECO:0000250|UniProtKB:G0S3J5, ECO:0000250|UniProtKB:Q12196, ECO:0000269|PubMed:21081503, ECO:0000269|PubMed:22072790}.
P13987 CD59 T85 Sugiyama CD59 glycoprotein (1F5 antigen) (20 kDa homologous restriction factor) (HRF-20) (HRF20) (MAC-inhibitory protein) (MAC-IP) (MEM43 antigen) (Membrane attack complex inhibition factor) (MACIF) (Membrane inhibitor of reactive lysis) (MIRL) (Protectin) (CD antigen CD59) Potent inhibitor of the complement membrane attack complex (MAC) action, which protects human cells from damage during complement activation (PubMed:11882685, PubMed:1698710, PubMed:2475111, PubMed:2475570, PubMed:2606909, PubMed:9053451). Acts by binding to the beta-haipins of C8 (C8A and C8B) components of the assembling MAC, forming an intermolecular beta-sheet that prevents incorporation of the multiple copies of C9 required for complete formation of the osmolytic pore (PubMed:11882685, PubMed:1698710, PubMed:36797260). {ECO:0000269|PubMed:11882685, ECO:0000269|PubMed:1698710, ECO:0000269|PubMed:2475111, ECO:0000269|PubMed:2475570, ECO:0000269|PubMed:2606909, ECO:0000269|PubMed:36797260, ECO:0000269|PubMed:9053451}.; FUNCTION: The soluble form from urine retains its specific complement binding activity, but exhibits greatly reduced ability to inhibit complement membrane attack complex (MAC) assembly on cell membranes. {ECO:0000269|PubMed:8670172}.
P33176 KIF5B T182 Sugiyama Kinesin-1 heavy chain (Conventional kinesin heavy chain) (Ubiquitous kinesin heavy chain) (UKHC) Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes. Can induce formation of neurite-like membrane protrusions in non-neuronal cells in a ZFYVE27-dependent manner (By similarity). Regulates centrosome and nuclear positioning during mitotic entry. During the G2 phase of the cell cycle in a BICD2-dependent manner, antagonizes dynein function and drives the separation of nuclei and centrosomes (PubMed:20386726). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). Through binding with PLEKHM2 and ARL8B, directs lysosome movement toward microtubule plus ends (Probable). Involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). {ECO:0000250|UniProtKB:Q2PQA9, ECO:0000250|UniProtKB:Q61768, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:24088571, ECO:0000305|PubMed:22172677, ECO:0000305|PubMed:24088571}.
Q07021 C1QBP T163 Sugiyama Complement component 1 Q subcomponent-binding protein, mitochondrial (ASF/SF2-associated protein p32) (Glycoprotein gC1qBP) (C1qBP) (Hyaluronan-binding protein 1) (Mitochondrial matrix protein p32) (gC1q-R protein) (p33) (SF2AP32) Multifunctional and multicompartmental protein involved in inflammation and infection processes, ribosome biogenesis, protein synthesis in mitochondria, regulation of apoptosis, transcriptional regulation and pre-mRNA splicing (PubMed:10022843, PubMed:10479529, PubMed:10722602, PubMed:11086025, PubMed:11859136, PubMed:15243141, PubMed:16140380, PubMed:16177118, PubMed:17881511, PubMed:18676636, PubMed:19004836, PubMed:19164550, PubMed:20810993, PubMed:21536856, PubMed:21544310, PubMed:22700724, PubMed:28942965, PubMed:8662673, PubMed:8710908, PubMed:9461517). At the cell surface is thought to act as an endothelial receptor for plasma proteins of the complement and kallikrein-kinin cascades (PubMed:10479529, PubMed:11859136, PubMed:8662673, PubMed:8710908). Putative receptor for C1q; specifically binds to the globular 'heads' of C1q thus inhibiting C1; may perform the receptor function through a complex with C1qR/CD93 (PubMed:20810993, PubMed:8195709). In complex with cytokeratin-1/KRT1 is a high affinity receptor for kininogen-1/HMWK (PubMed:21544310). Can also bind other plasma proteins, such as coagulation factor XII leading to its autoactivation. May function to bind initially fluid kininogen-1 to the cell membrane. The secreted form may enhance both extrinsic and intrinsic coagulation pathways. It is postulated that the cell surface form requires docking with transmembrane proteins for downstream signaling which might be specific for a cell-type or response. By acting as C1q receptor is involved in chemotaxis of immature dendritic cells and neutrophils and is proposed to signal through CD209/DC-SIGN on immature dendritic cells, through integrin alpha-4/beta-1 during trophoblast invasion of the decidua, and through integrin beta-1 during endothelial cell adhesion and spreading (PubMed:16140380, PubMed:22700724, PubMed:9461517). Signaling involved in inhibition of innate immune response is implicating the PI3K-AKT/PKB pathway (PubMed:16177118). Required for protein synthesis in mitochondria (PubMed:28942965). In mitochondrial translation may be involved in formation of functional 55S mitoribosomes; the function seems to involve its RNA-binding activity (By similarity). Acts as a RNA modification reader, which specifically recognizes and binds mitochondrial RNAs modified by C5-methylcytosine (m5C) in response to stress, and promotes recruitment of the mitochondrial degradosome complex, leading to their degradation (PubMed:39019044). May be involved in the nucleolar ribosome maturation process; the function may involve the exchange of FBL for RRP1 in the association with pre-ribosome particles (By similarity). Involved in regulation of RNA splicing by inhibiting the RNA-binding capacity of SRSF1 and its phosphorylation (PubMed:10022843, PubMed:21536856). Is required for the nuclear translocation of splicing factor U2AF1L4 (By similarity). Involved in regulation of CDKN2A- and HRK-mediated apoptosis. Stabilizes mitochondrial CDKN2A isoform smARF (PubMed:17486078). May be involved in regulation of FOXC1 transcriptional activity and NFY/CCAAT-binding factor complex-mediated transcription (PubMed:15243141, PubMed:18676636). May play a role in antibacterial defense as it can bind to cell surface hyaluronan and inhibit Streptococcus pneumoniae hyaluronate lyase (PubMed:19004836). May be involved in modulation of the immune response; ligation by HCV core protein is resulting in suppression of interleukin-12 production in monocyte-derived dendritic cells (PubMed:11086025, PubMed:17881511). Involved in regulation of antiviral response by inhibiting RIGI- and IFIH1-mediated signaling pathways probably involving its association with MAVS after viral infection (PubMed:19164550). Acts as a regulator of DNA repair via homologous recombination by inhibiting the activity of MRE11: interacts with unphosphorylated MRE11 and RAD50 in absence of DNA damage, preventing formation and activity of the MRN complex. Following DNA damage, dissociates from phosphorylated MRE11, allowing formation of the MRN complex (PubMed:31353207). {ECO:0000250|UniProtKB:O35658, ECO:0000269|PubMed:10022843, ECO:0000269|PubMed:10479529, ECO:0000269|PubMed:10722602, ECO:0000269|PubMed:11086025, ECO:0000269|PubMed:11859136, ECO:0000269|PubMed:15243141, ECO:0000269|PubMed:16140380, ECO:0000269|PubMed:16177118, ECO:0000269|PubMed:17486078, ECO:0000269|PubMed:17881511, ECO:0000269|PubMed:18676636, ECO:0000269|PubMed:19004836, ECO:0000269|PubMed:19164550, ECO:0000269|PubMed:20810993, ECO:0000269|PubMed:21536856, ECO:0000269|PubMed:21544310, ECO:0000269|PubMed:22700724, ECO:0000269|PubMed:28942965, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:39019044, ECO:0000269|PubMed:8195709, ECO:0000269|PubMed:8662673, ECO:0000269|PubMed:8710908, ECO:0000269|PubMed:9461517}.; FUNCTION: (Microbial infection) Involved in HIV-1 replication, presumably by contributing to splicing of viral RNA. {ECO:0000269|PubMed:12833064}.; FUNCTION: (Microbial infection) In infection processes acts as an attachment site for microbial proteins, including Listeria monocytogenes internalin B (InlB) and Staphylococcus aureus protein A. {ECO:0000269|PubMed:10722602, ECO:0000269|PubMed:10747014, ECO:0000269|PubMed:12411480}.; FUNCTION: (Microbial infection) Involved in replication of Rubella virus. {ECO:0000269|PubMed:12034482}.
O60285 NUAK1 T60 Sugiyama NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}.
P52907 CAPZA1 T249 Sugiyama F-actin-capping protein subunit alpha-1 (CapZ alpha-1) F-actin-capping proteins bind in a Ca(2+)-independent manner to the fast growing ends of actin filaments (barbed end) thereby blocking the exchange of subunits at these ends. Unlike other capping proteins (such as gelsolin and severin), these proteins do not sever actin filaments. May play a role in the formation of epithelial cell junctions (PubMed:22891260). Forms, with CAPZB, the barbed end of the fast growing ends of actin filaments in the dynactin complex and stabilizes dynactin structure. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:A0PFK5, ECO:0000269|PubMed:22891260}.
P05976 MYL1 T146 Sugiyama Myosin light chain 1/3, skeletal muscle isoform (MLC1/MLC3) (MLC1F/MLC3F) (Myosin light chain alkali 1/2) (Myosin light chain A1/A2) Non-regulatory myosin light chain required for proper formation and/or maintenance of myofibers, and thus appropriate muscle function. {ECO:0000269|PubMed:30215711}.
P08590 MYL3 T147 Sugiyama Myosin light chain 3 (Cardiac myosin light chain 1) (CMLC1) (Myosin light chain 1, slow-twitch muscle B/ventricular isoform) (MLC1SB) (Ventricular myosin alkali light chain) (Ventricular myosin light chain 1) (VLCl) (Ventricular/slow twitch myosin alkali light chain) (MLC-lV/sb) Regulatory light chain of myosin. Does not bind calcium.
O95721 SNAP29 T137 Sugiyama Synaptosomal-associated protein 29 (SNAP-29) (Soluble 29 kDa NSF attachment protein) (Vesicle-membrane fusion protein SNAP-29) SNAREs, soluble N-ethylmaleimide-sensitive factor-attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion. SNAP29 is a SNARE involved in autophagy through the direct control of autophagosome membrane fusion with the lysososome membrane. Also plays a role in ciliogenesis by regulating membrane fusions. {ECO:0000269|PubMed:23217709, ECO:0000269|PubMed:25686250, ECO:0000269|PubMed:25686604}.
P30050 RPL12 T25 Sugiyama Large ribosomal subunit protein uL11 (60S ribosomal protein L12) Component of the large ribosomal subunit (PubMed:25901680). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25901680). Binds directly to 26S ribosomal RNA (PubMed:25901680). {ECO:0000269|PubMed:25901680}.
P62269 RPS18 T69 Sugiyama Small ribosomal subunit protein uS13 (40S ribosomal protein S18) (Ke-3) (Ke3) Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399}.
Q8WU90 ZC3H15 T348 Sugiyama Zinc finger CCCH domain-containing protein 15 (DRG family-regulatory protein 1) (Likely ortholog of mouse immediate early response erythropoietin 4) Protects DRG1 from proteolytic degradation (PubMed:19819225). Stimulates DRG1 GTPase activity likely by increasing the affinity for the potassium ions (PubMed:23711155). {ECO:0000269|PubMed:19819225, ECO:0000269|PubMed:23711155}.
Q9UBQ5 EIF3K T28 Sugiyama Eukaryotic translation initiation factor 3 subunit K (eIF3k) (Eukaryotic translation initiation factor 3 subunit 12) (Muscle-specific gene M9 protein) (PLAC-24) (eIF-3 p25) (eIF-3 p28) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03010, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
P00519 ABL1 T544 Sugiyama Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}.
P61604 HSPE1 T79 Sugiyama 10 kDa heat shock protein, mitochondrial (Hsp10) (10 kDa chaperonin) (Chaperonin 10) (CPN10) (Early-pregnancy factor) (EPF) (Heat shock protein family E member 1) Co-chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp60, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131, PubMed:7912672). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000269|PubMed:7912672, ECO:0000305|PubMed:25918392}.
P49419 ALDH7A1 T68 Sugiyama Alpha-aminoadipic semialdehyde dehydrogenase (Alpha-AASA dehydrogenase) (EC 1.2.1.31) (Aldehyde dehydrogenase family 7 member A1) (EC 1.2.1.3) (Antiquitin-1) (Betaine aldehyde dehydrogenase) (EC 1.2.1.8) (Delta1-piperideine-6-carboxylate dehydrogenase) (P6c dehydrogenase) Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism. {ECO:0000269|PubMed:16491085, ECO:0000269|PubMed:20207735, ECO:0000269|PubMed:21338592}.
P24666 ACP1 T85 Sugiyama Low molecular weight phosphotyrosine protein phosphatase (LMW-PTP) (LMW-PTPase) (EC 3.1.3.48) (Adipocyte acid phosphatase) (Low molecular weight cytosolic acid phosphatase) (EC 3.1.3.2) (Red cell acid phosphatase 1) Acts on tyrosine phosphorylated proteins, low-MW aryl phosphates and natural and synthetic acyl phosphates with differences in substrate specificity between isoform 1 and isoform 2. {ECO:0000269|PubMed:10336608, ECO:0000269|PubMed:9705307}.; FUNCTION: [Isoform 3]: Does not possess phosphatase activity. {ECO:0000269|PubMed:10336608}.
P31948 STIP1 T257 Sugiyama Stress-induced-phosphoprotein 1 (STI1) (Hsc70/Hsp90-organizing protein) (Hop) (Renal carcinoma antigen NY-REN-11) (Transformation-sensitive protein IEF SSP 3521) Acts as a co-chaperone for HSP90AA1 (PubMed:27353360). Mediates the association of the molecular chaperones HSPA8/HSC70 and HSP90 (By similarity). {ECO:0000250|UniProtKB:O35814, ECO:0000303|PubMed:27353360}.
Q6NVY1 HIBCH T249 Sugiyama 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial (EC 3.1.2.4) (3-hydroxyisobutyryl-coenzyme A hydrolase) (HIB-CoA hydrolase) (HIBYL-CoA-H) Hydrolyzes 3-hydroxyisobutyryl-CoA (HIBYL-CoA), a saline catabolite. Has high activity toward isobutyryl-CoA. Could be an isobutyryl-CoA dehydrogenase that functions in valine catabolism. Also hydrolyzes 3-hydroxypropanoyl-CoA. {ECO:0000269|PubMed:8824301}.
P52888 THOP1 T76 Sugiyama Thimet oligopeptidase (EC 3.4.24.15) (Endopeptidase 24.15) (MP78) Involved in the metabolism of neuropeptides under 20 amino acid residues long. Involved in cytoplasmic peptide degradation (PubMed:17251185, PubMed:7639763). Able to degrade the amyloid-beta precursor protein and generate amyloidogenic fragments (PubMed:17251185, PubMed:7639763). Also acts as a regulator of cannabinoid signaling pathway by mediating degradation of hemopressin, an antagonist peptide of the cannabinoid receptor CNR1 (By similarity). {ECO:0000250|UniProtKB:P24155, ECO:0000269|PubMed:17251185, ECO:0000269|PubMed:7639763}.
O43776 NARS1 T43 Sugiyama Asparagine--tRNA ligase, cytoplasmic (EC 6.1.1.22) (Asparaginyl-tRNA synthetase) (AsnRS) (Asparaginyl-tRNA synthetase 1) Catalyzes the attachment of asparagine to tRNA(Asn) in a two-step reaction: asparagine is first activated by ATP to form Asn-AMP and then transferred to the acceptor end of tRNA(Asn) (PubMed:32738225, PubMed:32788587, PubMed:9421509). In addition to its essential role in protein synthesis, acts as a signaling molecule that induced migration of CCR3-expressing cells (PubMed:12235211, PubMed:30171954). Has an essential role in the development of the cerebral cortex, being required for proper proliferation of radial glial cells (PubMed:32788587). {ECO:0000269|PubMed:12235211, ECO:0000269|PubMed:30171954, ECO:0000269|PubMed:32738225, ECO:0000269|PubMed:32788587, ECO:0000269|PubMed:9421509}.
P46940 IQGAP1 T663 Sugiyama Ras GTPase-activating-like protein IQGAP1 (p195) Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}.
Q12904 AIMP1 T287 Sugiyama Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}.
O60264 SMARCA5 T79 Sugiyama SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A5) (EC 3.6.4.-) (Sucrose nonfermenting protein 2 homolog) (hSNF2H) ATPase that possesses intrinsic ATP-dependent nucleosome-remodeling activity (PubMed:12972596, PubMed:28801535). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair; this may require intact histone H4 tails (PubMed:10880450, PubMed:12198550, PubMed:12434153, PubMed:12972596, PubMed:23911928, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A/ACF1-, BAZ1B/WSTF-, BAZ2A/TIP5- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:15543136, PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Binds to core histones together with RSF1, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Involved in DNA replication and together with BAZ1A/ACF1 is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). Probably plays a role in repression of RNA polymerase I dependent transcription of the rDNA locus, through the recruitment of the SIN3/HDAC1 corepressor complex to the rDNA promoter (By similarity). Essential component of the WICH-5 ISWI chromatin-remodeling complex (also called the WICH complex), a chromatin-remodeling complex that mobilizes nucleosomes and reconfigures irregular chromatin to a regular nucleosomal array structure (PubMed:11980720, PubMed:15543136). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the histone H2AX phosphorylation at 'Tyr-142', and is involved in the maintenance of chromatin structures during DNA replication processes (By similarity). Essential component of NoRC-5 ISWI chromatin-remodeling complex, a complex that mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). {ECO:0000250|UniProtKB:Q91ZW3, ECO:0000269|PubMed:10880450, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:12198550, ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:28801535}.
P29144 TPP2 T1048 Sugiyama Tripeptidyl-peptidase 2 (TPP-2) (EC 3.4.14.10) (Tripeptidyl aminopeptidase) (Tripeptidyl-peptidase II) (TPP-II) Cytosolic tripeptidyl-peptidase that releases N-terminal tripeptides from polypeptides and is a component of the proteolytic cascade acting downstream of the 26S proteasome in the ubiquitin-proteasome pathway (PubMed:25525876, PubMed:30533531). It plays an important role in intracellular amino acid homeostasis (PubMed:25525876). Stimulates adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q64514, ECO:0000269|PubMed:25525876, ECO:0000269|PubMed:30533531}.
P16591 FER T45 Sugiyama Tyrosine-protein kinase Fer (EC 2.7.10.2) (Feline encephalitis virus-related kinase FER) (Fujinami poultry sarcoma/Feline sarcoma-related protein Fer) (Proto-oncogene c-Fer) (Tyrosine kinase 3) (p94-Fer) Tyrosine-protein kinase that acts downstream of cell surface receptors for growth factors and plays a role in the regulation of the actin cytoskeleton, microtubule assembly, lamellipodia formation, cell adhesion, cell migration and chemotaxis. Acts downstream of EGFR, KIT, PDGFRA and PDGFRB. Acts downstream of EGFR to promote activation of NF-kappa-B and cell proliferation. May play a role in the regulation of the mitotic cell cycle. Plays a role in the insulin receptor signaling pathway and in activation of phosphatidylinositol 3-kinase. Acts downstream of the activated FCER1 receptor and plays a role in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Plays a role in the regulation of mast cell degranulation. Plays a role in leukocyte recruitment and diapedesis in response to bacterial lipopolysaccharide (LPS). Plays a role in synapse organization, trafficking of synaptic vesicles, the generation of excitatory postsynaptic currents and neuron-neuron synaptic transmission. Plays a role in neuronal cell death after brain damage. Phosphorylates CTTN, CTNND1, PTK2/FAK1, GAB1, PECAM1 and PTPN11. May phosphorylate JUP and PTPN1. Can phosphorylate STAT3, but the biological relevance of this depends on cell type and stimulus. {ECO:0000269|PubMed:12972546, ECO:0000269|PubMed:14517306, ECO:0000269|PubMed:19147545, ECO:0000269|PubMed:19339212, ECO:0000269|PubMed:19738202, ECO:0000269|PubMed:20111072, ECO:0000269|PubMed:21518868, ECO:0000269|PubMed:22223638, ECO:0000269|PubMed:7623846, ECO:0000269|PubMed:9722593}.
Q96S59 RANBP9 T596 Sugiyama Ran-binding protein 9 (RanBP9) (BPM-L) (BPM90) (Ran-binding protein M) (RanBPM) (RanBP7) May act as scaffolding protein, and as adapter protein to couple membrane receptors to intracellular signaling pathways (Probable). Acts as a mediator of cell spreading and actin cytoskeleton rearrangement (PubMed:18710924). Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1 (PubMed:29911972). May be involved in signaling of ITGB2/LFA-1 and other integrins (PubMed:14722085). Enhances HGF-MET signaling by recruiting Sos and activating the Ras pathway (PubMed:12147692). Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but not affect estrogen-induced transactivation (PubMed:12361945, PubMed:18222118). Stabilizes TP73 isoform Alpha, probably by inhibiting its ubiquitination, and increases its proapoptotic activity (PubMed:15558019). Inhibits the kinase activity of DYRK1A and DYRK1B. Inhibits FMR1 binding to RNA. {ECO:0000269|PubMed:12147692, ECO:0000269|PubMed:12361945, ECO:0000269|PubMed:14500717, ECO:0000269|PubMed:14722085, ECO:0000269|PubMed:15381419, ECO:0000269|PubMed:15558019, ECO:0000269|PubMed:18222118, ECO:0000269|PubMed:18710924, ECO:0000269|PubMed:29911972, ECO:0000305}.
P22612 PRKACG T49 Sugiyama cAMP-dependent protein kinase catalytic subunit gamma (PKA C-gamma) (EC 2.7.11.11) Phosphorylates a large number of substrates in the cytoplasm and the nucleus.
P23458 JAK1 T901 Sugiyama Tyrosine-protein kinase JAK1 (EC 2.7.10.2) (Janus kinase 1) (JAK-1) Tyrosine kinase of the non-receptor type, involved in the IFN-alpha/beta/gamma signal pathway (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). Kinase partner for the interleukin (IL)-2 receptor (PubMed:11909529) as well as interleukin (IL)-10 receptor (PubMed:12133952). Kinase partner for the type I interferon receptor IFNAR2 (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). In response to interferon-binding to IFNAR1-IFNAR2 heterodimer, phosphorylates and activates its binding partner IFNAR2, creating docking sites for STAT proteins (PubMed:7759950). Directly phosphorylates STAT proteins but also activates STAT signaling through the transactivation of other JAK kinases associated with signaling receptors (PubMed:16239216, PubMed:32750333, PubMed:8232552). {ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:12133952, ECO:0000269|PubMed:16239216, ECO:0000269|PubMed:28111307, ECO:0000269|PubMed:32750333, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:8232552}.
P18545 PDE6G T62 GPS6|SIGNOR|ELM|EPSD Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit gamma (GMP-PDE gamma) (EC 3.1.4.35) Participates in processes of transmission and amplification of the visual signal. cGMP-PDEs are the effector molecules in G-protein-mediated phototransduction in vertebrate rods and cones.
Q13509 TUBB3 T409 GPS6|ELM|EPSD Tubulin beta-3 chain (Tubulin beta-4 chain) (Tubulin beta-III) Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:34996871, PubMed:38305685, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:34996871, PubMed:38305685, PubMed:38609661). Below the cap, alpha-beta tubulin heterodimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). TUBB3 plays a critical role in proper axon guidance and maintenance (PubMed:20074521). Binding of NTN1/Netrin-1 to its receptor UNC5C might cause dissociation of UNC5C from polymerized TUBB3 in microtubules and thereby lead to increased microtubule dynamics and axon repulsion (PubMed:28483977). Plays a role in dorsal root ganglion axon projection towards the spinal cord (PubMed:28483977). {ECO:0000269|PubMed:20074521, ECO:0000269|PubMed:28483977, ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}.
P04083 ANXA1 T265 Sugiyama Annexin A1 (Annexin I) (Annexin-1) (Calpactin II) (Calpactin-2) (Chromobindin-9) (Lipocortin I) (Phospholipase A2 inhibitory protein) (p35) [Cleaved into: Annexin Ac2-26] Plays important roles in the innate immune response as effector of glucocorticoid-mediated responses and regulator of the inflammatory process. Has anti-inflammatory activity (PubMed:8425544). Plays a role in glucocorticoid-mediated down-regulation of the early phase of the inflammatory response (By similarity). Contributes to the adaptive immune response by enhancing signaling cascades that are triggered by T-cell activation, regulates differentiation and proliferation of activated T-cells (PubMed:17008549). Promotes the differentiation of T-cells into Th1 cells and negatively regulates differentiation into Th2 cells (PubMed:17008549). Has no effect on unstimulated T cells (PubMed:17008549). Negatively regulates hormone exocytosis via activation of the formyl peptide receptors and reorganization of the actin cytoskeleton (PubMed:19625660). Has high affinity for Ca(2+) and can bind up to eight Ca(2+) ions (By similarity). Displays Ca(2+)-dependent binding to phospholipid membranes (PubMed:2532504, PubMed:8557678). Plays a role in the formation of phagocytic cups and phagosomes. Plays a role in phagocytosis by mediating the Ca(2+)-dependent interaction between phagosomes and the actin cytoskeleton (By similarity). {ECO:0000250|UniProtKB:P10107, ECO:0000250|UniProtKB:P19619, ECO:0000269|PubMed:17008549, ECO:0000269|PubMed:19625660, ECO:0000269|PubMed:2532504, ECO:0000269|PubMed:2936963, ECO:0000269|PubMed:8425544, ECO:0000269|PubMed:8557678}.; FUNCTION: [Annexin Ac2-26]: Functions at least in part by activating the formyl peptide receptors and downstream signaling cascades (PubMed:15187149, PubMed:22879591, PubMed:25664854). Promotes chemotaxis of granulocytes and monocytes via activation of the formyl peptide receptors (PubMed:15187149). Promotes rearrangement of the actin cytoskeleton, cell polarization and cell migration (PubMed:15187149). Promotes resolution of inflammation and wound healing (PubMed:25664854). Acts via neutrophil N-formyl peptide receptors to enhance the release of CXCL2 (PubMed:22879591). {ECO:0000269|PubMed:15187149, ECO:0000269|PubMed:22879591, ECO:0000269|PubMed:25664854}.
P78371 CCT2 T475 Sugiyama T-complex protein 1 subunit beta (TCP-1-beta) (EC 3.6.1.-) (CCT-beta) (Chaperonin containing T-complex polypeptide 1 subunit 2) Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}.
Q01844 EWSR1 T422 Sugiyama RNA-binding protein EWS (EWS oncogene) (Ewing sarcoma breakpoint region 1 protein) Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Might normally function as a transcriptional repressor (PubMed:10767297). EWS-fusion-proteins (EFPS) may play a role in the tumorigenic process. They may disturb gene expression by mimicking, or interfering with the normal function of CTD-POLII within the transcription initiation complex. They may also contribute to an aberrant activation of the fusion protein target genes. {ECO:0000269|PubMed:10767297, ECO:0000269|PubMed:21256132}.
P49327 FASN T295 Sugiyama Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}.
Q8IUX7 AEBP1 T621 SIGNOR Adipocyte enhancer-binding protein 1 (AE-binding protein 1) (Aortic carboxypeptidase-like protein) [Isoform 1]: As a positive regulator of collagen fibrillogenesis, it is probably involved in the organization and remodeling of the extracellular matrix. {ECO:0000269|PubMed:29606302}.; FUNCTION: [Isoform 2]: May positively regulate MAP-kinase activity in adipocytes, leading to enhanced adipocyte proliferation and reduced adipocyte differentiation. May also positively regulate NF-kappa-B activity in macrophages by promoting the phosphorylation and subsequent degradation of I-kappa-B-alpha (NFKBIA), leading to enhanced macrophage inflammatory responsiveness. Can act as a transcriptional repressor. {ECO:0000250|UniProtKB:Q640N1}.
Q96B36 AKT1S1 T233 Sugiyama Proline-rich AKT1 substrate 1 (40 kDa proline-rich AKT substrate) Negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:17277771, PubMed:17386266, PubMed:17510057, PubMed:29236692). In absence of insulin and nutrients, AKT1S1 associates with the mTORC1 complex and directly inhibits mTORC1 activity by blocking the MTOR substrate-recruitment site (PubMed:29236692). In response to insulin and nutrients, AKT1S1 dissociates from mTORC1 (PubMed:17386266, PubMed:18372248). Its activity is dependent on its phosphorylation state and binding to 14-3-3 (PubMed:16174443, PubMed:18372248). May also play a role in nerve growth factor-mediated neuroprotection (By similarity). {ECO:0000250|UniProtKB:Q9D1F4, ECO:0000269|PubMed:16174443, ECO:0000269|PubMed:17277771, ECO:0000269|PubMed:17386266, ECO:0000269|PubMed:17510057, ECO:0000269|PubMed:18372248, ECO:0000269|PubMed:29236692}.
P20042 EIF2S2 T175 Sugiyama Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}.
P43405 SYK T73 Sugiyama Tyrosine-protein kinase SYK (EC 2.7.10.2) (Spleen tyrosine kinase) (p72-Syk) Non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immunoreceptors like the B-cell receptor (BCR). Regulates several biological processes including innate and adaptive immunity, cell adhesion, osteoclast maturation, platelet activation and vascular development (PubMed:12387735, PubMed:33782605). Assembles into signaling complexes with activated receptors at the plasma membrane via interaction between its SH2 domains and the receptor tyrosine-phosphorylated ITAM domains. The association with the receptor can also be indirect and mediated by adapter proteins containing ITAM or partial hemITAM domains. The phosphorylation of the ITAM domains is generally mediated by SRC subfamily kinases upon engagement of the receptor. More rarely signal transduction via SYK could be ITAM-independent. Direct downstream effectors phosphorylated by SYK include DEPTOR, VAV1, PLCG1, PI-3-kinase, LCP2 and BLNK (PubMed:12456653, PubMed:15388330, PubMed:34634301, PubMed:8657103). Initially identified as essential in B-cell receptor (BCR) signaling, it is necessary for the maturation of B-cells most probably at the pro-B to pre-B transition (PubMed:12456653). Activated upon BCR engagement, it phosphorylates and activates BLNK an adapter linking the activated BCR to downstream signaling adapters and effectors. It also phosphorylates and activates PLCG1 and the PKC signaling pathway. It also phosphorylates BTK and regulates its activity in B-cell antigen receptor (BCR)-coupled signaling. In addition to its function downstream of BCR also plays a role in T-cell receptor signaling. Also plays a crucial role in the innate immune response to fungal, bacterial and viral pathogens. It is for instance activated by the membrane lectin CLEC7A. Upon stimulation by fungal proteins, CLEC7A together with SYK activates immune cells inducing the production of ROS. Also activates the inflammasome and NF-kappa-B-mediated transcription of chemokines and cytokines in presence of pathogens. Regulates neutrophil degranulation and phagocytosis through activation of the MAPK signaling cascade (By similarity). Required for the stimulation of neutrophil phagocytosis by IL15 (PubMed:15123770). Also mediates the activation of dendritic cells by cell necrosis stimuli. Also involved in mast cells activation. Involved in interleukin-3/IL3-mediated signaling pathway in basophils (By similarity). Also functions downstream of receptors mediating cell adhesion (PubMed:12387735). Relays for instance, integrin-mediated neutrophils and macrophages activation and P-selectin receptor/SELPG-mediated recruitment of leukocytes to inflammatory loci. Also plays a role in non-immune processes. It is for instance involved in vascular development where it may regulate blood and lymphatic vascular separation. It is also required for osteoclast development and function. Functions in the activation of platelets by collagen, mediating PLCG2 phosphorylation and activation. May be coupled to the collagen receptor by the ITAM domain-containing FCER1G. Also activated by the membrane lectin CLEC1B that is required for activation of platelets by PDPN/podoplanin. Involved in platelet adhesion being activated by ITGB3 engaged by fibrinogen. Together with CEACAM20, enhances production of the cytokine CXCL8/IL-8 via the NFKB pathway and may thus have a role in the intestinal immune response (By similarity). {ECO:0000250|UniProtKB:P48025, ECO:0000269|PubMed:12387735, ECO:0000269|PubMed:12456653, ECO:0000269|PubMed:15123770, ECO:0000269|PubMed:15388330, ECO:0000269|PubMed:19909739, ECO:0000269|PubMed:33782605, ECO:0000269|PubMed:34634301, ECO:0000269|PubMed:8657103, ECO:0000269|PubMed:9535867}.
P14314 PRKCSH T492 Sugiyama Glucosidase 2 subunit beta (80K-H protein) (Glucosidase II subunit beta) (Protein kinase C substrate 60.1 kDa protein heavy chain) (PKCSH) Regulatory subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:O08795, ECO:0000269|PubMed:10929008}.
Q9Y4L1 HYOU1 T969 Sugiyama Hypoxia up-regulated protein 1 (150 kDa oxygen-regulated protein) (ORP-150) (170 kDa glucose-regulated protein) (GRP-170) (Heat shock protein family H member 4) Has a pivotal role in cytoprotective cellular mechanisms triggered by oxygen deprivation. Promotes HSPA5/BiP-mediated ATP nucleotide exchange and thereby activates the unfolded protein response (UPR) pathway in the presence of endoplasmic reticulum stress (By similarity). May play a role as a molecular chaperone and participate in protein folding. {ECO:0000250|UniProtKB:Q9JKR6, ECO:0000269|PubMed:10037731}.
P49336 CDK8 T243 Sugiyama Cyclin-dependent kinase 8 (EC 2.7.11.22) (EC 2.7.11.23) (Cell division protein kinase 8) (Mediator complex subunit CDK8) (Mediator of RNA polymerase II transcription subunit CDK8) (Protein kinase K35) Component of the Mediator complex, a coactivator involved in regulated gene transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. Phosphorylates the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAp II), which may inhibit the formation of a transcription initiation complex. Phosphorylates CCNH leading to down-regulation of the TFIIH complex and transcriptional repression. Recruited through interaction with MAML1 to hyperphosphorylate the intracellular domain of NOTCH, leading to its degradation. {ECO:0000269|PubMed:10993082, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:30905399}.
Q9UBU7 DBF4 T308 Sugiyama Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
Q9UBU7 DBF4 T391 Sugiyama Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
P51617 IRAK1 T398 Sugiyama Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}.
P12956 XRCC6 T541 Sugiyama X-ray repair cross-complementing protein 6 (EC 3.6.4.-) (EC 4.2.99.-) (5'-deoxyribose-5-phosphate lyase Ku70) (5'-dRP lyase Ku70) (70 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 1) (ATP-dependent DNA helicase II 70 kDa subunit) (CTC box-binding factor 75 kDa subunit) (CTC75) (CTCBF) (DNA repair protein XRCC6) (Lupus Ku autoantigen protein p70) (Ku70) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 6) Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). 5'-dRP lyase activity allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Negatively regulates apoptosis by interacting with BAX and sequestering it from the mitochondria (PubMed:15023334). Might have deubiquitination activity, acting on BAX (PubMed:18362350). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:15023334, ECO:0000269|PubMed:18362350, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:20493174, ECO:0000269|PubMed:2466842, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:9742108}.
P49588 AARS1 T181 Sugiyama Alanine--tRNA ligase, cytoplasmic (EC 6.1.1.7) (Alanyl-tRNA synthetase) (AlaRS) (Protein lactyltransferase AARS1) (EC 6.-.-.-) (Renal carcinoma antigen NY-REN-42) Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala) (PubMed:27622773, PubMed:27911835, PubMed:28493438, PubMed:33909043). Also edits incorrectly charged tRNA(Ala) via its editing domain (PubMed:27622773, PubMed:27911835, PubMed:28493438, PubMed:29273753). In presence of high levels of lactate, also acts as a protein lactyltransferase that mediates lactylation of lysine residues in target proteins, such as TEAD1, TP53/p53 and YAP1 (PubMed:38512451, PubMed:38653238). Protein lactylation takes place in a two-step reaction: lactate is first activated by ATP to form lactate-AMP and then transferred to lysine residues of target proteins (PubMed:38512451, PubMed:38653238, PubMed:39322678). Acts as an inhibitor of TP53/p53 activity by catalyzing lactylation of TP53/p53 (PubMed:38653238). Acts as a positive regulator of the Hippo pathway by mediating lactylation of TEAD1 and YAP1 (PubMed:38512451). {ECO:0000269|PubMed:27622773, ECO:0000269|PubMed:27911835, ECO:0000269|PubMed:28493438, ECO:0000269|PubMed:29273753, ECO:0000269|PubMed:33909043, ECO:0000269|PubMed:38512451, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:39322678}.
Q14204 DYNC1H1 T1309 Sugiyama Cytoplasmic dynein 1 heavy chain 1 (Cytoplasmic dynein heavy chain 1) (Dynein heavy chain, cytosolic) Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074). {ECO:0000269|PubMed:27462074}.
P23396 RPS3 T93 Sugiyama Small ribosomal subunit protein uS3 (40S ribosomal protein S3) (EC 4.2.99.18) Component of the small ribosomal subunit (PubMed:23636399, PubMed:8706699). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:8706699). Has endonuclease activity and plays a role in repair of damaged DNA (PubMed:7775413). Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA (PubMed:15707971). Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS) (PubMed:14706345). Has also been shown to bind with similar affinity to intact and damaged DNA (PubMed:18610840). Stimulates the N-glycosylase activity of the base excision protein OGG1 (PubMed:15518571). Enhances the uracil excision activity of UNG1 (PubMed:18973764). Also stimulates the cleavage of the phosphodiester backbone by APEX1 (PubMed:18973764). When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage (PubMed:23911537). Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide (PubMed:17049931). Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes (PubMed:18045535). Represses its own translation by binding to its cognate mRNA (PubMed:20217897). Binds to and protects TP53/p53 from MDM2-mediated ubiquitination (PubMed:19656744). Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization (PubMed:23131551). Involved in induction of apoptosis through its role in activation of CASP8 (PubMed:14988002). Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5 (PubMed:20605787). Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation (PubMed:22510408). {ECO:0000269|PubMed:14706345, ECO:0000269|PubMed:14988002, ECO:0000269|PubMed:15518571, ECO:0000269|PubMed:15707971, ECO:0000269|PubMed:17049931, ECO:0000269|PubMed:18045535, ECO:0000269|PubMed:18610840, ECO:0000269|PubMed:18973764, ECO:0000269|PubMed:19656744, ECO:0000269|PubMed:20217897, ECO:0000269|PubMed:20605787, ECO:0000269|PubMed:22510408, ECO:0000269|PubMed:23131551, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:23911537, ECO:0000269|PubMed:7775413, ECO:0000269|PubMed:8706699}.
P51957 NEK4 T784 Sugiyama Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}.
P34932 HSPA4 T365 Sugiyama Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) None
P35579 MYH9 T1146 Sugiyama Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA) Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis (By similarity). Promotes cell motility in conjunction with S100A4 (PubMed:16707441). During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10 (PubMed:20052411). {ECO:0000250|UniProtKB:Q8VDD5, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:20052411}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000269|PubMed:20944748, ECO:0000269|PubMed:39048823}.
Q9Y2I6 NINL T161 GPS6|SIGNOR|ELM|iPTMNet|EPSD|PSP Ninein-like protein Involved in the microtubule organization in interphase cells. Overexpression induces the fragmentation of the Golgi, and causes lysosomes to disperse toward the cell periphery; it also interferes with mitotic spindle assembly. Involved in vesicle transport in photoreceptor cells (By similarity). May play a role in ovarian carcinogenesis. {ECO:0000250|UniProtKB:G9G127, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:16254247, ECO:0000269|PubMed:18538832}.
P25786 PSMA1 T206 Sugiyama Proteasome subunit alpha type-1 (30 kDa prosomal protein) (PROS-30) (Macropain subunit C2) (Multicatalytic endopeptidase complex subunit C2) (Proteasome component C2) (Proteasome nu chain) (Proteasome subunit alpha-6) (alpha-6) Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}.
P80192 MAP3K9 T304 GPS6|EPSD Mitogen-activated protein kinase kinase kinase 9 (EC 2.7.11.25) (Mixed lineage kinase 1) Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade through the phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7 which in turn activate the JNKs. The MKK/JNK signaling pathway regulates stress response via activator protein-1 (JUN) and GATA4 transcription factors. Also plays a role in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. {ECO:0000269|PubMed:11416147, ECO:0000269|PubMed:15610029}.
Q9Y266 NUDC T56 Sugiyama Nuclear migration protein nudC (Nuclear distribution protein C homolog) Plays a role in neurogenesis and neuronal migration (By similarity). Necessary for correct formation of mitotic spindles and chromosome separation during mitosis (PubMed:12679384, PubMed:12852857, PubMed:25789526). Necessary for cytokinesis and cell proliferation (PubMed:12679384, PubMed:12852857). {ECO:0000250|UniProtKB:O35685, ECO:0000269|PubMed:12679384, ECO:0000269|PubMed:12852857, ECO:0000269|PubMed:25789526}.
Q05655 PRKCD T58 Sugiyama Protein kinase C delta type (EC 2.7.11.13) (Tyrosine-protein kinase PRKCD) (EC 2.7.10.2) (nPKC-delta) [Cleaved into: Protein kinase C delta type regulatory subunit; Protein kinase C delta type catalytic subunit (Sphingosine-dependent protein kinase-1) (SDK1)] Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays contrasting roles in cell death and cell survival by functioning as a pro-apoptotic protein during DNA damage-induced apoptosis, but acting as an anti-apoptotic protein during cytokine receptor-initiated cell death, is involved in tumor suppression as well as survival of several cancers, is required for oxygen radical production by NADPH oxidase and acts as positive or negative regulator in platelet functional responses (PubMed:21406692, PubMed:21810427). Negatively regulates B cell proliferation and also has an important function in self-antigen induced B cell tolerance induction (By similarity). Upon DNA damage, activates the promoter of the death-promoting transcription factor BCLAF1/Btf to trigger BCLAF1-mediated p53/TP53 gene transcription and apoptosis (PubMed:21406692, PubMed:21810427). In response to oxidative stress, interact with and activate CHUK/IKKA in the nucleus, causing the phosphorylation of p53/TP53 (PubMed:21406692, PubMed:21810427). In the case of ER stress or DNA damage-induced apoptosis, can form a complex with the tyrosine-protein kinase ABL1 which trigger apoptosis independently of p53/TP53 (PubMed:21406692, PubMed:21810427). In cytosol can trigger apoptosis by activating MAPK11 or MAPK14, inhibiting AKT1 and decreasing the level of X-linked inhibitor of apoptosis protein (XIAP), whereas in nucleus induces apoptosis via the activation of MAPK8 or MAPK9. Upon ionizing radiation treatment, is required for the activation of the apoptosis regulators BAX and BAK, which trigger the mitochondrial cell death pathway. Can phosphorylate MCL1 and target it for degradation which is sufficient to trigger for BAX activation and apoptosis. Is required for the control of cell cycle progression both at G1/S and G2/M phases. Mediates phorbol 12-myristate 13-acetate (PMA)-induced inhibition of cell cycle progression at G1/S phase by up-regulating the CDK inhibitor CDKN1A/p21 and inhibiting the cyclin CCNA2 promoter activity. In response to UV irradiation can phosphorylate CDK1, which is important for the G2/M DNA damage checkpoint activation (By similarity). Can protect glioma cells from the apoptosis induced by TNFSF10/TRAIL, probably by inducing increased phosphorylation and subsequent activation of AKT1 (PubMed:15774464). Is highly expressed in a number of cancer cells and promotes cell survival and resistance against chemotherapeutic drugs by inducing cyclin D1 (CCND1) and hyperphosphorylation of RB1, and via several pro-survival pathways, including NF-kappa-B, AKT1 and MAPK1/3 (ERK1/2). Involved in antifungal immunity by mediating phosphorylation and activation of CARD9 downstream of C-type lectin receptors activation, promoting interaction between CARD9 and BCL10, followed by activation of NF-kappa-B and MAP kinase p38 pathways (By similarity). Can also act as tumor suppressor upon mitogenic stimulation with PMA or TPA. In N-formyl-methionyl-leucyl-phenylalanine (fMLP)-treated cells, is required for NCF1 (p47-phox) phosphorylation and activation of NADPH oxidase activity, and regulates TNF-elicited superoxide anion production in neutrophils, by direct phosphorylation and activation of NCF1 or indirectly through MAPK1/3 (ERK1/2) signaling pathways (PubMed:19801500). May also play a role in the regulation of NADPH oxidase activity in eosinophil after stimulation with IL5, leukotriene B4 or PMA (PubMed:11748588). In collagen-induced platelet aggregation, acts a negative regulator of filopodia formation and actin polymerization by interacting with and negatively regulating VASP phosphorylation (PubMed:16940418). Downstream of PAR1, PAR4 and CD36/GP4 receptors, regulates differentially platelet dense granule secretion; acts as a positive regulator in PAR-mediated granule secretion, whereas it negatively regulates CD36/GP4-mediated granule release (PubMed:19587372). Phosphorylates MUC1 in the C-terminal and regulates the interaction between MUC1 and beta-catenin (PubMed:11877440). The catalytic subunit phosphorylates 14-3-3 proteins (YWHAB, YWHAZ and YWHAH) in a sphingosine-dependent fashion (By similarity). Phosphorylates ELAVL1 in response to angiotensin-2 treatment (PubMed:18285462). Phosphorylates mitochondrial phospholipid scramblase 3 (PLSCR3), resulting in increased cardiolipin expression on the mitochondrial outer membrane which facilitates apoptosis (PubMed:12649167). Phosphorylates SMPD1 which induces SMPD1 secretion (PubMed:17303575). {ECO:0000250|UniProtKB:P28867, ECO:0000269|PubMed:11748588, ECO:0000269|PubMed:11877440, ECO:0000269|PubMed:12649167, ECO:0000269|PubMed:15774464, ECO:0000269|PubMed:16940418, ECO:0000269|PubMed:17303575, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19587372, ECO:0000269|PubMed:19801500, ECO:0000303|PubMed:21406692, ECO:0000303|PubMed:21810427}.
O43684 BUB3 T142 Sugiyama Mitotic checkpoint protein BUB3 Has a dual function in spindle-assembly checkpoint signaling and in promoting the establishment of correct kinetochore-microtubule (K-MT) attachments. Promotes the formation of stable end-on bipolar attachments. Necessary for kinetochore localization of BUB1. Regulates chromosome segregation during oocyte meiosis. The BUB1/BUB3 complex plays a role in the inhibition of anaphase-promoting complex or cyclosome (APC/C) when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:18199686}.
O43615 TIMM44 T128 Sugiyama Mitochondrial import inner membrane translocase subunit TIM44 Essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner (By similarity). Recruits mitochondrial HSP70 to drive protein translocation into the matrix using ATP as an energy source (By similarity). {ECO:0000250|UniProtKB:O35857, ECO:0000250|UniProtKB:Q01852}.
Q13043 STK4 T271 Sugiyama Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}.
Q14498 RBM39 T347 Sugiyama RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}.
Q9NYF8 BCLAF1 T333 Sugiyama Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9P2B2 PTGFRN T497 Sugiyama Prostaglandin F2 receptor negative regulator (CD9 partner 1) (CD9P-1) (Glu-Trp-Ile EWI motif-containing protein F) (EWI-F) (Prostaglandin F2-alpha receptor regulatory protein) (Prostaglandin F2-alpha receptor-associated protein) (CD antigen CD315) Inhibits the binding of prostaglandin F2-alpha (PGF2-alpha) to its specific FP receptor, by decreasing the receptor number rather than the affinity constant. Functional coupling with the prostaglandin F2-alpha receptor seems to occur (By similarity). In myoblasts, associates with tetraspanins CD9 and CD81 to prevent myotube fusion during muscle regeneration (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q9WV91}.
Q15906 VPS72 T168 ELM Vacuolar protein sorting-associated protein 72 homolog (Protein YL-1) (Transcription factor-like 1) Deposition-and-exchange histone chaperone specific for H2AZ1, specifically chaperones H2AZ1 and deposits it into nucleosomes. As component of the SRCAP complex, mediates the ATP-dependent exchange of histone H2AZ1/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. {ECO:0000269|PubMed:26974126}.
Q9P031 CCDC59 T86 Sugiyama Thyroid transcription factor 1-associated protein 26 (TTF-1-associated protein 26) (Coiled-coil domain-containing protein 59) (TTF-1-associated protein BR2) Component of the transcription complexes of the pulmonary surfactant-associated protein-B (SFTPB) and -C (SFTPC). Enhances homeobox protein Nkx-2.1-activated SFTPB and SFTPC promoter activities. {ECO:0000269|PubMed:12882447, ECO:0000269|PubMed:16630564}.
Q99676 ZNF184 T167 Sugiyama Zinc finger protein 184 May be involved in transcriptional regulation.
P12270 TPR T1039 Sugiyama Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}.
Q9UQE7 SMC3 T959 Sugiyama Structural maintenance of chromosomes protein 3 (SMC protein 3) (SMC-3) (Basement membrane-associated chondroitin proteoglycan) (Bamacan) (Chondroitin sulfate proteoglycan 6) (Chromosome-associated polypeptide) (hCAP) Central component of cohesin, a complex required for chromosome cohesion during the cell cycle. The cohesin complex may form a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. Cohesion is coupled to DNA replication and is involved in DNA repair. The cohesin complex also plays an important role in spindle pole assembly during mitosis and in chromosomes movement. {ECO:0000269|PubMed:11076961, ECO:0000269|PubMed:19907496}.
P61758 VBP1 T48 Sugiyama Prefoldin subunit 3 (HIBBJ46) (von Hippel-Lindau-binding protein 1) (VBP-1) (VHL-binding protein 1) Binds specifically to cytosolic chaperonin (c-CPN) and transfers target proteins to it. Binds to nascent polypeptide chain and promotes folding in an environment in which there are many competing pathways for nonnative proteins. {ECO:0000269|PubMed:9630229}.
P27540 ARNT T227 Sugiyama Aryl hydrocarbon receptor nuclear translocator (ARNT protein) (Class E basic helix-loop-helix protein 2) (bHLHe2) (Dioxin receptor, nuclear translocator) (Hypoxia-inducible factor 1-beta) (HIF-1-beta) (HIF1-beta) Required for activity of the AHR. Upon ligand binding, AHR translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE). Not required for the ligand-binding subunit to translocate from the cytosol to the nucleus after ligand binding (PubMed:34521881). The complex initiates transcription of genes involved in the regulation of a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (Probable). The heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters and functions as a transcriptional regulator of the adaptive response to hypoxia (By similarity). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28396409). {ECO:0000250|UniProtKB:P53762, ECO:0000269|PubMed:28396409, ECO:0000269|PubMed:34521881, ECO:0000305|PubMed:34521881}.
Q59H18 TNNI3K T622 Sugiyama Serine/threonine-protein kinase TNNI3K (EC 2.7.11.1) (Cardiac ankyrin repeat kinase) (Cardiac troponin I-interacting kinase) (TNNI3-interacting kinase) May play a role in cardiac physiology. {ECO:0000303|PubMed:12721663}.
P80303 NUCB2 T271 Sugiyama Nucleobindin-2 (DNA-binding protein NEFA) (Epididymis secretory protein Li 109) (Gastric cancer antigen Zg4) (Prepronesfatin) [Cleaved into: Nesfatin-1] Calcium-binding protein which may have a role in calcium homeostasis (By similarity). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein (G-protein) alpha subunit GNAI3 (By similarity). {ECO:0000250|UniProtKB:P81117, ECO:0000250|UniProtKB:Q9JI85}.; FUNCTION: [Nesfatin-1]: Anorexigenic peptide, seems to play an important role in hypothalamic pathways regulating food intake and energy homeostasis, acting in a leptin-independent manner. May also exert hypertensive roles and modulate blood pressure through directly acting on peripheral arterial resistance. In intestinal epithelial cells, plays a role in the inhibition of hepatic glucose production via MC4R receptor leading to increased cyclic adenosine monophosphate (cAMP) levels and glucagon-like peptide 1 (GLP-1) secretion (PubMed:39562740). {ECO:0000250|UniProtKB:Q9JI85, ECO:0000269|PubMed:39562740}.
Q6XUX3 DSTYK T426 Sugiyama Dual serine/threonine and tyrosine protein kinase (EC 2.7.12.1) (Dusty protein kinase) (Dusty PK) (RIP-homologous kinase) (Receptor-interacting serine/threonine-protein kinase 5) (Sugen kinase 496) (SgK496) Acts as a positive regulator of ERK phosphorylation downstream of fibroblast growth factor-receptor activation (PubMed:23862974, PubMed:28157540). Involved in the regulation of both caspase-dependent apoptosis and caspase-independent cell death (PubMed:15178406). In the skin, it plays a predominant role in suppressing caspase-dependent apoptosis in response to UV stress in a range of dermal cell types (PubMed:28157540). {ECO:0000269|PubMed:15178406, ECO:0000269|PubMed:23862974, ECO:0000269|PubMed:28157540}.
O60488 ACSL4 T508 Sugiyama Long-chain-fatty-acid--CoA ligase 4 (EC 6.2.1.3) (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 4) (LACS 4) Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:21242590, PubMed:22633490, PubMed:24269233). Preferentially activates arachidonate and eicosapentaenoate as substrates (PubMed:21242590). Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose-stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion (PubMed:21242590). {ECO:0000250|UniProtKB:O35547, ECO:0000269|PubMed:21242590, ECO:0000269|PubMed:22633490, ECO:0000269|PubMed:24269233}.
P20810 CAST T334 Sugiyama Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
Q9P2E9 RRBP1 T1123 Sugiyama Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}.
P35080 PFN2 T61 Sugiyama Profilin-2 (Profilin II) Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG.
Q15293 RCN1 T106 Sugiyama Reticulocalbin-1 May regulate calcium-dependent activities in the endoplasmic reticulum lumen or post-ER compartment.
Q92974 ARHGEF2 T802 Sugiyama Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}.
P14550 AKR1A1 T78 Sugiyama Aldo-keto reductase family 1 member A1 (EC 1.1.1.2) (EC 1.1.1.372) (EC 1.1.1.54) (Alcohol dehydrogenase [NADP(+)]) (Aldehyde reductase) (Glucuronate reductase) (EC 1.1.1.19) (Glucuronolactone reductase) (EC 1.1.1.20) (S-nitroso-CoA reductase) (ScorR) (EC 1.6.-.-) Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols (PubMed:10510318, PubMed:30538128). Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosaccharides and bile acids, with a preference for negatively charged substrates, such as glucuronate and succinic semialdehyde (PubMed:10510318, PubMed:30538128). Functions as a detoxifiying enzyme by reducing a range of toxic aldehydes (By similarity). Reduces methylglyoxal and 3-deoxyglucosone, which are present at elevated levels under hyperglycemic conditions and are cytotoxic (By similarity). Involved also in the detoxification of lipid-derived aldehydes like acrolein (By similarity). Plays a role in the activation of procarcinogens, such as polycyclic aromatic hydrocarbon trans-dihydrodiols, and in the metabolism of various xenobiotics and drugs, including the anthracyclines doxorubicin (DOX) and daunorubicin (DAUN) (PubMed:11306097, PubMed:18276838). Also acts as an inhibitor of protein S-nitrosylation by mediating degradation of S-nitroso-coenzyme A (S-nitroso-CoA), a cofactor required to S-nitrosylate proteins (PubMed:30538128). S-nitroso-CoA reductase activity is involved in reprogramming intermediary metabolism in renal proximal tubules, notably by inhibiting protein S-nitrosylation of isoform 2 of PKM (PKM2) (By similarity). Also acts as a S-nitroso-glutathione reductase by catalyzing the NADPH-dependent reduction of S-nitrosoglutathione (PubMed:31649033). Displays no reductase activity towards retinoids (By similarity). {ECO:0000250|UniProtKB:P50578, ECO:0000250|UniProtKB:P51635, ECO:0000269|PubMed:10510318, ECO:0000269|PubMed:11306097, ECO:0000269|PubMed:18276838, ECO:0000269|PubMed:30538128, ECO:0000269|PubMed:31649033}.
P18621 RPL17 T151 Sugiyama Large ribosomal subunit protein uL22 (60S ribosomal protein L17) (60S ribosomal protein L23) (PD-1) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
Q13136 PPFIA1 T199 Sugiyama Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}.
O00584 RNASET2 T120 Sugiyama Ribonuclease T2 (EC 4.6.1.19) (Ribonuclease 6) Ribonuclease that plays an essential role in innate immune response by recognizing and degrading RNAs from microbial pathogens that are subsequently sensed by TLR8 (PubMed:31778653). Cleaves preferentially single-stranded RNA molecules between purine and uridine residues, which critically contributes to the supply of catabolic uridine and the generation of purine-2',3'-cyclophosphate-terminated oligoribonucleotides (PubMed:31778653, PubMed:38697119). In turn, RNase T2 degradation products promote the RNA-dependent activation of TLR8 (PubMed:31778653). In plasmacytoid dendritic cells, it cooperates with PLD3 or PLD4 5'->3' exonucleases to process RNA fragments and release 2',3'-cyclic guanosine monophosphate (2',3'-cGMP), a potent stimulatory ligand for TLR7 (PubMed:38697119). Also plays a key role in degradation of mitochondrial RNA and processing of non-coding RNA imported from the cytosol into mitochondria (PubMed:28730546, PubMed:30184494). Participates as well in degradation of mitochondrion-associated cytosolic rRNAs (PubMed:30385512). {ECO:0000269|PubMed:16620762, ECO:0000269|PubMed:19525954, ECO:0000269|PubMed:22735700, ECO:0000269|PubMed:28730546, ECO:0000269|PubMed:30184494, ECO:0000269|PubMed:30385512, ECO:0000269|PubMed:31778653, ECO:0000269|PubMed:38697119}.
Q15631 TSN T67 Sugiyama Translin (EC 3.1.-.-) (Component 3 of promoter of RISC) (C3PO) DNA-binding protein that specifically recognizes consensus sequences at the breakpoint junctions in chromosomal translocations, mostly involving immunoglobulin (Ig)/T-cell receptor gene segments. Seems to recognize single-stranded DNA ends generated by staggered breaks occurring at recombination hot spots. {ECO:0000269|PubMed:9111049}.; FUNCTION: Exhibits both single-stranded and double-stranded endoribonuclease activity. May act as an activator of RNA-induced silencing complex (RISC) by facilitating endonucleolytic cleavage of the siRNA passenger strand. {ECO:0000269|PubMed:21552258}.
O00232 PSMD12 T338 Sugiyama 26S proteasome non-ATPase regulatory subunit 12 (26S proteasome regulatory subunit RPN5) (26S proteasome regulatory subunit p55) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}.
P30101 PDIA3 T72 Sugiyama Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}.
Q9UK32 RPS6KA6 T58 Sugiyama Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}.
P07339 CTSD T334 Sugiyama Cathepsin D (EC 3.4.23.5) [Cleaved into: Cathepsin D light chain; Cathepsin D heavy chain] Acid protease active in intracellular protein breakdown. Plays a role in APP processing following cleavage and activation by ADAM30 which leads to APP degradation (PubMed:27333034). Involved in the pathogenesis of several diseases such as breast cancer and possibly Alzheimer disease. {ECO:0000269|PubMed:27333034}.
Q04760 GLO1 T112 Sugiyama Lactoylglutathione lyase (EC 4.4.1.5) (Aldoketomutase) (Glyoxalase I) (Glx I) (Ketone-aldehyde mutase) (Methylglyoxalase) (S-D-lactoylglutathione methylglyoxal lyase) Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione (PubMed:20454679, PubMed:23122816, PubMed:9705294). Involved in the regulation of TNF-induced transcriptional activity of NF-kappa-B (PubMed:19199007). Required for normal osteoclastogenesis (By similarity). {ECO:0000250|UniProtKB:Q9CPU0, ECO:0000269|PubMed:19199007, ECO:0000269|PubMed:20454679, ECO:0000269|PubMed:23122816, ECO:0000269|PubMed:9705294}.
Q32MZ4 LRRFIP1 T477 Sugiyama Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q9P2E9 RRBP1 T1306 Sugiyama Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}.
Q9UM73 ALK T1540 Sugiyama ALK tyrosine kinase receptor (EC 2.7.10.1) (Anaplastic lymphoma kinase) (CD antigen CD246) Neuronal receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems and plays an important role in the genesis and differentiation of the nervous system (PubMed:11121404, PubMed:11387242, PubMed:16317043, PubMed:17274988, PubMed:30061385, PubMed:34646012, PubMed:34819673). Also acts as a key thinness protein involved in the resistance to weight gain: in hypothalamic neurons, controls energy expenditure acting as a negative regulator of white adipose tissue lipolysis and sympathetic tone to fine-tune energy homeostasis (By similarity). Following activation by ALKAL2 ligand at the cell surface, transduces an extracellular signal into an intracellular response (PubMed:30061385, PubMed:33411331, PubMed:34646012, PubMed:34819673). In contrast, ALKAL1 is not a potent physiological ligand for ALK (PubMed:34646012). Ligand-binding to the extracellular domain induces tyrosine kinase activation, leading to activation of the mitogen-activated protein kinase (MAPK) pathway (PubMed:34819673). Phosphorylates almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif (PubMed:15226403, PubMed:16878150). Induces tyrosine phosphorylation of CBL, FRS2, IRS1 and SHC1, as well as of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1 (PubMed:15226403, PubMed:16878150). ALK activation may also be regulated by pleiotrophin (PTN) and midkine (MDK) (PubMed:11278720, PubMed:11809760, PubMed:12107166, PubMed:12122009). PTN-binding induces MAPK pathway activation, which is important for the anti-apoptotic signaling of PTN and regulation of cell proliferation (PubMed:11278720, PubMed:11809760, PubMed:12107166). MDK-binding induces phosphorylation of the ALK target insulin receptor substrate (IRS1), activates mitogen-activated protein kinases (MAPKs) and PI3-kinase, resulting also in cell proliferation induction (PubMed:12122009). Drives NF-kappa-B activation, probably through IRS1 and the activation of the AKT serine/threonine kinase (PubMed:15226403, PubMed:16878150). Recruitment of IRS1 to activated ALK and the activation of NF-kappa-B are essential for the autocrine growth and survival signaling of MDK (PubMed:15226403, PubMed:16878150). {ECO:0000250|UniProtKB:P97793, ECO:0000269|PubMed:11121404, ECO:0000269|PubMed:11278720, ECO:0000269|PubMed:11387242, ECO:0000269|PubMed:11809760, ECO:0000269|PubMed:12107166, ECO:0000269|PubMed:12122009, ECO:0000269|PubMed:15226403, ECO:0000269|PubMed:16317043, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:17274988, ECO:0000269|PubMed:30061385, ECO:0000269|PubMed:33411331, ECO:0000269|PubMed:34646012, ECO:0000269|PubMed:34819673}.
Q14181 POLA2 T133 Sugiyama DNA polymerase alpha subunit B (DNA polymerase alpha 70 kDa subunit) Accessory subunit of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which plays an essential role in the initiation of DNA synthesis (PubMed:9705292). During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, an accessory subunit POLA2 and two primase subunits, the catalytic subunit PRIM1 and the regulatory subunit PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1 (By similarity). The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands (By similarity). These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively (By similarity). {ECO:0000250|UniProtKB:P09884, ECO:0000250|UniProtKB:P20664, ECO:0000269|PubMed:9705292}.
Q14204 DYNC1H1 T1255 Sugiyama Cytoplasmic dynein 1 heavy chain 1 (Cytoplasmic dynein heavy chain 1) (Dynein heavy chain, cytosolic) Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074). {ECO:0000269|PubMed:27462074}.
Q7KZF4 SND1 T98 Sugiyama Staphylococcal nuclease domain-containing protein 1 (EC 3.1.31.1) (100 kDa coactivator) (EBNA2 coactivator p100) (Tudor domain-containing protein 11) (p100 co-activator) Endonuclease that mediates miRNA decay of both protein-free and AGO2-loaded miRNAs (PubMed:18453631, PubMed:28546213). As part of its function in miRNA decay, regulates mRNAs involved in G1-to-S phase transition (PubMed:28546213). Functions as a bridging factor between STAT6 and the basal transcription factor (PubMed:12234934). Plays a role in PIM1 regulation of MYB activity (PubMed:9809063). Functions as a transcriptional coactivator for STAT5 (By similarity). {ECO:0000250|UniProtKB:Q78PY7, ECO:0000269|PubMed:12234934, ECO:0000269|PubMed:18453631, ECO:0000269|PubMed:28546213, ECO:0000269|PubMed:9809063}.; FUNCTION: (Microbial infection) Functions as a transcriptional coactivator for the Epstein-Barr virus nuclear antigen 2 (EBNA2). {ECO:0000269|PubMed:7651391}.; FUNCTION: (Microbial infection) Promotes SARS-CoV-2 RNA synthesis by binding to negative-sense RNA and the viral protein nsp9. {ECO:0000269|PubMed:37794589}.
Q96AY3 FKBP10 T441 Sugiyama Peptidyl-prolyl cis-trans isomerase FKBP10 (PPIase FKBP10) (EC 5.2.1.8) (65 kDa FK506-binding protein) (65 kDa FKBP) (FKBP-65) (FK506-binding protein 10) (FKBP-10) (Immunophilin FKBP65) (Rotamase) PPIases accelerate the folding of proteins during protein synthesis.
Q9Y4K4 MAP4K5 T827 Sugiyama Mitogen-activated protein kinase kinase kinase kinase 5 (EC 2.7.11.1) (Kinase homologous to SPS1/STE20) (KHS) (MAPK/ERK kinase kinase kinase 5) (MEK kinase kinase 5) (MEKKK 5) May play a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway. {ECO:0000269|PubMed:9038372}.
O76021 RSL1D1 T328 Sugiyama Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
A2A3K4 PTPDC1 T413 ochoa Protein tyrosine phosphatase domain-containing protein 1 (EC 3.1.3.-) May play roles in cilia formation and/or maintenance. {ECO:0000250}.
A4UGR9 XIRP2 T2606 ochoa Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}.
A6NDB9 PALM3 T412 ochoa Paralemmin-3 ATP-binding protein, which may act as a adapter in the Toll-like receptor (TLR) signaling. {ECO:0000269|PubMed:21187075}.
E9PAV3 NACA T2037 ochoa Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}.
H3BQZ7 HNRNPUL2-BSCL2 T244 ochoa Heterogeneous nuclear ribonucleoprotein U-like protein 2 None
M0QZ92 None T42 ochoa SEC7 domain-containing protein None
O00299 CLIC1 T155 ochoa Chloride intracellular channel protein 1 (Chloride channel ABP) (Glutaredoxin-like oxidoreductase CLIC1) (EC 1.8.-.-) (Glutathione-dependent dehydroascorbate reductase CLIC1) (EC 1.8.5.1) (Nuclear chloride ion channel 27) (NCC27) (Regulatory nuclear chloride ion channel protein) (hRNCC) In the soluble state, catalyzes glutaredoxin-like thiol disulfide exchange reactions with reduced glutathione as electron donor. Reduces selenite and dehydroascorbate and may act as an antioxidant during oxidative stress response (PubMed:25581026, PubMed:37759794). Can insert into membranes and form voltage-dependent multi-ion conductive channels. Membrane insertion seems to be redox-regulated and may occur only under oxidizing conditions. Involved in regulation of the cell cycle. {ECO:0000269|PubMed:10834939, ECO:0000269|PubMed:10874038, ECO:0000269|PubMed:11195932, ECO:0000269|PubMed:11551966, ECO:0000269|PubMed:11940526, ECO:0000269|PubMed:11978800, ECO:0000269|PubMed:14613939, ECO:0000269|PubMed:16339885, ECO:0000269|PubMed:25581026, ECO:0000269|PubMed:37759794, ECO:0000269|PubMed:9139710}.
O00592 PODXL T502 ochoa Podocalyxin (GCTM-2 antigen) (Gp200) (Podocalyxin-like protein 1) (PC) (PCLP-1) Involved in the regulation of both adhesion and cell morphology and cancer progression. Functions as an anti-adhesive molecule that maintains an open filtration pathway between neighboring foot processes in the podocyte by charge repulsion. Acts as a pro-adhesive molecule, enhancing the adherence of cells to immobilized ligands, increasing the rate of migration and cell-cell contacts in an integrin-dependent manner. Induces the formation of apical actin-dependent microvilli. Involved in the formation of a preapical plasma membrane subdomain to set up initial epithelial polarization and the apical lumen formation during renal tubulogenesis. Plays a role in cancer development and aggressiveness by inducing cell migration and invasion through its interaction with the actin-binding protein EZR. Affects EZR-dependent signaling events, leading to increased activities of the MAPK and PI3K pathways in cancer cells. {ECO:0000269|PubMed:17616675, ECO:0000269|PubMed:18456258}.
O15355 PPM1G T528 ochoa Protein phosphatase 1G (EC 3.1.3.16) (Protein phosphatase 1C) (Protein phosphatase 2C isoform gamma) (PP2C-gamma) (Protein phosphatase magnesium-dependent 1 gamma) None
O43379 WDR62 T814 ochoa WD repeat-containing protein 62 Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}.
O43719 HTATSF1 T633 ochoa 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}.
O43822 CFAP410 T182 ochoa Cilia- and flagella-associated protein 410 (C21orf-HUMF09G8.5) (Leucine-rich repeat-containing protein 76) (YF5/A2) Plays a role in cilia formation and/or maintenance (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987). Involved in DNA damage repair (PubMed:26290490). {ECO:0000250|UniProtKB:Q8C6G1, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:26290490}.
O60242 ADGRB3 T1230 ochoa Adhesion G protein-coupled receptor B3 (Brain-specific angiogenesis inhibitor 3) Receptor that plays a role in the regulation of synaptogenesis and dendritic spine formation at least partly via interaction with ELMO1 and RAC1 activity (By similarity). Promotes myoblast fusion through ELMO/DOCK1 (PubMed:24567399). {ECO:0000250|UniProtKB:Q80ZF8, ECO:0000269|PubMed:24567399}.
O60841 EIF5B T498 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O75116 ROCK2 T977 ochoa Rho-associated protein kinase 2 (EC 2.7.11.1) (Rho kinase 2) (Rho-associated, coiled-coil-containing protein kinase 2) (Rho-associated, coiled-coil-containing protein kinase II) (ROCK-II) (p164 ROCK-2) Protein kinase which is a key regulator of actin cytoskeleton and cell polarity. Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of ADD1, BRCA2, CNN1, EZR, DPYSL2, EP300, MSN, MYL9/MLC2, NPM1, RDX, PPP1R12A and VIM. Phosphorylates SORL1 and IRF4. Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation. Positively regulates the activation of p42/MAPK1-p44/MAPK3 and of p90RSK/RPS6KA1 during myogenic differentiation. Plays an important role in the timely initiation of centrosome duplication. Inhibits keratinocyte terminal differentiation. May regulate closure of the eyelids and ventral body wall through organization of actomyosin bundles. Plays a critical role in the regulation of spine and synaptic properties in the hippocampus. Plays an important role in generating the circadian rhythm of the aortic myofilament Ca(2+) sensitivity and vascular contractility by modulating the myosin light chain phosphorylation. {ECO:0000269|PubMed:10579722, ECO:0000269|PubMed:15699075, ECO:0000269|PubMed:16574662, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21147781}.
O75475 PSIP1 T115 ochoa PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
O94913 PCF11 T1530 ochoa Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}.
O95235 KIF20A T239 ochoa Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}.
O95359 TACC2 T1818 ochoa Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}.
O95453 PARN T594 ochoa Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}.
O95602 POLR1A T357 ochoa DNA-directed RNA polymerase I subunit RPA1 (RNA polymerase I subunit A1) (EC 2.7.7.6) (A190) (DNA-directed RNA polymerase I largest subunit) (DNA-directed RNA polymerase I subunit A) (RNA polymerase I 194 kDa subunit) (RPA194) Catalytic core component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Transcribes 47S pre-rRNAs from multicopy rRNA gene clusters, giving rise to 5.8S, 18S and 28S ribosomal RNAs (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). Pol I-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol I pre-initiation complex (PIC) is recruited by the selectivity factor 1 (SL1/TIF-IB) complex bound to the core promoter that precedes an rDNA repeat unit. The PIC assembly bends the promoter favoring the formation of the transcription bubble and promoter escape. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Highly processive, assembles in structures referred to as 'Miller trees' where many elongating Pol I complexes queue and transcribe the same rDNA coding regions. At terminator sequences downstream of the rDNA gene, PTRF interacts with Pol I and halts Pol I transcription leading to the release of the RNA transcript and polymerase from the DNA (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). Forms Pol I active center together with the second largest subunit POLR1B/RPA2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR1A/RPA1 contributing a Mg(2+)-coordinating DxDGD motif, and POLR1B/RPA2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and the template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. Has proofreading activity: Pauses and backtracks to allow the cleavage of a missincorporated nucleotide via POLR1H/RPA12. High Pol I processivity is associated with decreased transcription fidelity (By similarity) (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). {ECO:0000250|UniProtKB:P10964, ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
P05060 CHGB T271 ochoa Secretogranin-1 (Chromogranin-B) (CgB) (Secretogranin I) (SgI) [Cleaved into: PE-11; GAWK peptide; CCB peptide] Secretogranin-1 is a neuroendocrine secretory granule protein, which may be the precursor for other biologically active peptides.
P05062 ALDOB T281 ochoa Fructose-bisphosphate aldolase B (EC 4.1.2.13) (Liver-type aldolase) Catalyzes the aldol cleavage of fructose 1,6-biphosphate to form two triosephosphates dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate in glycolysis as well as the reverse stereospecific aldol addition reaction in gluconeogenesis. In fructolysis, metabolizes fructose 1-phosphate derived from the phosphorylation of dietary fructose by fructokinase into dihydroxyacetone phosphate and D-glyceraldehyde (PubMed:10970798, PubMed:12205126, PubMed:20848650). Acts as an adapter independently of its enzymatic activity, exerts a tumor suppressor role by stabilizing the ternary complex with G6PD and TP53 to inhibit G6PD activity and keep oxidative pentose phosphate metabolism in check (PubMed:35122041). {ECO:0000269|PubMed:10970798, ECO:0000269|PubMed:12205126, ECO:0000269|PubMed:20848650, ECO:0000269|PubMed:35122041}.
P05412 JUN T231 psp Transcription factor Jun (Activator protein 1) (AP1) (Proto-oncogene c-Jun) (Transcription factor AP-1 subunit Jun) (V-jun avian sarcoma virus 17 oncogene homolog) (p39) Transcription factor that recognizes and binds to the AP-1 consensus motif 5'-TGA[GC]TCA-3' (PubMed:10995748, PubMed:22083952). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to the AP-1 consensus sequence 5'-TGA[GC]TCA-3' and enhancing its transcriptional activity (By similarity). Together with FOSB, plays a role in activation-induced cell death of T cells by binding to the AP-1 promoter site of FASLG/CD95L, and inducing its transcription in response to activation of the TCR/CD3 signaling pathway (PubMed:12618758). Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation (PubMed:17210646). Involved in activated KRAS-mediated transcriptional activation of USP28 in colorectal cancer (CRC) cells (PubMed:24623306). Binds to the USP28 promoter in colorectal cancer (CRC) cells (PubMed:24623306). {ECO:0000250|UniProtKB:P05627, ECO:0000269|PubMed:10995748, ECO:0000269|PubMed:12618758, ECO:0000269|PubMed:17210646, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24623306}.; FUNCTION: (Microbial infection) Upon Epstein-Barr virus (EBV) infection, binds to viral BZLF1 Z promoter and activates viral BZLF1 expression. {ECO:0000269|PubMed:31341047}.
P06730 EIF4E T22 ochoa Eukaryotic translation initiation factor 4E (eIF-4E) (eIF4E) (eIF-4F 25 kDa subunit) (mRNA cap-binding protein) Acts in the cytoplasm to initiate and regulate protein synthesis and is required in the nucleus for export of a subset of mRNAs from the nucleus to the cytoplasm which promotes processes such as RNA capping, processing and splicing (PubMed:11606200, PubMed:22578813, PubMed:22684010, PubMed:24335285, PubMed:29987188). Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (By similarity). This protein recognizes and binds the 7-methylguanosine (m7G)-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures (PubMed:16271312, PubMed:22578813). Together with EIF4G1, antagonizes the scanning promoted by EIF1-EIF4G1 and is required for TISU translation, a process where the TISU element recognition makes scanning unnecessary (PubMed:29987188). In addition to its role in translation initiation, also acts as a regulator of translation and stability in the cytoplasm (PubMed:24335285). Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression: in the complex, EIF4E mediates the binding to the mRNA cap (By similarity). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). In P-bodies, component of a complex that mediates the storage of translationally inactive mRNAs in the cytoplasm and prevents their degradation (PubMed:24335285). May play an important role in spermatogenesis through translational regulation of stage-specific mRNAs during germ cell development (By similarity). As well as its roles in translation, also involved in mRNA nucleocytoplasmic transport (By similarity). Its role in mRNA export from the nucleus to the cytoplasm relies on its ability to bind the m7G cap of RNAs and on the presence of the 50-nucleotide EIF4E sensitivity element (4ESE) in the 3'UTR of sensitive transcripts (By similarity). Interaction with the 4ESE is mediated by LRPPRC which binds simultaneously to both EIF4E and the 4ESE, thereby acting as a platform for assembly for the RNA export complex (By similarity). EIF4E-dependent mRNA export is independent of ongoing protein or RNA synthesis and is also NFX1-independent but is XPO1-dependent with LRPPRC interacting with XPO1 to form an EIF4E-dependent mRNA export complex (By similarity). Alters the composition of the cytoplasmic face of the nuclear pore to promote RNA export by reducing RANBP2 expression, relocalizing nucleoporin NUP214 and increasing expression of RANBP1 and RNA export factors DDX19 and GLE1 (By similarity). Promotes the nuclear export of cyclin CCND1 mRNA (By similarity). Promotes the nuclear export of NOS2/iNOS mRNA (PubMed:23471078). Promotes the nuclear export of MDM2 mRNA (PubMed:22684010). Promotes the export of additional mRNAs, including others involved in the cell cycle (By similarity). In the nucleus, binds to capped splice factor-encoding mRNAs and stimulates their nuclear export to enhance splice factor production by increasing their cytoplasmic availability to the translation machinery (By similarity). May also regulate splicing through interaction with the spliceosome in an RNA and m7G cap-dependent manner (By similarity). Also binds to some pre-mRNAs and may play a role in their recruitment to the spliceosome (By similarity). Promotes steady-state capping of a subset of coding and non-coding RNAs by mediating nuclear export of capping machinery mRNAs including RNMT, RNGTT and RAMAC to enhance their translation (By similarity). Stimulates mRNA 3'-end processing by promoting the expression of several core cleavage complex factors required for mRNA cleavage and polyadenylation, and may also have a direct effect through its interaction with the CPSF3 cleavage enzyme (By similarity). Rescues cells from apoptosis by promoting activation of serine/threonine-protein kinase AKT1 through mRNA export of NBS1 which potentiates AKT1 phosphorylation and also through mRNA export of AKT1 effectors, allowing for increased production of these proteins (By similarity). {ECO:0000250|UniProtKB:P63073, ECO:0000250|UniProtKB:P63074, ECO:0000269|PubMed:11606200, ECO:0000269|PubMed:16271312, ECO:0000269|PubMed:22578813, ECO:0000269|PubMed:22684010, ECO:0000269|PubMed:23471078, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:29987188}.
P06732 CKM T313 ochoa Creatine kinase M-type (EC 2.7.3.2) (Creatine kinase M chain) (Creatine phosphokinase M-type) (CPK-M) (M-CK) Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. {ECO:0000250|UniProtKB:P00563}.
P09488 GSTM1 T34 ochoa Glutathione S-transferase Mu 1 (EC 2.5.1.18) (GST HB subunit 4) (GST class-mu 1) (GSTM1-1) (GSTM1a-1a) (GSTM1b-1b) (GTH4) Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Involved in the formation of glutathione conjugates of both prostaglandin A2 (PGA2) and prostaglandin J2 (PGJ2) (PubMed:9084911). Participates in the formation of novel hepoxilin regioisomers (PubMed:21046276). {ECO:0000269|PubMed:16548513, ECO:0000269|PubMed:21046276, ECO:0000269|PubMed:9084911}.
P12270 TPR T1839 ochoa Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}.
P12883 MYH7 T1891 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P13533 MYH6 T1893 ochoa Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) Muscle contraction.
P13591 NCAM1 T798 ochoa Neural cell adhesion molecule 1 (N-CAM-1) (NCAM-1) (CD antigen CD56) This protein is a cell adhesion molecule involved in neuron-neuron adhesion, neurite fasciculation, outgrowth of neurites, etc.; FUNCTION: (Microbial infection) Acts as a receptor for rabies virus. {ECO:0000269|PubMed:9696812}.; FUNCTION: (Microbial infection) Acts as a receptor for Zika virus. {ECO:0000269|PubMed:32753727}.
P15559 NQO1 T128 psp NAD(P)H dehydrogenase [quinone] 1 (EC 1.6.5.2) (Azoreductase) (DT-diaphorase) (DTD) (Menadione reductase) (NAD(P)H:quinone oxidoreductase 1) (Phylloquinone reductase) (Quinone reductase 1) (QR1) Flavin-containing quinone reductase that catalyzes two-electron reduction of quinones to hydroquinones using either NADH or NADPH as electron donors. In a ping-pong kinetic mechanism, the electrons are sequentially transferred from NAD(P)H to flavin cofactor and then from reduced flavin to the quinone, bypassing the formation of semiquinone and reactive oxygen species (By similarity) (PubMed:8999809, PubMed:9271353). Regulates cellular redox state primarily through quinone detoxification. Reduces components of plasma membrane redox system such as coenzyme Q and vitamin quinones, producing antioxidant hydroquinone forms. In the process may function as superoxide scavenger to prevent hydroquinone oxidation and facilitate excretion (PubMed:15102952, PubMed:8999809, PubMed:9271353). Alternatively, can activate quinones and their derivatives by generating redox reactive hydroquinones with DNA cross-linking antitumor potential (PubMed:8999809). Acts as a gatekeeper of the core 20S proteasome known to degrade proteins with unstructured regions. Upon oxidative stress, interacts with tumor suppressors TP53 and TP73 in a NADH-dependent way and inhibits their ubiquitin-independent degradation by the 20S proteasome (PubMed:15687255, PubMed:28291250). {ECO:0000250|UniProtKB:P05982, ECO:0000269|PubMed:15102952, ECO:0000269|PubMed:15687255, ECO:0000269|PubMed:28291250, ECO:0000269|PubMed:8999809, ECO:0000269|PubMed:9271353}.
P17275 JUNB T245 ochoa Transcription factor JunB (Transcription factor AP-1 subunit JunB) Transcription factor involved in regulating gene activity following the primary growth factor response. Binds to the DNA sequence 5'-TGA[GC]TCA-3'. Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to an AP-1 consensus sequence and its transcriptional activity (By similarity). {ECO:0000250|UniProtKB:P09450}.
P18583 SON Y1790 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P24593 IGFBP5 T124 ochoa Insulin-like growth factor-binding protein 5 (IBP-5) (IGF-binding protein 5) (IGFBP-5) Multifunctional protein that plays a critical role in regulating the availability of IGFs to their receptors and thereby regulates IGF-mediated cellular processes including proliferation, differentiation, and apoptosis in a cell-type specific manner (PubMed:18930415, PubMed:7683690). Increases the cell proliferation of osteoblasts, intestinal smooth muscle cells and neuroblastoma cells. Enhances adhesion and survival of epithelial cells but decreases adhesion of mesenchymal cells (By similarity). Once secreted, acts as a major mediator of mTORC1-dependent feedback inhibition of IGF1 signaling (By similarity). Also plays a role in the induction of extracellular matrix (ECM) production and deposition independently of its nuclear translocation and binding to IGFs (PubMed:20345844, PubMed:26103640). Acts itself as a growth factor that can act independently of IGFs to regulate bone formation. Acts as a ligand for the ROR1 receptor which triggers formation of ROR1/HER2 heterodimer to enhance CREB oncogenic signaling (PubMed:36949068). {ECO:0000250|UniProtKB:Q07079, ECO:0000269|PubMed:18930415, ECO:0000269|PubMed:20345844, ECO:0000269|PubMed:26103640, ECO:0000269|PubMed:36949068, ECO:0000269|PubMed:7683690}.
P24723 PRKCH T656 ochoa|psp Protein kinase C eta type (EC 2.7.11.13) (PKC-L) (nPKC-eta) Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that is involved in the regulation of cell differentiation in keratinocytes and pre-B cell receptor, mediates regulation of epithelial tight junction integrity and foam cell formation, and is required for glioblastoma proliferation and apoptosis prevention in MCF-7 cells. In keratinocytes, binds and activates the tyrosine kinase FYN, which in turn blocks epidermal growth factor receptor (EGFR) signaling and leads to keratinocyte growth arrest and differentiation. Associates with the cyclin CCNE1-CDK2-CDKN1B complex and inhibits CDK2 kinase activity, leading to RB1 dephosphorylation and thereby G1 arrest in keratinocytes. In association with RALA activates actin depolymerization, which is necessary for keratinocyte differentiation. In the pre-B cell receptor signaling, functions downstream of BLNK by up-regulating IRF4, which in turn activates L chain gene rearrangement. Regulates epithelial tight junctions (TJs) by phosphorylating occludin (OCLN) on threonine residues, which is necessary for the assembly and maintenance of TJs. In association with PLD2 and via TLR4 signaling, is involved in lipopolysaccharide (LPS)-induced RGS2 down-regulation and foam cell formation. Upon PMA stimulation, mediates glioblastoma cell proliferation by activating the mTOR pathway, the PI3K/AKT pathway and the ERK1-dependent phosphorylation of ELK1. Involved in the protection of glioblastoma cells from irradiation-induced apoptosis by preventing caspase-9 activation. In camptothecin-treated MCF-7 cells, regulates NF-kappa-B upstream signaling by activating IKBKB, and confers protection against DNA damage-induced apoptosis. Promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria. Phosphorylates ATF2 which promotes its nuclear retention and transcriptional activity and negatively regulates its mitochondrial localization. {ECO:0000269|PubMed:10806212, ECO:0000269|PubMed:11112424, ECO:0000269|PubMed:11772428, ECO:0000269|PubMed:15489897, ECO:0000269|PubMed:17146445, ECO:0000269|PubMed:18780722, ECO:0000269|PubMed:19114660, ECO:0000269|PubMed:20558593, ECO:0000269|PubMed:21820409, ECO:0000269|PubMed:22304920}.
P28161 GSTM2 T34 ochoa Glutathione S-transferase Mu 2 (EC 2.5.1.18) (GST class-mu 2) (GSTM2-2) Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Participates in the formation of novel hepoxilin regioisomers (PubMed:21046276). {ECO:0000269|PubMed:16549767, ECO:0000269|PubMed:21046276}.
P28749 RBL1 T332 ochoa Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}.
P30414 NKTR T915 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P34932 HSPA4 T551 ochoa Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) None
P34947 GRK5 T485 ochoa|psp G protein-coupled receptor kinase 5 (EC 2.7.11.16) (G protein-coupled receptor kinase GRK5) Serine/threonine kinase that phosphorylates preferentially the activated forms of a variety of G-protein-coupled receptors (GPCRs). Such receptor phosphorylation initiates beta-arrestin-mediated receptor desensitization, internalization, and signaling events leading to their down-regulation. Phosphorylates a variety of GPCRs, including adrenergic receptors, muscarinic acetylcholine receptors (more specifically Gi-coupled M2/M4 subtypes), dopamine receptors and opioid receptors. In addition to GPCRs, also phosphorylates various substrates: Hsc70-interacting protein/ST13, TP53/p53, HDAC5, and arrestin-1/ARRB1. Phosphorylation of ARRB1 by GRK5 inhibits G-protein independent MAPK1/MAPK3 signaling downstream of 5HT4-receptors. Phosphorylation of HDAC5, a repressor of myocyte enhancer factor 2 (MEF2) leading to nuclear export of HDAC5 and allowing MEF2-mediated transcription. Phosphorylation of TP53/p53, a crucial tumor suppressor, inhibits TP53/p53-mediated apoptosis. Phosphorylation of ST13 regulates internalization of the chemokine receptor. Phosphorylates rhodopsin (RHO) (in vitro) and a non G-protein-coupled receptor, LRP6 during Wnt signaling (in vitro). {ECO:0000269|PubMed:19661922, ECO:0000269|PubMed:19801552, ECO:0000269|PubMed:20038610, ECO:0000269|PubMed:20124405, ECO:0000269|PubMed:21728385}.
P42166 TMPO T74 ochoa Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide.
P43250 GRK6 T485 ochoa|psp G protein-coupled receptor kinase 6 (EC 2.7.11.16) (G protein-coupled receptor kinase GRK6) Specifically phosphorylates the activated forms of G protein-coupled receptors. Such receptor phosphorylation initiates beta-arrestin-mediated receptor desensitization, internalization, and signaling events leading to their desensitization. Seems to be involved in the desensitization of D2-like dopamine receptors in striatum and chemokine receptor CXCR4 which is critical for CXCL12-induced cell chemotaxis (By similarity). Phosphorylates rhodopsin (RHO) (in vitro) and a non G-protein-coupled receptor: LRP6 during Wnt signaling (in vitro). {ECO:0000250, ECO:0000269|PubMed:19801552, ECO:0000269|PubMed:20048153}.
P43358 MAGEA4 T98 ochoa Melanoma-associated antigen 4 (Cancer/testis antigen 1.4) (CT1.4) (MAGE-4 antigen) (MAGE-41 antigen) (MAGE-X2 antigen) Regulates cell proliferation through the inhibition of cell cycle arrest at the G1 phase (PubMed:22842486). Also negatively regulates p53-mediated apoptosis (PubMed:22842486). {ECO:0000269|PubMed:22842486}.
P46013 MKI67 T1120 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T1606 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T1972 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T2816 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46087 NOP2 T195 ochoa 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}.
P52746 ZNF142 T958 ochoa Zinc finger protein 142 May be involved in transcriptional regulation. {ECO:0000305}.
P53618 COPB1 T507 ochoa Coatomer subunit beta (Beta-coat protein) (Beta-COP) The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors. Plays a functional role in facilitating the transport of kappa-type opioid receptor mRNAs into axons and enhances translation of these proteins. Required for limiting lipid storage in lipid droplets. Involved in lipid homeostasis by regulating the presence of perilipin family members PLIN2 and PLIN3 at the lipid droplet surface and promoting the association of adipocyte surface triglyceride lipase (PNPLA2) with the lipid droplet to mediate lipolysis (By similarity). Involved in the Golgi disassembly and reassembly processes during cell cycle. Involved in autophagy by playing a role in early endosome function. Plays a role in organellar compartmentalization of secretory compartments including endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC), Golgi, trans-Golgi network (TGN) and recycling endosomes, and in biosynthetic transport of CAV1. Promotes degradation of Nef cellular targets CD4 and MHC class I antigens by facilitating their trafficking to degradative compartments. {ECO:0000250, ECO:0000269|PubMed:18385291, ECO:0000269|PubMed:18725938, ECO:0000269|PubMed:19364919, ECO:0000269|PubMed:20056612}.
P55209 NAP1L1 T27 ochoa Nucleosome assembly protein 1-like 1 (NAP-1-related protein) (hNRP) Histone chaperone that plays a role in the nuclear import of H2A-H2B and nucleosome assembly (PubMed:20002496, PubMed:21211722, PubMed:26841755). Also participates in several important DNA repair mechanisms: greatly enhances ERCC6-mediated chromatin remodeling which is essential for transcription-coupled nucleotide excision DNA repair (PubMed:28369616). Also stimulates homologous recombination (HR) by RAD51 and RAD54 which is essential in mitotic DNA double strand break (DSB) repair (PubMed:24798879). Plays a key role in the regulation of embryonic neurogenesis (By similarity). Promotes the proliferation of neural progenitors and inhibits neuronal differentiation during cortical development (By similarity). Regulates neurogenesis via the modulation of RASSF10; regulates RASSF10 expression by promoting SETD1A-mediated H3K4 methylation at the RASSF10 promoter (By similarity). {ECO:0000250|UniProtKB:P28656, ECO:0000269|PubMed:20002496, ECO:0000269|PubMed:21211722, ECO:0000269|PubMed:24798879, ECO:0000269|PubMed:26841755, ECO:0000269|PubMed:28369616}.; FUNCTION: (Microbial infection) Positively regulates Epstein-Barr virus reactivation in epithelial cells through the induction of viral BZLF1 expression. {ECO:0000269|PubMed:23691099}.; FUNCTION: (Microbial infection) Together with human herpesvirus 8 protein LANA1, assists the proper assembly of the nucleosome on the replicated viral DNA. {ECO:0000269|PubMed:27599637}.
P60866 RPS20 T76 ochoa Small ribosomal subunit protein uS10 (40S ribosomal protein S20) Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). {ECO:0000269|PubMed:23636399}.
P62736 ACTA2 T105 ochoa Actin, aortic smooth muscle (EC 3.6.4.-) (Alpha-actin-2) (Cell growth-inhibiting gene 46 protein) [Cleaved into: Actin, aortic smooth muscle, intermediate form] Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells.
P63267 ACTG2 T104 ochoa Actin, gamma-enteric smooth muscle (EC 3.6.4.-) (Alpha-actin-3) (Gamma-2-actin) (Smooth muscle gamma-actin) [Cleaved into: Actin, gamma-enteric smooth muscle, intermediate form] Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells.
P68032 ACTC1 T105 ochoa Actin, alpha cardiac muscle 1 (EC 3.6.4.-) (Alpha-cardiac actin) [Cleaved into: Actin, alpha cardiac muscle 1, intermediate form] Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells.
P68133 ACTA1 T105 ochoa Actin, alpha skeletal muscle (EC 3.6.4.-) (Alpha-actin-1) [Cleaved into: Actin, alpha skeletal muscle, intermediate form] Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells.
P78332 RBM6 T923 ochoa RNA-binding protein 6 (Lung cancer antigen NY-LU-12) (Protein G16) (RNA-binding motif protein 6) (RNA-binding protein DEF-3) Specifically binds poly(G) RNA homopolymers in vitro.
P78559 MAP1A T622 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P78559 MAP1A T675 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P80723 BASP1 T36 ochoa Brain acid soluble protein 1 (22 kDa neuronal tissue-enriched acidic protein) (Neuronal axonal membrane protein NAP-22) None
Q01831 XPC T890 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q02880 TOP2B T1292 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02952 AKAP12 T597 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q03013 GSTM4 T34 ochoa Glutathione S-transferase Mu 4 (EC 2.5.1.18) (GST class-mu 4) (GST-Mu2) (GSTM4-4) (Leukotriene C4 synthase GSTM4) (EC 4.4.1.20) Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles (PubMed:8203914, PubMed:8373352). Catalyzes the conjugation of leukotriene A4 with reduced glutathione (GSH) to form leukotriene C4 (PubMed:27791009). Can also catalyze the transfer of a glutathionyl group from glutathione (GSH) to 13(S),14(S)-epoxy-docosahexaenoic acid to form maresin conjugate in tissue regeneration 1 (MCTR1), a bioactive lipid mediator that possess potent anti-inflammatory and proresolving actions (PubMed:27791009). {ECO:0000269|PubMed:27791009, ECO:0000269|PubMed:8203914, ECO:0000269|PubMed:8373352}.
Q03188 CENPC T231 ochoa Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}.
Q03188 CENPC T446 ochoa Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}.
Q03701 CEBPZ T33 ochoa CCAAT/enhancer-binding protein zeta (CCAAT-box-binding transcription factor) (CBF) (CCAAT-binding factor) Stimulates transcription from the HSP70 promoter.
Q0VF96 CGNL1 T252 ochoa Cingulin-like protein 1 (Junction-associated coiled-coil protein) (Paracingulin) May be involved in anchoring the apical junctional complex, especially tight junctions, to actin-based cytoskeletons. {ECO:0000269|PubMed:22891260}.
Q12888 TP53BP1 T670 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q13023 AKAP6 T2135 ochoa A-kinase anchor protein 6 (AKAP-6) (A-kinase anchor protein 100 kDa) (AKAP 100) (Protein kinase A-anchoring protein 6) (PRKA6) (mAKAP) Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the nuclear membrane or sarcoplasmic reticulum. May act as an adapter for assembling multiprotein complexes.
Q13043 STK4 T380 ochoa Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}.
Q13164 MAPK7 T28 psp Mitogen-activated protein kinase 7 (MAP kinase 7) (MAPK 7) (EC 2.7.11.24) (Big MAP kinase 1) (BMK-1) (Extracellular signal-regulated kinase 5) (ERK-5) Plays a role in various cellular processes such as proliferation, differentiation and cell survival. The upstream activator of MAPK7 is the MAPK kinase MAP2K5. Upon activation, it translocates to the nucleus and phosphorylates various downstream targets including MEF2C. EGF activates MAPK7 through a Ras-independent and MAP2K5-dependent pathway. As part of the MAPK/ERK signaling pathway, acts as a negative regulator of apoptosis in cardiomyocytes via interaction with STUB1/CHIP and promotion of STUB1-mediated ubiquitination and degradation of ICER-type isoforms of CREM (By similarity). May have a role in muscle cell differentiation. May be important for endothelial function and maintenance of blood vessel integrity. MAP2K5 and MAPK7 interact specifically with one another and not with MEK1/ERK1 or MEK2/ERK2 pathways. Phosphorylates SGK1 at Ser-78 and this is required for growth factor-induced cell cycle progression. Involved in the regulation of p53/TP53 by disrupting the PML-MDM2 interaction. {ECO:0000250|UniProtKB:P0C865, ECO:0000269|PubMed:11254654, ECO:0000269|PubMed:11278431, ECO:0000269|PubMed:22869143, ECO:0000269|PubMed:9384584, ECO:0000269|PubMed:9790194}.
Q13188 STK3 T378 psp Serine/threonine-protein kinase 3 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 2) (MST-2) (STE20-like kinase MST2) (Serine/threonine-protein kinase Krs-1) [Cleaved into: Serine/threonine-protein kinase 3 36kDa subunit (MST2/N); Serine/threonine-protein kinase 3 20kDa subunit (MST2/C)] Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation (PubMed:11278283, PubMed:8566796, PubMed:8816758). Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714, PubMed:29063833, PubMed:30622739). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714). STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation. Phosphorylates NKX2-1 (By similarity). Phosphorylates NEK2 and plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosome, and its ability to phosphorylate CROCC and CEP250 (PubMed:21076410, PubMed:21723128). In conjunction with SAV1, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation (PubMed:21104395). Positively regulates RAF1 activation via suppression of the inhibitory phosphorylation of RAF1 on 'Ser-259' (PubMed:20212043). Phosphorylates MOBKL1A and RASSF2 (PubMed:19525978). Phosphorylates MOBKL1B on 'Thr-74'. Acts cooperatively with MOBKL1B to activate STK38 (PubMed:18328708, PubMed:18362890). {ECO:0000250|UniProtKB:Q9JI10, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:15688006, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18362890, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:20212043, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:21723128, ECO:0000269|PubMed:23972470, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:29063833, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:8566796, ECO:0000269|PubMed:8816758}.
Q13286 CLN3 T19 ochoa Battenin (Batten disease protein) (Protein CLN3) Mediates microtubule-dependent, anterograde transport connecting the Golgi network, endosomes, autophagosomes, lysosomes and plasma membrane, and participates in several cellular processes such as regulation of lysosomal pH, lysosome protein degradation, receptor-mediated endocytosis, autophagy, transport of proteins and lipids from the TGN, apoptosis and synaptic transmission (PubMed:10924275, PubMed:15471887, PubMed:18317235, PubMed:18817525, PubMed:20850431, PubMed:22261744). Facilitates the proteins transport from trans-Golgi network (TGN)-to other membrane compartments such as transport of microdomain-associated proteins to the plasma membrane, IGF2R transport to the lysosome where it regulates the CTSD release leading to regulation of CTSD maturation and thereby APP intracellular processing (PubMed:10924275, PubMed:18817525). Moreover regulates CTSD activity in response to osmotic stress (PubMed:23840424, PubMed:28390177). Also binds galactosylceramide and transports it from the trans Golgi to the rafts, which may have immediate and downstream effects on cell survival by modulating ceramide synthesis (PubMed:18317235). At the plasma membrane, regulates actin-dependent events including filopodia formation, cell migration, and pinocytosis through ARF1-CDC42 pathway and also the cytoskeleton organization through interaction with MYH10 and fodrin leading to the regulation of the plasma membrane association of Na+, K+ ATPase complex (PubMed:20850431). Regulates synaptic transmission in the amygdala, hippocampus, and cerebellum through regulation of synaptic vesicles density and their proximity to active zones leading to modulation of short-term plasticity and age-dependent anxious behavior, learning and memory (By similarity). Regulates autophagic vacuoles (AVs) maturation by modulating the trafficking between endocytic and autophagolysosomal/lysosomal compartments, which involves vesicle fusion leading to regulation of degradation process (By similarity). Also participates in cellular homeostasis of compounds such as, water, ions, amino acids, proteins and lipids in several tissue namely in brain and kidney through regulation of their transport and synthesis (PubMed:17482562). {ECO:0000250|UniProtKB:Q61124, ECO:0000269|PubMed:10924275, ECO:0000269|PubMed:15471887, ECO:0000269|PubMed:17482562, ECO:0000269|PubMed:18317235, ECO:0000269|PubMed:18817525, ECO:0000269|PubMed:20850431, ECO:0000269|PubMed:22261744, ECO:0000269|PubMed:23840424, ECO:0000269|PubMed:28390177}.
Q13619 CUL4A T684 ochoa Cullin-4A (CUL-4A) Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination of target proteins (PubMed:14578910, PubMed:14739464, PubMed:15448697, PubMed:15548678, PubMed:15811626, PubMed:16678110, PubMed:17041588, PubMed:24209620, PubMed:30166453, PubMed:33854232, PubMed:33854239). As a scaffold protein may contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:14739464, PubMed:15448697, PubMed:15548678, PubMed:15811626, PubMed:16678110, PubMed:17041588, PubMed:24209620). The E3 ubiquitin-protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhibited by the association of the deneddylated cullin subunit with TIP120A/CAND1 (PubMed:14578910, PubMed:14739464, PubMed:15448697, PubMed:15548678, PubMed:15811626, PubMed:16678110, PubMed:17041588, PubMed:24209620). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition component (PubMed:14578910, PubMed:14739464, PubMed:15448697, PubMed:15548678, PubMed:15811626, PubMed:16678110, PubMed:17041588, PubMed:24209620). DCX(DET1-COP1) directs ubiquitination of JUN (PubMed:14739464). DCX(DDB2) directs ubiquitination of XPC (PubMed:15811626). DCX(DDB2) ubiquitinates histones H3-H4 and is required for efficient histone deposition during replication-coupled (H3.1) and replication-independent (H3.3) nucleosome assembly, probably by facilitating the transfer of H3 from ASF1A/ASF1B to other chaperones involved in histone deposition (PubMed:16678110, PubMed:17041588, PubMed:24209620). DCX(DTL) plays a role in PCNA-dependent polyubiquitination of CDT1 and MDM2-dependent ubiquitination of p53/TP53 in response to radiation-induced DNA damage and during DNA replication (PubMed:14578910, PubMed:15448697, PubMed:15548678). DCX(DTL) directs autoubiquitination of DTL (PubMed:23478445). In association with DDB1 and SKP2 probably is involved in ubiquitination of CDKN1B/p27kip (PubMed:16537899). Is involved in ubiquitination of HOXA9 (PubMed:14609952). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). The DCX(ERCC8) complex (also named CSA complex) plays a role in transcription-coupled repair (TCR) (PubMed:12732143, PubMed:32355176, PubMed:38316879). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). With CUL4B, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:14609952, ECO:0000269|PubMed:14739464, ECO:0000269|PubMed:15448697, ECO:0000269|PubMed:15548678, ECO:0000269|PubMed:15811626, ECO:0000269|PubMed:16537899, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:17041588, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:24209620, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}.
Q13765 NACA T174 psp Nascent polypeptide-associated complex subunit alpha (NAC-alpha) (Alpha-NAC) (allergen Hom s 2) Prevents inappropriate targeting of non-secretory polypeptides to the endoplasmic reticulum (ER). Binds to nascent polypeptide chains as they emerge from the ribosome and blocks their interaction with the signal recognition particle (SRP), which normally targets nascent secretory peptides to the ER. Also reduces the inherent affinity of ribosomes for protein translocation sites in the ER membrane (M sites). May act as a specific coactivator for JUN, binding to DNA and stabilizing the interaction of JUN homodimers with target gene promoters. {ECO:0000269|PubMed:10982809, ECO:0000269|PubMed:15784678, ECO:0000269|PubMed:9877153}.
Q13769 THOC5 T321 ochoa THO complex subunit 5 (Functional spliceosome-associated protein 79) (fSAP79) (NF2/meningioma region protein pK1.3) (Placental protein 39.2) (PP39.2) (hTREX90) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Plays a key structural role in the oligomerization of the THO-DDX39B complex (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). THOC5 in conjunction with ALYREF/THOC4 functions in NXF1-NXT1 mediated nuclear export of HSP70 mRNA; both proteins enhance the RNA binding activity of NXF1 and are required for NXF1 localization to the nuclear rim. Involved in transcription elongation and genome stability (PubMed:18974867). Involved in alternative polyadenylation site choice by recruiting CPSF6 to 5' region of target genes; probably mediates association of the TREX and CFIm complexes (PubMed:23685434). {ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:18974867, ECO:0000269|PubMed:23685434, ECO:0000269|PubMed:33191911}.; FUNCTION: Regulates the expression of myeloid transcription factors CEBPA, CEBPB and GAB2 by enhancing the levels of phosphatidylinositol 3,4,5-trisphosphate. May be involved in the differentiation of granulocytes and adipocytes. Essential for hematopoietic primitive cell survival and plays an integral role in monocytic development. {ECO:0000250|UniProtKB:Q8BKT7}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q13769 THOC5 T322 ochoa THO complex subunit 5 (Functional spliceosome-associated protein 79) (fSAP79) (NF2/meningioma region protein pK1.3) (Placental protein 39.2) (PP39.2) (hTREX90) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Plays a key structural role in the oligomerization of the THO-DDX39B complex (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). THOC5 in conjunction with ALYREF/THOC4 functions in NXF1-NXT1 mediated nuclear export of HSP70 mRNA; both proteins enhance the RNA binding activity of NXF1 and are required for NXF1 localization to the nuclear rim. Involved in transcription elongation and genome stability (PubMed:18974867). Involved in alternative polyadenylation site choice by recruiting CPSF6 to 5' region of target genes; probably mediates association of the TREX and CFIm complexes (PubMed:23685434). {ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:18974867, ECO:0000269|PubMed:23685434, ECO:0000269|PubMed:33191911}.; FUNCTION: Regulates the expression of myeloid transcription factors CEBPA, CEBPB and GAB2 by enhancing the levels of phosphatidylinositol 3,4,5-trisphosphate. May be involved in the differentiation of granulocytes and adipocytes. Essential for hematopoietic primitive cell survival and plays an integral role in monocytic development. {ECO:0000250|UniProtKB:Q8BKT7}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q14676 MDC1 T1858 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14684 RRP1B T237 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q14690 PDCD11 T42 ochoa Protein RRP5 homolog (NF-kappa-B-binding protein) (NFBP) (Programmed cell death protein 11) Essential for the generation of mature 18S rRNA, specifically necessary for cleavages at sites A0, 1 and 2 of the 47S precursor. Directly interacts with U3 snoRNA. {ECO:0000269|PubMed:17654514}.; FUNCTION: Involved in the biogenesis of rRNA. {ECO:0000250}.
Q14980 NUMA1 T1958 ochoa Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}.
Q15438 CYTH1 T54 ochoa Cytohesin-1 (PH, SEC7 and coiled-coil domain-containing protein 1) (SEC7 homolog B2-1) Promotes guanine-nucleotide exchange on ARF1, ARF5 and ARF6. Promotes the activation of ARF factors through replacement of GDP with GTP. Plays an important role in membrane trafficking, during junctional remodeling and epithelial polarization, through regulation of ARF6 activity. {ECO:0000250|UniProtKB:Q9QX11, ECO:0000269|PubMed:10652308, ECO:0000269|PubMed:29420262, ECO:0000269|PubMed:9653114}.
Q16891 IMMT T481 ochoa MICOS complex subunit MIC60 (Cell proliferation-inducing gene 4/52 protein) (Mitochondrial inner membrane protein) (Mitofilin) (p87/89) Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). {ECO:0000269|PubMed:22114354, ECO:0000269|PubMed:25781180, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824}.
Q1KMD3 HNRNPUL2 T244 ochoa Heterogeneous nuclear ribonucleoprotein U-like protein 2 (Scaffold-attachment factor A2) (SAF-A2) None
Q4G0J3 LARP7 T344 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q4G0J3 LARP7 T440 psp La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q53EV4 LRRC23 T46 ochoa Leucine-rich repeat-containing protein 23 (Leucine-rich protein B7) Essential for sperm motility and male fertility. Plays an important role in the proper assembly of the third radial spoke (RS3) head and the bridge structure between RS2 and RS3 in the sperm flagella. {ECO:0000269|PubMed:37804054, ECO:0000269|PubMed:38091523}.
Q567U6 CCDC93 T271 ochoa Coiled-coil domain-containing protein 93 Component of the commander complex that is essential for endosomal recycling of transmembrane cargos; the commander complex is composed of composed of the CCC subcomplex and the retriever subcomplex (PubMed:37172566, PubMed:38459129). Component of the CCC complex, which is involved in the regulation of endosomal recycling of surface proteins, including integrins, signaling receptor and channels (PubMed:37172566, PubMed:38459129). The CCC complex associates with SNX17, retriever and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of numerous cargos such as integrins ITGA5:ITGB1 (PubMed:25355947, PubMed:28892079). Involved in copper-dependent ATP7A trafficking between the trans-Golgi network and vesicles in the cell periphery; the function is proposed to depend on its association within the CCC complex and cooperation with the WASH complex on early endosomes and is dependent on its interaction with WASHC2C (PubMed:25355947). {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079, ECO:0000269|PubMed:37172566, ECO:0000269|PubMed:38459129}.; FUNCTION: (Microbial infection) The CCC complex, in collaboration with the heterotrimeric retriever complex, mediates the exit of human papillomavirus to the cell surface. {ECO:0000269|PubMed:28892079}.
Q5JTV8 TOR1AIP1 T220 ochoa|psp Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}.
Q5MIZ7 PPP4R3B T128 ochoa Serine/threonine-protein phosphatase 4 regulatory subunit 3B (SMEK homolog 2) Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers.
Q5T200 ZC3H13 T948 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5UIP0 RIF1 T1047 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5VST9 OBSCN T385 ochoa Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}.
Q5VZL5 ZMYM4 T1062 ochoa Zinc finger MYM-type protein 4 (Zinc finger protein 262) Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}.
Q68CQ4 UTP25 T149 ochoa U3 small nucleolar RNA-associated protein 25 homolog (Digestive organ expansion factor homolog) (UTP25 small subunit processor component) Component of the ribosomal small subunit processome for the biogenesis of ribosomes, functions in pre-ribosomal RNA (pre-rRNA) processing (By similarity). Essential for embryonic development in part through the regulation of p53 pathway. Controls the expansion growth of digestive organs and liver (PubMed:23357851, PubMed:25007945, PubMed:27657329). Also involved in the sympathetic neuronal development (By similarity). Mediates, with CAPN3, the proteasome-independent degradation of p53/TP53 (PubMed:23357851, PubMed:27657329). {ECO:0000250|UniProtKB:Q6PEH4, ECO:0000269|PubMed:23357851, ECO:0000269|PubMed:25007945, ECO:0000269|PubMed:27657329}.
Q6N043 ZNF280D T804 ochoa Zinc finger protein 280D (Suppressor of hairy wing homolog 4) (Zinc finger protein 634) May function as a transcription factor.
Q6P1N0 CC2D1A T92 ochoa Coiled-coil and C2 domain-containing protein 1A (Akt kinase-interacting protein 1) (Five prime repressor element under dual repression-binding protein 1) (FRE under dual repression-binding protein 1) (Freud-1) (Putative NF-kappa-B-activating protein 023N) Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. The combination of calcium and ATP specifically inactivates the binding with FRE. May play a role in the altered regulation of HTR1A associated with anxiety and major depression. Mediates HDAC-independent repression of HTR1A promoter in neuronal cell. Performs essential function in controlling functional maturation of synapses (By similarity). Plays distinct roles depending on its localization. When cytoplasmic, acts as a scaffold protein in the PI3K/PDK1/AKT pathway. Repressor of HTR1A when nuclear. In the centrosome, regulates spindle pole localization of the cohesin subunit SCC1/RAD21, thereby mediating centriole cohesion during mitosis. {ECO:0000250, ECO:0000269|PubMed:20171170}.
Q6PFW1 PPIP5K1 T940 ochoa Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 1) (Histidine acid phosphatase domain-containing protein 2A) (IP6 kinase) (Inositol pyrophosphate synthase 1) (InsP6 and PP-IP5 kinase 1) (VIP1 homolog) (hsVIP1) Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4. Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4. Activated when cells are exposed to hyperosmotic stress. {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752}.
Q6ZUT1 NKAPD1 T123 ochoa Uncharacterized protein NKAPD1 (NKAP domain containing protein 1) None
Q6ZVM7 TOM1L2 T456 ochoa TOM1-like protein 2 (Target of Myb-like protein 2) Acts as a MYO6/Myosin VI adapter protein that targets myosin VI to endocytic structures (PubMed:23023224). May also play a role in recruiting clathrin to endosomes (PubMed:16412388). May regulate growth factor-induced mitogenic signaling (PubMed:16479011). {ECO:0000269|PubMed:16412388, ECO:0000269|PubMed:16479011, ECO:0000269|PubMed:23023224}.
Q7Z5K2 WAPL T69 ochoa Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}.
Q7Z5N4 SDK1 T2129 ochoa Protein sidekick-1 Adhesion molecule that promotes lamina-specific synaptic connections in the retina. Expressed in specific subsets of interneurons and retinal ganglion cells (RGCs) and promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q8AV58}.
Q86UK5 EVC2 T720 ochoa Limbin (Ellis-van Creveld syndrome protein 2) (EVC2) Component of the EvC complex that positively regulates ciliary Hedgehog (Hh) signaling. Plays a critical role in bone formation and skeletal development. May be involved in early embryonic morphogenesis. {ECO:0000250|UniProtKB:Q8K1G2}.
Q86VM9 ZC3H18 T109 ochoa Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) None
Q86VP1 TAX1BP1 T131 ochoa Tax1-binding protein 1 (TRAF6-binding protein) Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}.
Q86WN1 FCHSD1 T452 ochoa F-BAR and double SH3 domains protein 1 (Protein nervous wreck 2) (NWK2) Promotes actin polymerization mediated by SNX9 and WASL. {ECO:0000250|UniProtKB:Q6PFY1}.
Q86X53 ERICH1 T259 ochoa Glutamate-rich protein 1 None
Q86YW9 MED12L T1740 ochoa Mediator of RNA polymerase II transcription subunit 12-like protein (Mediator complex subunit 12-like protein) (Thyroid hormone receptor-associated-like protein) (Trinucleotide repeat-containing gene 11 protein-like) May be a component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (By similarity). {ECO:0000250}.
Q8IYB3 SRRM1 T241 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IZ21 PHACTR4 T496 ochoa Phosphatase and actin regulator 4 Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}.
Q8IZL8 PELP1 T1090 ochoa Proline-, glutamic acid- and leucine-rich protein 1 (Modulator of non-genomic activity of estrogen receptor) (Transcription factor HMX3) Coactivator of estrogen receptor-mediated transcription and a corepressor of other nuclear hormone receptors and sequence-specific transcription factors (PubMed:14963108). Plays a role in estrogen receptor (ER) genomic activity when present in the nuclear compartment by activating the ER target genes in a hormonal stimulation dependent manner. Can facilitate ER non-genomic signaling via SRC and PI3K interaction in the cytosol. Plays a role in E2-mediated cell cycle progression by interacting with RB1. May have important functional implications in ER/growth factor cross-talk. Interacts with several growth factor signaling components including EGFR and HRS. Functions as the key stabilizing component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes. Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit. Regulates pre-60S association of the critical remodeling factor MDN1 (PubMed:21326211). May promote tumorigenesis via its interaction with and modulation of several oncogenes including SRC, PI3K, STAT3 and EGFR. Plays a role in cancer cell metastasis via its ability to modulate E2-mediated cytoskeleton changes and cell migration via its interaction with SRC and PI3K. {ECO:0000269|PubMed:11481323, ECO:0000269|PubMed:12682072, ECO:0000269|PubMed:14963108, ECO:0000269|PubMed:15374949, ECO:0000269|PubMed:15456770, ECO:0000269|PubMed:15579769, ECO:0000269|PubMed:15994929, ECO:0000269|PubMed:16140940, ECO:0000269|PubMed:16352611, ECO:0000269|PubMed:16574651, ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}.
Q8N128 FAM177A1 T71 ochoa Protein FAM177A1 None
Q8N344 MIER2 T139 ochoa Mesoderm induction early response protein 2 (Mi-er2) Transcriptional repressor. {ECO:0000250}.
Q8N6N3 C1orf52 T155 ochoa UPF0690 protein C1orf52 (BCL10-associated gene protein) None
Q8ND24 RNF214 T122 ochoa RING finger protein 214 None
Q8NDI1 EHBP1 T165 ochoa EH domain-binding protein 1 May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}.
Q8NDI1 EHBP1 T291 ochoa EH domain-binding protein 1 May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}.
Q8NEY1 NAV1 T1245 ochoa Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) May be involved in neuronal migration. {ECO:0000250}.
Q8TF01 PNISR T297 ochoa Arginine/serine-rich protein PNISR (PNN-interacting serine/arginine-rich protein) (SR-related protein) (SR-rich protein) (Serine/arginine-rich-splicing regulatory protein 130) (SRrp130) (Splicing factor, arginine/serine-rich 130) (Splicing factor, arginine/serine-rich 18) None
Q8WUY3 PRUNE2 T1795 ochoa Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}.
Q8WV19 SFT2D1 T19 ochoa Vesicle transport protein SFT2A (SFT2 domain-containing protein 1) (pRGR1) May be involved in fusion of retrograde transport vesicles derived from an endocytic compartment with the Golgi complex. {ECO:0000250|UniProtKB:P38166}.
Q92508 PIEZO1 T1626 ochoa Piezo-type mechanosensitive ion channel component 1 (Membrane protein induced by beta-amyloid treatment) (Mib) (Protein FAM38A) Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:23479567, PubMed:23695678, PubMed:25955826, PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Generates currents characterized by a linear current-voltage relationship that are sensitive to ruthenium red and gadolinium (By similarity). Conductance to monovalent alkali ions is highest for K(+), intermediate for Na(+) and lowest for Li(+) (PubMed:25955826). Divalent ions except for Mn(2+) permeate the channel but more slowly than the monovalent ions and they also reduce K(+) currents (PubMed:25955826). Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling (PubMed:20016066). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing (By similarity). Acts as a shear-stress sensor that promotes endothelial cell organization and alignment in the direction of blood flow through calpain activation (PubMed:25119035). Plays a key role in blood vessel formation and vascular structure in both development and adult physiology (By similarity). Acts as a sensor of phosphatidylserine (PS) flipping at the plasma membrane and governs morphogenesis of muscle cells (By similarity). In myoblasts, flippase-mediated PS enrichment at the inner leaflet of plasma membrane triggers channel activation and Ca2+ influx followed by Rho GTPases signal transduction, leading to assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). {ECO:0000250|UniProtKB:E2JF22, ECO:0000250|UniProtKB:Q91X60, ECO:0000269|PubMed:25955826, ECO:0000269|PubMed:29799007}.
Q92766 RREB1 T1590 ochoa Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}.
Q92903 CDS1 T36 ochoa Phosphatidate cytidylyltransferase 1 (EC 2.7.7.41) (CDP-DAG synthase 1) (CDP-DG synthase 1) (CDP-diacylglycerol synthase 1) (CDS 1) (CDP-diglyceride pyrophosphorylase 1) (CDP-diglyceride synthase 1) (CTP:phosphatidate cytidylyltransferase 1) Catalyzes the conversion of phosphatidic acid (PA) to CDP-diacylglycerol (CDP-DAG), an essential intermediate in the synthesis of phosphatidylglycerol, cardiolipin and phosphatidylinositol (PubMed:25375833, PubMed:9407135). Exhibits almost no acyl chain preference for PA, showing no discrimination for the sn-1/sn-2 acyl chain composition of PAs (PubMed:25375833). Plays an important role in regulating the growth of lipid droplets which are storage organelles at the center of lipid and energy homeostasis (PubMed:26946540, PubMed:31548309). Positively regulates the differentiation and development of adipocytes (By similarity). {ECO:0000250|UniProtKB:P98191, ECO:0000269|PubMed:25375833, ECO:0000269|PubMed:26946540, ECO:0000269|PubMed:31548309, ECO:0000269|PubMed:9407135}.
Q92922 SMARCC1 T417 ochoa SWI/SNF complex subunit SMARCC1 (BRG1-associated factor 155) (BAF155) (SWI/SNF complex 155 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 1) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. May stimulate the ATPase activity of the catalytic subunit of the complex (PubMed:10078207, PubMed:29374058). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:P97496, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q92973 TNPO1 T335 ochoa Transportin-1 (Importin beta-2) (Karyopherin beta-2) (M9 region interaction protein) (MIP) Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates (PubMed:24753571). May mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Involved in nuclear import of M9-containing proteins. In vitro, binds directly to the M9 region of the heterogeneous nuclear ribonucleoproteins (hnRNP), A1 and A2 and mediates their nuclear import. Involved in hnRNP A1/A2 nuclear export. Mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5 (PubMed:11682607). In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones (By similarity). In vitro, mediates nuclear import of SRP19 (PubMed:11682607). Mediates nuclear import of ADAR/ADAR1 isoform 1 and isoform 5 in a RanGTP-dependent manner (PubMed:19124606, PubMed:24753571). Main mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with the karyopherins KPNA1 and KPNA2 (PubMed:35446349). {ECO:0000250|UniProtKB:Q8BFY9, ECO:0000269|PubMed:11682607, ECO:0000269|PubMed:19124606, ECO:0000269|PubMed:24753571, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:8986607, ECO:0000269|PubMed:9687515}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. {ECO:0000269|PubMed:16704975}.
Q96A49 SYAP1 T268 ochoa Synapse-associated protein 1 (BSD domain-containing signal transducer and Akt interactor protein) (BSTA) Plays a role in adipocyte differentiation by promoting mTORC2-mediated phosphorylation of AKT1 at 'Ser-473' after growth factor stimulation (PubMed:23300339). {ECO:0000269|PubMed:23300339}.
Q96BK5 PINX1 T170 ochoa PIN2/TERF1-interacting telomerase inhibitor 1 (Liver-related putative tumor suppressor) (Pin2-interacting protein X1) (Protein 67-11-3) (TRF1-interacting protein 1) Microtubule-binding protein essential for faithful chromosome segregation. Mediates TRF1 and TERT accumulation in nucleolus and enhances TRF1 binding to telomeres. Inhibits telomerase activity. May inhibit cell proliferation and act as tumor suppressor. {ECO:0000269|PubMed:15381700, ECO:0000269|PubMed:17198684, ECO:0000269|PubMed:19117989, ECO:0000269|PubMed:19265708, ECO:0000269|PubMed:19393617, ECO:0000269|PubMed:19553660}.
Q96BK5 PINX1 T171 ochoa PIN2/TERF1-interacting telomerase inhibitor 1 (Liver-related putative tumor suppressor) (Pin2-interacting protein X1) (Protein 67-11-3) (TRF1-interacting protein 1) Microtubule-binding protein essential for faithful chromosome segregation. Mediates TRF1 and TERT accumulation in nucleolus and enhances TRF1 binding to telomeres. Inhibits telomerase activity. May inhibit cell proliferation and act as tumor suppressor. {ECO:0000269|PubMed:15381700, ECO:0000269|PubMed:17198684, ECO:0000269|PubMed:19117989, ECO:0000269|PubMed:19265708, ECO:0000269|PubMed:19393617, ECO:0000269|PubMed:19553660}.
Q96CC6 RHBDF1 T275 ochoa Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}.
Q96F86 EDC3 T224 ochoa Enhancer of mRNA-decapping protein 3 (LSM16 homolog) (YjeF N-terminal domain-containing protein 2) (YjeF_N2) (hYjeF_N2) (YjeF domain-containing protein 1) Binds single-stranded RNA. Involved in the process of mRNA degradation and in the positive regulation of mRNA decapping. May play a role in spermiogenesis and oogenesis. {ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:17533573, ECO:0000269|PubMed:18678652, ECO:0000269|PubMed:25701870}.
Q96FV9 THOC1 T542 ochoa THO complex subunit 1 (Nuclear matrix protein p84) (p84N5) (hTREX84) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B/UAP56 (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Regulates transcriptional elongation of a subset of genes (PubMed:22144908). Involved in genome stability by preventing co-transcriptional R-loop formation (By similarity). May play a role in hair cell formation, hence may be involved in hearing (By similarity). {ECO:0000250|UniProtKB:Q7SYB2, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22144908, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: Participates in an apoptotic pathway which is characterized by activation of caspase-6, increases in the expression of BAK1 and BCL2L1 and activation of NF-kappa-B. This pathway does not require p53/TP53, nor does the presence of p53/TP53 affect the efficiency of cell killing. Activates a G2/M cell cycle checkpoint prior to the onset of apoptosis. Apoptosis is inhibited by association with RB1.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q96GY3 LIN37 T47 ochoa Protein lin-37 homolog (Antolefinin) None
Q96K49 TMEM87B T479 ochoa Transmembrane protein 87B May be involved in retrograde transport from endosomes to the trans-Golgi network (TGN). {ECO:0000269|PubMed:26157166}.
Q96L96 ALPK3 T1384 ochoa Alpha-protein kinase 3 (EC 2.7.11.1) (Muscle alpha-protein kinase) Involved in cardiomyocyte differentiation. {ECO:0000305|PubMed:26846950, ECO:0000305|PubMed:27106955, ECO:0000305|PubMed:28630369, ECO:0000305|PubMed:30046096}.
Q96MR9 ZNF560 T170 ochoa Zinc finger protein 560 May be involved in transcriptional regulation.
Q96R06 SPAG5 T937 psp Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}.
Q99418 CYTH2 T58 ochoa Cytohesin-2 (ARF exchange factor) (ARF nucleotide-binding site opener) (Protein ARNO) (PH, SEC7 and coiled-coil domain-containing protein 2) Acts as a guanine-nucleotide exchange factor (GEF). Promotes guanine-nucleotide exchange on ARF1, ARF3 and ARF6. Activates ARF factors through replacement of GDP with GTP (By similarity). The cell membrane form, in association with ARL4 proteins, recruits ARF6 to the plasma membrane (PubMed:17398095). Involved in neurite growth (By similarity). {ECO:0000250|UniProtKB:P63034, ECO:0000269|PubMed:17398095}.
Q9BVW5 TIPIN T244 ochoa TIMELESS-interacting protein Plays an important role in the control of DNA replication and the maintenance of replication fork stability (PubMed:17102137, PubMed:23359676, PubMed:35585232). Important for cell survival after DNA damage or replication stress (PubMed:17116885). May be specifically required for the ATR-CHEK1 pathway in the replication checkpoint induced by hydroxyurea or ultraviolet light (PubMed:17296725). Forms a complex with TIMELESS and this complex regulates DNA replication processes under both normal and stress conditions, stabilizes replication forks and influences both CHEK1 phosphorylation and the intra-S phase checkpoint in response to genotoxic stress (PubMed:17102137, PubMed:17116885, PubMed:17296725, PubMed:23359676, PubMed:35585232). {ECO:0000269|PubMed:17102137, ECO:0000269|PubMed:17116885, ECO:0000269|PubMed:17296725, ECO:0000269|PubMed:23359676, ECO:0000269|PubMed:35585232}.
Q9BWG6 SCNM1 T175 ochoa Sodium channel modifier 1 As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:36084634). Plays a role in the regulation of primary cilia length and Hedgehog signaling (PubMed:36084634). {ECO:0000269|PubMed:36084634}.
Q9BYP7 WNK3 T541 psp Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}.
Q9BZF1 OSBPL8 T355 ochoa Oxysterol-binding protein-related protein 8 (ORP-8) (OSBP-related protein 8) Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:26206935). Binds oxysterol, 25-hydroxycholesterol and cholesterol (PubMed:17428193, PubMed:17991739, PubMed:21698267). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:17991739, ECO:0000269|PubMed:21698267, ECO:0000269|PubMed:26206935}.
Q9H0E9 BRD8 T617 ochoa Bromodomain-containing protein 8 (Skeletal muscle abundant protein) (Skeletal muscle abundant protein 2) (Thyroid hormone receptor coactivating protein of 120 kDa) (TrCP120) (p120) May act as a coactivator during transcriptional activation by hormone-activated nuclear receptors (NR). Isoform 2 stimulates transcriptional activation by AR/DHTR, ESR1/NR3A1, RXRA/NR2B1 and THRB/ERBA2. At least isoform 1 and isoform 2 are components of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:10517671, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}.
Q9H1J1 UPF3A T336 ochoa Regulator of nonsense transcripts 3A (Nonsense mRNA reducing factor 3A) (Up-frameshift suppressor 3 homolog A) (hUpf3) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. However, UPF3A is shown to be only marginally active in NMD as compared to UPF3B. Binds spliced mRNA upstream of exon-exon junctions. In vitro, weakly stimulates translation. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:16601204}.
Q9NQW6 ANLN T62 ochoa Anillin Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}.
Q9NSK0 KLC4 T171 ochoa Kinesin light chain 4 (KLC 4) (Kinesin-like protein 8) Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport. The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250}.
Q9NUY8 TBC1D23 T562 ochoa TBC1 domain family member 23 (HCV non-structural protein 4A-transactivated protein 1) Putative Rab GTPase-activating protein which plays a role in vesicular trafficking (PubMed:28823707). Involved in endosome-to-Golgi trafficking. Acts as a bridging protein by binding simultaneously to golgins, including GOLGA1 and GOLGA4, located at the trans-Golgi, and to the WASH complex, located on endosome-derived vesicles (PubMed:29084197, PubMed:29426865). Together with WDR11 complex facilitates the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). Plays a role in brain development, including in cortical neuron positioning (By similarity). May also be important for neurite outgrowth, possibly through its involvement in membrane trafficking and cargo delivery, 2 processes that are essential for axonal and dendritic growth (By similarity). May act as a general inhibitor of innate immunity signaling, strongly inhibiting multiple TLR and dectin/CLEC7A-signaling pathways. Does not alter initial activation events, but instead affects maintenance of inflammatory gene expression several hours after bacterial lipopolysaccharide (LPS) challenge (By similarity). {ECO:0000250|UniProtKB:Q8K0F1, ECO:0000269|PubMed:28823707, ECO:0000269|PubMed:29084197, ECO:0000269|PubMed:29426865}.
Q9NWZ8 GEMIN8 T124 ochoa Gem-associated protein 8 (Gemin-8) (Protein FAM51A1) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. {ECO:0000269|PubMed:17023415, ECO:0000269|PubMed:18984161}.
Q9NYF8 BCLAF1 T644 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9P1Y6 PHRF1 T961 ochoa PHD and RING finger domain-containing protein 1 None
Q9P291 ARMCX1 T45 ochoa Armadillo repeat-containing X-linked protein 1 (ARM protein lost in epithelial cancers on chromosome X 1) (Protein ALEX1) Regulates mitochondrial transport during axon regeneration. Increases the proportion of motile mitochondria by recruiting stationary mitochondria into the motile pool. Enhances mitochondria movement and neurite growth in both adult axons and embryonic neurons. Promotes neuronal survival and axon regeneration after nerve injury. May link mitochondria to the Trak1-kinesin motor complex via its interaction with MIRO1. {ECO:0000250|UniProtKB:Q9CX83}.
Q9P2D1 CHD7 T2551 ochoa Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9UK97 FBXO9 T132 ochoa F-box only protein 9 (Cross-immune reaction antigen 1) (Renal carcinoma antigen NY-REN-57) Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins and plays a role in several biological processes such as cell cycle, cell proliferation, or maintenance of chromosome stability (PubMed:23263282, PubMed:34480022). Ubiquitinates mTORC1-bound TTI1 and TELO2 when they are phosphorylated by CK2 following growth factor deprivation, leading to their degradation. In contrast, does not mediate ubiquitination of TTI1 and TELO2 when they are part of the mTORC2 complex. As a consequence, mTORC1 is inactivated to restrain cell growth and protein translation, while mTORC2 is the activated due to the relief of feedback inhibition by mTORC1 (PubMed:23263282). Plays a role in maintaining epithelial cell survival by regulating the turn-over of chromatin modulator PRMT4 through ubiquitination and degradation by the proteasomal pathway (PubMed:34480022). Regulates also PPARgamma stability by facilitating PPARgamma/PPARG ubiquitination and thereby plays a role in adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q8BK06, ECO:0000269|PubMed:23263282, ECO:0000269|PubMed:34480022}.
Q9UKA8 RCAN3 T211 ochoa Calcipressin-3 (Down syndrome candidate region 1-like protein 2) (Myocyte-enriched calcineurin-interacting protein 3) (MCIP3) (Regulator of calcineurin 3) Inhibits calcineurin-dependent transcriptional responses by binding to the catalytic domain of calcineurin A. Could play a role during central nervous system development (By similarity). {ECO:0000250}.
Q9UKJ3 GPATCH8 T1115 ochoa G patch domain-containing protein 8 None
Q9UKK3 PARP4 T129 ochoa Protein mono-ADP-ribosyltransferase PARP4 (EC 2.4.2.-) (193 kDa vault protein) (ADP-ribosyltransferase diphtheria toxin-like 4) (ARTD4) (PARP-related/IalphaI-related H5/proline-rich) (PH5P) (Poly [ADP-ribose] polymerase 4) (PARP-4) (Vault poly(ADP-ribose) polymerase) (VPARP) Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}.
Q9UKX2 MYH2 T1897 ochoa Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}.
Q9UKY1 ZHX1 T647 ochoa Zinc fingers and homeoboxes protein 1 Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}.
Q9ULD5 ZNF777 T356 ochoa Zinc finger protein 777 May be involved in transcriptional repression (PubMed:31856708). Inhibits cell proliferation through CDKN1A/p21 induction by down-regulation of NIBAN1/FAM129A at low cell density (PubMed:25560148). {ECO:0000269|PubMed:25560148, ECO:0000269|PubMed:31856708}.
Q9ULH0 KIDINS220 T1534 ochoa Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}.
Q9UN86 G3BP2 T206 ochoa Ras GTPase-activating protein-binding protein 2 (G3BP-2) (GAP SH3 domain-binding protein 2) Scaffold protein that plays an essential role in cytoplasmic stress granule formation which acts as a platform for antiviral signaling (PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572). Plays an essential role in stress granule formation (PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:35977029). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:32302570, PubMed:32302571, PubMed:32302572). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (By similarity). {ECO:0000250|UniProtKB:Q13283, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:35977029}.
Q9UN86 G3BP2 T226 ochoa|psp Ras GTPase-activating protein-binding protein 2 (G3BP-2) (GAP SH3 domain-binding protein 2) Scaffold protein that plays an essential role in cytoplasmic stress granule formation which acts as a platform for antiviral signaling (PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572). Plays an essential role in stress granule formation (PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:35977029). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:32302570, PubMed:32302571, PubMed:32302572). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (By similarity). {ECO:0000250|UniProtKB:Q13283, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:35977029}.
Q9UPN3 MACF1 T5587 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPP1 PHF8 T705 ochoa Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}.
Q9UPT8 ZC3H4 T802 ochoa Zinc finger CCCH domain-containing protein 4 RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}.
Q9Y490 TLN1 T144 ochoa|psp Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y4G6 TLN2 T146 ochoa Talin-2 As a major component of focal adhesion plaques that links integrin to the actin cytoskeleton, may play an important role in cell adhesion. Recruits PIP5K1C to focal adhesion plaques and strongly activates its kinase activity (By similarity). {ECO:0000250}.
Q9Y520 PRRC2C T1498 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
Q9Y5B0 CTDP1 T584 psp RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}.
Q9Y5B6 PAXBP1 T565 ochoa PAX3- and PAX7-binding protein 1 (GC-rich sequence DNA-binding factor 1) Adapter protein linking the transcription factors PAX3 and PAX7 to the histone methylation machinery and involved in myogenesis. Associates with a histone methyltransferase complex that specifically mediates dimethylation and trimethylation of 'Lys-4' of histone H3. Mediates the recruitment of that complex to the transcription factors PAX3 and PAX7 on chromatin to regulate the expression of genes involved in muscle progenitor cells proliferation including ID3 and CDC20. {ECO:0000250|UniProtKB:P58501}.
Q9Y6D6 ARFGEF1 T296 ochoa Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}.
Q9Y6M5 SLC30A1 T191 ochoa Proton-coupled zinc antiporter SLC30A1 (Solute carrier family 30 member 1) (Zinc transporter 1) Zinc ion:proton antiporter that could function at the plasma membrane mediating zinc efflux from cells against its electrochemical gradient protecting them from intracellular zinc accumulation and toxicity (PubMed:31471319). Alternatively, could prevent the transport to the plasma membrane of CACNB2, the L-type calcium channels regulatory subunit, through a yet to be defined mechanism. By modulating the expression of these channels at the plasma membrane, could prevent calcium and zinc influx into cells. By the same mechanism, could also prevent L-type calcium channels-mediated heavy metal influx into cells (By similarity). In some cells, could also function as a zinc ion:proton antiporter mediating zinc entry into the lumen of cytoplasmic vesicles. In macrophages, can increase zinc ions concentration into the lumen of cytoplasmic vesicles containing engulfed bacteria and could help inactivate them (PubMed:32441444). Forms a complex with TMC6/EVER1 and TMC8/EVER2 at the ER membrane of keratynocytes which facilitates zinc uptake into the ER (PubMed:18158319). Down-regulates the activity of transcription factors induced by zinc and cytokines (PubMed:18158319). {ECO:0000250|UniProtKB:Q62720, ECO:0000269|PubMed:18158319, ECO:0000269|PubMed:31471319, ECO:0000269|PubMed:32441444}.
Q9Y6X4 FAM169A T448 ochoa Soluble lamin-associated protein of 75 kDa (SLAP75) (Protein FAM169A) None
Q8WUM4 PDCD6IP T464 Sugiyama Programmed cell death 6-interacting protein (PDCD6-interacting protein) (ALG-2-interacting protein 1) (ALG-2-interacting protein X) (Hp95) Multifunctional protein involved in endocytosis, multivesicular body biogenesis, membrane repair, cytokinesis, apoptosis and maintenance of tight junction integrity. Class E VPS protein involved in concentration and sorting of cargo proteins of the multivesicular body (MVB) for incorporation into intralumenal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome. Binds to the phospholipid lysobisphosphatidic acid (LBPA) which is abundant in MVBs internal membranes. The MVB pathway requires the sequential function of ESCRT-O, -I,-II and -III complexes (PubMed:14739459). The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:17556548, PubMed:17853893). Adapter for a subset of ESCRT-III proteins, such as CHMP4, to function at distinct membranes. Required for completion of cytokinesis (PubMed:17556548, PubMed:17853893, PubMed:18641129). May play a role in the regulation of both apoptosis and cell proliferation. Regulates exosome biogenesis in concert with SDC1/4 and SDCBP (PubMed:22660413). By interacting with F-actin, PARD3 and TJP1 secures the proper assembly and positioning of actomyosin-tight junction complex at the apical sides of adjacent epithelial cells that defines a spatial membrane domain essential for the maintenance of epithelial cell polarity and barrier (By similarity). {ECO:0000250|UniProtKB:Q9WU78, ECO:0000269|PubMed:14739459, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:18641129, ECO:0000269|PubMed:22660413}.; FUNCTION: (Microbial infection) Involved in HIV-1 virus budding. Can replace TSG101 it its role of supporting HIV-1 release; this function requires the interaction with CHMP4B. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:14505569, ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:18641129}.
Q14498 RBM39 T175 Sugiyama RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}.
O75533 SF3B1 T316 Sugiyama Splicing factor 3B subunit 1 (Pre-mRNA-splicing factor SF3b 155 kDa subunit) (SF3b155) (Spliceosome-associated protein 155) (SAP 155) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:27720643, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B1 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). Together with other U2 snRNP complex components may also play a role in the selective processing of microRNAs (miRNAs) from the long primary miRNA transcript, pri-miR-17-92 (By similarity). {ECO:0000250|UniProtKB:Q99NB9, ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
P00390 GSR T365 Sugiyama Glutathione reductase, mitochondrial (GR) (GRase) (EC 1.8.1.7) Catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH). Constitutes the major mechanism to maintain a high GSH:GSSG ratio in the cytosol. {ECO:0000269|PubMed:17185460}.
P26641 EEF1G T411 Sugiyama Elongation factor 1-gamma (EF-1-gamma) (eEF-1B gamma) Probably plays a role in anchoring the complex to other cellular components.
Q14152 EIF3A T734 Sugiyama Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}.
Q9BV20 MRI1 T351 Sugiyama Methylthioribose-1-phosphate isomerase (M1Pi) (MTR-1-P isomerase) (EC 5.3.1.23) (Mediator of RhoA-dependent invasion) (S-methyl-5-thioribose-1-phosphate isomerase) (Translation initiation factor eIF-2B subunit alpha/beta/delta-like protein) Catalyzes the interconversion of methylthioribose-1-phosphate (MTR-1-P) into methylthioribulose-1-phosphate (MTRu-1-P). Independently from catalytic activity, promotes cell invasion in response to constitutive RhoA activation by promoting FAK tyrosine phosphorylation and stress fiber turnover. {ECO:0000255|HAMAP-Rule:MF_03119, ECO:0000269|PubMed:19620624}.
Q7L2J0 MEPCE T208 Sugiyama 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}.
P42167 TMPO T74 Sugiyama Lamina-associated polypeptide 2, isoforms beta/gamma (Thymopoietin, isoforms beta/gamma) (TP beta/gamma) (Thymopoietin-related peptide isoforms beta/gamma) (TPRP isoforms beta/gamma) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] May help direct the assembly of the nuclear lamina and thereby help maintain the structural organization of the nuclear envelope. Possible receptor for attachment of lamin filaments to the inner nuclear membrane. May be involved in the control of initiation of DNA replication through its interaction with NAKAP95.; FUNCTION: Thymopoietin (TP) and Thymopentin (TP5) may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide.
Q8IWE2 FAM114A1 T401 Sugiyama Protein NOXP20 (Nervous system overexpressed protein 20) (Protein FAM114A1) May play a role in neuronal cell development. {ECO:0000250}.
P30530 AXL T665 Sugiyama Tyrosine-protein kinase receptor UFO (EC 2.7.10.1) (AXL oncogene) Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding growth factor GAS6 and which is thus regulating many physiological processes including cell survival, cell proliferation, migration and differentiation. Ligand binding at the cell surface induces dimerization and autophosphorylation of AXL. Following activation by ligand, AXL binds and induces tyrosine phosphorylation of PI3-kinase subunits PIK3R1, PIK3R2 and PIK3R3; but also GRB2, PLCG1, LCK and PTPN11. Other downstream substrate candidates for AXL are CBL, NCK2, SOCS1 and TNS2. Recruitment of GRB2 and phosphatidylinositol 3 kinase regulatory subunits by AXL leads to the downstream activation of the AKT kinase. GAS6/AXL signaling plays a role in various processes such as endothelial cell survival during acidification by preventing apoptosis, optimal cytokine signaling during human natural killer cell development, hepatic regeneration, gonadotropin-releasing hormone neuron survival and migration, platelet activation, or regulation of thrombotic responses. Also plays an important role in inhibition of Toll-like receptors (TLRs)-mediated innate immune response. {ECO:0000269|PubMed:10403904, ECO:0000269|PubMed:11484958, ECO:0000269|PubMed:12364394, ECO:0000269|PubMed:12490074, ECO:0000269|PubMed:15507525, ECO:0000269|PubMed:15733062, ECO:0000269|PubMed:1656220, ECO:0000269|PubMed:18840707}.; FUNCTION: (Microbial infection) Acts as a receptor for lassa virus and lymphocytic choriomeningitis virus, possibly through GAS6 binding to phosphatidyl-serine at the surface of virion envelope. {ECO:0000269|PubMed:17005688, ECO:0000269|PubMed:21501828, ECO:0000269|PubMed:22156524, ECO:0000269|PubMed:25277499}.; FUNCTION: (Microbial infection) Acts as a receptor for Ebolavirus, possibly through GAS6 binding to phosphatidyl-serine at the surface of virion envelope. {ECO:0000269|PubMed:22673088}.; FUNCTION: (Microbial infection) Promotes Zika virus entry in glial cells, Sertoli cells and astrocytes (PubMed:28076778, PubMed:29379210, PubMed:31311882). Additionally, Zika virus potentiates AXL kinase activity to antagonize type I interferon signaling and thereby promotes infection (PubMed:28076778). Interferon signaling inhibition occurs via an SOCS1-dependent mechanism (PubMed:29379210). {ECO:0000269|PubMed:28076778, ECO:0000269|PubMed:29379210, ECO:0000269|PubMed:31311882}.
P20042 EIF2S2 T49 Sugiyama Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}.
Q12792 TWF1 T164 Sugiyama Twinfilin-1 (Protein A6) (Protein tyrosine kinase 9) Actin-binding protein involved in motile and morphological processes. Inhibits actin polymerization, likely by sequestering G-actin. By capping the barbed ends of filaments, it also regulates motility. Seems to play an important role in clathrin-mediated endocytosis and distribution of endocytic organelles (By similarity). {ECO:0000250}.
Q16643 DBN1 T267 Sugiyama Drebrin (Developmentally-regulated brain protein) Actin cytoskeleton-organizing protein that plays a role in the formation of cell projections (PubMed:20215400). Required for actin polymerization at immunological synapses (IS) and for the recruitment of the chemokine receptor CXCR4 to IS (PubMed:20215400). Plays a role in dendritic spine morphogenesis and organization, including the localization of the dopamine receptor DRD1 to the dendritic spines (By similarity). Involved in memory-related synaptic plasticity in the hippocampus (By similarity). {ECO:0000250|UniProtKB:Q9QXS6, ECO:0000269|PubMed:20215400}.
Q8TD19 NEK9 T522 Sugiyama Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}.
Q9H2D6 TRIOBP T2229 SIGNOR TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.
P57059 SIK1 T460 Sugiyama Serine/threonine-protein kinase SIK1 (EC 2.7.11.1) (Salt-inducible kinase 1) (SIK-1) (Serine/threonine-protein kinase SNF1-like kinase 1) (Serine/threonine-protein kinase SNF1LK) Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, gluconeogenesis and lipogenesis regulation, muscle growth and differentiation and tumor suppression. Phosphorylates HDAC4, HDAC5, PPME1, SREBF1, CRTC1/TORC1. Inhibits CREB activity by phosphorylating and inhibiting activity of TORCs, the CREB-specific coactivators, like CRTC2/TORC2 and CRTC3/TORC3 in response to cAMP signaling (PubMed:29211348). Acts as a tumor suppressor and plays a key role in p53/TP53-dependent anoikis, a type of apoptosis triggered by cell detachment: required for phosphorylation of p53/TP53 in response to loss of adhesion and is able to suppress metastasis. Part of a sodium-sensing signaling network, probably by mediating phosphorylation of PPME1: following increases in intracellular sodium, SIK1 is activated by CaMK1 and phosphorylates PPME1 subunit of protein phosphatase 2A (PP2A), leading to dephosphorylation of sodium/potassium-transporting ATPase ATP1A1 and subsequent increase activity of ATP1A1. Acts as a regulator of muscle cells by phosphorylating and inhibiting class II histone deacetylases HDAC4 and HDAC5, leading to promote expression of MEF2 target genes in myocytes. Also required during cardiomyogenesis by regulating the exit of cardiomyoblasts from the cell cycle via down-regulation of CDKN1C/p57Kip2. Acts as a regulator of hepatic gluconeogenesis by phosphorylating and repressing the CREB-specific coactivators CRTC1/TORC1 and CRTC2/TORC2, leading to inhibit CREB activity. Also regulates hepatic lipogenesis by phosphorylating and inhibiting SREBF1. In concert with CRTC1/TORC1, regulates the light-induced entrainment of the circadian clock by attenuating PER1 induction; represses CREB-mediated transcription of PER1 by phosphorylating and deactivating CRTC1/TORC1 (By similarity). {ECO:0000250|UniProtKB:Q60670, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:16306228, ECO:0000269|PubMed:18348280, ECO:0000269|PubMed:19622832, ECO:0000269|PubMed:29211348}.
P78362 SRPK2 T307 Sugiyama SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}.
P08758 ANXA5 T196 Sugiyama Annexin A5 (Anchorin CII) (Annexin V) (Annexin-5) (Calphobindin I) (CPB-I) (Endonexin II) (Lipocortin V) (Placental anticoagulant protein 4) (PP4) (Placental anticoagulant protein I) (PAP-I) (Thromboplastin inhibitor) (Vascular anticoagulant-alpha) (VAC-alpha) This protein is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade.
Q00610 CLTC T875 Sugiyama Clathrin heavy chain 1 (Clathrin heavy chain on chromosome 17) (CLH-17) Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge (PubMed:15858577, PubMed:16968737, PubMed:21297582). The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Plays a role in early autophagosome formation (PubMed:20639872). Interaction with DNAJC6 mediates the recruitment of HSPA8 to the clathrin lattice and creates local destabilization of the lattice promoting uncoating (By similarity). {ECO:0000250|UniProtKB:P49951, ECO:0000269|PubMed:15858577, ECO:0000269|PubMed:16968737, ECO:0000269|PubMed:20639872, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}.
Q00534 CDK6 T267 Sugiyama Cyclin-dependent kinase 6 (EC 2.7.11.22) (Cell division protein kinase 6) (Serine/threonine-protein kinase PLSTIRE) Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and negatively regulates cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans. May play a role in the centrosome organization during the cell cycle phases (PubMed:23918663). {ECO:0000269|PubMed:12833137, ECO:0000269|PubMed:14985467, ECO:0000269|PubMed:15254224, ECO:0000269|PubMed:15809340, ECO:0000269|PubMed:17420273, ECO:0000269|PubMed:17431401, ECO:0000269|PubMed:20333249, ECO:0000269|PubMed:20668294, ECO:0000269|PubMed:23918663, ECO:0000269|PubMed:8114739}.
Q12851 MAP4K2 T357 Sugiyama Mitogen-activated protein kinase kinase kinase kinase 2 (EC 2.7.11.1) (B lymphocyte serine/threonine-protein kinase) (Germinal center kinase) (GC kinase) (MAPK/ERK kinase kinase kinase 2) (MEK kinase kinase 2) (MEKKK 2) (Rab8-interacting protein) Serine/threonine-protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Acts as a MAPK kinase kinase kinase (MAP4K) and is an upstream activator of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway and to a lesser extent of the p38 MAPKs signaling pathway. Required for the efficient activation of JNKs by TRAF6-dependent stimuli, including pathogen-associated molecular patterns (PAMPs) such as polyinosine-polycytidine (poly(IC)), lipopolysaccharides (LPS), lipid A, peptidoglycan (PGN), or bacterial flagellin. To a lesser degree, IL-1 and engagement of CD40 also stimulate MAP4K2-mediated JNKs activation. The requirement for MAP4K2/GCK is most pronounced for LPS signaling, and extends to LPS stimulation of c-Jun phosphorylation and induction of IL-8. Enhances MAP3K1 oligomerization, which may relieve N-terminal mediated MAP3K1 autoinhibition and lead to activation following autophosphorylation. Also mediates the SAP/JNK signaling pathway and the p38 MAPKs signaling pathway through activation of the MAP3Ks MAP3K10/MLK2 and MAP3K11/MLK3. May play a role in the regulation of vesicle targeting or fusion. regulation of vesicle targeting or fusion. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:11784851, ECO:0000269|PubMed:15456887, ECO:0000269|PubMed:17584736, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:7477268, ECO:0000269|PubMed:7515885, ECO:0000269|PubMed:9712898}.
Q14152 EIF3A T735 Sugiyama Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}.
O75369 FLNB T490 Sugiyama Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro.
P10809 HSPD1 T331 Sugiyama 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}.
P49792 RANBP2 T2679 Sugiyama E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
Q05682 CALD1 T167 Sugiyama Caldesmon (CDM) Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}.
Q9UJW0 DCTN4 T141 Sugiyama Dynactin subunit 4 (Dyn4) (Dynactin subunit p62) Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules. {ECO:0000250|UniProtKB:A0A4X1TB62}.
Q5S007 LRRK2 T1404 SIGNOR|EPSD|PSP Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}.
Q02952 AKAP12 T949 Sugiyama A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
P30622 CLIP1 T731 Sugiyama CAP-Gly domain-containing linker protein 1 (Cytoplasmic linker protein 1) (Cytoplasmic linker protein 170 alpha-2) (CLIP-170) (Reed-Sternberg intermediate filament-associated protein) (Restin) Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes microtubule growth and microtubule bundling. Links cytoplasmic vesicles to microtubules and thereby plays an important role in intracellular vesicle trafficking. Plays a role macropinocytosis and endosome trafficking. {ECO:0000269|PubMed:12433698, ECO:0000269|PubMed:17563362, ECO:0000269|PubMed:17889670}.
P46013 MKI67 T2094 Sugiyama Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
O60841 EIF5B T92 Sugiyama Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
P62316 SNRPD2 T26 Sugiyama Small nuclear ribonucleoprotein Sm D2 (Sm-D2) (snRNP core protein D2) Plays a role in pre-mRNA splicing as a core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome (PubMed:11991638, PubMed:18984161, PubMed:19325628, PubMed:23333303, PubMed:25555158, PubMed:26912367, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:32494006). Component of both the pre-catalytic spliceosome B complex and activated spliceosome C complexes (PubMed:11991638, PubMed:28076346, PubMed:28502770, PubMed:28781166). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19325628, ECO:0000269|PubMed:23333303, ECO:0000269|PubMed:25555158, ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006}.
Q8TEW0 PARD3 T965 Sugiyama Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}.
O43852 CALU T60 EPSD|PSP Calumenin (Crocalbin) (IEF SSP 9302) Involved in regulation of vitamin K-dependent carboxylation of multiple N-terminal glutamate residues. Seems to inhibit gamma-carboxylase GGCX. Binds 7 calcium ions with a low affinity (By similarity). {ECO:0000250}.
P30740 SERPINB1 T251 Sugiyama Leukocyte elastase inhibitor (LEI) (Monocyte/neutrophil elastase inhibitor) (EI) (M/NEI) (Peptidase inhibitor 2) (PI-2) (Serpin B1) Neutrophil serine protease inhibitor that plays an essential role in the regulation of the innate immune response, inflammation and cellular homeostasis (PubMed:30692621). Acts primarily to protect the cell from proteases released in the cytoplasm during stress or infection. These proteases are important in killing microbes but when released from granules, these potent enzymes also destroy host proteins and contribute to mortality. Regulates the activity of the neutrophil proteases elastase, cathepsin G, proteinase-3, chymase, chymotrypsin, and kallikrein-3 (PubMed:11747453, PubMed:30692621). Also acts as a potent intracellular inhibitor of GZMH by directly blocking its proteolytic activity (PubMed:23269243). During inflammation, limits the activity of inflammatory caspases CASP1, CASP4 and CASP5 by suppressing their caspase-recruitment domain (CARD) oligomerization and enzymatic activation (PubMed:30692621). When secreted, promotes the proliferation of beta-cells via its protease inhibitory function (PubMed:26701651). {ECO:0000269|PubMed:11747453, ECO:0000269|PubMed:23269243, ECO:0000269|PubMed:26701651, ECO:0000269|PubMed:30692621}.
Q9UPN3 MACF1 T1097 Sugiyama Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
P42696 RBM34 T91 Sugiyama RNA-binding protein 34 (RNA-binding motif protein 34) None
P14598 NCF1 T356 SIGNOR|EPSD|PSP Neutrophil cytosol factor 1 (NCF-1) (47 kDa autosomal chronic granulomatous disease protein) (47 kDa neutrophil oxidase factor) (NCF-47K) (Neutrophil NADPH oxidase factor 1) (Nox organizer 2) (Nox-organizing protein 2) (SH3 and PX domain-containing protein 1A) (p47-phox) Subunit of the phagocyte NADPH oxidase complex that mediates the transfer of electrons from cytosolic NADPH to O2 to produce the superoxide anion (O2(-)) (PubMed:2547247, PubMed:2550933, PubMed:38355798). In the activated complex, electrons are first transferred from NADPH to flavin adenine dinucleotide (FAD) and subsequently transferred via two heme molecules to molecular oxygen, producing superoxide through an outer-sphere reaction (PubMed:38355798). Activation of the NADPH oxidase complex is initiated by the assembly of cytosolic subunits of the NADPH oxidase complex with the core NADPH oxidase complex to form a complex at the plasma membrane or phagosomal membrane (PubMed:38355798). This activation process is initiated by phosphorylation dependent binding of the cytosolic NCF1/p47-phox subunit to the C-terminus of CYBA/p22-phox (PubMed:12732142, PubMed:19801500). {ECO:0000269|PubMed:12732142, ECO:0000269|PubMed:19801500, ECO:0000269|PubMed:2547247, ECO:0000269|PubMed:2550933, ECO:0000269|PubMed:38355798}.
Q6P1R4 DUS1L T365 Sugiyama tRNA-dihydrouridine(16/17) synthase [NAD(P)(+)]-like (EC 1.3.1.88) (tRNA-dihydrouridine synthase 1-like) Catalyzes the synthesis of dihydrouridine, a modified base found in the D-loop of most tRNAs (PubMed:34798057, PubMed:39354220). Specifically modifies U16 and U17 in cytoplasmic tRNAs (PubMed:39354220). Affects the level of some mature tRNA and thereby the total cellular translation (PubMed:39354220). {ECO:0000269|PubMed:34798057, ECO:0000269|PubMed:39354220}.
Q9UBS0 RPS6KB2 T51 Sugiyama Ribosomal protein S6 kinase beta-2 (S6K-beta-2) (S6K2) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 2) (P70S6K2) (p70-S6K 2) (S6 kinase-related kinase) (SRK) (Serine/threonine-protein kinase 14B) (p70 ribosomal S6 kinase beta) (S6K-beta) (p70 S6 kinase beta) (p70 S6K-beta) (p70 S6KB) (p70-beta) Phosphorylates specifically ribosomal protein S6 (PubMed:29750193). Seems to act downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression in an alternative pathway regulated by MEAK7 (PubMed:29750193). {ECO:0000269|PubMed:29750193}.
Q9UHD2 TBK1 T389 Sugiyama Serine/threonine-protein kinase TBK1 (EC 2.7.11.1) (NF-kappa-B-activating kinase) (T2K) (TANK-binding kinase 1) Serine/threonine kinase that plays an essential role in regulating inflammatory responses to foreign agents (PubMed:10581243, PubMed:11839743, PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:15485837, PubMed:18583960, PubMed:21138416, PubMed:23453971, PubMed:23453972, PubMed:23746807, PubMed:25636800, PubMed:26611359, PubMed:32404352, PubMed:34363755, PubMed:32298923). Following activation of toll-like receptors by viral or bacterial components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors (IRFs) IRF3 and IRF7 as well as DDX3X (PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:18583960, PubMed:25636800). This activity allows subsequent homodimerization and nuclear translocation of the IRFs leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNA and IFNB (PubMed:12702806, PubMed:15367631, PubMed:25636800, PubMed:32972995). In order to establish such an antiviral state, TBK1 form several different complexes whose composition depends on the type of cell and cellular stimuli (PubMed:23453971, PubMed:23453972, PubMed:23746807). Plays a key role in IRF3 activation: acts by first phosphorylating innate adapter proteins MAVS, STING1 and TICAM1 on their pLxIS motif, leading to recruitment of IRF3, thereby licensing IRF3 for phosphorylation by TBK1 (PubMed:25636800, PubMed:30842653, PubMed:37926288). Phosphorylated IRF3 dissociates from the adapter proteins, dimerizes, and then enters the nucleus to induce expression of interferons (PubMed:25636800). Thus, several scaffolding molecules including FADD, TRADD, MAVS, AZI2, TANK or TBKBP1/SINTBAD can be recruited to the TBK1-containing-complexes (PubMed:21931631). Under particular conditions, functions as a NF-kappa-B effector by phosphorylating NF-kappa-B inhibitor alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus (PubMed:10783893, PubMed:15489227). Restricts bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177', thus enhancing LC3 binding affinity and antibacterial autophagy (PubMed:21617041). Phosphorylates SMCR8 component of the C9orf72-SMCR8 complex, promoting autophagosome maturation (PubMed:27103069). Phosphorylates ATG8 proteins MAP1LC3C and GABARAPL2, thereby preventing their delipidation and premature removal from nascent autophagosomes (PubMed:31709703). Seems to play a role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, which leads to a negative impact on insulin sensitivity (By similarity). Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C (PubMed:21270402). Phosphorylates Borna disease virus (BDV) P protein (PubMed:16155125). Plays an essential role in the TLR3- and IFN-dependent control of herpes virus HSV-1 and HSV-2 infections in the central nervous system (PubMed:22851595). Acts both as a positive and negative regulator of the mTORC1 complex, depending on the context: activates mTORC1 in response to growth factors by catalyzing phosphorylation of MTOR, while it limits the mTORC1 complex by promoting phosphorylation of RPTOR (PubMed:29150432, PubMed:31530866). Acts as a positive regulator of the mTORC2 complex by mediating phosphorylation of MTOR, leading to increased phosphorylation and activation of AKT1 (By similarity). Phosphorylates and activates AKT1 (PubMed:21464307). Involved in the regulation of TNF-induced RIPK1-mediated cell death, probably acting via CYLD phosphorylation that in turn controls RIPK1 ubiquitination status (PubMed:34363755). Also participates in the differentiation of T follicular regulatory cells together with the receptor ICOS (PubMed:27135603). {ECO:0000250|UniProtKB:Q9WUN2, ECO:0000269|PubMed:10581243, ECO:0000269|PubMed:10783893, ECO:0000269|PubMed:11839743, ECO:0000269|PubMed:12692549, ECO:0000269|PubMed:12702806, ECO:0000269|PubMed:14703513, ECO:0000269|PubMed:15367631, ECO:0000269|PubMed:15485837, ECO:0000269|PubMed:15489227, ECO:0000269|PubMed:16155125, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:21270402, ECO:0000269|PubMed:21464307, ECO:0000269|PubMed:21617041, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:22851595, ECO:0000269|PubMed:23453971, ECO:0000269|PubMed:23453972, ECO:0000269|PubMed:23746807, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:26611359, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27135603, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:30842653, ECO:0000269|PubMed:31530866, ECO:0000269|PubMed:31709703, ECO:0000269|PubMed:32298923, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:34363755, ECO:0000269|PubMed:37926288}.
O43823 AKAP8 T316 Sugiyama A-kinase anchor protein 8 (AKAP-8) (A-kinase anchor protein 95 kDa) (AKAP 95) Anchoring protein that mediates the subcellular compartmentation of cAMP-dependent protein kinase (PKA type II) (PubMed:9473338). Acts as an anchor for a PKA-signaling complex onto mitotic chromosomes, which is required for maintenance of chromosomes in a condensed form throughout mitosis. Recruits condensin complex subunit NCAPD2 to chromosomes required for chromatin condensation; the function appears to be independent from PKA-anchoring (PubMed:10601332, PubMed:10791967, PubMed:11964380). May help to deliver cyclin D/E to CDK4 to facilitate cell cycle progression (PubMed:14641107). Required for cell cycle G2/M transition and histone deacetylation during mitosis. In mitotic cells recruits HDAC3 to the vicinity of chromatin leading to deacetylation and subsequent phosphorylation at 'Ser-10' of histone H3; in this function may act redundantly with AKAP8L (PubMed:16980585). Involved in nuclear retention of RPS6KA1 upon ERK activation thus inducing cell proliferation (PubMed:22130794). May be involved in regulation of DNA replication by acting as scaffold for MCM2 (PubMed:12740381). Enhances HMT activity of the KMT2 family MLL4/WBP7 complex and is involved in transcriptional regulation. In a teratocarcinoma cell line is involved in retinoic acid-mediated induction of developmental genes implicating H3 'Lys-4' methylation (PubMed:23995757). May be involved in recruitment of active CASP3 to the nucleus in apoptotic cells (PubMed:16227597). May act as a carrier protein of GJA1 for its transport to the nucleus (PubMed:26880274). May play a repressive role in the regulation of rDNA transcription. Preferentially binds GC-rich DNA in vitro. In cells, associates with ribosomal RNA (rRNA) chromatin, preferentially with rRNA promoter and transcribed regions (PubMed:26683827). Involved in modulation of Toll-like receptor signaling. Required for the cAMP-dependent suppression of TNF-alpha in early stages of LPS-induced macrophage activation; the function probably implicates targeting of PKA to NFKB1 (By similarity). {ECO:0000250|UniProtKB:Q63014, ECO:0000250|UniProtKB:Q9DBR0, ECO:0000269|PubMed:10601332, ECO:0000269|PubMed:10791967, ECO:0000269|PubMed:11964380, ECO:0000269|PubMed:16980585, ECO:0000269|PubMed:22130794, ECO:0000269|PubMed:26683827, ECO:0000269|PubMed:26880274, ECO:0000305|PubMed:14641107, ECO:0000305|PubMed:9473338}.
Download
reactome_id name p -log10_p
R-HSA-68886 M Phase 7.643886e-13 12.117
R-HSA-1640170 Cell Cycle 3.709921e-12 11.431
R-HSA-69278 Cell Cycle, Mitotic 5.808687e-12 11.236
R-HSA-68882 Mitotic Anaphase 3.163345e-10 9.500
R-HSA-2555396 Mitotic Metaphase and Anaphase 3.565392e-10 9.448
R-HSA-68877 Mitotic Prometaphase 6.752838e-10 9.171
R-HSA-2467813 Separation of Sister Chromatids 6.178662e-10 9.209
R-HSA-422475 Axon guidance 1.783415e-09 8.749
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 7.201305e-09 8.143
R-HSA-9646399 Aggrephagy 9.131736e-09 8.039
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 8.984097e-09 8.047
R-HSA-438064 Post NMDA receptor activation events 2.071327e-08 7.684
R-HSA-9675108 Nervous system development 2.000235e-08 7.699
R-HSA-9663891 Selective autophagy 2.477068e-08 7.606
R-HSA-383280 Nuclear Receptor transcription pathway 7.121593e-08 7.147
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 6.878959e-08 7.162
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 7.434589e-08 7.129
R-HSA-1253288 Downregulation of ERBB4 signaling 1.912042e-07 6.719
R-HSA-9700206 Signaling by ALK in cancer 2.002930e-07 6.698
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 2.002930e-07 6.698
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 3.249293e-07 6.488
R-HSA-69620 Cell Cycle Checkpoints 5.843936e-07 6.233
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 1.006132e-06 5.997
R-HSA-8953854 Metabolism of RNA 9.862334e-07 6.006
R-HSA-5683057 MAPK family signaling cascades 1.967903e-06 5.706
R-HSA-8953897 Cellular responses to stimuli 3.207201e-06 5.494
R-HSA-5693606 DNA Double Strand Break Response 4.151966e-06 5.382
R-HSA-2262752 Cellular responses to stress 4.339914e-06 5.363
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 4.889747e-06 5.311
R-HSA-983189 Kinesins 5.559089e-06 5.255
R-HSA-389960 Formation of tubulin folding intermediates by CCT/TriC 6.490003e-06 5.188
R-HSA-389958 Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 6.600613e-06 5.180
R-HSA-69275 G2/M Transition 8.451717e-06 5.073
R-HSA-453274 Mitotic G2-G2/M phases 1.005279e-05 4.998
R-HSA-437239 Recycling pathway of L1 1.130001e-05 4.947
R-HSA-390522 Striated Muscle Contraction 1.350073e-05 4.870
R-HSA-9764561 Regulation of CDH1 Function 1.465764e-05 4.834
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 1.554478e-05 4.808
R-HSA-6802957 Oncogenic MAPK signaling 1.523566e-05 4.817
R-HSA-1632852 Macroautophagy 2.009857e-05 4.697
R-HSA-2132295 MHC class II antigen presentation 2.182350e-05 4.661
R-HSA-5684996 MAPK1/MAPK3 signaling 2.360413e-05 4.627
R-HSA-1227986 Signaling by ERBB2 2.387344e-05 4.622
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 2.568633e-05 4.590
R-HSA-8868773 rRNA processing in the nucleus and cytosol 2.670708e-05 4.573
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 2.609418e-05 4.583
R-HSA-190840 Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane 2.944382e-05 4.531
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 3.188333e-05 4.496
R-HSA-373760 L1CAM interactions 3.227221e-05 4.491
R-HSA-389957 Prefoldin mediated transfer of substrate to CCT/TriC 3.233207e-05 4.490
R-HSA-376176 Signaling by ROBO receptors 3.410332e-05 4.467
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 3.453908e-05 4.462
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 3.784173e-05 4.422
R-HSA-8848021 Signaling by PTK6 3.784173e-05 4.422
R-HSA-6804760 Regulation of TP53 Activity through Methylation 4.012758e-05 4.397
R-HSA-190872 Transport of connexons to the plasma membrane 4.012758e-05 4.397
R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic 4.507022e-05 4.346
R-HSA-174048 APC/C:Cdc20 mediated degradation of Cyclin B 5.386799e-05 4.269
R-HSA-8856688 Golgi-to-ER retrograde transport 6.463848e-05 4.190
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 6.312924e-05 4.200
R-HSA-162582 Signal Transduction 6.771242e-05 4.169
R-HSA-389977 Post-chaperonin tubulin folding pathway 7.131725e-05 4.147
R-HSA-3928663 EPHA-mediated growth cone collapse 8.589115e-05 4.066
R-HSA-5658442 Regulation of RAS by GAPs 8.524028e-05 4.069
R-HSA-193639 p75NTR signals via NF-kB 8.504919e-05 4.070
R-HSA-5673001 RAF/MAP kinase cascade 7.633697e-05 4.117
R-HSA-9612973 Autophagy 8.455755e-05 4.073
R-HSA-1500931 Cell-Cell communication 8.014825e-05 4.096
R-HSA-9664873 Pexophagy 8.126631e-05 4.090
R-HSA-1295596 Spry regulation of FGF signaling 8.504919e-05 4.070
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 8.227816e-05 4.085
R-HSA-4420097 VEGFA-VEGFR2 Pathway 8.818329e-05 4.055
R-HSA-179409 APC-Cdc20 mediated degradation of Nek2A 9.321980e-05 4.030
R-HSA-72737 Cap-dependent Translation Initiation 9.728540e-05 4.012
R-HSA-72613 Eukaryotic Translation Initiation 9.728540e-05 4.012
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 9.802384e-05 4.009
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 1.009711e-04 3.996
R-HSA-9619483 Activation of AMPK downstream of NMDARs 1.072702e-04 3.970
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 1.071084e-04 3.970
R-HSA-8876493 InlA-mediated entry of Listeria monocytogenes into host cells 1.212516e-04 3.916
R-HSA-69618 Mitotic Spindle Checkpoint 1.292311e-04 3.889
R-HSA-5610787 Hedgehog 'off' state 1.292311e-04 3.889
R-HSA-72649 Translation initiation complex formation 1.570103e-04 3.804
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 1.633518e-04 3.787
R-HSA-8863795 Downregulation of ERBB2 signaling 1.635375e-04 3.786
R-HSA-5693532 DNA Double-Strand Break Repair 1.734009e-04 3.761
R-HSA-209560 NF-kB is activated and signals survival 1.754508e-04 3.756
R-HSA-6802949 Signaling by RAS mutants 1.893281e-04 3.723
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 1.893281e-04 3.723
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 1.893281e-04 3.723
R-HSA-9649948 Signaling downstream of RAS mutants 1.893281e-04 3.723
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 1.900507e-04 3.721
R-HSA-141424 Amplification of signal from the kinetochores 2.049309e-04 3.688
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 2.049309e-04 3.688
R-HSA-72702 Ribosomal scanning and start codon recognition 2.090708e-04 3.680
R-HSA-111465 Apoptotic cleavage of cellular proteins 2.425045e-04 3.615
R-HSA-209543 p75NTR recruits signalling complexes 2.471930e-04 3.607
R-HSA-194138 Signaling by VEGF 2.450130e-04 3.611
R-HSA-9692914 SARS-CoV-1-host interactions 2.608242e-04 3.584
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 2.615232e-04 3.582
R-HSA-9613829 Chaperone Mediated Autophagy 2.703182e-04 3.568
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 2.751681e-04 3.560
R-HSA-69481 G2/M Checkpoints 2.912118e-04 3.536
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 3.390918e-04 3.470
R-HSA-9828211 Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation 3.425163e-04 3.465
R-HSA-9656223 Signaling by RAF1 mutants 3.601753e-04 3.443
R-HSA-446728 Cell junction organization 3.984003e-04 3.400
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 4.182822e-04 3.379
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 4.482307e-04 3.348
R-HSA-927802 Nonsense-Mediated Decay (NMD) 4.540657e-04 3.343
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 4.540657e-04 3.343
R-HSA-9841251 Mitochondrial unfolded protein response (UPRmt) 4.555549e-04 3.341
R-HSA-2682334 EPH-Ephrin signaling 4.758351e-04 3.323
R-HSA-2559585 Oncogene Induced Senescence 4.961329e-04 3.304
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 5.023957e-04 3.299
R-HSA-9706377 FLT3 signaling by CBL mutants 5.832416e-04 3.234
R-HSA-72312 rRNA processing 5.966816e-04 3.224
R-HSA-2173791 TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) 6.068539e-04 3.217
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 6.368741e-04 3.196
R-HSA-9674555 Signaling by CSF3 (G-CSF) 6.657350e-04 3.177
R-HSA-110056 MAPK3 (ERK1) activation 7.242669e-04 3.140
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 6.763232e-04 3.170
R-HSA-72689 Formation of a pool of free 40S subunits 6.999512e-04 3.155
R-HSA-428359 Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... 7.242669e-04 3.140
R-HSA-1250196 SHC1 events in ERBB2 signaling 7.968240e-04 3.099
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 7.540290e-04 3.123
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 7.674468e-04 3.115
R-HSA-6807878 COPI-mediated anterograde transport 7.682602e-04 3.114
R-HSA-9764265 Regulation of CDH1 Expression and Function 7.988039e-04 3.098
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 7.988039e-04 3.098
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 7.674468e-04 3.115
R-HSA-177929 Signaling by EGFR 7.674468e-04 3.115
R-HSA-75153 Apoptotic execution phase 7.540290e-04 3.123
R-HSA-421270 Cell-cell junction organization 8.221193e-04 3.085
R-HSA-109581 Apoptosis 8.331429e-04 3.079
R-HSA-449147 Signaling by Interleukins 8.413112e-04 3.075
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 8.635432e-04 3.064
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 8.671736e-04 3.062
R-HSA-9694493 Maturation of protein E 9.544239e-04 3.020
R-HSA-9683683 Maturation of protein E 9.544239e-04 3.020
R-HSA-3134975 Regulation of innate immune responses to cytosolic DNA 1.012694e-03 2.995
R-HSA-936964 Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) 1.012694e-03 2.995
R-HSA-68875 Mitotic Prophase 1.049860e-03 2.979
R-HSA-9766229 Degradation of CDH1 1.126333e-03 2.948
R-HSA-157858 Gap junction trafficking and regulation 1.126333e-03 2.948
R-HSA-9833482 PKR-mediated signaling 1.059471e-03 2.975
R-HSA-1280215 Cytokine Signaling in Immune system 1.174050e-03 2.930
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 1.266759e-03 2.897
R-HSA-453276 Regulation of mitotic cell cycle 1.289704e-03 2.890
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 1.289704e-03 2.890
R-HSA-9668328 Sealing of the nuclear envelope (NE) by ESCRT-III 1.318569e-03 2.880
R-HSA-68884 Mitotic Telophase/Cytokinesis 1.358956e-03 2.867
R-HSA-9824878 Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 1.358956e-03 2.867
R-HSA-9013973 TICAM1-dependent activation of IRF3/IRF7 1.358956e-03 2.867
R-HSA-9620244 Long-term potentiation 1.523645e-03 2.817
R-HSA-5675221 Negative regulation of MAPK pathway 1.438945e-03 2.842
R-HSA-5610780 Degradation of GLI1 by the proteasome 1.438945e-03 2.842
R-HSA-156842 Eukaryotic Translation Elongation 1.376672e-03 2.861
R-HSA-5610785 GLI3 is processed to GLI3R by the proteasome 1.438945e-03 2.842
R-HSA-5610783 Degradation of GLI2 by the proteasome 1.438945e-03 2.842
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 1.466595e-03 2.834
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 1.492413e-03 2.826
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 1.551947e-03 2.809
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 1.553505e-03 2.809
R-HSA-937039 IRAK1 recruits IKK complex 1.797514e-03 2.745
R-HSA-975144 IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 1.797514e-03 2.745
R-HSA-879415 Advanced glycosylation endproduct receptor signaling 1.797514e-03 2.745
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 1.636811e-03 2.786
R-HSA-5633007 Regulation of TP53 Activity 1.690772e-03 2.772
R-HSA-8866427 VLDLR internalisation and degradation 1.797514e-03 2.745
R-HSA-4419969 Depolymerization of the Nuclear Lamina 1.600345e-03 2.796
R-HSA-5205647 Mitophagy 1.796223e-03 2.746
R-HSA-111996 Ca-dependent events 1.648350e-03 2.783
R-HSA-5673000 RAF activation 1.796223e-03 2.746
R-HSA-9013694 Signaling by NOTCH4 1.751979e-03 2.756
R-HSA-5687128 MAPK6/MAPK4 signaling 1.716019e-03 2.765
R-HSA-190861 Gap junction assembly 1.796223e-03 2.746
R-HSA-5689901 Metalloprotease DUBs 1.819392e-03 2.740
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 1.843584e-03 2.734
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 1.843584e-03 2.734
R-HSA-110320 Translesion Synthesis by POLH 1.976915e-03 2.704
R-HSA-912631 Regulation of signaling by CBL 1.976915e-03 2.704
R-HSA-9948299 Ribosome-associated quality control 1.986284e-03 2.702
R-HSA-5358351 Signaling by Hedgehog 1.986284e-03 2.702
R-HSA-9678108 SARS-CoV-1 Infection 2.040407e-03 2.690
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 2.059106e-03 2.686
R-HSA-390466 Chaperonin-mediated protein folding 2.250735e-03 2.648
R-HSA-69231 Cyclin D associated events in G1 2.140271e-03 2.670
R-HSA-69236 G1 Phase 2.140271e-03 2.670
R-HSA-1059683 Interleukin-6 signaling 2.331667e-03 2.632
R-HSA-8948747 Regulation of PTEN localization 2.144533e-03 2.669
R-HSA-9006925 Intracellular signaling by second messengers 2.278209e-03 2.642
R-HSA-111933 Calmodulin induced events 2.401049e-03 2.620
R-HSA-5617833 Cilium Assembly 2.266195e-03 2.645
R-HSA-111997 CaM pathway 2.401049e-03 2.620
R-HSA-170834 Signaling by TGF-beta Receptor Complex 2.306071e-03 2.637
R-HSA-190828 Gap junction trafficking 2.140271e-03 2.670
R-HSA-8853659 RET signaling 2.401049e-03 2.620
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 2.305289e-03 2.637
R-HSA-1489509 DAG and IP3 signaling 2.426615e-03 2.615
R-HSA-156902 Peptide chain elongation 2.456776e-03 2.610
R-HSA-418990 Adherens junctions interactions 2.537133e-03 2.596
R-HSA-5654732 Negative regulation of FGFR3 signaling 2.542912e-03 2.595
R-HSA-5205685 PINK1-PRKN Mediated Mitophagy 2.542912e-03 2.595
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 2.926666e-03 2.534
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 2.926666e-03 2.534
R-HSA-4641258 Degradation of DVL 2.757907e-03 2.559
R-HSA-2979096 NOTCH2 Activation and Transmission of Signal to the Nucleus 2.926666e-03 2.534
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 2.757907e-03 2.559
R-HSA-2980766 Nuclear Envelope Breakdown 2.891532e-03 2.539
R-HSA-3371556 Cellular response to heat stress 2.824514e-03 2.549
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 2.757907e-03 2.559
R-HSA-205043 NRIF signals cell death from the nucleus 2.972766e-03 2.527
R-HSA-5654733 Negative regulation of FGFR4 signaling 2.978746e-03 2.526
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 2.691577e-03 2.570
R-HSA-166166 MyD88-independent TLR4 cascade 2.691577e-03 2.570
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 2.972766e-03 2.527
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 2.902087e-03 2.537
R-HSA-9659379 Sensory processing of sound 2.819497e-03 2.550
R-HSA-5357801 Programmed Cell Death 2.614937e-03 2.583
R-HSA-9010642 ROBO receptors bind AKAP5 3.012524e-03 2.521
R-HSA-3785653 Myoclonic epilepsy of Lafora 3.012524e-03 2.521
R-HSA-9637628 Modulation by Mtb of host immune system 3.012524e-03 2.521
R-HSA-8849469 PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 3.012524e-03 2.521
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 3.090161e-03 2.510
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 3.169477e-03 2.499
R-HSA-5693607 Processing of DNA double-strand break ends 3.372540e-03 2.472
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 3.441392e-03 2.463
R-HSA-5620924 Intraflagellar transport 3.471593e-03 2.459
R-HSA-8876384 Listeria monocytogenes entry into host cells 3.512811e-03 2.454
R-HSA-450302 activated TAK1 mediates p38 MAPK activation 3.512811e-03 2.454
R-HSA-9705462 Inactivation of CSF3 (G-CSF) signaling 3.512811e-03 2.454
R-HSA-69541 Stabilization of p53 3.594822e-03 2.444
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 3.611786e-03 2.442
R-HSA-9652169 Signaling by MAP2K mutants 4.212667e-03 2.375
R-HSA-430116 GP1b-IX-V activation signalling 4.093987e-03 2.388
R-HSA-112411 MAPK1 (ERK2) activation 4.093987e-03 2.388
R-HSA-112409 RAF-independent MAPK1/3 activation 4.181976e-03 2.379
R-HSA-391251 Protein folding 3.731949e-03 2.428
R-HSA-937042 IRAK2 mediated activation of TAK1 complex 4.093987e-03 2.388
R-HSA-110312 Translesion synthesis by REV1 3.732241e-03 2.428
R-HSA-8941858 Regulation of RUNX3 expression and activity 4.080840e-03 2.389
R-HSA-450294 MAP kinase activation 4.368221e-03 2.360
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 3.990113e-03 2.399
R-HSA-9705683 SARS-CoV-2-host interactions 4.195850e-03 2.377
R-HSA-5620920 Cargo trafficking to the periciliary membrane 3.864231e-03 2.413
R-HSA-199991 Membrane Trafficking 4.502246e-03 2.347
R-HSA-9607240 FLT3 Signaling 4.615985e-03 2.336
R-HSA-5656121 Translesion synthesis by POLI 4.621494e-03 2.335
R-HSA-169893 Prolonged ERK activation events 4.621494e-03 2.335
R-HSA-9758274 Regulation of NF-kappa B signaling 4.621494e-03 2.335
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 4.621937e-03 2.335
R-HSA-1236394 Signaling by ERBB4 5.065455e-03 2.295
R-HSA-69473 G2/M DNA damage checkpoint 5.065455e-03 2.295
R-HSA-72764 Eukaryotic Translation Termination 5.099250e-03 2.292
R-HSA-5674135 MAP2K and MAPK activation 5.203397e-03 2.284
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 5.301267e-03 2.276
R-HSA-380259 Loss of Nlp from mitotic centrosomes 5.301267e-03 2.276
R-HSA-5654726 Negative regulation of FGFR1 signaling 5.315051e-03 2.274
R-HSA-9014325 TICAM1,TRAF6-dependent induction of TAK1 complex 5.411174e-03 2.267
R-HSA-5689877 Josephin domain DUBs 5.411174e-03 2.267
R-HSA-5693538 Homology Directed Repair 5.461624e-03 2.263
R-HSA-5655862 Translesion synthesis by POLK 5.651804e-03 2.248
R-HSA-975110 TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling 5.651804e-03 2.248
R-HSA-9020591 Interleukin-12 signaling 6.018116e-03 2.221
R-HSA-447115 Interleukin-12 family signaling 6.032725e-03 2.219
R-HSA-5696394 DNA Damage Recognition in GG-NER 6.069410e-03 2.217
R-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production 6.434315e-03 2.191
R-HSA-8854518 AURKA Activation by TPX2 6.985229e-03 2.156
R-HSA-1980145 Signaling by NOTCH2 6.900874e-03 2.161
R-HSA-349425 Autodegradation of the E3 ubiquitin ligase COP1 6.900874e-03 2.161
R-HSA-975871 MyD88 cascade initiated on plasma membrane 6.367453e-03 2.196
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 6.367453e-03 2.196
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 6.367453e-03 2.196
R-HSA-5654727 Negative regulation of FGFR2 signaling 6.900874e-03 2.161
R-HSA-5218921 VEGFR2 mediated cell proliferation 6.754942e-03 2.170
R-HSA-9645460 Alpha-protein kinase 1 signaling pathway 6.984931e-03 2.156
R-HSA-5654743 Signaling by FGFR4 6.547810e-03 2.184
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 6.900874e-03 2.161
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 6.597363e-03 2.181
R-HSA-901042 Calnexin/calreticulin cycle 6.900874e-03 2.161
R-HSA-397014 Muscle contraction 7.425120e-03 2.129
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 6.383473e-03 2.195
R-HSA-453279 Mitotic G1 phase and G1/S transition 7.767781e-03 2.110
R-HSA-174113 SCF-beta-TrCP mediated degradation of Emi1 7.813973e-03 2.107
R-HSA-187687 Signalling to ERKs 7.813973e-03 2.107
R-HSA-1643713 Signaling by EGFR in Cancer 7.823533e-03 2.107
R-HSA-2408557 Selenocysteine synthesis 7.874614e-03 2.104
R-HSA-5654741 Signaling by FGFR3 8.139987e-03 2.089
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 8.139987e-03 2.089
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 8.139987e-03 2.089
R-HSA-6806834 Signaling by MET 8.342136e-03 2.079
R-HSA-9682385 FLT3 signaling in disease 8.813233e-03 2.055
R-HSA-381183 ATF6 (ATF6-alpha) activates chaperone genes 8.834511e-03 2.054
R-HSA-192823 Viral mRNA Translation 9.026525e-03 2.044
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 9.037180e-03 2.044
R-HSA-5674499 Negative feedback regulation of MAPK pathway 9.239116e-03 2.034
R-HSA-163358 PKA-mediated phosphorylation of key metabolic factors 9.239116e-03 2.034
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 9.841869e-03 2.007
R-HSA-448424 Interleukin-17 signaling 9.841869e-03 2.007
R-HSA-4641257 Degradation of AXIN 9.903155e-03 2.004
R-HSA-8955332 Carboxyterminal post-translational modifications of tubulin 1.000616e-02 2.000
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 1.000616e-02 2.000
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 1.000616e-02 2.000
R-HSA-446652 Interleukin-1 family signaling 1.075936e-02 1.968
R-HSA-913531 Interferon Signaling 1.094227e-02 1.961
R-HSA-1358803 Downregulation of ERBB2:ERBB3 signaling 1.097743e-02 1.959
R-HSA-2691232 Constitutive Signaling by NOTCH1 HD Domain Mutants 1.097743e-02 1.959
R-HSA-2691230 Signaling by NOTCH1 HD Domain Mutants in Cancer 1.097743e-02 1.959
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 1.099248e-02 1.959
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 1.105020e-02 1.957
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 1.105020e-02 1.957
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 1.153321e-02 1.938
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 1.153321e-02 1.938
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 1.153321e-02 1.938
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 1.153321e-02 1.938
R-HSA-2644603 Signaling by NOTCH1 in Cancer 1.153321e-02 1.938
R-HSA-6802953 RAS signaling downstream of NF1 loss-of-function variants 1.265576e-02 1.898
R-HSA-5696397 Gap-filling DNA repair synthesis and ligation in GG-NER 1.539044e-02 1.813
R-HSA-9615710 Late endosomal microautophagy 1.175454e-02 1.930
R-HSA-9927432 Developmental Lineage of Mammary Gland Myoepithelial Cells 1.175454e-02 1.930
R-HSA-211733 Regulation of activated PAK-2p34 by proteasome mediated degradation 1.504256e-02 1.823
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 1.251181e-02 1.903
R-HSA-380287 Centrosome maturation 1.457282e-02 1.836
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 1.244250e-02 1.905
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 1.248654e-02 1.904
R-HSA-73893 DNA Damage Bypass 1.217255e-02 1.915
R-HSA-174490 Membrane binding and targetting of GAG proteins 1.342939e-02 1.872
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 1.217255e-02 1.915
R-HSA-170968 Frs2-mediated activation 1.342939e-02 1.872
R-HSA-1227990 Signaling by ERBB2 in Cancer 1.332777e-02 1.875
R-HSA-6806003 Regulation of TP53 Expression and Degradation 1.237276e-02 1.908
R-HSA-1169091 Activation of NF-kappaB in B cells 1.466511e-02 1.834
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 1.328715e-02 1.877
R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 1.217255e-02 1.915
R-HSA-69563 p53-Dependent G1 DNA Damage Response 1.217255e-02 1.915
R-HSA-975155 MyD88 dependent cascade initiated on endosome 1.412666e-02 1.850
R-HSA-182971 EGFR downregulation 1.504256e-02 1.823
R-HSA-69615 G1/S DNA Damage Checkpoints 1.484770e-02 1.828
R-HSA-9604323 Negative regulation of NOTCH4 signaling 1.376117e-02 1.861
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 1.539044e-02 1.813
R-HSA-112043 PLC beta mediated events 1.256950e-02 1.901
R-HSA-936440 Negative regulators of DDX58/IFIH1 signaling 1.504256e-02 1.823
R-HSA-1169408 ISG15 antiviral mechanism 1.457282e-02 1.836
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 1.329445e-02 1.876
R-HSA-381033 ATF6 (ATF6-alpha) activates chaperones 1.342939e-02 1.872
R-HSA-9931295 PD-L1(CD274) glycosylation and translocation to plasma membrane 1.329445e-02 1.876
R-HSA-9636383 Prevention of phagosomal-lysosomal fusion 1.329445e-02 1.876
R-HSA-9833109 Evasion by RSV of host interferon responses 1.504256e-02 1.823
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 1.604163e-02 1.795
R-HSA-975163 IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation 1.620417e-02 1.790
R-HSA-174495 Synthesis And Processing Of GAG, GAGPOL Polyproteins 1.620417e-02 1.790
R-HSA-8849473 PTK6 Expression 1.670355e-02 1.777
R-HSA-2470946 Cohesin Loading onto Chromatin 1.670355e-02 1.777
R-HSA-199977 ER to Golgi Anterograde Transport 1.689218e-02 1.772
R-HSA-1234174 Cellular response to hypoxia 1.741644e-02 1.759
R-HSA-445355 Smooth Muscle Contraction 1.750912e-02 1.757
R-HSA-2173788 Downregulation of TGF-beta receptor signaling 1.769622e-02 1.752
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 1.769622e-02 1.752
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 1.775003e-02 1.751
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 1.789687e-02 1.747
R-HSA-4086400 PCP/CE pathway 1.812546e-02 1.742
R-HSA-112315 Transmission across Chemical Synapses 1.813485e-02 1.741
R-HSA-9020702 Interleukin-1 signaling 1.824554e-02 1.739
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 1.835558e-02 1.736
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 1.891952e-02 1.723
R-HSA-354192 Integrin signaling 1.891952e-02 1.723
R-HSA-5675482 Regulation of necroptotic cell death 1.891952e-02 1.723
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 1.907059e-02 1.720
R-HSA-937072 TRAF6-mediated induction of TAK1 complex within TLR4 complex 1.931365e-02 1.714
R-HSA-8875360 InlB-mediated entry of Listeria monocytogenes into host cell 1.931365e-02 1.714
R-HSA-168927 TICAM1, RIP1-mediated IKK complex recruitment 1.931365e-02 1.714
R-HSA-6804754 Regulation of TP53 Expression 1.949845e-02 1.710
R-HSA-112040 G-protein mediated events 2.029492e-02 1.693
R-HSA-9637690 Response of Mtb to phagocytosis 2.043621e-02 1.690
R-HSA-9818027 NFE2L2 regulating anti-oxidant/detoxification enzymes 2.109233e-02 1.676
R-HSA-180534 Vpu mediated degradation of CD4 2.109233e-02 1.676
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 2.118959e-02 1.674
R-HSA-5654736 Signaling by FGFR1 2.248716e-02 1.648
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 2.248716e-02 1.648
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 2.276775e-02 1.643
R-HSA-5099900 WNT5A-dependent internalization of FZD4 2.276775e-02 1.643
R-HSA-9708530 Regulation of BACH1 activity 2.276775e-02 1.643
R-HSA-9706369 Negative regulation of FLT3 2.276775e-02 1.643
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 2.296686e-02 1.639
R-HSA-6783589 Interleukin-6 family signaling 2.296686e-02 1.639
R-HSA-5621575 CD209 (DC-SIGN) signaling 2.296686e-02 1.639
R-HSA-5696400 Dual Incision in GG-NER 2.342796e-02 1.630
R-HSA-75815 Ubiquitin-dependent degradation of Cyclin D 2.342796e-02 1.630
R-HSA-168638 NOD1/2 Signaling Pathway 2.342796e-02 1.630
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 2.380389e-02 1.623
R-HSA-4608870 Asymmetric localization of PCP proteins 2.450104e-02 1.611
R-HSA-8878171 Transcriptional regulation by RUNX1 2.460944e-02 1.609
R-HSA-168273 Influenza Viral RNA Transcription and Replication 2.472441e-02 1.607
R-HSA-195253 Degradation of beta-catenin by the destruction complex 2.523367e-02 1.598
R-HSA-8854050 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 2.593098e-02 1.586
R-HSA-169911 Regulation of Apoptosis 2.593098e-02 1.586
R-HSA-1250347 SHC1 events in ERBB4 signaling 2.657450e-02 1.576
R-HSA-141405 Inhibition of the proteolytic activity of APC/C required for the onset of anapha... 2.657450e-02 1.576
R-HSA-141430 Inactivation of APC/C via direct inhibition of the APC/C complex 2.657450e-02 1.576
R-HSA-1963640 GRB2 events in ERBB2 signaling 2.657450e-02 1.576
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 2.657450e-02 1.576
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 2.672784e-02 1.573
R-HSA-5357905 Regulation of TNFR1 signaling 2.672784e-02 1.573
R-HSA-9700645 ALK mutants bind TKIs 2.672979e-02 1.573
R-HSA-450520 HuR (ELAVL1) binds and stabilizes mRNA 2.672979e-02 1.573
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 2.765369e-02 1.558
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 2.765369e-02 1.558
R-HSA-6804757 Regulation of TP53 Degradation 2.860560e-02 1.544
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 2.860560e-02 1.544
R-HSA-180585 Vif-mediated degradation of APOBEC3G 2.860560e-02 1.544
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 2.915886e-02 1.535
R-HSA-9637687 Suppression of phagosomal maturation 2.915886e-02 1.535
R-HSA-5607764 CLEC7A (Dectin-1) signaling 2.990984e-02 1.524
R-HSA-9759194 Nuclear events mediated by NFE2L2 3.060640e-02 1.514
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 3.074004e-02 1.512
R-HSA-4641263 Regulation of FZD by ubiquitination 3.074004e-02 1.512
R-HSA-5210891 Uptake and function of anthrax toxins 3.074004e-02 1.512
R-HSA-3229121 Glycogen storage diseases 3.074004e-02 1.512
R-HSA-9006936 Signaling by TGFB family members 3.084324e-02 1.511
R-HSA-5689896 Ovarian tumor domain proteases 3.145566e-02 1.502
R-HSA-9762114 GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 3.145566e-02 1.502
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 3.216559e-02 1.493
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 3.216559e-02 1.493
R-HSA-8866652 Synthesis of active ubiquitin: roles of E1 and E2 enzymes 3.261360e-02 1.487
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 3.261360e-02 1.487
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 3.261360e-02 1.487
R-HSA-901032 ER Quality Control Compartment (ERQC) 3.261360e-02 1.487
R-HSA-2468052 Establishment of Sister Chromatid Cohesion 3.270976e-02 1.485
R-HSA-111932 CaMK IV-mediated phosphorylation of CREB 3.270976e-02 1.485
R-HSA-532668 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 3.422342e-02 1.466
R-HSA-69242 S Phase 3.437672e-02 1.464
R-HSA-9700649 Drug resistance of ALK mutants 5.159451e-02 1.287
R-HSA-9717329 lorlatinib-resistant ALK mutants 5.159451e-02 1.287
R-HSA-9717326 crizotinib-resistant ALK mutants 5.159451e-02 1.287
R-HSA-9717323 ceritinib-resistant ALK mutants 5.159451e-02 1.287
R-HSA-5467333 APC truncation mutants are not K63 polyubiquitinated 5.159451e-02 1.287
R-HSA-9723907 Loss of Function of TP53 in Cancer 5.159451e-02 1.287
R-HSA-9723905 Loss of function of TP53 in cancer due to loss of tetramerization ability 5.159451e-02 1.287
R-HSA-9717264 ASP-3026-resistant ALK mutants 5.159451e-02 1.287
R-HSA-9717316 alectinib-resistant ALK mutants 5.159451e-02 1.287
R-HSA-9661070 Defective translocation of RB1 mutants to the nucleus 5.159451e-02 1.287
R-HSA-9717301 NVP-TAE684-resistant ALK mutants 5.159451e-02 1.287
R-HSA-9717319 brigatinib-resistant ALK mutants 5.159451e-02 1.287
R-HSA-9851151 MDK and PTN in ALK signaling 4.095055e-02 1.388
R-HSA-1234158 Regulation of gene expression by Hypoxia-inducible Factor 4.656525e-02 1.332
R-HSA-5656169 Termination of translesion DNA synthesis 4.026048e-02 1.395
R-HSA-1251985 Nuclear signaling by ERBB4 4.109147e-02 1.386
R-HSA-72187 mRNA 3'-end processing 4.299801e-02 1.367
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 4.467434e-02 1.350
R-HSA-5696395 Formation of Incision Complex in GG-NER 4.109147e-02 1.386
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 4.244145e-02 1.372
R-HSA-3371571 HSF1-dependent transactivation 3.992712e-02 1.399
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 4.299801e-02 1.367
R-HSA-162588 Budding and maturation of HIV virion 4.890830e-02 1.311
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 4.145929e-02 1.382
R-HSA-5685942 HDR through Homologous Recombination (HRR) 4.912240e-02 1.309
R-HSA-9932298 Degradation of CRY and PER proteins 4.844622e-02 1.315
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 3.992712e-02 1.399
R-HSA-6807070 PTEN Regulation 4.184854e-02 1.378
R-HSA-9759475 Regulation of CDH11 Expression and Function 4.026048e-02 1.395
R-HSA-9755511 KEAP1-NFE2L2 pathway 3.910195e-02 1.408
R-HSA-8948751 Regulation of PTEN stability and activity 4.621753e-02 1.335
R-HSA-1980143 Signaling by NOTCH1 3.755540e-02 1.425
R-HSA-73894 DNA Repair 3.496360e-02 1.456
R-HSA-156711 Polo-like kinase mediated events 3.526866e-02 1.453
R-HSA-9664565 Signaling by ERBB2 KD Mutants 4.026048e-02 1.395
R-HSA-76002 Platelet activation, signaling and aggregation 4.452100e-02 1.351
R-HSA-881907 Gastrin-CREB signalling pathway via PKC and MAPK 4.016289e-02 1.396
R-HSA-186763 Downstream signal transduction 4.890830e-02 1.311
R-HSA-392517 Rap1 signalling 4.016289e-02 1.396
R-HSA-9929356 GSK3B-mediated proteasomal degradation of PD-L1(CD274) 3.769568e-02 1.424
R-HSA-5621481 C-type lectin receptors (CLRs) 4.997239e-02 1.301
R-HSA-5653656 Vesicle-mediated transport 4.005039e-02 1.397
R-HSA-5213460 RIPK1-mediated regulated necrosis 3.448465e-02 1.462
R-HSA-193704 p75 NTR receptor-mediated signalling 3.535362e-02 1.452
R-HSA-937041 IKK complex recruitment mediated by RIP1 4.016289e-02 1.396
R-HSA-5362768 Hh mutants are degraded by ERAD 4.467434e-02 1.350
R-HSA-9929491 SPOP-mediated proteasomal degradation of PD-L1(CD274) 4.467434e-02 1.350
R-HSA-69206 G1/S Transition 3.897736e-02 1.409
R-HSA-1280218 Adaptive Immune System 4.025249e-02 1.395
R-HSA-445144 Signal transduction by L1 4.542357e-02 1.343
R-HSA-6807004 Negative regulation of MET activity 4.542357e-02 1.343
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 4.467434e-02 1.350
R-HSA-8964043 Plasma lipoprotein clearance 3.769568e-02 1.424
R-HSA-168255 Influenza Infection 3.830378e-02 1.417
R-HSA-9008059 Interleukin-37 signaling 4.445831e-02 1.352
R-HSA-381119 Unfolded Protein Response (UPR) 4.184854e-02 1.378
R-HSA-9694516 SARS-CoV-2 Infection 4.000820e-02 1.398
R-HSA-2408522 Selenoamino acid metabolism 3.649059e-02 1.438
R-HSA-9013695 NOTCH4 Intracellular Domain Regulates Transcription 5.104992e-02 1.292
R-HSA-9683701 Translation of Structural Proteins 4.844622e-02 1.315
R-HSA-3322077 Glycogen synthesis 4.542357e-02 1.343
R-HSA-1257604 PIP3 activates AKT signaling 5.203664e-02 1.284
R-HSA-5218859 Regulated Necrosis 5.225997e-02 1.282
R-HSA-9679506 SARS-CoV Infections 5.321675e-02 1.274
R-HSA-9675126 Diseases of mitotic cell cycle 5.361142e-02 1.271
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 5.361142e-02 1.271
R-HSA-3134963 DEx/H-box helicases activate type I IFN and inflammatory cytokines production 5.386367e-02 1.269
R-HSA-3000484 Scavenging by Class F Receptors 5.441196e-02 1.264
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 5.441196e-02 1.264
R-HSA-8878166 Transcriptional regulation by RUNX2 5.465943e-02 1.262
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 5.645141e-02 1.248
R-HSA-1433557 Signaling by SCF-KIT 5.656270e-02 1.247
R-HSA-5387390 Hh mutants abrogate ligand secretion 5.656270e-02 1.247
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 5.656270e-02 1.247
R-HSA-72172 mRNA Splicing 5.666169e-02 1.247
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 5.678321e-02 1.246
R-HSA-75893 TNF signaling 5.678321e-02 1.246
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 5.703962e-02 1.244
R-HSA-175474 Assembly Of The HIV Virion 5.703962e-02 1.244
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 5.856794e-02 1.232
R-HSA-9764260 Regulation of Expression and Function of Type II Classical Cadherins 5.856794e-02 1.232
R-HSA-69202 Cyclin E associated events during G1/S transition 5.891418e-02 1.230
R-HSA-168898 Toll-like Receptor Cascades 5.936479e-02 1.226
R-HSA-187577 SCF(Skp2)-mediated degradation of p27/p21 6.090916e-02 1.215
R-HSA-69002 DNA Replication Pre-Initiation 6.119835e-02 1.213
R-HSA-5632684 Hedgehog 'on' state 6.243263e-02 1.205
R-HSA-9933947 Formation of the non-canonical BAF (ncBAF) complex 6.284612e-02 1.202
R-HSA-442720 CREB1 phosphorylation through the activation of Adenylate Cyclase 6.284612e-02 1.202
R-HSA-75035 Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 6.284612e-02 1.202
R-HSA-6811555 PI5P Regulates TP53 Acetylation 6.284612e-02 1.202
R-HSA-166208 mTORC1-mediated signalling 6.338894e-02 1.198
R-HSA-202403 TCR signaling 6.403495e-02 1.194
R-HSA-109582 Hemostasis 6.426874e-02 1.192
R-HSA-6782135 Dual incision in TC-NER 6.459399e-02 1.190
R-HSA-8878159 Transcriptional regulation by RUNX3 6.539658e-02 1.184
R-HSA-76009 Platelet Aggregation (Plug Formation) 6.544833e-02 1.184
R-HSA-6783310 Fanconi Anemia Pathway 6.544833e-02 1.184
R-HSA-5678895 Defective CFTR causes cystic fibrosis 6.544833e-02 1.184
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 6.544833e-02 1.184
R-HSA-72163 mRNA Splicing - Major Pathway 6.567859e-02 1.183
R-HSA-157118 Signaling by NOTCH 6.599540e-02 1.180
R-HSA-9924644 Developmental Lineages of the Mammary Gland 6.607960e-02 1.180
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 6.607960e-02 1.180
R-HSA-1852241 Organelle biogenesis and maintenance 6.650117e-02 1.177
R-HSA-8937144 Aryl hydrocarbon receptor signalling 6.799740e-02 1.168
R-HSA-9833576 CDH11 homotypic and heterotypic interactions 6.799740e-02 1.168
R-HSA-176417 Phosphorylation of Emi1 6.799740e-02 1.168
R-HSA-8935964 RUNX1 regulates expression of components of tight junctions 6.799740e-02 1.168
R-HSA-9764302 Regulation of CDH19 Expression and Function 6.799740e-02 1.168
R-HSA-3858494 Beta-catenin independent WNT signaling 6.802449e-02 1.167
R-HSA-2559583 Cellular Senescence 6.892716e-02 1.162
R-HSA-69052 Switching of origins to a post-replicative state 6.985558e-02 1.156
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 6.985558e-02 1.156
R-HSA-2299718 Condensation of Prophase Chromosomes 7.018016e-02 1.154
R-HSA-8847993 ERBB2 Activates PTK6 Signaling 7.184525e-02 1.144
R-HSA-391160 Signal regulatory protein family interactions 7.184525e-02 1.144
R-HSA-8963896 HDL assembly 7.184525e-02 1.144
R-HSA-74160 Gene expression (Transcription) 7.328408e-02 1.135
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 7.495008e-02 1.125
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 7.495008e-02 1.125
R-HSA-70171 Glycolysis 7.520245e-02 1.124
R-HSA-73856 RNA Polymerase II Transcription Termination 7.747171e-02 1.111
R-HSA-8939902 Regulation of RUNX2 expression and activity 7.747171e-02 1.111
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 7.779570e-02 1.109
R-HSA-73887 Death Receptor Signaling 7.848274e-02 1.105
R-HSA-6785631 ERBB2 Regulates Cell Motility 8.138456e-02 1.089
R-HSA-446353 Cell-extracellular matrix interactions 8.138456e-02 1.089
R-HSA-9735871 SARS-CoV-1 targets host intracellular signalling and regulatory pathways 8.138456e-02 1.089
R-HSA-73857 RNA Polymerase II Transcription 8.202664e-02 1.086
R-HSA-2559580 Oxidative Stress Induced Senescence 8.222318e-02 1.085
R-HSA-426486 Small interfering RNA (siRNA) biogenesis 8.319174e-02 1.080
R-HSA-2980767 Activation of NIMA Kinases NEK9, NEK6, NEK7 8.319174e-02 1.080
R-HSA-9842640 Signaling by LTK in cancer 8.319174e-02 1.080
R-HSA-9645135 STAT5 Activation 8.319174e-02 1.080
R-HSA-1482801 Acyl chain remodelling of PS 8.453756e-02 1.073
R-HSA-400685 Sema4D in semaphorin signaling 8.453756e-02 1.073
R-HSA-6790901 rRNA modification in the nucleus and cytosol 8.683050e-02 1.061
R-HSA-373755 Semaphorin interactions 8.683050e-02 1.061
R-HSA-72766 Translation 8.703045e-02 1.060
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 8.838826e-02 1.054
R-HSA-9860931 Response of endothelial cells to shear stress 8.963231e-02 1.048
R-HSA-9711097 Cellular response to starvation 9.013234e-02 1.045
R-HSA-176412 Phosphorylation of the APC/C 9.143746e-02 1.039
R-HSA-9687136 Aberrant regulation of mitotic exit in cancer due to RB1 defects 9.143746e-02 1.039
R-HSA-9634600 Regulation of glycolysis by fructose 2,6-bisphosphate metabolism 9.143746e-02 1.039
R-HSA-3700989 Transcriptional Regulation by TP53 9.168949e-02 1.038
R-HSA-8934593 Regulation of RUNX1 Expression and Activity 9.226250e-02 1.035
R-HSA-381070 IRE1alpha activates chaperones 9.269948e-02 1.033
R-HSA-5358346 Hedgehog ligand biogenesis 9.670030e-02 1.015
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 9.693094e-02 1.014
R-HSA-9732724 IFNG signaling activates MAPKs 9.929990e-02 1.003
R-HSA-114516 Disinhibition of SNARE formation 9.929990e-02 1.003
R-HSA-426117 Cation-coupled Chloride cotransporters 9.929990e-02 1.003
R-HSA-418886 Netrin mediated repulsion signals 9.929990e-02 1.003
R-HSA-139915 Activation of PUMA and translocation to mitochondria 9.929990e-02 1.003
R-HSA-5654738 Signaling by FGFR2 9.990629e-02 1.000
R-HSA-201556 Signaling by ALK 1.002383e-01 0.999
R-HSA-9648002 RAS processing 1.002383e-01 0.999
R-HSA-212436 Generic Transcription Pathway 1.003328e-01 0.999
R-HSA-9006821 Alternative Lengthening of Telomeres (ALT) 1.005300e-01 0.998
R-HSA-9673013 Diseases of Telomere Maintenance 1.005300e-01 0.998
R-HSA-9670621 Defective Inhibition of DNA Recombination at Telomere 1.005300e-01 0.998
R-HSA-9670613 Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations 1.005300e-01 0.998
R-HSA-5657560 Hereditary fructose intolerance 1.005300e-01 0.998
R-HSA-9672393 Defective F8 binding to von Willebrand factor 1.005300e-01 0.998
R-HSA-9763198 Impaired BRCA2 binding to SEM1 (DSS1) 1.005300e-01 0.998
R-HSA-9645722 Defective Intrinsic Pathway for Apoptosis Due to p14ARF Loss of Function 1.005300e-01 0.998
R-HSA-9709275 Impaired BRCA2 translocation to the nucleus 1.005300e-01 0.998
R-HSA-9670615 Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations 1.005300e-01 0.998
R-HSA-77042 Formation of editosomes by ADAR proteins 1.005300e-01 0.998
R-HSA-373756 SDK interactions 1.005300e-01 0.998
R-HSA-68949 Orc1 removal from chromatin 1.025657e-01 0.989
R-HSA-5339562 Uptake and actions of bacterial toxins 1.025657e-01 0.989
R-HSA-9845622 Defective VWF binding to collagen type I 1.469433e-01 0.833
R-HSA-5619039 Defective SLC12A6 causes agenesis of the corpus callosum, with peripheral neurop... 1.469433e-01 0.833
R-HSA-9632700 Evasion of Oxidative Stress Induced Senescence Due to Defective p16INK4A binding... 1.469433e-01 0.833
R-HSA-9630794 Evasion of Oncogene Induced Senescence Due to Defective p16INK4A binding to CDK4... 1.469433e-01 0.833
R-HSA-5619050 Defective SLC4A1 causes hereditary spherocytosis type 4 (HSP4), distal renal tu... 1.469433e-01 0.833
R-HSA-5339700 Signaling by TCF7L2 mutants 1.469433e-01 0.833
R-HSA-5545619 XAV939 stabilizes AXIN 1.469433e-01 0.833
R-HSA-9916722 3-hydroxyisobutyryl-CoA hydrolase deficiency 1.469433e-01 0.833
R-HSA-9665230 Drug resistance in ERBB2 KD mutants 1.909644e-01 0.719
R-HSA-9652282 Drug-mediated inhibition of ERBB2 signaling 1.909644e-01 0.719
R-HSA-198765 Signalling to ERK5 1.909644e-01 0.719
R-HSA-9665233 Resistance of ERBB2 KD mutants to trastuzumab 1.909644e-01 0.719
R-HSA-9845621 Defective VWF cleavage by ADAMTS13 variant 1.909644e-01 0.719
R-HSA-9665244 Resistance of ERBB2 KD mutants to sapitinib 1.909644e-01 0.719
R-HSA-9665250 Resistance of ERBB2 KD mutants to AEE788 1.909644e-01 0.719
R-HSA-3656535 TGFBR1 LBD Mutants in Cancer 1.909644e-01 0.719
R-HSA-9665251 Resistance of ERBB2 KD mutants to lapatinib 1.909644e-01 0.719
R-HSA-9665249 Resistance of ERBB2 KD mutants to afatinib 1.909644e-01 0.719
R-HSA-9672391 Defective F8 cleavage by thrombin 1.909644e-01 0.719
R-HSA-9665245 Resistance of ERBB2 KD mutants to tesevatinib 1.909644e-01 0.719
R-HSA-9665247 Resistance of ERBB2 KD mutants to osimertinib 1.909644e-01 0.719
R-HSA-9753510 Signaling by RAS GAP mutants 1.909644e-01 0.719
R-HSA-9665246 Resistance of ERBB2 KD mutants to neratinib 1.909644e-01 0.719
R-HSA-9665737 Drug resistance in ERBB2 TMD/JMD mutants 1.909644e-01 0.719
R-HSA-9845619 Enhanced cleavage of VWF variant by ADAMTS13 1.909644e-01 0.719
R-HSA-444257 RSK activation 1.161874e-01 0.935
R-HSA-444473 Formyl peptide receptors bind formyl peptides and many other ligands 1.161874e-01 0.935
R-HSA-450341 Activation of the AP-1 family of transcription factors 1.337312e-01 0.874
R-HSA-201688 WNT mediated activation of DVL 1.337312e-01 0.874
R-HSA-164843 2-LTR circle formation 1.518187e-01 0.819
R-HSA-390450 Folding of actin by CCT/TriC 1.518187e-01 0.819
R-HSA-2514853 Condensation of Prometaphase Chromosomes 1.892238e-01 0.723
R-HSA-113501 Inhibition of replication initiation of damaged DNA by RB1/E2F1 1.892238e-01 0.723
R-HSA-202670 ERKs are inactivated 1.892238e-01 0.723
R-HSA-1250342 PI3K events in ERBB4 signaling 1.892238e-01 0.723
R-HSA-5339716 Signaling by GSK3beta mutants 1.892238e-01 0.723
R-HSA-113510 E2F mediated regulation of DNA replication 1.362104e-01 0.866
R-HSA-9709603 Impaired BRCA2 binding to PALB2 1.362104e-01 0.866
R-HSA-2197563 NOTCH2 intracellular domain regulates transcription 2.083627e-01 0.681
R-HSA-69091 Polymerase switching 2.083627e-01 0.681
R-HSA-69109 Leading Strand Synthesis 2.083627e-01 0.681
R-HSA-9820865 Z-decay: degradation of maternal mRNAs by zygotically expressed factors 2.083627e-01 0.681
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 2.083627e-01 0.681
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 2.083627e-01 0.681
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 2.083627e-01 0.681
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 2.083627e-01 0.681
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 2.083627e-01 0.681
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 1.483942e-01 0.829
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 1.483942e-01 0.829
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 1.483942e-01 0.829
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 1.483942e-01 0.829
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 1.483942e-01 0.829
R-HSA-917729 Endosomal Sorting Complex Required For Transport (ESCRT) 1.173316e-01 0.931
R-HSA-9687139 Aberrant regulation of mitotic cell cycle due to RB1 defects 1.262824e-01 0.899
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 1.737372e-01 0.760
R-HSA-350054 Notch-HLH transcription pathway 1.868361e-01 0.729
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 1.647272e-01 0.783
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 1.853454e-01 0.732
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 1.096442e-01 0.960
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 1.425909e-01 0.846
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 1.295660e-01 0.888
R-HSA-6798695 Neutrophil degranulation 1.968140e-01 0.706
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 1.198815e-01 0.921
R-HSA-5696398 Nucleotide Excision Repair 1.731068e-01 0.762
R-HSA-162592 Integration of provirus 1.892238e-01 0.723
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 1.302906e-01 0.885
R-HSA-8983432 Interleukin-15 signaling 2.083627e-01 0.681
R-HSA-5689603 UCH proteinases 1.620363e-01 0.790
R-HSA-9762292 Regulation of CDH11 function 1.518187e-01 0.819
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 1.547463e-01 0.810
R-HSA-201681 TCF dependent signaling in response to WNT 1.236609e-01 0.908
R-HSA-399719 Trafficking of AMPA receptors 1.355105e-01 0.868
R-HSA-4791275 Signaling by WNT in cancer 1.450029e-01 0.839
R-HSA-176407 Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase 1.129709e-01 0.947
R-HSA-9020558 Interleukin-2 signaling 1.703474e-01 0.769
R-HSA-195721 Signaling by WNT 1.818206e-01 0.740
R-HSA-69239 Synthesis of DNA 1.056134e-01 0.976
R-HSA-8984722 Interleukin-35 Signalling 2.083627e-01 0.681
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 1.483942e-01 0.829
R-HSA-111931 PKA-mediated phosphorylation of CREB 1.609132e-01 0.793
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 1.726656e-01 0.763
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 1.243925e-01 0.905
R-HSA-3928662 EPHB-mediated forward signaling 1.450026e-01 0.839
R-HSA-9632693 Evasion of Oxidative Stress Induced Senescence Due to p16INK4A Defects 1.469433e-01 0.833
R-HSA-9630750 Evasion of Oncogene Induced Senescence Due to p16INK4A Defects 1.469433e-01 0.833
R-HSA-9636667 Manipulation of host energy metabolism 1.469433e-01 0.833
R-HSA-75064 mRNA Editing: A to I Conversion 1.909644e-01 0.719
R-HSA-75102 C6 deamination of adenosine 1.909644e-01 0.719
R-HSA-2179392 EGFR Transactivation by Gastrin 1.518187e-01 0.819
R-HSA-163615 PKA activation 1.243925e-01 0.905
R-HSA-164378 PKA activation in glucagon signalling 1.243925e-01 0.905
R-HSA-877312 Regulation of IFNG signaling 2.083627e-01 0.681
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 1.737372e-01 0.760
R-HSA-162587 HIV Life Cycle 1.435649e-01 0.843
R-HSA-165159 MTOR signalling 1.292299e-01 0.889
R-HSA-9793380 Formation of paraxial mesoderm 1.631321e-01 0.787
R-HSA-9018519 Estrogen-dependent gene expression 1.937115e-01 0.713
R-HSA-180292 GAB1 signalosome 1.243925e-01 0.905
R-HSA-1236974 ER-Phagosome pathway 1.534701e-01 0.814
R-HSA-9020956 Interleukin-27 signaling 1.518187e-01 0.819
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 1.306074e-01 0.884
R-HSA-2028269 Signaling by Hippo 1.129709e-01 0.947
R-HSA-9762293 Regulation of CDH11 gene transcription 1.337312e-01 0.874
R-HSA-8934903 Receptor Mediated Mitophagy 1.518187e-01 0.819
R-HSA-9022692 Regulation of MECP2 expression and activity 1.547463e-01 0.810
R-HSA-9824272 Somitogenesis 1.531847e-01 0.815
R-HSA-9013700 NOTCH4 Activation and Transmission of Signal to the Nucleus 1.337312e-01 0.874
R-HSA-8851805 MET activates RAS signaling 2.083627e-01 0.681
R-HSA-8943724 Regulation of PTEN gene transcription 1.557573e-01 0.808
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 1.198815e-01 0.921
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 1.616482e-01 0.791
R-HSA-8853884 Transcriptional Regulation by VENTX 1.142918e-01 0.942
R-HSA-168256 Immune System 1.697695e-01 0.770
R-HSA-9855142 Cellular responses to mechanical stimuli 1.372421e-01 0.863
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 1.086702e-01 0.964
R-HSA-187037 Signaling by NTRK1 (TRKA) 1.433199e-01 0.844
R-HSA-8854214 TBC/RABGAPs 1.370153e-01 0.863
R-HSA-69306 DNA Replication 2.016457e-01 0.695
R-HSA-352238 Breakdown of the nuclear lamina 1.469433e-01 0.833
R-HSA-9675132 Diseases of cellular response to stress 1.909644e-01 0.719
R-HSA-9630747 Diseases of Cellular Senescence 1.909644e-01 0.719
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 1.547463e-01 0.810
R-HSA-1236975 Antigen processing-Cross presentation 1.909696e-01 0.719
R-HSA-948021 Transport to the Golgi and subsequent modification 1.336161e-01 0.874
R-HSA-8939246 RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... 1.161874e-01 0.935
R-HSA-9764790 Positive Regulation of CDH1 Gene Transcription 1.518187e-01 0.819
R-HSA-210990 PECAM1 interactions 1.703474e-01 0.769
R-HSA-9028731 Activated NTRK2 signals through FRS2 and FRS3 2.083627e-01 0.681
R-HSA-8941326 RUNX2 regulates bone development 1.959545e-01 0.708
R-HSA-166520 Signaling by NTRKs 1.085801e-01 0.964
R-HSA-111885 Opioid Signalling 1.616482e-01 0.791
R-HSA-382556 ABC-family proteins mediated transport 1.398791e-01 0.854
R-HSA-186797 Signaling by PDGF 1.706531e-01 0.768
R-HSA-9825892 Regulation of MITF-M-dependent genes involved in cell cycle and proliferation 1.737372e-01 0.760
R-HSA-70326 Glucose metabolism 1.625591e-01 0.789
R-HSA-8874177 ATF6B (ATF6-beta) activates chaperones 1.909644e-01 0.719
R-HSA-351906 Apoptotic cleavage of cell adhesion proteins 1.161874e-01 0.935
R-HSA-9012852 Signaling by NOTCH3 1.212412e-01 0.916
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 1.302906e-01 0.885
R-HSA-9913351 Formation of the dystrophin-glycoprotein complex (DGC) 1.355105e-01 0.868
R-HSA-9861718 Regulation of pyruvate metabolism 1.615541e-01 0.792
R-HSA-70263 Gluconeogenesis 1.788240e-01 0.748
R-HSA-163765 ChREBP activates metabolic gene expression 1.703474e-01 0.769
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 1.861136e-01 0.730
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 1.450026e-01 0.839
R-HSA-9694635 Translation of Structural Proteins 1.687708e-01 0.773
R-HSA-68867 Assembly of the pre-replicative complex 1.845184e-01 0.734
R-HSA-381038 XBP1(S) activates chaperone genes 1.361495e-01 0.866
R-HSA-8939211 ESR-mediated signaling 2.100460e-01 0.678
R-HSA-429947 Deadenylation of mRNA 2.137412e-01 0.670
R-HSA-9703648 Signaling by FLT3 ITD and TKD mutants 2.137412e-01 0.670
R-HSA-8863678 Neurodegenerative Diseases 2.137412e-01 0.670
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 2.137412e-01 0.670
R-HSA-8963898 Plasma lipoprotein assembly 2.137412e-01 0.670
R-HSA-8875878 MET promotes cell motility 2.177010e-01 0.662
R-HSA-9909648 Regulation of PD-L1(CD274) expression 2.186218e-01 0.660
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 2.247141e-01 0.648
R-HSA-8957275 Post-translational protein phosphorylation 2.249702e-01 0.648
R-HSA-190236 Signaling by FGFR 2.249702e-01 0.648
R-HSA-9932444 ATP-dependent chromatin remodelers 2.274904e-01 0.643
R-HSA-9932451 SWI/SNF chromatin remodelers 2.274904e-01 0.643
R-HSA-420029 Tight junction interactions 2.274904e-01 0.643
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 2.274904e-01 0.643
R-HSA-9839394 TGFBR3 expression 2.274904e-01 0.643
R-HSA-9818030 NFE2L2 regulating tumorigenic genes 2.276870e-01 0.643
R-HSA-5685939 HDR through MMEJ (alt-NHEJ) 2.276870e-01 0.643
R-HSA-9659787 Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects 2.276870e-01 0.643
R-HSA-9661069 Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) 2.276870e-01 0.643
R-HSA-6804759 Regulation of TP53 Activity through Association with Co-factors 2.276870e-01 0.643
R-HSA-6788467 IL-6-type cytokine receptor ligand interactions 2.276870e-01 0.643
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 2.276870e-01 0.643
R-HSA-162658 Golgi Cisternae Pericentriolar Stack Reorganization 2.276870e-01 0.643
R-HSA-9029558 NR1H2 & NR1H3 regulate gene expression linked to lipogenesis 2.276870e-01 0.643
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 2.284457e-01 0.641
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 2.290236e-01 0.640
R-HSA-3214847 HATs acetylate histones 2.320095e-01 0.634
R-HSA-5368598 Negative regulation of TCF-dependent signaling by DVL-interacting proteins 2.327163e-01 0.633
R-HSA-9673766 Signaling by cytosolic PDGFRA and PDGFRB fusion proteins 2.327163e-01 0.633
R-HSA-9944971 Loss of Function of KMT2D in Kabuki Syndrome 2.327163e-01 0.633
R-HSA-8865999 MET activates PTPN11 2.327163e-01 0.633
R-HSA-9944997 Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome 2.327163e-01 0.633
R-HSA-3249367 STAT6-mediated induction of chemokines 2.327163e-01 0.633
R-HSA-8875513 MET interacts with TNS proteins 2.327163e-01 0.633
R-HSA-162599 Late Phase of HIV Life Cycle 2.330934e-01 0.632
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 2.342017e-01 0.630
R-HSA-9764560 Regulation of CDH1 Gene Transcription 2.354494e-01 0.628
R-HSA-3371568 Attenuation phase 2.400565e-01 0.620
R-HSA-8982491 Glycogen metabolism 2.400565e-01 0.620
R-HSA-525793 Myogenesis 2.414005e-01 0.617
R-HSA-983169 Class I MHC mediated antigen processing & presentation 2.427427e-01 0.615
R-HSA-418597 G alpha (z) signalling events 2.439774e-01 0.613
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 2.471266e-01 0.607
R-HSA-6803211 TP53 Regulates Transcription of Death Receptors and Ligands 2.471266e-01 0.607
R-HSA-1433559 Regulation of KIT signaling 2.471266e-01 0.607
R-HSA-435354 Zinc transporters 2.471266e-01 0.607
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 2.514272e-01 0.600
R-HSA-5218920 VEGFR2 mediated vascular permeability 2.514272e-01 0.600
R-HSA-109606 Intrinsic Pathway for Apoptosis 2.537686e-01 0.596
R-HSA-1266738 Developmental Biology 2.542725e-01 0.595
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 2.554451e-01 0.593
R-HSA-9006115 Signaling by NTRK2 (TRKB) 2.554451e-01 0.593
R-HSA-9730414 MITF-M-regulated melanocyte development 2.586394e-01 0.587
R-HSA-9824446 Viral Infection Pathways 2.625460e-01 0.581
R-HSA-4839726 Chromatin organization 2.647080e-01 0.577
R-HSA-9027284 Erythropoietin activates RAS 2.666184e-01 0.574
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 2.666184e-01 0.574
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 2.666184e-01 0.574
R-HSA-196299 Beta-catenin phosphorylation cascade 2.666184e-01 0.574
R-HSA-418885 DCC mediated attractive signaling 2.666184e-01 0.574
R-HSA-171007 p38MAPK events 2.666184e-01 0.574
R-HSA-399954 Sema3A PAK dependent Axon repulsion 2.666184e-01 0.574
R-HSA-3270619 IRF3-mediated induction of type I IFN 2.666184e-01 0.574
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 2.666184e-01 0.574
R-HSA-9818035 NFE2L2 regulating ER-stress associated genes 2.723159e-01 0.565
R-HSA-5083630 Defective LFNG causes SCDO3 2.723159e-01 0.565
R-HSA-69200 Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 ... 2.723159e-01 0.565
R-HSA-191650 Regulation of gap junction activity 2.723159e-01 0.565
R-HSA-5626978 TNFR1-mediated ceramide production 2.723159e-01 0.565
R-HSA-69895 Transcriptional activation of cell cycle inhibitor p21 2.723159e-01 0.565
R-HSA-69560 Transcriptional activation of p53 responsive genes 2.723159e-01 0.565
R-HSA-9754119 Drug-mediated inhibition of CDK4/CDK6 activity 2.723159e-01 0.565
R-HSA-111448 Activation of NOXA and translocation to mitochondria 2.723159e-01 0.565
R-HSA-9705677 SARS-CoV-2 targets PDZ proteins in cell-cell junction 2.723159e-01 0.565
R-HSA-9706374 FLT3 signaling through SRC family kinases 2.723159e-01 0.565
R-HSA-202424 Downstream TCR signaling 2.739647e-01 0.562
R-HSA-9927418 Developmental Lineage of Mammary Gland Luminal Epithelial Cells 2.744846e-01 0.561
R-HSA-379716 Cytosolic tRNA aminoacylation 2.744846e-01 0.561
R-HSA-381676 Glucagon-like Peptide-1 (GLP1) regulates insulin secretion 2.744846e-01 0.561
R-HSA-389948 Co-inhibition by PD-1 2.761339e-01 0.559
R-HSA-3247509 Chromatin modifying enzymes 2.767805e-01 0.558
R-HSA-9679191 Potential therapeutics for SARS 2.814501e-01 0.551
R-HSA-1912408 Pre-NOTCH Transcription and Translation 2.820910e-01 0.550
R-HSA-191859 snRNP Assembly 2.836761e-01 0.547
R-HSA-194441 Metabolism of non-coding RNA 2.836761e-01 0.547
R-HSA-429914 Deadenylation-dependent mRNA decay 2.836761e-01 0.547
R-HSA-9709570 Impaired BRCA2 binding to RAD51 2.838362e-01 0.547
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 2.838362e-01 0.547
R-HSA-9006335 Signaling by Erythropoietin 2.838362e-01 0.547
R-HSA-180024 DARPP-32 events 2.838362e-01 0.547
R-HSA-1362300 Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... 2.861052e-01 0.543
R-HSA-9664420 Killing mechanisms 2.861052e-01 0.543
R-HSA-9673324 WNT5:FZD7-mediated leishmania damping 2.861052e-01 0.543
R-HSA-6803207 TP53 Regulates Transcription of Caspase Activators and Caspases 2.861052e-01 0.543
R-HSA-5635838 Activation of SMO 2.861052e-01 0.543
R-HSA-450604 KSRP (KHSRP) binds and destabilizes mRNA 2.861052e-01 0.543
R-HSA-156590 Glutathione conjugation 2.937943e-01 0.532
R-HSA-112316 Neuronal System 2.942672e-01 0.531
R-HSA-68962 Activation of the pre-replicative complex 2.981345e-01 0.526
R-HSA-2424491 DAP12 signaling 2.981345e-01 0.526
R-HSA-114452 Activation of BH3-only proteins 2.981345e-01 0.526
R-HSA-9772573 Late SARS-CoV-2 Infection Events 2.985137e-01 0.525
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 3.045617e-01 0.516
R-HSA-918233 TRAF3-dependent IRF activation pathway 3.055357e-01 0.515
R-HSA-77595 Processing of Intronless Pre-mRNAs 3.055357e-01 0.515
R-HSA-9702518 STAT5 activation downstream of FLT3 ITD mutants 3.055357e-01 0.515
R-HSA-9675151 Disorders of Developmental Biology 3.055357e-01 0.515
R-HSA-430039 mRNA decay by 5' to 3' exoribonuclease 3.055357e-01 0.515
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 3.060477e-01 0.514
R-HSA-5619084 ABC transporter disorders 3.063817e-01 0.514
R-HSA-774815 Nucleosome assembly 3.096583e-01 0.509
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 3.096583e-01 0.509
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 3.096583e-01 0.509
R-HSA-447038 NrCAM interactions 3.098740e-01 0.509
R-HSA-9818026 NFE2L2 regulating inflammation associated genes 3.098740e-01 0.509
R-HSA-9845620 Enhanced binding of GP1BA variant to VWF multimer:collagen 3.098740e-01 0.509
R-HSA-9846298 Defective binding of VWF variant to GPIb:IX:V 3.098740e-01 0.509
R-HSA-9022535 Loss of phosphorylation of MECP2 at T308 3.098740e-01 0.509
R-HSA-1606341 IRF3 mediated activation of type 1 IFN 3.098740e-01 0.509
R-HSA-426496 Post-transcriptional silencing by small RNAs 3.098740e-01 0.509
R-HSA-3656534 Loss of Function of TGFBR1 in Cancer 3.098740e-01 0.509
R-HSA-9927353 Co-inhibition by BTLA 3.098740e-01 0.509
R-HSA-435368 Zinc efflux and compartmentalization by the SLC30 family 3.098740e-01 0.509
R-HSA-420597 Nectin/Necl trans heterodimerization 3.098740e-01 0.509
R-HSA-162909 Host Interactions of HIV factors 3.117331e-01 0.506
R-HSA-375165 NCAM signaling for neurite out-growth 3.142032e-01 0.503
R-HSA-72165 mRNA Splicing - Minor Pathway 3.214875e-01 0.493
R-HSA-9839373 Signaling by TGFBR3 3.214875e-01 0.493
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 3.247147e-01 0.488
R-HSA-5637812 Signaling by EGFRvIII in Cancer 3.248640e-01 0.488
R-HSA-5637810 Constitutive Signaling by EGFRvIII 3.248640e-01 0.488
R-HSA-9768759 Regulation of NPAS4 gene expression 3.248640e-01 0.488
R-HSA-1963642 PI3K events in ERBB2 signaling 3.248640e-01 0.488
R-HSA-1538133 G0 and Early G1 3.268238e-01 0.486
R-HSA-350562 Regulation of ornithine decarboxylase (ODC) 3.268238e-01 0.486
R-HSA-162906 HIV Infection 3.327344e-01 0.478
R-HSA-114608 Platelet degranulation 3.407570e-01 0.468
R-HSA-159227 Transport of the SLBP independent Mature mRNA 3.411728e-01 0.467
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 3.411728e-01 0.467
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 3.411728e-01 0.467
R-HSA-3928664 Ephrin signaling 3.440488e-01 0.463
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 3.440488e-01 0.463
R-HSA-416993 Trafficking of GluR2-containing AMPA receptors 3.440488e-01 0.463
R-HSA-181429 Serotonin Neurotransmitter Release Cycle 3.440488e-01 0.463
R-HSA-9665348 Signaling by ERBB2 ECD mutants 3.440488e-01 0.463
R-HSA-432142 Platelet sensitization by LDL 3.440488e-01 0.463
R-HSA-210993 Tie2 Signaling 3.440488e-01 0.463
R-HSA-111471 Apoptotic factor-mediated response 3.440488e-01 0.463
R-HSA-9926550 Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... 3.440488e-01 0.463
R-HSA-9634597 GPER1 signaling 3.452283e-01 0.462
R-HSA-9823587 Defects of platelet adhesion to exposed collagen 3.454958e-01 0.462
R-HSA-5603029 IkBA variant leads to EDA-ID 3.454958e-01 0.462
R-HSA-9017802 Noncanonical activation of NOTCH3 3.454958e-01 0.462
R-HSA-9758919 Epithelial-Mesenchymal Transition (EMT) during gastrulation 3.454958e-01 0.462
R-HSA-8941855 RUNX3 regulates CDKN1A transcription 3.454958e-01 0.462
R-HSA-8856828 Clathrin-mediated endocytosis 3.504089e-01 0.455
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 3.524713e-01 0.453
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 3.554985e-01 0.449
R-HSA-5693537 Resolution of D-Loop Structures 3.554985e-01 0.449
R-HSA-9768727 Regulation of CDH1 posttranslational processing and trafficking to plasma membra... 3.554985e-01 0.449
R-HSA-163359 Glucagon signaling in metabolic regulation 3.554985e-01 0.449
R-HSA-114508 Effects of PIP2 hydrolysis 3.554985e-01 0.449
R-HSA-9711123 Cellular response to chemical stress 3.599727e-01 0.444
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 3.605772e-01 0.443
R-HSA-199418 Negative regulation of the PI3K/AKT network 3.628006e-01 0.440
R-HSA-1834941 STING mediated induction of host immune responses 3.630536e-01 0.440
R-HSA-9694631 Maturation of nucleoprotein 3.630536e-01 0.440
R-HSA-449836 Other interleukin signaling 3.630536e-01 0.440
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 3.697825e-01 0.432
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 3.697825e-01 0.432
R-HSA-1500620 Meiosis 3.710804e-01 0.431
R-HSA-69478 G2/M DNA replication checkpoint 3.792810e-01 0.421
R-HSA-177539 Autointegration results in viral DNA circles 3.792810e-01 0.421
R-HSA-3595172 Defective CHST3 causes SEDCJD 3.792810e-01 0.421
R-HSA-113507 E2F-enabled inhibition of pre-replication complex formation 3.792810e-01 0.421
R-HSA-3595174 Defective CHST14 causes EDS, musculocontractural type 3.792810e-01 0.421
R-HSA-8857538 PTK6 promotes HIF1A stabilization 3.792810e-01 0.421
R-HSA-434313 Intracellular metabolism of fatty acids regulates insulin secretion 3.792810e-01 0.421
R-HSA-175567 Integration of viral DNA into host genomic DNA 3.792810e-01 0.421
R-HSA-9818749 Regulation of NFE2L2 gene expression 3.792810e-01 0.421
R-HSA-9662001 Defective factor VIII causes hemophilia A 3.792810e-01 0.421
R-HSA-3304351 Signaling by TGF-beta Receptor Complex in Cancer 3.792810e-01 0.421
R-HSA-447043 Neurofascin interactions 3.792810e-01 0.421
R-HSA-373753 Nephrin family interactions 3.818458e-01 0.418
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 3.818458e-01 0.418
R-HSA-389513 Co-inhibition by CTLA4 3.818458e-01 0.418
R-HSA-1181150 Signaling by NODAL 3.818458e-01 0.418
R-HSA-9629569 Protein hydroxylation 3.818458e-01 0.418
R-HSA-5620922 BBSome-mediated cargo-targeting to cilium 3.818458e-01 0.418
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 3.840076e-01 0.416
R-HSA-381042 PERK regulates gene expression 3.840076e-01 0.416
R-HSA-9909396 Circadian clock 3.849960e-01 0.415
R-HSA-5688426 Deubiquitination 3.872820e-01 0.412
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 3.927181e-01 0.406
R-HSA-9634815 Transcriptional Regulation by NPAS4 3.927181e-01 0.406
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 3.963784e-01 0.402
R-HSA-432720 Lysosome Vesicle Biogenesis 3.981576e-01 0.400
R-HSA-3371511 HSF1 activation 3.981576e-01 0.400
R-HSA-114604 GPVI-mediated activation cascade 3.981576e-01 0.400
R-HSA-163560 Triglyceride catabolism 3.981576e-01 0.400
R-HSA-70268 Pyruvate metabolism 3.990410e-01 0.399
R-HSA-2219528 PI3K/AKT Signaling in Cancer 4.001239e-01 0.398
R-HSA-69186 Lagging Strand Synthesis 4.003969e-01 0.398
R-HSA-198753 ERK/MAPK targets 4.003969e-01 0.398
R-HSA-167044 Signalling to RAS 4.003969e-01 0.398
R-HSA-264642 Acetylcholine Neurotransmitter Release Cycle 4.003969e-01 0.398
R-HSA-162594 Early Phase of HIV Life Cycle 4.003969e-01 0.398
R-HSA-140837 Intrinsic Pathway of Fibrin Clot Formation 4.003969e-01 0.398
R-HSA-9819196 Zygotic genome activation (ZGA) 4.003969e-01 0.398
R-HSA-432722 Golgi Associated Vesicle Biogenesis 4.045297e-01 0.393
R-HSA-9645723 Diseases of programmed cell death 4.083526e-01 0.389
R-HSA-8951430 RUNX3 regulates WNT signaling 4.113241e-01 0.386
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 4.113241e-01 0.386
R-HSA-4411364 Binding of TCF/LEF:CTNNB1 to target gene promoters 4.113241e-01 0.386
R-HSA-3595177 Defective CHSY1 causes TPBS 4.113241e-01 0.386
R-HSA-72731 Recycling of eIF2:GDP 4.113241e-01 0.386
R-HSA-1912399 Pre-NOTCH Processing in the Endoplasmic Reticulum 4.113241e-01 0.386
R-HSA-9726840 SHOC2 M1731 mutant abolishes MRAS complex function 4.113241e-01 0.386
R-HSA-9603381 Activated NTRK3 signals through PI3K 4.113241e-01 0.386
R-HSA-112412 SOS-mediated signalling 4.113241e-01 0.386
R-HSA-9026762 Biosynthesis of maresin conjugates in tissue regeneration (MCTR) 4.113241e-01 0.386
R-HSA-5336415 Uptake and function of diphtheria toxin 4.113241e-01 0.386
R-HSA-180910 Vpr-mediated nuclear import of PICs 4.122171e-01 0.385
R-HSA-9833110 RSV-host interactions 4.170083e-01 0.380
R-HSA-199992 trans-Golgi Network Vesicle Budding 4.176142e-01 0.379
R-HSA-76066 RNA Polymerase III Transcription Initiation From Type 2 Promoter 4.186817e-01 0.378
R-HSA-5654706 FRS-mediated FGFR3 signaling 4.186817e-01 0.378
R-HSA-9034015 Signaling by NTRK3 (TRKC) 4.186817e-01 0.378
R-HSA-9671555 Signaling by PDGFR in disease 4.186817e-01 0.378
R-HSA-163685 Integration of energy metabolism 4.221243e-01 0.375
R-HSA-73886 Chromosome Maintenance 4.238901e-01 0.373
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 4.261720e-01 0.370
R-HSA-9958790 SLC-mediated transport of inorganic anions 4.261720e-01 0.370
R-HSA-5663084 Diseases of carbohydrate metabolism 4.279036e-01 0.369
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 4.295464e-01 0.367
R-HSA-8986944 Transcriptional Regulation by MECP2 4.361915e-01 0.360
R-HSA-9938206 Developmental Lineage of Mammary Stem Cells 4.366782e-01 0.360
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter 4.366782e-01 0.360
R-HSA-912694 Regulation of IFNA/IFNB signaling 4.366782e-01 0.360
R-HSA-6803205 TP53 regulates transcription of several additional cell death genes whose specif... 4.366782e-01 0.360
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 4.366782e-01 0.360
R-HSA-5654712 FRS-mediated FGFR4 signaling 4.366782e-01 0.360
R-HSA-212676 Dopamine Neurotransmitter Release Cycle 4.366782e-01 0.360
R-HSA-9669938 Signaling by KIT in disease 4.366782e-01 0.360
R-HSA-8964038 LDL clearance 4.366782e-01 0.360
R-HSA-5689880 Ub-specific processing proteases 4.384113e-01 0.358
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 4.400090e-01 0.357
R-HSA-111995 phospho-PLA2 pathway 4.417149e-01 0.355
R-HSA-196025 Formation of annular gap junctions 4.417149e-01 0.355
R-HSA-9768778 Regulation of NPAS4 mRNA translation 4.417149e-01 0.355
R-HSA-8875656 MET receptor recycling 4.417149e-01 0.355
R-HSA-9660537 Signaling by MRAS-complex mutants 4.417149e-01 0.355
R-HSA-9726842 Gain-of-function MRAS complexes activate RAF signaling 4.417149e-01 0.355
R-HSA-5250958 Toxicity of botulinum toxin type B (botB) 4.417149e-01 0.355
R-HSA-8985947 Interleukin-9 signaling 4.417149e-01 0.355
R-HSA-1169092 Activation of RAS in B cells 4.417149e-01 0.355
R-HSA-9839383 TGFBR3 PTM regulation 4.417149e-01 0.355
R-HSA-442729 CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde 4.417149e-01 0.355
R-HSA-9032500 Activated NTRK2 signals through FYN 4.417149e-01 0.355
R-HSA-168249 Innate Immune System 4.447296e-01 0.352
R-HSA-8852135 Protein ubiquitination 4.483671e-01 0.348
R-HSA-917937 Iron uptake and transport 4.483671e-01 0.348
R-HSA-3000171 Non-integrin membrane-ECM interactions 4.483671e-01 0.348
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 4.512458e-01 0.346
R-HSA-9664417 Leishmania phagocytosis 4.517596e-01 0.345
R-HSA-9664407 Parasite infection 4.517596e-01 0.345
R-HSA-9664422 FCGR3A-mediated phagocytosis 4.517596e-01 0.345
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 4.537158e-01 0.343
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 4.537158e-01 0.343
R-HSA-451927 Interleukin-2 family signaling 4.537158e-01 0.343
R-HSA-176033 Interactions of Vpr with host cellular proteins 4.537158e-01 0.343
R-HSA-202433 Generation of second messenger molecules 4.537158e-01 0.343
R-HSA-212165 Epigenetic regulation of gene expression 4.537574e-01 0.343
R-HSA-912526 Interleukin receptor SHC signaling 4.543676e-01 0.343
R-HSA-8854691 Interleukin-20 family signaling 4.543676e-01 0.343
R-HSA-9634638 Estrogen-dependent nuclear events downstream of ESR-membrane signaling 4.543676e-01 0.343
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 4.543676e-01 0.343
R-HSA-74752 Signaling by Insulin receptor 4.546234e-01 0.342
R-HSA-73854 RNA Polymerase I Promoter Clearance 4.585294e-01 0.339
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 4.591380e-01 0.338
R-HSA-877300 Interferon gamma signaling 4.622703e-01 0.335
R-HSA-3214841 PKMTs methylate histone lysines 4.672810e-01 0.330
R-HSA-9818032 NFE2L2 regulating MDR associated enzymes 4.705385e-01 0.327
R-HSA-170984 ARMS-mediated activation 4.705385e-01 0.327
R-HSA-9020958 Interleukin-21 signaling 4.705385e-01 0.327
R-HSA-190873 Gap junction degradation 4.705385e-01 0.327
R-HSA-163680 AMPK inhibits chREBP transcriptional activation activity 4.705385e-01 0.327
R-HSA-2025928 Calcineurin activates NFAT 4.705385e-01 0.327
R-HSA-9634635 Estrogen-stimulated signaling through PRKCZ 4.705385e-01 0.327
R-HSA-379398 Enzymatic degradation of Dopamine by monoamine oxidase 4.705385e-01 0.327
R-HSA-75072 mRNA Editing 4.705385e-01 0.327
R-HSA-1433617 Regulation of signaling by NODAL 4.705385e-01 0.327
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 4.705385e-01 0.327
R-HSA-2465910 MASTL Facilitates Mitotic Progression 4.705385e-01 0.327
R-HSA-198693 AKT phosphorylates targets in the nucleus 4.705385e-01 0.327
R-HSA-8866907 Activation of the TFAP2 (AP-2) family of transcription factors 4.705385e-01 0.327
R-HSA-9768777 Regulation of NPAS4 gene transcription 4.705385e-01 0.327
R-HSA-428542 Regulation of commissural axon pathfinding by SLIT and ROBO 4.705385e-01 0.327
R-HSA-9834752 Respiratory syncytial virus genome replication 4.705385e-01 0.327
R-HSA-9613354 Lipophagy 4.705385e-01 0.327
R-HSA-193692 Regulated proteolysis of p75NTR 4.705385e-01 0.327
R-HSA-9840373 Cellular response to mitochondrial stress 4.705385e-01 0.327
R-HSA-442380 Zinc influx into cells by the SLC39 gene family 4.705385e-01 0.327
R-HSA-933542 TRAF6 mediated NF-kB activation 4.717335e-01 0.326
R-HSA-181430 Norepinephrine Neurotransmitter Release Cycle 4.717335e-01 0.326
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 4.717335e-01 0.326
R-HSA-418592 ADP signalling through P2Y purinoceptor 1 4.717335e-01 0.326
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 4.729117e-01 0.325
R-HSA-9033241 Peroxisomal protein import 4.741674e-01 0.324
R-HSA-73864 RNA Polymerase I Transcription 4.786869e-01 0.320
R-HSA-167161 HIV Transcription Initiation 4.806942e-01 0.318
R-HSA-75953 RNA Polymerase II Transcription Initiation 4.806942e-01 0.318
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 4.806942e-01 0.318
R-HSA-5655302 Signaling by FGFR1 in disease 4.806942e-01 0.318
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 4.806942e-01 0.318
R-HSA-6811438 Intra-Golgi traffic 4.806942e-01 0.318
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 4.854924e-01 0.314
R-HSA-379724 tRNA Aminoacylation 4.854924e-01 0.314
R-HSA-174411 Polymerase switching on the C-strand of the telomere 4.887623e-01 0.311
R-HSA-5654693 FRS-mediated FGFR1 signaling 4.887623e-01 0.311
R-HSA-1912422 Pre-NOTCH Expression and Processing 4.928824e-01 0.307
R-HSA-73762 RNA Polymerase I Transcription Initiation 4.939456e-01 0.306
R-HSA-388841 Regulation of T cell activation by CD28 family 4.955579e-01 0.305
R-HSA-8875555 MET activates RAP1 and RAC1 4.978757e-01 0.303
R-HSA-9027277 Erythropoietin activates Phospholipase C gamma (PLCG) 4.978757e-01 0.303
R-HSA-68952 DNA replication initiation 4.978757e-01 0.303
R-HSA-390666 Serotonin receptors 4.978757e-01 0.303
R-HSA-379397 Enzymatic degradation of dopamine by COMT 4.978757e-01 0.303
R-HSA-2151209 Activation of PPARGC1A (PGC-1alpha) by phosphorylation 4.978757e-01 0.303
R-HSA-5140745 WNT5A-dependent internalization of FZD2, FZD5 and ROR2 4.978757e-01 0.303
R-HSA-9948001 CASP4 inflammasome assembly 4.978757e-01 0.303
R-HSA-1236973 Cross-presentation of particulate exogenous antigens (phagosomes) 4.978757e-01 0.303
R-HSA-74749 Signal attenuation 4.978757e-01 0.303
R-HSA-9683686 Maturation of spike protein 4.978757e-01 0.303
R-HSA-9820962 Assembly and release of respiratory syncytial virus (RSV) virions 4.978757e-01 0.303
R-HSA-140342 Apoptosis induced DNA fragmentation 4.978757e-01 0.303
R-HSA-9627069 Regulation of the apoptosome activity 4.978757e-01 0.303
R-HSA-2586552 Signaling by Leptin 4.978757e-01 0.303
R-HSA-111458 Formation of apoptosome 4.978757e-01 0.303
R-HSA-8874081 MET activates PTK2 signaling 5.054426e-01 0.296
R-HSA-210500 Glutamate Neurotransmitter Release Cycle 5.054426e-01 0.296
R-HSA-9703465 Signaling by FLT3 fusion proteins 5.054426e-01 0.296
R-HSA-73776 RNA Polymerase II Promoter Escape 5.070267e-01 0.295
R-HSA-1268020 Mitochondrial protein import 5.078376e-01 0.294
R-HSA-6784531 tRNA processing in the nucleus 5.078376e-01 0.294
R-HSA-422356 Regulation of insulin secretion 5.177912e-01 0.286
R-HSA-2172127 DAP12 interactions 5.199293e-01 0.284
R-HSA-373752 Netrin-1 signaling 5.199293e-01 0.284
R-HSA-5683826 Surfactant metabolism 5.199293e-01 0.284
R-HSA-445095 Interaction between L1 and Ankyrins 5.217648e-01 0.283
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 5.217648e-01 0.283
R-HSA-73863 RNA Polymerase I Transcription Termination 5.217648e-01 0.283
R-HSA-8949613 Cristae formation 5.217648e-01 0.283
R-HSA-264876 Insulin processing 5.217648e-01 0.283
R-HSA-9759811 Regulation of CDH11 mRNA translation by microRNAs 5.238029e-01 0.281
R-HSA-4839744 Signaling by APC mutants 5.238029e-01 0.281
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 5.238029e-01 0.281
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 5.238029e-01 0.281
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 5.238029e-01 0.281
R-HSA-9614399 Regulation of localization of FOXO transcription factors 5.238029e-01 0.281
R-HSA-192905 vRNP Assembly 5.238029e-01 0.281
R-HSA-1483226 Synthesis of PI 5.238029e-01 0.281
R-HSA-9034864 Activated NTRK3 signals through RAS 5.238029e-01 0.281
R-HSA-425381 Bicarbonate transporters 5.238029e-01 0.281
R-HSA-9754560 SARS-CoV-2 modulates autophagy 5.238029e-01 0.281
R-HSA-9635465 Suppression of apoptosis 5.238029e-01 0.281
R-HSA-391908 Prostanoid ligand receptors 5.238029e-01 0.281
R-HSA-9662834 CD163 mediating an anti-inflammatory response 5.238029e-01 0.281
R-HSA-75205 Dissolution of Fibrin Clot 5.238029e-01 0.281
R-HSA-74751 Insulin receptor signalling cascade 5.297366e-01 0.276
R-HSA-9856651 MITF-M-dependent gene expression 5.316238e-01 0.274
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 5.326463e-01 0.274
R-HSA-9660821 ADORA2B mediated anti-inflammatory cytokines production 5.326463e-01 0.274
R-HSA-432040 Vasopressin regulates renal water homeostasis via Aquaporins 5.326463e-01 0.274
R-HSA-77387 Insulin receptor recycling 5.377215e-01 0.269
R-HSA-5576892 Phase 0 - rapid depolarisation 5.377215e-01 0.269
R-HSA-5654700 FRS-mediated FGFR2 signaling 5.377215e-01 0.269
R-HSA-5620971 Pyroptosis 5.377215e-01 0.269
R-HSA-9009391 Extra-nuclear estrogen signaling 5.439970e-01 0.264
R-HSA-9675135 Diseases of DNA repair 5.451712e-01 0.263
R-HSA-2022923 DS-GAG biosynthesis 5.483929e-01 0.261
R-HSA-5693548 Sensing of DNA Double Strand Breaks 5.483929e-01 0.261
R-HSA-9818028 NFE2L2 regulates pentose phosphate pathway genes 5.483929e-01 0.261
R-HSA-4839748 Signaling by AMER1 mutants 5.483929e-01 0.261
R-HSA-4839735 Signaling by AXIN mutants 5.483929e-01 0.261
R-HSA-416550 Sema4D mediated inhibition of cell attachment and migration 5.483929e-01 0.261
R-HSA-180689 APOBEC3G mediated resistance to HIV-1 infection 5.483929e-01 0.261
R-HSA-9026519 Activated NTRK2 signals through RAS 5.483929e-01 0.261
R-HSA-111461 Cytochrome c-mediated apoptotic response 5.483929e-01 0.261
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 5.511467e-01 0.259
R-HSA-5654708 Downstream signaling of activated FGFR3 5.533070e-01 0.257
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 5.596687e-01 0.252
R-HSA-446203 Asparagine N-linked glycosylation 5.676026e-01 0.246
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 5.685170e-01 0.245
R-HSA-76046 RNA Polymerase III Transcription Initiation 5.685170e-01 0.245
R-HSA-5654716 Downstream signaling of activated FGFR4 5.685170e-01 0.245
R-HSA-456926 Thrombin signalling through proteinase activated receptors (PARs) 5.685170e-01 0.245
R-HSA-8951936 RUNX3 regulates p14-ARF 5.717145e-01 0.243
R-HSA-9931530 Phosphorylation and nuclear translocation of the CRY:PER:kinase complex 5.717145e-01 0.243
R-HSA-8941856 RUNX3 regulates NOTCH signaling 5.717145e-01 0.243
R-HSA-9617629 Regulation of FOXO transcriptional activity by acetylation 5.717145e-01 0.243
R-HSA-179812 GRB2 events in EGFR signaling 5.717145e-01 0.243
R-HSA-4641265 Repression of WNT target genes 5.717145e-01 0.243
R-HSA-1679131 Trafficking and processing of endosomal TLR 5.717145e-01 0.243
R-HSA-9697154 Disorders of Nervous System Development 5.717145e-01 0.243
R-HSA-9005895 Pervasive developmental disorders 5.717145e-01 0.243
R-HSA-2428933 SHC-related events triggered by IGF1R 5.717145e-01 0.243
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 5.717145e-01 0.243
R-HSA-1247673 Erythrocytes take up oxygen and release carbon dioxide 5.717145e-01 0.243
R-HSA-198323 AKT phosphorylates targets in the cytosol 5.717145e-01 0.243
R-HSA-8983711 OAS antiviral response 5.717145e-01 0.243
R-HSA-167172 Transcription of the HIV genome 5.720316e-01 0.243
R-HSA-9635486 Infection with Mycobacterium tuberculosis 5.732654e-01 0.242
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 5.822673e-01 0.235
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 5.833488e-01 0.234
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 5.833488e-01 0.234
R-HSA-9609690 HCMV Early Events 5.867011e-01 0.232
R-HSA-9816359 Maternal to zygotic transition (MZT) 5.886213e-01 0.230
R-HSA-75892 Platelet Adhesion to exposed collagen 5.938331e-01 0.226
R-HSA-9796292 Formation of axial mesoderm 5.938331e-01 0.226
R-HSA-9683610 Maturation of nucleoprotein 5.938331e-01 0.226
R-HSA-9682706 Replication of the SARS-CoV-1 genome 5.938331e-01 0.226
R-HSA-69190 DNA strand elongation 5.978009e-01 0.223
R-HSA-427413 NoRC negatively regulates rRNA expression 6.023083e-01 0.220
R-HSA-912446 Meiotic recombination 6.047357e-01 0.218
R-HSA-2672351 Stimuli-sensing channels 6.105321e-01 0.214
R-HSA-1855170 IPs transport between nucleus and cytosol 6.118728e-01 0.213
R-HSA-1839124 FGFR1 mutant receptor activation 6.118728e-01 0.213
R-HSA-9930044 Nuclear RNA decay 6.118728e-01 0.213
R-HSA-176187 Activation of ATR in response to replication stress 6.118728e-01 0.213
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 6.121079e-01 0.213
R-HSA-9933937 Formation of the canonical BAF (cBAF) complex 6.148106e-01 0.211
R-HSA-69166 Removal of the Flap Intermediate 6.148106e-01 0.211
R-HSA-177504 Retrograde neurotrophin signalling 6.148106e-01 0.211
R-HSA-9764562 Regulation of CDH1 mRNA translation by microRNAs 6.148106e-01 0.211
R-HSA-1483115 Hydrolysis of LPC 6.148106e-01 0.211
R-HSA-9686114 Non-canonical inflammasome activation 6.148106e-01 0.211
R-HSA-1170546 Prolactin receptor signaling 6.148106e-01 0.211
R-HSA-1482798 Acyl chain remodeling of CL 6.148106e-01 0.211
R-HSA-5655291 Signaling by FGFR4 in disease 6.148106e-01 0.211
R-HSA-9679514 SARS-CoV-1 Genome Replication and Transcription 6.148106e-01 0.211
R-HSA-73772 RNA Polymerase I Promoter Escape 6.160096e-01 0.210
R-HSA-4086398 Ca2+ pathway 6.217569e-01 0.206
R-HSA-1482788 Acyl chain remodelling of PC 6.255654e-01 0.204
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 6.255654e-01 0.204
R-HSA-1221632 Meiotic synapsis 6.270642e-01 0.203
R-HSA-9824443 Parasitic Infection Pathways 6.290065e-01 0.201
R-HSA-9658195 Leishmania infection 6.290065e-01 0.201
R-HSA-674695 RNA Polymerase II Pre-transcription Events 6.312532e-01 0.200
R-HSA-8948700 Competing endogenous RNAs (ceRNAs) regulate PTEN translation 6.347060e-01 0.197
R-HSA-73780 RNA Polymerase III Chain Elongation 6.347060e-01 0.197
R-HSA-69183 Processive synthesis on the lagging strand 6.347060e-01 0.197
R-HSA-174430 Telomere C-strand synthesis initiation 6.347060e-01 0.197
R-HSA-111447 Activation of BAD and translocation to mitochondria 6.347060e-01 0.197
R-HSA-379401 Dopamine clearance from the synaptic cleft 6.347060e-01 0.197
R-HSA-9857492 Protein lipoylation 6.347060e-01 0.197
R-HSA-180336 SHC1 events in EGFR signaling 6.347060e-01 0.197
R-HSA-9755779 SARS-CoV-2 targets host intracellular signalling and regulatory pathways 6.347060e-01 0.197
R-HSA-450385 Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA 6.347060e-01 0.197
R-HSA-9673767 Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants 6.347060e-01 0.197
R-HSA-9673770 Signaling by PDGFRA extracellular domain mutants 6.347060e-01 0.197
R-HSA-1502540 Signaling by Activin 6.347060e-01 0.197
R-HSA-9701898 STAT3 nuclear events downstream of ALK signaling 6.347060e-01 0.197
R-HSA-9927426 Developmental Lineage of Mammary Gland Alveolar Cells 6.388802e-01 0.195
R-HSA-9768919 NPAS4 regulates expression of target genes 6.388802e-01 0.195
R-HSA-6814122 Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding 6.388802e-01 0.195
R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 6.388802e-01 0.195
R-HSA-180746 Nuclear import of Rev protein 6.388802e-01 0.195
R-HSA-392518 Signal amplification 6.388802e-01 0.195
R-HSA-9006931 Signaling by Nuclear Receptors 6.447889e-01 0.191
R-HSA-1482839 Acyl chain remodelling of PE 6.518197e-01 0.186
R-HSA-5654696 Downstream signaling of activated FGFR2 6.518197e-01 0.186
R-HSA-5654687 Downstream signaling of activated FGFR1 6.518197e-01 0.186
R-HSA-168275 Entry of Influenza Virion into Host Cell via Endocytosis 6.535748e-01 0.185
R-HSA-6804116 TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest 6.535748e-01 0.185
R-HSA-2485179 Activation of the phototransduction cascade 6.535748e-01 0.185
R-HSA-210744 Regulation of gene expression in late stage (branching morphogenesis) pancreatic... 6.535748e-01 0.185
R-HSA-70350 Fructose catabolism 6.535748e-01 0.185
R-HSA-388844 Receptor-type tyrosine-protein phosphatases 6.535748e-01 0.185
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion 6.535748e-01 0.185
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 6.588090e-01 0.181
R-HSA-5578775 Ion homeostasis 6.588973e-01 0.181
R-HSA-193648 NRAGE signals death through JNK 6.588973e-01 0.181
R-HSA-3299685 Detoxification of Reactive Oxygen Species 6.588973e-01 0.181
R-HSA-983712 Ion channel transport 6.628677e-01 0.179
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 6.643873e-01 0.178
R-HSA-74158 RNA Polymerase III Transcription 6.643873e-01 0.178
R-HSA-140877 Formation of Fibrin Clot (Clotting Cascade) 6.643873e-01 0.178
R-HSA-69205 G1/S-Specific Transcription 6.643873e-01 0.178
R-HSA-416482 G alpha (12/13) signalling events 6.676789e-01 0.175
R-HSA-112399 IRS-mediated signalling 6.690621e-01 0.175
R-HSA-9912633 Antigen processing: Ub, ATP-independent proteasomal degradation 6.714701e-01 0.173
R-HSA-4420332 Defective B3GALT6 causes EDSP2 and SEMDJL1 6.714701e-01 0.173
R-HSA-3560783 Defective B4GALT7 causes EDS, progeroid type 6.714701e-01 0.173
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 6.714701e-01 0.173
R-HSA-399997 Acetylcholine regulates insulin secretion 6.714701e-01 0.173
R-HSA-1483148 Synthesis of PG 6.714701e-01 0.173
R-HSA-5661270 Formation of xylulose-5-phosphate 6.714701e-01 0.173
R-HSA-9651496 Defects of contact activation system (CAS) and kallikrein/kinin system (KKS) 6.714701e-01 0.173
R-HSA-5663205 Infectious disease 6.749364e-01 0.171
R-HSA-933541 TRAF6 mediated IRF7 activation 6.765867e-01 0.170
R-HSA-909733 Interferon alpha/beta signaling 6.784863e-01 0.168
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 6.790035e-01 0.168
R-HSA-9609507 Protein localization 6.841371e-01 0.165
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 6.849401e-01 0.164
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 6.884225e-01 0.162
R-HSA-452723 Transcriptional regulation of pluripotent stem cells 6.884225e-01 0.162
R-HSA-3560801 Defective B3GAT3 causes JDSSDHD 6.884420e-01 0.162
R-HSA-9909505 Modulation of host responses by IFN-stimulated genes 6.884420e-01 0.162
R-HSA-2408550 Metabolism of ingested H2SeO4 and H2SeO3 into H2Se 6.884420e-01 0.162
R-HSA-6798163 Choline catabolism 6.884420e-01 0.162
R-HSA-9694686 Replication of the SARS-CoV-2 genome 6.884420e-01 0.162
R-HSA-180786 Extension of Telomeres 6.887218e-01 0.162
R-HSA-8979227 Triglyceride metabolism 6.887218e-01 0.162
R-HSA-1643685 Disease 6.922145e-01 0.160
R-HSA-9007101 Rab regulation of trafficking 6.924971e-01 0.160
R-HSA-977225 Amyloid fiber formation 6.933305e-01 0.159
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 6.982176e-01 0.156
R-HSA-351202 Metabolism of polyamines 6.982176e-01 0.156
R-HSA-1236978 Cross-presentation of soluble exogenous antigens (endosomes) 6.998996e-01 0.155
R-HSA-8953750 Transcriptional Regulation by E2F6 6.998996e-01 0.155
R-HSA-168276 NS1 Mediated Effects on Host Pathways 6.998996e-01 0.155
R-HSA-5651801 PCNA-Dependent Long Patch Base Excision Repair 7.045381e-01 0.152
R-HSA-73980 RNA Polymerase III Transcription Termination 7.045381e-01 0.152
R-HSA-9614657 FOXO-mediated transcription of cell death genes 7.045381e-01 0.152
R-HSA-9679504 Translation of Replicase and Assembly of the Replication Transcription Complex 7.045381e-01 0.152
R-HSA-9026395 Biosynthesis of DHA-derived sulfido conjugates 7.045381e-01 0.152
R-HSA-2428928 IRS-related events triggered by IGF1R 7.074920e-01 0.150
R-HSA-445717 Aquaporin-mediated transport 7.074920e-01 0.150
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 7.110235e-01 0.148
R-HSA-5602358 Diseases associated with the TLR signaling cascade 7.110235e-01 0.148
R-HSA-5260271 Diseases of Immune System 7.110235e-01 0.148
R-HSA-177243 Interactions of Rev with host cellular proteins 7.110235e-01 0.148
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 7.165463e-01 0.145
R-HSA-1912420 Pre-NOTCH Processing in Golgi 7.198035e-01 0.143
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 7.198035e-01 0.143
R-HSA-9754189 Germ layer formation at gastrulation 7.198035e-01 0.143
R-HSA-5654710 PI-3K cascade:FGFR3 7.198035e-01 0.143
R-HSA-9834899 Specification of the neural plate border 7.198035e-01 0.143
R-HSA-9671793 Diseases of hemostasis 7.198035e-01 0.143
R-HSA-1237112 Methionine salvage pathway 7.198035e-01 0.143
R-HSA-1480926 O2/CO2 exchange in erythrocytes 7.198035e-01 0.143
R-HSA-1237044 Erythrocytes take up carbon dioxide and release oxygen 7.198035e-01 0.143
R-HSA-9856532 Mechanical load activates signaling by PIEZO1 and integrins in osteocytes 7.198035e-01 0.143
R-HSA-9694682 SARS-CoV-2 Genome Replication and Transcription 7.198035e-01 0.143
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 7.218001e-01 0.142
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 7.253819e-01 0.139
R-HSA-8951664 Neddylation 7.295832e-01 0.137
R-HSA-936837 Ion transport by P-type ATPases 7.340007e-01 0.134
R-HSA-2428924 IGF1R signaling cascade 7.340007e-01 0.134
R-HSA-9909620 Regulation of PD-L1(CD274) translation 7.342811e-01 0.134
R-HSA-5654720 PI-3K cascade:FGFR4 7.342811e-01 0.134
R-HSA-5620916 VxPx cargo-targeting to cilium 7.342811e-01 0.134
R-HSA-71288 Creatine metabolism 7.342811e-01 0.134
R-HSA-1482922 Acyl chain remodelling of PI 7.342811e-01 0.134
R-HSA-9823730 Formation of definitive endoderm 7.342811e-01 0.134
R-HSA-77111 Synthesis of Ketone Bodies 7.342811e-01 0.134
R-HSA-391903 Eicosanoid ligand-binding receptors 7.342811e-01 0.134
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 7.403107e-01 0.131
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 7.424046e-01 0.129
R-HSA-5602498 MyD88 deficiency (TLR2/4) 7.480115e-01 0.126
R-HSA-5357786 TNFR1-induced proapoptotic signaling 7.480115e-01 0.126
R-HSA-5654704 SHC-mediated cascade:FGFR3 7.480115e-01 0.126
R-HSA-9824594 Regulation of MITF-M-dependent genes involved in apoptosis 7.480115e-01 0.126
R-HSA-1482925 Acyl chain remodelling of PG 7.480115e-01 0.126
R-HSA-2871837 FCERI mediated NF-kB activation 7.537496e-01 0.123
R-HSA-211000 Gene Silencing by RNA 7.545589e-01 0.122
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 7.563528e-01 0.121
R-HSA-2022870 CS-GAG biosynthesis 7.610332e-01 0.119
R-HSA-5603041 IRAK4 deficiency (TLR2/4) 7.610332e-01 0.119
R-HSA-5654719 SHC-mediated cascade:FGFR4 7.610332e-01 0.119
R-HSA-8949215 Mitochondrial calcium ion transport 7.610332e-01 0.119
R-HSA-2022377 Metabolism of Angiotensinogen to Angiotensins 7.610332e-01 0.119
R-HSA-9907900 Proteasome assembly 7.615608e-01 0.118
R-HSA-3214858 RMTs methylate histone arginines 7.615608e-01 0.118
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 7.706985e-01 0.113
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 7.733828e-01 0.112
R-HSA-76071 RNA Polymerase III Transcription Initiation From Type 3 Promoter 7.733828e-01 0.112
R-HSA-5654689 PI-3K cascade:FGFR1 7.733828e-01 0.112
R-HSA-5652084 Fructose metabolism 7.733828e-01 0.112
R-HSA-168799 Neurotoxicity of clostridium toxins 7.733828e-01 0.112
R-HSA-9694676 Translation of Replicase and Assembly of the Replication Transcription Complex 7.733828e-01 0.112
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 7.795294e-01 0.108
R-HSA-2514859 Inactivation, recovery and regulation of the phototransduction cascade 7.795294e-01 0.108
R-HSA-9758941 Gastrulation 7.802728e-01 0.108
R-HSA-1474165 Reproduction 7.844048e-01 0.105
R-HSA-2871796 FCERI mediated MAPK activation 7.849641e-01 0.105
R-HSA-8943723 Regulation of PTEN mRNA translation 7.850948e-01 0.105
R-HSA-9648895 Response of EIF2AK1 (HRI) to heme deficiency 7.850948e-01 0.105
R-HSA-1369062 ABC transporters in lipid homeostasis 7.850948e-01 0.105
R-HSA-1855167 Synthesis of pyrophosphates in the cytosol 7.850948e-01 0.105
R-HSA-400451 Free fatty acids regulate insulin secretion 7.850948e-01 0.105
R-HSA-200425 Carnitine shuttle 7.850948e-01 0.105
R-HSA-74182 Ketone body metabolism 7.850948e-01 0.105
R-HSA-3000170 Syndecan interactions 7.850948e-01 0.105
R-HSA-982772 Growth hormone receptor signaling 7.850948e-01 0.105
R-HSA-418555 G alpha (s) signalling events 7.871465e-01 0.104
R-HSA-3000178 ECM proteoglycans 7.884525e-01 0.103
R-HSA-5578749 Transcriptional regulation by small RNAs 7.954238e-01 0.099
R-HSA-5654688 SHC-mediated cascade:FGFR1 7.962022e-01 0.099
R-HSA-9865881 Complex III assembly 7.962022e-01 0.099
R-HSA-9031628 NGF-stimulated transcription 7.963001e-01 0.099
R-HSA-425410 Metal ion SLC transporters 7.963001e-01 0.099
R-HSA-9837999 Mitochondrial protein degradation 8.002393e-01 0.097
R-HSA-1296041 Activation of G protein gated Potassium channels 8.067362e-01 0.093
R-HSA-997272 Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits 8.067362e-01 0.093
R-HSA-1296059 G protein gated Potassium channels 8.067362e-01 0.093
R-HSA-5654695 PI-3K cascade:FGFR2 8.067362e-01 0.093
R-HSA-1266695 Interleukin-7 signaling 8.067362e-01 0.093
R-HSA-203927 MicroRNA (miRNA) biogenesis 8.067362e-01 0.093
R-HSA-3214842 HDMs demethylate histones 8.067362e-01 0.093
R-HSA-2160916 Hyaluronan degradation 8.067362e-01 0.093
R-HSA-9830364 Formation of the nephric duct 8.067362e-01 0.093
R-HSA-5601884 PIWI-interacting RNA (piRNA) biogenesis 8.067362e-01 0.093
R-HSA-5628897 TP53 Regulates Metabolic Genes 8.071204e-01 0.093
R-HSA-1226099 Signaling by FGFR in disease 8.087913e-01 0.092
R-HSA-109704 PI3K Cascade 8.119317e-01 0.090
R-HSA-9748787 Azathioprine ADME 8.119317e-01 0.090
R-HSA-110373 Resolution of AP sites via the multiple-nucleotide patch replacement pathway 8.167263e-01 0.088
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 8.167263e-01 0.088
R-HSA-9845614 Sphingolipid catabolism 8.167263e-01 0.088
R-HSA-1660514 Synthesis of PIPs at the Golgi membrane 8.167263e-01 0.088
R-HSA-3295583 TRP channels 8.167263e-01 0.088
R-HSA-70635 Urea cycle 8.167263e-01 0.088
R-HSA-9865118 Diseases of branched-chain amino acid catabolism 8.167263e-01 0.088
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 8.167263e-01 0.088
R-HSA-9734767 Developmental Cell Lineages 8.169945e-01 0.088
R-HSA-2514856 The phototransduction cascade 8.193389e-01 0.087
R-HSA-157579 Telomere Maintenance 8.230371e-01 0.085
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 8.262005e-01 0.083
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 8.262005e-01 0.083
R-HSA-73728 RNA Polymerase I Promoter Opening 8.262005e-01 0.083
R-HSA-202427 Phosphorylation of CD3 and TCR zeta chains 8.262005e-01 0.083
R-HSA-5654699 SHC-mediated cascade:FGFR2 8.262005e-01 0.083
R-HSA-174414 Processive synthesis on the C-strand of the telomere 8.262005e-01 0.083
R-HSA-5655332 Signaling by FGFR3 in disease 8.262005e-01 0.083
R-HSA-6783783 Interleukin-10 signaling 8.333196e-01 0.079
R-HSA-167287 HIV elongation arrest and recovery 8.351855e-01 0.078
R-HSA-113418 Formation of the Early Elongation Complex 8.351855e-01 0.078
R-HSA-167290 Pausing and recovery of HIV elongation 8.351855e-01 0.078
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 8.351855e-01 0.078
R-HSA-380994 ATF4 activates genes in response to endoplasmic reticulum stress 8.351855e-01 0.078
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 8.390122e-01 0.076
R-HSA-5334118 DNA methylation 8.437066e-01 0.074
R-HSA-9609646 HCMV Infection 8.457023e-01 0.073
R-HSA-3214815 HDACs deacetylate histones 8.464151e-01 0.072
R-HSA-9753281 Paracetamol ADME 8.464151e-01 0.072
R-HSA-380972 Energy dependent regulation of mTOR by LKB1-AMPK 8.517876e-01 0.070
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 8.517876e-01 0.070
R-HSA-888590 GABA synthesis, release, reuptake and degradation 8.517876e-01 0.070
R-HSA-112311 Neurotransmitter clearance 8.517876e-01 0.070
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 8.517876e-01 0.070
R-HSA-1474151 Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation 8.517876e-01 0.070
R-HSA-5621480 Dectin-2 family 8.585228e-01 0.066
R-HSA-9820960 Respiratory syncytial virus (RSV) attachment and entry 8.594512e-01 0.066
R-HSA-5694530 Cargo concentration in the ER 8.594512e-01 0.066
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 8.621896e-01 0.064
R-HSA-5619507 Activation of HOX genes during differentiation 8.621896e-01 0.064
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 8.628214e-01 0.064
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 8.628214e-01 0.064
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 8.628214e-01 0.064
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 8.642436e-01 0.063
R-HSA-9772572 Early SARS-CoV-2 Infection Events 8.642436e-01 0.063
R-HSA-1296065 Inwardly rectifying K+ channels 8.667190e-01 0.062
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 8.736114e-01 0.059
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 8.736114e-01 0.059
R-HSA-9733709 Cardiogenesis 8.736114e-01 0.059
R-HSA-8873719 RAB geranylgeranylation 8.750536e-01 0.058
R-HSA-2024101 CS/DS degradation 8.801478e-01 0.055
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 8.801478e-01 0.055
R-HSA-5223345 Miscellaneous transport and binding events 8.801478e-01 0.055
R-HSA-168325 Viral Messenger RNA Synthesis 8.801560e-01 0.055
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 8.817175e-01 0.055
R-HSA-9664433 Leishmania parasite growth and survival 8.817175e-01 0.055
R-HSA-9616222 Transcriptional regulation of granulopoiesis 8.850652e-01 0.053
R-HSA-1971475 Glycosaminoglycan-protein linkage region biosynthesis 8.863465e-01 0.052
R-HSA-203615 eNOS activation 8.863465e-01 0.052
R-HSA-5686938 Regulation of TLR by endogenous ligand 8.863465e-01 0.052
R-HSA-2142845 Hyaluronan metabolism 8.863465e-01 0.052
R-HSA-6799198 Complex I biogenesis 8.897877e-01 0.051
R-HSA-917977 Transferrin endocytosis and recycling 8.922250e-01 0.050
R-HSA-1483249 Inositol phosphate metabolism 8.936882e-01 0.049
R-HSA-9845576 Glycosphingolipid transport 8.977997e-01 0.047
R-HSA-5619115 Disorders of transmembrane transporters 8.991418e-01 0.046
R-HSA-419037 NCAM1 interactions 9.030864e-01 0.044
R-HSA-71064 Lysine catabolism 9.030864e-01 0.044
R-HSA-196757 Metabolism of folate and pterines 9.030864e-01 0.044
R-HSA-202131 Metabolism of nitric oxide: NOS3 activation and regulation 9.081000e-01 0.042
R-HSA-2029485 Role of phospholipids in phagocytosis 9.100019e-01 0.041
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 9.108095e-01 0.041
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 9.128545e-01 0.040
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 9.128545e-01 0.040
R-HSA-381771 Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) 9.128545e-01 0.040
R-HSA-9820965 Respiratory syncytial virus (RSV) genome replication, transcription and translat... 9.128545e-01 0.040
R-HSA-2980736 Peptide hormone metabolism 9.158787e-01 0.038
R-HSA-9670095 Inhibition of DNA recombination at telomere 9.173632e-01 0.037
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 9.173632e-01 0.037
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 9.173632e-01 0.037
R-HSA-167169 HIV Transcription Elongation 9.173632e-01 0.037
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 9.173632e-01 0.037
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 9.173632e-01 0.037
R-HSA-204005 COPII-mediated vesicle transport 9.181161e-01 0.037
R-HSA-75105 Fatty acyl-CoA biosynthesis 9.181161e-01 0.037
R-HSA-9821002 Chromatin modifications during the maternal to zygotic transition (MZT) 9.216390e-01 0.035
R-HSA-9694548 Maturation of spike protein 9.216390e-01 0.035
R-HSA-73933 Resolution of Abasic Sites (AP sites) 9.216390e-01 0.035
R-HSA-3000480 Scavenging by Class A Receptors 9.256938e-01 0.034
R-HSA-442660 SLC-mediated transport of neurotransmitters 9.256938e-01 0.034
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 9.256938e-01 0.034
R-HSA-977444 GABA B receptor activation 9.295390e-01 0.032
R-HSA-991365 Activation of GABAB receptors 9.295390e-01 0.032
R-HSA-400508 Incretin synthesis, secretion, and inactivation 9.295390e-01 0.032
R-HSA-1474244 Extracellular matrix organization 9.302424e-01 0.031
R-HSA-9614085 FOXO-mediated transcription 9.304994e-01 0.031
R-HSA-1222556 ROS and RNS production in phagocytes 9.310723e-01 0.031
R-HSA-9710421 Defective pyroptosis 9.331854e-01 0.030
R-HSA-75876 Synthesis of very long-chain fatty acyl-CoAs 9.331854e-01 0.030
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 9.339945e-01 0.030
R-HSA-375280 Amine ligand-binding receptors 9.366433e-01 0.028
R-HSA-156581 Methylation 9.366433e-01 0.028
R-HSA-9842860 Regulation of endogenous retroelements 9.380237e-01 0.028
R-HSA-3560782 Diseases associated with glycosaminoglycan metabolism 9.399225e-01 0.027
R-HSA-216083 Integrin cell surface interactions 9.420727e-01 0.026
R-HSA-389356 Co-stimulation by CD28 9.487774e-01 0.023
R-HSA-9824439 Bacterial Infection Pathways 9.497047e-01 0.022
R-HSA-1474228 Degradation of the extracellular matrix 9.534998e-01 0.021
R-HSA-5655253 Signaling by FGFR2 in disease 9.539438e-01 0.020
R-HSA-70895 Branched-chain amino acid catabolism 9.563284e-01 0.019
R-HSA-6794362 Protein-protein interactions at synapses 9.574214e-01 0.019
R-HSA-112382 Formation of RNA Pol II elongation complex 9.585897e-01 0.018
R-HSA-6794361 Neurexins and neuroligins 9.585897e-01 0.018
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 9.592674e-01 0.018
R-HSA-75955 RNA Polymerase II Transcription Elongation 9.607340e-01 0.017
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 9.610365e-01 0.017
R-HSA-392499 Metabolism of proteins 9.614243e-01 0.017
R-HSA-597592 Post-translational protein modification 9.614745e-01 0.017
R-HSA-416476 G alpha (q) signalling events 9.645790e-01 0.016
R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 9.646957e-01 0.016
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 9.673801e-01 0.014
R-HSA-112310 Neurotransmitter release cycle 9.674030e-01 0.014
R-HSA-1483166 Synthesis of PA 9.682580e-01 0.014
R-HSA-1592230 Mitochondrial biogenesis 9.694451e-01 0.013
R-HSA-71291 Metabolism of amino acids and derivatives 9.705434e-01 0.013
R-HSA-186712 Regulation of beta-cell development 9.714613e-01 0.013
R-HSA-352230 Amino acid transport across the plasma membrane 9.714613e-01 0.013
R-HSA-72306 tRNA processing 9.716273e-01 0.013
R-HSA-2029481 FCGR activation 9.727620e-01 0.012
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 9.727620e-01 0.012
R-HSA-977443 GABA receptor activation 9.729397e-01 0.012
R-HSA-211976 Endogenous sterols 9.743417e-01 0.011
R-HSA-1442490 Collagen degradation 9.743417e-01 0.011
R-HSA-9707616 Heme signaling 9.756710e-01 0.011
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 9.756710e-01 0.011
R-HSA-1483206 Glycerophospholipid biosynthesis 9.770528e-01 0.010
R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 9.772657e-01 0.010
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 9.772657e-01 0.010
R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Receptors 9.777023e-01 0.010
R-HSA-211981 Xenobiotics 9.781269e-01 0.010
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 9.793227e-01 0.009
R-HSA-6782315 tRNA modification in the nucleus and cytosol 9.803352e-01 0.009
R-HSA-9830369 Kidney development 9.813544e-01 0.008
R-HSA-196807 Nicotinate metabolism 9.813544e-01 0.008
R-HSA-9958863 SLC-mediated transport of amino acids 9.813544e-01 0.008
R-HSA-1989781 PPARA activates gene expression 9.815466e-01 0.008
R-HSA-1483255 PI Metabolism 9.826986e-01 0.008
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 9.829015e-01 0.007
R-HSA-9937383 Mitochondrial ribosome-associated quality control 9.834720e-01 0.007
R-HSA-9843745 Adipogenesis 9.840962e-01 0.007
R-HSA-5576891 Cardiac conduction 9.840962e-01 0.007
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 9.841060e-01 0.007
R-HSA-3906995 Diseases associated with O-glycosylation of proteins 9.849300e-01 0.007
R-HSA-8978934 Metabolism of cofactors 9.849300e-01 0.007
R-HSA-975634 Retinoid metabolism and transport 9.849300e-01 0.007
R-HSA-499943 Interconversion of nucleotide di- and triphosphates 9.857112e-01 0.006
R-HSA-418346 Platelet homeostasis 9.862431e-01 0.006
R-HSA-5619102 SLC transporter disorders 9.883754e-01 0.005
R-HSA-418594 G alpha (i) signalling events 9.899769e-01 0.004
R-HSA-6806667 Metabolism of fat-soluble vitamins 9.911518e-01 0.004
R-HSA-9018677 Biosynthesis of DHA-derived SPMs 9.911518e-01 0.004
R-HSA-2871809 FCERI mediated Ca+2 mobilization 9.917326e-01 0.004
R-HSA-2187338 Visual phototransduction 9.925395e-01 0.003
R-HSA-202733 Cell surface interactions at the vascular wall 9.931590e-01 0.003
R-HSA-1614635 Sulfur amino acid metabolism 9.935727e-01 0.003
R-HSA-156580 Phase II - Conjugation of compounds 9.936325e-01 0.003
R-HSA-1483257 Phospholipid metabolism 9.937834e-01 0.003
R-HSA-420499 Class C/3 (Metabotropic glutamate/pheromone receptors) 9.942224e-01 0.003
R-HSA-6809371 Formation of the cornified envelope 9.945739e-01 0.002
R-HSA-73884 Base Excision Repair 9.948066e-01 0.002
R-HSA-388396 GPCR downstream signalling 9.955386e-01 0.002
R-HSA-77289 Mitochondrial Fatty Acid Beta-Oxidation 9.962283e-01 0.002
R-HSA-5389840 Mitochondrial translation elongation 9.966098e-01 0.001
R-HSA-1296071 Potassium Channels 9.966098e-01 0.001
R-HSA-5368286 Mitochondrial translation initiation 9.969528e-01 0.001
R-HSA-5368287 Mitochondrial translation 9.975737e-01 0.001
R-HSA-5419276 Mitochondrial translation termination 9.983936e-01 0.001
R-HSA-375276 Peptide ligand-binding receptors 9.987013e-01 0.001
R-HSA-1428517 Aerobic respiration and respiratory electron transport 9.987255e-01 0.001
R-HSA-372790 Signaling by GPCR 9.989213e-01 0.000
R-HSA-9610379 HCMV Late Events 9.990712e-01 0.000
R-HSA-977606 Regulation of Complement cascade 9.993857e-01 0.000
R-HSA-611105 Respiratory electron transport 9.996815e-01 0.000
R-HSA-3781865 Diseases of glycosylation 9.997626e-01 0.000
R-HSA-9018678 Biosynthesis of specialized proresolving mediators (SPMs) 9.998105e-01 0.000
R-HSA-166658 Complement cascade 9.998298e-01 0.000
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 9.998325e-01 0.000
R-HSA-1630316 Glycosaminoglycan metabolism 9.998475e-01 0.000
R-HSA-2142753 Arachidonate metabolism 9.998830e-01 0.000
R-HSA-382551 Transport of small molecules 9.999213e-01 0.000
R-HSA-6805567 Keratinization 9.999237e-01 0.000
R-HSA-211897 Cytochrome P450 - arranged by substrate type 9.999476e-01 0.000
R-HSA-5668914 Diseases of metabolism 9.999514e-01 0.000
R-HSA-9748784 Drug ADME 9.999580e-01 0.000
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 9.999757e-01 0.000
R-HSA-425407 SLC-mediated transmembrane transport 9.999886e-01 0.000
R-HSA-196854 Metabolism of vitamins and cofactors 9.999891e-01 0.000
R-HSA-428157 Sphingolipid metabolism 9.999920e-01 0.000
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 9.999973e-01 0.000
R-HSA-211945 Phase I - Functionalization of compounds 9.999979e-01 0.000
R-HSA-8957322 Metabolism of steroids 9.999981e-01 0.000
R-HSA-8978868 Fatty acid metabolism 9.999985e-01 0.000
R-HSA-15869 Metabolism of nucleotides 9.999988e-01 0.000
R-HSA-211859 Biological oxidations 9.999990e-01 0.000
R-HSA-500792 GPCR ligand binding 1.000000e+00 0.000
R-HSA-556833 Metabolism of lipids 1.000000e+00 0.000
R-HSA-9709957 Sensory Perception 1.000000e+00 0.000
R-HSA-1430728 Metabolism 1.000000e+00 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
GAKGAK 0.816 0.066 1 0.843
ALPHAK3ALPHAK3 0.811 0.123 -1 0.821
BRAFBRAF 0.809 0.067 -4 0.177
TAK1TAK1 0.808 0.031 1 0.840
MST2MST2 0.808 0.090 1 0.835
ALK2ALK2 0.806 0.179 -2 0.899
BMPR1BBMPR1B 0.805 0.210 1 0.861
TTKTTK 0.803 0.081 -2 0.895
PKRPKR 0.803 -0.009 1 0.838
GCKGCK 0.802 0.007 1 0.826
ALK4ALK4 0.802 0.107 -2 0.909
TNIKTNIK 0.802 0.026 3 0.859
MST1MST1 0.801 0.019 1 0.814
OSR1OSR1 0.800 0.079 2 0.797
BMPR2BMPR2 0.800 0.086 -2 0.937
MOSMOS 0.799 0.164 1 0.918
VRK2VRK2 0.799 -0.164 1 0.875
EEF2KEEF2K 0.799 -0.006 3 0.840
MINKMINK 0.798 -0.032 1 0.811
TGFBR1TGFBR1 0.798 0.137 -2 0.886
GRK7GRK7 0.797 0.189 1 0.810
TAO3TAO3 0.797 0.065 1 0.815
MEK1MEK1 0.797 -0.022 2 0.837
MEKK2MEKK2 0.797 0.037 2 0.807
BMPR1ABMPR1A 0.796 0.202 1 0.853
ACVR2BACVR2B 0.796 0.160 -2 0.892
VRK1VRK1 0.796 -0.107 2 0.848
LRRK2LRRK2 0.793 -0.138 2 0.851
LATS1LATS1 0.793 0.051 -3 0.856
ACVR2AACVR2A 0.793 0.147 -2 0.885
HGKHGK 0.792 -0.035 3 0.847
CAMKK1CAMKK1 0.792 -0.018 -2 0.820
TAO2TAO2 0.792 -0.058 2 0.869
NIKNIK 0.791 -0.071 -3 0.884
PASKPASK 0.791 0.063 -3 0.857
KHS1KHS1 0.790 -0.030 1 0.804
CAMKK2CAMKK2 0.790 -0.061 -2 0.810
KHS2KHS2 0.790 -0.003 1 0.816
NEK5NEK5 0.790 -0.050 1 0.823
ASK1ASK1 0.790 -0.112 1 0.772
DLKDLK 0.789 -0.029 1 0.854
PRPKPRPK 0.789 -0.022 -1 0.874
NEK1NEK1 0.789 -0.117 1 0.799
LKB1LKB1 0.789 -0.088 -3 0.830
NEK8NEK8 0.788 -0.022 2 0.828
MYO3AMYO3A 0.788 -0.014 1 0.792
MEK5MEK5 0.787 -0.145 2 0.824
YSK4YSK4 0.787 -0.001 1 0.801
MEKK1MEKK1 0.786 -0.043 1 0.820
DAPK2DAPK2 0.786 -0.072 -3 0.865
PDK1PDK1 0.786 -0.094 1 0.804
GRK6GRK6 0.785 0.137 1 0.884
HPK1HPK1 0.785 -0.067 1 0.812
MEKK3MEKK3 0.785 -0.021 1 0.816
JNK3JNK3 0.785 0.052 1 0.671
COTCOT 0.784 0.210 2 0.895
ANKRD3ANKRD3 0.784 -0.068 1 0.859
MST3MST3 0.784 -0.040 2 0.854
STLK3STLK3 0.784 -0.052 1 0.769
BIKEBIKE 0.784 -0.024 1 0.712
MYO3BMYO3B 0.783 -0.050 2 0.835
MAP3K15MAP3K15 0.782 -0.131 1 0.780
JNK2JNK2 0.782 0.046 1 0.634
CAMLCKCAMLCK 0.782 -0.062 -2 0.850
ATRATR 0.782 0.009 1 0.838
RAF1RAF1 0.781 0.055 1 0.874
PLK1PLK1 0.781 0.088 -2 0.884
PRP4PRP4 0.780 0.031 -3 0.804
CAMK1BCAMK1B 0.780 -0.051 -3 0.864
ZAKZAK 0.779 -0.041 1 0.799
MEK2MEK2 0.779 -0.124 2 0.798
DSTYKDSTYK 0.779 0.171 2 0.911
TLK2TLK2 0.779 0.094 1 0.802
YSK1YSK1 0.778 -0.078 2 0.818
CDKL1CDKL1 0.778 -0.000 -3 0.806
CLK3CLK3 0.778 0.144 1 0.861
CAMK2GCAMK2G 0.777 0.043 2 0.841
NLKNLK 0.777 -0.031 1 0.842
NEK4NEK4 0.777 -0.133 1 0.797
NEK11NEK11 0.776 -0.169 1 0.810
PLK2PLK2 0.775 0.167 -3 0.897
MEKK6MEKK6 0.774 -0.168 1 0.801
GRK5GRK5 0.774 0.011 -3 0.878
PERKPERK 0.774 -0.045 -2 0.919
PLK3PLK3 0.773 0.102 2 0.784
MLK1MLK1 0.773 0.042 2 0.835
PBKPBK 0.773 -0.083 1 0.759
MPSK1MPSK1 0.772 -0.069 1 0.759
DAPK3DAPK3 0.772 -0.034 -3 0.797
ICKICK 0.772 -0.021 -3 0.837
GRK1GRK1 0.771 0.166 -2 0.849
P38AP38A 0.771 0.013 1 0.703
AAK1AAK1 0.771 0.001 1 0.601
P38BP38B 0.771 0.032 1 0.640
MLK4MLK4 0.771 0.101 2 0.743
TLK1TLK1 0.771 -0.006 -2 0.895
SKMLCKSKMLCK 0.770 -0.004 -2 0.845
MLK2MLK2 0.769 -0.099 2 0.825
CDC7CDC7 0.768 0.073 1 0.914
LOKLOK 0.768 -0.088 -2 0.792
HRIHRI 0.768 -0.104 -2 0.916
CHAK2CHAK2 0.768 0.009 -1 0.860
ERK5ERK5 0.767 0.007 1 0.794
SMMLCKSMMLCK 0.767 -0.093 -3 0.811
GRK2GRK2 0.766 0.037 -2 0.769
PDHK4PDHK4 0.766 -0.147 1 0.876
MLK3MLK3 0.766 0.056 2 0.776
ATMATM 0.766 0.075 1 0.785
DMPK1DMPK1 0.765 -0.058 -3 0.753
PIM1PIM1 0.765 0.038 -3 0.783
NEK9NEK9 0.765 -0.095 2 0.838
PKN3PKN3 0.765 0.010 -3 0.829
SLKSLK 0.765 -0.037 -2 0.753
PIM3PIM3 0.765 0.043 -3 0.842
TAO1TAO1 0.764 -0.065 1 0.742
JNK1JNK1 0.764 0.040 1 0.630
ROCK2ROCK2 0.764 -0.055 -3 0.776
CDK1CDK1 0.763 0.062 1 0.650
PINK1PINK1 0.763 0.026 1 0.812
TSSK2TSSK2 0.763 -0.012 -5 0.817
P38GP38G 0.762 0.034 1 0.561
P38DP38D 0.762 0.052 1 0.573
PKCDPKCD 0.760 0.011 2 0.820
CHK1CHK1 0.760 0.003 -3 0.824
PDHK1PDHK1 0.760 -0.127 1 0.864
DNAPKDNAPK 0.760 0.015 1 0.724
IKKAIKKA 0.759 0.190 -2 0.800
DAPK1DAPK1 0.759 -0.040 -3 0.780
MASTLMASTL 0.759 -0.206 -2 0.856
MTORMTOR 0.759 -0.007 1 0.809
ERK2ERK2 0.759 0.011 1 0.676
CAMK2BCAMK2B 0.758 0.090 2 0.822
CDK5CDK5 0.758 0.028 1 0.703
TGFBR2TGFBR2 0.757 0.017 -2 0.887
NEK7NEK7 0.757 0.012 -3 0.847
CK2A2CK2A2 0.757 0.185 1 0.790
GRK4GRK4 0.756 0.088 -2 0.884
DRAK1DRAK1 0.756 -0.026 1 0.793
TBK1TBK1 0.756 0.010 1 0.772
NEK2NEK2 0.755 -0.108 2 0.813
GSK3AGSK3A 0.755 0.050 4 0.503
MST4MST4 0.755 -0.016 2 0.878
NEK6NEK6 0.754 0.034 -2 0.919
HUNKHUNK 0.754 -0.032 2 0.800
IKKBIKKB 0.754 0.111 -2 0.803
ERK1ERK1 0.753 0.030 1 0.627
DCAMKL1DCAMKL1 0.753 -0.045 -3 0.779
WNK4WNK4 0.753 -0.157 -2 0.871
NUAK2NUAK2 0.752 -0.036 -3 0.837
AMPKA1AMPKA1 0.752 -0.083 -3 0.844
BUB1BUB1 0.752 -0.019 -5 0.775
ULK2ULK2 0.752 -0.067 2 0.787
WNK1WNK1 0.751 -0.121 -2 0.869
CAMK2DCAMK2D 0.751 -0.039 -3 0.826
MARK4MARK4 0.751 -0.035 4 0.845
IKKEIKKE 0.751 0.020 1 0.771
HASPINHASPIN 0.751 -0.046 -1 0.696
CDK2CDK2 0.750 0.022 1 0.734
HIPK1HIPK1 0.750 -0.014 1 0.713
RIPK3RIPK3 0.750 -0.120 3 0.708
P70S6KBP70S6KB 0.749 -0.048 -3 0.792
CDKL5CDKL5 0.749 -0.030 -3 0.791
RIPK1RIPK1 0.749 -0.205 1 0.805
TSSK1TSSK1 0.749 -0.034 -3 0.861
ERK7ERK7 0.748 0.002 2 0.568
PIM2PIM2 0.748 -0.036 -3 0.739
CHAK1CHAK1 0.748 -0.077 2 0.757
GSK3BGSK3B 0.748 -0.010 4 0.490
IRAK4IRAK4 0.748 -0.158 1 0.786
PKN2PKN2 0.748 -0.073 -3 0.829
DYRK2DYRK2 0.748 0.001 1 0.697
CAMK2ACAMK2A 0.747 0.038 2 0.829
NEK3NEK3 0.747 -0.179 1 0.760
ROCK1ROCK1 0.747 -0.070 -3 0.741
MAKMAK 0.746 0.012 -2 0.739
CDK3CDK3 0.746 0.058 1 0.587
SMG1SMG1 0.746 -0.060 1 0.783
CK2A1CK2A1 0.745 0.157 1 0.769
MRCKAMRCKA 0.745 -0.066 -3 0.745
TTBK2TTBK2 0.744 -0.069 2 0.699
GRK3GRK3 0.744 0.048 -2 0.727
CLK4CLK4 0.744 -0.008 -3 0.767
SRPK3SRPK3 0.744 0.000 -3 0.731
DCAMKL2DCAMKL2 0.743 -0.075 -3 0.803
IRE2IRE2 0.743 -0.055 2 0.774
FAM20CFAM20C 0.742 0.156 2 0.715
RSK2RSK2 0.742 -0.006 -3 0.768
CDK8CDK8 0.740 0.026 1 0.681
WNK3WNK3 0.740 -0.184 1 0.824
MRCKBMRCKB 0.740 -0.066 -3 0.728
SRPK1SRPK1 0.740 0.007 -3 0.752
PKCAPKCA 0.739 -0.036 2 0.763
DYRK1ADYRK1A 0.739 -0.017 1 0.744
CDK6CDK6 0.739 -0.009 1 0.636
CRIKCRIK 0.739 -0.064 -3 0.692
MOKMOK 0.739 -0.037 1 0.707
PDHK3_TYRPDHK3_TYR 0.738 0.099 4 0.920
SGK3SGK3 0.738 -0.053 -3 0.746
AMPKA2AMPKA2 0.738 -0.088 -3 0.810
GCN2GCN2 0.738 -0.016 2 0.796
MYLK4MYLK4 0.737 -0.072 -2 0.748
P90RSKP90RSK 0.737 -0.036 -3 0.776
IRE1IRE1 0.737 -0.103 1 0.774
MARK2MARK2 0.737 -0.024 4 0.744
ULK1ULK1 0.736 -0.080 -3 0.838
CDK13CDK13 0.736 -0.004 1 0.661
PKCHPKCH 0.736 -0.059 2 0.750
PKCZPKCZ 0.736 -0.086 2 0.793
CDK14CDK14 0.736 -0.033 1 0.661
CDK17CDK17 0.735 0.008 1 0.568
CDK4CDK4 0.735 -0.015 1 0.622
MAPKAPK3MAPKAPK3 0.735 -0.047 -3 0.759
HIPK4HIPK4 0.735 -0.034 1 0.779
HIPK3HIPK3 0.735 -0.053 1 0.709
PAK1PAK1 0.734 -0.058 -2 0.758
PKCBPKCB 0.734 -0.043 2 0.770
CAMK1DCAMK1D 0.734 -0.042 -3 0.672
AKT2AKT2 0.734 -0.038 -3 0.682
PRKD1PRKD1 0.734 -0.004 -3 0.808
CAMK4CAMK4 0.734 -0.114 -3 0.812
CDK16CDK16 0.733 0.008 1 0.586
PAK2PAK2 0.733 -0.090 -2 0.750
CLK2CLK2 0.733 0.058 -3 0.752
RSK4RSK4 0.733 0.011 -3 0.742
IRAK1IRAK1 0.733 -0.213 -1 0.742
PDHK4_TYRPDHK4_TYR 0.732 0.082 2 0.889
MAPKAPK2MAPKAPK2 0.732 0.042 -3 0.724
BMPR2_TYRBMPR2_TYR 0.732 0.073 -1 0.897
MAP2K6_TYRMAP2K6_TYR 0.732 0.103 -1 0.901
CK1DCK1D 0.732 -0.017 -3 0.528
NDR1NDR1 0.731 -0.078 -3 0.832
CLK1CLK1 0.731 -0.009 -3 0.740
MELKMELK 0.731 -0.104 -3 0.788
PDHK1_TYRPDHK1_TYR 0.731 0.098 -1 0.913
PLK4PLK4 0.731 -0.061 2 0.619
RIPK2RIPK2 0.731 -0.192 1 0.756
DYRK1BDYRK1B 0.731 -0.026 1 0.663
SGK1SGK1 0.731 -0.025 -3 0.600
CHK2CHK2 0.731 -0.047 -3 0.624
CDK18CDK18 0.731 0.003 1 0.615
CDK12CDK12 0.730 -0.012 1 0.634
PKCGPKCG 0.730 -0.052 2 0.771
MAP2K4_TYRMAP2K4_TYR 0.730 0.041 -1 0.898
QSKQSK 0.729 -0.044 4 0.815
BCKDKBCKDK 0.729 -0.085 -1 0.804
MARK1MARK1 0.729 -0.062 4 0.798
DYRK3DYRK3 0.728 -0.030 1 0.712
MARK3MARK3 0.728 -0.040 4 0.779
DYRK4DYRK4 0.728 0.005 1 0.630
PRKD3PRKD3 0.728 -0.052 -3 0.734
QIKQIK 0.728 -0.131 -3 0.821
LATS2LATS2 0.728 -0.034 -5 0.706
MSK1MSK1 0.728 -0.025 -3 0.740
NIM1NIM1 0.728 -0.097 3 0.761
HIPK2HIPK2 0.727 0.014 1 0.608
AURAAURA 0.727 -0.014 -2 0.600
SSTKSSTK 0.727 -0.094 4 0.801
NDR2NDR2 0.726 -0.026 -3 0.841
AKT1AKT1 0.726 -0.037 -3 0.694
CAMK1GCAMK1G 0.726 -0.087 -3 0.754
MSK2MSK2 0.726 -0.039 -3 0.737
SBKSBK 0.725 -0.031 -3 0.559
PRKD2PRKD2 0.725 -0.006 -3 0.759
AURBAURB 0.725 -0.052 -2 0.625
STK33STK33 0.725 -0.132 2 0.616
PINK1_TYRPINK1_TYR 0.724 0.055 1 0.849
TESK1_TYRTESK1_TYR 0.724 -0.107 3 0.871
PKACGPKACG 0.724 -0.063 -2 0.722
CDK7CDK7 0.724 -0.045 1 0.688
CDK19CDK19 0.723 0.016 1 0.642
RSK3RSK3 0.723 -0.050 -3 0.768
PAK3PAK3 0.723 -0.113 -2 0.758
MAP2K7_TYRMAP2K7_TYR 0.723 -0.092 2 0.864
PKCEPKCE 0.722 -0.055 2 0.757
SRPK2SRPK2 0.722 0.007 -3 0.675
EPHA6EPHA6 0.721 0.041 -1 0.886
NUAK1NUAK1 0.721 -0.050 -3 0.786
TXKTXK 0.721 0.132 1 0.878
SIKSIK 0.721 -0.032 -3 0.758
CDK9CDK9 0.720 -0.050 1 0.667
CK1A2CK1A2 0.720 -0.031 -3 0.526
PKCTPKCT 0.720 -0.075 2 0.757
EPHB4EPHB4 0.719 0.044 -1 0.861
PKCIPKCI 0.719 -0.101 2 0.767
PKACBPKACB 0.719 -0.010 -2 0.641
PKMYT1_TYRPKMYT1_TYR 0.718 -0.122 3 0.828
MNK1MNK1 0.718 -0.093 -2 0.779
CDK10CDK10 0.718 -0.034 1 0.644
KISKIS 0.718 0.053 1 0.702
FERFER 0.718 0.090 1 0.903
CK1ECK1E 0.717 -0.019 -3 0.583
EPHA4EPHA4 0.717 0.057 2 0.793
CAMK1ACAMK1A 0.715 -0.064 -3 0.648
ABL2ABL2 0.715 0.088 -1 0.824
TTBK1TTBK1 0.715 -0.116 2 0.622
P70S6KP70S6K 0.714 -0.068 -3 0.694
PKG2PKG2 0.714 -0.067 -2 0.644
MNK2MNK2 0.714 -0.101 -2 0.766
TYK2TYK2 0.713 -0.022 1 0.813
INSRRINSRR 0.713 0.043 3 0.712
YES1YES1 0.713 0.067 -1 0.828
YANK3YANK3 0.713 -0.037 2 0.415
AURCAURC 0.713 -0.039 -2 0.626
CSF1RCSF1R 0.713 0.040 3 0.753
RETRET 0.713 -0.050 1 0.814
SRMSSRMS 0.712 0.040 1 0.891
LCKLCK 0.712 0.093 -1 0.818
EPHB2EPHB2 0.712 0.068 -1 0.841
BLKBLK 0.712 0.110 -1 0.826
FGRFGR 0.711 0.016 1 0.855
JAK2JAK2 0.711 -0.025 1 0.809
FYNFYN 0.710 0.122 -1 0.793
PHKG1PHKG1 0.710 -0.112 -3 0.817
HCKHCK 0.710 0.046 -1 0.814
LIMK2_TYRLIMK2_TYR 0.710 -0.144 -3 0.883
EPHB1EPHB1 0.710 0.033 1 0.882
JAK3JAK3 0.709 -0.004 1 0.798
ROS1ROS1 0.709 -0.035 3 0.735
EPHB3EPHB3 0.709 0.048 -1 0.839
TYRO3TYRO3 0.709 -0.050 3 0.766
MST1RMST1R 0.709 -0.095 3 0.774
KITKIT 0.708 0.023 3 0.753
SYKSYK 0.708 0.119 -1 0.818
ABL1ABL1 0.708 0.033 -1 0.813
MAPKAPK5MAPKAPK5 0.707 -0.088 -3 0.701
FLT3FLT3 0.707 0.031 3 0.756
LIMK1_TYRLIMK1_TYR 0.706 -0.186 2 0.859
ITKITK 0.706 0.029 -1 0.789
YANK2YANK2 0.705 -0.041 2 0.435
BRSK1BRSK1 0.705 -0.077 -3 0.784
FGFR2FGFR2 0.704 -0.031 3 0.759
FLT1FLT1 0.704 0.015 -1 0.879
PKACAPKACA 0.704 -0.028 -2 0.586
PTK2PTK2 0.703 0.081 -1 0.822
BMXBMX 0.703 0.033 -1 0.727
DDR1DDR1 0.703 -0.145 4 0.835
PRKXPRKX 0.703 0.015 -3 0.673
METMET 0.703 0.024 3 0.742
AKT3AKT3 0.702 -0.042 -3 0.616
EGFREGFR 0.702 0.052 1 0.707
TECTEC 0.702 0.035 -1 0.728
EPHA5EPHA5 0.702 0.076 2 0.780
FRKFRK 0.701 0.077 -1 0.836
KDRKDR 0.701 -0.027 3 0.714
PKN1PKN1 0.701 -0.082 -3 0.706
NTRK1NTRK1 0.701 -0.012 -1 0.840
SNRKSNRK 0.701 -0.190 2 0.677
MERTKMERTK 0.700 0.015 3 0.735
LYNLYN 0.699 0.046 3 0.673
EPHA7EPHA7 0.699 0.004 2 0.791
PDGFRBPDGFRB 0.699 -0.088 3 0.766
ERBB2ERBB2 0.699 -0.012 1 0.794
EPHA8EPHA8 0.699 0.070 -1 0.825
BRSK2BRSK2 0.699 -0.142 -3 0.800
FGFR3FGFR3 0.698 0.006 3 0.730
BTKBTK 0.698 -0.018 -1 0.745
EPHA3EPHA3 0.698 -0.032 2 0.762
FGFR4FGFR4 0.698 0.067 -1 0.810
PAK6PAK6 0.697 -0.061 -2 0.688
MATKMATK 0.697 0.018 -1 0.771
FGFR1FGFR1 0.697 -0.068 3 0.728
JAK1JAK1 0.696 -0.052 1 0.761
PTK6PTK6 0.696 -0.025 -1 0.730
TNK2TNK2 0.696 -0.113 3 0.714
NTRK3NTRK3 0.696 0.017 -1 0.797
SRCSRC 0.695 0.043 -1 0.792
PHKG2PHKG2 0.695 -0.103 -3 0.788
NEK10_TYRNEK10_TYR 0.695 -0.086 1 0.696
CSKCSK 0.694 0.044 2 0.788
TEKTEK 0.694 -0.104 3 0.695
ALKALK 0.694 -0.047 3 0.676
INSRINSR 0.694 -0.025 3 0.688
TNNI3K_TYRTNNI3K_TYR 0.693 -0.082 1 0.807
WEE1_TYRWEE1_TYR 0.693 -0.049 -1 0.758
LTKLTK 0.693 -0.049 3 0.699
NTRK2NTRK2 0.692 -0.043 3 0.709
AXLAXL 0.692 -0.080 3 0.734
CK1G3CK1G3 0.691 -0.026 -3 0.395
FLT4FLT4 0.691 -0.058 3 0.710
PDGFRAPDGFRA 0.689 -0.159 3 0.765
PTK2BPTK2B 0.688 -0.047 -1 0.762
EPHA2EPHA2 0.688 0.031 -1 0.807
IGF1RIGF1R 0.687 0.038 3 0.625
CK1G1CK1G1 0.686 -0.039 -3 0.589
TNK1TNK1 0.685 -0.148 3 0.744
EPHA1EPHA1 0.685 -0.071 3 0.718
ERBB4ERBB4 0.685 0.032 1 0.737
PAK5PAK5 0.682 -0.079 -2 0.624
DDR2DDR2 0.680 -0.090 3 0.696
ZAP70ZAP70 0.676 0.057 -1 0.737
MUSKMUSK 0.672 -0.088 1 0.689
CK1G2CK1G2 0.672 -0.018 -3 0.498
PAK4PAK4 0.670 -0.081 -2 0.627
CK1ACK1A 0.668 -0.026 -3 0.441
FESFES 0.666 -0.046 -1 0.708
PKG1PKG1 0.662 -0.096 -2 0.554